WorldWideScience

Sample records for human glycosylation disorder

  1. Nutritional Therapies in Congenital Disorders of Glycosylation (CDG

    Directory of Open Access Journals (Sweden)

    Peter Witters

    2017-11-01

    Full Text Available Congenital disorders of glycosylation (CDG are a group of more than 130 inborn errors of metabolism affecting N-linked, O-linked protein and lipid-linked glycosylation. The phenotype in CDG patients includes frequent liver involvement, especially the disorders belonging to the N-linked protein glycosylation group. There are only a few treatable CDG. Mannose-Phosphate Isomerase (MPI-CDG was the first treatable CDG by high dose mannose supplements. Recently, with the successful use of d-galactose in Phosphoglucomutase 1 (PGM1-CDG, other CDG types have been trialed on galactose and with an increasing number of potential nutritional therapies. Current mini review focuses on therapies in glycosylation disorders affecting liver function and dietary intervention in general in N-linked glycosylation disorders. We also emphasize now the importance of early screening for CDG in patients with mild hepatopathy but also in cholestasis.

  2. SLC39A8 Deficiency: A Disorder of Manganese Transport and Glycosylation.

    Science.gov (United States)

    Park, Julien H; Hogrebe, Max; Grüneberg, Marianne; DuChesne, Ingrid; von der Heiden, Ava L; Reunert, Janine; Schlingmann, Karl P; Boycott, Kym M; Beaulieu, Chandree L; Mhanni, Aziz A; Innes, A Micheil; Hörtnagel, Konstanze; Biskup, Saskia; Gleixner, Eva M; Kurlemann, Gerhard; Fiedler, Barbara; Omran, Heymut; Rutsch, Frank; Wada, Yoshinao; Tsiakas, Konstantinos; Santer, René; Nebert, Daniel W; Rust, Stephan; Marquardt, Thorsten

    2015-12-03

    SLC39A8 is a membrane transporter responsible for manganese uptake into the cell. Via whole-exome sequencing, we studied a child that presented with cranial asymmetry, severe infantile spasms with hypsarrhythmia, and dysproportionate dwarfism. Analysis of transferrin glycosylation revealed severe dysglycosylation corresponding to a type II congenital disorder of glycosylation (CDG) and the blood manganese levels were below the detection limit. The variants c.112G>C (p.Gly38Arg) and c.1019T>A (p.Ile340Asn) were identified in SLC39A8. A second individual with the variants c.97G>A (p.Val33Met) and c.1004G>C (p.Ser335Thr) on the paternal allele and c.610G>T (p.Gly204Cys) on the maternal allele was identified among a group of unresolved case subjects with CDG. These data demonstrate that variants in SLC39A8 impair the function of manganese-dependent enzymes, most notably β-1,4-galactosyltransferase, a Golgi enzyme essential for biosynthesis of the carbohydrate part of glycoproteins. Impaired galactosylation leads to a severe disorder with deformed skull, severe seizures, short limbs, profound psychomotor retardation, and hearing loss. Oral galactose supplementation is a treatment option and results in complete normalization of glycosylation. SLC39A8 deficiency links a trace element deficiency with inherited glycosylation disorders. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Congenital disorders of glycosylation: The Saudi experience.

    Science.gov (United States)

    Alsubhi, Sarah; Alhashem, Amal; Faqeih, Eissa; Alfadhel, Majid; Alfaifi, Abdullah; Altuwaijri, Waleed; Alsahli, Saud; Aldhalaan, Hesham; Alkuraya, Fowzan S; Hundallah, Khalid; Mahmoud, Adel; Alasmari, Ali; Mutairi, Fuad Al; Abduraouf, Hanem; AlRasheed, Layan; Alshahwan, Saad; Tabarki, Brahim

    2017-10-01

    We retrospectively reviewed Saudi patients who had a congenital disorder of glycosylation (CDG). Twenty-seven Saudi patients (14 males, 13 females) from 13 unrelated families were identified. Based on molecular studies, the 27 CDG patients were classified into different subtypes: ALG9-CDG (8 patients, 29.5%), ALG3-CDG (7 patients, 26%), COG6-CDG (7 patients, 26%), MGAT2-CDG (3 patients, 11%), SLC35A2-CDG (1 patient), and PMM2-CDG (1 patient). All the patients had homozygous gene mutations. The combined carrier frequency of CDG for the encountered founder mutations in the Saudi population is 11.5 per 10,000, which translates to a minimum disease burden of 14 patients per 1,000,000. Our study provides comprehensive epidemiologic information and prevalence figures for each of these CDG in a large cohort of congenital disorder of glycosylation patients. © 2017 Wiley Periodicals, Inc.

  4. A compound heterozygous mutation in DPAGT1 results in a congenital disorder of glycosylation with a relatively mild phenotype

    NARCIS (Netherlands)

    Iqbal, Z.; Shahzad, M.; Vissers, L.E.L.M.; Scherpenzeel, M. van; Gilissen, C.; Razzaq, A.; Zahoor, M.Y.; Khan, S.N.; Kleefstra, T.; Veltman, J.A.; Brouwer, A.P.M. de; Lefeber, D.J.; Bokhoven, H. van; Riazuddin, S.

    2013-01-01

    Congenital disorders of glycosylation (CDG) are a large group of recessive multisystem disorders caused by impaired protein or lipid glycosylation. The CDG-I subgroup is characterized by protein N-glycosylation defects originating in the endoplasmic reticulum. The genetic defect is known for 17

  5. N- and O-glycosylation Analysis of Human C1-inhibitor Reveals Extensive Mucin-type O-Glycosylation.

    Science.gov (United States)

    Stavenhagen, Kathrin; Kayili, H Mehmet; Holst, Stephanie; Koeleman, Carolien A M; Engel, Ruchira; Wouters, Diana; Zeerleder, Sacha; Salih, Bekir; Wuhrer, Manfred

    2018-06-01

    Human C1-inhibitor (C1-Inh) is a serine protease inhibitor and the major regulator of the contact activation pathway as well as the classical and lectin complement pathways. It is known to be a highly glycosylated plasma glycoprotein. However, both the structural features and biological role of C1-Inh glycosylation are largely unknown. Here, we performed for the first time an in-depth site-specific N - and O -glycosylation analysis of C1-Inh combining various mass spectrometric approaches, including C18-porous graphitized carbon (PGC)-LC-ESI-QTOF-MS/MS applying stepping-energy collision-induced dissociation (CID) and electron-transfer dissociation (ETD). Various proteases were applied, partly in combination with PNGase F and exoglycosidase treatment, in order to analyze the (glyco)peptides. The analysis revealed an extensively O -glycosylated N-terminal region. Five novel and five known O -glycosylation sites were identified, carrying mainly core1-type O -glycans. In addition, we detected a heavily O -glycosylated portion spanning from Thr 82 -Ser 121 with up to 16 O -glycans attached. Likewise, all known six N -glycosylation sites were covered and confirmed by this site-specific glycosylation analysis. The glycoforms were in accordance with results on released N -glycans by MALDI-TOF/TOF-MS/MS. The comprehensive characterization of C1-Inh glycosylation described in this study will form the basis for further functional studies on the role of these glycan modifications. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Prepubertal growth in congenital disorder of glycosylation type Ia (CDG-Ia)

    OpenAIRE

    Kjaergaard, S; Muller, J; Skovby, F

    2002-01-01

    Aims: To delineate the pattern of growth in prepubertal children with congenital disorder of glycosylation type Ia (CDG-Ia) in order to identify critical period(s) and possible cause(s) of growth failure.

  7. Perinatal and early infantile symptoms in congenital disorders of glycosylation

    NARCIS (Netherlands)

    Funke, S.; Gardeitchik, T.; Kouwenberg, D.; Mohamed, M.; Wortmann, S.B.; Korsch, E.; Adamowicz, M.; Al-Gazali, L.; Wevers, R.A.; Horvath, A.; Lefeber, D.J.; Morava, E.

    2013-01-01

    Congenital disorders of glycosylation (CDG) are a rapidly growing family of inborn errors. Screening for CDG in suspected cases is usually performed in the first year of life by serum transferrin isoelectric focusing or mass spectrometry. Based on the transferrin analysis patients can be

  8. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation.

    Science.gov (United States)

    Jansen, Jos C; Cirak, Sebahattin; van Scherpenzeel, Monique; Timal, Sharita; Reunert, Janine; Rust, Stephan; Pérez, Belén; Vicogne, Dorothée; Krawitz, Peter; Wada, Yoshinao; Ashikov, Angel; Pérez-Cerdá, Celia; Medrano, Celia; Arnoldy, Andrea; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; Quelhas, Dulce; Diogo, Luisa; Rymen, Daisy; Jaeken, Jaak; Guffon, Nathalie; Cheillan, David; van den Heuvel, Lambertus P; Maeda, Yusuke; Kaiser, Olaf; Schara, Ulrike; Gerner, Patrick; van den Boogert, Marjolein A W; Holleboom, Adriaan G; Nassogne, Marie-Cécile; Sokal, Etienne; Salomon, Jody; van den Bogaart, Geert; Drenth, Joost P H; Huynen, Martijn A; Veltman, Joris A; Wevers, Ron A; Morava, Eva; Matthijs, Gert; Foulquier, François; Marquardt, Thorsten; Lefeber, Dirk J

    2016-02-04

    Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal

  9. Neonatal severe intractable diarrhoea as the presenting manifestation of an unclassified congenital disorder of glycosylation (CDG-x)

    OpenAIRE

    Mention, K; Michaud, L; Dobbelaere, D; Guimber, D; Gottrand, F; Turck, D

    2001-01-01

    A case of severe and protracted diarrhoea is reported, which started in the neonatal period and progressively associated with neurological impairment, dysmorphy, hepatosplenomegaly, and hepatic insufficiency, from which the patient died at 2 years of age. Isoelectric focusing of serum transferrin showed a congenital disorder of glycosylation type I pattern but the basic defect could not be identified. This observation shows that congenital disorder of glycosylation is a cause of i...

  10. Hydrophobic Man-1-P derivatives correct abnormal glycosylation in Type I congenital disorder of glycosylation fibroblasts.

    Science.gov (United States)

    Eklund, Erik A; Merbouh, Nabyl; Ichikawa, Mie; Nishikawa, Atsushi; Clima, Jessica M; Dorman, James A; Norberg, Thomas; Freeze, Hudson H

    2005-11-01

    Patients with Type I congenital disorders of glycosylation (CDG-I) make incomplete lipid-linked oligosaccharides (LLO). These glycans are poorly transferred to proteins resulting in unoccupied glycosylation sequons. Mutations in phosphomannomutase (PMM2) cause CDG-Ia by reducing the activity of PMM, which converts mannose (Man)-6-P to Man-1-P before formation of GDP-Man. These patients have reduced Man-1-P and GDP-Man. To replenish intracellular Man-1-P pools in CDG-Ia cells, we synthesized two hydrophobic, membrane permeable acylated versions of Man-1-P and determined their ability to normalize LLO size and N-glycosylation in CDG-Ia fibroblasts. Both compounds, compound I (diacetoxymethyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranosyl phosphate) (C-I) and compound II (diacetoxymethyl 2,3,4,6-tetra-O-ethyloxycarbonyl-alpha-D-mannopyranosyl phosphate) (C-II), contain two acetoxymethyl (CH2OAc) groups O-linked to phosphorous. C-I contains acetyl esters and C-II contains ethylcarbonate (CO2Et) esters on the Man residue. Both C-I and C-II normalized truncated LLO, but C-II was about 2-fold more efficient than C-I. C-II replenished the GDP-Man pool in CDG-Ia cells and was more efficiently incorporated into glycoproteins than exogenous Man at low concentrations (25-75 mM). In a glycosylation assay of DNaseI in CDG-Ia cells, C-II restored glycosylation to control cell levels. C-II also corrected impaired LLO biosynthesis in cells from a Dolichol (Dol)-P-Man deficient patient (CDG-Ie) and partially corrected LLO in cells from an ALG12 mannosyltransferase-deficient patient (CDG-Ig), whereas cells from an ALG3-deficient patient (CDG-Id) and from an MPDU1-deficient patient (CDG-If) were not corrected. These results validate the general concept of using pro-Man-1-P substrates as potential therapeutics for CDG-I patients.

  11. Neonatal severe intractable diarrhoea as the presenting manifestation of an unclassified congenital disorder of glycosylation (CDG-x)

    Science.gov (United States)

    Mention, K; Michaud, L; Dobbelaere, D; Guimber, D; Gottrand, F; Turck, D

    2001-01-01

    A case of severe and protracted diarrhoea is reported, which started in the neonatal period and progressively associated with neurological impairment, dysmorphy, hepatosplenomegaly, and hepatic insufficiency, from which the patient died at 2 years of age. Isoelectric focusing of serum transferrin showed a congenital disorder of glycosylation type I pattern but the basic defect could not be identified. This observation shows that congenital disorder of glycosylation is a cause of intractable diarrhoea in neonates.

 PMID:11668168

  12. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins.

    Science.gov (United States)

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J; Shojaosadati, Seyed Abbas; Nielsen, Jens

    2016-05-01

    Pichia pastoris is used for commercial production of human therapeutic proteins, and genome-scale models of P. pastoris metabolism have been generated in the past to study the metabolism and associated protein production by this yeast. A major challenge with clinical usage of recombinant proteins produced by P. pastoris is the difference in N-glycosylation of proteins produced by humans and this yeast. However, through metabolic engineering, a P. pastoris strain capable of producing humanized N-glycosylated proteins was constructed. The current genome-scale models of P. pastoris do not address native nor humanized N-glycosylation, and we therefore developed ihGlycopastoris, an extension to the iLC915 model with both native and humanized N-glycosylation for recombinant protein production, but also an estimation of N-glycosylation of P. pastoris native proteins. This new model gives a better prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required for using these models to understand and optimize protein production processes. © 2015 Wiley Periodicals, Inc.

  13. MALDI-TOF MS applied to apoC-III glycoforms of patients with congenital disorders affecting O-glycosylation. Comparison with two-dimensional electrophoresis

    NARCIS (Netherlands)

    Yen-Nicolay, S.; Boursier, C.; Rio, M. del; Lefeber, D.J.; Pilon, A.; Seta, N.; Bruneel, A.

    2015-01-01

    PURPOSE: The O-glycan abnormalities accompanying some congenital disorders of glycosylation, namely conserved oligomeric Golgi-congenital disorders of glycosylation (COG-CDGs) and ATP6V0A2-CDGs, are mainly detected using electrophoresis methods applied to circulating apolipoprotein C-III. The

  14. A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation

    Directory of Open Access Journals (Sweden)

    Jaime Chu

    2013-01-01

    Individuals with congenital disorders of glycosylation (CDG have recessive mutations in genes required for protein N-glycosylation, resulting in multi-systemic disease. Despite the well-characterized biochemical consequences in these individuals, the underlying cellular defects that contribute to CDG are not well understood. Synthesis of the lipid-linked oligosaccharide (LLO, which serves as the sugar donor for the N-glycosylation of secretory proteins, requires conversion of fructose-6-phosphate to mannose-6-phosphate via the phosphomannose isomerase (MPI enzyme. Individuals who are deficient in MPI present with bleeding, diarrhea, edema, gastrointestinal bleeding and liver fibrosis. MPI-CDG patients can be treated with oral mannose supplements, which is converted to mannose-6-phosphate through a minor complementary metabolic pathway, restoring protein glycosylation and ameliorating most symptoms, although liver disease continues to progress. Because Mpi deletion in mice causes early embryonic lethality and thus is difficult to study, we used zebrafish to establish a model of MPI-CDG. We used a morpholino to block mpi mRNA translation and established a concentration that consistently yielded 13% residual Mpi enzyme activity at 4 days post-fertilization (dpf, which is within the range of MPI activity detected in fibroblasts from MPI-CDG patients. Fluorophore-assisted carbohydrate electrophoresis detected decreased LLO and N-glycans in mpi morphants. These deficiencies resulted in 50% embryonic lethality by 4 dpf. Multi-systemic abnormalities, including small eyes, dysmorphic jaws, pericardial edema, a small liver and curled tails, occurred in 82% of the surviving larvae. Importantly, these phenotypes could be rescued with mannose supplementation. Thus, parallel processes in fish and humans contribute to the phenotypes caused by Mpi depletion. Interestingly, mannose was only effective if provided prior to 24 hpf. These data provide insight into treatment efficacy

  15. TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation

    NARCIS (Netherlands)

    Jansen, Jos C.; Timal, Sharita; van Scherpenzeel, Monique; Michelakakis, Helen; Vicogne, Dorothée; Ashikov, Angel; Moraitou, Marina; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; van den Boogert, Marjolein A. W.; Porta, Francesco; Calvo, Pier Luigi; Mavrikou, Mersyni; Cenacchi, Giovanna; van den Bogaart, Geert; Salomon, Jody; Holleboom, Adriaan G.; Rodenburg, Richard J.; Drenth, Joost P. H.; Huynen, Martijn A.; Wevers, Ron A.; Morava, Eva; Foulquier, François; Veltman, Joris A.; Lefeber, Dirk J.

    2016-01-01

    Congenital disorders of glycosylation (CDGs) form a genetically and clinically heterogeneous group of diseases with aberrant protein glycosylation as a hallmark. A subgroup of CDGs can be attributed to disturbed Golgi homeostasis. However, identification of pathogenic variants is seriously

  16. Glycosylation of the N-terminal potential N-glycosylation sites in the human α1,3-fucosyltransferase V and -VI (hFucTV and -VI)

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Bross, Peter Gerd; Ørntoft, Torben Falck

    2000-01-01

    Human alpha1,3-fucosyltransferase V and -VI (hFucTV and -VI) each contain four potential N-glycosylation sites (hFucTV: Asn60, Asn105, Asn167 and Asn198 and hFucTVI: Asn46, Asn91, Asn153 and Asn184). Glycosylation of the two N-terminal potential N-glycosylation sites (hFucTV: Asn60, Asn105 and h......FucTVI: Asn46 and Asn91) have never been studied in detail. In the present study, we have analysed the glycosylation of these potential N-glycosylation sites. Initially, we compared the molecular mass of hFucTV and -VI expressed in COS-7 cells treated with tunicamycin with the mass of the proteins...... in untreated cells. The difference in molecular mass between the proteins in treated and untreated cells corresponded to the presence of at least three N-linked glycans. We then made a series of mutants, in which the asparagine residues in the N-terminal potential N-glycosylation sites were replaced...

  17. Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing

    NARCIS (Netherlands)

    Timal, Sharita; Hoischen, Alexander; Lehle, Ludwig; Adamowicz, Maciej; Huijben, Karin; Sykut-Cegielska, Jolanta; Paprocka, Justyna; Jamroz, Ewa; van Spronsen, Francjan J.; Koerner, Christian; Gilissen, Christian; Rodenburg, Richard J.; Eidhof, Ilse; Van den Heuvel, Lambert; Thiel, Christian; Wevers, Ron A.; Morava, Eva; Veltman, Joris; Lefeber, Dirk J.

    2012-01-01

    Congenital disorders of glycosylation type I (CDG-I) form a growing group of recessive neurometabolic diseases. Identification of disease genes is compromised by the enormous heterogeneity in clinical symptoms and the large number of potential genes involved. Until now, gene identification included

  18. Crystallization and preliminary crystallographic analysis of human glycosylated haemoglobin

    International Nuclear Information System (INIS)

    Syakhovich, Vitaly E.; Saraswathi, N. T.; Ruff, Marc; Bokut, Sergey B.; Moras, Dino

    2006-01-01

    Non enzymatic modification of haemoglobin by glucose plays an important role in diabetes pathogenesis. Here the purification, characterization and crystallization of human glycosylated haemoglobin are reported. Human glycosylated haemoglobin A 1C is a stable minor variant formed in vivo by post-translational modification of the main form of haemoglobin by glucose. Crystals of oxyHbA 1C were obtained using the hanging-drop vapour-diffusion method and PEG as precipitant. The diffraction pattern of the crystal extends to a resolution of 2.3 Å at 120 K. The crystals belong to space group C2, with unit-cell parameters a = 237.98, b = 59.27, c = 137.02 Å, α = 90.00, β = 125.40, γ = 90.00°. The presence of two and a half molecules per asymmetric unit gives a crystal volume per protein weight (V M ) of 9.70 Å 3 Da −1 and a solvent content of 49%

  19. Crystallization and preliminary crystallographic analysis of human glycosylated haemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Syakhovich, Vitaly E. [Department of Biochemistry and Biophysics, International Sakharov Environmental University, Dolgobrodskaya St 23, 220009 Minsk (Belarus); Saraswathi, N. T.; Ruff, Marc, E-mail: ruff@igbmc.u-strasbg.fr [Département de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Bokut, Sergey B. [Department of Biochemistry and Biophysics, International Sakharov Environmental University, Dolgobrodskaya St 23, 220009 Minsk (Belarus); Moras, Dino [Département de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch (France); Department of Biochemistry and Biophysics, International Sakharov Environmental University, Dolgobrodskaya St 23, 220009 Minsk (Belarus)

    2006-02-01

    Non enzymatic modification of haemoglobin by glucose plays an important role in diabetes pathogenesis. Here the purification, characterization and crystallization of human glycosylated haemoglobin are reported. Human glycosylated haemoglobin A{sub 1C} is a stable minor variant formed in vivo by post-translational modification of the main form of haemoglobin by glucose. Crystals of oxyHbA{sub 1C} were obtained using the hanging-drop vapour-diffusion method and PEG as precipitant. The diffraction pattern of the crystal extends to a resolution of 2.3 Å at 120 K. The crystals belong to space group C2, with unit-cell parameters a = 237.98, b = 59.27, c = 137.02 Å, α = 90.00, β = 125.40, γ = 90.00°. The presence of two and a half molecules per asymmetric unit gives a crystal volume per protein weight (V{sub M}) of 9.70 Å{sup 3} Da{sup −1} and a solvent content of 49%.

  20. Revealing the mechanisms of protein disorder and N-glycosylation in CD44-hyaluronan binding using molecular simulation

    Directory of Open Access Journals (Sweden)

    Olgun eGuvench

    2015-06-01

    Full Text Available The extracellular N-terminal hyaluronan binding domain (HABD of CD44 is a small globular domain that confers hyaluronan (HA binding functionality to this large transmembrane glycoprotein. When recombinantly expressed by itself, HABD exists as a globular water-soluble protein that retains the capacity to bind HA. This has enabled atomic-resolution structural biology experiments that have revealed the structure of HABD and its binding mode with oligomeric HA. Such experiments have also pointed to an order-to-disorder transition in HABD that is associated with HA binding. However, it had remained unclear how this structural transition was involved in binding since it occurs in a region of HABD distant from the HA-binding site. Furthermore, HABD is known to be N-glycosylated, and such glycosylation can diminish HA binding when the associated N-glycans are capped with sialic acid residues. The intrinsic flexibility of disordered proteins and of N-glycans makes it difficult to apply experimental structural biology approaches to probe the molecular mechanisms of how the order-to-disorder transition and N-glycosylation can modulate HA binding by HABD. We review recent results from molecular dynamics simulations that provide atomic-resolution mechanistic understanding of such modulation to help bridge gaps between existing experimental binding and structural biology data. Findings from these simulations include: Tyr42 may function as a molecular switch that converts the HA binding site from a low affinity to a high affinity state; in the partially-disordered form of HABD, basic amino acids in the C-terminal region can gain sufficient mobility to form direct contacts with bound HA to further stabilize binding; and terminal sialic acids on covalently-attached N-glycans can form charge-paired hydrogen bonding interactions with basic amino acids that could otherwise bind to HA, thereby blocking HA binding to glycosylated CD44 HABD.

  1. Multidimensional fractionation is a requirement for quantitation of Golgi-resident glycosylation enzymes from cultured human cells.

    Science.gov (United States)

    Lin, Chi-Hung; Chik, Jenny H L; Packer, Nicolle H; Molloy, Mark P

    2015-02-06

    Glycosylation results from the concerted action of glycosylation enzymes in the secretory pathway. In general, gene expression serves as the primary control mechanism, but post-translational fine-tuning of glycosylation enzyme functions is often necessary for efficient synthesis of specific glycan epitopes. While the field of glycomics has rapidly advanced, there lacks routine proteomic methods to measure expression of specific glycosylation enzymes needed to fill the gap between mRNA expression and the glycomic profile in a "reverse genomics" workflow. Toward developing this workflow we enriched Golgi membranes from two human colon cancer cell lines by sucrose density centrifugation and further mass-based fractionation by SDS-PAGE. We then applied mass spectrometry to demonstrate a doubling in the number of Golgi resident proteins identified, compared to the unenriched, low speed centrifuged supernatant of lysed cells. A total of 35 Golgi-resident glycosylation enzymes, of which 23 were glycosyltransferases, were identified making this the largest protein database so far of Golgi resident glycosylation enzymes experimentally identified in cultured human cells. We developed targeted mass spectrometry assays for specific quantitation of many of these glycosylation enzymes. Our results show that alterations in abundance of glycosylation enzymes at the protein level were generally consistent with the resultant glycomic profiles, but not necessarily with the corresponding glycosyltransferase mRNA expression as exemplified by the case of O-glycan core 1 T synthase.

  2. Trans-species Engineering of Glycosylated Therapeutic Proteins

    DEFF Research Database (Denmark)

    Yang, Zhang

    important to address. Whenever glycosylation has been found to be an important PTM for function or bioactivity, human therapeutics have generally been produced in mammalian Chinese hamster ovary (CHO) cell line. Oglycosylation is one of the most complex regulated PTMs of proteins but also one of the least...... understood. Currently, mammalian cells are required for human O-glycosylation. Increasing efforts have been devoted to engineering non-mammalian cells for production of recombinant proteins with “human-like” glycosylation. Substantial success has been achieved with designed N-glycosylation in both lower......Recombinant expression of therapeutic proteins is one of the major tasks in modern biomedicine. One of the most important factors with respect to therapeutic use in human is posttranslational modifications (PTMs) of the recombinant proteins, of which protein glycosylation is by far the most...

  3. Systems analysis of singly and multiply O-glycosylated peptides in the human serum glycoproteome via EThcD and HCD mass spectrometry.

    Science.gov (United States)

    Zhang, Yong; Xie, Xinfang; Zhao, Xinyuan; Tian, Fang; Lv, Jicheng; Ying, Wantao; Qian, Xiaohong

    2018-01-06

    Human serum has been intensively studied to identify biomarkers via global proteomic analysis. The altered O-glycoproteome is associated with human pathological state including cancer, inflammatory and degenerative diseases and is an attractive source of disease biomarkers. Because of the microheterogeneity and macroheterogeneity of O-glycosylation, site-specific O-glycosylation analysis in human serum is still challenging. Here, we developed a systematic strategy that combined multiple enzyme digestion, multidimensional separation for sample preparation and high-resolution tandem MS with Byonic software for intact O-glycopeptide characterization. We demonstrated that multiple enzyme digestion or multidimensional separation can make sample preparation more efficient and that EThcD is not only suitable for the identification of singly O-glycosylated peptides (50.3%) but also doubly (21.2%) and triply (28.5%) O-glycosylated peptides. Totally, with the strict scoring criteria, 499 non-redundant intact O-glycopeptides, 173 O-glycosylation sites and 6 types of O-glycans originating from 49 O-glycoprotein groups were identified in human serum, including 121 novel O-glycosylation sites. Currently, this is the largest data set of site-specific native O-glycoproteome from human serum samples. We expect that the strategies developed by this study will facilitate in-depth analyses of native O-glycoproteomes in human serum and provide opportunities to understand the functional roles of protein O-glycosylation in human health and diseases. The altered O-glycoproteome is associated with human pathological state and is an attractive source of disease biomarkers. However, site-specific O-glycosylation analysis is challenging because of the microheterogeneity (different glycoforms attached to one glycosylation site) and macroheterogeneity (site occupancy) of O-glycosylation. In this work, we developed a systematic strategy for intact O-glycopeptide characterization. This study took

  4. Chondrocyte secreted CRTAC1: a glycosylated extracellular matrix molecule of human articular cartilage.

    Science.gov (United States)

    Steck, Eric; Bräun, Jessica; Pelttari, Karoliina; Kadel, Stephanie; Kalbacher, Hubert; Richter, Wiltrud

    2007-01-01

    Cartilage acidic protein 1 (CRTAC1), a novel human marker which allowed discrimination of human chondrocytes from osteoblasts and mesenchymal stem cells in culture was so far studied only on the RNA-level. We here describe its genomic organisation and detect a new brain expressed (CRTAC1-B) isoform resulting from alternate last exon usage which is highly conserved in vertebrates. In humans, we identify an exon sharing process with the neighbouring tail-to-tail orientated gene leading to CRTAC1-A. This isoform is produced by cultured human chondrocytes, localized in the extracellular matrix of articular cartilage and its secretion can be stimulated by BMP4. Of five putative O-glycosylation motifs in the last exon of CRTAC1-A, the most C-terminal one is modified according to exposure of serial C-terminal deletion mutants to the O-glycosylation inhibitor Benzyl-alpha-GalNAc. Both isoforms contain four FG-GAP repeat domains and an RGD integrin binding motif, suggesting cell-cell or cell-matrix interaction potential. In summary, CRTAC1 acquired an alternate last exon from the tail-to-tail oriented neighbouring gene in humans resulting in the glycosylated isoform CRTAC1-A which represents a new extracellular matrix molecule of articular cartilage.

  5. Defining the phenotype and diagnostic considerations in adults with congenital disorders of N-linked glycosylation

    NARCIS (Netherlands)

    Wolthuis, D.F.; Janssen, M.C.H.; Cassiman, D.; Lefeber, D.J.; Morava-Kozicz, E.

    2014-01-01

    Congenital disorders of N-glycosylation (CDG) form a rapidly growing group of more than 20 inborn errors of metabolism. Most patients are identified at the pediatric age with multisystem disease. There is no systematic review on the long-term outcome and clinical presentation in adult patients.

  6. GlcNAc-1-P-transferase–tunicamycin complex structure reveals basis for inhibition of N-glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jiho; Mashalidis, Ellene H.; Kuk, Alvin C. Y.; Yamamoto, Kazuki; Kaeser, Benjamin; Ichikawa, Satoshi; Lee, Seok-Yong

    2018-02-19

    N-linked glycosylation is a predominant post-translational modification of protein in eukaryotes, and its dysregulation is the etiology of several human disorders. The enzyme UDP-N-acetylglucosamine:dolichyl-phosphate N-acetylglucosaminephosphotransferase (GlcNAc-1-P-transferase or GPT) catalyzes the first and committed step of N-linked glycosylation in the endoplasmic reticulum membrane, and it is the target of the natural product tunicamycin. Tunicamycin has potent antibacterial activity, inhibiting the bacterial cell wall synthesis enzyme MraY, but its usefulness as an antibiotic is limited by off-target inhibition of human GPT. Our understanding of how tunicamycin inhibits N-linked glycosylation and efforts to selectively target MraY are hampered by a lack of structural information. Here we present crystal structures of human GPT in complex with tunicamycin. In conclusion, structural and functional analyses reveal the difference between GPT and MraY in their mechanisms of inhibition by tunicamycin. We demonstrate that this difference could be exploited to design MraY-specific inhibitors as potential antibiotics.

  7. N-glycosylation increases the circulatory half-life of human growth hormone

    DEFF Research Database (Denmark)

    Flintegaard, Thomas V; Thygesen, Peter; Rahbek-Nielsen, Henrik

    2010-01-01

    Therapeutic use of recombinant GH typically involves daily sc injections. We examined the possibilities for prolonging the in vivo circulation of GH by introducing N-glycans. Human GH variants with a single potential N-glycosylation site (N-X-S/T) introduced by site-directed mutagenesis were expr...

  8. Diagnostic serum glycosylation profile in patients with intellectual disability as a result of MAN1B1 deficiency

    DEFF Research Database (Denmark)

    Van Scherpenzeel, Monique; Timal, Sharita; Rymen, Daisy

    2014-01-01

    Congenital disorders of glycosylation comprise a group of genetic defects with a high frequency of intellectual disability, caused by deficient glycosylation of proteins and lipids. The molecular basis of the majority of the congenital disorders of glycosylation type I subtypes, localized...... in the cytosol and endoplasmic reticulum, has been solved. However, elucidation of causative genes for defective Golgi glycosylation (congenital disorders of glycosylation type II) remains challenging because of a lack of sufficiently specific diagnostic serum methods. In a single patient with intellectual...... disability, whole-exome sequencing revealed MAN1B1 as congenital disorder of glycosylation type II candidate gene. A novel mass spectrometry method was applied for high-resolution glycoprofiling of intact plasma transferrin. A highly characteristic glycosylation signature was observed with hybrid type N...

  9. Toward stable genetic engineering of human o-glycosylation in plants

    DEFF Research Database (Denmark)

    Yang, Zhang; Bennett, Eric Paul; Jørgensen, Bodil

    2012-01-01

    Glycosylation is the most abundant and complex posttranslational modification to be considered for recombinant production of therapeutic proteins. Mucin-type (N-acetylgalactosamine [GalNAc]-type) O-glycosylation is found in eumetazoan cells but absent in plants and yeast, making these cell types...... an obvious choice for de novo engineering of this O-glycosylation pathway. We previously showed that transient implementation of O-glycosylation capacity in plants requires introduction of the synthesis of the donor substrate UDP-GalNAc and one or more polypeptide GalNAc-transferases for incorporating Gal......NAc residues into proteins. Here, we have stably engineered O-glycosylation capacity in two plant cell systems, soil-grown Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) Bright Yellow-2 suspension culture cells. Efficient GalNAc O-glycosylation of two stably coexpressed substrate O...

  10. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers

    NARCIS (Netherlands)

    Lauc, G.; Huffman, J.E.; Pucic, M.; Zgaga, L.; Adamczyk, B.; Muzinic, A.; Novokmet, M.; Polasek, O.; Gornik, O.; Kristic, J.; Keser, T.; Vitart, V.; Scheijen, B.; Uh, H.W.; Molokhia, M.; Patrick, A.L.; McKeigue, P.; Kolcic, I.; Lukic, I.K.; Swann, O.; Leeuwen, F.N. van; Ruhaak, L.R.; Houwing-Duistermaat, J.J.; Slagboom, P.E.; Beekman, M.; Craen, A.J. de; Deelder, A.M.; Zeng, Q.; Wang, W.; Hastie, N.D.; Gyllensten, U.; Wilson, J.F.; Wuhrer, M.; Wright, A.F.; Rudd, P.M.; Hayward, C.; Aulchenko, Y.; Campbell, H.; Rudan, I.

    2013-01-01

    Glycosylation of immunoglobulin G (IgG) influences IgG effector function by modulating binding to Fc receptors. To identify genetic loci associated with IgG glycosylation, we quantitated N-linked IgG glycans using two approaches. After isolating IgG from human plasma, we performed 77 quantitative

  11. Trans-species Engineering of Glycosylated Therapeutic Proteins

    DEFF Research Database (Denmark)

    Yang, Zhang

    eukaryotes and even prokaryotes. Insect and yeast cells produce O-glycosylation incompatible with use in humans, however recently the yeast Pichia was engineered to perform the first step of human-like O-glycosylation. This review provides an overview of past and current engineering efforts of N...

  12. Biochemical Importance of Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Gils, Ann; Pedersen, Katrine Egelund; Skottrup, Peter

    2003-01-01

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous glycosyla......The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous...... with the glycosylation sites could be excluded as explanation for the differential reactivity. The latency transition of non-glycosylated, but not of glycosylated PAI-1, was strongly accelerated by a non-ionic detergent. The different biochemical properties of glycosylated and non-glycosylated PAI-1 depended...

  13. Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis.

    Science.gov (United States)

    Muro, Silvia; Schuchman, Edward H; Muzykantov, Vladimir R

    2006-01-01

    Enzyme replacement therapy, a state-of-the-art treatment for many lysosomal storage disorders, relies on carbohydrate-mediated binding of recombinant enzymes to receptors that mediate lysosomal delivery via clathrin-dependent endocytosis. Suboptimal glycosylation of recombinant enzymes and deficiency of clathrin-mediated endocytosis in some lysosomal enzyme-deficient cells limit delivery and efficacy of enzyme replacement therapy for lysosomal disorders. We explored a novel delivery strategy utilizing nanocarriers targeted to a glycosylation- and clathrin-independent receptor, intercellular adhesion molecule (ICAM)-1, a glycoprotein expressed on diverse cell types, up-regulated and functionally involved in inflammation, a hallmark of many lysosomal disorders. We targeted recombinant human acid sphingomyelinase (ASM), deficient in types A and B Niemann-Pick disease, to ICAM-1 by loading this enzyme to nanocarriers coated with anti-ICAM. Anti-ICAM/ASM nanocarriers, but not control ASM or ASM nanocarriers, bound to ICAM-1-positive cells (activated endothelial cells and Niemann-Pick disease patient fibroblasts) via ICAM-1, in a glycosylation-independent manner. Anti-ICAM/ASM nanocarriers entered cells via CAM-mediated endocytosis, bypassing the clathrin-dependent pathway, and trafficked to lysosomes, where delivered ASM displayed stable activity and alleviated lysosomal lipid accumulation. Therefore, lysosomal enzyme targeting using nanocarriers targeted to ICAM-1 bypasses defunct pathways and may improve the efficacy of enzyme replacement therapy for lysosomal disorders, such as Niemann-Pick disease.

  14. Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder.

    NARCIS (Netherlands)

    Spaapen, L.J.; Bakker, J.A.; Meer, S.B. van der; Sijstermans, H.J.; Steet, R.A.; Wevers, R.A.; Jaeken, J.

    2005-01-01

    Congenital disorders of glycosylation (CDG) represent a group of inherited multiorgan diseases caused by defects in the biosynthesis of glycoproteins. We report on two dysmorphic siblings with severe liver disease who died at the age of a few weeks. Increased activities of lysosomal enzymes in

  15. A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism.

    NARCIS (Netherlands)

    Morava, E.; Wevers, R.A.; Cantagrel, V.; Hoefsloot, L.H.; Al-Gazali, L.; Schoots, J.; Rooij, A. van; Huijben, K.; Ravenswaaij-Arts, C.M.A. van; Jongmans, M.C.J.; Sykut-Cegielska, J.; Hoffmann, G.F.; Bluemel, P.; Adamowicz, M.; Reeuwijk, J. van; Ng, B.G.; Bergman, J.E.; Bokhoven, J.H.L.M. van; Korner, C.; Babovic-Vuksanovic, D.; Willemsen, M.A.A.P.; Gleeson, J.G.; Lehle, L.; Brouwer, A.P.M. de; Lefeber, D.J.

    2010-01-01

    Cerebellar hypoplasia and slowly progressive ophthalmological symptoms are common features in patients with congenital disorders of glycosylation type I. In a group of patients with congenital disorders of glycosylation type I with unknown aetiology, we have previously described a distinct phenotype

  16. Novel anti-c-Mpl monoclonal antibodies identified multiple differentially glycosylated human c-Mpl proteins in megakaryocytic cells but not in human solid tumors.

    Science.gov (United States)

    Zhan, Jinghui; Felder, Barbara; Ellison, Aaron R; Winters, Aaron; Salimi-Moosavi, Hossein; Scully, Sheila; Turk, James R; Wei, Ping

    2013-06-01

    Thrombopoietin and its cognate receptor, c-Mpl, are the primary molecular regulators of megakaryocytopoiesis and platelet production. To date the pattern of c-Mpl expression in human solid tumors and the distribution and biochemical properties of c-Mpl proteins in hematopoietic tissues are largely unknown. We have recently developed highly specific mouse monoclonal antibodies (MAb) against human c-Mpl. In this study we used these antibodies to demonstrate the presence of full-length and truncated human c-Mpl proteins in various megakaryocytic cell types, and their absence in over 100 solid tumor cell lines and in the 12 most common primary human tumor types. Quantitative assays showed a cell context-dependent distribution of full-length and truncated c-Mpl proteins. All forms of human c-Mpl protein were found to be modified with extensive N-linked glycosylation but different degrees of sialylation and O-linked glycosylation. Of note, different variants of full-length c-Mpl protein exhibiting differential glycosylation were expressed in erythromegakaryocytic leukemic cell lines and in platelets from healthy human donors. This work provides a comprehensive analysis of human c-Mpl mRNA and protein expression on normal and malignant hematopoietic and non-hematopoietic cells and demonstrates the multiple applications of several novel anti-c-Mpl antibodies.

  17. Optimization of a colorimetric assay for glycosylated human serum albumin

    International Nuclear Information System (INIS)

    Bohney, J.P.; Feldhoff, R.C.

    1986-01-01

    The thiobarbituric acid (TBA) assay has been used for several years to quantitate the amount of glucose which has been non-enzymatically linked to hemoglobin and other proteins. The ketoamine-protein adduct is converted to 5-hydroxymethylfurfural (HMF) by mild hydrolysis with oxalic acid. Reaction of HMF with TBA yields a colored product which has an absorbance maximum at 443 nm. Several modifications of the original procedure has been published, but none permit the unambiguous quantitation of glycosylated human serum albumin (glc-HSA). Problems relate to reagent preparation and stability, the time and temperature of hydrolysis, the choice of standards, and background color corrections. The authors have found that maximum color yield occurs after hydrolysis in an autoclave for 2 h. This increases the sensitivity 3-fold and cuts the assay time in half relative to hydrolysis for 4.5 h at 100 0 C. A NaBH 4 reduction of a parallel protein sample must be performed to correct for variable background color associated with different sample sources and amounts. HMF can be used as a standard, however, corrections must be made for HMF degradation. Fructose is a better standard, but HMF formation from fructose is faster than formation from glc-HSA. This may result in an underestimate of percent glycosylation. The best standard appears to be glc-HSA prepared with [ 3 H]glucose. It appears that with proper controls and standards the TBA assay can be used to determine actual rather than relative percent glycosylation

  18. Functional importance of PAI-1 glycosylation

    DEFF Research Database (Denmark)

    Christensen, Anni; Naessens, Dominik; Skottrup, Peter

    susceptible PAI-1 variant was not necessarily the one used when raising the antibody. This and other observations indicated that the carbohydrate moieties or the glycosylation sites are unlikely to be part of the epitopes for these antibodies. The antibody susceptibility characteristic for non......Structure-function studies of plasminogen activator inhibitor-1 (PAI-1) have previously been performed mostly with non-glycosylated material expressed in E. coli. We have now studied the importance of PAI-1 glycosylation for its functional properties. PAI-1 has 3 potential sites for N......-linked glycosylation. Biochemical analysis of PAI-1 variants with substitutions of the Asn residues in each of these sites and expression in human embryonic kidney 293 (HEK293) cells showed that only Asn211 and Asn 267, but not Asn331 are glycosylated, and revealed a differential composition of the carbohydrate...

  19. An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins

    DEFF Research Database (Denmark)

    Hägglund, Per; Matthiesen, R.; Elortza, F.

    2007-01-01

    and N-acetyl-β-glucosaminidase) are also included. The two strategies were here applied to identify 103 N-glycosylation sites in the Cohn IV fraction of human plasma. In addition, Endo D/H digestion uniquely enabled identification of 23 fucosylated N-glycosylation sites. Several O-glycosylated peptides......, thereby reducing the complexity and facilitating glycosylation site determinations. Here, we have used two different enzymatic deglycosylation strategies for N-glycosylation site analysis. (1) Removal of entire N-glycan chains by peptide- N-glycosidase (PNGase) digestion, with concomitant deamidation...... of the released asparagine residue. The reaction is carried out in H218O to facilitate identification of the formerly glycosylated peptide by incorporatation of 18O into the formed aspartic acid residue. (2) Digestion with two endo-β- N-acetylglucosaminidases (Endo D and Endo H) that cleave the glycosidic bond...

  20. Comparison of transferrin isoform analysis by capillary electrophoresis and HPLC for screening congenital disorders of glycosylation.

    Science.gov (United States)

    Dave, Mihika B; Dherai, Alpa J; Udani, Vrajesh P; Hegde, Anaita U; Desai, Neelu A; Ashavaid, Tester F

    2018-01-01

    Transferrin, a major glycoprotein has different isoforms depending on the number of sialic acid residues present on its oligosaccharide chain. Genetic variants of transferrin as well as the primary (CDG) & secondary glycosylation defects lead to an altered transferrin pattern. Isoform analysis methods are based on charge/mass variations. We aimed to compare the performance of commercially available capillary electrophoresis CDT kit for diagnosing congenital disorders of glycosylation with our in-house optimized HPLC method for transferrin isoform analysis. The isoform pattern of 30 healthy controls & 50 CDG-suspected patients was determined by CE using a Carbohydrate-Deficient Transferrin kit. The results were compared with in-house HPLC-based assay for transferrin isoforms. Transferrin isoform pattern for healthy individuals showed a predominant tetrasialo transferrin fraction followed by pentasialo, trisialo, and disialotransferrin. Two of 50 CDG-suspected patients showed the presence of asialylated isoforms. The results were comparable with isoform pattern obtained by HPLC. The commercial controls showed a <20% CV for each isoform. Bland Altman plot showed the difference plot to be within +1.96 with no systemic bias in the test results by HPLC & CE. The CE method is rapid, reproducible and comparable with HPLC and can be used for screening Glycosylation defects. © 2017 Wiley Periodicals, Inc.

  1. Optimization of a colorimetric assay for glycosylated human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Bohney, J.P.; Feldhoff, R.C.

    1986-05-01

    The thiobarbituric acid (TBA) assay has been used for several years to quantitate the amount of glucose which has been non-enzymatically linked to hemoglobin and other proteins. The ketoamine-protein adduct is converted to 5-hydroxymethylfurfural (HMF) by mild hydrolysis with oxalic acid. Reaction of HMF with TBA yields a colored product which has an absorbance maximum at 443 nm. Several modifications of the original procedure has been published, but none permit the unambiguous quantitation of glycosylated human serum albumin (glc-HSA). Problems relate to reagent preparation and stability, the time and temperature of hydrolysis, the choice of standards, and background color corrections. The authors have found that maximum color yield occurs after hydrolysis in an autoclave for 2 h. This increases the sensitivity 3-fold and cuts the assay time in half relative to hydrolysis for 4.5 h at 100/sup 0/C. A NaBH/sub 4/ reduction of a parallel protein sample must be performed to correct for variable background color associated with different sample sources and amounts. HMF can be used as a standard, however, corrections must be made for HMF degradation. Fructose is a better standard, but HMF formation from fructose is faster than formation from glc-HSA. This may result in an underestimate of percent glycosylation. The best standard appears to be glc-HSA prepared with (/sup 3/H)glucose. It appears that with proper controls and standards the TBA assay can be used to determine actual rather than relative percent glycosylation.

  2. Engineering Mammalian Mucin-type O-Glycosylation in Plants

    DEFF Research Database (Denmark)

    Yang, Zhang; Drew, Damian P; Jørgensen, Bodil

    2012-01-01

    -glycans are attached to proteins, and which structures are formed, difficult. Because plants are devoid of GalNAc-type O-glycosylation, we have assessed requirements for establishing human GalNAc O-glycosylation de novo in plants with the aim of developing cell systems with custom-designed O-glycosylation capacity...... was glycosylated with up to three and five GalNAc residues when co-expressed with GalNAc-T2 and a combination of GalNAc-T2 and GalNAc-T4, respectively, as determined by mass spectrometry. O-Glycosylation was furthermore demonstrated on a tandem repeat of MUC16 and interferon a2b. In plants, prolines in certain...... classes of proteins are hydroxylated and further substituted with plant-specific O-glycosylation; unsubstituted hydroxyprolines were identified in our MUC1 construct. In summary, this study demonstrates that mammalian type O-glycosylation can be established in plants and that plants may serve as a host...

  3. Defectively N-glycosylated and non-O-glycosylated aminopeptidase N (CD13) is normally expressed at the cell surface and has full enzymatic activity

    DEFF Research Database (Denmark)

    Norén, K; Hansen, Gert Helge; Clausen, H

    1997-01-01

    In order to study the effects of the absence of O-glycosylation and modifications of N-glycosylation on a class II membrane protein, pig and human aminopeptidase N (CD13) were stably expressed in the ldl(D) cell line. This cell line carries a UDP-Gal/UDP-GalNAc-epimerase deficiency which blocks...... the conversion of glucose into galactose derivatives. Thus it is possible in the ldl(D) cell line to selectively block O-glycosylation by the omission of N-acetylgalactoseamine from the culture medium and to alter N-glycosylation by the omission of galactose. In this way selectively altered glycosylated forms...

  4. N-linked glycosylation of the immunoglobulin variable region

    NARCIS (Netherlands)

    van de Bovenkamp, Fleur S.; Derksen, Ninotska I. L.; Ooijevaar-de Heer, Pleuni; van Schie, Karin A.; Kruithof, Simone; Berkowska, Magdalena A.; van der Schoot, C. Ellen; Ijspeert, Hanna; van der Burg, Mirjam; Gils, Ann; Hafkenscheid, Lise; Toes, René E. M.; Rombouts, Yoann; Plomp, Rosina; Wuhrer, Manfred; van Ham, S. Marieke; Vidarsson, Gestur; Rispens, Theo

    2018-01-01

    N-glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we

  5. N-Glycosylation of Human R-Spondin 1 Is Required for Efficient Secretion and Stability but Not for Its Heparin Binding Ability

    Directory of Open Access Journals (Sweden)

    Chiung-Fang Chang

    2016-06-01

    Full Text Available R-spondin 1 (Rspo1 plays an essential role in stem cell biology by potentiating Wnt signaling activity. Despite the fact that Rspo1 holds therapeutic potential for a number of diseases, its biogenesis is not fully elucidated. All Rspo proteins feature two amino-terminal furin-like repeats, which are responsible for Wnt signal potentiation, and a thrombospondin type 1 (TSR1 domain that can provide affinity towards heparan sulfate proteoglycans. Using chemical inhibitors, deglycosylase and site-directed mutagenesis, we found that human Rspo1 and Rspo3 are both N-glycosylated at N137, a site near the C-terminus of the furin repeat 2 domain, and Rspo2 is N-glycosylated at N160, a position near the N-terminus of TSR1 domain. Elimination of N-glycosylation at these sites affects their accumulation in media but have no effect on the ability towards heparin. Introduction of the N-glycosylation site to Rspo2 mutant at the position homologous to N137 in Rspo1 restored full glycosylation and rescued the accumulation defect of nonglycosylated Rspo2 mutant in media. Similar effect can be observed in the N137 Rspo1 or Rspo3 mutant engineered with Rspo2 N-glycosylation site. The results highlight the importance of N-glycosylation at these two positions in efficient folding and secretion of Rspo family. Finally, we further showed that human Rspo1 is subjected to endoplasmic reticulum (ER quality control in N-glycan-dependent manner. While N-glycan of Rspo1 plays a role in its intracellular stability, it had little effect on secreted Rspo1. Our findings provide evidence for the critical role of N-glycosylation in the biogenesis of Rspo1.

  6. Glycosylation Engineering

    DEFF Research Database (Denmark)

    Clausen, Henrik; Wandall, Hans H.; Steentoft, Catharina

    2017-01-01

    Knowledge of the cellular pathways of glycosylation across phylogeny provides opportunities for designing glycans via genetic engineering in a wide variety of cell types including bacteria, fungi, plant cells, and mammalian cells. The commercial demand for glycosylation engineering is broad......, including production of biological therapeutics with defined glycosylation (Chapter 57). This chapter describes how knowledge of glycan structures and their metabolism (Parts I–III of this book) has led to the current state of glycosylation engineering in different cell types. Perspectives for rapid...

  7. The 'sweet' spot of cellular pluripotency: protein glycosylation in human pluripotent stem cells and its applications in regenerative medicine.

    Science.gov (United States)

    Wang, Yu-Chieh; Lin, Victor; Loring, Jeanne F; Peterson, Suzanne E

    2015-05-01

    Human pluripotent stem cells (hPSCs) promise for the future of regenerative medicine. The structural and biochemical diversity associated with glycans makes them a unique type of macromolecule modification that is involved in the regulation of a vast array of biochemical events and cellular activities including pluripotency in hPSCs. The primary focus of this review article is to highlight recent advances in stem cell research from a glycobiological perspective. We also discuss how our understanding of glycans and glycosylation may help overcome barriers hindering the clinical application of hPSC-derived cells. A literature survey using NCBI-PubMed and Google Scholar was performed in 2014. Regenerative medicine hopes to provide novel strategies to combat human disease and tissue injury that currently lack effective therapies. Although progress in this field is accelerating, many critical issues remain to be addressed in order for cell-based therapy to become a practical and safe treatment option. Emerging evidence suggests that protein glycosylation may significantly influence the regulation of cellular pluripotency, and that the exploitation of protein glycosylation in hPSCs and their differentiated derivatives may lead to transformative and translational discoveries for regenerative medicine. In addition, hPSCs represent a novel research platform for investigating glycosylation-related disease.

  8. Production of glycosylated physiologically normal human α1-antitrypsin by mouse fibroblasts modified by insertion of a human α1-antitrypsin cDNA using a retroviral vector

    International Nuclear Information System (INIS)

    Garver, R.I. Jr.; Chytil, A.; Karlsson, S.

    1987-01-01

    α 2 -Antitrypsin (α 1 AT) deficiency is a hereditary disorder characterized by reduced serum levels of α 1 AT, resulting in destruction of the lower respiratory tract by neutrophil elastase. As an approach to augment α 1 AT levels in this disorder with physiologically normal human α 1 AT, the authors have integrated a full-length normal human α 1 AT cDNA into the genome of mouse fibroblasts. To accomplish this, the retroviral vector N2 was modified by inserting the simian virus 40 early promoter followed by the α 1 AT cDNA. Southern analysis demonstrated that the intact cDNA was present in the genome of selected clones of the transfected murine fibroblasts psi2 and infected NIH 3T3. The clones produced three mRNA transcripts containing human α 1 AT sequences, secreted an α 1 AT molecule recognized by an anti-human α 1 AT antibody, with the same molecular mass as normal human α 1 AT and that complexed with and inhibited human neutrophil elastase. The psi2 produced α 1 AT was glycosylated, and when infused intravenously into mice, it had a serum half-life similar to normal α 1 AT purified from human plasma and markedly longer than that of nonglycosylated human α 1 AT cDNA-directed yeast-produced α 1 AT. These studies demonstrate the feasibility of using a retroviral vector to insert the normal human α 1 AT cDNA into non-α 1 AT-producing cells, resulting in the synthesis and secretion of physiologically normal α 1 AT

  9. Preparation, crystallization and preliminary X-ray diffraction studies of the glycosylated form of human interleukin-23

    International Nuclear Information System (INIS)

    Shirouzono, Takumi; Chirifu, Mami; Nakamura, Chiharu; Yamagata, Yuriko; Ikemizu, Shinji

    2012-01-01

    Interleukin-23 (IL-23), a member of the IL-12 family, is a heterodimeric cytokine composed of p19 and p40 subunits. Human p19 and p40 subunits were cloned and coexpressed in N-acetylglucosaminyltransferase I-negative 293S cells. The glycosylated human IL-23 was purified and crystallized by the hanging-drop vapour-diffusion method. Interleukin-23 (IL-23), a member of the IL-12 family, is a heterodimeric cytokine composed of p19 and p40 subunits. IL-23 plays crucial roles in the activation, proliferation and survival of IL-17-producing helper T cells which induce various autoimmune diseases. Human p19 and p40 subunits were cloned and coexpressed in N-acetylglucosaminyltransferase I-negative 293S cells, which produce high-mannose-type glycosylated proteins in order to diminish the heterogeneity of modified N-linked glycans. The glycosylated human IL-23 was purified and crystallized by the hanging-drop vapour-diffusion method. X-ray diffraction data were then collected to 2.6 Å resolution. The crystal belonged to space group P6 1 or P6 5 , with unit-cell parameters a = b = 108.94, c = 83.79 Å, γ = 120°. Assuming that the crystal contains one molecule per asymmetric unit, the calculated Matthews coefficient was 2.69 Å 3 Da −1 , with a solvent content of 54.2%. The structure was determined by the molecular-replacement method, with an initial R factor of 52.6%. After subsequent rigid-body and positional refinement, the R work and R free values decreased to 31.4% and 38.7%, respectively

  10. Crystallization and preliminary X-ray diffraction of human interleukin-7 bound to unglycosylated and glycosylated forms of its α-receptor

    Energy Technology Data Exchange (ETDEWEB)

    Wickham, Joseph Jr; Walsh, Scott T. R., E-mail: walsh.220@osu.edu [Department of Molecular and Cellular Biochemistry, Comprehensive Cancer Center, Ohio State University, 467 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States)

    2007-10-01

    Bacterial and insect cell expression systems have been developed to produce unglycosylated and glycosylated forms of human interleukin-7 (IL-7) and the extracellular domain of its α receptor, IL-7Rα. We report the crystallization and X-ray diffraction of IL-7 complexes to both unglycosylated and glycosylated forms of the IL-7Rα to 2.7 and 3.0 Å, respectively. The interleukin-7 (IL-7) signaling pathway plays an essential role in the development, proliferation and homeostasis of T and B cells in cell-mediated immunity. Understimulation and overstimulation of the IL-7 signaling pathway leads to severe combined immunodeficiency, autoimmune reactions, heart disease and cancers. Stimulation of the IL-7 pathway begins with IL-7 binding to its α-receptor, IL-7Rα. Protein crystals of unglycosylated and glycosylated complexes of human IL-7–IL-7Rα extracellular domain (ECD) obtained using a surface entropy-reduction approach diffract to 2.7 and 3.0 Å, respectively. Anomalous dispersion methods will be used to solve the unglycosylated IL-7–IL-7Rα ECD complex structure and this unglycosylated structure will then serve as a model in molecular-replacement attempts to solve the structure of the glycosylated IL-7–α-receptor complex.

  11. Crystallization and preliminary X-ray diffraction of human interleukin-7 bound to unglycosylated and glycosylated forms of its α-receptor

    International Nuclear Information System (INIS)

    Wickham, Joseph Jr; Walsh, Scott T. R.

    2007-01-01

    Bacterial and insect cell expression systems have been developed to produce unglycosylated and glycosylated forms of human interleukin-7 (IL-7) and the extracellular domain of its α receptor, IL-7Rα. We report the crystallization and X-ray diffraction of IL-7 complexes to both unglycosylated and glycosylated forms of the IL-7Rα to 2.7 and 3.0 Å, respectively. The interleukin-7 (IL-7) signaling pathway plays an essential role in the development, proliferation and homeostasis of T and B cells in cell-mediated immunity. Understimulation and overstimulation of the IL-7 signaling pathway leads to severe combined immunodeficiency, autoimmune reactions, heart disease and cancers. Stimulation of the IL-7 pathway begins with IL-7 binding to its α-receptor, IL-7Rα. Protein crystals of unglycosylated and glycosylated complexes of human IL-7–IL-7Rα extracellular domain (ECD) obtained using a surface entropy-reduction approach diffract to 2.7 and 3.0 Å, respectively. Anomalous dispersion methods will be used to solve the unglycosylated IL-7–IL-7Rα ECD complex structure and this unglycosylated structure will then serve as a model in molecular-replacement attempts to solve the structure of the glycosylated IL-7–α-receptor complex

  12. Molecular partners of hNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, suggest its involvement in distinct cellular processes relevant to congenital disorders of glycosylation, cancer, neurodegeneration and a variety of further pathologies.

    Science.gov (United States)

    Hacker, Benedikt; Schultheiß, Christoph; Döring, Michael; Kurzik-Dumke, Ursula

    2018-06-01

    This study provides first insights into the involvement of hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID and yeast ALG3 gene, in various putative molecular networks. HNOT/ALG3 encodes two translated transcripts encoding precursor proteins differing in their N-terminus and showing 33% identity with the yeast asparagine-linked glycosylation 3 (ALG3) protein. Experimental evidence for the functional homology of the proteins of fly and man in the N-glycosylation has still to be provided. In this study, using the yeast two-hybrid technique we identify 17 molecular partners of hNOT-1/ALG3-1. We disclose the building of hNOT/ALG3 homodimers and provide experimental evidence for its in vivo interaction with the functionally linked proteins OSBP, OSBPL9 and LRP1, the SYPL1 protein and the transcription factor CREB3. Regarding the latter, we show that the 55 kDa N-glycosylated hNOT-1/ALG3-1 molecule binds the N-glycosylated CREB3 precursor but does not interact with CREB3's proteolytic products specific to the endoplasmic reticulum and to the nucleus. The interaction between the two partners is a prerequisite for the proteolytic activation of CREB3. In case of the further binding partners, our data suggest that hNOT-1/ALG3-1 interacts with both OSBPs and with their direct targets LRP1 and VAMP/VAP-A. Moreover, our results show that various partners of hNOT-1/ALG3-1 interact with its diverse post translationally processed products destined to distinct cellular compartments. Generally, our data suggest the involvement of hNOT-1/ALG3-1 in various molecular contexts determining essential processes associated with distinct cellular machineries and related to various pathologies, such as cancer, viral infections, neuronal and immunological disorders and CDG.

  13. Model-based analysis of N-glycosylation in Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Krambeck, Frederick J.; Bennun, Sandra V; Andersen, Mikael Rørdam

    2017-01-01

    The Chinese hamster ovary (CHO) cell is the gold standard for manufacturing of glycosylated recombinant proteins for production of biotherapeutics. The similarity of its glycosylation patterns to the human versions enable the products of this cell line favorable pharmacokinetic properties and lower...

  14. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus*

    Science.gov (United States)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J.; King, Sarah L.; Vakhrushev, Sergey Y.; Olofsson, Sigvard; Wandall, Hans H.

    2016-01-01

    Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a “bottom up” mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation. PMID:27129252

  15. Characterization of the oligosaccharide structure of human glycosylated prolactin (G-hPRL) native and recombinant

    International Nuclear Information System (INIS)

    Marcos Vinicius Nucci Capone

    2013-01-01

    Human prolactin (hPRL) is a polypeptide hormone secreted by the anterior pituitary under the regulation of the hypothalamus, involved in a variety of biological processes such as mammary gland development and lactation. The recombinant product is important in medical diagnosis and treatment of failure of lactation. This hormone may occur in the form of non-glycosylated protein (NGhPRL) and glycosylated (G-hPRL) with molecular weights of approximately 23 and 25 kilodalton (kDa), respectively; has a single N-glycosylation site located at asparagine (Asn) position 31, which is partially occupied, thus being a particularly interesting model of glycosylation. The biological activity of G-hPRL is lower compared to NG-hPRL (~4 times) and its physiological function is not well defined: the portion of carbohydrate appears to have an important role in the hormone biosynthesis, secretion, biological activity, and plasma survival of the hormone. The main objective of this study was to compare the structures of N-glycans present in glycosylated pituitary prolactin (G-hPRL-NHPP) with those present in the recombinant. To obtain the recombinant G-hPRL the production was performed in laboratory scale from Chinese hamster ovary cells (CHO), genetically modified and adapted to growth in suspension. Cycloheximide (CHX), whose main effect was to increase the ratio G-hPRL/NG-hPRL from 5% to 38% was added to the culture medium, thereby facilitating the purification of G-hPRL. The G-hPRL was purified in two steps, a cation exchanger followed by a purification by reversed-phase high performance liquid chromatography (RP-HPLC) which demonstrated the efficient separation of the two isoforms of hPRL. Recombinant G-hPRL-IPEN was well characterized by several techniques confirming its purity and biological activity, including comparisons with other reference preparation of pituitary origin purchased from the N ational Hormone & Peptide Program (NHPPU. S.) . The composition of N-glycans present

  16. N-Linked Glycosylation is an Important Parameter for Optimal Selection of Cell Lines Producing Biopharmaceutical Human IgG

    NARCIS (Netherlands)

    van Berkel, Patrick H. C.; Gerritsen, Jolanda; Perdok, Gerrard; Valbjorn, Jesper; Vink, Tom; van de Winkel, Jan G. J.; Parren, Paul W. H. I.

    2009-01-01

    We studied the variations in N-linked glycosylation of human IgG molecules derived from 105 different stable cell lines each expressing one of the six different antibodies. Antibody expression was based on glutamine synthetase selection technology in suspension growing CHO-KISV cells. The glycans

  17. Nonenzymatic glycosylation of human hemoglobin at multiple sites

    International Nuclear Information System (INIS)

    Shapiro, R.; McManus, M.; Garrick, L.; McDonald, M.J.; Bunn, H.F.

    1979-01-01

    The most abundant minor hemoglobin component of human hemolysate is Hb A1c, which has glucose bound to the N-terminus of the beta chain by a ketoamine linkage. Hb A1c is formed slowly and continuously throughout the 120 day lifespan of the red cell. It can be synthesized in vitro by incubating purified hemoglobin with 14C-glucose. Other minor components, Hb A1a1 and Hb A1a2 are adducts of sugar phosphates at the N-terminus of the beta chain. Hb A1b contains an unidentified nonphosphorylated sugar at the beta N-terminus. In addition, a significant portion of the major hemoglobin component (Hb Ao) is also glycosylated by a glucose ketoamine linkage at other sites on the molecule, including the N-terminus of the alpha chain and the epsilon-amino group of several lysine residues on both the alpha and the beta chains. The results indicate that the interaction of glucose and hemoglobin is rather nonspecific and suggests that other proteins are modified in a similar fashion

  18. N-Glycosylation of Lipocalin 2 Is Not Required for Secretion or Exosome Targeting

    Directory of Open Access Journals (Sweden)

    Erawan Borkham-Kamphorst

    2018-04-01

    Full Text Available Lipocalin 2 (LCN2 is a highly conserved secreted adipokine acting as a serum transport protein for small hydrophobic molecules such as fatty acids and steroids. In addition, LCN2 limits bacterial growth by sequestering iron-containing siderophores and further protects against intestinal inflammation and tumorigenesis associated with alterations in the microbiota. Human LCN2 contains one N-glycosylation site conserved in other species. It was postulated that this post-translational modification could facilitate protein folding, protects from proteolysis, is required for proper trafficking from the Golgi apparatus to the cell surface, and might be relevant for effective secretion. We here show that the homologous nucleoside antibiotic tunicamycin blocks N-linked glycosylation but not secretion of LCN2 in primary murine hepatocytes, derivatives thereof, human lung carcinoma cell line A549, and human prostate cancer cell line PC-3. Moreover, both the glycosylated and the non-glycosylated LCN2 variants are equally targeted to exosomes, demonstrating that this post-translational modification is not necessary for proper trafficking of LCN2 into these membranous extracellular vesicles. Furthermore, a hydrophobic cluster analysis revealed that the N-glycosylation site is embedded in a highly hydrophobic evolutionarily conserved surrounding. In sum, our data indicate that the N-glycosylation of LCN2 is not required for proper secretion and exosome cargo recruitment in different cell types, but might be relevant to increase overall solubility.

  19. The Emerging Importance of IgG Fab Glycosylation in Immunity.

    Science.gov (United States)

    van de Bovenkamp, Fleur S; Hafkenscheid, Lise; Rispens, Theo; Rombouts, Yoann

    2016-02-15

    Human IgG is the most abundant glycoprotein in serum and is crucial for protective immunity. In addition to conserved IgG Fc glycans, ∼15-25% of serum IgG contains glycans within the variable domains. These so-called "Fab glycans" are primarily highly processed complex-type biantennary N-glycans linked to N-glycosylation sites that emerge during somatic hypermutation. Specific patterns of Fab glycosylation are concurrent with physiological and pathological conditions, such as pregnancy and rheumatoid arthritis. With respect to function, Fab glycosylation can significantly affect stability, half-life, and binding characteristics of Abs and BCRs. Moreover, Fab glycans are associated with the anti-inflammatory activity of IVIgs. Consequently, IgG Fab glycosylation appears to be an important, yet poorly understood, process that modulates immunity. Copyright © 2016 by The American Association of Immunologists, Inc.

  20. Structure-function analysis of the human sialyltransferase ST3Gal I - Role of N-glycosylation and a novel conserved sialylmotif

    DEFF Research Database (Denmark)

    Jeanneau, C.; Chazalet, V.; Auge, C.

    2004-01-01

    of these residues and of the conserved residues of motif VS (HX4E) was assessed using as a template the human ST3Gal I. Mutational analysis showed that residues His(299) and Tyr(300) of the new motif, and His(316) of the VS motif, are essential for activity since their substitution by alanine yielded inactive...... showed that none of the mutants tested had any significant effect in nucleotide donor binding. Instead the mutant proteins were affected in their binding to the acceptor and/or demonstrated lower catalytic efficiency. Although the human ST3Gal I has four N-glycan attachment sites in its catalytic domain...... that are potentially glycosylated, none of them was shown to be necessary for enzyme activity. However, N-glycosylation appears to contribute to the proper folding and trafficking of the enzyme....

  1. Functional importance of PAI-1 glycosylation

    DEFF Research Database (Denmark)

    Christensen, Anni; Naessens, Dominik; Skottrup, Peter

    2001-01-01

    Structure-function studies of plasminogen activator inhibitor-1 (PAI-1) have previously been performed mostly with non-glycosylated material expressed in E. coli. We have now studied the importance of PAI-1 glycosylation for its functional properties. PAI-1 has 3 potential sites for N......-glycosylated PAI-1 could be conferred upon PAI-1 expressed in HEK293 cells by mutational inactivation of one or the other glycosylation site. These findings reveal a novel functional role for glycosylation of a serpin. The glycosylation sites are localised between a-helix H and b-strand 2C and b-strand 3C and a...

  2. ECM Proteins Glycosylation and Relation to Diabetes

    Science.gov (United States)

    Pernodet, Nadine; Bloomberg, Ayla; Sood, Vandana; Slutsky, Lenny; Ge, Shouren; Clark, Richard; Rafailovich, Miriam

    2004-03-01

    The chemical modification and crosslinking of proteins by sugar glycosylation contribute to the aging of tissue proteins, and acceleration of this reaction during hyperglycemia is implicated in the pathogenesis of diabetic complications, such as disorder of the wound healing. Advanced glycation endproducts (AGEs) formation and protein crosslinking are irreversible processes that alter the structural and functional properties of proteins, lipid components and nucleic acids. And the mechanism, by which it happens, is not clear. Fibrinogen and fibronectin are plasma proteins, which play a major role in human wound healing. Fibrinogen converts to an insoluble fibrin "gel" following a cut, which eventually forms a clot to prevent blood loss, to direct cell adhesion and migration for forming scars. Fibronectin is a critical protein for cell adhesion and migration in wound healing. The effects of glucose on the binding of these plasma proteins from the extra cellular matrix (ECM) were followed at different concentrations by atomic force microscopy and lateral force modulation to measure the mechanical response of the samples. Glucose solutions (1, 2, and 3mg/mL) were incubated with the protein (100 mg/ml) and silicon (Si) substrates spun with sulfonated polystyrene (SPS) 28% for five days. Data showed that not only the organization of the protein on the surface was affected but also its mechanical properties. At 3 mg/mL glucose, Fn fibers were observed to be harder than those of the control, in good agreement with our hypothesis that glycosylation hardens tissues by crosslinking of proteins in the ECM and might cause fibers to break more easily.

  3. Efficient synthesis of glycosylated phenazine natural products and analogs with DISAL (methyl 3,5-dinitrosalicylate) glycosyl donors

    DEFF Research Database (Denmark)

    Laursen, Jane B.; Petersen, Lars; Jensen, K.J.

    2003-01-01

    Inspired by the occurrence and function of phenazines in natural products, new glycosylated analogs were designed and synthesized. DISAL (methyl 3,5-dinitrosalicylate) glycosyl donors were used in an efficient and easily-handled glycosylation protocol compatible with combinatorial chemistry....... Benzoylated D-glucose, D-galactose and L-quinovose DISAL glycosyl donors were synthesized in high yields and used under mild conditions to glycosylate methyl saphenate and 2-hydroxyphenazine. The glycosides were screened for biological activity and one compound showed inhibitory activity towards topoisomerase...

  4. 21 CFR 864.7470 - Glycosylated hemoglobin assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glycosylated hemoglobin assay. 864.7470 Section 864.7470 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7470...

  5. Control of mucin-type O-glycosylation

    DEFF Research Database (Denmark)

    Bennett, Eric P; Mandel, Ulla; Clausen, Henrik

    2012-01-01

    residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue...... in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The Gal...

  6. Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs

    Directory of Open Access Journals (Sweden)

    Paul Kim

    2018-04-01

    Full Text Available Glycosylation of the hemagglutinin (HA and neuraminidase (NA of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation sites was identified as a characteristic of zoonotic transmission from animal reservoirs, and interestingly, of “reverse zoonosis” of human viruses into swine populations as well. After the 2009 pandemic, recent isolates accrued glycosylation at canonical sites in HA, reflecting gradual seasonal adaptation, and a novel glycosylation in NA as an independent signature for adaptation among humans. Structural predictions indicated a remarkably pleiotropic influence of glycans on multiple HA epitopes for immune evasion, without sacrificing the receptor binding of HA or the activity of NA. The results provided the rationale for establishing the ecological niche of influenza viruses among the reservoir and could be implemented for influenza surveillance and improving pandemic preparedness.

  7. Glycosylation of Hemagglutinin and Neuraminidase of Influenza A Virus as Signature for Ecological Spillover and Adaptation among Influenza Reservoirs

    Science.gov (United States)

    Kim, Paul; Jang, Yo Han; Kwon, Soon Bin; Lee, Chung Min; Han, Gyoonhee; Seong, Baik Lin

    2018-01-01

    Glycosylation of the hemagglutinin (HA) and neuraminidase (NA) of the influenza provides crucial means for immune evasion and viral fitness in a host population. However, the time-dependent dynamics of each glycosylation sites have not been addressed. We monitored the potential N-linked glycosylation (NLG) sites of over 10,000 HA and NA of H1N1 subtype isolated from human, avian, and swine species over the past century. The results show a shift in glycosylation sites as a hallmark of 1918 and 2009 pandemics, and also for the 1976 “abortive pandemic”. Co-segregation of particular glycosylation sites was identified as a characteristic of zoonotic transmission from animal reservoirs, and interestingly, of “reverse zoonosis” of human viruses into swine populations as well. After the 2009 pandemic, recent isolates accrued glycosylation at canonical sites in HA, reflecting gradual seasonal adaptation, and a novel glycosylation in NA as an independent signature for adaptation among humans. Structural predictions indicated a remarkably pleiotropic influence of glycans on multiple HA epitopes for immune evasion, without sacrificing the receptor binding of HA or the activity of NA. The results provided the rationale for establishing the ecological niche of influenza viruses among the reservoir and could be implemented for influenza surveillance and improving pandemic preparedness. PMID:29642453

  8. Prediction of glycosylation sites using random forests

    Directory of Open Access Journals (Sweden)

    Hirst Jonathan D

    2008-11-01

    Full Text Available Abstract Background Post translational modifications (PTMs occur in the vast majority of proteins and are essential for function. Prediction of the sequence location of PTMs enhances the functional characterisation of proteins. Glycosylation is one type of PTM, and is implicated in protein folding, transport and function. Results We use the random forest algorithm and pairwise patterns to predict glycosylation sites. We identify pairwise patterns surrounding glycosylation sites and use an odds ratio to weight their propensity of association with modified residues. Our prediction program, GPP (glycosylation prediction program, predicts glycosylation sites with an accuracy of 90.8% for Ser sites, 92.0% for Thr sites and 92.8% for Asn sites. This is significantly better than current glycosylation predictors. We use the trepan algorithm to extract a set of comprehensible rules from GPP, which provide biological insight into all three major glycosylation types. Conclusion We have created an accurate predictor of glycosylation sites and used this to extract comprehensible rules about the glycosylation process. GPP is available online at http://comp.chem.nottingham.ac.uk/glyco/.

  9. Hallmarks of glycosylation in cancer.

    Science.gov (United States)

    Munkley, Jennifer; Elliott, David J

    2016-06-07

    Aberrant glycosylation plays a fundamental role in key pathological steps of tumour development and progression. Glycans have roles in cancer cell signalling, tumour cell dissociation and invasion, cell-matrix interactions, angiogenesis, metastasis and immune modulation. Aberrant glycosylation is often cited as a 'hallmark of cancer' but is notably absent from both the original hallmarks of cancer and from the next generation of emerging hallmarks. This review discusses how glycosylation is clearly an enabling characteristic that is causally associated with the acquisition of all the hallmark capabilities. Rather than aberrant glycosylation being itself a hallmark of cancer, another perspective is that glycans play a role in every recognised cancer hallmark.

  10. Structure/functional aspects of the human riboflavin transporter-3 (SLC52A3): role of the predicted glycosylation and substrate-interacting sites.

    Science.gov (United States)

    Subramanian, Veedamali S; Sabui, Subrata; Teafatiller, Trevor; Bohl, Jennifer A; Said, Hamid M

    2017-08-01

    The human riboflavin (RF) transporter-3 (hRFVT-3; product of the SLC52A3 gene) plays an essential role in the intestinal RF absorption process and is expressed exclusively at the apical membrane domain of polarized enterocytes. Previous studies have characterized different physiological/biological aspects of this transporter, but nothing is known about the glycosylation status of the hRFVT-3 protein and role of this modification in its physiology/biology. Additionally, little is known about the residues in the hRFVT-3 protein that interact with the ligand, RF. We addressed these issues using appropriate biochemical/molecular approaches, a protein-docking model, and established intestinal/renal epithelial cells. Our results showed that the hRFVT-3 protein is glycosylated and that glycosylation is important for its function. Mutating the predicted N -glycosylation sites at Asn 94 and Asn 168 led to a significant decrease in RF uptake; it also led to a marked intracellular (in the endoplasmic reticulum, ER) retention of the mutated proteins as shown by live-cell confocal imaging studies. The protein-docking model used in this study has identified a number of putative substrate-interacting sites: Ser 16 , Ile 20 , Trp 24 , Phe 142 , Thr 314 , and Asn 315 Mutating these potential interacting sites was indeed found to lead to a significant inhibition in RF uptake and to intracellular (ER) retention of the mutated proteins (except for the Phe 142 mutant). These results demonstrate that the hRFVT-3 protein is glycosylated and this glycosylation is important for its function and cell surface expression. This study also identified a number of residues in the hRFVT-3 polypeptide that are important for its function/cell surface expression.

  11. Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Elodie eMathieu-Rivet

    2014-07-01

    Full Text Available Microalgae are currently used for the production of food compounds. Recently, few microalgae species have been investigated as potential biofactories for the production of biopharmaceuticals. Indeed in this context, microalgae are cheap, classified as Generally Recognized As Safe (GRAS organisms and can be grown easily. However, problems remain to be solved before any industrial production of microalgae-made biopharmaceuticals. Among them, post-translational modifications of the proteins need to be considered. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. Therefore, the evaluation of microalgae as alternative cell factory for biopharmaceutical productions thus requires to investigate their N-glycosylation capability in order to determine to what extend it differs from their human counterpart and to determine appropriate strategies for remodelling the microalgae glycosylation into human-compatible oligosaccharides. Here, we review the secreted recombinant proteins which have been successfully produced in microalgae. We also report on recent bioinformatics and biochemical data concerning the structure of glycans N-linked to proteins from various microalgae phyla and comment the consequences on the glycan engineering strategies that may be necessary to render those microalgae-made biopharmaceuticals compatible with human therapy.

  12. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Ploug, M

    1990-01-01

    -PA. The purified protein shows a single 55-60 kDa band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. It is a heavily glycosylated protein, the deglycosylated polypeptide chain comprising only 35 kDa. The glycosylated protein contains N-acetyl-D-glucosamine and sialic acid......, but no N-acetyl-D-galactosamine. Glycosylation is responsible for substantial heterogeneity in the receptor on phorbol ester-stimulated U937 cells, and also for molecular weight variations among various cell lines. The amino acid composition and the NH2-terminal amino acid sequence are reported...

  13. Human IGF-I propeptide A promotes articular chondrocyte biosynthesis and employs glycosylation-dependent heparin binding.

    Science.gov (United States)

    Shi, Shuiliang; Kelly, Brian J; Wang, Congrong; Klingler, Ken; Chan, Albert; Eckert, George J; Trippel, Stephen B

    2018-03-01

    Insulin-like growth factor I (IGF-I) is a key regulator of chondrogenesis, but its therapeutic application to articular cartilage damage is limited by rapid elimination from the repair site. The human IGF-I gene gives rise to three IGF-I propeptides (proIGF-IA, proIGF-IB and proIGF-IC) that are cleaved to create mature IGF-I. In this study, we elucidate the processing of IGF-I precursors by articular chondrocytes, and test the hypotheses that proIGF-I isoforms bind to heparin and regulate articular chondrocyte biosynthesis. Human IGF-I propeptides and mutants were overexpressed in bovine articular chondrocytes. IGF-I products were characterized by ELISA, western blot and FPLC using a heparin column. The biosynthetic activity of IGF-I products on articular chondrocytes was assayed for DNA and glycosaminoglycan that the cells produced. Secreted IGF-I propeptides stimulated articular chondrocyte biosynthetic activity to the same degree as mature IGF-I. Of the three IGF-I propeptides, only one, proIGF-IA, strongly bound to heparin. Interestingly, heparin binding of proIGF-IA depended on N-glycosylation at Asn92 in the EA peptide. To our knowledge, this is the first demonstration that N-glycosylation determines the binding of a heparin-binding protein to heparin. The biosynthetic and heparin binding abilities of proIGF-IA, coupled with its generation of IGF-I, suggest that proIGF-IA may have therapeutic value for articular cartilage repair. These data identify human pro-insulin-like growth factor IA as a bifunctional protein. Its combined ability to bind heparin and augment chondrocyte biosynthesis makes it a promising therapeutic agent for cartilage damage due to trauma and osteoarthritis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Fc-Glycosylation in Human IgG1 and IgG3 Is Similar for Both Total and Anti-Red-Blood Cell Anti-K Antibodies

    Directory of Open Access Journals (Sweden)

    Myrthe E. Sonneveld

    2018-01-01

    Full Text Available After albumin, immunoglobulin G (IgG are the most abundant proteins in human serum, with IgG1 and IgG3 being the most abundant subclasses directed against protein antigens. The quality of the IgG-Fc-glycosylation has important functional consequences, which have been found to be skewed toward low fucosylation in some antigen-specific immune responses. This increases the affinity to IgG1-Fc-receptor (FcγRIIIa/b and thereby directly affects downstream effector functions and disease severity. To date, antigen-specific IgG-glycosylation have not been analyzed for IgG3. Here, we analyzed 30 pregnant women with anti-K alloantibodies from a prospective screening cohort and compared the type of Fc-tail glycosylation of total serum- and antigen-specific IgG1 and IgG3 using mass spectrometry. Total serum IgG1 and IgG3 Fc-glycoprofiles were highly similar. Fc glycosylation of antigen-specific IgG varied greatly between individuals, but correlated significantly with each other for IgG1 and IgG3, except for bisection. However, although the magnitude of changes in fucosylation and galactosylation were similar for both subclasses, this was not the case for sialylation levels, which were significantly higher for both total and anti-K IgG3. We found that the combination of relative IgG1 and IgG3 Fc-glycosylation levels did not improve the prediction of anti-K mediated disease over IgG1 alone. In conclusion, Fc-glycosylation profiles of serum- and antigen-specific IgG1 and IgG3 are highly similar.

  15. Biochemical Importance of Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Gils, Ann; Pedersen, Katrine Egelund; Skottrup, Peter Durand

    2003-01-01

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous glycosyla...

  16. Subcutaneous fat pads on body MRI - an early sign of congenital disorder of glycosylation PMM2-CDG (CDG1a)

    International Nuclear Information System (INIS)

    Al-Maawali, Almundher A.; Schulze, Andreas; Miller, Elka; Yoon, Grace; Blaser, Susan I.

    2014-01-01

    Infants with phosphomannomutase 2 - congenital disorder of glycosylation (PMM2-CDG), formerly known as CDG1a, present with failure to thrive, visceral dysfunction, thromboembolic events and developmental delays noted before 6 months of age. Diagnosis is often delayed due to the considerable variability in phenotype. Characteristic, but not universal, features include inverted nipples and abnormal subcutaneous fat pads. Neuroimaging performed in the first 4 months of life may be normal, although cerebellar and brainstem atrophy is usual after 3 months of age. Cerebellar and brainstem atrophy have been noted as early as 11 days of life. We present an infant whose typical subcutaneous and retroperitoneal fat deposits were clinically occult, but identified on body MRI. (orig.)

  17. Subcutaneous fat pads on body MRI - an early sign of congenital disorder of glycosylation PMM2-CDG (CDG1a)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Maawali, Almundher A.; Schulze, Andreas [The Hospital for Sick Children, University of Toronto, Division of Clinical and Metabolic Genetics, Toronto (Canada); Miller, Elka [Children' s Hospital of Eastern Ontario, Department of Diagnostic Imaging, Ottawa (Canada); Yoon, Grace [The Hospital for Sick Children, University of Toronto, Division of Clinical and Metabolic Genetics, Toronto (Canada); The Hospital for Sick Children, University of Toronto, Division of Neurology, Toronto (Canada); Blaser, Susan I. [The Hospital for Sick Children, University of Toronto, Department of Diagnostic Imaging, Division of Paediatric Neuroradiology, Toronto (Canada)

    2014-02-15

    Infants with phosphomannomutase 2 - congenital disorder of glycosylation (PMM2-CDG), formerly known as CDG1a, present with failure to thrive, visceral dysfunction, thromboembolic events and developmental delays noted before 6 months of age. Diagnosis is often delayed due to the considerable variability in phenotype. Characteristic, but not universal, features include inverted nipples and abnormal subcutaneous fat pads. Neuroimaging performed in the first 4 months of life may be normal, although cerebellar and brainstem atrophy is usual after 3 months of age. Cerebellar and brainstem atrophy have been noted as early as 11 days of life. We present an infant whose typical subcutaneous and retroperitoneal fat deposits were clinically occult, but identified on body MRI. (orig.)

  18. Quantification of the N-glycosylated secretome by super-SILAC during breast cancer progression and in human blood Samples

    DEFF Research Database (Denmark)

    Boersema, P.J.; Geiger, T.; Wiśniewski, J.R.

    2013-01-01

    Cells secrete a large number of proteins to communicate with their surroundings. Furthermore, plasma membrane proteins and intracellular proteins can be released into the extracellular space by regulated or non-regulated processes. Here, we profiled the supernatant of 11 cell lines....... In total, 1398 unique N-glycosylation sites were identified and quantified. Enriching for N-glycosylated peptides focused the analysis on classically secreted and membrane proteins. N-glycosylated secretome profiles correctly clustered the different cell lines to their respective cancer stage, suggesting...

  19. Chromatographic Monoliths for High-Throughput Immunoaffinity Isolation of Transferrin from Human Plasma

    Directory of Open Access Journals (Sweden)

    Irena Trbojević-Akmačić

    2016-06-01

    Full Text Available Changes in protein glycosylation are related to different diseases and have a potential as diagnostic and prognostic disease biomarkers. Transferrin (Tf glycosylation changes are common marker for congenital disorders of glycosylation. However, biological interindividual variability of Tf N-glycosylation and genes involved in glycosylation regulation are not known. Therefore, high-throughput Tf isolation method and large scale glycosylation studies are needed in order to address these questions. Due to their unique chromatographic properties, the use of chromatographic monoliths enables very fast analysis cycle, thus significantly increasing sample preparation throughput. Here, we are describing characterization of novel immunoaffinity-based monolithic columns in a 96-well plate format for specific high-throughput purification of human Tf from blood plasma. We optimized the isolation and glycan preparation procedure for subsequent ultra performance liquid chromatography (UPLC analysis of Tf N-glycosylation and managed to increase the sensitivity for approximately three times compared to initial experimental conditions, with very good reproducibility. This work is licensed under a Creative Commons Attribution 4.0 International License.

  20. Congenital disorder of glycosylation Ic due to a de novo deletion and an hALG-6 mutation.

    Science.gov (United States)

    Eklund, Erik A; Sun, Liangwu; Yang, Samuel P; Pasion, Romela M; Thorland, Erik C; Freeze, Hudson H

    2006-01-20

    We describe a new cause of congenital disorder of glycosylation-Ic (CDG-Ic) in a young girl with a rather mild CDG phenotype. Her cells accumulated lipid-linked oligosaccharides lacking three glucose residues, and sequencing of the ALG6 gene showed what initially appeared to be a homozygous novel point mutation (338G>A). However, haplotype analysis showed that the patient does not carry any paternal DNA markers extending 33kb in the telomeric direction from the ALG6 region, and microsatellite analysis extended the abnormal region to at least 2.5Mb. We used high-resolution karyotyping to confirm a deletion (10-12Mb) [del(1)(p31.2p32.3)] and found no structural abnormalities in the father, suggesting a de novo event. Our findings extend the causes of CDG to larger DNA deletions and identify the first Japanese CDG-Ic mutation.

  1. Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells

    International Nuclear Information System (INIS)

    Jones, Meredith B.; Tomiya, Noboru; Betenbaugh, Michael J.; Krag, Sharon S.

    2010-01-01

    Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates in the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man 5 GlcNAc 2 -P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man 9 GlcNAc 2 -P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc 3 Man 9 GlcNAc 2 -P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man 5 GlcNAc 2 -PP-Dol through Glc 1 Man 9 GlcNAc 2 -PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc 3 Man 9 GlcNAc 2 -P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.

  2. Analysis and metabolic engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Meredith B., E-mail: mbauman7@jhu.edu [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Maryland Hall 221, Baltimore, MD 21218 (United States); Tomiya, Noboru, E-mail: ntomiya1@jhu.edu [Department of Biology, Johns Hopkins University, 3400 North Charles Street, Mudd Hall 104A, Baltimore, MD 21218 (United States); Betenbaugh, Michael J., E-mail: beten@jhu.edu [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Maryland Hall 221, Baltimore, MD 21218 (United States); Krag, Sharon S., E-mail: skrag@jhsph.edu [Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205 (United States)

    2010-04-23

    Glycosylation-deficient Chinese Hamster Ovary (CHO) cell lines can be used to expand our understanding of N-glycosylation pathways and to study Congenital Disorders of Glycosylation, diseases caused by defects in the synthesis of N-glycans. The mammalian N-glycosylation pathway involves the step-wise assembly of sugars onto a dolichol phosphate (P-Dol) carrier, forming a lipid-linked oligosaccharide (LLO), followed by the transfer of the completed oligosaccharide onto the protein of interest. In order to better understand how deficiencies in this pathway affect the availability of the completed LLO donor for use in N-glycosylation, we used a non-radioactive, HPLC-based assay to examine the intermediates in the LLO synthesis pathway for CHO-K1 cells and for three different glycosylation-deficient CHO cell lines. B4-2-1 cells, which have a mutation in the dolichol phosphate-mannose synthase (DPM2) gene, accumulated LLO with the structure Man{sub 5}GlcNAc{sub 2}-P-P-Dol, while MI8-5 cells, which lack glucosyltransferase I (ALG6) activity, accumulated Man{sub 9}GlcNAc{sub 2}-P-P-Dol. CHO-K1 and MI5-4 cells both produced primarily the complete LLO, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol, though the relative quantity was lower in MI5-4. MI5-4 cells have reduced hexokinase activity which could affect the availability of many of the substrates required for LLO synthesis and, consequently, impair production of the final LLO donor. Increasing hexokinase activity by overexpressing hexokinase II in MI5-4 caused a decrease in the relative quantities of the incomplete LLO intermediates from Man{sub 5}GlcNAc{sub 2}-PP-Dol through Glc{sub 1}Man{sub 9}GlcNAc{sub 2}-PP-Dol, and an increase in the relative quantity of the final LLO donor, Glc{sub 3}Man{sub 9}GlcNAc{sub 2}-P-P-Dol. This study suggests that metabolic engineering may be a useful strategy for improving LLO availability for use in N-glycosylation.

  3. Influence of culture medium supplementation of tobacco NT1 cell suspension cultures on the N-glycosylation of human secreted alkaline phosphatase.

    Science.gov (United States)

    Becerra-Arteaga, Alejandro; Shuler, Michael L

    2007-08-15

    We report for the first time that culture conditions, specifically culture medium supplementation with nucleotide-sugar precursors, can alter significantly the N-linked glycosylation of a recombinant protein in plant cell culture. Human secreted alkaline phosphatase produced in tobacco NT1 cell suspension cultures was used as a model system. Plant cell cultures were supplemented with ammonia (30 mM), galactose (1 mM) and glucosamine (10 mM) to improve the extent of N-linked glycosylation. The highest levels of cell density and active extracellular SEAP in supplemented cultures were on average 260 g/L and 0.21 U/mL, respectively, compared to 340 g/L and 0.4 U/mL in unsupplemented cultures. The glycosylation profile of SEAP produced in supplemented cultures was determined via electrospray ionization mass spectrometry with precursor ion scanning and compared to that of SEAP produced in unsupplemented cultures. In supplemented and unsupplemented cultures, two biantennary complex-type structures terminated with one or two N-acetylglucosamines and one paucimannosidic glycan structure comprised about 85% of the SEAP glycan pool. These three structures contained plant-specific xylose and fucose residues and their relative abundances were affected by each supplement. High mannose structures (6-9 mannose residues) accounted for the remaining 15% glycans in all cases. The highest proportion (approximately 66%) of a single complex-type biantennary glycan structure terminated in both antennae by N- acetylglucosamine was obtained with glucosamine supplementation versus only 6% in unsupplemented medium. This structure is amenable for in vitro modification to yield a more human-like glycan and could serve as a route to plant cell culture produced therapeutic glycoproteins. (c) 2007 Wiley Periodicals, Inc.

  4. Glycosylation of DMP1 Is Essential for Chondrogenesis of Condylar Cartilage.

    Science.gov (United States)

    Weng, Y; Liu, Y; Du, H; Li, L; Jing, B; Zhang, Q; Wang, X; Wang, Z; Sun, Y

    2017-12-01

    The mandibular condylar cartilage (MCC) shoulders force for the subchondral bone during mastication. The cartilage matrix contains various large molecules, such as type I, II, and X collagens and proteoglycans (PGs), which jointly play essential roles in maintaining cartilage characteristics. PGs play key roles in maintaining the elasticity of cartilage and providing a cushion against mastication forces. In addition to the well-known PGs, DMP1-PG, which is the PG form of dentin matrix protein 1 (DMP1), is a newly identified PG. DMP1 is proteolytically processed in vivo, and the N-terminus is glycosylated into its PG form-that is, DMP1-PG, which is highly expressed not only in tooth and bone but also in the matrix of the MCC. However, the specific functions of DMP1-PG in the MCC remain unclear. In human temporomandibular joint osteoarthritis and hyperocclusion model rat specimens, PGs are significantly downregulated, and DMP1-PG is the most prominently affected PG. To further investigate the role of DMP1-PG in condylar chondrogenesis, a glycosylation site mutant (S 89 -G 89 ) mouse model was established with knock-in methods. In the MCC of the S89G-DMP1 mice, the glycosylation level of DMP1 was significantly downregulated, and a series of abnormal developmental and pathologic changes could be observed. The morphologic changes included thinner cartilage layers, deformations of the MCC, and disordered arrangements of the chondrocytes, and an earlier onset of temporomandibular joint osteoarthritis-like changes was observed. In addition, markers of chondrogenesis were downregulated, and the matrix of the MCC displayed OA phenotypes in the S89G-DMP1 mice. Further investigations showed that the transforming growth factor β signaling molecules were affected in the MCC after the loss of DMP1-PG. In addition, the loss of DMP1-PG significantly accelerated the progression of cartilage injuries in the hyperocclusion models. Given these findings, we investigated the significant

  5. Overelaborated synaptic architecture and reduced synaptomatrix glycosylation in a Drosophila classic galactosemia disease model

    Directory of Open Access Journals (Sweden)

    Patricia Jumbo-Lucioni

    2014-12-01

    Full Text Available Classic galactosemia (CG is an autosomal recessive disorder resulting from loss of galactose-1-phosphate uridyltransferase (GALT, which catalyzes conversion of galactose-1-phosphate and uridine diphosphate (UDP-glucose to glucose-1-phosphate and UDP-galactose, immediately upstream of UDP–N-acetylgalactosamine and UDP–N-acetylglucosamine synthesis. These four UDP-sugars are essential donors for driving the synthesis of glycoproteins and glycolipids, which heavily decorate cell surfaces and extracellular spaces. In addition to acute, potentially lethal neonatal symptoms, maturing individuals with CG develop striking neurodevelopmental, motor and cognitive impairments. Previous studies suggest that neurological symptoms are associated with glycosylation defects, with CG recently being described as a congenital disorder of glycosylation (CDG, showing defects in both N- and O-linked glycans. Here, we characterize behavioral traits, synaptic development and glycosylated synaptomatrix formation in a GALT-deficient Drosophila disease model. Loss of Drosophila GALT (dGALT greatly impairs coordinated movement and results in structural overelaboration and architectural abnormalities at the neuromuscular junction (NMJ. Dietary galactose and mutation of galactokinase (dGALK or UDP-glucose dehydrogenase (sugarless genes are identified, respectively, as critical environmental and genetic modifiers of behavioral and cellular defects. Assaying the NMJ extracellular synaptomatrix with a broad panel of lectin probes reveals profound alterations in dGALT mutants, including depletion of galactosyl, N-acetylgalactosamine and fucosylated horseradish peroxidase (HRP moieties, which are differentially corrected by dGALK co-removal and sugarless overexpression. Synaptogenesis relies on trans-synaptic signals modulated by this synaptomatrix carbohydrate environment, and dGALT-null NMJs display striking changes in heparan sulfate proteoglycan (HSPG co-receptor and Wnt

  6. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments.

    Science.gov (United States)

    Yamakoshi, Yasuo; Nagano, Takatoshi; Hu, Jan Cc; Yamakoshi, Fumiko; Simmer, James P

    2011-02-03

    Dentin sialophosphoprotein (Dspp) is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp), the N-terminal domain of dentin sialophosphoprotein (Dspp), is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB) and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG) attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were tentatively assigned at Thr200, Thr216 and Thr

  7. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments

    Directory of Open Access Journals (Sweden)

    Yamakoshi Fumiko

    2011-02-01

    Full Text Available Abstract Background Dentin sialophosphoprotein (Dspp is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp, the N-terminal domain of dentin sialophosphoprotein (Dspp, is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. Results To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were

  8. Preventing E-cadherin aberrant N-glycosylation at Asn-554 improves its critical function in gastric cancer

    Science.gov (United States)

    Carvalho, S; Catarino, TA; Dias, AM; Kato, M; Almeida, A; Hessling, B; Figueiredo, J; Gärtner, F; Sanches, JM; Ruppert, T; Miyoshi, E; Pierce, M; Carneiro, F; Kolarich, D; Seruca, R; Yamaguchi, Y; Taniguchi, N; Reis, CA; Pinho, SS

    2016-01-01

    E-cadherin is a central molecule in the process of gastric carcinogenesis and its posttranslational modifications by N-glycosylation have been described to induce a deleterious effect on cell adhesion associated with tumor cell invasion. However, the role that site-specific glycosylation of E-cadherin has in its defective function in gastric cancer cells needs to be determined. Using transgenic mice models and human clinical samples, we demonstrated that N-acetylglucosaminyltransferase V (GnT-V)-mediated glycosylation causes an abnormal pattern of E-cadherin expression in the gastric mucosa. In vitro models further indicated that, among the four potential N-glycosylation sites of E-cadherin, Asn-554 is the key site that is selectively modified with β1,6 GlcNAc-branched N-glycans catalyzed by GnT-V. This aberrant glycan modification on this specific asparagine site of E-cadherin was demonstrated to affect its critical functions in gastric cancer cells by affecting E-cadherin cellular localization, cis-dimer formation, molecular assembly and stability of the adherens junctions and cell–cell aggregation, which was further observed in human gastric carcinomas. Interestingly, manipulating this site-specific glycosylation, by preventing Asn-554 from receiving the deleterious branched structures, either by a mutation or by silencing GnT-V, resulted in a protective effect on E-cadherin, precluding its functional dysregulation and contributing to tumor suppression. PMID:26189796

  9. Closely related glycosylation patterns of recombinant human IL-2 expressed in a CHO cell line and natural IL-2

    International Nuclear Information System (INIS)

    Vita, N.; Magazin, M.; Marchese, E.; Lupker, J.; Ferrara, P.

    1990-01-01

    We report here the study of the glycosylation pattern of human recombinant (r) IL2 expressed in a Chinese hamster ovary (CHO) cell line. The human rIL2 secreted by this high-producing recombinant CHO cell line was metabolically radiolabelled with [35S]-methionine, or with [3H]-glucosamine and [3H]-galactose, purified to homogeneity, and then characterized. The electrophoretic analysis of the [35S]-methionine-labelled proteins present in the culture medium of the CHO cell line showed that the rIL2 represents approximately 12% of the total secreted proteins. Furthermore, pulse-chase experiments showed that the glycosylated rIL2 is synthesized and secreted within 30 min. The point of attachment and the structure of the carbohydrate moiety of the rIL2 was determined by: amino-terminal sequencing and fingerprint analysis of the 3H-labelled rIL2, mass spectroscopy of the amino-terminal tryptic octapeptide, and carbohydrate analysis after enzymatic (Vibrio cholerae neuraminidase and Aspergillus oryzae beta-galactosidase) or sulfuric acid hydrolysis. The results indicate that the recombinant protein possesses a sugar moiety O-linked to the threonine residue at position 3 of the polypeptide chain, and that sialic acid, galactose and N-acetyl galactosamine are components of this carbohydrate moiety. Taken together these results suggest that the recombinant molecule is identical to natural IL2

  10. Glycosylation: a hallmark of cancer?

    Science.gov (United States)

    Vajaria, Bhairavi N; Patel, Prabhudas S

    2017-04-01

    The hallmarks of cancer are characterized by functional capabilities that allow cancer cells to survive, proliferate and disseminate during the multistep tumorigenesis. Cancer being a cellular disease, changes in cellular glycoproteins play an important role in malignant transformation and cancer progression. The present review summarizes various studies that depicted correlation of glycosylation with tumor initiation, progression and metastasis, which are helpful in early diagnosis, disease monitoring and prognosis. The results are further strengthened by our reports, which depicted alterations in sialylation and fucosylation in different cancers. Alterations in glycosyltransferases are also involved in formation of various tumor antigens (e.g. Sialyl Lewis x) which serves as ligand for the cell adhesion molecule, selectin which is involved in adhesion of cancer cells to vascular endothelium and thus contributes to hematogenous metastasis. Increased glycosylation accompanied by alterations in glycosyltranferases, glycosidases, glycans and mucins (MUC)s are also involved in loss of E-cadherin, a key molecule implicated in metastatic dissemination of cells. The present review also summarizes the correlation of glycosylation with all the hallmarks of cancer. The enormous progress in the design of novel inhibitors of pathway intermediates of sialylation and fucosylation can prove wonders in combating the dreadful disease. The results provide the evidence that altered glycosylation is linked to tumor initiation, progression and metastasis. Hence, it can be considered as a new hallmark of cancer development and strategies to develop novel glycosylation targeted molecules should be strengthened.

  11. Charge and Polarity Preferences for N-Glycosylation: A Genome-Wide In Silico Study and Its Implications Regarding Constitutive Proliferation and Adhesion of Carcinoma Cells.

    Science.gov (United States)

    Manwar Hussain, Muhammad Ramzan; Iqbal, Zeeshan; Qazi, Wajahat M; Hoessli, Daniel C

    2018-01-01

    The structural and functional diversity of the human proteome is mediated by N - and O- linked glycosylations that define the individual properties of extracellular and membrane-associated proteins. In this study, we utilized different computational tools to perform in silico based genome-wide mapping of 1,117 human proteins and unravel the contribution of both penultimate and vicinal amino acids for the asparagine-based, site-specific N -glycosylation. Our results correlate the non-canonical involvement of charge and polarity environment of classified amino acids (designated as L, O, A, P, and N groups) in the N -glycosylation process, as validated by NetNGlyc predictions, and 130 literature-reported human proteins. From our results, particular charge and polarity combinations of non-polar aliphatic, acidic, basic, and aromatic polar side chain environment of both penultimate and vicinal amino acids were found to promote the N -glycosylation process. However, the alteration in side-chain charge and polarity environment of genetic variants, particularly in the vicinity of Asn-containing epitope, may induce constitutive glycosylation (e.g., aberrant glycosylation at preferred and non-preferred sites) of membrane proteins causing constitutive proliferation and triggering epithelial-to-mesenchymal transition. The current genome-wide mapping of 1,117 proteins (2,909 asparagine residues) was used to explore charge- and polarity-based mechanistic constraints in N -glycosylation, and discuss alterations of the neoplastic phenotype that can be ascribed to N -glycosylation at preferred and non-preferred sites.

  12. Sensitive and comprehensive analysis of O-glycosylation in biotherapeutics: a case study of novel erythropoiesis stimulating protein.

    Science.gov (United States)

    Kim, Unyong; Oh, Myung Jin; Seo, Youngsuk; Jeon, Yinae; Eom, Joon-Ho; An, Hyun Joo

    2017-09-01

    Glycosylation of recombinant human erythropoietins (rhEPOs) is significantly associated with drug's quality and potency. Thus, comprehensive characterization of glycosylation is vital to assess the biotherapeutic quality and establish the equivalency of biosimilar rhEPOs. However, current glycan analysis mainly focuses on the N-glycans due to the absence of analytical tools to liberate O-glycans with high sensitivity. We developed selective and sensitive method to profile native O-glycans on rhEPOs. O-glycosylation on rhEPO including O-acetylation on a sialic acid was comprehensively characterized. Details such as O-glycan structure and O-acetyl-modification site were obtained from tandem MS. This method may be applied to QC and batch analysis of not only rhEPOs but also other biotherapeutics bearing multiple O-glycosylations.

  13. Effects of preventing O-glycosylation on the secretion of human chorionic gonadotropin in Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Matzuk, M.M.; Krieger, M.; Corless, C.L.; Boime, I.

    1987-01-01

    Human chorionic gonadotropin (hCG) is a member of a family of heterodimeric glycoprotein hormones that have a common α subunit but differ in their hormone-specific β-subunits. The β subunit of hCG (hCGβ) is unique among the β subunits in that it contains four mucin-like O-linked oligosaccharides attached to a carboxyl-terminal extension. To study the effects of O-glycosylation on the secretion and assembly of hCG, expression vectors containing either hCGβ gene alone or together with the hCGα gene were transfected into a mutant Chinese hamster ovary cell line, 1d1D, which exhibits a reversible defect in O-glycosylation. The results reveal that hCGβ can be secreted normally in the absence of its O-linked oligosaccharides. hCGβ devoid of O-linked carbohydrate can also combine efficiently with hCGα and be secreted as an intact dimer. The authors conclude that in Chinese hamster ovary cells, the hCGβ O-linked chains play no role in the assembly and secretion of hCG. The normal and O-linked oligosaccharide-deficient forms of hCG secreted by these cells should prove useful in examining the role of O-linked chains on the biological function of hCG

  14. Competition between folding and glycosylation in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Holst, B; Bruun, A W; Kielland-Brandt, Morten

    1996-01-01

    Using carboxypeptidase Y in Saccharomyces cerevisiae as a model system, the in vivo relationship between protein folding and N-glycosylation was studied. Seven new sites for N-glycosylation were introduced at positions buried in the folded protein structure. The level of glycosylation of such new...... acceptor sites. In some cases, all the newly synthesized mutant protein was modified at the novel site while in others no modification took place. In the most interesting category of mutants, the level of glycosylation was dependent on the conditions for folding. This shows that folding and glycosylation...

  15. Detection of site specific glycosylation in proteins using flow cytometry†

    Science.gov (United States)

    Jayakumar, Deepak; Marathe, Dhananjay D.; Neelamegham, Sriram

    2009-01-01

    We tested the possibility that it is possible to express unique peptide probes on cell surfaces and detect site-specific glycosylation on these peptides using flow cytometry. Such development can enhance the application of flow cytometry to detect and quantify post-translational modifications in proteins. To this end, the N-terminal section of the human leukocyte glycoprotein PSGL-1 (P-selectin glycoprotein ligand-1) was modified to contain a poly-histidine tag followed by a proteolytic cleavage site. Amino acids preceding the cleavage site have a single O-linked glycosylation site. The recombinant protein called PSGL-1 (HT) was expressed on the surface of two mammalian cell lines, CHO and HL-60, using a lentiviral delivery approach. Results demonstrate that the N-terminal portion of PSGL-1 (HT) can be released from these cells by protease, and the resulting peptide can be readily captured and detected using cytometry-bead assays. Using this strategy, the peptide was immunoprecipitated onto beads bearing mAbs against either the poly-histidine sequence or the human PSGL-1. The carbohydrate epitope associated with the released peptide was detected using HECA-452 and CSLEX-1, monoclonal antibodies that recognize the sialyl Lewis-X epitope. Finally, the peptide released from cells could be separated and enriched using nickel chelate beads. Overall, such an approach that combines recombinant protein expression with flow cytometry, may be useful to quantify changes in site-specific glycosylation for basic science and clinical applications. PMID:19735085

  16. Review of the recombinant human interferon gamma as an immunotherapeutic: Impacts of production platforms and glycosylation.

    Science.gov (United States)

    Razaghi, Ali; Owens, Leigh; Heimann, Kirsten

    2016-12-20

    Human interferon gamma is a cytokine belonging to a diverse group of interferons which have a crucial immunological function against mycobacteria and a wide variety of viral infections. To date, it has been approved for treatment of chronic granulomatous disease and malignant osteopetrosis, and its application as an immunotherapeutic agent against cancer is an increasing prospect. Recombinant human interferon gamma, as a lucrative biopharmaceutical, has been engineered in different expression systems including prokaryotic, protozoan, fungal (yeasts), plant, insect and mammalian cells. Human interferon gamma is commonly expressed in Escherichia coli, marketed as ACTIMMUNE ® , however, the resulting product of the prokaryotic expression system is unglycosylated with a short half-life in the bloodstream; the purification process is tedious and makes the product costlier. Other expression systems also did not show satisfactory results in terms of yields, the biological activity of the protein or economic viability. Thus, the review aims to synthesise available information from previous studies on the production of human interferon gamma and its glycosylation patterns in different expression systems, to provide direction to future research in this field. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. N-glycosylation in sugarcane

    Directory of Open Access Journals (Sweden)

    Maia Ivan G.

    2001-01-01

    Full Text Available The N-linked glycosylation of secretory and membrane proteins is the most complex posttranslational modification known to occur in eukaryotic cells. It has been shown to play critical roles in modulating protein function. Although this important biological process has been extensively studied in mammals, much less is known about this biosynthetic pathway in plants. The enzymes involved in plant N-glycan biosynthesis and processing are still not well defined and the mechanism of their genetic regulation is almost completely unknown. In this paper we describe our first attempt to understand the N-linked glycosylation mechanism in a plant species by using the data generated by the Sugarcane Expressed Sequence Tag (SUCEST project. The SUCEST database was mined for sugarcane gene products potentially involved in the N-glycosylation pathway. This approach has led to the identification and functional assignment of 90 expressed sequence tag (EST clusters sharing significant sequence similarity with the enzymes involved in N-glycan biosynthesis and processing. The ESTs identified were also analyzed to establish their relative abundance.

  18. Glycation and transglutaminase mediated glycosylation of fish gelatin peptides with glucosamine enhance bioactivity.

    Science.gov (United States)

    Hong, Pui Khoon; Gottardi, Davide; Ndagijimana, Maurice; Betti, Mirko

    2014-01-01

    A mixture of novel glycopeptides from glycosylation between cold water fish skin gelatin hydrolysates and glucosamine (GlcN) via transglutaminase (TGase), as well as glycation between fish gelatin hydrolysate and GlcN were identified by their pattern of molecular distribution using MALDI-TOF-MS. Glycated/glycosylated hydrolysates showed superior bioactivity to their original hydrolysates. Alcalase-derived fish skin gelatin hydrolysate glycosylated with GlcN in the presence of TGase at 25°C (FAT25) possessed antioxidant activity when tested in a linoleic acid oxidation system, when measured according to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and when tested at the cellular level with human hepatocarcinoma (HepG2) cells as target cells. In addition, Alcalase-derived glycosylated hydrolysates showed specificity toward the inhibition of Escherichia coli (E. coli). The Flavourzyme-derived glycopeptides prepared at 37°C (FFC37 and FFT37) showed better DPPH scavenging activity than their native hydrolysates. The glycated Flavourzyme-derived hydrolysates were found to act as potential antimicrobial agents when incubated with E. coli and Bacillus subtilis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Glycosylation of type II collagen is of major importance for T cell tolerance and pathology in collagen-induced arthritis

    DEFF Research Database (Denmark)

    Bäcklund, Johan; Treschow, Alexandra; Bockermann, Robert

    2002-01-01

    Type II collagen (CII) is a candidate cartilage-specific autoantigen, which can become post-translationally modified by hydroxylation and glycosylation. T cell recognition of CII is essential for the development of murine collagen-induced arthritis (CIA) and also occurs in rheumatoid arthritis (RA......). The common denominator of murine CIA and human RA is the presentation of an immunodominant CII-derived glycosylated peptide on murine Aq and human DR4 molecules, respectively. To investigate the importance of T cell recognition of glycosylated CII in CIA development after immunization with heterologous CII......, we treated neonatal mice with different heterologous CII-peptides (non-modified, hydroxylated and galactosylated). Treatment with the galactosylated peptide (galactose at position 264) was superior in protecting mice from CIA. Protection was accompanied by a reduced antibody response to CII...

  20. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus

    DEFF Research Database (Denmark)

    Röttger, S; White, J; Wandall, H H

    1998-01-01

    O-glycosylation of proteins is initiated by a family of UDP-N-acetylgalactosamine:polypeptide N-acetylgalactos-aminyltransferases (GalNAc-T). In this study, we have localized endogenous and epitope-tagged human GalNAc-T1, -T2 and -T3 to the Golgi apparatus in HeLa cells by subcellular fractionation......, immunofluorescence and immunoelectron microscopy. We show that all three GalNAc-transferases are concentrated about tenfold in Golgi stacks over Golgi associated tubular-vesicular membrane structures. Surprisingly, we find that GalNAc-T1, -T2 and -T3 are present throughout the Golgi stack suggesting that initiation...... of O-glycosylation may not be restricted to the cis Golgi, but occur at multiple sites within the Golgi apparatus. GalNAc-T1 distributes evenly across the Golgi stack whereas GalNAc-T2 and -T3 reside preferentially on the trans side and in the medial part of the Golgi stack, respectively. Moreover, we...

  1. Site-specific protein O-glycosylation modulates proprotein processing - Deciphering specific functions of the large polypeptide GalNAc-transferase gene family

    DEFF Research Database (Denmark)

    Schjoldager, Katrine Ter-Borch Gram; Clausen, Henrik

    2012-01-01

    Posttranslational modifications (PTMs) greatly expand the function and regulation of proteins, and glycosylation is the most abundant and diverse PTM. Of the many different types of protein glycosylation, one is quite unique; GalNAc-type (or mucin-type) O-glycosylation, where biosynthesis...... and considerable redundancy. Recently we have begun to uncover human diseases associated with deficiencies in GalNAc-T genes (GALNTs). Thus deficiencies in individual GALNTs produce cell and protein specific effects and subtle distinct phenotypes such as hyperphosphatemia with hyperostosis (GALNT3...

  2. Halide-mediated regioselective 6-O-glycosylation of unprotected hexopyranosides with perbenzylated glycosyl bromide donors

    DEFF Research Database (Denmark)

    Niedbal, Dominika Alina; Madsen, Robert

    2016-01-01

    The regio- and stereoselective glycosylation at the 6-position in 2,3,4,6-unprotected hexopyranosides has been investigated with dibutyltin oxide as the directing agent. Perbenzylated hexopyranosyl bromides were employed as the donors and the glycosylations were promoted by tetrabutylammonium...... bromide. The couplings were completely selective for both glucose and galactose donors and acceptors as long as the stannylene acetal of the acceptor was soluble in dichloromethane. This gave rise to a number of 1,2-cis-linked disaccharides in reasonable yields. Mannose donors and acceptors, on the other...

  3. Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein

    DEFF Research Database (Denmark)

    Sherlock, O.; Dobrindt, U.; Jensen, J.B.

    2006-01-01

    a novel member to this exclusive group, namely, antigen 43 (Ag43), a self-recognizing autotransporter protein. By mass spectrometry Ag43 was demonstrated to be glycosylated by addition of heptose residues at several positions in the passenger domain. Glycosylation of Ag43 by the action of the Aah and Tib......C glycosyltransferases was observed in laboratory strains. Importantly, Ag43 was also found to be glycosylated in a wild-type strain, suggesting that Ag43-glycosylation may be a widespread phenomenon. Glycosylation of Ag43 does not seem to interfere with its self-associating properties. However, the glycosylated form...

  4. Digestibility and IgE-Binding of Glycosylated Codfish Parvalbumin

    Science.gov (United States)

    de Jongh, Harmen H. J.; Robles, Carlos López; Nordlee, Julie A.; Lee, Poi-Wah; Baumert, Joseph L.; Hamilton, Robert G.; Taylor, Steve L.; Koppelman, Stef J.

    2013-01-01

    Food-processing conditions may alter the allergenicity of food proteins by different means. In this study, the effect of the glycosylation as a result of thermal treatment on the digestibility and IgE-binding of codfish parvalbumin is investigated. Native and glycosylated parvalbumins were digested with pepsin at various conditions relevant for the gastrointestinal tract. Intact proteins and peptides were analysed for apparent molecular weight and IgE-binding. Glycosylation did not substantially affect the digestion. Although the peptides resulting from digestion were relatively large (3 and 4 kDa), the IgE-binding was strongly diminished. However, the glycosylated parvalbumin had a strong propensity to form dimers and tetramers, and these multimers bound IgE intensely, suggesting stronger IgE-binding than monomeric parvalbumin. We conclude that glycosylation of codfish parvalbumin does not affect the digestibility of parvalbumin and that the peptides resulting from this digestion show low IgE-binding, regardless of glycosylation. Glycosylation of parvalbumin leads to the formation of higher order structures that are more potent IgE binders than native, monomeric parvalbumin. Therefore, food-processing conditions applied to fish allergen can potentially lead to increased allergenicity, even while the protein's digestibility is not affected by such processing. PMID:23878817

  5. Digestibility and IgE-Binding of Glycosylated Codfish Parvalbumin

    Directory of Open Access Journals (Sweden)

    Harmen H. J. de Jongh

    2013-01-01

    Full Text Available Food-processing conditions may alter the allergenicity of food proteins by different means. In this study, the effect of the glycosylation as a result of thermal treatment on the digestibility and IgE-binding of codfish parvalbumin is investigated. Native and glycosylated parvalbumins were digested with pepsin at various conditions relevant for the gastrointestinal tract. Intact proteins and peptides were analysed for apparent molecular weight and IgE-binding. Glycosylation did not substantially affect the digestion. Although the peptides resulting from digestion were relatively large (3 and 4 kDa, the IgE-binding was strongly diminished. However, the glycosylated parvalbumin had a strong propensity to form dimers and tetramers, and these multimers bound IgE intensely, suggesting stronger IgE-binding than monomeric parvalbumin. We conclude that glycosylation of codfish parvalbumin does not affect the digestibility of parvalbumin and that the peptides resulting from this digestion show low IgE-binding, regardless of glycosylation. Glycosylation of parvalbumin leads to the formation of higher order structures that are more potent IgE binders than native, monomeric parvalbumin. Therefore, food-processing conditions applied to fish allergen can potentially lead to increased allergenicity, even while the protein’s digestibility is not affected by such processing.

  6. Functional Analysis of Glycosylation of Zika Virus Envelope Protein

    Directory of Open Access Journals (Sweden)

    Camila R. Fontes-Garfias

    2017-10-01

    Full Text Available Summary: Zika virus (ZIKV infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts. : Zika virus (ZIKV causes devastating congenital abnormities and Guillain-Barré syndrome. Fontes-Garfias et al. showed that the glycosylation of ZIKV envelope protein plays an important role in infecting mosquito vectors and pathogenesis in mouse. Keywords: Zika virus, glycosylation, flavivirus entry, mosquito transmission, vaccine

  7. Role of structure and glycosylation of adsorbed protein films in biolubrication.

    Directory of Open Access Journals (Sweden)

    Deepak H Veeregowda

    Full Text Available Water forms the basis of lubrication in the human body, but is unable to provide sufficient lubrication without additives. The importance of biolubrication becomes evident upon aging and disease, particularly under conditions that affect secretion or composition of body fluids. Insufficient biolubrication, may impede proper speech, mastication and swallowing, underlie excessive friction and wear of articulating cartilage surfaces in hips and knees, cause vaginal dryness, and result in dry, irritated eyes. Currently, our understanding of biolubrication is insufficient to design effective therapeutics to restore biolubrication. Aim of this study was to establish the role of structure and glycosylation of adsorbed protein films in biolubrication, taking the oral cavity as a model and making use of its dynamics with daily perturbations due to different glandular secretions, speech, drinking and eating, and tooth brushing. Using different surface analytical techniques (a quartz crystal microbalance with dissipation monitoring, colloidal probe atomic force microscopy, contact angle measurements and X-ray photo-electron spectroscopy, we demonstrated that adsorbed salivary conditioning films in vitro are more lubricious when their hydrophilicity and degree of glycosylation increase, meanwhile decreasing their structural softness. High-molecular-weight, glycosylated proteins adsorbing in loops and trains, are described as necessary scaffolds impeding removal of water during loading of articulating surfaces. Comparing in vitro and in vivo water contact angles measured intra-orally, these findings were extrapolated to the in vivo situation. Accordingly, lubricating properties of teeth, as perceived in 20 volunteers comprising of equal numbers of male and female subjects, could be related with structural softness and glycosylation of adsorbed protein films on tooth surfaces. Summarizing, biolubrication is due to a combination of structure and glycosylation

  8. In-Depth N-Glycosylation Reveals Species-Specific Modifications and Functions of the Royal Jelly Protein from Western (Apis mellifera) and Eastern Honeybees (Apis cerana).

    Science.gov (United States)

    Feng, Mao; Fang, Yu; Han, Bin; Xu, Xiang; Fan, Pei; Hao, Yue; Qi, Yuping; Hu, Han; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-12-04

    Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological

  9. Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture.

    Science.gov (United States)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell. In this chapter, we will focus on how to carry out experiments for N-glycosylation modulation through medium and feed optimization. The workflow and typical methods involved in the experiment process will be presented.

  10. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region.

    Science.gov (United States)

    van de Bovenkamp, Fleur S; Derksen, Ninotska I L; Ooijevaar-de Heer, Pleuni; van Schie, Karin A; Kruithof, Simone; Berkowska, Magdalena A; van der Schoot, C Ellen; IJspeert, Hanna; van der Burg, Mirjam; Gils, Ann; Hafkenscheid, Lise; Toes, René E M; Rombouts, Yoann; Plomp, Rosina; Wuhrer, Manfred; van Ham, S Marieke; Vidarsson, Gestur; Rispens, Theo

    2018-02-20

    A hallmark of B-cell immunity is the generation of a diverse repertoire of antibodies from a limited set of germline V(D)J genes. This repertoire is usually defined in terms of amino acid composition. However, variable domains may also acquire N -linked glycans, a process conditional on the introduction of consensus amino acid motifs ( N -glycosylation sites) during somatic hypermutation. High levels of variable domain glycans have been associated with autoantibodies in rheumatoid arthritis, as well as certain follicular lymphomas. However, the role of these glycans in the humoral immune response remains poorly understood. Interestingly, studies have reported both positive and negative effects on antibody affinity. Our aim was to elucidate the role of variable domain glycans during antigen-specific antibody responses. By analyzing B-cell repertoires by next-generation sequencing, we demonstrate that N -glycosylation sites are introduced at positions in which glycans can affect antigen binding as a result of a specific clustering of progenitor glycosylation sites in the germline sequences of variable domain genes. By analyzing multiple human monoclonal and polyclonal (auto)antibody responses, we subsequently show that this process is subject to selection during antigen-specific antibody responses, skewed toward IgG4, and positively contributes to antigen binding. Together, these results highlight a physiological role for variable domain glycosylation as an additional layer of antibody diversification that modulates antigen binding.

  11. Glycosylation status of vitamin D binding protein in cancer patients.

    Science.gov (United States)

    Rehder, Douglas S; Nelson, Randall W; Borges, Chad R

    2009-10-01

    On the basis of the results of activity studies, previous reports have suggested that vitamin D binding protein (DBP) is significantly or even completely deglycosylated in cancer patients, eliminating the molecular precursor of the immunologically important Gc macrophage activating factor (GcMAF), a glycosidase-derived product of DBP. The purpose of this investigation was to directly determine the relative degree of O-linked trisaccharide glycosylation of serum-derived DBP in human breast, colorectal, pancreatic, and prostate cancer patients. Results obtained by electrospray ionization-based mass spectrometric immunoassay showed that there was no significant depletion of DBP trisaccharide glycosylation in the 56 cancer patients examined relative to healthy controls. These results suggest that alternative hypotheses regarding the molecular and/or structural origins of GcMAF must be considered to explain the relative inability of cancer patient serum to activate macrophages.

  12. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions.

    Science.gov (United States)

    Wang, Shengjun; Mao, Yang; Narimatsu, Yoshiki; Ye, Zilu; Tian, Weihua; Goth, Christoffer K; Lira-Navarrete, Erandi; Pedersen, Nis B; Benito-Vicente, Asier; Martin, Cesar; Uribe, Kepa B; Hurtado-Guerrero, Ramon; Christoffersen, Christina; Seidah, Nabil G; Nielsen, Rikke; Christensen, Erik I; Hansen, Lars; Bennett, Eric P; Vakhrushev, Sergey Y; Schjoldager, Katrine T; Clausen, Henrik

    2018-05-11

    The low-density lipoprotein receptor (LDLR) and related receptors are important for the transport of diverse biomolecules across cell membranes and barriers. Their functions are especially relevant for cholesterol homeostasis and diseases, including neurodegenerative and kidney disorders. Members of the LDLR-related protein family share LDLR class A (LA) repeats providing binding properties for lipoproteins and other biomolecules. We previously demonstrated that short linker regions between these LA repeats contain conserved O -glycan sites. Moreover, we found that O -glycan modifications at these sites are selectively controlled by the GalNAc-transferase isoform, GalNAc-T11. However, the effects of GalNAc-T11-mediated O -glycosylation on LDLR and related receptor localization and function are unknown. Here, we characterized O -glycosylation of LDLR-related proteins and identified conserved O -glycosylation sites in the LA linker regions of VLDLR, LRP1, and LRP2 (Megalin) from both cell lines and rat organs. Using a panel of gene-edited isogenic cell line models, we demonstrate that GalNAc-T11-mediated LDLR and VLDLR O -glycosylation is not required for transport and cell-surface expression and stability of these receptors but markedly enhances LDL and VLDL binding and uptake. Direct ELISA-based binding assays with truncated LDLR constructs revealed that O -glycosylation increased affinity for LDL by ∼5-fold. The molecular basis for this observation is currently unknown, but these findings open up new avenues for exploring the roles of LDLR-related proteins in disease. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Similarities and Differences in the Glycosylation Mechanisms in Prokaryotes and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Anne Dell

    2010-01-01

    Full Text Available Recent years have witnessed a rapid growth in the number and diversity of prokaryotic proteins shown to carry N- and/or O-glycans, with protein glycosylation now considered as fundamental to the biology of these organisms as it is in eukaryotic systems. This article overviews the major glycosylation pathways that are known to exist in eukarya, bacteria and archaea. These are (i oligosaccharyltransferase (OST-mediated N-glycosylation which is abundant in eukarya and archaea, but is restricted to a limited range of bacteria; (ii stepwise cytoplasmic N-glycosylation that has so far only been confirmed in the bacterial domain; (iii OST-mediated O-glycosylation which appears to be characteristic of bacteria; and (iv stepwise O-glycosylation which is common in eukarya and bacteria. A key aim of the review is to integrate information from the three domains of life in order to highlight commonalities in glycosylation processes. We show how the OST-mediated N- and O-glycosylation pathways share cytoplasmic assembly of lipid-linked oligosaccharides, flipping across the ER/periplasmic/cytoplasmic membranes, and transferring “en bloc” to the protein acceptor. Moreover these hallmarks are mirrored in lipopolysaccharide biosynthesis. Like in eukaryotes, stepwise O-glycosylation occurs on diverse bacterial proteins including flagellins, adhesins, autotransporters and lipoproteins, with O-glycosylation chain extension often coupled with secretory mechanisms.

  14. Diversity and functions of protein glycosylation in insects.

    Science.gov (United States)

    Walski, Tomasz; De Schutter, Kristof; Van Damme, Els J M; Smagghe, Guy

    2017-04-01

    The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Glycosylation in HIV-1 envelope glycoprotein and its biological implications

    KAUST Repository

    Ho, Yung Shwen

    2013-08-01

    Glycosylation of HIV-1 envelope proteins (Env gp120/gp41) plays a vital role in viral evasion from the host immune response, which occurs through the masking of key neutralization epitopes and the presentation of the Env glycosylation as \\'self\\' to the host immune system. Env glycosylation is generally conserved, yet its continual evolution plays an important role in modulating viral infectivity and Env immunogenicity. Thus, it is believed that Env glycosylation, which is a vital part of the HIV-1 architecture, also controls intra- and inter-clade genetic variations. Discerning intra- and inter-clade glycosylation variations could therefore yield important information for understanding the molecular and biological differences between HIV clades and may assist in effectively designing Env-based immunogens and in clearly understanding HIV vaccines. This review provides an in-depth perspective of various aspects of Env glycosylation in the context of HIV-1 pathogenesis. © 2013 Future Medicine Ltd.

  16. [Non-enzymatic glycosylation of dietary protein in vitro].

    Science.gov (United States)

    Bednykh, B S; Evdokimov, I A; Sokolov, A I

    2015-01-01

    Non-enzymatic glycosylation of proteins, based on discovered by Mayarn reaction of carbohydrate aldehyde group with a free amino group of a protein molecule, is well known to experts in biochemistry of food industry. Generated brown solid in some cases give the product marketable qualities--crackling bread--in others conversely, worsen the product. The biological effects of far-advanced products of non-enzymatic protein glycosylation reaction have not been studied enough, although it was reported previously that they are not split by digestive enzymes and couldn't be absorbed by animals. The objective of this work was to compare the depth of glycosylation of different food proteins of animal and vegetable origin. The objects of the study were proteins of animal (casein, lactoglobulin, albumin) and vegetable (soy isolate, proteins of rice flour, buckwheat, oatmeal) origin, glucose and fructose were selected as glycosylation agents, exposure 15 days at 37 degrees C. Lactoglobulin was glycosylated to a lesser extent among the proteins of animal origin while protein of oatmeal was glycosylated in the least degree among vegetable proteins. Conversely, such proteins as casein and soya isolate protein bound rather large amounts of carbohydrates. Fructose binding with protein was generally higher than the binding of glucose. The only exception was a protein of oatmeal. When of glucose and fructose simultaneously presented in the incubation medium, glucose binding usually increased while binding of fructose, in contrast, reduced. According to the total amount of carbohydrate (mcg), which is able to attach a protein (mg) the studied food proteins located in the following order: albumin (38) > soy protein isolate (23) > casein (15,) > whey protein rice flour protein (6) > protein from buckwheat flour (3) > globulin (2) > protein of oatmeal (0.3). The results obtained are to be used to select the optimal combination of proteins and carbohydrates, in which the glycosylation

  17. Tumor-derived microvesicles mediate human breast cancer invasion through differentially glycosylated EMMPRIN.

    Science.gov (United States)

    Menck, Kerstin; Scharf, Christian; Bleckmann, Annalen; Dyck, Lydia; Rost, Ulrike; Wenzel, Dirk; Dhople, Vishnu M; Siam, Laila; Pukrop, Tobias; Binder, Claudia; Klemm, Florian

    2015-04-01

    Tumor cells secrete not only a variety of soluble factors, but also extracellular vesicles that are known to support the establishment of a favorable tumor niche by influencing the surrounding stroma cells. Here we show that tumor-derived microvesicles (T-MV) also directly influence the tumor cells by enhancing their invasion in a both autologous and heterologous manner. Neither the respective vesicle-free supernatant nor MV from benign mammary cells mediate invasion. Uptake of T-MV is essential for the proinvasive effect. We further identify the highly glycosylated form of the extracellular matrix metalloproteinase inducer (EMMPRIN) as a marker for proinvasive MV. EMMPRIN is also present at high levels on MV from metastatic breast cancer patients in vivo. Anti-EMMPRIN strategies, such as MV deglycosylation, gene knockdown, and specific blocking peptides, inhibit MV-induced invasion. Interestingly, the effect of EMMPRIN-bearing MV is not mediated by matrix metalloproteinases but by activation of the p38/MAPK signaling pathway in the tumor cells. In conclusion, T-MV stimulate cancer cell invasion via a direct feedback mechanism dependent on highly glycosylated EMMPRIN. © The Author (2014). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  18. Functional Analysis of Glycosylation of Zika Virus Envelope Protein.

    Science.gov (United States)

    Fontes-Garfias, Camila R; Shan, Chao; Luo, Huanle; Muruato, Antonio E; Medeiros, Daniele B A; Mays, Elizabeth; Xie, Xuping; Zou, Jing; Roundy, Christopher M; Wakamiya, Maki; Rossi, Shannan L; Wang, Tian; Weaver, Scott C; Shi, Pei-Yong

    2017-10-31

    Zika virus (ZIKV) infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E) protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. The effects of marine carbohydrates and glycosylated compounds on human health.

    Science.gov (United States)

    Kang, Hee-Kyoung; Seo, Chang Ho; Park, Yoonkyung

    2015-03-16

    Marine organisms have been recognized as a valuable source of bioactive compounds with industrial and nutraceutical potential. Recently, marine-derived carbohydrates, including polysaccharides and low molecular weight glycosylated oligosaccharides, have attracted much attention because of their numerous health benefits. Moreover, several studies have reported that marine carbohydrates exhibit various biological activities, including antioxidant, anti-infection, anticoagulant, anti-inflammatory, and anti-diabetic effects. The present review discusses the potential industrial applications of bioactive marine carbohydrates for health maintenance and disease prevention. Furthermore, the use of marine carbohydrates in food, cosmetics, agriculture, and environmental protection is discussed.

  20. Glycosylation profiles of therapeutic antibody pharmaceuticals.

    Science.gov (United States)

    Wacker, Christoph; Berger, Christoph N; Girard, Philippe; Meier, Roger

    2011-11-01

    Recombinant antibodies specific for human targets are often used as therapeutics and represent a major class of drug products. Their therapeutic efficacy depends on the formation of antibody complexes resulting in the elimination of a target molecule or the modulation of specific signalling pathways. The physiological effects of antibody therapeutics are known to depend on the structural characteristics of the antibody molecule, specifically on the glycosylation which is the result of posttranslational modifications. Hence, production of therapeutic antibodies with a defined and consistent glycoform profile is needed which still remains a considerable challenge to the biopharmaceutical industry. To provide an insight into the industries capability to control their manufacturing process and to provide antibodies of highest quality, we conducted a market surveillance study and compared major oligosaccharide profiles of a number of monoclonal antibody pharmaceuticals sampled on the Swiss market. Product lot-to-lot variability was found to be generally low, suggesting that a majority of manufacturers have implemented high quality standards in their production processes. However, proportions of G0, G1 and G2 core-fucosylated chains derived from different products varied considerably and showed a bias towards the immature agalactosidated G0 form. Interestingly, differences in glycosylation caused by the production cell type seem to be of less importance compared with process related parameters such as cell growth. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Glycosylation Alters Dimerization Properties of a Cell-surface Signaling Protein, Carcinoembryonic Antigen-related Cell Adhesion Molecule 1 (CEACAM1)*

    Science.gov (United States)

    Zhuo, You; Yang, Jeong-Yeh; Moremen, Kelley W.; Prestegard, James H.

    2016-01-01

    Human carcinoembryonic antigen-related cell adhesion molecule 1 (C?/Au: EACAM1) is a cell-surface signaling molecule involved in cell adhesion, proliferation, and immune response. It is also implicated in cancer angiogenesis, progression, and metastasis. This diverse set of effects likely arises as a result of the numerous homophilic and heterophilic interactions that CEACAM1 can have with itself and other molecules. Its N-terminal Ig variable (IgV) domain has been suggested to be a principal player in these interactions. Previous crystal structures of the β-sandwich-like IgV domain have been produced using Escherichia coli-expressed material, which lacks native glycosylation. These have led to distinctly different proposals for dimer interfaces, one involving interactions of ABED β-strands and the other involving GFCC′C″ β-strands, with the former burying one prominent glycosylation site. These structures raise questions as to which form may exist in solution and what the effect of glycosylation may have on this form. Here, we use NMR cross-correlation measurements to examine the effect of glycosylation on CEACAM1-IgV dimerization and use residual dipolar coupling (RDC) measurements to characterize the solution structure of the non-glycosylated form. Our findings demonstrate that even addition of a single N-linked GlcNAc at potential glycosylation sites inhibits dimer formation. Surprisingly, RDC data collected on E. coli expressed material in solution indicate that a dimer using the non-glycosylated GFCC′C″ interface is preferred even in the absence of glycosylation. The results open new questions about what other factors may facilitate dimerization of CEACAM1 in vivo, and what roles glycosylation may play in heterophylic interactions. PMID:27471271

  2. Importance of N-Glycosylation on CD147 for Its Biological Functions

    Science.gov (United States)

    Bai, Yang; Huang, Wan; Ma, Li-Tian; Jiang, Jian-Li; Chen, Zhi-Nan

    2014-01-01

    Glycosylation of glycoproteins is one of many molecular changes that accompany malignant transformation. Post-translational modifications of proteins are closely associated with the adhesion, invasion, and metastasis of tumor cells. CD147, a tumor-associated antigen that is highly expressed on the cell surface of various tumors, is a potential target for cancer diagnosis and therapy. A significant biochemical property of CD147 is its high level of glycosylation. Studies on the structure and function of CD147 glycosylation provide valuable clues to the development of targeted therapies for cancer. Here, we review current understanding of the glycosylation characteristics of CD147 and the glycosyltransferases involved in the biosynthesis of CD147 N-glycans. Finally, we discuss proteins regulating CD147 glycosylation and the biological functions of CD147 glycosylation. PMID:24739808

  3. Importance of N-Glycosylation on CD147 for Its Biological Functions

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2014-04-01

    Full Text Available Glycosylation of glycoproteins is one of many molecular changes that accompany malignant transformation. Post-translational modifications of proteins are closely associated with the adhesion, invasion, and metastasis of tumor cells. CD147, a tumor-associated antigen that is highly expressed on the cell surface of various tumors, is a potential target for cancer diagnosis and therapy. A significant biochemical property of CD147 is its high level of glycosylation. Studies on the structure and function of CD147 glycosylation provide valuable clues to the development of targeted therapies for cancer. Here, we review current understanding of the glycosylation characteristics of CD147 and the glycosyltransferases involved in the biosynthesis of CD147 N-glycans. Finally, we discuss proteins regulating CD147 glycosylation and the biological functions of CD147 glycosylation.

  4. Altered protein glycosylation predicts Alzheimer's disease and modulates its pathology in disease model Drosophila.

    Science.gov (United States)

    Frenkel-Pinter, Moran; Stempler, Shiri; Tal-Mazaki, Sharon; Losev, Yelena; Singh-Anand, Avnika; Escobar-Álvarez, Daniela; Lezmy, Jonathan; Gazit, Ehud; Ruppin, Eytan; Segal, Daniel

    2017-08-01

    The pathological hallmarks of Alzheimer's disease (AD) are pathogenic oligomers and fibrils of misfolded amyloidogenic proteins (e.g., β-amyloid and hyper-phosphorylated tau in AD), which cause progressive loss of neurons in the brain and nervous system. Although deviations from normal protein glycosylation have been documented in AD, their role in disease pathology has been barely explored. Here our analysis of available expression data sets indicates that many glycosylation-related genes are differentially expressed in brains of AD patients compared with healthy controls. The robust differences found enabled us to predict the occurrence of AD with remarkable accuracy in a test cohort and identify a set of key genes whose expression determines this classification. We then studied in vivo the effect of reducing expression of homologs of 6 of these genes in transgenic Drosophila overexpressing human tau, a well-established invertebrate AD model. These experiments have led to the identification of glycosylation genes that may augment or ameliorate tauopathy phenotypes. Our results indicate that OstDelta, l(2)not and beta4GalT7 are tauopathy suppressors, whereas pgnat5 and CG33303 are enhancers, of tauopathy. These results suggest that specific alterations in protein glycosylation may play a causal role in AD etiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The role of glycosylation and domain interactions in the thermal stability of human angiotensin-converting enzyme.

    Science.gov (United States)

    O'Neill, Hester G; Redelinghuys, Pierre; Schwager, Sylva L U; Sturrock, Edward D

    2008-09-01

    The N and C domains of somatic angiotensin-converting enzyme (sACE) differ in terms of their substrate specificity, inhibitor profiling, chloride dependency and thermal stability. The C domain is thermally less stable than sACE or the N domain. Since both domains are heavily glycosylated, the effect of glycosylation on their thermal stability was investigated by assessing their catalytic and physicochemical properties. Testis ACE (tACE) expressed in mammalian cells, mammalian cells in the presence of a glucosidase inhibitor and insect cells yielded proteins with altered catalytic and physicochemical properties, indicating that the more complex glycans confer greater thermal stabilization. Furthermore, a decrease in tACE and N-domain N-glycans using site-directed mutagenesis decreased their thermal stability, suggesting that certain N-glycans have an important effect on the protein's thermodynamic properties. Evaluation of the thermal stability of sACE domain swopover and domain duplication mutants, together with sACE expressed in insect cells, showed that the C domain contained in sACE is less dependent on glycosylation for thermal stabilization than a single C domain, indicating that stabilizing interactions between the two domains contribute to the thermal stability of sACE and are decreased in a C-domain-duplicating mutant.

  6. Links between CD147 Function, Glycosylation, and Caveolin-1

    OpenAIRE

    Tang, Wei; Chang, Sharon B.; Hemler, Martin E.

    2004-01-01

    Cell surface CD147 shows remarkable variations in size (31-65 kDa) because of heterogeneous N-glycosylation, with the most highly glycosylated forms functioning to induce matrix metalloproteinase (MMP) production. Here we show that all three CD147 N-glycosylation sites make similar contributions to both high and low glycoforms (HG- and LG-CD147). l-Phytohemagglutinin lectin binding and swainsonine inhibition experiments indicated that HG-CD147 contains N-acetylglucosaminyltransferase V-cataly...

  7. Engineer medium and feed for modulating N-glycosylation of recombinant protein production in CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N......-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell...

  8. The C-terminal N-glycosylation sites of the human alpha1,3/4-fucosyltransferase III, -V, and -VI (hFucTIII, -V, adn -VI) are necessary for the expression of full enzyme activity.

    Science.gov (United States)

    Christensen, L L; Jensen, U B; Bross, P; Orntoft, T F

    2000-09-01

    The alpha1,3/4-fucosyltransferases are involved in the synthesis of fucosylated cell surface glycoconjugates. Human alpha1,3/4-fucosyltransferase III, -V, and -VI (hFucTIII, -V, and -VI) contain two conserved C-terminal N-glycosylation sites (hFucTIII: Asn154 and Asn185; hFucTV: Asn167 and Asn198; and hFucTVI: Asn153 and Asn184). In the present study, we have analyzed the functional role of these potential N-glycosylation sites, laying the main emphasis on the sites in hFucTIII. Tunicamycin treatment completely abolished hFucTIII enzyme activity while castanospermine treatment diminished hFucTIII enzyme activity to approximately 40% of the activity of the native enzyme. To further analyze the role of the conserved N-glycosylation sites in hFucTIII, -V, and -VI, we made a series of mutant genomic DNAs in which the asparagine residues in the potential C-terminal N-glycosylation sites were replaced by glutamine. Subsequently, the hFucTIII, -V, and -VI wild type and the mutants were expressed in COS-7 cells. All the mutants exhibited lower enzyme activity than the wild type and elimination of individual sites had different effects on the activity. The mutations did not affect the protein level of the mutants in the cells, but reduced the molecular mass as predicted. Kinetic analysis of hFucTIII revealed that lack of glycosylation at Asn185 did not change the Km values for the oligosaccharide acceptor and the nucleotide sugar donor. The present study demonstrates that hFucTIII, -V, and -VI require N-glycosylation at the two conserved C-terminal N-glycosylation sites for expression of full enzyme activity.

  9. [The role of protein glycosylation in immune system].

    Science.gov (United States)

    Ząbczyńska, Marta; Pocheć, Ewa

    2015-01-01

    Glycosylation is one of the most frequent post-translational modifications of proteins. The majority of cell surface and secreted proteins involved in immune response is glycosylated. The structural diversity of glycans depends on monosaccharide composition, type of glycosidic linkage and branching. These structural modifications determine a great variability of glycoproteins. The oligosaccharide components of proteins are regulated mostly by expression of glycosyltransferases and glycosidases and many environmental factors. Glycosylation influences the function of all immune cells. Glycans play a crucial role in intercellular contacts and leukocytes migration. These interactions are important in activation and proliferation of leukocytes and during immune response. The key immune proteins, such as TCR, MHC, TLR and antibodies are glycosylated. Sugars on the surface of pathogens and self-surface glycoproteins are recognized by special carbohydrate binding proteins called lectins. Changes of glycan structure are common in many pathological processes occurring in immune system, therefore they are used as molecular markers of different diseases.

  10. Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms.

    Science.gov (United States)

    Halling Linder, Cecilia; Narisawa, Sonoko; Millán, José Luis; Magnusson, Per

    2009-11-01

    Three circulating human bone alkaline phosphatase (BALP) isoforms (B1, B2, and B/I) can be distinguished in healthy individuals and a fourth isoform (B1x) has been discovered in patients with chronic kidney disease and in bone tissue. The present study was designed to correlate differing glycosylation patterns of each BALP isoform with their catalytic activity towards presumptive physiological substrates and to compare those properties with two recombinant isoforms of the tissue-nonspecific ALP (TNALP) isozyme, i.e., TNALP-flag, used extensively for mutation analysis of hypophosphatasia mutations and sALP-FcD(10), a chimeric enzyme recently used as therapeutic drug in a mouse model of infantile hypophosphatasia. The BALP isoforms were prepared from human osteosarcoma (SaOS-2) cells and the kinetic properties were evaluated using the synthetic substrate p-nitrophenylphosphate (pNPP) at pH 7.4 and 9.8, and the three suggested endogenous physiological substrates, i.e., inorganic pyrophosphate (PP(i)), pyridoxal 5'-phosphate (PLP), and phosphoethanolamine (PEA) at pH 7.4. Qualitative glycosylation differences were also assessed by lectin binding and precipitation. The k(cat)/K(M) was higher for B2 for all the investigated substrates. The catalytic activity towards PEA was essentially undetectable. The kinetic activity for TNALP-flag and sALP-FcD(10) was similar to the activity of the human BALP isoforms. The BALP isoforms differed in their lectin binding properties and dose-dependent lectin precipitation, which also demonstrated differences between native and denatured BALP isoforms. The observed differences in lectin specificity were attributed to N-linked carbohydrates. In conclusion, we demonstrate significantly different catalytic properties among the BALP isoforms due to structural differences in posttranslational glycosylation. Our data also suggests that PEA is not an endogenous substrate for the BALP isoforms or for the recombinant TNALP isoforms. The TNALP

  11. Prion propagation in cells expressing PrP glycosylation mutants.

    Science.gov (United States)

    Salamat, Muhammad K; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-04-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection.

  12. Unusual glycosylation of proteins: Beyond the universal sequon and other amino acids.

    Science.gov (United States)

    Dutta, Devawati; Mandal, Chhabinath; Mandal, Chitra

    2017-12-01

    Glycosylation of proteins is the most common, multifaceted co- and post-translational modification responsible for many biological processes and cellular functions. Significant alterations and aberrations of these processes are related to various pathological conditions, and often turn out to be disease biomarkers. Conventional N-glycosylation occurs through the recognition of the consensus sequon, asparagine (Asn)-X-serine (Ser)/threonine (Thr), where X is any amino acid except for proline, with N-acetylglucosamine (GlcNAc) as the first glycosidic linkage. Usually, O-glycosylation adds a glycan to the hydroxyl group of Ser or Thr beginning with N-acetylgalactosamine (GalNAc). Protein glycosylation is further governed by additional diversifications in sequon and structure, which are yet to be fully explored. This review mainly focuses on the occurrence of N-glycosylation in non-consensus motifs, where Ser/Thr at the +2 position is substituted by other amino acids. Additionally, N-glycosylation is also observed in other amide/amine group-containing amino acids. Similarly, O-glycosylation occurs at hydroxyl group-containing amino acids other than serine/threonine. The neighbouring amino acids and local structural features around the potential glycosylation site also play a significant role in determining the extent of glycosylation. All of these phenomena that yield glycosylation at the atypical sites are reported in a variety of biological systems, including different pathological conditions. Therefore, the discovery of more novel sequence patterns for N- and O-glycosylation may help in understanding the functions of complex biological processes and cellular functions. Taken together, all these information provided in this review would be helpful for the biological readers. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The role of glycosylation in breast cancer metastasis and cancer control

    Directory of Open Access Journals (Sweden)

    Alexandra eKölbl

    2015-10-01

    Full Text Available AbstractGlycosylation and its correlation to the formation of remote metastasis in breast cancer had been an important scientific topic in the last 25 years. With the development of new analytical techniques new insights were gained on the mechanisms underlying metastasis formation and the role of aberrant glycosylation within. Mucin-1 and Galectin were recognized as key players in glycosylation. Interestingly, aberrant carbohydrate structures seem to support the development of brain metastasis in breast cancer patients, as changes in glycosylation structures facilitate an overcoming of blood-brain barrier. Changes in the gene expression of glycosyltransferases are the leading cause for a modification of carbohydrate chains, so that also altered gene expression plays a role for glycosylation. In consequence, glycosylation and changes within can be useful for cancer diagnosis, determination of tumour stage and prognosis, but can as well be targets for therapeutic strategies. Thus, further research on this topic would worth wile for cancer combating.

  14. Glycosylation Helps Cellulase Enzymes Bind to Plant Cell Walls (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production. Large-scale computer simulations predict that the addition of glycosylation on carbohydrate-binding modules can dramatically improve the binding affinity of these protein domains over amino acid mutations alone. These simulations suggest that glycosylation can be used as a protein engineering tool to enhance the activity of cellulase enzymes, which are a key component in the conversion of cellulose to soluble sugars in the production of biofuels. Glycosylation is the covalent attachment of carbohydrate molecules to protein side chains, and is present in many proteins across all kingdoms of life. Moreover, glycosylation is known to serve a wide variety of functions in biological recognition, cell signaling, and metabolism. Cellulase enzymes, which are responsible for deconstructing cellulose found in plant cell walls to glucose, contain glycosylation that when modified can affect enzymatic activity-often in an unpredictable manner. To gain insight into the role of glycosylation on cellulase activity, scientists at the National Renewable Energy Laboratory (NREL) used computer simulation to predict that adding glycosylation on the carbohydrate-binding module of a cellulase enzyme dramatically boosts the binding affinity to cellulose-more than standard protein engineering approaches in which amino acids are mutated. Because it is known that higher binding affinity in cellulases leads to higher activity, this work suggests a new route to designing enhanced enzymes for biofuels production. More generally, this work suggests that tuning glycosylation in cellulase enzymes is a key factor to consider when engineering biochemical conversion processes, and that more work is needed to understand how glycosylation affects cellulase activity at the molecular level.

  15. Differential dependence on N-glycosylation of anthrax toxin receptors CMG2 and TEM8.

    Directory of Open Access Journals (Sweden)

    Sarah Friebe

    Full Text Available ANTXR 1 and 2, also known as TEM8 and CMG2, are two type I membrane proteins, which have been extensively studied for their role as anthrax toxin receptors, but with a still elusive physiological function. Here we have analyzed the importance of N-glycosylation on folding, trafficking and ligand binding of these closely related proteins. We find that TEM8 has a stringent dependence on N-glycosylation. The presence of at least one glycan on each of its two extracellular domains, the vWA and Ig-like domains, is indeed necessary for efficient trafficking to the cell surface. In the absence of any N-linked glycans, TEM8 fails to fold correctly and is recognized by the ER quality control machinery. Expression of N-glycosylation mutants reveals that CMG2 is less vulnerable to sugar loss. The absence of N-linked glycans in one of the extracellular domains indeed has little impact on folding, trafficking or receptor function of the wild type protein expressed in tissue culture cells. N-glycans do, however, seem required in primary fibroblasts from human patients. Here, the presence of N-linked sugars increases the tolerance to mutations in cmg2 causing the rare genetic disease Hyaline Fibromatosis Syndrome. It thus appears that CMG2 glycosylation provides a buffer towards genetic variation by promoting folding of the protein in the ER lumen.

  16. Surface glycosylation profiles of urine extracellular vesicles.

    Directory of Open Access Journals (Sweden)

    Jared Q Gerlach

    Full Text Available Urinary extracellular vesicles (uEVs are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications.

  17. Quantifying risk of penile prosthesis infection with elevated glycosylated hemoglobin.

    Science.gov (United States)

    Wilson, S K; Carson, C C; Cleves, M A; Delk, J R

    1998-05-01

    Elevation of glycosylated hemoglobin above levels of 11.5 mg.% has been considered a contraindication to penile prosthesis implantation in diabetic patients. We determine the predictive value of glycosylated hemoglobin A1C in penile prosthesis infections in diabetic and nondiabetic patients to confirm or deny this prevalent opinion. We conducted a 2-year prospective study of 389 patients, including 114 diabetics, who underwent 3-piece penile prosthesis implantation. All patients had similar preoperative preparation without regard to diabetic status, control or glycosylated hemoglobin A1C level. Risk of infection was statistically analyzed for diabetics versus nondiabetics, glycosylated hemoglobin A1C values above and below 11.5 mg.%, insulin dependent versus oral medication diabetics, and fasting blood sugars above and below 180 mg.%. Prosthesis infections developed in 10 diabetics (8.7%) and 11 nondiabetics (4.0%). No increased infection rate was observed in diabetics with high fasting sugars or diabetics on insulin. There was no statistically significant increased infection risk with increased levels of glycosylated hemoglobin A1C among all patients or among only the diabetics. In fact, there was no meaningful difference in the median or mean level of glycosylated hemoglobin A1C in the infected and noninfected patients regardless of diabetes. Use of glycosylated hemoglobin A1C values to identify and exclude surgical candidates with increased risk of infections is not proved by this study. Elevation of fasting sugar or insulin dependence also does not increase risk of infection in diabetics undergoing prosthesis implantation.

  18. Method Development in the Regioselective Glycosylation of Unprotected Carbohydrates

    DEFF Research Database (Denmark)

    Niedbal, Dominika Alina

    and the glycosylations were promoted by tetrabutylammonium bromide. The couplings were completely selective and gave rise to a number of 1,6-linked disaccharides with 1,2- cis-linked orientation. Project 2: Boron-mediated glycosylation of unprotected carbohydrates Boron-mediated regioselective Koenigs...

  19. Distribution of N-glycosylation sequons in proteins: how apart are they?

    DEFF Research Database (Denmark)

    Rao, Shyama Prasad; Buus, Ole Thomsen; Wollenweber, Bernd

    2011-01-01

    of experimentally confirmed eukaryotic N-glycoproteins we analyzed the relative position and distribution of sequons. N-Glycosylation probability was found to be lower in the termini of protein sequences compared to the mid region. N-glycosylated sequons were found much farther from C terminus compared to the N......N-glycosylation is a common protein modification process, which affects a number of properties of proteins. Little is known about the distribution of N-glycosylation sequons, for example, the distance between glycosylated sites and their position in the protein primary sequence. Using a large set......-terminus of the protein sequence and this effect was more pronounced for NXS sequons. The distribution of sequons, modeled based on balls-in-boxes classical occupancy, showed a near-maximum probability. Considerable proportion of sequons was found within a distance of ten amino acids, indicating that the steric hindrance...

  20. Topological studies of hSVCT1, the human sodium-dependent vitamin C transporter and the influence of N-glycosylation on its intracellular targeting

    Energy Technology Data Exchange (ETDEWEB)

    Velho, Albertina M. [Department of Biosciences University of Kent, CT2 7NJ (United Kingdom); Jarvis, Simon M., E-mail: S.M.Jarvis@westminster.ac.uk [Department of Biosciences University of Kent, CT2 7NJ (United Kingdom); University of Westminster, School of Biosciences, London W1W 6UW (United Kingdom)

    2009-08-01

    The Na{sup +}-dependent transporters, hSVCT1 and hSVCT2, were assessed in COS-1 cells for their membrane topology. Antibodies to N- and C-termini of hSVCT1 and C-terminus of hSVCT2 identified positive immunofluorescence only after permeabilisation, suggesting these regions are intracellular. PNGase F treatment confirmed that WT hSVCT1 ({approx} 70-100 kDa) is glycosylated and site-directed mutagenesis of the three putative N-glycosylation sites, Asn138, Asn144, Asn230, demonstrated that mutants N138Q and N144Q were glycosylated ({approx} 68-90 kDa) with only 31-65% of WT L-ascorbic acid (AA) uptake while the glycosylation profile of N230Q remained unaltered ({approx} 98% of WT activity). However, the N138Q/N144Q double mutant displayed barely detectable membrane expression at {approx} 65 kDa, no apparent glycosylation and minimal AA uptake (< 10%) with no discernible improvement in expression or activity when cultured at 28 {sup o}C or 37 {sup o}C. Marker protein immunocytochemistry with N138Q/N144Q identified intracellular aggregates with hSVCT1 localised at the nuclear membrane but absent at the plasma membrane thus implicating its role as a possible intracellular transporter and suggesting N-glycosylation is required for hSVCT1 membrane targeting. Also, Lys242 on the same putative hydrophilic loop as Asn230 after biotinylation was inaccessible from the extracellular side when analysed by MALDI-TOF MS. A new hSVCT1 secondary structure model supporting these findings is proposed.

  1. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells.

    Directory of Open Access Journals (Sweden)

    Jeanette Wagener

    Full Text Available C. albicans is one of the most common fungal pathogen of humans, causing local and superficial mucosal infections in immunocompromised individuals. Given that the key structure mediating host-C. albicans interactions is the fungal cell wall, we aimed to identify features of the cell wall inducing epithelial responses and be associated with fungal pathogenesis. We demonstrate here the importance of cell wall protein glycosylation in epithelial immune activation with a predominant role for the highly branched N-glycosylation residues. Moreover, these glycan moieties induce growth arrest and apoptosis of epithelial cells. Using an in vitro model of oral candidosis we demonstrate, that apoptosis induction by C. albicans wild-type occurs in early stage of infection and strongly depends on intact cell wall protein glycosylation. These novel findings demonstrate that glycosylation of the C. albicans cell wall proteins appears essential for modulation of epithelial immunity and apoptosis induction, both of which may promote fungal pathogenesis in vivo.

  2. Label-free electrochemical biosensing of small-molecule inhibition on O-GlcNAc glycosylation.

    Science.gov (United States)

    Yang, Yu; Gu, Yuxin; Wan, Bin; Ren, Xiaomin; Guo, Liang-Hong

    2017-09-15

    O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) plays a critical role in modulating protein function in many cellular processes and human diseases such as Alzheimer's disease and type II diabetes, and has emerged as a promising new target. Specific inhibitors of OGT could be valuable tools to probe the biological functions of O-GlcNAcylation, but a lack of robust nonradiometric assay strategies to detect glycosylation, has impeded efforts to identify such compounds. Here we have developed a novel label-free electrochemical biosensor for the detection of peptide O-GlcNAcylation using protease-protection strategy and electrocatalytic oxidation of tyrosine mediated by osmium bipyridine as a signal reporter. There is a large difference in the abilities of proteolysis of the glycosylated and the unglycosylated peptides by protease, thus providing a sensing mechanism for OGT activity. When the O-GlcNAcylation is achieved, the glycosylated peptides cannot be cleaved by proteinase K and result in a high current response on indium tin oxide (ITO) electrode. However, when the O-GlcNAcylation is successfully inhibited using a small molecule, the unglycosylated peptides can be cleaved easily and lead to low current signal. Peptide O-GlcNAcylation reaction was performed in the presence of a well-defined small-molecule OGT inhibitor. The results indicated that the biosensor could be used to screen the OGT inhibitors effectively. Our label-free electrochemical method is a promising candidate for protein glycosylation pathway research in screening small-molecule inhibitors of OGT. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Prion Propagation in Cells Expressing PrP Glycosylation Mutants ▿

    Science.gov (United States)

    Salamat, Muhammad K.; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-01-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrPC) to a disease-related isoform (PrPSc). PrPC carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrPC glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrPSc and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrPSc, while PrPC with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrPC, were able to form infectious PrPSc. Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection. PMID:21248032

  4. Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2

    Directory of Open Access Journals (Sweden)

    De Pourcq Karen

    2012-05-01

    Full Text Available Abstract Background Protein-based therapeutics represent the fastest growing class of compounds in the pharmaceutical industry. This has created an increasing demand for powerful expression systems. Yeast systems are widely used, convenient and cost-effective. Yarrowia lipolytica is a suitable host that is generally regarded as safe (GRAS. Yeasts, however, modify their glycoproteins with heterogeneous glycans containing mainly mannoses, which complicates downstream processing and often interferes with protein function in man. Our aim was to glyco-engineer Y. lipolytica to abolish the heterogeneous, yeast-specific glycosylation and to obtain homogeneous human high-mannose type glycosylation. Results We engineered Y. lipolytica to produce homogeneous human-type terminal-mannose glycosylated proteins, i.e. glycosylated with Man8GlcNAc2 or Man5GlcNAc2. First, we inactivated the yeast-specific Golgi α-1,6-mannosyltransferases YlOch1p and YlMnn9p; the former inactivation yielded a strain producing homogeneous Man8GlcNAc2 glycoproteins. We tested this strain by expressing glucocerebrosidase and found that the hypermannosylation-related heterogeneity was eliminated. Furthermore, detailed analysis of N-glycans showed that YlOch1p and YlMnn9p, despite some initial uncertainty about their function, are most likely the α-1,6-mannosyltransferases responsible for the addition of the first and second mannose residue, respectively, to the glycan backbone. Second, introduction of an ER-retained α-1,2-mannosidase yielded a strain producing proteins homogeneously glycosylated with Man5GlcNAc2. The use of the endogenous LIP2pre signal sequence and codon optimization greatly improved the efficiency of this enzyme. Conclusions We generated a Y. lipolytica expression platform for the production of heterologous glycoproteins that are homogenously glycosylated with either Man8GlcNAc2 or Man5GlcNAc2 N-glycans. This platform expands the utility of Y. lipolytica as a

  5. Effect of glycosylation on biodistribution of radiolabeled glucagon-like peptide 1

    International Nuclear Information System (INIS)

    Watanabe, Ayahisa; Nishijima, Ken-ichi; Zhao, Songji; Tamaki, Nagara; Kuge, Yuji; Tanaka, Yoshikazu; Itoh, Takeshi; Takemoto, Hiroshi

    2012-01-01

    Glycosylation is generally applicable as a strategy for increasing the activity of bioactive proteins. In this study, we examined the effect of glycosylation on biodistribution of radiolabeled glucagon-like peptide 1 (GLP-1) as a bioactive peptide for type 2 diabetes. Noninvasive imaging studies were performed using a gamma camera after the intravenous administration of 123 I-GLP-1 or 123 I-α2, 6-sialyl N-acetyllactosamine (glycosylated) GLP-1 in rats. In ex vivo biodistribution studies using 125 I-GLP-1 or 125 I-glycosylated GLP-1, organ samples were measured for radioactivity. Plasma samples were added to 15% trichloroacetic acid (TCA) to obtain TCA-insoluble and TCA-soluble fractions. The radioactivity in the TCA-insoluble and TCA-soluble fractions was measured. In the noninvasive imaging studies, a relatively high accumulation level of 123 I-GLP-1 was found in the liver, which is the major organ to eliminate exogenous GLP-1. The area under the time-activity curve (AUC) of 123 I-glycosylated GLP-1 in the liver was significantly lower (89%) than that of 123 I-GLP-1. These results were consistent with those of ex vivo biodistribution studies using 125 I-labeled peptides. The AUC of 125 I-glycosylated GLP-1 in the TCA-insoluble fraction was significantly higher (1.7-fold) than that of GLP-1. This study demonstrated that glycosylation significantly decreased the distribution of radiolabeled GLP-1 into the liver and increased the concentration of radiolabeled GLP-1 in plasma. These results suggested that glycosylation is a useful strategy for decreasing the distribution into the liver of bioactive peptides as desirable pharmaceuticals. (author)

  6. [Basic disorders in human communication].

    Science.gov (United States)

    Peñaloza-López, Y; Gutiérrez-Silva, J; Andrade-Illañez, E N; Fierro-Evans, M A; Hernández-López, X

    1989-01-01

    This paper specifies the areas and disorders that concern human communication medicine. The frequency of the diverse disorders is analyzed in relation to age and sex, and the distribution in group ages of several disabling diseases is also discussed.

  7. Diagnostic accuracy of urinary prostate protein glycosylation profiling in prostatitis diagnosis.

    Science.gov (United States)

    Vermassen, Tijl; Van Praet, Charles; Poelaert, Filip; Lumen, Nicolaas; Decaestecker, Karel; Hoebeke, Piet; Van Belle, Simon; Rottey, Sylvie; Delanghe, Joris

    2015-01-01

    Although prostatitis is a common male urinary tract infection, clinical diagnosis of prostatitis is difficult. The developmental mechanism of prostatitis is not yet unraveled which led to the elaboration of various biomarkers. As changes in asparagine-linked-(N-)-glycosylation were observed between healthy volunteers (HV), patients with benign prostate hyperplasia and prostate cancer patients, a difference could exist in biochemical parameters and urinary N-glycosylation between HV and prostatitis patients. We therefore investigated if prostatic protein glycosylation could improve the diagnosis of prostatitis. Differences in serum and urine biochemical markers and in total urine N-glycosylation profile of prostatic proteins were determined between HV (N=66) and prostatitis patients (N=36). Additionally, diagnostic accuracy of significant biochemical markers and changes in N-glycosylation was assessed. Urinary white blood cell (WBC) count enabled discrimination of HV from prostatitis patients (Pprostatitis patients from HV (Pprostatitis patients compared to HV (Pprostatitis. Further research is required to unravel the developmental course of prostatic inflammation.

  8. Temporal expression of HIV-1 envelope proteins in baculovirus-infected insect cells: Implications for glycosylation and CD4 binding

    International Nuclear Information System (INIS)

    Murphy, C.I.; Lennick, M.; Lehar, S.M.; Beltz, G.A.; Young, E.

    1990-01-01

    Three different human immunodeficiency virus type I (HIV-1) envelope derived recombinant proteins and the full length human CD4 polypeptide were expressed in Spodoptera frugiperda (Sf9) cells. DNA constructs encoding CD4, gp120, gp160, and gp160 delta were cloned into the baculovirus expression vector pVL941 or a derivative and used to generate recombinant viruses in a cotransfection with DNA from Autographa californica nuclear polyhedrosis virus (AcMNPV). Western blotting of cell extracts of the recombinant HIV-1 proteins showed that for each construct two major bands specifically reacted with anti-HIV-1 envelope antiserum. These bands corresponded to glycosylated and nonglycosylated versions of the HIV proteins as determined by 3H-mannose labeling and tunicamycin treatment of infected cells. A time course of HIV envelope expression revealed that at early times post-infection (24 hours) the proteins were fully glycosylated and soluble in nonionic detergents. However, at later times postinfection (48 hours), expression levels of recombinant protein reached a maximum but most of the increase was due to a rise in the level of the nonglycosylated species, which was largely insoluble in nonionic detergents. Thus, it appears that Sf9 cells cannot process large amounts of glycosylated recombinant proteins efficiently. As a measure of biological activity, the CD4 binding ability of both glycosylated and nonglycosylated recombinant HIV envelope proteins was tested in a coimmunoprecipitation assay. The results showed that CD4 and the glycosylated versions of recombinant gp120 or gp160 delta specifically associated with one another in this analysis. Nonglycosylated gp120 or gp160 delta proteins from tunicamycin-treated cultures did immunoprecipitate with anti-HIV-1 antiserum but did not interact with CD4

  9. Deciphering a pathway of Halobacterium salinarum N-glycosylation

    Science.gov (United States)

    Kandiba, Lina; Eichler, Jerry

    2015-01-01

    Genomic analysis points to N-glycosylation as being a common posttranslational modification in Archaea. To date, however, pathways of archaeal N-glycosylation have only been described for few species. With this in mind, the similarities of N-linked glycans decorating glycoproteins in the haloarchaea Haloferax volcanii and Halobacterium salinarum directed a series of bioinformatics, genetic, and biochemical experiments designed to describe that Hbt. salinarum pathway responsible for biogenesis of one of the two N-linked oligosaccharides described in this species. As in Hfx. volcanii, where agl (archaeal glycosylation) genes that encode proteins responsible for the assembly and attachment of a pentasaccharide to target protein Asn residues are clustered in the genome, Hbt. salinarum also contains a group of clustered homologous genes (VNG1048G-VNG1068G). Introduction of these Hbt. salinarum genes into Hfx. volcanii mutant strains deleted of the homologous sequence restored the lost activity. Moreover, transcription of the Hbt. salinarum genes in the native host, as well as in vitro biochemical confirmation of the predicted functions of several of the products of these genes provided further support for assignments made following bioinformatics and genetic experiments. Based on the results obtained in this study, the first description of an N-glycosylation pathway in Hbt. salinarum is offered. PMID:25461760

  10. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments

    International Nuclear Information System (INIS)

    Kilcoyne, Michelle; Sharma, Shashank; McDevitt, Niamh; O’Leary, Claire; Joshi, Lokesh; McMahon, Siobhán S.

    2012-01-01

    Highlights: ► Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. ► Neuronal glycosylation in injury and after ChABC treatment is unknown. ► In silico mining verified that glyco-related genes were differentially regulated after SCI. ► In vitro model system revealed abnormal sialylation in an injured environment. ► The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually α-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment with ChABC was successful in returning neuronal glycosylation to normal conditions at all timepoints for MAA, PNA and SNA-I staining

  11. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments

    Energy Technology Data Exchange (ETDEWEB)

    Kilcoyne, Michelle; Sharma, Shashank [Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland); McDevitt, Niamh; O' Leary, Claire [Anatomy, School of Medicine, National University of Ireland, Galway (Ireland); Joshi, Lokesh [Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland); McMahon, Siobhan S., E-mail: siobhan.mcmahon@nuigalway.ie [Anatomy, School of Medicine, National University of Ireland, Galway (Ireland)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. Black-Right-Pointing-Pointer Neuronal glycosylation in injury and after ChABC treatment is unknown. Black-Right-Pointing-Pointer In silico mining verified that glyco-related genes were differentially regulated after SCI. Black-Right-Pointing-Pointer In vitro model system revealed abnormal sialylation in an injured environment. Black-Right-Pointing-Pointer The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually {alpha}-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment

  12. DISAL glycosyl donors for the synthesis of a linear hexasaccharide under mild conditions

    DEFF Research Database (Denmark)

    Petersen, Lars; Laursen, Jane B.; Larsen, K.

    2003-01-01

    The new class of glycosyl donors with a methyl 3,5-dinitrosalicylate (DISAL) anomeric leaving group has proved efficient for glycosylation under strictly neutral, mildly basic, or mildly acidic conditions. Here, we report the synthesis of novel DISAL disaccharide glycosyl donors prepared by easy...... nucleophilic aromatic substitution. These DISAL donors proved efficient in the synthesis of a starch-related hexasaccharide under very mild conditions. Glycosylations proceeded with alpha-selectivity and were compatible with Trt protecting groups....

  13. Flagellar glycosylation in Clostridium botulinum.

    Science.gov (United States)

    Twine, Susan M; Paul, Catherine J; Vinogradov, Evgeny; McNally, David J; Brisson, Jean-Robert; Mullen, James A; McMullin, David R; Jarrell, Harold C; Austin, John W; Kelly, John F; Logan, Susan M

    2008-09-01

    Flagellins from Clostridium botulinum were shown to be post-translationally modified with novel glycan moieties by top-down MS analysis of purified flagellin protein from strains of various toxin serotypes. Detailed analyses of flagellin from two strains of C. botulinum demonstrated that the protein is modified by a novel glycan moiety of mass 417 Da in O-linkage. Bioinformatic analysis of available C. botulinum genomes identified a flagellar glycosylation island containing homologs of genes recently identified in Campylobacter coli that have been shown to be responsible for the biosynthesis of legionaminic acid derivatives. Structural characterization of the carbohydrate moiety was completed utilizing both MS and NMR spectroscopy, and it was shown to be a novel legionaminic acid derivative, 7-acetamido-5-(N-methyl-glutam-4-yl)-amino-3,5,7,9-tetradeoxy-D-glycero-alpha-D-galacto-nonulosonic acid, (alphaLeg5GluNMe7Ac). Electron transfer dissociation MS with and without collision-activated dissociation was utilized to map seven sites of O-linked glycosylation, eliminating the need for chemical derivatization of tryptic peptides prior to analysis. Marker ions for novel glycans, as well as a unique C-terminal flagellin peptide marker ion, were identified in a top-down analysis of the intact protein. These ions have the potential for use in for rapid detection and discrimination of C. botulinum cells, indicating botulinum neurotoxin contamination. This is the first report of glycosylation of Gram-positive flagellar proteins by the 'sialic acid-like' nonulosonate sugar, legionaminic acid.

  14. Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules.

    Science.gov (United States)

    Kersten, Roland D; Ziemert, Nadine; Gonzalez, David J; Duggan, Brendan M; Nizet, Victor; Dorrestein, Pieter C; Moore, Bradley S

    2013-11-19

    Glycosyl groups are an essential mediator of molecular interactions in cells and on cellular surfaces. There are very few methods that directly relate sugar-containing molecules to their biosynthetic machineries. Here, we introduce glycogenomics as an experiment-guided genome-mining approach for fast characterization of glycosylated natural products (GNPs) and their biosynthetic pathways from genome-sequenced microbes by targeting glycosyl groups in microbial metabolomes. Microbial GNPs consist of aglycone and glycosyl structure groups in which the sugar unit(s) are often critical for the GNP's bioactivity, e.g., by promoting binding to a target biomolecule. GNPs are a structurally diverse class of molecules with important pharmaceutical and agrochemical applications. Herein, O- and N-glycosyl groups are characterized in their sugar monomers by tandem mass spectrometry (MS) and matched to corresponding glycosylation genes in secondary metabolic pathways by a MS-glycogenetic code. The associated aglycone biosynthetic genes of the GNP genotype then classify the natural product to further guide structure elucidation. We highlight the glycogenomic strategy by the characterization of several bioactive glycosylated molecules and their gene clusters, including the anticancer agent cinerubin B from Streptomyces sp. SPB74 and an antibiotic, arenimycin B, from Salinispora arenicola CNB-527.

  15. Characterization of the oligosaccharide structure of human glycosylated prolactin (G-hPRL) native and recombinant; Caracterizacao da estrutura oligossacaridica de prolactina glicosilada humana (G-hPRL) nativa e recombinante

    Energy Technology Data Exchange (ETDEWEB)

    Marcos Vinicius Nucci Capone

    2013-07-01

    Human prolactin (hPRL) is a polypeptide hormone secreted by the anterior pituitary under the regulation of the hypothalamus, involved in a variety of biological processes such as mammary gland development and lactation. The recombinant product is important in medical diagnosis and treatment of failure of lactation. This hormone may occur in the form of non-glycosylated protein (NGhPRL) and glycosylated (G-hPRL) with molecular weights of approximately 23 and 25 kilodalton (kDa), respectively; has a single N-glycosylation site located at asparagine (Asn) position 31, which is partially occupied, thus being a particularly interesting model of glycosylation. The biological activity of G-hPRL is lower compared to NG-hPRL (~4 times) and its physiological function is not well defined: the portion of carbohydrate appears to have an important role in the hormone biosynthesis, secretion, biological activity, and plasma survival of the hormone. The main objective of this study was to compare the structures of N-glycans present in glycosylated pituitary prolactin (G-hPRL-NHPP) with those present in the recombinant. To obtain the recombinant G-hPRL the production was performed in laboratory scale from Chinese hamster ovary cells (CHO), genetically modified and adapted to growth in suspension. Cycloheximide (CHX), whose main effect was to increase the ratio G-hPRL/NG-hPRL from 5% to 38% was added to the culture medium, thereby facilitating the purification of G-hPRL. The G-hPRL was purified in two steps, a cation exchanger followed by a purification by reversed-phase high performance liquid chromatography (RP-HPLC) which demonstrated the efficient separation of the two isoforms of hPRL. Recombinant G-hPRL-IPEN was well characterized by several techniques confirming its purity and biological activity, including comparisons with other reference preparation of pituitary origin purchased from the {sup N}ational Hormone & Peptide Program (NHPPU. S.){sup .} The composition of N

  16. Nonenzymatic glycosylation of bovine myelin basic protein

    International Nuclear Information System (INIS)

    Hitz, J.B.

    1987-01-01

    In the CNS myelin sheath the nonenzymatic glycosylation reaction (at the early stage of the Amadori product) occurs only with the myelin basic protein and not with the other myelin proteins. This was observed in isolated bovine myelin by in vitro incubation with [ 14 C]-galactose and [ 14 C]-glucose. The respective in-vitro incorporation rates for purified bovine myelin basic protein with D-galactose, D-glucose and D-mannose were 7.2, 2.4 and 2.4 mmoles/mole myelin basic protein per day at 37 0 C. A more rapid, HPLC method was devised and characterized to specifically analyze for the Amadori product. The HPLC method was correlated to the [ 14 C]-sugar incorporation method for myelin basic protein under a set of standard reaction conditions using [ 14 C]-glucose and [ 14 C]-mannose with HPLC values at 1/6 and 1/5 of the [ 14 C]-sugar incorporation method. A novel myelin basic protein purification step has been developed that yields a relativity proteolytic free preparation that is easy to work with, being totally soluble at a neutral pH. Nine new spots appear for a trypsinized glycosylated MBP in the paper peptide map of which eight correspond to positions of the [ 3 H]-labeled Amadori product in affinity isolated peptides. These studies provide a general characterization of and a structural basis for investigations on nonenzymatically glycosylated MBP as well as identifying MBP as the only nonenzymatically glycosylated protein in the CNS myelin sheath which may accumulate during aging, diabetes, and demyelinating diseases in general

  17. The effect of glycosylation on cytotoxicity of Ibaraki virus nonstructural protein NS3

    Science.gov (United States)

    URATA, Maho; WATANABE, Rie; IWATA, Hiroyuki

    2015-01-01

    The cytotoxicity of Ibaraki virus nonstructural protein NS3 was confirmed, and the contribution of glycosylation to this activity was examined by using glycosylation mutants of NS3 generated by site-directed mutagenesis. The expression of NS3 resulted in leakage of lactate dehydrogenase to the culture supernatant, suggesting the cytotoxicity of this protein. The lack of glycosylation impaired the transport of NS3 to the plasma membrane and resulted in reduced cytotoxicity. Combined with the previous observation that NS3 glycosylation was specifically observed in mammalian cells (Urata et al., Virus Research 2014), it was suggested that the alteration of NS3 cytotoxicity through modulating glycosylation is one of the strategies to achieve host specific pathogenisity of Ibaraki virus between mammals and vector arthropods. PMID:26178820

  18. N-Glycosylation of Carnosinase Influences Protein Secretion and Enzyme Activity Implications for Hyperglycemia

    NARCIS (Netherlands)

    Riedl, Eva; Koeppel, Hannes; Pfister, Frederick; Peters, Verena; Sauerhoefer, Sibylle; Sternik, Paula; Brinkkoetter, Paul; Zentgraf, Hanswalter; Navis, Gerjan; Henning, Robert H.; Van Den Born, Jacob; Bakker, Stephan J. L.; Janssen, Bart; van der Woude, Fokko J.; Yard, Benito A.

    OBJECTIVE-The (CTG)(n) polymorphism in the serum carnosinase (CN-1) gene affects CN-1 secretion Since CN-1 is heavily glycosylated and glycosylation might influence protein secretion as well, we tested the role of N-glycosylation for CN-1 secretion and enzyme activity. We also tested whether CN-1

  19. A glycosylated form of the human cardiac hormone pro B-type natriuretic peptide is an intrinsically unstructured monomeric protein.

    Science.gov (United States)

    Crimmins, Dan L; Kao, Jeffrey L-F

    2008-07-01

    The N-terminal fragment of pro B-type natriuretic peptide (NT-proBNP) and proBNP are used as gold standard clinical markers of myocardial dysfunction such as cardiac hypertrophy and left ventricle heart failure. The actual circulating molecular forms of these peptides have been the subject of intense investigation particularly since these analytes are measured in clinical assays. Conflicting data has been reported and no firm consensus on the exact nature of the molecular species exists. Because these clinical assays are immunoassay-based, specific epitopes are detected. It is conceivable then that certain epitopes may be masked and therefore unavailable for antibody binding, thus the importance of determining the nature of the circulating molecular forms of these analytes. This situation is an unavoidable Achilles' heel of immunoassays in general. A recombinant O-linked glycosylated form of proBNP has been show to mimic some of the properties of extracted plasma from a heart failure patient. In particular the recombinant and native material co-migrated as diffuse Western-immunostained bands on SDS-PAGE and each band collapsed to an apparent homogeneous band following deglycosylation. Thus, glycosylated-proBNP may be one such circulating form. Here we provide extensive physiochemical characterization for this O-linked protein and compare these results to other described circulating species, non-glycosylated-proBNP and NT-proBNP. It will be shown that glycosylation has no influence on the secondary and quaternary structure of proBNP. In fact, at moderate concentration in benign physiological neutral pH buffer, all three likely circulating species are essentially devoid of major secondary structure, i.e., are intrinsically unstructured proteins (IUPs). Furthermore, all three proteins exist as monomers in solution. These results may have important implications in the design of NT-proBNP/BNP immunoassays.

  20. Cancer associated aberrant protein o-glycosylation can modify antigen processing and immune response

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Petersen, Cecilie; Lavrsen, Kirstine

    2012-01-01

    Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing......, and presentation on MHC class I and II molecules. The effect of GalNAc O-glycosylation was monitored with a model system based on ovalbumin (OVA)-MUC1 fusion peptides (+/- glycosylation) loaded onto dendritic cells co-cultured with IL-2 secreting OVA peptide-specific T cell hybridomas. To evaluate the in vivo...

  1. Rapid phenolic O-glycosylation of small molecules and complex unprotected peptides in aqueous solvent

    Science.gov (United States)

    Wadzinski, Tyler J.; Steinauer, Angela; Hie, Liana; Pelletier, Guillaume; Schepartz, Alanna; Miller, Scott J.

    2018-06-01

    Glycosylated natural products and synthetic glycopeptides represent a significant and growing source of biochemical probes and therapeutic agents. However, methods that enable the aqueous glycosylation of endogenous amino acid functionality in peptides without the use of protecting groups are scarce. Here, we report a transformation that facilitates the efficient aqueous O-glycosylation of phenolic functionality in a wide range of small molecules, unprotected tyrosine, and tyrosine residues embedded within a range of complex, fully unprotected peptides. The transformation, which uses glycosyl fluoride donors and is promoted by Ca(OH)2, proceeds rapidly at room temperature in water, with good yields and selective formation of unique anomeric products depending on the stereochemistry of the glycosyl donor. High functional group tolerance is observed, and the phenol glycosylation occurs selectively in the presence of virtually all side chains of the proteinogenic amino acids with the singular exception of Cys. This method offers a highly selective, efficient, and operationally simple approach for the protecting-group-free synthesis of O-aryl glycosides and Tyr-O-glycosylated peptides in water.

  2. Comparative Analysis of Whey N-Glycoproteins in Human Colostrum and Mature Milk Using Quantitative Glycoproteomics.

    Science.gov (United States)

    Cao, Xueyan; Song, Dahe; Yang, Mei; Yang, Ning; Ye, Qing; Tao, Dongbing; Liu, Biao; Wu, Rina; Yue, Xiqing

    2017-11-29

    Glycosylation is a ubiquitous post-translational protein modification that plays a substantial role in various processes. However, whey glycoproteins in human milk have not been completely profiled. Herein, we used quantitative glycoproteomics to quantify whey N-glycosylation sites and their alteration in human milk during lactation; 110 N-glycosylation sites on 63 proteins and 91 N-glycosylation sites on 53 proteins were quantified in colostrum and mature milk whey, respectively. Among these, 68 glycosylation sites on 38 proteins were differentially expressed in human colostrum and mature milk whey. These differentially expressed N-glycoproteins were highly enriched in "localization", "extracellular region part", and "modified amino acid binding" according to gene ontology annotation and mainly involved in complement and coagulation cascades pathway. These results shed light on the glycosylation sites, composition and biological functions of whey N-glycoproteins in human colostrum and mature milk, and provide substantial insight into the role of protein glycosylation during infant development.

  3. Synergizing metabolic flux analysis and nucleotide sugar metabolism to understand the control of glycosylation of recombinant protein in CHO cells

    LENUS (Irish Health Repository)

    Burleigh, Susan C

    2011-10-18

    Abstract Background The glycosylation of recombinant proteins can be altered by a range of parameters including cellular metabolism, metabolic flux and the efficiency of the glycosylation process. We present an experimental set-up that allows determination of these key processes associated with the control of N-linked glycosylation of recombinant proteins. Results Chinese hamster ovary cells (CHO) were cultivated in shake flasks at 0 mM glutamine and displayed a reduced growth rate, glucose metabolism and a slower decrease in pH, when compared to other glutamine-supplemented cultures. The N-linked glycosylation of recombinant human chorionic gonadotrophin (HCG) was also altered under these conditions; the sialylation, fucosylation and antennarity decreased, while the proportion of neutral structures increased. A continuous culture set-up was subsequently used to understand the control of HCG glycosylation in the presence of varied glutamine concentrations; when glycolytic flux was reduced in the absence of glutamine, the glycosylation changes that were observed in shake flask culture were similarly detected. The intracellular content of UDP-GlcNAc was also reduced, which correlated with a decrease in sialylation and antennarity of the N-linked glycans attached to HCG. Conclusions The use of metabolic flux analysis illustrated a case of steady state multiplicity, where use of the same operating conditions at each steady state resulted in altered flux through glycolysis and the TCA cycle. This study clearly demonstrated that the control of glycoprotein microheterogeneity may be examined by use of a continuous culture system, metabolic flux analysis and assay of intracellular nucleotides. This system advances our knowledge of the relationship between metabolic flux and the glycosylation of biotherapeutics in CHO cells and will be of benefit to the bioprocessing industry.

  4. [Conformation analysis of the N-glycosylation site Asn-X-Thr/Ser in glycoproteins].

    Science.gov (United States)

    Avanov, A Ia; Lipkind, G M

    1990-03-01

    Theoretical conformational analysis of oligopeptides CH3CO-Asn-X-Thr-NHCH3 (X = Gly, Ala, Pro), modelling N-glycosylation site, and their glycosylated derivatives CH3CO-(GlcNAc beta 1-4GlcNAc beta 1) Asn-X-Thr-NHCH3 has been carried out. Active conformations of the site are found, corresponding to structural prerequisities of N-glycosylation: Asn residue's position in beta-turn and hydrogen bond formation between side chains of Asn and Thr/Ser residues. In this case the L conformation of the central residue X is most probable. Since Pro residue does not possess this conformation, sequences with X = Pro are not glycosylated. It is shown that glycosylation of the above-mentioned sites is accompanied by reorientation of the Asn residue's side chains.

  5. The impact of N-glycosylation on conformation and stability of immunoglobulin Y from egg yolk.

    Science.gov (United States)

    Sheng, Long; He, Zhenjiao; Chen, Jiahui; Liu, Yaofa; Ma, Meihu; Cai, Zhaoxia

    2017-03-01

    Immunoglobulin Y (IgY) is a new therapeutic antibody, and its applications in industry are very broad. To provide insight into the effects of N-glycosylation on IgY, its conformation and stability were studied. In this research, IgY was extracted from egg yolk and then digested by peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine-amidase. SDS-PAGE and infrared absorption spectrum showed that carbohydrates were distinctly reduced after enzymolysis. The circular dichroism spectrum indicated that the IgY molecule became more flexible and disordered after removal of N-glycan. The fluorescence intensity revealed that Trp residues were buried in a more hydrophobic environment after disposal of N-glycan. Storage stability decreased with the removal of oligosaccharide chains based on size-exclusion chromatography analysis. Deglycosylated IgY exhibited less resistance to guanidine hydrochloride-induced unfolding. After deglycosylation, IgY was more sensitive to pepsin. Therefore, N-glycosylation played an important role in the maintenance of the structure and stability of IgY. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A computational framework for the automated construction of glycosylation reaction networks.

    Science.gov (United States)

    Liu, Gang; Neelamegham, Sriram

    2014-01-01

    Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS) data. The features described above are illustrated using three case studies that examine: i) O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii) automated N-linked glycosylation pathway construction; and iii) the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme biochemistry. All

  7. A computational framework for the automated construction of glycosylation reaction networks.

    Directory of Open Access Journals (Sweden)

    Gang Liu

    Full Text Available Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS data. The features described above are illustrated using three case studies that examine: i O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii automated N-linked glycosylation pathway construction; and iii the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme

  8. Cell Surface Glycosylation Is Required for Efficient Mating of Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Yarden Shalev

    2017-07-01

    Full Text Available Halophilic archaea use a fusion-based mating system for lateral gene transfer across cells, yet the molecular mechanisms involved remain unknown. Previous work implied that cell fusion involves cell–cell recognition since fusion occurs more efficiently between cells from the same species. Long believed to be restricted only to Eukarya, it is now known that cells of all three domains of life perform N-glycosylation, the covalent attachment of glycans to select target asparagine residues in proteins, and that this post-translational modification is common for archaeal cell surface proteins. Here, we show that differences in glycosylation of the Haloferax volcanii surface-layer glycoprotein, brought about either by changing medium salinity or by knocking out key glycosylation genes, reduced mating success. Thus, different glycosylation patterns are likely to underlie mating preference in halophilic archaea, contributing to speciation processes.

  9. A Novel Strategy for Characterization of Glycosylated Proteins Separated by Gel Electrophoresis

    DEFF Research Database (Denmark)

    Larsen, Martin; Skottrup, Peter; Enghild, Jan Johannes

    Protein glycosylation can be vital for changing the function or physiochemical properties of a protein. Abnormal glycosylation can lead to protein malfunction, resulting in severe diseases. Therefore, it is important to develop techniques for characterization of such modifications in proteins...... graphite powder micro-columns in combination with mass spectrometry. The method is faster and more sensitive than previous approaches and would be ideal for proteomics studies and verification of correct glycosylation of recombinant glycoproteins....

  10. Identification of a protein glycosylation operon from Campylobacter jejuni JCM 2013 and its heterologous expression in Escherichia coli.

    Science.gov (United States)

    Srichaisupakit, Akkaraphol; Ohashi, Takao; Fujiyama, Kazuhito

    2014-09-01

    Campylobacter jejuni is a human enteropathogenic bacterium possessing an N-glycosylation system. In this work, a protein glycosylation (pgl) operon conferring prokaryotic N-glycosylation in C. jejuni JCM 2013 was cloned and identified. Fourteen open reading frames (ORFs) were found in the pgl operon. The operon organization was similar to that of C. jejuni NCTC 11168, with 98% and 99% identities in overall nucleotide sequence and amino acid sequence, respectively. The pgl operon was heterologously co-expressed with model protein CmeA in the Escherichia coli BL21 ΔwaaL mutant. The immuno- and lectin-blotting analysis indicated the protein glycosylation on the recombinant CmeA. In addition, to analyze the glycan composition, the recombinant CmeA was purified and subjected to in-gel trypsin digestion followed by mass spectrometry analysis. The mass spectrometry analysis showed the presence of the N-acetylhexosamine residue at the reducing end but not the predicted di-N-acetylbacillosamine (diNAcBac) residue. Further glycan structural study using the conventional fluorophore-labeling method revealed the GalNAcα-GalNAcα-(Hex-)HexNAc-HexNAc-HexNAc-HexNAc structure. Transcriptional analysis showed that UDP-diNAcBac synthases and diNAcBac transferase are transcribed but might not function in the constructed system. In conclusion, a pgl operon from C. jejuni JCM 2013 successfully functioned in E. coli, resulting in the observed prokaryotic glycosylation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. HEK293T cell lines defective for O-linked glycosylation.

    Directory of Open Access Journals (Sweden)

    James M Termini

    Full Text Available Here we describe derivatives of the HEK293T cell line that are defective in their ability to generate mucin-type O-linked glycosylation. Using CRISPR/Cas9 and a single-cell GFP-sorting procedure, the UDP-galactose-4-epimerase (GALE, galactokinase 1 (GALK1, and galactokinase 2 (GALK2 genes were knocked out individually and in combinations with greater than 90% of recovered clones having the desired mutations. Although HEK293T cells are tetraploid, we found this approach to be an efficient method to target and disrupt all 4 copies of the target gene. Deficient glycosylation in the GALE knockout cell line could be rescued by the addition of galactose and N-acetylgalactosamine (GalNAc to the cell culture media. However, when key enzymes of the galactose/GalNAc salvage pathways were disrupted in tandem (GALE+GALK1 or GALE+GALK2, O-glycosylation was eliminated and could not be rescued by the addition of either galactose plus GalNAc or UDP-galactose plus UDP-GalNAc. GALK1 and GALK2 are key enzymes of the galactose/GalNAc salvage pathways. Mass spectrometry was performed on whole cell lysate of the knockout cell lines to verify the glycosylation phenotype. As expected, the GALE knockout was almost completely devoid of all O-glycosylation, with minimal glycosylation as a result of functional salvage pathways. However, the GALE+GALK1 and GALE+GALK2 knockout lines were devoid of all O-glycans. Mass spectrometry analysis revealed that the disruption of GALE, GALK1, and GALE+GALK2 had little effect on the N-glycome. But when GALE was knocked out in tandem with GALK1, N-glycans were exclusively of the high mannose type. Due to the well-characterized nature of these five knockout cell lines, they will likely prove useful for a wide variety of applications.

  12. Glycosylation patterns of kidney proteins differ in rat diabetic nephropathy.

    Science.gov (United States)

    Ravidà, Alessandra; Musante, Luca; Kreivi, Marjut; Miinalainen, Ilkka; Byrne, Barry; Saraswat, Mayank; Henry, Michael; Meleady, Paula; Clynes, Martin; Holthofer, Harry

    2015-05-01

    Diabetic nephropathy often progresses to end-stage kidney disease and, ultimately, to renal replacement therapy. Hyperglycemia per se is expected to have a direct impact on the biosynthesis of N- and O-linked glycoproteins. This study aims to establish the link between protein glycosylation and progression of experimental diabetic kidney disease using orthogonal methods. Kidneys of streptozotocin-diabetic and control rats were harvested at three different time points post streptozotocin injection. A panel of 12 plant lectins was used in the screening of lectin blots. The lectins UEAI, PHA-E, GSI, PNA, and RCA identified remarkable disease-associated differences in glycoprotein expression. Lectin affinity chromatography followed by mass spectrometric analyses led to the identification of several glycoproteins involved in salt-handling, angiogenesis, and extracellular matrix degradation. Our data confirm a substantial link between glycosylation signature and diabetes progression. Furthermore, as suggested by our findings on dipeptidyl peptidase-IV, altered protein glycosylation may reflect changes in biochemical properties such as enzymatic activity. Thus, our study demonstrates the unexplored potential of protein glycosylation analysis in the discovery of molecules linked to diabetic kidney disease.

  13. Oxytocin analogues with O-glycosylated serine and threonine in position 4

    Czech Academy of Sciences Publication Activity Database

    Marcinkowska, A.; Borovičková, Lenka; Slaninová, Jiřina; Grzonka, Z.

    2007-01-01

    Roč. 81, č. 7 (2007), s. 1335-1344 ISSN 0137- 5083 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z90210515 Keywords : oxytocin * glycosylated serin * glycosylated threonin * position 4 Subject RIV: CE - Biochemistry Impact factor: 0.483, year: 2007

  14. Micropinocytic ingestion of glycosylated albumin by isolated microvessels: possible role in pathogenesis of diabetic microangiopathy.

    OpenAIRE

    Williams, S K; Devenny, J J; Bitensky, M W

    1981-01-01

    Microvessels isolated from rat epididymal fat exhibit differential vesicular ingestion rates for unmodified and non-enzymatically glycosylated rat albumin. While unmodified rat albumin is excluded from ingestion by endothelial micropinocytic vesicles, glycosylated albumin is avidly taken up by endocytosis. Interaction of albumin and glycosylated albumin with endothelium was studied with a double-label fluorescence assay of micropinocytosis. When glycosylated albumin was present at a concentra...

  15. N-glycosylated catalytic unit meets O-glycosylated propeptide: complex protein architecture in a fungal hexosaminidase

    Czech Academy of Sciences Publication Activity Database

    Plíhal, Ondřej; Sklenář, Jan; Kmoníčková, J.; Man, Petr; Pompach, Petr; Havlíček, Vladimír; Křen, Vladimír; Bezouška, Karel

    2004-01-01

    Roč. 32, č. 5 (2004), s. 764-765 ISSN 0300-5127 R&D Projects: GA ČR GA203/04/1045 Institutional research plan: CEZ:AV0Z5020903 Keywords : asperillus oryzoe * glycosyl hydrolase * preproprotein Subject RIV: EE - Microbiology, Virology Impact factor: 2.267, year: 2004

  16. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes.

    Science.gov (United States)

    Bondt, Albert; Rombouts, Yoann; Selman, Maurice H J; Hensbergen, Paul J; Reiding, Karli R; Hazes, Johanna M W; Dolhain, Radboud J E M; Wuhrer, Manfred

    2014-11-01

    The N-linked glycosylation of the constant fragment (Fc) of immunoglobulin G has been shown to change during pathological and physiological events and to strongly influence antibody inflammatory properties. In contrast, little is known about Fab-linked N-glycosylation, carried by ∼ 20% of IgG. Here we present a high-throughput workflow to analyze Fab and Fc glycosylation of polyclonal IgG purified from 5 μl of serum. We were able to detect and quantify 37 different N-glycans by means of MALDI-TOF-MS analysis in reflectron positive mode using a novel linkage-specific derivatization of sialic acid. This method was applied to 174 samples of a pregnancy cohort to reveal Fab glycosylation features and their change with pregnancy. Data analysis revealed marked differences between Fab and Fc glycosylation, especially in the levels of galactosylation and sialylation, incidence of bisecting GlcNAc, and presence of high mannose structures, which were all higher in the Fab portion than the Fc, whereas Fc showed higher levels of fucosylation. Additionally, we observed several changes during pregnancy and after delivery. Fab N-glycan sialylation was increased and bisection was decreased relative to postpartum time points, and nearly complete galactosylation of Fab glycans was observed throughout. Fc glycosylation changes were similar to results described before, with increased galactosylation and sialylation and decreased bisection during pregnancy. We expect that the parallel analysis of IgG Fab and Fc, as set up in this paper, will be important for unraveling roles of these glycans in (auto)immunity, which may be mediated via recognition by human lectins or modulation of antigen binding. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Immunoglobulin G (IgG) Fab Glycosylation Analysis Using a New Mass Spectrometric High-throughput Profiling Method Reveals Pregnancy-associated Changes*

    Science.gov (United States)

    Bondt, Albert; Rombouts, Yoann; Selman, Maurice H. J.; Hensbergen, Paul J.; Reiding, Karli R.; Hazes, Johanna M. W.; Dolhain, Radboud J. E. M.; Wuhrer, Manfred

    2014-01-01

    The N-linked glycosylation of the constant fragment (Fc) of immunoglobulin G has been shown to change during pathological and physiological events and to strongly influence antibody inflammatory properties. In contrast, little is known about Fab-linked N-glycosylation, carried by ∼20% of IgG. Here we present a high-throughput workflow to analyze Fab and Fc glycosylation of polyclonal IgG purified from 5 μl of serum. We were able to detect and quantify 37 different N-glycans by means of MALDI-TOF-MS analysis in reflectron positive mode using a novel linkage-specific derivatization of sialic acid. This method was applied to 174 samples of a pregnancy cohort to reveal Fab glycosylation features and their change with pregnancy. Data analysis revealed marked differences between Fab and Fc glycosylation, especially in the levels of galactosylation and sialylation, incidence of bisecting GlcNAc, and presence of high mannose structures, which were all higher in the Fab portion than the Fc, whereas Fc showed higher levels of fucosylation. Additionally, we observed several changes during pregnancy and after delivery. Fab N-glycan sialylation was increased and bisection was decreased relative to postpartum time points, and nearly complete galactosylation of Fab glycans was observed throughout. Fc glycosylation changes were similar to results described before, with increased galactosylation and sialylation and decreased bisection during pregnancy. We expect that the parallel analysis of IgG Fab and Fc, as set up in this paper, will be important for unraveling roles of these glycans in (auto)immunity, which may be mediated via recognition by human lectins or modulation of antigen binding. PMID:25004930

  18. In-depth mapping of the mouse brain N-glycoproteome reveals widespread N-glycosylation of diverse brain proteins.

    Science.gov (United States)

    Fang, Pan; Wang, Xin-Jian; Xue, Yu; Liu, Ming-Qi; Zeng, Wen-Feng; Zhang, Yang; Zhang, Lei; Gao, Xing; Yan, Guo-Quan; Yao, Jun; Shen, Hua-Li; Yang, Peng-Yuan

    2016-06-21

    N-glycosylation is one of the most prominent and abundant posttranslational modifications of proteins. It is estimated that over 50% of mammalian proteins undergo glycosylation. However, the analysis of N-glycoproteins has been limited by the available analytical technology. In this study, we comprehensively mapped the N-glycosylation sites in the mouse brain proteome by combining complementary methods, which included seven protease treatments, four enrichment techniques and two fractionation strategies. Altogether, 13492 N-glycopeptides containing 8386 N-glycosylation sites on 3982 proteins were identified. After evaluating the performance of the above methods, we proposed a simple and efficient workflow for large-scale N-glycosylation site mapping. The optimized workflow yielded 80% of the initially identified N-glycosylation sites with considerably less effort. Analysis of the identified N-glycoproteins revealed that many of the mouse brain proteins are N-glycosylated, including those proteins in critical pathways for nervous system development and neurological disease. Additionally, several important biomarkers of various diseases were found to be N-glycosylated. These data confirm that N-glycosylation is important in both physiological and pathological processes in the brain, and provide useful details about numerous N-glycosylation sites in brain proteins.

  19. Fab glycosylation of immunoglobulin G does not associate with improvement of rheumatoid arthritis during pregnancy.

    Science.gov (United States)

    Bondt, Albert; Wuhrer, Manfred; Kuijper, T Martijn; Hazes, Johanna M W; Dolhain, Radboud J E M

    2016-11-25

    Changes in immunoglobulin G (IgG) constant domain (Fc) glycosylation are associated with changes in rheumatoid arthritis (RA) disease activity in response to pregnancy. Here, we sought to determine whether the same holds true for variable domain (Fab) glycosylation. IgGs were captured from RA and control sera obtained before (RA only), during and after pregnancy, followed by Fc and Fab separation, glycan release, and mass spectrometric detection. In parallel, glycans from intact IgG were analysed. The data was used to calculate glycosylation traits, and to estimate the level of Fab glycosylation. The overall level of Fab glycosylation was increased in RA patients compared to controls, while no differences in Fab glycosylation patterns were found. For the Fc and intact IgG (Total) previously observed differences in galactosylation and bisection were confirmed. Furthermore, increased galactosylation of Fc and Total were associated with lower disease activity and autoantibody positivity. In addition, the change in Fc galactosylation associated with the change in disease activity during pregnancy and after delivery, while this was not the case for Fab. In contrast to changes in Fc glycosylation, changes in Fab glycosylation are not associated with improvement of RA during pregnancy and arthritis flare after delivery.

  20. Analysis of expression and glycosylation of avian metapneumovirus attachment glycoprotein from recombinant baculoviruses.

    Science.gov (United States)

    Luo, Lizhong; Nishi, Krista; MacLeod, Erin; Sabara, Marta I; Li, Yan

    2010-11-01

    Recently, we reported the expression and glycosylation of avian metapneumovirus attachment glycoprotein (AMPV/C G protein) in eukaryotic cell lines by a transient-expression method. In the present study, we investigated the biosynthesis and O-linked glycosylation of the AMPV/C G protein in a baculovirus expression system. The results showed that the insect cell-produced G protein migrated more rapidly in SDS-PAGE as compared to LLC-MK2 cell-derived G proteins owing to glycosylation differences. The fully processed, mature form of G protein migrated between 78 and 86 kDa, which is smaller than the 110 kDa mature form of G expressed in LLC-MK2 cells. In addition, several immature G gene products migrating at 40-48 and 60-70 kDa were also detected by SDS-PAGE and represented glycosylated intermediates. The addition of the antibiotic tunicamycin, which blocks early steps of glycosylation, to insect cell culture resulted in the disappearance of two glycosylated forms of the G protein and identified a 38 kDa unglycosylated precursor. The maturation of the G protein was completely blocked by monensin, suggesting that the O-linked glycosylation of G initiated in the trans-Golgi compartment. The presence of O-linked sugars on the mature protein was further confirmed by lectin Arachis hypogaea binding assay. Furthermore, antigenic features of the G protein expressed in insect cells were evaluated by ELISA. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  1. N-Glycosylation optimization of recombinant antibodies in CHO cell through process and metabolic engineering

    DEFF Research Database (Denmark)

    Fan, Yuzhou

    , analysis, control and optimization of N-glycosylation were thoroughly reviewed. In particular, how to control and optimize N-glycosylation in CHO cells was exclusively studied. The main focus of this PhD project is to find effective approaches of modulating N-glycosylation of CHO-derived recombinant...... galactose as feed additives, changing process parameters such as seeding density and cultivation duration are all demonstrated to be effective. The causal explanation of their impact on glycosylation can be various, including product, metabolism, proteome and physiology-associated mechanism. In the middle...... part of the thesis, both literature reviews and experimental applications were provided to demonstrate how to use omics data and implement systems biology to understand biological activities, especially N-glycosylation in CHO cells. In the last part of the thesis, the second strategy that apply genetic...

  2. Effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells (MSCs) in vitro.

    Science.gov (United States)

    Lu, Yi-Qun; Lu, Yan; Li, Hui-Juan; Cheng, Xing-Bo

    2012-10-01

    This study aims to explore the effect of advanced glycosylation end products (AGEs) on proliferation of human bone marrow mesenchymal stem cells in vitro and the underlying mechanism. Bone marrow cell proliferation was determined by WST-8 assay using Cell Counting Kit-8 under the intervention of AGEs. In addition, the content of maldondialdehyde (MDA) and the activity of superoxide dismutase (SOD) were also measured. The proliferation activity of mesenchymal stem cells (MSCs) was significantly inhibited when AGEs were added to culture medium, and this effect was dose-dependent and time-dependent. As the concentration of AGEs-bovine serum albumin increased, the content of intracellular MDA was significantly increased, but the activity of SOD in cell homogenates was significantly suppressed, which also showed a dose-dependent manner. AGEs could significantly inhibit the proliferation of MSCs in vitro by improving the oxidative stress in MSCs and breaking the homeostasis of intracellular environment.

  3. Enzymatic glycosylation of multivalent scaffolds

    Czech Academy of Sciences Publication Activity Database

    Bojarová, Pavla; Rosencrantz, R. R.; Elling, L.; Křen, Vladimír

    2013-01-01

    Roč. 42, č. 11 (2013), s. 4774-4797 ISSN 0306-0012 R&D Projects: GA MŠk(CZ) LD13042; GA ČR GAP207/10/0321 Institutional support: RVO:61388971 Keywords : N-ACETYLGLUCOSAMINYLTRANSFERASE-III * MUCIN TANDEM REPEAT * NEIGHBORING RESIDUE GLYCOSYLATION Subject RIV: CC - Organic Chemistry Impact factor: 30.425, year: 2013

  4. COMPARISON OF FRUCTOSAMINE AND GLYCOSYLATED HEMOGLOBIN IN A NON-INSULIN DEPENDENT DIABETIC POPULATION

    Directory of Open Access Journals (Sweden)

    M. Amini

    1999-08-01

    Full Text Available In an attempt to determine the clinical value of frnctosamine assay for monitoring type II diabetic patients, correlation of frnctosamine with glycosylated hemoglobin was studied. 100 patients with type II diabetes mcllitus were compared with 100 normal subjects. Fasting blood glucose, glycosylated hemoglobin, albumin and frnctosamine were measured in alt subjects. In the diabetic patients, a significant correlation was observed between fasting blood glucose and glycosylated hemoglobin (r = 0.64, p < 0.01 and scrum frnctosamine (r = 0.7, P < 0.01. Tlicrc was also a significant correlation between glycosylated hemoglobin and scrum frtictosmine (r = .94, I'<0.01. Frnctosamine, assay can be used as an index of diabetes control.

  5. Importance of glycosylation on function of a potassium channel in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    M K Hall

    Full Text Available The Kv3.1 glycoprotein, a voltage-gated potassium channel, is expressed throughout the central nervous system. The role of N-glycans attached to the Kv3.1 glycoprotein on conducting and non-conducting functions of the Kv3.1 channel are quite limiting. Glycosylated (wild type, partially glycosylated (N220Q and N229Q, and unglycosylated (N220Q/N229Q Kv3.1 proteins were expressed and characterized in a cultured neuronal-derived cell model, B35 neuroblastoma cells. Western blots, whole cell current recordings, and wound healing assays were employed to provide evidence that the conducting and non-conducting properties of the Kv3.1 channel were modified by N-glycans of the Kv3.1 glycoprotein. Electrophoretic migration of the various Kv3.1 proteins treated with PNGase F and neuraminidase verified that the glycosylation sites were occupied and that the N-glycans could be sialylated, respectively. The unglycosylated channel favored a different whole cell current pattern than the glycoform. Further the outward ionic currents of the unglycosylated channel had slower activation and deactivation rates than those of the glycosylated Kv3.1 channel. These kinetic parameters of the partially glycosylated Kv3.1 channels were also slowed. B35 cells expressing glycosylated Kv3.1 protein migrated faster than those expressing partially glycosylated and much faster than those expressing the unglycosylated Kv3.1 protein. These results have demonstrated that N-glycans of the Kv3.1 glycoprotein enhance outward ionic current kinetics, and neuronal migration. It is speculated that physiological changes which lead to a reduction in N-glycan attachment to proteins will alter the functions of the Kv3.1 channel.

  6. Biological role of site-specific O-glycosylation in cell adhesion activity and phosphorylation of osteopontin.

    Science.gov (United States)

    Oyama, Midori; Kariya, Yoshinobu; Kariya, Yukiko; Matsumoto, Kana; Kanno, Mayumi; Yamaguchi, Yoshiki; Hashimoto, Yasuhiro

    2018-05-09

    Osteopontin (OPN) is an extracellular glycosylated phosphoprotein that promotes cell adhesion by interacting with several integrin receptors. We previously reported that an OPN mutant lacking five O-glycosylation sites (Thr 134 /Thr 138 /Thr 143 /Thr 147 /Thr 152 ) in the threonine/proline-rich region increased cell adhesion activity and phosphorylation compared with the wild type. However, the role of O-glycosylation in cell adhesion activity and phosphorylation of OPN remains to be clarified. Here, we show that site-specific O-glycosylation in the threonine/proline-rich region of OPN affects its cell adhesion activity and phosphorylation independently and/or synergistically. Using site-directed mutagenesis, we found that OPN mutants with substitution sets of Thr 134 /Thr 138 or Thr 143 /Thr 147 /Thr 152 had decreased and increased cell adhesion activity, respectively. In contrast, the introduction of a single mutation into the O-glycosylation sites had no effect on OPN cell adhesion activity. An adhesion assay using function-blocking antibodies against αvβ3 and β1 integrins, as well as αvβ3 integrin-overexpressing A549 cells, revealed that site-specific O-glycosylation affected the association of OPN with the two integrins. Phosphorylation analyses using phos-tag and LC-MS/MS indicated that phosphorylation levels and sites were influenced by the O-glycosylation status, although the number of O-glycosylation sites was not correlated with the phosphorylation level in OPN. Furthermore, a correlation analysis between phosphorylation level and cell adhesion activity in OPN mutants with the site-specific O-glycosylation showed that they were not always correlated. These results provide conclusive evidence of a novel regulatory mechanism of cell adhesion activity and phosphorylation of OPN by site-specific O-glycosylation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. Macrocyclic bis-thioureas catalyze stereospecific glycosylation reactions.

    Science.gov (United States)

    Park, Yongho; Harper, Kaid C; Kuhl, Nadine; Kwan, Eugene E; Liu, Richard Y; Jacobsen, Eric N

    2017-01-13

    Carbohydrates are involved in nearly all aspects of biochemistry, but their complex chemical structures present long-standing practical challenges to their synthesis. In particular, stereochemical outcomes in glycosylation reactions are highly dependent on the steric and electronic properties of coupling partners; thus, carbohydrate synthesis is not easily predictable. Here we report the discovery of a macrocyclic bis-thiourea derivative that catalyzes stereospecific invertive substitution pathways of glycosyl chlorides. The utility of the catalyst is demonstrated in the synthesis of trans-1,2-, cis-1,2-, and 2-deoxy-β-glycosides. Mechanistic studies are consistent with a cooperative mechanism in which an electrophile and a nucleophile are simultaneously activated to effect a stereospecific substitution reaction. Copyright © 2017, American Association for the Advancement of Science.

  8. Genome-scale metabolic model of Pichia pastoris with native and humanized glycosylation of recombinant proteins

    DEFF Research Database (Denmark)

    Irani, Zahra Azimzadeh; Kerkhoven, Eduard J.; Shojaosadati, Seyed Abbas

    2016-01-01

    prediction of protein yield, demonstrates the effect of the different types of N-glycosylation of protein yield, and can be used to predict potential targets for strain improvement. The model represents a step towards a more complete description of protein production in P. pastoris, which is required...... for using these models to understand and optimize protein production processes....

  9. O-GLYCOBASE version 4.0: a revised database of O-glycosylated proteins

    DEFF Research Database (Denmark)

    Gupta, Ramneek; Birch, Hanne; Rapacki, Krzysztof

    1999-01-01

    O-GLYCBASE is a database of glycoproteins with O-linked glycosylation sites. Entries with at least one experimentally verified O-glycosylation site have been complied from protein sequence databases and literature. Each entry contains information about the glycan involved, the species, sequence, ...

  10. SEM visualization of glycosylated surface molecules using lectin-coated microspheres

    Science.gov (United States)

    Duke, J.; Janer, L.; Campbell, M.

    1985-01-01

    There are several techniques currently used to localize glycosylated surface molecules by scanning electron microscopy (Grinnell, 1980; Molday, 1976; Linthicum and Sell, 1975; Nicolson, 1974; Lo Buglio, et al, 1972). A simple and rapid method, using a modification of Grinnell's technique is reported here. Essentially, microspheres coated with Concavalin A are used to bind to glycosylated regions of the palatal shelf epithelium and are visualized in the scanning electron microscope (SEM).

  11. Glycosylation of KSHV Encoded vGPCR Functions in Its Signaling and Tumorigenicity

    Directory of Open Access Journals (Sweden)

    Hui Wu

    2015-03-01

    Full Text Available Kaposi’s sarcoma-associated herpesvirus (KSHV is a tumor virus and the etiologic agent of Kaposi’s Sarcoma (KS. KSHV G protein-coupled receptor (vGPCR is an oncogene that is implicated in malignancies associated with KHSV infection. In this study, we show that vGPCR undergoes extensive N-linked glycosylation within the extracellular domains, specifically asparagines 18, 22, 31 and 202. An immunofluorescence assay demonstrates that N-linked glycosylation are necessary for vGPCR trafficking to the cellular membrane. Employing vGPCR mutants whose glycosylation sites were ablated, we show that these vGPCR mutants failed to activate downstream signaling in cultured cells and were severely impaired to induce tumor formation in the xenograph nude mouse model. These findings support the conclusion that glycosylation is critical for vGPCR tumorigenesis and imply that chemokine regulation at the plasma membrane is crucial for vGPCR mediated signaling.

  12. O-GLYCBASE: a revised database of O-glycosylated proteins

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Nielsen, Jens O.

    1996-01-01

    O-GLYCBASE is a comprehensive database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the SWISS-PROT and PIR databases as well as directly from recently published reports. Nineteen percent of the entries extracted from the databases n...... of mucin type O-glycosylation sites in mammalian glycoproteins exclusively from the primary sequence is made available by E-mail or WWW. The O-GLYCBASE database is also available electronically through our WWW server or by anonymous FTP....

  13. Structural and Functional Consequences of Increased Tubulin Glycosylation in Diabetes Mellitus

    Science.gov (United States)

    Williams, Stuart K.; Howarth, Nancy L.; Devenny, James J.; Bitensky, Mark W.

    1982-11-01

    The extent of in vitro nonenzymatic glycosylation of purified rat brain tubulin was dependent on time and glucose concentration. Tubulin glycosylation profoundly inhibited GTP-dependent tubulin polymerization. Electron microscopy and NaDodSO4/polyacrylamide gel electrophoresis showed that glycosylated tubulin forms high molecular weight amorphous aggregates that are not disrupted by detergents or reducing agents. The amount of covalently bound NaB3H4-reducible sugars in tubulin recovered from brain of streptozotocin-induced diabetic rats was dramatically increased as compared with tubulin recovered from normal rat brain. Moreover, tubulin recovered from diabetic rat brain exhibited less GTP-induced polymerization than tubulin from nondiabetic controls. The possible implications of these data for diabetic neuropathy are discussed.

  14. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae.

    Science.gov (United States)

    Kurotani, Atsushi; Sakurai, Tetsuya

    2015-08-20

    Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  15. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae

    Directory of Open Access Journals (Sweden)

    Atsushi Kurotani

    2015-08-01

    Full Text Available Recent proteome analyses have reported that intrinsically disordered regions (IDRs of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  16. O-GLYCBASE version 3.0: a revised database of O-glycosylated proteins

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Nilsson, Jette

    1998-01-01

    O-GLYCBASE is a revised database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the sequence databases. Entries include informations about species, sequence, glycosylation sites and glycan type and is fully cr...

  17. Patterns of glycemic control using glycosylated hemoglobin in diabetics.

    Science.gov (United States)

    Kahlon, Arunpreet Singh; Pathak, Rambha

    2011-07-01

    Till now estimation of blood glucose is the highly effective method for diagnosing diabetes mellitus but it provides a short-term picture of control. More evidence is required to prove that plasma glucose and glycosylated hemoglobin levels together gives a better estimate of glycemic control and compliance with treatment. Indian diabetes risk score (IDRS) is a simplified screening tool for identifying undiagnosed diabetic subjects, requires minimum time, and effort and can help to considerably reduce the costs of screening. To study patterns of glycemic control using glycosylated hemoglobin in diabetic patients. To find out correlation between levels of plasma glucose and glycosylated hemoglobin in diabetics and to calculate IDRS of the study population. A cross sectional study was conducted among 300 known diabetic patients attending outpatient department of a rural medical college in Haryana, India. Following standard procedures and protocols FPG and glycosylated hemoglobin were measured to find out a pattern of glycemic control in them after taking their written and informed consent. A correlation between the levels of glycosylated hemoglobin and fasting blood glucose was also calculated. These patients were made to fill a performa and their demographic and clinical risk factors were noted and based on this, their IDRS was calculated. This was done to validate the IDRS in Indian rural population. Fifty-two percent of the population had fasting plasma glucose level between 125-150 mg/dl, 21% had this level between 151-175 mg/dl. Thirteen percent of the study subjects had HbA1C between 6.5-7.5, more than half (57.3%) had this value between 7.5-8.5, 12% and 18% had values between 8.5-9.5 and 9.5-10.5, respectively. Twelve percent of the participants had HbA1C level higher than 10.5. Correlation of fasting plasma glucose level and HbA1C was also studied and found that correlation coefficient came out to be .311. This correlation was found to be statistically

  18. Carbohydrates on Proteins: Site-Specific Glycosylation Analysis by Mass Spectrometry

    Science.gov (United States)

    Zhu, Zhikai; Desaire, Heather

    2015-07-01

    Glycosylation on proteins adds complexity and versatility to these biologically vital macromolecules. To unveil the structure-function relationship of glycoproteins, glycopeptide-centric analysis using mass spectrometry (MS) has become a method of choice because the glycan is preserved on the glycosylation site and site-specific glycosylation profiles of proteins can be readily determined. However, glycopeptide analysis is still challenging given that glycopeptides are usually low in abundance and relatively difficult to detect and the resulting data require expertise to analyze. Viewing the urgent need to address these challenges, emerging methods and techniques are being developed with the goal of analyzing glycopeptides in a sensitive, comprehensive, and high-throughput manner. In this review, we discuss recent advances in glycoprotein and glycopeptide analysis, with topics covering sample preparation, analytical separation, MS and tandem MS techniques, as well as data interpretation and automation.

  19. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, D. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Valli, M.; Viglio, S. [Department of Biochemistry, University of Pavia (Italy); Ferrari, N. [Istituto Nazionale per la ricerca sul Cancro, Genova (Italy); Ledda, B.; Volta, C. [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy); Manduca, P., E-mail: man-via@unige.it [Genetics, DIBIO, University of Genova, Corso Europa 26, 16132 Genova (Italy)

    2010-03-10

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  20. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    International Nuclear Information System (INIS)

    Palmieri, D.; Valli, M.; Viglio, S.; Ferrari, N.; Ledda, B.; Volta, C.; Manduca, P.

    2010-01-01

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  1. Fasting serum glucose and glycosylated hemoglobin level in obesity.

    Science.gov (United States)

    Das, R K; Nessa, A; Hossain, M A; Siddiqui, N I; Hussain, M A

    2014-04-01

    Obesity is a condition in which the body fat stores are increased to an extent which impairs health and leads to serious health consequences. The amount of body fat is difficult to measure directly, and is usually determined from an indirect measure - the body mass index (BMI). Increased BMI in obese persons is directly associated with an increase in metabolic disease, such as type 2 diabetes mellitus. This Analytical cross sectional study was undertaken to assess the relation between obesity and glycemic control of body by measuring fasting serum glucose and glycosylated hemoglobin. This study was carried out in the Department of Physiology, Mymensingh Medical College, Mymensingh from 1st July 2011 to 30th June 2012 on 120 equally divided male and female persons within the age range of 25 to 55 years. Age more than 55 years and less than 25 years and diagnosed case of Hypothyroidism, Cushing's syndrome, polycystic ovary, Antipsychotic drug user and regular steroid users were excluded. Non probability purposive type of sampling technique was used for selecting the study subjects. Measurement of body mass index was done as per procedure. Fasting serum glucose was estimated by glucose oxidase method and Glycosylated hemoglobin by Boronate Affinity method. Statistical analysis was done by SPSS (version 17.0). Data were expressed as Mean±SE and statistical significance of difference among the groups were calculated by unpaired student's 't' test and Pearson's correlation coefficient tests were done as applicable. The Mean±SE of fasting serum glucose was significant at 1% level (P value obese group of BMI. There was no significant difference of glycosylated hemoglobin level between control and study groups. But there was positive correlation within each group. Fasting serum glucose also showed a bit stronger positive correlation with BMI. Both obese male and female persons showed higher levels of fasting serum glucose and glycosylated hemoglobin. The observed positive

  2. Involvement of Aberrant Glycosylation in Thyroid Cancer

    Directory of Open Access Journals (Sweden)

    Eiji Miyoshi

    2010-01-01

    Full Text Available Glycosylation is one of the most common posttranslational modification reactions and nearly half of all known proteins in eukaryotes are glycosylated. In fact, changes in oligosaccharides structures are associated with many physiological and pathological events, including cell growth, migration and differentiation, and tumor invasion. Therefore, functional glycomics, which is a comprehensive study of the structures and functions of glycans, is attracting the increasing attention of scientists in various fields of life science. In cases of thyroid cancer, the biological characters and prognosis are completely different in each type of histopathology, and their oligosaccharide structures as well as the expression of glycosyltransferases are also different. In this review, we summarized our previous papers on oligosaccharides and thyroid cancers and discussed a possible function of oligosaccharides in the carcinogenesis in thyroid cancer.

  3. DisFace: A Database of Human Facial Disorders

    Directory of Open Access Journals (Sweden)

    Paramjit Kaur

    2017-10-01

    Full Text Available Face is an integral part of human body by which an individual communicates in the society. Its importance can be highlighted by the fact that a person deprived of face cannot sustain in the living world. In the past few decades, human face has gained attention of several researchers, whether it is related to facial anthropometry, facial disorder, face transplantation or face reconstruction. Several researches have also shown the correlation between neuropsychiatry disorders and human face and also that how face recognition abilities are correlated with these disorders. Currently, several databases exist which contain the facial images of several individuals captured from different sources. The advantage of these databases is that the images in these databases can be used for testing and training purpose. However, in current date no such database exists which would provide not only facial images of individuals; but also the literature concerning the human face, list of several genes controlling human face, list of facial disorders and various tools which work on facial images. Thus, the current research aims at developing a database of human facial disorders using bioinformatics approach. The database will contain information about facial diseases, medications, symptoms, findings, etc. The information will be extracted from several other databases like OMIM, PubChem, Radiopedia, Medline Plus, FDA, etc. and links to them will also be provided. Initially, the diseases specific for human face have been obtained from already created published corpora of literature using text mining approach. Becas tool was used to obtain the specific task.  A dataset will be created and stored in the form of database. It will be a database containing cross-referenced index of human facial diseases, medications, symptoms, signs, etc. Thus, a database on human face with complete existing information about human facial disorders will be developed. The novelty of the

  4. Glucosamine derived DISAL donors for stereoselective glycosylations under neutral conditions

    DEFF Research Database (Denmark)

    Grathe, S.; Thygesen, M.B.; Larsen, K.

    2005-01-01

    DISAL (methyl 3,5-dinitrosa/icylate) D-glcosyl, D-galactosyl, D-mannosyl, and L-quinovosyl donors have previously provided the efficient glycosylation of a range of substrates under either strictly neutral, mildly basic, or very mildly Lewis acidic (LiClO4) conditions. Herein we report the synthe......DISAL (methyl 3,5-dinitrosa/icylate) D-glcosyl, D-galactosyl, D-mannosyl, and L-quinovosyl donors have previously provided the efficient glycosylation of a range of substrates under either strictly neutral, mildly basic, or very mildly Lewis acidic (LiClO4) conditions. Herein we report...... the synthesis of new glucosamine DISAL donors, carrying N-TCP, -Troc, or -TFAc protecting groups, and their use in beta-(1,2-trans) selective glycosylations, primarily in NMP in the absence of any added Lewis acids, or in CH3NO2 with LiClO4. Finally, precise microwave heating proved effective in promoting...

  5. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Laia Oliva

    2015-07-01

    Full Text Available Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet.Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate.Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls. In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight. The detected levels of glucose in

  6. Mapping Sites of O-Glycosylation and Fringe Elongation on Drosophila Notch*

    Science.gov (United States)

    Harvey, Beth M.; Rana, Nadia A.; Moss, Hillary; Leonardi, Jessica; Jafar-Nejad, Hamed; Haltiwanger, Robert S.

    2016-01-01

    Glycosylation of the Notch receptor is essential for its activity and serves as an important modulator of signaling. Three major forms of O-glycosylation are predicted to occur at consensus sites within the epidermal growth factor-like repeats in the extracellular domain of the receptor: O-fucosylation, O-glucosylation, and O-GlcNAcylation. We have performed comprehensive mass spectral analyses of these three types of O-glycosylation on Drosophila Notch produced in S2 cells and identified peptides containing all 22 predicted O-fucose sites, all 18 predicted O-glucose sites, and all 18 putative O-GlcNAc sites. Using semiquantitative mass spectral methods, we have evaluated the occupancy and relative amounts of glycans at each site. The majority of the O-fucose sites were modified to high stoichiometries. Upon expression of the β3-N-acetylglucosaminyltransferase Fringe with Notch, we observed varying degrees of elongation beyond O-fucose monosaccharide, indicating that Fringe preferentially modifies certain sites more than others. Rumi modified O-glucose sites to high stoichiometries, although elongation of the O-glucose was site-specific. Although the current putative consensus sequence for O-GlcNAcylation predicts 18 O-GlcNAc sites on Notch, we only observed apparent O-GlcNAc modification at five sites. In addition, we performed mass spectral analysis on endogenous Notch purified from Drosophila embryos and found that the glycosylation states were similar to those found on Notch from S2 cells. These data provide foundational information for future studies investigating the mechanisms of how O-glycosylation regulates Notch activity. PMID:27268051

  7. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus

    DEFF Research Database (Denmark)

    Bagdonaite, Ieva; Nordén, Rickard; Joshi, Hiren J

    2016-01-01

    to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a "bottom up" mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide...... distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members...

  8. Glutamate synapses in human cognitive disorders.

    Science.gov (United States)

    Volk, Lenora; Chiu, Shu-Ling; Sharma, Kamal; Huganir, Richard L

    2015-07-08

    Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.

  9. Diversity in protein glycosylation among insect species.

    Directory of Open Access Journals (Sweden)

    Gianni Vandenborre

    Full Text Available BACKGROUND: A very common protein modification in multicellular organisms is protein glycosylation or the addition of carbohydrate structures to the peptide backbone. Although the Class of the Insecta is the largest animal taxon on Earth, almost all information concerning glycosylation in insects is derived from studies with only one species, namely the fruit fly Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the differences in glycoproteomes between insects belonging to several economically important insect orders were studied. Using GNA (Galanthus nivalis agglutinin affinity chromatography, different sets of glycoproteins with mannosyl-containing glycan structures were purified from the flour beetle (Tribolium castaneum, the silkworm (Bombyx mori, the honeybee (Apis mellifera, the fruit fly (D. melanogaster and the pea aphid (Acyrthosiphon pisum. To identify and characterize the purified glycoproteins, LC-MS/MS analysis was performed. For all insect species, it was demonstrated that glycoproteins were related to a broad range of biological processes and molecular functions. Moreover, the majority of glycoproteins retained on the GNA column were unique to one particular insect species and only a few glycoproteins were present in the five different glycoprotein sets. Furthermore, these data support the hypothesis that insect glycoproteins can be decorated with mannosylated O-glycans. CONCLUSIONS/SIGNIFICANCE: The results presented here demonstrate that oligomannose N-glycosylation events are highly specific depending on the insect species. In addition, we also demonstrated that protein O-mannosylation in insect species may occur more frequently than currently believed.

  10. Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region.

    Directory of Open Access Journals (Sweden)

    Marioara B Marin

    Full Text Available EDEM1 is a mannosidase-like protein that recruits misfolded glycoproteins from the calnexin/calreticulin folding cycle to downstream endoplasmic reticulum associated degradation (ERAD pathway. Here, we investigate the role of EDEM1 in the processing of tyrosinase, a tumour antigen overexpressed in melanoma cells. First, we analyzed and modeled EDEM1 major domains. The homology model raised on the crystal structures of human and Saccharomyces cerevisiae ER class I α1,2-mannosidases reveals that the major mannosidase domain located between aminoacids 121-598 fits with high accuracy. We have further identified an N-terminal region located between aminoacids 40-119, predicted to be intrinsically disordered (ID and susceptible to adopt multiple conformations, hence facilitating protein-protein interactions. To investigate these two domains we have constructed an EDEM1 deletion mutant lacking the ID region and a triple mutant disrupting the glycan-binding domain and analyzed their association with tyrosinase. Tyrosinase is a glycoprotein partly degraded endogenously by ERAD and the ubiquitin proteasomal system. We found that the degradation of wild type and misfolded tyrosinase was enhanced when EDEM1 was overexpressed. Glycosylated and non-glycosylated mutants co-immunoprecipitated with EDEM1 even in the absence of its intact mannosidase-like domain, but not when the ID region was deleted. In contrast, calnexin and SEL 1L associated with the deletion mutant. Our data suggest that the ID region identified in the N-terminal end of EDEM1 is involved in the binding of glycosylated and non-glycosylated misfolded proteins. Accelerating tyrosinase degradation by EDEM1 overexpression may lead to an efficient antigen presentation and enhanced elimination of melanoma cells.

  11. Variation of Human Salivary O-Glycome.

    Directory of Open Access Journals (Sweden)

    Radoslaw P Kozak

    Full Text Available The study of saliva O-glycosylation is receiving increasing attention due to the potential of glycans for disease biomarkers, but also due to easy access and non-invasive collection of saliva as biological fluid. Saliva is rich in glycoproteins which are secreted from the bloodstream or produced by salivary glands. Mucins, which are highly O-glycosylated proteins, are particularly abundant in human saliva. Their glycosylation is associated with blood group and secretor status, and represents a reservoir of potential disease biomarkers. This study aims to analyse and compare O-glycans released from whole human mouth saliva collected 3 times a day from a healthy individual over a 5 days period. O-linked glycans were released by hydrazinolysis, labelled with procainamide and analysed by ultra-high performance liquid chromatography with fluorescence detection (UHPLC-FLR coupled to electrospray ionization mass spectrometry (ESI-MS/MS. The sample preparation method showed excellent reproducibility and can therefore be used for biomarker discovery. Our data demonstrates that the O-glycosylation in human saliva changes significantly during the day. These changes may be related to changes in the salivary concentrations of specific proteins.

  12. Patterns of glycemic control using glycosylated hemoglobin in diabetics

    Directory of Open Access Journals (Sweden)

    Arunpreet Singh Kahlon

    2011-01-01

    Full Text Available Aim : Till now estimation of blood glucose is the highly effective method for diagnosing diabetes mellitus but it provides a short-term picture of control. More evidence is required to prove that plasma glucose and glycosylated hemoglobin levels together gives a better estimate of glycemic control and compliance with treatment. Indian diabetes risk score (IDRS is a simplified screening tool for identifying undiagnosed diabetic subjects, requires minimum time, and effort and can help to considerably reduce the costs of screening. Objective : To study patterns of glycemic control using glycosylated hemoglobin in diabetic patients. To find out correlation between levels of plasma glucose and glycosylated hemoglobin in diabetics and to calculate IDRS of the study population. Materials and Methods : A cross sectional study was conducted among 300 known diabetic patients attending outpatient department of a rural medical college in Haryana, India. Following standard procedures and protocols FPG and glycosylated hemoglobin were measured to find out a pattern of glycemic control in them after taking their written and informed consent. A correlation between the levels of glycosylated hemoglobin and fasting blood glucose was also calculated. These patients were made to fill a performa and their demographic and clinical risk factors were noted and based on this, their IDRS was calculated. This was done to validate the IDRS in Indian rural population. Results : Fifty-two percent of the population had fasting plasma glucose level between 125-150 mg/dl, 21% had this level between 151-175 mg/dl. Thirteen percent of the study subjects had HbA1C between 6.5-7.5, more than half (57.3% had this value between 7.5-8.5, 12% and 18% had values between 8.5-9.5 and 9.5-10.5, respectively. Twelve percent of the participants had HbA1C level higher than 10.5. Correlation of fasting plasma glucose level and HbA1C was also studied and found that correlation coefficient came

  13. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins.

    Science.gov (United States)

    Liu, Liming

    2015-06-01

    Understanding the impact of glycosylation and keeping a close control on glycosylation of product candidates are required for both novel and biosimilar monoclonal antibodies (mAbs) and Fc-fusion protein development to ensure proper safety and efficacy profiles. Most therapeutic mAbs are of IgG class and contain a glycosylation site in the Fc region at amino acid position 297 and, in some cases, in the Fab region. For Fc-fusion proteins, glycosylation also frequently occurs in the fusion partners. Depending on the expression host, glycosylation patterns in mAb or Fc-fusions can be significantly different, thus significantly impacting the pharmacokinetics (PK) and pharmacodynamics (PD) of mAbs. Glycans that have a major impact on PK and PD of mAb or Fc-fusion proteins include mannose, sialic acids, fucose (Fuc), and galactose (Gal). Mannosylated glycans can impact the PK of the molecule, leading to reduced exposure and potentially lower efficacy. The level of sialic acid, N-acetylneuraminic acid (NANA), can also have a significant impact on the PK of Fc-fusion molecules. Core Fuc in the glycan structure reduces IgG antibody binding to IgG Fc receptor IIIa relative to IgG lacking Fuc, resulting in decreased antibody-dependent cell-mediated cytotoxicity (ADCC) activities. Glycoengineered Chinese hamster ovary (CHO) expression systems can produce afucosylated mAbs that have increased ADCC activities. Terminal Gal in a mAb is important in the complement-dependent cytotoxicity (CDC) in that lower levels of Gal reduce CDC activity. Glycans can also have impacts on the safety of mAb. mAbs produced in murine myeloma cells such as NS0 and SP2/0 contain glycans such as Galα1-3Galβ1-4N-acetylglucosamine-R and N-glycolylneuraminic acid (NGNA) that are not naturally present in humans and can be immunogenic when used as therapeutics. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. The effect of childhood conduct disorder on human capital.

    Science.gov (United States)

    Webbink, Dinand; Vujić, Sunčica; Koning, Pierre; Martin, Nicholas G

    2012-08-01

    This paper estimates the longer-term effects of childhood conduct disorder on human capital accumulation and violent and criminal behavior later in life using data of Australian twins. We measure conduct disorder with a rich set of indicators based on diagnostic criteria from psychiatry. Using ordinary least squares and twin fixed effects estimation approaches, we find that early-age (pre-18) conduct disorder problems significantly affect both human capital accumulation and violent and criminal behavior over the life course. In addition, we find that conduct disorder is more deleterious if these behaviors occur earlier in life. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Endoplasmic reticulum stress and N-glycosylation modulate expression of WFS1 protein

    International Nuclear Information System (INIS)

    Yamaguchi, Suguru; Ishihara, Hisamitsu; Tamura, Akira; Yamada, Takahiro; Takahashi, Rui; Takei, Daisuke; Katagiri, Hideki; Oka, Yoshitomo

    2004-01-01

    Mutations of the WFS1 gene are responsible for two hereditary diseases, Wolfram syndrome and low frequency sensorineural hearing loss. The WFS1 protein is a glycoprotein located in the endoplasmic reticulum (ER) membrane but its function is poorly understood. Herein we show WFS1 mRNA and protein levels in pancreatic islets to be increased with ER-stress inducers, thapsigargin and dithiothreitol. Another ER-stress inducer, the N-glycosylation inhibitor tunicamycin, also raised WFS1 mRNA but not protein levels. Site-directed mutagenesis showed both Asn-663 and Asn-748 to be N-glycosylated in mouse WFS1 protein. The glycosylation-defective WFS1 protein, in which Asn-663 and Asn-748 had been substituted with aspartate, exhibited an increased protein turnover rate. Consistent with this, the WFS1 protein was more rapidly degraded in the presence of tunicamycin. These data indicate that ER-stress and N-glycosylation play important roles in WFS1 expression and stability, and also suggest regulatory roles for this protein in ER-stress induced cell death

  16. IN VITRO STUDY ON INHIBITION OF GLYCOSYLATION OF ...

    African Journals Online (AJOL)

    Administrator

    complications of diabetes mellitus (Makita et al., 1991). Apart from protein ... enzymes; inhibition of regulatory molecule binding; crosslinking of glycosylated .... further investigation specific bio active compound responsible for such activities.

  17. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation.

    Science.gov (United States)

    Jefferis, R; Lund, J; Pound, J D

    1998-06-01

    The Fc region of human IgG expresses interaction sites for many effector ligands. In this review the topographical distributions of ten of these sites are discussed in relation to functional requirement. It is apparent that interaction sites localised to the inter-CH2-CH3 domain region of the Fc allow for functional divalency, whereas sites localised to the hinge proximal region of the CH2 domain are functionally monovalent, with expression of the latter sites being particularly dependent on glycosylation. All x-ray crystal structures for Fc and Fc-ligand complexes report that the protein structure of the hinge proximal region of the CH2 domain is "disordered", suggesting "internal mobility". We propose a model in which such "internal mobility" results in the generation of a dynamic equilibrium between multiple conformers, certain of which express interaction sites specific to individual ligands. The emerging understanding of the influence of oligosaccharide/protein interactions on protein conformation and biological function of IgG antibodies suggests a potential to generate novel glycoforms of antibody molecules having unique profiles of effector functions.

  18. Kex1 protease is involved in yeast cell death induced by defective N-glycosylation, acetic acid, and chronological aging.

    Science.gov (United States)

    Hauptmann, Peter; Lehle, Ludwig

    2008-07-04

    N-glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to humans. The key step of this pathway is the transfer of the lipid-linked core oligosaccharide to the nascent polypeptide chain, catalyzed by the oligosaccharyltransferase complex. Temperature-sensitive oligosaccharyltransferase mutants of Saccharomyces cerevisiae at the restrictive temperature, such as wbp1-1, as well as wild-type cells in the presence of the N-glycosylation inhibitor tunicamycin display typical apoptotic phenotypes like nuclear condensation, DNA fragmentation, phosphatidylserine translocation, caspase-like activity, and reactive oxygen species accumulation. Since deletion of the yeast metacaspase YCA1 did not abrogate this death pathway, we postulated a different proteolytic process to be responsible. Here, we show that Kex1 protease is involved in the programmed cell death caused by defective N-glycosylation. Its disruption decreases caspase-like activity, production of reactive oxygen species, and fragmentation of mitochondria and, conversely, improves growth and survival of cells. Moreover, we demonstrate that Kex1 contributes also to the active cell death program induced by acetic acid stress or during chronological aging, suggesting that Kex1 plays a more general role in cellular suicide of yeast.

  19. Optimal Synthetic Glycosylation of a Therapeutic Antibody.

    Science.gov (United States)

    Parsons, Thomas B; Struwe, Weston B; Gault, Joseph; Yamamoto, Keisuke; Taylor, Thomas A; Raj, Ritu; Wals, Kim; Mohammed, Shabaz; Robinson, Carol V; Benesch, Justin L P; Davis, Benjamin G

    2016-02-12

    Glycosylation patterns in antibodies critically determine biological and physical properties but their precise control is a significant challenge in biology and biotechnology. We describe herein the optimization of an endoglycosidase-catalyzed glycosylation of the best-selling biotherapeutic Herceptin, an anti-HER2 antibody. Precise MS analysis of the intact four-chain Ab heteromultimer reveals nonspecific, non-enzymatic reactions (glycation), which are not detected under standard denaturing conditions. This competing reaction, which has hitherto been underestimated as a source of side products, can now be minimized. Optimization allowed access to the purest natural form of Herceptin to date (≥90 %). Moreover, through the use of a small library of sugars containing non-natural functional groups, Ab variants containing defined numbers of selectively addressable chemical tags (reaction handles at Sia C1) in specific positions (for attachment of cargo molecules or "glycorandomization") were readily generated.

  20. Dengue Virus Glycosylation: What Do We Know?

    Directory of Open Access Journals (Sweden)

    Sally S. L. Yap

    2017-07-01

    Full Text Available In many infectious diseases caused by either viruses or bacteria, pathogen glycoproteins play important roles during the infection cycle, ranging from entry to successful intracellular replication and host immune evasion. Dengue is no exception. Dengue virus glycoproteins, envelope protein (E and non-structural protein 1 (NS1 are two popular sub-unit vaccine candidates. E protein on the virion surface is the major target of neutralizing antibodies. NS1 which is secreted during DENV infection has been shown to induce a variety of host responses through its binding to several host factors. However, despite their critical role in disease and protection, the glycosylated variants of these two proteins and their biological importance have remained understudied. In this review, we seek to provide a comprehensive summary of the current knowledge on protein glycosylation in DENV, and its role in virus biogenesis, host cell receptor interaction and disease pathogenesis.

  1. Fluorine-Directed Glycosylation Enables the Stereocontrolled Synthesis of Selective SGLT2 Inhibitors for Type II Diabetes.

    Science.gov (United States)

    Sadurní, Anna; Kehr, Gerald; Ahlqvist, Marie; Wernevik, Johan; Sjögren, Helena Peilot; Kankkonen, Cecilia; Knerr, Laurent; Gilmour, Ryan

    2018-02-26

    Inhibition of the sodium-glucose co-transporters (SGLT1 and SGLT2) is a validated strategy to address the increasing prevalence of type II diabetes mellitus. However, achieving selective inhibition of human SGLT1 or SGLT2 remains challenging. Orally available small molecule drugs based on the d-glucose core of the natural product Gliflozin have proven to be clinically effective in this regard, effectively impeding glucose reabsorption. Herein, we disclose the influence of molecular editing with fluorine at the C2 position of the pyranose ring of Phlorizin analogues Remogliflozin Etabonate and Dapagliflozin (Farxiga ® ) to concurrently direct β-selective glycosylation, as is required for biological efficacy, and enhance aspects of the physicochemical profile. Given the abundance of glycosylated pharmaceuticals in diabetes therapy that contain a β-configured d-glucose nucleus, it is envisaged that this strategy may prove to be expansive. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Conformationally superarmed S-ethyl glycosyl donors as effective building blocks for chemoselective oligosaccharide synthesis in one pot

    DEFF Research Database (Denmark)

    Bandara, Mithila D.; Yasomanee, Jagodige P.; Rath, Nigam P.

    2017-01-01

    A new series of superarmed glycosyl donors has been investigated. It was demonstrated that the S-ethyl leaving group allows for high reactivity, which is much higher than that of equally equipped S-phenyl glycosyl donors that were previously investigated by our groups. The superarmed S......-ethyl glycosyl donors equipped with a 2-O-benzoyl group gave complete β-stereoselectivity. Utility of the new glycosyl donors has been demonstrated in a one-pot one-addition oligosaccharide synthesis with all of the reaction components present from the beginning...

  3. Low Density Lipoprotein Receptor Class A Repeats Are O-Glycosylated in Linker Regions

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Wang, Shengjun; Narimatsu, Yoshiki

    2014-01-01

    , which in wild-type CHO cells is glycosylated with the typical sialylated core 1 structure. The glycosites in linker regions of LDLR class A repeats are conserved in LDLR from man to Xenopus and found in other homologous receptors. O-Glycosylation is controlled by a large family of polypeptide Gal...

  4. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites

    DEFF Research Database (Denmark)

    Julenius, Karin; Mølgaard, Anne; Gupta, Ramneek

    2005-01-01

    could be predicted from averaged properties together with the fact that glycosylation sites are not precisely conserved indicates that mucin-type glycosylation in most cases is a bulk property and not a very site-specific one. NetOGlyc 3.1 is made available at www.cbs.dtu.dk/services/netoglyc....

  5. Glycosylation as a Main Regulator of Growth and Death Factor Receptors Signaling

    Directory of Open Access Journals (Sweden)

    Inês Gomes Ferreira

    2018-02-01

    Full Text Available Glycosylation is a very frequent and functionally important post-translational protein modification that undergoes profound changes in cancer. Growth and death factor receptors and plasma membrane glycoproteins, which upon activation by extracellular ligands trigger a signal transduction cascade, are targets of several molecular anti-cancer drugs. In this review, we provide a thorough picture of the mechanisms bywhich glycosylation affects the activity of growth and death factor receptors in normal and pathological conditions. Glycosylation affects receptor activity through three non-mutually exclusive basic mechanisms: (1 by directly regulating intracellular transport, ligand binding, oligomerization and signaling of receptors; (2 through the binding of receptor carbohydrate structures to galectins, forming a lattice thatregulates receptor turnover on the plasma membrane; and (3 by receptor interaction with gangliosides inside membrane microdomains. Some carbohydrate chains, for example core fucose and β1,6-branching, exert a stimulatory effect on all receptors, while other structures exert opposite effects on different receptors or in different cellular contexts. In light of the crucial role played by glycosylation in the regulation of receptor activity, the development of next-generation drugs targeting glyco-epitopes of growth factor receptors should be considered a therapeutically interesting goal.

  6. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    Directory of Open Access Journals (Sweden)

    Chiaki Nagai-Okatani

    Full Text Available Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases.

  7. Analysis of urinary PSA glycosylation is not indicative of high-risk prostate cancer.

    Science.gov (United States)

    Barrabés, Sílvia; Llop, Esther; Ferrer-Batallé, Montserrat; Ramírez, Manel; Aleixandre, Rosa N; Perry, Antoinette S; de Llorens, Rafael; Peracaula, Rosa

    2017-07-01

    The levels of core fucosylation and α2,3-linked sialic acid in serum Prostate Specific Antigen (PSA), using the lectins Pholiota squarrosa lectin (PhoSL) and Sambucus nigra agglutinin (SNA), can discriminate between Benign Prostatic Hyperplasia (BPH) and indolent prostate cancer (PCa) from aggressive PCa. In the present work we evaluated whether these glycosylation determinants could also be altered in urinary PSA obtained after digital rectal examination (DRE) and could also be useful for diagnosis determinations. For this purpose, α2,6-sialic acid and α1,6-fucose levels of urinary PSA from 53 patients, 18 biopsy-negative and 35 PCa patients of different aggressiveness degree, were analyzed by sandwich ELLA (Enzyme Linked Lectin Assay) using PhoSL and SNA. Changes in the levels of specific glycosylation determinants, that in serum PSA samples were indicative of PCa aggressiveness, were not found in PSA from DRE urine samples. Although urine is a simpler matrix for analyzing PSA glycosylation compared to serum, an immunopurification step was necessary to specifically detect the glycans on the PSA molecule. Those specific glycosylation determinants on urinary PSA were however not useful to improve PCa diagnosis. This could be probably due to the low proportion of PSA from the tumor in urine samples, which precludes the identification of aberrantly glycosylated PSA. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility

    DEFF Research Database (Denmark)

    Hansen, Jan Erik; Lund, Ole; Tolstrup, Niels

    1998-01-01

    -glycosylated serine and threonine residues in independent test sets, thus proving more accurate than matrix statistics and vector projection methods. Predicition of O-glycosylation sites in the envelope glycoprotein gp120 from the primate lentiviruses HIV-1, HIV-2 and SIV are presented. The most conserved O...... structure and surface accessibility. The sequence context of glycosylated threonines was found to differ from that of serine, and the sites were found to cluster. Non-clustered sites had a sequence context different from that of clustered sites. charged residues were disfavoured at postition -1 and +3......-glycosylation signals in these evolutionary-related glycoproteins were found in their first hypervariable loop, V1. However, the strain variation for HIV-1 gp120 was significant. A computer server, available through WWW or E-mail, has been developed for prediction of mucin type O-glycosylation sites in proteins based...

  9. A bioinformatics prediction approach towards analyzing the glycosylation, co-expression and interaction patterns of epithelial membrane antigen (EMA/MUC1)

    International Nuclear Information System (INIS)

    Kalra, Rajkumar S.; Wadhwa, Renu

    2015-01-01

    Epithelial membrane antigen (EMA or MUC1) is a heavily glycosylated, type I transmembrane glycoprotein commonly expressed by epithelial cells of duct organs. It has been shown to be aberrantly glycosylated in several diseases including cancer. Protein sequence based annotation and analysis of glycosylation profile of glycoproteins by robust computational and comprehensive algorithms provides possible insights to the mechanism(s) of anomalous glycosylation. In present report, by using a number of bioinformatics applications we studied EMA/MUC1 and explored its trans-membrane structural domain sequence that is widely subjected to glycosylation. Exploration of different extracellular motifs led to prediction of N and O-linked glycosylation target sites. Based on the putative O-linked target sites, glycosylated moieties and pathways were envisaged. Furthermore, Protein network analysis demonstrated physical interaction of EMA with a number of proteins and confirmed its functional involvement in cell growth and proliferation pathways. Gene Ontology analysis suggested an involvement of EMA in a number of functions including signal transduction, protein binding, processing and transport along with glycosylation. Thus, present study explored potential of bioinformatics prediction approach in analyzing glycosylation, co-expression and interaction patterns of EMA/MUC1 glycoprotein

  10. A bioinformatics prediction approach towards analyzing the glycosylation, co-expression and interaction patterns of epithelial membrane antigen (EMA/MUC1)

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, Rajkumar S., E-mail: renu-wadhwa@aist.go.jp; Wadhwa, Renu, E-mail: renu-wadhwa@aist.go.jp [Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science and Technology (AIST Central 4), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan)

    2015-02-27

    Epithelial membrane antigen (EMA or MUC1) is a heavily glycosylated, type I transmembrane glycoprotein commonly expressed by epithelial cells of duct organs. It has been shown to be aberrantly glycosylated in several diseases including cancer. Protein sequence based annotation and analysis of glycosylation profile of glycoproteins by robust computational and comprehensive algorithms provides possible insights to the mechanism(s) of anomalous glycosylation. In present report, by using a number of bioinformatics applications we studied EMA/MUC1 and explored its trans-membrane structural domain sequence that is widely subjected to glycosylation. Exploration of different extracellular motifs led to prediction of N and O-linked glycosylation target sites. Based on the putative O-linked target sites, glycosylated moieties and pathways were envisaged. Furthermore, Protein network analysis demonstrated physical interaction of EMA with a number of proteins and confirmed its functional involvement in cell growth and proliferation pathways. Gene Ontology analysis suggested an involvement of EMA in a number of functions including signal transduction, protein binding, processing and transport along with glycosylation. Thus, present study explored potential of bioinformatics prediction approach in analyzing glycosylation, co-expression and interaction patterns of EMA/MUC1 glycoprotein.

  11. Reduced apolipoprotein glycosylation in patients with the metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Olga V Savinova

    Full Text Available The purpose of this study was to compare the apolipoprotein composition of the three major lipoprotein classes in patients with metabolic syndrome to healthy controls.Very low density (VLDL, intermediate/low density (IDL/LDL, hereafter LDL, and high density lipoproteins (HDL fractions were isolated from plasma of 56 metabolic syndrome subjects and from 14 age-sex matched healthy volunteers. The apolipoprotein content of fractions was analyzed by one-dimensional (1D gel electrophoresis with confirmation by a combination of mass spectrometry and biochemical assays.Metabolic syndrome patients differed from healthy controls in the following ways: (1 total plasma--apoA1 was lower, whereas apoB, apoC2, apoC3, and apoE were higher; (2 VLDL--apoB, apoC3, and apoE were increased; (3 LDL--apoC3 was increased, (4 HDL--associated constitutive serum amyloid A protein (SAA4 was reduced (p<0.05 vs. controls for all. In patients with metabolic syndrome, the most extensively glycosylated (di-sialylated isoform of apoC3 was reduced in VLDL, LDL, and HDL fractions by 17%, 30%, and 25%, respectively (p<0.01 vs. controls for all. Similarly, the glycosylated isoform of apoE was reduced in VLDL, LDL, and HDL fractions by 15%, 26%, and 37% (p<0.01 vs. controls for all. Finally, glycosylated isoform of SAA4 in HDL fraction was 42% lower in patients with metabolic syndrome compared with controls (p<0.001.Patients with metabolic syndrome displayed several changes in plasma apolipoprotein composition consistent with hypertriglyceridemia and low HDL cholesterol levels. Reduced glycosylation of apoC3, apoE and SAA4 are novel findings, the pathophysiological consequences of which remain to be determined.

  12. Glycosylation analysis of recombinant neutral protease I from Aspergillus oryzae expressed in Pichia pastoris.

    Science.gov (United States)

    Lei, Da; Xu, Yang; He, Qinghua; Pang, Yifeng; Chen, Bo; Xiong, Liang; Li, Yanping

    2013-12-01

    Neutral protease I from Aspergillus oryzae 3.042 was expressed in Pichia pastoris and its N-glycosylation properties were analyzed. After purification by nickel-affinity chromatography column, the recombinant neutral protease (rNPI) was confirmed to be N-glycosylated by periodicacid/Schiff's base staining and Endo H digestion. Moreover, the deglycosylated protein's molecular weight decreased to 43.3 kDa from 54.5 kDa analyzed by SDS-PAGE and MALDI-TOF-MS, and the hyperglycosylation extent was 21 %. The N-glycosylation site of rNPI was analyzed by nano LC-MS/MS after digesting by trypsin and Glu-C, and the unique potential site Asn41 of mature peptide was found to be glycosylated. Homology modeling of the 3D structure of rNPI indicated that the attached N-glycans hardly affected neutral protease's activity due to the great distance away from the active site of the enzyme.

  13. The relative contribution of mannose salvage pathways to glycosylation in PMI-deficient mouse embryonic fibroblast cells.

    Science.gov (United States)

    Fujita, Naonobu; Tamura, Ayako; Higashidani, Aya; Tonozuka, Takashi; Freeze, Hudson H; Nishikawa, Atsushi

    2008-02-01

    Mannose for mammalian glycan biosynthesis can be imported directly from the medium, derived from glucose or salvaged from endogenous or external glycans. All pathways must generate mannose 6-phosphate, the activated form of mannose. Imported or salvaged mannose is directly phosphorylated by hexokinase, whereas fructose 6-phosphate from glucose is converted to mannose 6-phosphate by phosphomannose isomerase (PMI). Normally, PMI provides the majority of mannose for glycan synthesis. To assess the contribution of PMI-independent pathways, we used PMI-null fibroblasts to study N-glycosylation of DNase I, a highly sensitive indicator protein. In PMI-null cells, imported mannose and salvaged mannose make a significant contribution to N-glycosylation. When these cells were grown in mannose-free medium along with the mannosidase inhibitor, swainsonine, to block the salvage pathways, N-glycosylation of DNase I was almost completely eliminated. Adding approximately 13 microm mannose to the medium completely restored normal glycosylation. Treatment with bafilomycin A(1), an inhibitor of lysosomal acidification, also markedly reduced N-glycosylation of DNase I, but in this case only 8 microm mannose was required to restore full glycosylation, indicating that a nonlysosomal source of mannose made a significant contribution. Glycosylation levels were greatly also reduced in glycoconjugate-free medium, when endosomal membrane trafficking was blocked by expression of a mutant SKD1. From these data, we conclude that PMI-null cells can salvage mannose from both endogenous and external glycoconjugates via lysosomal and nonlysosomal degradation pathways.

  14. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN) on monocytes/macrophages.

    Science.gov (United States)

    Ge, Heng; Yuan, Wei; Liu, Jidong; He, Qing; Ding, Song; Pu, Jun; He, Ben

    2015-01-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages. The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells) in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway. 1) It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN) that increased after being exposed to inflammatory signals (PMA and H2O2). 2) Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG) the simple type. 3) Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression). Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  15. Functional relevance of protein glycosylation to the pro-inflammatory effects of extracellular matrix metalloproteinase inducer (EMMPRIN on monocytes/macrophages.

    Directory of Open Access Journals (Sweden)

    Heng Ge

    Full Text Available Extracellular matrix metalloproteinase inducer (EMMPRIN is an important pro-inflammatory protein involved in the cellular functions of monocytes/macrophages. We have hypothesized that high-level heterogeneousness of protein glycosylation of EMMPRIN may have functional relevance to its biological effects and affect the inflammatory activity of monocytes/macrophages.The glycosylation patterns of EMMPRIN expressed by monocytes/macrophages (THP-1 cells in response to different extracellular stimuli were observed, and the structures of different glycosylation forms were identified. After the purification of highly- and less-glycosylated proteins respectively, the impacts of different glycosylation forms on the pro-inflammatory effects of EMMPRIN were examined in various aspects, such as cell adhesion to endothelial cells, cell migrations, cytokine expression, and activation of inflammatory signalling pathway.1 It was mainly the highly-glycosylated form of EMMPRIN (HG-EMMPRIN that increased after being exposed to inflammatory signals (PMA and H2O2. 2 Glycosylation of EMMPRIN in monocytes/macrophages led to N-linked-glycans being added to the protein, with the HG form containing complex-type glycans and the less-glycosylated form (LG the simple type. 3 Only the HG-EMMPRIN but not the LG-EMMPRIN exhibited pro-inflammatory effects and stimulated inflammatory activities of the monocytes/macrophages (i.e., activation of ERK1/2 and NF-κB pathway, enhanced monocyte-endothelium adhesion, cell migration and matrix metalloproteinase -9 expression.Post-transcriptional glycosylation represents an important mechanism that determines the biological effects of EMMPRIN in monocytes/macrophages. Glycosylation of EMMPRIN may serve as a potential target for regulating the inflammatory activities of monocytes/macrophages.

  16. Xylosylation of proteins by expression of human xylosyltransferase 2 in plants.

    Science.gov (United States)

    Matsuo, Kouki; Atsumi, Go

    2018-04-12

    Through the years, the post-translational modification of plant-made recombinant proteins has been a considerable problem. Protein glycosylation is arguably the most important post-translational modification; thus, for the humanization of protein glycosylation in plants, the introduction, repression, and knockout of many glycosylation-related genes has been carried out. In addition, plants lack mammalian-type protein O-glycosylation pathways; thus, for the synthesis of mammalian O-glycans in plants, the construction of these pathways is necessary. In this study, we successfully xylosylated the recombinant human proteoglycan core protein, serglycin, by transient expression of human xylosyltransferase 2 in Nicotiana benthamiana plants. When human serglycin was co-expressed with human xylosyltransferase 2 in plants, multiple serine residues of eight xylosylation candidates were xylosylated. From the results of carbohydrate assays for total soluble proteins, some endogenous plant proteins also appeared to be xylosylated, likely through the actions of xylosyltransferase 2. The xylosylation of core proteins is the initial step of the glycosaminoglycan part of the synthesis of proteoglycans. In the future, these novel findings may lead to whole mammalian proteoglycan synthesis in plants. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Is glycosylated haemoglobin a marker of fertility?

    DEFF Research Database (Denmark)

    Hjollund, N H; Jensen, Tina Kold; Bonde, Jens Peter

    1999-01-01

    We performed a follow-up study of time to pregnancy in a population of first-time pregnancy planners without previous reproductive experience. The objective of this paper is to report and discuss a finding of a strong relationship between glycosylated haemoglobin (HbA1C) and fertility. A total...

  18. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics.

    Science.gov (United States)

    Kirwan, Alan; Utratna, Marta; O'Dwyer, Michael E; Joshi, Lokesh; Kilcoyne, Michelle

    2015-01-01

    Cancer is the second most common cause of death in developed countries with approximately 14 million newly diagnosed individuals and over 6 million cancer-related deaths in 2012. Many cancers are discovered at a more advanced stage but better survival rates are correlated with earlier detection. Current clinically approved cancer biomarkers are most effective when applied to patients with widespread cancer. Single biomarkers with satisfactory sensitivity and specificity have not been identified for the most common cancers and some biomarkers are ineffective for the detection of early stage cancers. Thus, novel biomarkers with better diagnostic and prognostic performance are required. Aberrant protein glycosylation is well known hallmark of cancer and represents a promising source of potential biomarkers. Glycoproteins enter circulation from tissues or blood cells through active secretion or leakage and patient serum is an attractive option as a source for biomarkers from a clinical and diagnostic perspective. A plethora of technical approaches have been developed to address the challenges of glycosylation structure detection and determination. This review summarises currently utilised glycoprotein biomarkers and novel glycosylation-based biomarkers from the serum glycoproteome under investigation as cancer diagnostics and for monitoring and prognostics and includes details of recent high throughput and other emerging glycoanalytical techniques.

  19. O-GLYCBASE version 2.0: a revised database of O-glycosylated proteins

    DEFF Research Database (Denmark)

    Hansen, Jan; Lund, Ole; Rapacki, Kristoffer

    1997-01-01

    O-GLYCBASE is an updated database of information on glycoproteins and their O-linked glycosylation sites. Entries are compiled and revised from the literature, and from the SWISS-PROT database. Entries include information about species, sequence, glycosylation sites and glycan type. O-GLYCBASE is...... patterns for the GalNAc, mannose and GlcNAc transferases are shown. The O-GLYCBASE database is available through WWW or by anonymous FTP....

  20. Characterization of kallikrein-related peptidase 4 glycosylations.

    Science.gov (United States)

    Yamakoshi, Yasuo; Yamakoshi, Fumiko; Hu, Jan C-C; Simmer, James P

    2011-12-01

    Kallikrein-related peptidase 4 (KLK4) is a glycosylated serine protease that functions in the maturation (hardening) of dental enamel. Pig and mouse KLK4 contain three potential N-glycosylation sites. We isolated KLK4 from developing pig and mouse molars and characterized their N-glycosylations. N-glycans were enzymatically released by digestion with N-glycosidase F and fluorescently labeled with 2-aminobenzoic acid. Normal-phase high-performance liquid chromatography (NP-HPLC) revealed N-glycans with no, or with one, two, or three sialic acid attachments in pig KLK4 and with no, or with one or two sialic acid attachments in mouse KLK4. The labeled N-glycans were digested with sialidase to generate the asialo N-glycan cores that were fractionated by reverse-phase HPLC, and their retention times were compared with similarly labeled glycan standards. The purified cores were characterized by mass spectrometric and monosaccharide composition analyses. We determined that pig and mouse KLK4 have NA2 and NA2F biantennary N-glycan cores. The pig triantennary core is NA3. The mouse triantennary core is NA3 with a fucose connected by an α1-6 linkage, indicating that it is attached to the first N-acetyglucosamine (NA3F). We conclude that pig KLK4 has NA2, NA2F, and NA3 N-glycan cores with no, or with one, two, or three sialic acids. Mouse KLK4 has NA2, NA2F, and NA3F N-glycan cores with no, or with one or two sialic acids. © 2011 Eur J Oral Sci.

  1. A Preliminary Classification of Human Functional Sexual Disorders

    Science.gov (United States)

    Sharpe, Lawrence; And Others

    1976-01-01

    A preliminary classification is presented for functional human sexual disorders. This system is based on objective behavior and reports of distress. Five categories of sexual disorders are proposed, including the behavioral, psychological and informational components of sexual functioning in the individual and the couple. (Author)

  2. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study.

    Science.gov (United States)

    Lee, Hui Sun; Qi, Yifei; Im, Wonpil

    2015-03-09

    N-linked glycosylation is one of the most important, chemically complex, and ubiquitous post-translational modifications in all eukaryotes. The N-glycans that are covalently linked to proteins are involved in numerous biological processes. There is considerable interest in developments of general approaches to predict the structural consequences of site-specific glycosylation and to understand how these effects can be exploited in protein design with advantageous properties. In this study, the impacts of N-glycans on protein structure and dynamics are systematically investigated using an integrated computational approach of the Protein Data Bank structure analysis and atomistic molecular dynamics simulations of glycosylated and deglycosylated proteins. Our study reveals that N-glycosylation does not induce significant changes in protein structure, but decreases protein dynamics, likely leading to an increase in protein stability. Overall, these results suggest not only a common role of glycosylation in proteins, but also a need for certain proteins to be properly glycosylated to gain their intrinsic dynamic properties.

  3. Thermotolerance and protein glycosylation: Inhibition studies with sodium fluoride, azauridine and tunicamycin

    International Nuclear Information System (INIS)

    Bursey, D.L.; Henle, K.J.; Nagle, W.A.; Moss, A.J.

    1987-01-01

    The glycosylation hypothesis predicts increased incorporation of monosaccharides into 0-linked glycoproteins during thermotolerance development and inhibition of thermotolerance when this process is blocked. Specific inhibitors of 0-linked glycosylation are not available. The authors examined the effect of non-specific inhibition of glycosylation on thermotolerance development by: 1. restriction of both exogenous sugars and endogeneous sugar synthesis with NaF to block glycolysis while providing L-glutamine as a substrate for ATP synthesis in the TCA cycle; or 2. inhibition of UDP-sugar synthesis using azauridine and tunicamycin. Inhibitors were added to cell cultures after heat conditioning (10 min, 45 0 ) and removed after 6 hr prior to 45 0 -test heating. Sugar deprivation was achieved with 10mM NaF in glucose-free EBSS, supplemented with 2mM L-glutamine. Synthesis of UDP-sugars was inhibited with 1mM azauridine + 1μg/ml tunicamycin. Thermotolerance development was inhibited 87% by NaF/glutamine and 47% by azauridine/tunicamycin. For example, the D/sub o/ of the thermotolerant cells was 42.5 min (control D/sub o/ = 3 min), but only 5.5 min with inhibition by the NaF solution. These results support the absolute requirement of sugar precursors for thermotolerance development as predicted by the glycosylation hypothesis

  4. GLYCOSYLATED YGHJ POLYPEPTIDES FROM ENTEROTOXIGENIC ESCHERICHIA COLI (ETEC)

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to glycosylated YghJ polypeptides from or derived from enterotoxigenic Escherichia coli (ETEC) that are immunogenic. In particular, the present invention relates to compositions or vaccines comprising the polypeptides and their application in immunization, vaccination...

  5. A Systematic Study of Site-specific GalNAc-type O-Glycosylation Modulating Proprotein Convertase Processing

    DEFF Research Database (Denmark)

    Schjoldager, Katrine Ter-Borch Gram; Vester-Christensen, Malene B.; Goth, Christoffer K.

    2011-01-01

    Site-specific GalNAc-type O-glycosylation is emerging as an important co-regulator of proprotein convertase (PC) processing of proteins. PC processing is crucial in regulating many fundamental biological pathways and O-glycans in or immediately adjacent to processing sites may affect recognition...... and function of PCs. Thus, we previously demonstrated that deficiency in site-specific O-glycosylation in a PC site of the fibroblast growth factor, FGF23, resulted in marked reduction in secretion of active unprocessed FGF23, which cause familial tumoral calcinosis and hyperostosis hyperphosphatemia. GalNAc......-type O-glycosylation is found on serine and threonine amino acids and up to 20 distinct polypeptide GalNAc transferases catalyze the first addition of GalNAc to proteins making this step the most complex and differentially regulated steps in protein glycosylation. There is no reliable prediction model...

  6. In-vivo biological activity and glycosylation analysis of a biosimilar recombinant human follicle-stimulating hormone product (Bemfola compared with its reference medicinal product (GONAL-f.

    Directory of Open Access Journals (Sweden)

    Renato Mastrangeli

    Full Text Available Recombinant human follicle-stimulating hormone (r-hFSH is widely used in fertility treatment. Although biosimilar versions of r-hFSH (follitropin alfa are currently on the market, given their structural complexity and manufacturing process, it is important to thoroughly evaluate them in comparison with the reference product. This evaluation should focus on how they differ (e.g., active component molecular characteristics, impurities and potency, as this could be associated with clinical outcome. This study compared the site-specific glycosylation profile and batch-to-batch variability of the in-vivo bioactivity of Bemfola, a biosimilar follitropin alfa, with its reference medicinal product GONAL-f. The focus of this analysis was the site-specific glycosylation at asparagine (Asn 52 of the α-subunit of FSH, owing to the pivotal role of Asn52 glycosylation in FSH receptor (FSHR activation/signalling. Overall, Bemfola had bulkier glycan structures and greater sialylation than GONAL-f. The nominal specific activity for both Bemfola and GONAL-f is 13,636 IU/mg. Taking into account both the determined potency and the nominal amount the average specific activity of Bemfola was 14,522 IU/mg (105.6% of the nominal value, which was greater than the average specific activity observed for GONAL-f (13,159 IU/mg; 97.3% of the nominal value; p = 0.0048, although this was within the range stated in the product label. A higher batch-to-batch variability was also observed for Bemfola versus GONAL-f (coefficient of variation: 8.3% vs 5.8%. A different glycan profile was observed at Asn52 in Bemfola compared with GONAL-f (a lower proportion of bi-antennary structures [~53% vs ~77%], and a higher proportion of tri-antennary [~41% vs ~23%] and tetra-antennary structures [~5% vs <1%]. These differences in the Asn52 glycan profile might potentially lead to differences in FSHR activation. This, together with the greater bioactivity and higher batch-to-batch variability

  7. fasting blood glucose and glycosylated haemoglobin levels

    African Journals Online (AJOL)

    Prince Acheampong

    (HbA1c) levels of diabetes mellitus patients as an index of glycaemic control. It was a prospective case- finding study using laboratory and general practice records. ... range of glycosylated haemoglobins, and the cut-off values for some clinical .... quality of glycaemic control by glycated haemoglobin in out-patient diabetic ...

  8. Proteomics and pathway analysis of N-glycosylated mammary gland proteins in response to Escherichia coli mastitis in cattle.

    Science.gov (United States)

    Yang, Yongxin; Shen, Weijun; Zhao, Xiaowei; Zhao, Huiling; Huang, Dongwei; Cheng, Guanglong

    2014-06-01

    The aim of this study was to investigate the N-linked glycosylated protein profile of mammary tissue from healthy cows and cows with mastitis due to Escherichia coli, in order to understand the molecular mechanisms of the host response to mastitis. N-glycopeptides were enriched with a lectin mixture and identified through high-accuracy mass spectrometry. A total of 551 N-glycosylation sites, corresponding to 294 proteins, were identified in the mammary tissues of healthy cows; these glycoproteins were categorised into three functional groups and clustered into 11 specific pathways. A total of 511 N-glycosylation sites, corresponding to 283 glycosylated proteins, were detected in the mammary tissues of cows with E. coli mastitis. There were differences in N-glycosylation sites in 98 proteins in the mammary tissues of healthy cows and cows with mastitis due to E. coli. Most proteins with altered glycosylation were those involved in responses to stress, cell adhesion and the immune response, and were assigned to five specific pathways based on their gene ontology annotation. The results from this study show that the glycosylated protein profile in the mammary tissues of healthy and mastitic cows are different, and altered glycoproteins are associated with several pathways, including the lysosome and O-glycan biosynthesis pathways. Copyright © 2014. Published by Elsevier Ltd.

  9. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Vakhrushev, Sergey; Joshi, Hiren Jitendra

    2013-01-01

    Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc-type O-glycosylation is hig......Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc-type O......-glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc-transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O...

  10. Modeling the mechanism of glycosylation reactions between ethanol, 1,2-ethanediol and methoxymethanol.

    Science.gov (United States)

    Azofra, Luis Miguel; Alkorta, Ibon; Toro-Labbé, Alejandro; Elguero, José

    2013-09-07

    The mechanism of the S(N)2 model glycosylation reaction between ethanol, 1,2-ethanediol and methoxymethanol has been studied theoretically at the B3LYP/6-311+G(d,p) computational level. Three different types of reactions have been explored: (i) the exchange of hydroxyl groups between these model systems; (ii) the basic catalysis reactions by combination of the substrates as glycosyl donors (neutral species) and acceptors (enolate species); and (iii) the effect on the reaction profile of an explicit H2O molecule in the reactions considered in (ii). The reaction force, the electronic chemical potential and the reaction electronic flux have been characterized for the reaction path in each case. Energy calculations show that methoxymethanol is the worst glycosyl donor model among the ones studied here, while 1,2-ethanediol is the best, having the lowest activation barrier of 74.7 kJ mol(-1) for the reaction between this one and the ethanolate as the glycosyl acceptor model. In general, the presence of direct interactions between the atoms involved in the penta-coordinated TS increases the activation energies of the processes.

  11. N-Glycosylation of an IgG antibody secreted by Nicotiana tabacum BY-2 cells can be modulated through co-expression of human β-1,4-galactosyltransferase.

    Science.gov (United States)

    Navarre, Catherine; Smargiasso, Nicolas; Duvivier, Laurent; Nader, Joseph; Far, Johann; De Pauw, Edwin; Boutry, Marc

    2017-06-01

    Nicotiana tabacum BY-2 suspension cells have several advantages that make them suitable for the production of full-size monoclonal antibodies which can be purified directly from the culture medium. Carbohydrate characterization of an antibody (Lo-BM2) expressed in N. tabacum BY-2 cells showed that the purified Lo-BM2 displays N-glycan homogeneity with a high proportion (>70%) of the complex GnGnXF glycoform. The stable co-expression of a human β-1,4-galactosyltransferase targeted to different Golgi sub-compartments altered Lo-BM2N-glycosylation and resulted in the production of an antibody that exhibited either hybrid structures containing a low abundance of the plant epitopes (α-1,3-fucose and β-1,2-xylose), or a large amount of galactose-extended N-glycan structures. These results demonstrate the suitability of stable N-glycoengineered N. tabacum BY-2 cell lines for the production of human-like antibodies.

  12. Comparative Glycoproteome Analysis: Dynamics of Protein Glycosylation during Metamorphic Transition from Pelagic to Benthic Life Stages in Three Invertebrates

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2012-02-03

    The life cycle of most benthic marine invertebrates has two distinct stages: the pelagic larval stage and the sessile juvenile stage. The transition between the larval stage and the juvenile stage is often abrupt and may be triggered by post-translational modification of proteins. Glycosylation, a very important post-translational modification, influences the biological activity of proteins. We used two-dimensional gel electrophoresis (2-DE) followed by glycoprotein-specific fluorescence staining and mass spectrometry with the goal of identifying glycosylation pattern changes during larval settlement and metamorphosis in barnacles, bryozoans, and polychaetes. Our results revealed substantial changes in the protein glycosylation patterns from larval to juvenile stages. Before metamorphosis, the degree of protein glycosylation was high in the barnacle Balanus (=Amphibalanus) amphitrite and the spionid polychaete Pseudopolydora vexillosa, whereas it increased after metamorphosis in the bryozoan Bugula neritina. We identified 19 abundant and differentially glycosylated proteins in these three species. Among the proteins, cellular stress- and metabolism-related proteins exhibited distinct glycosylation in B. amphitrite and B. neritina, whereas fatty acid metabolism-related proteins were abundantly glycosylated in P. vexillosa. Furthermore, the protein and gene expression analysis of some selected glycoproteins revealed that the degree of protein glycosylation did not always complement with transcriptional and translational changes associated with the larval-juvenile transition. The current study provides preliminary information on protein glycosylation in marine invertebrates that will serve as a solid basis for future comprehensive analysis of glycobiology during larval settlement and metamorphosis. © 2011 American Chemical Society.

  13. Shining evolutionary light on human sleep and sleep disorders.

    Science.gov (United States)

    Nunn, Charles L; Samson, David R; Krystal, Andrew D

    2016-01-01

    Sleep is essential to cognitive function and health in humans, yet the ultimate reasons for sleep-i.e. 'why' sleep evolved-remain mysterious. We integrate findings from human sleep studies, the ethnographic record, and the ecology and evolution of mammalian sleep to better understand sleep along the human lineage and in the modern world. Compared to other primates, sleep in great apes has undergone substantial evolutionary change, with all great apes building a sleeping platform or 'nest'. Further evolutionary change characterizes human sleep, with humans having the shortest sleep duration, yet the highest proportion of rapid eye movement sleep among primates. These changes likely reflect that our ancestors experienced fitness benefits from being active for a greater portion of the 24-h cycle than other primates, potentially related to advantages arising from learning, socializing and defending against predators and hostile conspecifics. Perspectives from evolutionary medicine have implications for understanding sleep disorders; we consider these perspectives in the context of insomnia, narcolepsy, seasonal affective disorder, circadian rhythm disorders and sleep apnea. We also identify how human sleep today differs from sleep through most of human evolution, and the implications of these changes for global health and health disparities. More generally, our review highlights the importance of phylogenetic comparisons in understanding human health, including well-known links between sleep, cognitive performance and health in humans. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  14. Non-human Primate Models for Brain Disorders - Towards Genetic Manipulations via Innovative Technology.

    Science.gov (United States)

    Qiu, Zilong; Li, Xiao

    2017-04-01

    Modeling brain disorders has always been one of the key tasks in neurobiological studies. A wide range of organisms including worms, fruit flies, zebrafish, and rodents have been used for modeling brain disorders. However, whether complicated neurological and psychiatric symptoms can be faithfully mimicked in animals is still debatable. In this review, we discuss key findings using non-human primates to address the neural mechanisms underlying stress and anxiety behaviors, as well as technical advances for establishing genetically-engineered non-human primate models of autism spectrum disorders and other disorders. Considering the close evolutionary connections and similarity of brain structures between non-human primates and humans, together with the rapid progress in genome-editing technology, non-human primates will be indispensable for pathophysiological studies and exploring potential therapeutic methods for treating brain disorders.

  15. Fab glycosylation of immunoglobulin G does not associate with improvement of rheumatoid arthritis during pregnancy

    NARCIS (Netherlands)

    A. Bondt (Albert); M. Wuhrer (Manfred); T.M. Kuijper (Martijn); J.M.W. Hazes (Mieke); R.J.E.M. Dolhain (Radboud)

    2016-01-01

    textabstractBackground: Changes in immunoglobulin G (IgG) constant domain (Fc) glycosylation are associated with changes in rheumatoid arthritis (RA) disease activity in response to pregnancy. Here, we sought to determine whether the same holds true for variable domain (Fab) glycosylation. Methods:

  16. The glycosylated IgII extracellular domain of EMMPRIN is implicated in the induction of MMP-2.

    Science.gov (United States)

    Papadimitropoulou, Adriana; Mamalaki, Avgi

    2013-07-01

    EMMPRIN is a widely expressed transmembrane glycoprotein that plays important roles in many physiological and pathological processes, such as tumor invasion and metastasis. It stimulates the production of matrix metalloproteinase (MMPs) by tumor-associated fibroblasts. In the present study, our aim was to (a) to investigate if the IgII loop domain of the extracellular domain (ECD) of EMMPRIN contributes to the MMP production by fibroblasts and (b) to evaluate the significance of glycosylation in this process. For this purpose, we expressed the ECD, IgI, or IgII domains of EMMPRIN, in their glycosylated and non-glycosylated forms, in the heterologous expression systems of P. pastoris and E. coli, respectively. Dermal fibroblasts were treated with purified recombinant domains and proteins from cell extracts and supernatants were analyzed by Western blot and zymography assays. Fibroblasts treated with ECD-, IgI-, and IgII-glycosylated domains of EMMPRIN significantly stimulated the gelatinolytic activity of MMP-2, compared to untreated fibroblasts, whereas no significant effect was observed after treatment with the non-glycosylated ECD, IgI, and IgII domains. Western blot analysis from cell extracts and supernatants revealed that only the glycosylated forms were able to stimulate MMP-2 production and secretion, respectively. Quantitative PCR revealed that this effect was not attributed to transcriptional alterations. This study showed that N-glycosylation was a prerequisite for efficient MMP-2 production, with the IgII loop domain contributing significantly to this process. Perturbation of the function of IgII-EMMPRIN loop could have potential therapeutic value in the inhibition of MMP-2-dependent cancer cell invasion and metastasis.

  17. SIKLODEKSTRIN GLIKOSIL TRANSFERASE DAN PEMANFAATANNYA DALAM INDUSTRI [Cyclodextrin Glycosyl Transferase and its application in industries

    Directory of Open Access Journals (Sweden)

    Budiasih Wahyuntari

    2005-12-01

    Full Text Available Cyclodextrin glycosyl transferase (CGT-ase is mainly produced by Bacilli. Systematical name of the enzyme is E.C. 2.4.1.19 a-1,4 glucan-4-glycosyl transferase. The enzyme catalyzes hydrolysis of starch intramolecular, and intermolecular transglycosylation of a-1,4, glucan chains. Cyclodextrins are a-1,4 linked cyclic oligosaccharides resulting from enzymatic degradation of starch by cyclodextrin glycosyl transferase through untramolecular transglycosylation. The major cyclodextrins are made up of 6, 7 and 8 glucopyranose units which are known as a-, b-, and y-cyclodextrin. All CGT-ase catalyze three kinds of cyclodextrins, the proportion of the cyclodextrins depends on the enzyme source and reaction conditions. The intermolecular transglycosylation ability of the enzyme has been applied in transfering glycosyl residues into suitable acceptor. Transglycosylation by the enzymes have been tested to improve solubility of some flavonoids and to favor precipitation ci some glycosides.

  18. Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling.

    Directory of Open Access Journals (Sweden)

    Suresh Marada

    2015-08-01

    Full Text Available The G protein-coupled receptor (GPCR Smoothened (Smo is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice.

  19. Por secretion system-dependent secretion and glycosylation of Porphyromonas gingivalis hemin-binding protein 35.

    Directory of Open Access Journals (Sweden)

    Mikio Shoji

    Full Text Available The anaerobic Gram-negative bacterium Porphyromonas gingivalis is a major pathogen in severe forms of periodontal disease and refractory periapical perodontitis. We have recently found that P. gingivalis has a novel secretion system named the Por secretion system (PorSS, which is responsible for secretion of major extracellular proteinases, Arg-gingipains (Rgps and Lys-gingipain. These proteinases contain conserved C-terminal domains (CTDs in their C-termini. Hemin-binding protein 35 (HBP35, which is one of the outer membrane proteins of P. gingivalis and contributes to its haem utilization, also contains a CTD, suggesting that HBP35 is translocated to the cell surface via the PorSS. In this study, immunoblot analysis of P. gingivalis mutants deficient in the PorSS or in the biosynthesis of anionic polysaccharide-lipopolysaccharide (A-LPS revealed that HBP35 is translocated to the cell surface via the PorSS and is glycosylated with A-LPS. From deletion analysis with a GFP-CTD[HBP35] green fluorescent protein fusion, the C-terminal 22 amino acid residues of CTD[HBP35] were found to be required for cell surface translocation and glycosylation. The GFP-CTD fusion study also revealed that the CTDs of CPG70, peptidylarginine deiminase, P27 and RgpB play roles in PorSS-dependent translocation and glycosylation. However, CTD-region peptides were not found in samples of glycosylated HBP35 protein by peptide map fingerprinting analysis, and antibodies against CTD-regions peptides did not react with glycosylated HBP35 protein. These results suggest both that the CTD region functions as a recognition signal for the PorSS and that glycosylation of CTD proteins occurs after removal of the CTD region. Rabbits were used for making antisera against bacterial proteins in this study.

  20. Enhancing Accuracy in Molecular Weight Determination of Highly Heterogeneously Glycosylated Proteins by Native Tandem Mass Spectrometry

    NARCIS (Netherlands)

    Wang, Guanbo; de Jong, Rob N; van den Bremer, Ewald T J; Parren, Paul W H I; Heck, Albert J R

    2017-01-01

    The determination of molecular weights (MWs) of heavily glycosylated proteins is seriously hampered by the physicochemical characteristics and heterogeneity of the attached carbohydrates. Glycosylation impacts protein migration during sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis

  1. Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer

    Directory of Open Access Journals (Sweden)

    Justine H. Dewald

    2016-11-01

    Full Text Available Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in number of diseases such as cancer and chronic inflammation. In that context, pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases involved in the biosynthesis of carbohydrate chains. These changes in cell surface glycosylation are also known to regulate cell signaling and could contribute to disease pathogenesis. This review summarizes our current knowledge of the glycosylation changes induced by pro-inflammatory cytokines, with a particular focus on cancer and cystic fibrosis, and their consequences on cell interactions and signaling.

  2. General N-and O-Linked Glycosylation of Lipoproteins in Mycoplasmas and Role of Exogenous Oligosaccharide.

    Science.gov (United States)

    Daubenspeck, James M; Jordan, David S; Simmons, Warren; Renfrow, Matthew B; Dybvig, Kevin

    2015-01-01

    The lack of a cell wall, flagella, fimbria, and other extracellular appendages and the possession of only a single membrane render the mycoplasmas structurally simplistic and ideal model organisms for the study of glycoconjugates. Most species have genomes of about 800 kb and code for few proteins predicted to have a role in glycobiology. The murine pathogens Mycoplasma arthritidis and Mycoplasma pulmonis have only a single gene annotated as coding for a glycosyltransferase but synthesize glycolipid, polysaccharide and glycoproteins. Previously, it was shown that M. arthritidis glycosylated surface lipoproteins through O-linkage. In the current study, O-linked glycoproteins were similarly found in M. pulmonis and both species of mycoplasma were found to also possess N-linked glycans at residues of asparagine and glutamine. Protein glycosylation occurred at numerous sites on surface-exposed lipoproteins with no apparent amino acid sequence specificity. The lipoproteins of Mycoplasma pneumoniae also are glycosylated. Glycosylation was dependent on the glycosidic linkages from host oligosaccharides. As far as we are aware, N-linked glycoproteins have not been previously described in Gram-positive bacteria, the organisms to which the mycoplasmas are phylogenetically related. The findings indicate that the mycoplasma cell surface is heavily glycosylated with implications for the modulation of mycoplasma-host interactions.

  3. Low hygroscopic spray-dried powders with trans-glycosylated food additives enhance the solubility and oral bioavailability of ipriflavone.

    Science.gov (United States)

    Fujimori, Miki; Kadota, Kazunori; Kato, Kouki; Seto, Yoshiki; Onoue, Satomi; Sato, Hideyuki; Ueda, Hiroshi; Tozuka, Yuichi

    2016-01-01

    The improvement in the solubility and dissolution rate may promote a superior absorption property towards the human body. The spray-dried powders (SDPs) of ipriflavone, which was used as a model hydrophobic flavone, with trans-glycosylated rutin (Rutin-G) showed the highest solubilizing effect of ipriflavone among three types of trans-glycosylated food additives. The SDPs of ipriflavone with Rutin-G have both a significant higher dissolution rate and solubility enhancement of ipriflavone. This spray-dried formulation of ipriflavone with Rutin-G exhibited a low hygroscopicity as a critical factor in product preservation. In addition, an improvement in the oral absorption of ipriflavone was achieved by means of preparing composite particles of ipriflavone/Rutin-G via spray drying, indicating a 4.3-fold increase in the area under the plasma concentration-time curve compared with that of untreated ipriflavone. These phenomena could be applicable to food ingredients involving hydrophobic flavones for producing healthy food with a high quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. SnapShot: O-Glycosylation Pathways across Kingdoms

    DEFF Research Database (Denmark)

    Joshi, Hiren J.; Narimatsu, Yoshiki; Schjoldager, Katrine T.

    2018-01-01

    O-glycosylation is one of the most abundant and diverse types of post-translational modifications of proteins. O-glycans modulate the structure, stability, and function of proteins and serve generalized as well as highly specific roles in most biological processes. This ShapShot presents types of......-glycans found in different organisms and their principle biosynthetic pathways...

  5. Role of protein glycosylation on the expression of muscarinic receptors of N4TG1 neuroblastoma cells

    International Nuclear Information System (INIS)

    Ahmad, A.; Chiang, P.K.

    1986-01-01

    Muscarinic acetylcholine receptors (mAChR) are glycoproteins. Experiments were conducted to determine whether active glycosylation of proteins in N4TG1 neuroblastoma cells could affect the expression of muscarinic receptors on the cell surface. The binding of radioactive N-methylscopolamine, a membrane impermeable ligand, to intact cells was used as a measure of mAChR. In the presence of the inhibitors of glycosylation, such as tunicamycin, monensin and amphomycin, N-linked glycosylation of proteins in the N4TG1 cells was inhibited, as measured by the incorporation of radioactive glucosamine or mannose in proteins. At the concentrations of tunicamycin and monensin used, the glycosylation of proteins after 3 hours were drastically reduced, but the number of mAChR in the cells was not altered. The apparent lack of effect within a short incubation period could be attributed to the presence of preformed oligosaccharide dolichol readily available for N-glycosylation. However, after 24 hours, tunicamycin (0.05 μg/ml) caused a decrease in the number of mAChR by 17% without having any effect on protein synthesis. Therefore, de novo glycosylation of proteins may be required for the expression of mAChR receptors in the N4TG1 neuroblastoma cell surface

  6. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors.

    Science.gov (United States)

    Karst, Daniel J; Scibona, Ernesto; Serra, Elisa; Bielser, Jean-Marc; Souquet, Jonathan; Stettler, Matthieu; Broly, Hervé; Soos, Miroslav; Morbidelli, Massimo; Villiger, Thomas K

    2017-09-01

    Mammalian cell perfusion cultures are gaining renewed interest as an alternative to traditional fed-batch processes for the production of therapeutic proteins, such as monoclonal antibodies (mAb). The steady state operation at high viable cell density allows the continuous delivery of antibody product with increased space-time yield and reduced in-process variability of critical product quality attributes (CQA). In particular, the production of a confined mAb N-linked glycosylation pattern has the potential to increase therapeutic efficacy and bioactivity. In this study, we show that accurate control of flow rates, media composition and cell density of a Chinese hamster ovary (CHO) cell perfusion bioreactor allowed the production of a constant glycosylation profile for over 20 days. Steady state was reached after an initial transition phase of 6 days required for the stabilization of extra- and intracellular processes. The possibility to modulate the glycosylation profile was further investigated in a Design of Experiment (DoE), at different viable cell density and media supplement concentrations. This strategy was implemented in a sequential screening approach, where various steady states were achieved sequentially during one culture. It was found that, whereas high ammonia levels reached at high viable cell densities (VCD) values inhibited the processing to complex glycan structures, the supplementation of either galactose, or manganese as well as their synergy significantly increased the proportion of complex forms. The obtained experimental data set was used to compare the reliability of a statistical response surface model (RSM) to a mechanistic model of N-linked glycosylation. The latter outperformed the response surface predictions with respect to its capability and reliability in predicting the system behavior (i.e., glycosylation pattern) outside the experimental space covered by the DoE design used for the model parameter estimation. Therefore, we can

  7. Enhanced SCAP glycosylation by inflammation induces macrophage foam cell formation.

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    Full Text Available Inflammatory stress promotes foam cell formation by disrupting LDL receptor feedback regulation in macrophages. Sterol Regulatory Element Binding Proteins (SREBPs Cleavage-Activating Protein (SCAP glycosylation plays crucial roles in regulating LDL receptor and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR feedback regulation. The present study was to investigate if inflammatory stress disrupts LDL receptor and HMGCoAR feedback regulation by affecting SCAP glycosylation in THP-1 macrophages. Intracellular cholesterol content was assessed by Oil Red O staining and quantitative assay. The expression of molecules controlling cholesterol homeostasis was examined using real-time quantitative RT-PCR and Western blotting. The translocation of SCAP from the endoplasmic reticulum (ER to the Golgi was detected by confocal microscopy. We demonstrated that exposure to inflammatory cytokines increased lipid accumulation in THP-1 macrophages, accompanying with an increased SCAP expression even in the presence of a high concentration of LDL. These inflammatory cytokines also prolonged the half-life of SCAP by enhancing glycosylation of SCAP due to the elevated expression of the Golgi mannosidase II. This may enhance translocation and recycling of SCAP between the ER and the Golgi, escorting more SREBP2 from the ER to the Golgi for activation by proteolytic cleavages as evidenced by an increased N-terminal of SREBP2 (active form. As a consequence, the LDL receptor and HMGCoAR expression were up-regulated. Interestingly, these effects could be blocked by inhibitors of Golgi mannosidases. Our results indicated that inflammation increased native LDL uptake and endogenous cholesterol de novo synthesis, thereby causing foam cell formation via increasing transcription and protein glycosylation of SCAP in macrophages. These data imply that inhibitors of Golgi processing enzymes might have a potential vascular-protective role in prevention of atherosclerotic foam

  8. Stannylene‐Mediated Regioselective 6‐O‐Glycosylation of Unprotected Phenyl 1‐Thioglycopyranosides

    DEFF Research Database (Denmark)

    Maggi, Agnese; Madsen, Robert

    2013-01-01

    acetal, and then subjected to selective glycosylation at the 6‐position with the Koenigs–Knorr protocol. Peracylated glycosyl bromides of D‐glucose, D‐galactose, D‐mannose and D‐glucosamine were employed as the donors to give the corresponding (1→6)‐linked disaccharides in moderate to good yields......‐thio‐β‐D‐glucopyranoside gave rise to the corresponding (1→6)‐linked trisaccharides in moderate yields....

  9. GtfA and GtfB Are Both Required for Protein O-Glycosylation in Lactobacillus plantarum

    Science.gov (United States)

    Lee, I-Chiao; van Swam, Iris I.; Tomita, Satoru; Morsomme, Pierre; Rolain, Thomas; Hols, Pascal; Bron, Peter A.

    2014-01-01

    Acm2, the major autolysin of Lactobacillus plantarum WCFS1, was recently found to be O-glycosylated with N-acetylhexosamine, likely N-acetylglucosamine (GlcNAc). In this study, we set out to identify the glycosylation machinery by employing a comparative genomics approach to identify Gtf1 homologues, which are involved in fimbria-associated protein 1 (Fap1) glycosylation in Streptococcus parasanguinis. This in silico approach resulted in the identification of 6 candidate L. plantarum WCFS1 genes with significant homology to Gtf1, namely, tagE1 to tagE6. These candidate genes were targeted by systematic gene deletion, followed by assessment of the consequences on glycosylation of Acm2. We observed a changed mobility of Acm2 on SDS-PAGE in the tagE5E6 deletion strain, while deletion of other tagE genes resulted in Acm2 mobility comparable to that of the wild type. Subsequent mass spectrometry analysis of excised and in-gel-digested Acm2 confirmed the loss of glycosylation on Acm2 in the tagE5E6 deletion mutant, whereas a lectin blot using GlcNAc-specific succinylated wheat germ agglutinin (sWGA) revealed that besides Acm2, tagE5E6 deletion also abolished all but one other sWGA-reactive, protease-sensitive signal. Only complementation of both tagE5 and tagE6 restored those sWGA lectin signals, establishing that TagE5 and TagE6 are both required for the glycosylation of Acm2 as well as the vast majority of other sWGA-reactive proteins. Finally, sWGA lectin blotting experiments using a panel of 8 other L. plantarum strains revealed that protein glycosylation is a common feature in L. plantarum strains. With the establishment of these enzymes as protein glycosyltransferases, we propose to rename TagE5 and TagE6 as GtfA and GtfB, respectively. PMID:24532775

  10. Transgenic rice seed expressing flavonoid biosynthetic genes accumulate glycosylated and/or acylated flavonoids in protein bodies

    Science.gov (United States)

    Ogo, Yuko; Mori, Tetsuya; Nakabayashi, Ryo; Saito, Kazuki; Takaiwa, Fumio

    2016-01-01

    Plant-specialized (or secondary) metabolites represent an important source of high-value chemicals. In order to generate a new production platform for these metabolites, an attempt was made to produce flavonoids in rice seeds. Metabolome analysis of these transgenic rice seeds using liquid chromatography-photodiode array-quadrupole time-of-flight mass spectrometry was performed. A total of 4392 peaks were detected in both transgenic and non-transgenic rice, 20–40% of which were only detected in transgenic rice. Among these, 82 flavonoids, including 37 flavonols, 11 isoflavones, and 34 flavones, were chemically assigned. Most of the flavonols and isoflavones were O-glycosylated, while many flavones were O-glycosylated and/or C-glycosylated. Several flavonoids were acylated with malonyl, feruloyl, acetyl, and coumaroyl groups. These glycosylated/acylated flavonoids are thought to have been biosynthesized by endogenous rice enzymes using newly synthesized flavonoids whose biosynthesis was catalysed by exogenous enzymes. The subcellular localization of the flavonoids differed depending on the class of aglycone and the glycosylation/acylation pattern. Therefore, flavonoids with the intended aglycones were efficiently produced in rice seeds via the exogenous enzymes introduced, while the flavonoids were variously glycosylated/acylated by endogenous enzymes. The results suggest that rice seeds are useful not only as a production platform for plant-specialized metabolites such as flavonoids but also as a tool for expanding the diversity of flavonoid structures, providing novel, physiologically active substances. PMID:26438413

  11. Discrimination between glycosylation patterns of therapeutic antibodies using a microfluidic platform, MALDI-MS and multivariate statistics.

    Science.gov (United States)

    Thuy, Tran Thi; Tengstrand, Erik; Aberg, Magnus; Thorsén, Gunnar

    2012-11-01

    Optimal glycosylation with respect to the efficacy, serum half-life time, and immunogenic properties is essential in the generation of therapeutic antibodies. The glycosylation pattern can be affected by several different parameters during the manufacture of antibodies and may change significantly over cultivation time. Fast and robust methods for determination of the glycosylation patterns of therapeutic antibodies are therefore needed. We have recently presented an efficient method for the determination of glycans on therapeutic antibodies using a microfluidic CD platform for sample preparation prior to matrix-assisted laser-desorption mass spectrometry analysis. In the present work, this method is applied to analyse the glycosylation patterns of three commercially available therapeutic antibodies and one intended for therapeutic use. Two of the antibodies produced in mouse myeloma cell line (SP2/0) and one produced in Chinese hamster ovary (CHO) cells exhibited similar glycosylation patterns but could still be readily differentiated from each other using multivariate statistical methods. The two antibodies with most similar glycosylation patterns were also studied in an assessment of the method's applicability for quality control of therapeutic antibodies. The method presented in this paper is highly automated and rapid. It can therefore efficiently generate data that helps to keep a production process within the desired design space or assess that an identical product is being produced after changes to the process. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Solanum torvum Swartz. fruit attenuates cadmium-induced liver and kidney damage through modulation of oxidative stress and glycosylation.

    Science.gov (United States)

    Ramamurthy, C H; Subastri, A; Suyavaran, A; Subbaiah, K C V; Valluru, L; Thirunavukkarasu, C

    2016-04-01

    Increased levels of environmental pollutants are linked to almost all human disorders; the efficient method to manage the human health is through naturally available dietary molecule. Solanum torvum (ST) Swartz (Solanaceae) commonly called Turkey Berry is found in Africa, Asia, and South America. Its fruit, part of traditional Indian cuisine, is a widely consumed nutritious herb, acclaimed for its medicinal value. ST aqueous extract (STAe) (250, 500, and 1000 mg/kg b.w., 6 days; oral) against acute Cadmium (Cd) (6.3 mg/kg b.w., single dose; oral) toxicity was evaluated in rats. Protective effect was assessed using serum markers, tissue antioxidants, oxidant derivatives, glycoprotein, and histopathological studies. The activities of serum marker enzymes were increased (40-60 %); antioxidant enzymes such as SOD and CAT, GSH, and its metabolic enzyme activities were decreased (50-80 %) in the liver and kidney upon Cd intoxication. During STAe pre-treatment, at doses of 250 and 500 mg/kg b.w., the above changes were brought to near normal (25-63 %). Tissue 4-hydroxynonenal, 3-nitrotyrosine, and protein carbonyls were increased (8-15 fold) in Cd-alone-treated rats, whereas pre-supplementation of STAe significantly decreased their levels and inhibited the protein glycosylation effectively. The pharmacological effect of STAe was confirmed by histopathological observations. Based on previous literature and present investigation, we conclude that ST may serve as a potential functional food against environmental contaminant such as heavy metal-induced oxidative stress.

  13. Mining the Virgin Land of Neurotoxicology: A Novel Paradigm of Neurotoxic Peptides Action on Glycosylated Voltage-Gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    Zhirui Liu

    2012-01-01

    Full Text Available Voltage-gated sodium channels (VGSCs are important membrane protein carrying on the molecular basis for action potentials (AP in neuronal firings. Even though the structure-function studies were the most pursued spots, the posttranslation modification processes, such as glycosylation, phosphorylation, and alternative splicing associating with channel functions captured less eyesights. The accumulative research suggested an interaction between the sialic acids chains and ion-permeable pores, giving rise to subtle but significant impacts on channel gating. Sodium channel-specific neurotoxic toxins, a family of long-chain polypeptides originated from venomous animals, are found to potentially share the binding sites adjacent to glycosylated region on VGSCs. Thus, an interaction between toxin and glycosylated VGSC might hopefully join the campaign to approach the role of glycosylation in modulating VGSCs-involved neuronal network activity. This paper will cover the state-of-the-art advances of researches on glycosylation-mediated VGSCs function and the possible underlying mechanisms of interactions between toxin and glycosylated VGSCs, which may therefore, fulfill the knowledge in identifying the pharmacological targets and therapeutic values of VGSCs.

  14. Synthesis of Curcumin Glycosides with Enhanced Anticancer Properties Using One-Pot Multienzyme Glycosylation Technique.

    Science.gov (United States)

    Gurung, Rit Bahadur; Gong, So Youn; Dhakal, Dipesh; Le, Tuoi Thi; Jung, Na Rae; Jung, Hye Jin; Oh, Tae Jin; Sohng, Jae Kyung

    2017-09-28

    Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, antiinflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP- α-D-glucose or UDP-α-D-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'- O -β- glucoside, curcumin 4',4''-di- O -β-glucoside, curcumin 4'- O -β-2-deoxyglucoside, and curcumin 4',4''-di- O -β-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'- O -β-glucoside and curcumin 4'- O -β-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.

  15. Glycosyl-Nucleolipids as new bioinspired amphiphiles.

    Science.gov (United States)

    Latxague, Laurent; Patwa, Amit; Amigues, Eric; Barthélémy, Philippe

    2013-09-30

    Four new Glycosyl-NucleoLipid (GNL) analogs featuring either a single fluorocarbon or double hydrocarbon chains were synthesized in good yields from azido thymidine as starting material. Physicochemical studies (surface tension measurements, differential scanning calorimetry) indicate that hydroxybutanamide-based GNLs feature endothermic phase transition temperatures like the previously reported double chain glycerol-based GNLs. The second generation of GNFs featuring a free nucleobase reported here presents a better surface activity (lower glim) compared to the first generation of GNFs.

  16. Neuraminidase stalk length and additional glycosylation of the hemagglutinin influence the virulence of influenza H5N1 viruses for mice.

    Science.gov (United States)

    Matsuoka, Yumiko; Swayne, David E; Thomas, Colleen; Rameix-Welti, Marie-Anne; Naffakh, Nadia; Warnes, Christine; Altholtz, Melanie; Donis, Ruben; Subbarao, Kanta

    2009-05-01

    Following circulation of avian influenza H5 and H7 viruses in poultry, the hemagglutinin (HA) can acquire additional glycosylation sites, and the neuraminidase (NA) stalk becomes shorter. We investigated whether these features play a role in the pathogenesis of infection in mammalian hosts. From 1996 to 2007, H5N1 viruses with a short NA stalk have become widespread in several avian species. Compared to viruses with a long-stalk NA, viruses with a short-stalk NA showed a decreased capacity to elute from red blood cells and an increased virulence in mice, but not in chickens. The presence of additional HA glycosylation sites had less of an effect on virulence than did NA stalk length. The short-stalk NA of H5N1 viruses circulating in Asia may contribute to virulence in humans.

  17. Neuraminidase Stalk Length and Additional Glycosylation of the Hemagglutinin Influence the Virulence of Influenza H5N1 Viruses for Mice▿

    Science.gov (United States)

    Matsuoka, Yumiko; Swayne, David E.; Thomas, Colleen; Rameix-Welti, Marie-Anne; Naffakh, Nadia; Warnes, Christine; Altholtz, Melanie; Donis, Ruben; Subbarao, Kanta

    2009-01-01

    Following circulation of avian influenza H5 and H7 viruses in poultry, the hemagglutinin (HA) can acquire additional glycosylation sites, and the neuraminidase (NA) stalk becomes shorter. We investigated whether these features play a role in the pathogenesis of infection in mammalian hosts. From 1996 to 2007, H5N1 viruses with a short NA stalk have become widespread in several avian species. Compared to viruses with a long-stalk NA, viruses with a short-stalk NA showed a decreased capacity to elute from red blood cells and an increased virulence in mice, but not in chickens. The presence of additional HA glycosylation sites had less of an effect on virulence than did NA stalk length. The short-stalk NA of H5N1 viruses circulating in Asia may contribute to virulence in humans. PMID:19225004

  18. Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma

    Directory of Open Access Journals (Sweden)

    Wan-Ling Ho

    2016-09-01

    Full Text Available Abstract Glycosylation is the most complex post-translational modification of proteins. Altered glycans on the tumor- and host-cell surface and in the tumor microenvironment have been identified to mediate critical events in cancer pathogenesis and progression. Tumor-associated glycan changes comprise increased branching of N-glycans, higher density of O-glycans, generation of truncated versions of normal counterparts, and generation of unusual forms of terminal structures arising from sialylation and fucosylation. The functional role of tumor-associated glycans (Tn, sTn, T, and sLea/x is dependent on the interaction with lectins. Lectins are expressed on the surface of immune cells and endothelial cells or exist as extracellular matrix proteins and soluble adhesion molecules. Expression of tumor-associated glycans is involved in the dysregulation of glycogenes, which mainly comprise glycosyltransferases and glycosidases. Furthermore, genetic and epigenetic mechanisms on many glycogenes are associated with malignant transformation. With better understanding of all aspects of cancer-cell glycomics, many tumor-associated glycans have been utilized for diagnostic, prognostic, and therapeutic purposes. Glycan-based therapeutics has been applied to cancers from breast, lung, gastrointestinal system, melanomas, and lymphomas but rarely to neuroblastomas (NBs. The success of anti-disialoganglioside (GD2, a glycolipid antigen antibodies sheds light on glycan-based therapies for NB and also suggests the possibility of protein glycosylation-based therapies for NB. This review summarizes our understanding of cancer glycobiology with a focus of how protein glycosylation and associated glycosyltransferases affect cellular behaviors and treatment outcome of various cancers, especially NB. Finally, we highlight potential applications of glycosylation in drug and cancer vaccine development for NB.

  19. Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing.

    Science.gov (United States)

    Franc, Vojtěch; Řehulka, Pavel; Raus, Martin; Stulík, Jiří; Novak, Jan; Renfrow, Matthew B; Šebela, Marek

    2013-10-30

    Determining disease-associated changes in protein glycosylation provides a better understanding of pathogenesis. This work focuses on human immunoglobulin A1 (IgA1), where aberrant O-glycosylation plays a key role in the pathogenesis of IgA nephropathy (IgAN). Normal IgA1 hinge region carries 3 to 6 O-glycans consisting of N-acetylgalactosamine (GalNAc) and galactose (Gal); both sugars may be sialylated. In IgAN patients, some O-glycans on a fraction of IgA1 molecules are Gal-deficient. Here we describe a sample preparation protocol with optimized cysteine alkylation of a Gal-deficient polymeric IgA1 myeloma protein prior to in-gel digestion and analysis of the digest by MALDI-TOF/TOF mass spectrometry (MS). Following a novel strategy, IgA1 hinge-region O-glycopeptides were fractionated by reversed-phase liquid chromatography using a microgradient device and identified by MALDI-TOF/TOF tandem MS (MS/MS). The acquired MS/MS spectra were interpreted manually and by means of our own software. This allowed assigning up to six O-glycosylation sites and demonstration, for the first time, of the distribution of isomeric O-glycoforms having the same molecular mass, but a different glycosylation pattern. The most abundant Gal-deficient O-glycoforms were GalNAc4Gal3 and GalNAc5Gal4 with one Gal-deficient site and GalNAc5Gal3 and GalNAc4Gal2 with two Gal-deficient sites. The most frequent Gal-deficient sites were at Ser230 and/or Thr236. In this work, we studied the O-glycosylation in the hinge region of human immunoglobulin A1 (IgA1). Aberrant glycosylation of the protein plays a key role in the pathogenesis of IgA nephropathy. Thus identification of the O-glycan composition of IgA1 is important for a deeper understanding of the disease mechanism, biomarker discovery and validation, and implementation and monitoring of disease-specific therapies. We developed a new procedure for elucidating the heterogeneity of IgA1 O-glycosylation. After running a polyacrylamide gel

  20. Genetic rescue of glycosylation-deficient Fgf23 in the Galnt3 knockout mouse.

    Science.gov (United States)

    Ichikawa, Shoji; Gray, Amie K; Padgett, Leah R; Allen, Matthew R; Clinkenbeard, Erica L; Sarpa, Nicole M; White, Kenneth E; Econs, Michael J

    2014-10-01

    Fibroblast growth factor 23 (FGF23) is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. The FGF23 subtilisin-like proprotein convertase recognition sequence ((176)RHTR(179)↓) is protected by O-glycosylation through ppGalNAc-T3 (GALNT3) activity. Thus, inactivating GALNT3 mutations render FGF23 susceptible to proteolysis, thereby reducing circulating intact hormone levels and leading to hyperphosphatemic familial tumoral calcinosis. To further delineate the role of glycosylation in the Fgf23 function, we generated an inducible FGF23 transgenic mouse expressing human mutant FGF23 (R176Q and R179Q) found in patients with autosomal dominant hypophosphatemic rickets (ADHR) and bred this animal to Galnt3 knockout mice, a model of familial tumoral calcinosis. Due to the low intact Fgf23 level, Galnt3 knockout mice with wild-type Fgf23 alleles were hyperphosphatemic. In contrast, carriers of the mutant FGF23 transgene, regardless of Galnt3 mutation status, had significantly higher serum intact FGF23, resulting in severe hypophosphatemia. Importantly, serum phosphorus and FGF23 were comparable between transgenic mice with or without normal Galnt3 alleles. To determine whether the presence of the ADHR mutation could improve biochemical and skeletal abnormalities in Galnt3-null mice, these mice were also mated to Fgf23 knock-in mice, carrying heterozygous or homozygous R176Q ADHR Fgf23 mutations. The knock-in mice with functional Galnt3 had normal Fgf23 but were slightly hypophosphatemic. The stabilized Fgf23 ADHR allele reversed the Galnt3-null phenotype and normalized total Fgf23, serum phosphorus, and bone Fgf23 mRNA. However, the skeletal phenotype was unaffected. In summary, these data demonstrate that O-glycosylation by ppGaINAc-T3 is only necessary for proper secretion of intact Fgf23 and, once secreted, does not affect Fgf23 function. Furthermore, the more stable Fgf23 ADHR mutant protein could normalize serum phosphorus

  1. Genes Involved in the Endoplasmic Reticulum N-Glycosylation Pathway of the Red Microalga Porphyridium sp.: A Bioinformatic Study

    Directory of Open Access Journals (Sweden)

    Oshrat Levy-Ontman

    2014-02-01

    Full Text Available N-glycosylation is one of the most important post-translational modifications that influence protein polymorphism, including protein structures and their functions. Although this important biological process has been extensively studied in mammals, only limited knowledge exists regarding glycosylation in algae. The current research is focused on the red microalga Porphyridium sp., which is a potentially valuable source for various applications, such as skin therapy, food, and pharmaceuticals. The enzymes involved in the biosynthesis and processing of N-glycans remain undefined in this species, and the mechanism(s of their genetic regulation is completely unknown. In this study, we describe our pioneering attempt to understand the endoplasmic reticulum N-Glycosylation pathway in Porphyridium sp., using a bioinformatic approach. Homology searches, based on sequence similarities with genes encoding proteins involved in the ER N-glycosylation pathway (including their conserved parts were conducted using the TBLASTN function on the algae DNA scaffold contigs database. This approach led to the identification of 24 encoded-genes implicated with the ER N-glycosylation pathway in Porphyridium sp. Homologs were found for almost all known N-glycosylation protein sequences in the ER pathway of Porphyridium sp.; thus, suggesting that the ER-pathway is conserved; as it is in other organisms (animals, plants, yeasts, etc..

  2. Blood pressure reduction due to hemoglobin glycosylation in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Pedro Cabrales

    2008-08-01

    Full Text Available Pedro Cabrales1, Miguel A Salazar Vázquez2,3, Beatriz Y Salazar Vázquez3,4, Martha Rodríguez-Morán5, Marcos Intaglietta4, Fernando Guerrero-Romero51La Jolla Bioengineering Institute, La Jolla, California, USA; 2Hospital Regional No. 1, of the Mexican Social Security Institute, Victoria de Durango, Dgo. Mexico; 3Faculty of Medicine and Dept. of Physical Chemistry, Universidad Juárez del Estado de Durango, Victoria de Durango, Dgo. Mexico; 4Department of Bioengineering, University of California, San Diego, La Jolla, California, USA; 5Biomedical Research Unit, of the Mexican Social Security Institute, Victoria de Durango, Dgo. MexicoObjective: To test the hypothesis that glycosylation of hemoglobin constitutes a risk factor for hypertension.Methods: A total of 129 relative uniform diabetic subjects (86 women and 42 men were enrolled in a cross-sectional study. Exclusion criteria included alcohol consumption, smoking, ischemic heart disease, stroke, neoplasia, renal, hepatic, and chronic inflammatory disease. Systolic and diastolic pressures were recorded in subsequent days and mean arterial blood pressure (MAP was determined. Hemoglobin glycosylation was measured by determining the percentage glycosylated hemoglobin (HbA1c by means of the automated microparticle enzyme immunoassay test.Results: MAP was found to be independent of the concentration of HbA1c; however, correcting MAP for the variability in hematocrit, to evidence the level of vasoconstriction (or vasodilatation showed that MAP is negatively correlated with the concentration of HbA1c (p for trend <0.05, when patients treated for hypertension are excluded from the analysis. Patients treated for hypertension showed the opposite trend with increasing MAP as HbA1c increased (p for the difference in trends <0.05.Conclusions: Glycosylation per se appears to lead to blood pressure reduction in type 2 diabetic patients untreated for hypertension. Treatment for hypertension may be

  3. N-Glycosylation of cholera toxin B subunit: serendipity for novel plant-made vaccines?

    Directory of Open Access Journals (Sweden)

    Nobuyuki eMatoba

    2015-12-01

    Full Text Available The non-toxic B subunit of cholera toxin (CTB has attracted considerable interests from vaccinologists due to strong mucosal immunomodulatory effects and potential utility as a vaccine scaffold for heterologous antigens. Along with other conventional protein expression systems, various plant species have been used as recombinant production hosts for CTB and its fusion proteins. However, it has recently become clear that the protein is N-glycosylated within the endoplasmic reticulum of plant cells – a eukaryotic post-translational modification that is not present in native CTB. While functionally active aglycosylated variants have been successfully engineered to circumvent potential safety and regulatory issues related to glycosylation, this modification may actually provide advantageous characteristics to the protein as a vaccine platform. Based on data from our recent studies, I discuss the unique features of N-glycosylated CTB produced in plants for the development of novel vaccines.

  4. Prediction of mucin-type O-glycosylation sites in mammalian proteins using the composition of k-spaced amino acid pairs

    Directory of Open Access Journals (Sweden)

    Sheng Zhi-Ya

    2008-02-01

    Full Text Available Abstract Background As one of the most common protein post-translational modifications, glycosylation is involved in a variety of important biological processes. Computational identification of glycosylation sites in protein sequences becomes increasingly important in the post-genomic era. A new encoding scheme was employed to improve the prediction of mucin-type O-glycosylation sites in mammalian proteins. Results A new protein bioinformatics tool, CKSAAP_OGlySite, was developed to predict mucin-type O-glycosylation serine/threonine (S/T sites in mammalian proteins. Using the composition of k-spaced amino acid pairs (CKSAAP based encoding scheme, the proposed method was trained and tested in a new and stringent O-glycosylation dataset with the assistance of Support Vector Machine (SVM. When the ratio of O-glycosylation to non-glycosylation sites in training datasets was set as 1:1, 10-fold cross-validation tests showed that the proposed method yielded a high accuracy of 83.1% and 81.4% in predicting O-glycosylated S and T sites, respectively. Based on the same datasets, CKSAAP_OGlySite resulted in a higher accuracy than the conventional binary encoding based method (about +5.0%. When trained and tested in 1:5 datasets, the CKSAAP encoding showed a more significant improvement than the binary encoding. We also merged the training datasets of S and T sites and integrated the prediction of S and T sites into one single predictor (i.e. S+T predictor. Either in 1:1 or 1:5 datasets, the performance of this S+T predictor was always slightly better than those predictors where S and T sites were independently predicted, suggesting that the molecular recognition of O-glycosylated S/T sites seems to be similar and the increase of the S+T predictor's accuracy may be a result of expanded training datasets. Moreover, CKSAAP_OGlySite was also shown to have better performance when benchmarked against two existing predictors. Conclusion Because of CKSAAP

  5. Unraveling the Molecular Complexity of O-Glycosylated Endogenous (N-Terminal) pro-B-Type Natriuretic Peptide Forms in Blood Plasma of Patients with Severe Heart Failure.

    Science.gov (United States)

    Halfinger, Bernhard; Hammerer-Lercher, Angelika; Amplatz, Benno; Sarg, Bettina; Kremser, Leopold; Lindner, Herbert H

    2017-01-01

    Currently, N-terminal pro-B-type natriuretic peptide (NT-proBNP) and its physiologically active counterpart, BNP, are most frequently used as biomarkers for diagnosis, prognosis, and disease monitoring of heart failure (HF). Commercial NT-proBNP and BNP immunoassays cross-react to varying degrees with unprocessed proBNP, which is also found in the circulation. ProBNP processing and immunoassay response are related to O-linked glycosylation of NT-proBNP and proBNP. There is a clear and urgent need to identify the glycosylation sites in the endogenously circulating peptides requested by the community to gain further insights into the different naturally occurring forms. The glycosylation sites of (NT-) proBNP (NT-proBNP and/or proBNP) were characterized in leftovers of heparinized plasma samples of severe HF patients (NT-proBNP: >10000 ng/L) by using tandem immunoaffinity purification, sequential exoglycosidase treatment for glycan trimming, β-elimination and Michael addition chemistry, as well as high-resolution nano-flow liquid chromatography electrospray multistage mass spectrometry. We describe 9 distinct glycosylation sites on circulating (NT-) proBNP in HF patients. Differentially glycosylated variants were detected based on highly accurate mass determination and multistage mass spectrometry. Remarkably, for each of the identified proteolytic glycopeptides, a nonglycosylated form also was detectable. Our results directly demonstrate for the first time a rather complex distribution of the endogenously circulating glycoforms by mass spectrometric analysis in HF patients, and show 9 glycosites in human (NT-) proBNP. This information may also have an impact on commercial immunoassays applying antibodies specific for the central region of (NT-) proBNP, which detect mostly nonglycosylated forms. © 2016 American Association for Clinical Chemistry.

  6. 29 French adult patients with PMM2-congenital disorder of glycosylation: outcome of the classical pediatric phenotype and depiction of a late-onset phenotype.

    Science.gov (United States)

    Monin, Marie-Lorraine; Mignot, Cyril; De Lonlay, Pascale; Héron, Bénédicte; Masurel, Alice; Mathieu-Dramard, Michèle; Lenaerts, Catherine; Thauvin, Christel; Gérard, Marion; Roze, Emmanuel; Jacquette, Aurélia; Charles, Perrine; de Baracé, Claire; Drouin-Garraud, Valérie; Khau Van Kien, Philippe; Cormier-Daire, Valérie; Mayer, Michèle; Ogier, Hélène; Brice, Alexis; Seta, Nathalie; Héron, Delphine

    2014-12-11

    PMM2-CDG (formerly known as CDG Ia) a deficiency in phosphomannomutase, is the most frequent congenital disorder of glycosylation. The phenotype encompasses a wide range of neurological and non-neurological manifestations comprising cerebellar atrophy and intellectual deficiency. The phenotype of the disorder is well characterized in children but the long term course of the disease is unknown and the phenotype of late onset forms has not been comprehensively described. We thus retrospectively collected the clinical, biological and radiological data of 29 French PMM2-CDG patients aged 15 years or more with a proven molecular diagnosis (16 females and 13 males). In addition, thirteen of these patients were reexamined at the time of the study to obtain detailed information. 27 of the 29 patients had a typical PMM2-CDG phenotype, with infantile hypotonia, strabismus, developmental delay followed by intellectual deficiency, epilepsy, retinitis pigmentosa and/or visceral manifestations. The main health problems for these patients as teenagers and in adulthood were primary ovarian insufficiency, growth retardation, coagulation anomalies and thrombotic events, skeletal deformities and osteopenia/osteoporosis, retinitis pigmentosa, as well as peripheral neuropathy. Three patients had never walked and three lost their ability to walk. The two remaining patients had a late-onset phenotype unreported to date. All patients (n = 29) had stable cerebellar atrophy. Our findings are in line with those of previous adult PMM2-CDG cohorts and points to the need for a multidisciplinary approach to the follow up of PMM2-CDG patients to prevent late complications. Additionally, our findings add weight to the view that PMM2-CDG may be diagnosed in teenage/adult patients with cerebellar atrophy, even in the absence of intellectual deficiency or non-neurological involvement.

  7. Purification and functional characterization of nine human Aquaporins produced in Saccharomyces cerevisiae for the purpose of biophysical characterization

    DEFF Research Database (Denmark)

    Pedersen, Per Amstrup; Gourdon, Pontus Emanuel; Gotfryd, Kamil

    2017-01-01

    investigated the capacity of S. cerevisiae to deliver high yields of prime quality human AQPs, focusing on poorly characterized members including some previously shown to be difficult to isolate. Exploiting GFP labeled forms we comprehensively optimized production and purification procedures resulting...... in satisfactory yields of all nine AQP targets. We applied the obtained knowledge to successfully upscale purification of histidine tagged human AQP10 produced in large bioreactors. Glycosylation analysis revealed that AQP7 and 12 were O-glycosylated, AQP10 was N-glycosylated while the other AQPs were...... not glycosylated. We furthermore performed functional characterization and found that AQP 2, 6 and 8 allowed flux of water whereas AQP3, 7, 9, 10, 11 and 12 also facilitated a glycerol flux. In conclusion, our S. cerevisiae platform emerges as a powerful tool for isolation of functional, difficult-to-express human...

  8. High abundance of Serine/Threonine-rich regions predicted to be hyper-O-glycosylated in the secretory proteins coded by eight fungal genomes

    Directory of Open Access Journals (Sweden)

    González Mario

    2012-09-01

    Full Text Available Abstract Background O-glycosylation of secretory proteins has been found to be an important factor in fungal biology and virulence. It consists in the addition of short glycosidic chains to Ser or Thr residues in the protein backbone via O-glycosidic bonds. Secretory proteins in fungi frequently display Ser/Thr rich regions that could be sites of extensive O-glycosylation. We have analyzed in silico the complete sets of putatively secretory proteins coded by eight fungal genomes (Botrytis cinerea, Magnaporthe grisea, Sclerotinia sclerotiorum, Ustilago maydis, Aspergillus nidulans, Neurospora crassa, Trichoderma reesei, and Saccharomyces cerevisiae in search of Ser/Thr-rich regions as well as regions predicted to be highly O-glycosylated by NetOGlyc (http://www.cbs.dtu.dk. Results By comparison with experimental data, NetOGlyc was found to overestimate the number of O-glycosylation sites in fungi by a factor of 1.5, but to be quite reliable in the prediction of highly O-glycosylated regions. About half of secretory proteins have at least one Ser/Thr-rich region, with a Ser/Thr content of at least 40% over an average length of 40 amino acids. Most secretory proteins in filamentous fungi were predicted to be O-glycosylated, sometimes in dozens or even hundreds of sites. Residues predicted to be O-glycosylated have a tendency to be grouped together forming hyper-O-glycosylated regions of varying length. Conclusions About one fourth of secretory fungal proteins were predicted to have at least one hyper-O-glycosylated region, which consists of 45 amino acids on average and displays at least one O-glycosylated Ser or Thr every four residues. These putative highly O-glycosylated regions can be found anywhere along the proteins but have a slight tendency to be at either one of the two ends.

  9. Enzymatic Glycosylation of Small Molecules: Challenging Substrates Require Tailored Catalysts

    Czech Academy of Sciences Publication Activity Database

    Desmet, T.; Soetaert, W.; Bojarová, Pavla; Křen, Vladimír; Dijkhuizen, L.; Eastwick-Field, V.; Schiller, A.

    2012-01-01

    Roč. 18, č. 35 (2012), s. 10786-10801 ISSN 0947-6539 Institutional support: RVO:61388971 Keywords : acceptor specificity * enzyme engineering * glycosylation Subject RIV: CE - Biochemistry Impact factor: 5.831, year: 2012

  10. The S-Layer Glycoprotein of the Crenarchaeote Sulfolobus acidocaldarius Is Glycosylated at Multiple Sites with Chitobiose-Linked N-Glycans

    Directory of Open Access Journals (Sweden)

    Elham Peyfoon

    2010-01-01

    Full Text Available Glycosylation of the S-layer of the crenarchaea Sulfolobus acidocaldarius has been investigated using glycoproteomic methodologies. The mature protein is predicted to contain 31 N-glycosylation consensus sites with approximately one third being found in the C-terminal domain spanning residues L1004-Q1395. Since this domain is rich in Lys and Arg and therefore relatively tractable to glycoproteomic analysis, this study has focused on mapping its N-glycosylation. Our analysis identified nine of the 11 consensus sequence sites, and all were found to be glycosylated. This constitutes a remarkably high glycosylation density in the C-terminal domain averaging one site for each stretch of 30–40 residues. Each of the glycosylation sites observed was shown to be modified with a heterogeneous family of glycans, with the largest having a composition Glc1Man2GlcNAc2 plus 6-sulfoquinovose (QuiS, consistent with the tribranched hexasaccharide previously reported in the cytochrome b558/566 of S. acidocaldarius. S. acidocaldarius is the only archaeal species whose N-glycans are known to be linked via the chitobiose core disaccharide that characterises the N-linked glycans of Eukarya.

  11. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  12. Glycosyl-Nucleolipids as New Bioinspired Amphiphiles

    Directory of Open Access Journals (Sweden)

    Philippe Barthélémy

    2013-09-01

    Full Text Available Four new Glycosyl-NucleoLipid (GNL analogs featuring either a single fluorocarbon or double hydrocarbon chains were synthesized in good yields from azido thymidine as starting material. Physicochemical studies (surface tension measurements, differential scanning calorimetry indicate that hydroxybutanamide-based GNLs feature endothermic phase transition temperatures like the previously reported double chain glycerol-based GNLs. The second generation of GNFs featuring a free nucleobase reported here presents a better surface activity (lower glim compared to the first generation of GNFs.

  13. Glycosylation in HIV-1 envelope glycoprotein and its biological implications

    KAUST Repository

    Ho, Yung Shwen; Saksena, Nitin K.

    2013-01-01

    architecture, also controls intra- and inter-clade genetic variations. Discerning intra- and inter-clade glycosylation variations could therefore yield important information for understanding the molecular and biological differences between HIV clades and may

  14. UGT74AN1, a Permissive Glycosyltransferase from Asclepias curassavica for the Regiospecific Steroid 3-O-Glycosylation.

    Science.gov (United States)

    Wen, Chao; Huang, Wei; Zhu, Xue-Lin; Li, Xiao-San; Zhang, Fan; Jiang, Ren-Wang

    2018-02-02

    A permissive steroid glycosyltransferase (UGT74AN1) from Asclepias curassavica exhibited robust capabilities for the regiospecific C3 glycosylation of cardiotonic steroids and C 21 steroid precursors, and unprecedented promiscuity toward 53 structurally diverse natural and unnatural compounds to form O-, N-, and S-glycosides, along with the catalytic reversibility for a one-pot transglycosylation reaction. These findings highlight UGT74AN1 as the first regiospecific catalyst for cardiotonic steroid C3 glycosylation and exhibit significant potential for glycosylation of diverse bioactive molecules in drug discovery.

  15. The interdomain flexible linker of the polypeptide GalNAc transferases dictates their long-range glycosylation preferences

    DEFF Research Database (Denmark)

    Rivas, Matilde De Las; Lira-Navarrete, Erandi; Daniel, Earnest James Paul

    2017-01-01

    The polypeptide GalNAc-transferases (GalNAc-Ts), that initiate mucin-type O-glycosylation, consist of a catalytic and a lectin domain connected by a flexible linker. In addition to recognizing polypeptide sequence, the GalNAc-Ts exhibit unique long-range N- A nd/or C-terminal prior glycosylation ...

  16. Encoding asymmetry of the N-glycosylation motif facilitates glycoprotein evolution.

    Directory of Open Access Journals (Sweden)

    Ryan Williams

    Full Text Available Protein N-glycosylation is found in all domains of life and has a conserved role in glycoprotein folding and stability. In animals, glycoproteins transit through the Golgi where the N-glycans are trimmed and rebuilt with sequences that bind lectins, an innovation that greatly increases structural diversity and redundancy of glycoprotein-lectin interaction at the cell surface. Here we ask whether the natural tension between increasing diversity (glycan-protein interactions and site multiplicity (backup and status quo might be revealed by a phylogenic examination of glycoproteins and NXS/T(X ≠ P N-glycosylation sites. Site loss is more likely by mutation at Asn encoded by two adenosine (A-rich codons, while site gain is more probable by generating Ser or Thr downstream of an existing Asn. Thus mutations produce sites at novel positions more frequently than the reversal of recently lost sites, and therefore more paths though sequence space are made available to natural selection. An intra-species comparison of secretory and cytosolic proteins revealed a departure from equilibrium in sequences one-mutation-away from NXS/T and in (A content, indicating strong selective pressures and exploration of N-glycosylation positions during vertebrate evolution. Furthermore, secretory proteins have evolved at rates proportional to N-glycosylation site number, indicating adaptive interactions between the N-glycans and underlying protein. Given the topology of the genetic code, mutation of (A is more often nonsynonomous, and Lys, another target of many PTMs, is also encoded by two (A-rich codons. An examination of acetyl-Lys sites in proteins indicated similar evolutionary dynamics, consistent with asymmetry of the target and recognition portions of modified sites. Our results suggest that encoding asymmetry is an ancient mechanism of evolvability that increases diversity and experimentation with PTM site positions. Strong selective pressures on PTMs may have

  17. Glycosylated yellow laccases of the basidiomycete Stropharia aeruginosa.

    Science.gov (United States)

    Daroch, Maurycy; Houghton, Catharine A; Moore, Jonathan K; Wilkinson, Mark C; Carnell, Andrew J; Bates, Andrew D; Iwanejko, Lesley A

    2014-05-10

    Here we describe the identification, purification and characterisation of glycosylated yellow laccase proteins from the basidiomycete fungus Stropharia aeruginosa. Biochemical characterisation of two yellow laccases, Yel1p and Yel3p, show that they are both secreted, monomeric, N-glycosylated proteins of molecular weight around 55kDa with substrate specificities typical of laccases, but lacking the absorption band at 612nm typical of the blue laccase proteins. Low coverage, high throughput 454 transcriptome sequencing in combination with inverse-PCR was used to identify cDNA sequences. One of the cDNA sequences has been assigned to the Yel1p protein on the basis of identity between the translated protein sequence and the peptide data from the purified protein, and the full length gene sequence has been obtained. Biochemical properties, substrate specificities and protein sequence data have been used to discuss the unusual spectroscopic properties of S. aeruginosa proteins in the context of recent theories about the differences between yellow and blue laccases. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Evolutionary Conservation in Genes Underlying Human Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Lisa Michelle Ogawa

    2014-05-01

    Full Text Available Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago and thirty one non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant compared to their small-brained sister species. Evidence of differential selection in primates supports the hypothesis that schizophrenia and autism are a cost of higher brain function. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.

  19. N-glycosylation of the β2 adrenergic receptor regulates receptor function by modulating dimerization.

    Science.gov (United States)

    Li, Xiaona; Zhou, Mang; Huang, Wei; Yang, Huaiyu

    2017-07-01

    N-glycosylation is a common post-translational modification of G-protein-coupled receptors (GPCRs). However, it remains unknown how N-glycosylation affects GPCR signaling. β 2 adrenergic receptor (β 2 AR) has three N-glycosylation sites: Asn6, Asn15 at the N-terminus, and Asn187 at the second extracellular loop (ECL2). Here, we show that deletion of the N-glycan did not affect receptor expression and ligand binding. Deletion of the N-glycan at the N-terminus rather than Asn187 showed decreased effects on isoproterenol-promoted G-protein-dependent signaling, β-arrestin2 recruitment, and receptor internalization. Both N6Q and N15Q showed decreased receptor dimerization, while N187Q did not influence receptor dimerization. As decreased β 2 AR homodimer accompanied with reduced efficiency for receptor function, we proposed that the N-glycosylation of β 2 AR regulated receptor function by influencing receptor dimerization. To verify this hypothesis, we further paid attention to the residues at the dimerization interface. Studies of Lys60 and Glu338, two residues at the receptor dimerization interface, exhibited that the K60A/E338A showed decreased β 2 AR dimerization and its effects on receptor signaling were similar to N6Q and N15Q, which further supported the importance of receptor dimerization for receptor function. This work provides new insights into the relationship among glycosylation, dimerization, and function of GPCRs. Peptide-N-glycosidase F (PNGase F, EC 3.2.2.11); endo-β-N-acetylglucosaminidase A (Endo-A, EC 3.2.1.96). © 2017 Federation of European Biochemical Societies.

  20. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, Jakob; Elortza, Felix

    2004-01-01

    remains linked to the asparagine residue. The removal of the major part of the glycan simplifies the MS/MS fragment ion spectra of glycopeptides, while the remaining GlcNAc residue enables unambiguous assignment of the glycosylation site together with the amino acid sequence. We first tested our approach...

  1. Differences in N-glycosylation of recombinant human coagulation factor VII derived from BHK, CHO, and HEK293 cells.

    Science.gov (United States)

    Böhm, Ernst; Seyfried, Birgit K; Dockal, Michael; Graninger, Michael; Hasslacher, Meinhard; Neurath, Marianne; Konetschny, Christian; Matthiessen, Peter; Mitterer, Artur; Scheiflinger, Friedrich

    2015-09-18

    BACKGROUND & Recombinant factor VII (rFVII), the precursor molecule for recombinant activated FVII (rFVIIa), is, due to its need for complex post translational modifications, produced in mammalian cells. To evaluate the suitability of a human cell line in order to produce rFVII with post-translational modifications as close as possible to pdFVII, we compared the biochemical properties of rFVII synthesized in human embryonic kidney-derived (HEK)293 cells (HEK293rFVII) with those of rFVII expressed in Chinese hamster ovary (CHO, CHOrFVII) and baby hamster kidney (BHK, BHKrFVII) cells, and also with those of plasma derived FVII (pdFVII), using various analytical methods. rFVII was purified from selected production clones derived from BHK, CHO, and HEK293 cells after stable transfection, and rFVII isolates were analyzed for protein activity, impurities and post-translational modifications. RESULTS & The analytical results showed no apparent gross differences between the various FVII proteins, except in their N-linked glycosylation pattern. Most N-glycans found on rFVII produced in HEK293 cells were not detected on rFVII from CHO and BHK cells, or, somewhat unexpectedly, on pdFVII; all other protein features were similar. HEK293rFVII glycans were mainly characterized by a higher structural variety and a lower degree of terminal sialylation, and a high amount of terminal N-acetyl galactosamines (GalNAc). All HEK293rFVII oligosaccharides contained one or more fucoses (Fuc), as well as hybrid and high mannose (Man) structures. From all rFVII isolates investigated, CHOrFVII contained the highest degree of sialylation and no terminal GalNAc, and CHO cells were therefore assumed to be the best option for the production of rFVII.

  2. [Proteins modified in the nonenzymatically glycosylation reaction (AGE-proteins)--new markers for diabetes?].

    Science.gov (United States)

    Zdrojewicz, Z; Januszewski, A; Kwiatkowska, D

    1994-01-01

    Paper present a recent review on the formation and clinical significance of advanced glycosylation end products, produced in nonenzymatically glycosylation, called Maillard reaction. The special attention was paid to AGEs role in diabetic and aging processes. Instant of occurring of AGEs in circulation or increase of AGE receptor concentration are many years faster than clinical pathology of vessels, nervous or kidneys connect with diabetes or aging. May be in the future it will be possible to decrease the consequence of Maillard reaction by using pharmacology drugs.

  3. Glycosylation intermediates studied using low temperature 1H- and 19F-DOSY NMR

    DEFF Research Database (Denmark)

    Qiao, Yan; Ge, Wenzhi; Jia, Lingyu

    2016-01-01

    Low temperature 1H- and 19F-DOSY have been used for analyzing reactive intermediates in glycosylation reactions, where a glycosyl trichloroacetimidate donor has been activated using different catalysts. The DOSY protocols have been optimized for low temperature experiments and provided new insight...

  4. Glycosyl azide-a novel substrate for enzymatic transgycosylations

    Czech Academy of Sciences Publication Activity Database

    Fialová, Pavla; Carmona, A. T.; Robina, I.; Ettrich, R.; Sedmera, Petr; Přikrylová, Věra; Hušáková, Lucie; Křen, Vladimír

    2005-01-01

    Roč. 46, - (2005), s. 8715-8718 ISSN 0040-4039 R&D Projects: GA ČR GA203/05/0172; GA MŠk OC D25.002 Grant - others:GA KONTAKT 1862/04 Institutional research plan: CEZ:AV0Z50200510 Keywords : enzyme catalysis * glycosyl azide * molecular modelling Subject RIV: EE - Microbiology, Virology Impact factor: 2.477, year: 2005

  5. N-glycosylation-negative catalase: a useful tool for exploring the role of hydrogen peroxide in the endoplasmic reticulum.

    Science.gov (United States)

    Lortz, S; Lenzen, S; Mehmeti, I

    2015-03-01

    Disulfide bond formation during protein folding of nascent proteins is associated with the generation of H2O2 in the endoplasmic reticulum (ER). Approaches to quantifying H2O2 directly within the ER failed because of the oxidative environment in the ER lumen, and ER-specific catalase expression to detoxify high H2O2 concentrations resulted in an inactive protein owing to N-glycosylation. Therefore, the N-glycosylation motifs at asparagine-244 and -439 of the human catalase protein were deleted by site-directed mutagenesis. The ER-targeted expression of these variants revealed that the deletion of the N-glycosylation motif only at asparagine-244 (N244) was associated with the maintenance of full enzymatic activity in the ER. Expression of catalase N244 in the ER (ER-Catalase N244) was ER-specific and protected the cells significantly against exogenously added H2O2. With the expression of ER-Catalase N244, a highly effective H2O2 inactivation within the ER was achieved for the first time. Catalase has a high H2O2-inactivation capacity without the need of reducing cofactors, which might interfere with the ER redox homeostasis, and is not involved in protein folding. With these characteristics ER-Catalase N244 is an ideal tool to explore the impact of ER-generated H2O2 on the generation of disulfide bonds or to study the induction of ER-stress pathways through protein folding overload and accumulation of H2O2. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    Science.gov (United States)

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. A Markov chain model for N-linked protein glycosylation – towards a low-parameter tool for model-driven glycoengineering

    DEFF Research Database (Denmark)

    Spahn, Philipp N.; Hansen, Anders Holmgaard; Hansen, Henning Gram

    2016-01-01

    Glycosylation is a critical quality attribute of most recombinant biotherapeutics. Consequently, drug development requires careful control of glycoforms to meet bioactivity and biosafety requirements. However, glycoengineering can be extraordinarily difficult given the complex reaction networks...... present a novel low-parameter approach to describe glycosylation using flux-balance and Markov chain modeling. The model recapitulates the biological complexity of glycosylation, but does not require user-provided kinetic information. We use this method to predict and experimentally validate glycoprofiles...

  8. Mass spectrometry characterization for N-glycosylation of immunoglobulin Y from hen egg yolk.

    Science.gov (United States)

    Sheng, Long; He, Zhenjiao; Liu, Yaping; Ma, Meihu; Cai, Zhaoxia

    2018-03-01

    Immunoglobulin Y (IgY) is a new therapeutic antibody that exists in hen egg yolk. It is a glycoprotein, not much is known about its N-glycan structures, site occupancy and site-specific N-glycosylation. In this study, purified protein from hen egg yolk was identified as IgY based on SDS-PAGE and MALDI-TOF/TOF MS. N-glycan was released from IgY using peptide-N4-(N-acetyl-beta-glucosaminyl) asparagine-amidase treatment, and the molecular weight of IgY was calculated using the difference between the molecular weight of IgY and deglycosylated IgY. Two potential N-Glycosylation sites (ASN 308 and ASN 409 ) were detected on IgY by nanoLC-ESI MS. Sugar chains were separated using normal phase liquid chromatography after fluorescence labeling, and 17 N-glycan structures were confirmed using ESI-MS. The sugar chain pattern contained high-mannose oligosaccharide, hybrid oligosaccharide and complex oligosaccharide. These results could lead to other important information regarding IgY glycosylation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Functional Role of N-Linked Glycosylation in Pseudorabies Virus Glycoprotein gH.

    Science.gov (United States)

    Vallbracht, Melina; Rehwaldt, Sascha; Klupp, Barbara G; Mettenleiter, Thomas C; Fuchs, Walter

    2018-05-01

    Many viral envelope proteins are modified by asparagine (N)-linked glycosylation, which can influence their structure, physicochemical properties, intracellular transport, and function. Here, we systematically analyzed the functional relevance of N-linked glycans in the alphaherpesvirus pseudorabies virus (PrV) glycoprotein H (gH), which is an essential component of the conserved core herpesvirus fusion machinery. Upon gD-mediated receptor binding, the heterodimeric complex of gH and gL activates gB to mediate fusion of the viral envelope with the host cell membrane for viral entry. gH contains five potential N-linked glycosylation sites at positions 77, 162, 542, 604, and 627, which were inactivated by conservative mutations (asparagine to glutamine) singly or in combination. The mutated proteins were tested for correct expression and fusion activity. Additionally, the mutated gH genes were inserted into the PrV genome for analysis of function during virus infection. Our results demonstrate that all five sites are glycosylated. Inactivation of the PrV-specific N77 or the conserved N627 resulted in significantly reduced in vitro fusion activity, delayed penetration kinetics, and smaller virus plaques. Moreover, substitution of N627 greatly affected transport of gH in transfected cells, resulting in endoplasmic reticulum (ER) retention and reduced surface expression. In contrast, mutation of N604, which is conserved in the Varicellovirus genus, resulted in enhanced in vitro fusion activity and viral cell-to-cell spread. These results demonstrate a role of the N-glycans in proper localization and function of PrV gH. However, even simultaneous inactivation of all five N-glycosylation sites of gH did not severely inhibit formation of infectious virus particles. IMPORTANCE Herpesvirus infection requires fusion of the viral envelope with cellular membranes, which involves the conserved fusion machinery consisting of gB and the heterodimeric gH/gL complex. The bona fide

  10. The C-terminal N-glycosylation sites of the human α1,3/4-fucosyltransferase III, -V and -VI (hFucTIII, -V and -VI) are necessary for the expression of full enzyme activity

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Jensen, Uffe Birk; Bross, Peter Gerd

    2000-01-01

    FucTIII enzyme activity to approximately 40% of the activity of the native enzyme. To further analyze the role of the conserved N-glycosylation sites in hFucTIII, -V, and -VI, we made a series of mutant genomic DNAs in which the asparagine residues in the potential C-terminal N-glycosylation sites were replaced...

  11. Comparing ESC and iPSC?Based Models for Human Genetic Disorders

    OpenAIRE

    Halevy, Tomer; Urbach, Achia

    2014-01-01

    Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients’ somatic cells, and the ne...

  12. Glycosylation at Asn91 of H1N1 haemagglutinin affects binding to glycan receptors.

    Science.gov (United States)

    Jayaraman, Akila; Koh, Xiaoying; Li, Jing; Raman, Rahul; Viswanathan, Karthik; Shriver, Zachary; Sasisekharan, Ram

    2012-06-15

    The glycoprotein HA (haemagglutinin) on the surface of influenza A virus plays a central role in recognition and binding to specific host cell-surface glycan receptors and in fusion of viral membrane to the host nuclear membrane during viral replication. Given the abundance of HA on the viral surface, this protein is also the primary target for host innate and adaptive immune responses. Although addition of glycosylation sites on HA are a part of viral evolution to evade the host immune responses, there are specific glycosylation sites that are conserved during most of the evolution of the virus. In the present study, it was demonstrated that one such conserved glycosylation site at Asn(91) in H1N1 HA critically governs the glycan receptor-binding specificity and hence would potentially impinge on the host adaptation of the virus.

  13. Human IgE is efficiently produced in glycosylated and biologically active form in lepidopteran cells

    DEFF Research Database (Denmark)

    Bantleon, Frank; Wolf, Sara; Seismann, Henning

    2016-01-01

    the recombinant production of the highly complex IgE isotype in insect cells. Recombinant IgE (rIgE) was efficiently assembled and secreted into the supernatant in yields of >30 mg/L. Purification from serum free medium using different downstream processing methods provided large amounts of rIgE. This exhibited...... a highly specific interaction with its antigen, therapeutic anti-IgE and its high affinity receptor, the FcεRI. Lectins and glyco-proteomic analyses proved the presence of prototypic insect type N-glycans on the epsilon heavy chain. Mediator release assays demonstrated a biological activity of the r......IgE comparable to IgE derived from mammalian cells. In summary the expression in insect cells provides rIgE with variant glycosylation pattern, but retained characteristics and biological activity. Therefore our data contribute to the understanding of functional and structural aspects and potential use of the Ig...

  14. Predictive glycoengineering of biosimilars using a Markov chain glycosylation model

    DEFF Research Database (Denmark)

    Spahn, Philipp N.; Hansen, Anders Holmgaard; Kol, Stefan

    2017-01-01

    Biosimilar drugs must closely resemble the pharmacological attributes of innovator products to ensure safetyand efficacy to obtain regulatory approval. Glycosylation is one critical quality attribute that must be matched, but it is inherently difficult to control due to the complexity of its...

  15. In silico determination of intracellular glycosylation and phosphorylation sites in human selectins: Implications for biological function

    DEFF Research Database (Denmark)

    Ahmad, I.; Hoessli, D.C.; Gupta, Ramneek

    2007-01-01

    Post-translational modifications provide the proteins with the possibility to perform functions in addition to those determined by their primary sequence. However, analysis of multifunctional protein structures in the environment of cells and body fluids is made especially difficult by the presence...... both modifications are likely to occur can also be predicted (YinYang sites), to suggest further functional versatility. Structural modifications of hydroxyl groups of P-, E-, and L-selectins have been predicted and possible functions resulting from such modifications are proposed. Functional changes...... of the three selectins are based on the assumption that transitory and reversible protein modifications by phosphate and O-GlcNAc cause specific conformational changes and generate binding sites for other proteins. The computer-assisted prediction of glycosylation and phosphorylation sites in selectins should...

  16. Human Plasma N-glycosylation as Analyzed by Matrix-Assisted Laser Desorption/Ionization-Fourier Transform Ion Cyclotron Resonance-MS Associates with Markers of Inflammation and Metabolic Health*

    Science.gov (United States)

    Reiding, Karli R.; Ruhaak, L. Renee; Uh, Hae-Won; el Bouhaddani, Said; van den Akker, Erik B.; Plomp, Rosina; McDonnell, Liam A.; Houwing-Duistermaat, Jeanine J.; Slagboom, P. Eline; Beekman, Marian; Wuhrer, Manfred

    2017-01-01

    Glycosylation is an abundant co- and post-translational protein modification of importance to protein processing and activity. Although not template-defined, glycosylation does reflect the biological state of an organism and is a high-potential biomarker for disease and patient stratification. However, to interpret a complex but informative sample like the total plasma N-glycome, it is important to establish its baseline association with plasma protein levels and systemic processes. Thus far, large-scale studies (n >200) of the total plasma N-glycome have been performed with methods of chromatographic and electrophoretic separation, which, although being informative, are limited in resolving the structural complexity of plasma N-glycans. MS has the opportunity to contribute additional information on, among others, antennarity, sialylation, and the identity of high-mannose type species. Here, we have used matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR)-MS to study the total plasma N-glycome of 2144 healthy middle-aged individuals from the Leiden Longevity Study, to allow association analysis with markers of metabolic health and inflammation. To achieve this, N-glycans were enzymatically released from their protein backbones, labeled at the reducing end with 2-aminobenzoic acid, and following purification analyzed by negative ion mode intermediate pressure MALDI-FTICR-MS. In doing so, we achieved the relative quantification of 61 glycan compositions, ranging from Hex4HexNAc2 to Hex7HexNAc6dHex1Neu5Ac4, as well as that of 39 glycosylation traits derived thereof. Next to confirming known associations of glycosylation with age and sex by MALDI-FTICR-MS, we report novel associations with C-reactive protein (CRP), interleukin 6 (IL-6), body mass index (BMI), leptin, adiponectin, HDL cholesterol, triglycerides (TG), insulin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and smoking. Overall, the

  17. Human GRIN2B variants in neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Chun Hu

    2016-10-01

    Full Text Available The development of whole exome/genome sequencing technologies has given rise to an unprecedented volume of data linking patient genomic variability to brain disorder phenotypes. A surprising number of variants have been found in the N-methyl-d-aspartate receptor (NMDAR gene family, with the GRIN2B gene encoding the GluN2B subunit being implicated in many cases of neurodevelopmental disorders, which are psychiatric conditions originating in childhood and include language, motor, and learning disorders, autism spectrum disorder (ASD, attention deficit hyperactivity disorder (ADHD, developmental delay, epilepsy, and schizophrenia. The GRIN2B gene plays a crucial role in normal neuronal development and is important for learning and memory. Mutations in human GRIN2B were distributed throughout the entire gene in a number of patients with various neuropsychiatric and developmental disorders. Studies that provide functional analysis of variants are still lacking, however current analysis of de novo variants that segregate with disease cases such as intellectual disability, developmental delay, ASD or epileptic encephalopathies reveal altered NMDAR function. Here, we summarize the current reports of disease-associated variants in GRIN2B from patients with multiple neurodevelopmental disorders, and discuss implications, highlighting the importance of functional analysis and precision medicine therapies.

  18. Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Tartaglio, Virginia [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Rennie, Emilie A. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Univ. of Nebraska, Lincoln, NE (United States). Center for Plant Science Innovation and Dept. of Biochemistry; Cahoon, Rebecca [Univ. of Nebraska, Lincoln, NE (United States). Center for Plant Science Innovation and Dept. of Biochemistry; Wang, George [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Baidoo, Edward [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Mortimer, Jennifer C. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Cahoon, Edgar B. [Univ. of Nebraska, Lincoln, NE (United States). Center for Plant Science Innovation and Dept. of Biochemistry; Scheller, Henrik V. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Biological Systems and Engineering Division; Univ. of California, Berkeley, CA (United States). Dept. of Plant and Microbial Biology

    2016-09-19

    Sphingolipids are a major component of plant plasma membranes and endomembranes, and mediate a diverse range of biological processes. Study of the highly glycosylated glycosyl inositol phosphorylceramide (GIPC) sphingolipids has been slow as a result of challenges associated with the extractability of GIPCs, and their functions in the plant remain poorly characterized. We recently discovered an Arabidopsis GIPC glucuronosyltransferase, INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE 1 (IPUT1), which is the first enzyme in the GIPC glycosylation pathway. Plants homozygous for the iput1 loss-of-function mutation were unobtainable, and so the developmental effects of reduced GIPC glucuronosylation could not be analyzed in planta. Using a pollen-specific rescue construct, we have here isolated homozygous iput1 mutants. The iput1 mutants show severe dwarfism, compromised pollen tube guidance, and constitutive activation of salicyclic acid-mediated defense pathways. The mutants also possess reduced GIPCs, increased ceramides, and an increased incorporation of short-chain fatty acids and dihydroxylated bases into inositol phosphorylceramides and GIPCs. The assignment of a direct role for GIPC glycan head groups in the impaired processes in iput1 mutants is complicated by the vast compensatory changes in the sphingolipidome; however, our results reveal that the glycosylation steps of GIPC biosynthesis are important regulated components of sphingolipid metabolism. In conclusion, this study corroborates previously suggested roles for GIPC glycans in plant growth and defense, suggests important role s for them in reproduction and demonstrates that the entire sphingolipidome is sensitive to their status.

  19. Controlling the Glycosylation Profile in mAbs Using Time-Dependent Media Supplementation

    Directory of Open Access Journals (Sweden)

    Devesh Radhakrishnan

    2017-12-01

    Full Text Available In order to meet desired drug product quality targets, the glycosylation profile of biotherapeutics such as monoclonal antibodies (mAbs must be maintained consistently during manufacturing. Achieving consistent glycan distribution profiles requires identifying factors that influence glycosylation, and manipulating them appropriately via well-designed control strategies. Now, the cell culture media supplement, MnCl2, is known to alter the glycosylation profile in mAbs generally, but its effect, particularly when introduced at different stages during cell growth, has yet to be investigated and quantified. In this study, we evaluate the effect of time-dependent addition of MnCl2 on the glycan profile quantitatively, using factorial design experiments. Our results show that MnCl2 addition during the lag and exponential phases affects the glycan profile significantly more than stationary phase supplementation does. Also, using a novel computational technique, we identify various combinations of glycan species that are affected by this dynamic media supplementation scheme, and quantify the effects mathematically. Our experiments demonstrate the importance of taking into consideration the time of addition of these trace supplements, not just their concentrations, and our computational analysis provides insight into what supplements to add, when, and how much, in order to induce desired changes.

  20. 25-Hydroxycholesterol Inhibition of Lassa Virus Infection through Aberrant GP1 Glycosylation

    Directory of Open Access Journals (Sweden)

    Punya Shrivastava-Ranjan

    2016-12-01

    Full Text Available Lassa virus (LASV infection is a major public health concern due to high fatality rates and limited effective treatment. The interferon-stimulated gene cholesterol 25-hydroxylase (CH25H encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC. 25HC is involved in regulating cholesterol biosynthesis and has recently been identified as a potent antiviral targeting enveloped virus entry. Here, we show a previously unrecognized role of CH25H in inhibiting LASV glycoprotein glycosylation and the production of infectious virus. Overexpression of CH25H or treatment with 25HC decreased LASV G1 glycoprotein N-glycan maturation and reduced the production of infectious LASV. Depletion of endogenous CH25H using small interfering RNA (siRNA enhanced the levels of fully glycosylated G1 and increased infectious LASV production. Finally, LASV particles produced from 25HC-treated cells were found to be less infectious, to incorporate aberrantly glycosylated GP1 species, and to be defective in binding alpha-dystroglycan, an attachment and entry receptor. Our findings identify a novel role for CH25H in controlling LASV propagation and indicate that manipulation of the expression of CH25H or the administration of 25HC may be a useful anti-LASV therapy.

  1. Glycoprotein biosynthesis by human normal platelets

    International Nuclear Information System (INIS)

    Rodriguez, P.; Bello, O.; Apitz-Castro, R.

    1987-01-01

    Incorporation of radioactive Man, Gal, Fuc, Glc-N, and NANA into washed human normal platelets and endogenous glycoproteins has been found. Both parameters were time dependent. Analysis of hydrolyzed labeled glycoproteins by paper chromatography revealed that the radioactive monosaccharide incubated with the platelets had not been converted into other sugars. Acid hydrolysis demonstrates the presence of a glycosidic linkage. All the effort directed to the demonstration of the existence of a lipid-sugar intermediate in intact human platelets yielded negative results for Man and Glc-N used as precursors. The incorporation of these sugars into glycoproteins is insensitive to bacitracin, suggesting no involvement of lipid-linked saccharides in the synthesis of glycoproteins in human blood platelets. The absence of inhibition of the glycosylation process in the presence of cycloheximide suggests that the sugars are added to proteins present in the intact platelets. These results support the contention that glycoprotein biosynthesis in human blood platelets observed under our experimental conditions is effected through direct sugar nucleotide glycosylation

  2. Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains.

    Science.gov (United States)

    Chigira, Yuko; Oka, Takuji; Okajima, Tetsuya; Jigami, Yoshifumi

    2008-04-01

    Development of a heterologous system for the production of homogeneous sugar structures has the potential to elucidate structure-function relationships of glycoproteins. In the current study, we used an artificial O-glycosylation pathway to produce an O-fucosylated epidermal growth factor (EGF) domain in Saccharomyces cerevisiae. The in vivo O-fucosylation system was constructed via expression of genes that encode protein O-fucosyltransferase 1 and the EGF domain, along with genes whose protein products convert cytoplasmic GDP-mannose to GDP-fucose. This system allowed identification of an endogenous ability of S. cerevisiae to transport GDP-fucose. Moreover, expression of EGF domain mutants in this system revealed the different contribution of three disulfide bonds to in vivo O-fucosylation. In addition, lectin blotting revealed differences in the ability of fucose-specific lectin to bind the O-fucosylated structure of EGF domains from human factors VII and IX. Further introduction of the human fringe gene into yeast equipped with the in vivo O-fucosylation system facilitated the addition of N-acetylglucosamine to the EGF domain from factor IX but not from factor VII. The results suggest that engineering of an O-fucosylation system in yeast provides a powerful tool for producing proteins with homogenous carbohydrate chains. Such proteins can be used for the analysis of substrate specificity and the production of antibodies that recognize O-glycosylated EGF domains.

  3. Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites.

    Science.gov (United States)

    Osinaga, Eduardo

    2007-01-01

    Simple mucin-type O-glycan structures, such as Tn, TF, sialyl-Tn and Tk antigens, are among of the most specific human cancer-associated structures. These antigens are involved in several types of receptor-ligand interactions, and they are potential targets for immunotherapy. In the last few years several simple mucin-type O-glycan antigens were identified in different species belonging to the main two helminth parasite phyla, and sialyl-Tn bearing glycoproteins were detected in Trypanosoma cruzi. These results are of interest to understand new aspects in parasite glycoimmunology and may help identify new biological characteristics of parasites as well of the host-parasite relationship. Considering that different groups reported a negative correlation between certain parasite infections and cancer development, we could hypothesize that simple mucin-type O-glycosylated antigens obtained from parasites could be good potential targets for cancer immunotherapy.

  4. Mutations in four glycosyl hydrolases reveal a highly coordinated pathway for rhodopsin biosynthesis and N-glycan trimming in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Erica E Rosenbaum

    2014-05-01

    Full Text Available As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II, α-mannosidase-IIb (α-Man-IIb, a β-N-acetylglucosaminidase called fused lobes (Fdl, and hexosaminidase 1 (Hexo1. We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights

  5. Mutations in Four Glycosyl Hydrolases Reveal a Highly Coordinated Pathway for Rhodopsin Biosynthesis and N-Glycan Trimming in Drosophila melanogaster

    Science.gov (United States)

    Rosenbaum, Erica E.; Vasiljevic, Eva; Brehm, Kimberley S.; Colley, Nansi Jo

    2014-01-01

    As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a β-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the

  6. Mapping N-linked Glycosylation Sites in the Secretome and Whole Cells of Aspergillus niger Using Hydrazide Chemistry and Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Aryal, Uma K.; Dai, Ziyu; Mason, Alisa C.; Monroe, Matthew E.; Tian, Zhixin; Zhou, Jianying; Su, Dian; Weitz, Karl K.; Liu, Tao; Camp, David G.; Smith, Richard D.; Baker, Scott E.; Qian, Weijun

    2012-01-01

    Protein glycosylation is known to play an essential role in both cellular functions and the secretory pathways; however, little information is available on the dynamics of glycosylated N-linked glycosites of fungi. Herein we present the first extensive mapping of glycosylated N-linked glycosites in industrial strain Aspergillus niger by applying an optimized solid phase enrichment of glycopeptide protocol using hydrazide modified magnetic beads. The enrichment protocol was initially optimized using mouse plasma and A. niger secretome samples, which was then applied to profile N-linked glycosites from both the secretome and whole cell lysates of A. niger. A total of 847 unique N-linked glycosites and 330 N-linked glycoproteins were confidently identified by LC-MS/MS. Based on gene ontology analysis, the identified N-linked glycoproteins in the whole cell lysate were primarily localized in the plasma membrane, endoplasmic reticulum, golgi apparatus, lysosome, and storage vacuoles. The identified N-linked glycoproteins are involved in a wide range of biological processes including gene regulation and signal transduction, protein folding and assembly, protein modification and carbohydrate metabolism. The extensive coverage of glycosylated N-linked glycosites along with identification of partial N-linked glycosylation in those enzymes involving in different biochemical pathways provide useful information for functional studies of N-linked glycosylation and their biotechnological applications in A. niger.

  7. N-linked glycosylation at Asn152 on CD147 affects protein folding and stability: promoting tumour metastasis in hepatocellular carcinoma.

    Science.gov (United States)

    Li, Jiang-Hua; Huang, Wan; Lin, Peng; Wu, Bo; Fu, Zhi-Guang; Shen, Hao-Miao; Jing, Lin; Liu, Zhen-Yu; Zhou, Yang; Meng, Yao; Xu, Bao-Qing; Chen, Zhi-Nan; Jiang, Jian-Li

    2016-11-21

    Cluster of differentiation 147 (CD147), also known as extracellular matrix metalloproteinase inducer, is a transmembrane glycoprotein that mediates oncogenic processes partly through N-glycosylation modifications. N-glycosylation has been demonstrated to be instrumental for the regulation of CD147 function during malignant transformation. However, the role that site-specific glycosylation of CD147 plays in its defective function in hepatocellular carcinomacells needs to be determined. Here, we demonstrate that the modification of N-glycosylation at Asn152 on CD147 strongly promotes hepatocellular carcinoma (HCC) invasion and migration. After the removal of N-glycans at Asn152, CD147 was more susceptible to degradation by ER-localized ubiquitin ligase-mediated endoplasmic reticulum-associated degradation (ERAD). Furthermore, N-linked glycans at Asn152 were required for CD147 to acquire and maintain proper folding in the ER. Moreover, N-linked glycans at Asn152 functioned as a recognition motif that was directly mediated by the CNX quality control system. Two phases in the retention-based ER chaperones system drove ER-localized CD147 trafficking to degradation. Deletion of N-linked glycosylation at Asn152 on CD147 significantly suppressed in situ tumour metastasis. These data could potentially shed light on the molecular regulation of CD147 through glycosylation and provide a valuable means of developing drugs that target N-glycans at Asn152 on CD147.

  8. Effect of Cola acuminate on Blood Glucose and Glycosylated ...

    African Journals Online (AJOL)

    The levels of blood glucose and glycosylated haemoglobin (GHB) were studied in 42 Wistar rats divided into three groups; controls, group A and group B. Control rats consumed only feeds, group A consumed 0.04g of Cola acuminate, while group B consumed 0.08g of Cola acuminate mixed with their feeds daily for six ...

  9. Enzymatic Glycosylation of Phenolic Antioxidants: Phosphorylase-Mediated Synthesis and Characterization

    Czech Academy of Sciences Publication Activity Database

    De Winter, K.; Dewitte, W.; Dirks-Hofmeister, M. E.; De Laet, S.; Pelantová, Helena; Křen, Vladimír; Desmet, T.

    2015-01-01

    Roč. 63, č. 46 (2015), s. 10131-10139 ISSN 0021-8561 R&D Projects: GA MŠk(CZ) 7E11011; GA MŠk(CZ) LD13042 Institutional support: RVO:61388971 Keywords : glycosylation * antioxidant * ABTS Subject RIV: CE - Biochemistry Impact factor: 2.857, year: 2015

  10. Comparative Proteomics and Glycoproteomics Reveal Increased N-Linked Glycosylation and Relaxed Sequon Specificity in Campylobacter jejuni NCTC11168 O

    DEFF Research Database (Denmark)

    Scott, Nichollas E.; Marzook, N. Bishara; Cain, Joel A.

    2014-01-01

    Campylobacter jejuni is a major cause of bacterial gastroenteritis. C. jejuni encodes a protein glycosylation (Pgl) locus responsible for the N-glycosylation of membrane-associated proteins. We examined two variants of the genome sequenced strain NCTC11168: O, a representative of the original...

  11. Location, location, location: new insights into O-GalNAc protein glycosylation

    DEFF Research Database (Denmark)

    Gill, David J; Clausen, Henrik; Bard, Frederic

    2011-01-01

    O-GalNAc glycosylation of proteins confers essential structural, protective and signaling roles in eumetazoans. Addition of O-glycans onto proteins is an extremely complex process that regulates both sites of attachment and the types of oligosaccharides added. Twenty distinct polypeptide GalNAc......-transferases (GalNAc-Ts) initiate O-glycosylation and fine-tuning their expression provides a mechanism for regulating this action. Recently, a new mode of regulation has emerged where activation of Src kinase selectively redistributes Golgi-localized GalNAc-Ts to the ER. This relocalization results in a strong...... increase in the density of O-glycan decoration. In this review, we discuss how different mechanisms can regulate the number and the types of O-glycans decorating proteins. In addition, we speculate how Src-dependent relocation of GalNAc-Ts could play an important role in cancerous cellular transformation....

  12. Analytical tools for the study of cellular glycosylation in the immune system

    Directory of Open Access Journals (Sweden)

    Yvette eVan Kooyk

    2013-12-01

    Full Text Available It is becoming increasingly clear that glycosylation plays important role in intercellular communication within the immune system. Glycosylation-dependent interactions are crucial for the innate and adaptive immune system and regulate immune cell trafficking, synapse formation, activation, and survival. These functions take place by the cis or trans interaction of lectins with glycans. Classical immunological and biochemical methods have been used for the study of lectin function; however, the investigation of their counterparts, glycans, requires very specialized methodologies that have been extensively developed in the past decade within the Glycobiology scientific community. This Mini-Review intends to summarize the available technology for the study of glycan biosynthesis, its regulation and characterization for their application to the study of glycans in Immunology.

  13. Chapter Three -- Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Eric R. [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry and BioFrontiers Inst.; Himmel, Michael E. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Biosciences Center; Beckham, Gregg T. [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Bioenergy Center; Tan, Zhongping [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry and BioFrontiers Inst.

    2015-10-24

    Methods for the manipulation of glycan structures have been recently reported that employ genetic tuning of glycan-active enzymes expressed from homogeneous and heterologous fungal hosts. Taken together, these studies have enabled new strategies for the exploitation of protein glycosylation for the production of enhanced cellulases for biofuel production.

  14. Heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylated variants of a single polypeptide chain.

    Science.gov (United States)

    Murphy, P A; Cebula, T A; Windle, B E

    1981-10-01

    Rabbit endogenous pyrogens were of about the same molecular size, but showed considerable heterogeneity of their isoelectric points. We attempted to show that this heterogeneity was attributable to variable glycosylation of a single polypeptide chain. When peritoneal exudate cells were stimulated to make pyrogens in the presence of 2-deoxy-D-glucose, there was a relatively trivial suppression of pyrogen release, and analysis by isoelectric focusing showed parallel inhibition of secretion of all the forms of endogenous pyrogen. When cells were stimulated in the presence of 3H-labeled amino acids and 14C-labeled glucosamine or glucose, the purified pyrogens were labeled with 3H but not with 14C. Macrophage membrane preparations were made which contained glycosyl transferases and could transfer sugar residues from sugar nucleotides to deglycosylated fetuin. These macrophage membrane preparations did not transfer sugars to the pI 7.3 endogenous pyrogen. Treatment of endogenous pyrogens with neuraminidase or with periodate produced no evidence suggesting that the pyrogens were glycosylated. Last, endogenous pyrogens did not bind to any of four lectins with different carbohydrate specificities. This evidence suggests that the heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylation and must have some other cause.

  15. Contrasting Features of Urea Cycle Disorders in Human Patients and Knockout Mouse Models

    OpenAIRE

    Deignan, Joshua L.; Cederbaum, Stephen D.; Grody, Wayne W.

    2007-01-01

    The urea cycle exists for the removal of excess nitrogen from the body. Six separate enzymes comprise the urea cycle, and a deficiency in any one of them causes a urea cycle disorder (UCD) in humans. Arginase is the only urea cycle enzyme with an alternate isoform, though no known human disorder currently exists due to a deficiency in the second isoform. While all of the UCDs usually present with hyperammonemia in the first few days to months of life, most disorders are distinguished by a cha...

  16. Contrasting features of urea cycle disorders in human patients and knockout mouse models.

    Science.gov (United States)

    Deignan, Joshua L; Cederbaum, Stephen D; Grody, Wayne W

    2008-01-01

    The urea cycle exists for the removal of excess nitrogen from the body. Six separate enzymes comprise the urea cycle, and a deficiency in any one of them causes a urea cycle disorder (UCD) in humans. Arginase is the only urea cycle enzyme with an alternate isoform, though no known human disorder currently exists due to a deficiency in the second isoform. While all of the UCDs usually present with hyperammonemia in the first few days to months of life, most disorders are distinguished by a characteristic profile of plasma amino acid alterations that can be utilized for diagnosis. While enzyme assay is possible, an analysis of the underlying mutation is preferable for an accurate diagnosis. Mouse models for each of the urea cycle disorders exist (with the exception of NAGS deficiency), and for almost all of them, their clinical and biochemical phenotypes rather closely resemble the phenotypes seen in human patients. Consequently, all of the current mouse models are highly useful for future research into novel pharmacological and dietary treatments and gene therapy protocols for the management of urea cycle disorders.

  17. N-Glycosylation Improves the Pepsin Resistance of Histidine Acid Phosphatase Phytases by Enhancing Their Stability at Acidic pHs and Reducing Pepsin's Accessibility to Its Cleavage Sites

    Science.gov (United States)

    Niu, Canfang; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Wang, Yaru; Yang, Peilong

    2015-01-01

    N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed. PMID:26637601

  18. Role of Vitamin D in human Diseases and Disorders – An Overview

    Directory of Open Access Journals (Sweden)

    Priyanshee Gohil

    2014-06-01

    Full Text Available Vitamin D is a fat soluble vitamin and generated in human skin by ultraviolet (UV light. Today, vitamin D is considered to be a steroidal hormone and plays a central role in bone mineralization and calcium homeostasis. The active form of the vitamin D is 1, 25-dihydroxyvitamin D [1, 25-dihydroxycholecalciferol (DHCC] which mediatesproliferation, differentiation and various functions at the cellular level through Vitamin D receptors (VDR.Therefore, compromised vitamin D status is likely to be involved in progression or pathogenesis of various disorders. This assumption is consistent with findings from epidemiological studies that a compromised vitamin D status in humans increases the risk of autoimmune diseases, such as inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus (SLE, multiple sclerosis and type I diabetes mellitus. However, diseases like cancer, cardiovascular disorders and bone disorders are yet not focused. Thus the role of vitamin D in pathogenesis of various diseases is complex and controversial. This review briefly summarizes the role of vitamin D in development and progression of different human disorders.

  19. N-glycosylation of Colorectal Cancer Tissues

    Science.gov (United States)

    Balog, Crina I. A.; Stavenhagen, Kathrin; Fung, Wesley L. J.; Koeleman, Carolien A.; McDonnell, Liam A.; Verhoeven, Aswin; Mesker, Wilma E.; Tollenaar, Rob A. E. M.; Deelder, André M.; Wuhrer, Manfred

    2012-01-01

    Colorectal cancer is the third most common cancer worldwide with an annual incidence of ∼1 million cases and an annual mortality rate of ∼655,000 individuals. There is an urgent need for identifying novel targets to develop more sensitive, reliable, and specific tests for early stage detection of colon cancer. Post-translational modifications are known to play an important role in cancer progression and immune surveillance of tumors. In the present study, we compared the N-glycan profiles from 13 colorectal cancer tumor tissues and corresponding control colon tissues. The N-glycans were enzymatically released, purified, and labeled with 2-aminobenzoic acid. Aliquots were profiled by hydrophilic interaction liquid chromatography (HILIC-HPLC) with fluorescence detection and by negative mode MALDI-TOF-MS. Using partial least squares discriminant analysis to investigate the N-glycosylation changes in colorectal cancer, an excellent separation and prediction ability were observed for both HILIC-HPLC and MALDI-TOF-MS data. For structure elucidation, information from positive mode ESI-ion trap-MS/MS and negative mode MALDI-TOF/TOF-MS was combined. Among the features with a high separation power, structures containing a bisecting GlcNAc were found to be decreased in the tumor, whereas sulfated glycans, paucimannosidic glycans, and glycans containing a sialylated Lewis type epitope were shown to be increased in tumor tissues. In addition, core-fucosylated high mannose N-glycans were detected in tumor samples. In conclusion, the combination of HILIC and MALDI-TOF-MS profiling of N-glycans with multivariate statistical analysis demonstrated its potential for identifying N-glycosylation changes in colorectal cancer tissues and provided new leads that might be used as candidate biomarkers. PMID:22573871

  20. Characterization of the N-linked glycosylation site of recombinant pectate lyase

    NARCIS (Netherlands)

    Colangelo, J.; Licon, V.; Benen, J.A.E.; Visser, J.; Bergmann, C.; Orlando, R.

    1999-01-01

    Recombinant pectate lyase from Aspergillus niger was overexpressed in Aspergillus nidulans. The two recombinant proteins produced differed in molecular mass by 1200 Da, which suggested that the larger molecular weight protein was glycosylated. The deduced amino acid sequence was searched for

  1. Coupled cell-free synthesis, segregation, and core glycosylation of a secretory protein.

    Science.gov (United States)

    Lingappa, V R; Lingappa, J R; Prasad, R; Ebner, K E; Blobel, G

    1978-05-01

    mRNA from rat mammary glands 13-15 days post partum was translated in a wheat germ cell-free system either in the absence or in the presence of ribosome-denuded membranes prepared from isolated rough microsomes of dog pancreas. Newly synthesized alpha-lactalbumin was identified by immunoprecipitation with a monospecific rabbit antiserum against rat alpha-lactalbumin and was characterized by partial amino-terminal sequence determination and by lectin affinity chromatography. In the absence of membranes a presumably unglycosylated form of alpha-lactalbumin was synthesized that bound neither to concanavalin A-Sepharose nor to Ricinus communis lectin-agarose and that contained an amino-terminal signal peptide region comprising 19 amino acid residues. In the presence of membranes a processed form was synthesized that lacked the signal peptide portion and that had an amino-terminal sequence identical to that of mature alpha-lactalbumin. Furthermore, this processed form was found to be segregated, presumably within the microsomal vesicles, because it was resistant to post-translational proteolysis. It was also found to be glycosylated, and because it bound to concanavalin A-Sepharose, from which it could be eluted specifically by alpha-methyl mannoside, but not to R. communis lectin-agarose, it was presumably core-glycosylated. Processing, segregation, and core glycosylation were observed to proceed only when membranes were present during translation and not when they were added after translation.

  2. Face scanning in autism spectrum disorder (ASD and attention deficit/hyperactivity disorder (ADHD: human versus dog face scanning

    Directory of Open Access Journals (Sweden)

    Mauro eMuszkat

    2015-10-01

    Full Text Available This study used eye-tracking to explore attention allocation to human and dog faces in children and adolescents with autism spectrum disorder (ASD, attention deficit/hyperactivity disorder (ADHD, and typical development (TD. Significant differences were found among the three groups. TD participants looked longer at the eyes than ASD and ADHD ones, irrespective of the faces presented. In spite of this difference, groups were similar in that they looked more to the eyes than to the mouth areas of interest. The ADHD group gazed longer at the mouth region than the other groups. Furthermore, groups were also similar in that they looked more to the dog than to the human faces. The eye tracking technology proved to be useful for behavioral investigation in different neurodevelopmental disorders.

  3. Is glycosylated haemoglobin a marker of fertility?

    DEFF Research Database (Denmark)

    Hjollund, N H; Jensen, T K; Bonde, J P

    1999-01-01

    We performed a follow-up study of time to pregnancy in a population of first-time pregnancy planners without previous reproductive experience. The objective of this paper is to report and discuss a finding of a strong relationship between glycosylated haemoglobin (HbA1C) and fertility. A total...... concentration of inhibin A. No association was found between HbA1C and psychosocial distress. The reduced fertility among women with high HbA1C may be due to an association with subclinical polycystic ovaries as indicated by the hormonal profile....

  4. Inhibitory potential of pure isoflavonoids, red clover, and alfalfa extracts on hemoglobin glycosylation

    Directory of Open Access Journals (Sweden)

    Mohsen Hosseini

    2015-03-01

    Full Text Available BACKGROUND: Non-enzymatic glycosylation of hemoglobin is complications of diabetes. Antioxidant system imbalance can result in the emergence of free radicals’ destructive effects in the long-term. Red clover (Trifolium pratense L. and alfalfa (Medicago sativa L. contain isoflavonoids and have antioxidant activity. This experimental study evaluated the inhibitory activity of pure isoflavonoids (daidzein and genistein, red clover and alfalfa extracts on hemoglobin glycosylation. METHODS: This study was performed in Iran. Stock solution of hydroalcoholic extracts of red clover and alfalfa in concentrations of 1 and 10 g/100 ml and stock solution of daidzein and genistein in concentrations of 250 ng, 500 ng, 25 µg and 250 µg/100 ml were prepared as case groups. Control group was without hydroalcoholic extracts of plants and pure isoflavonoids. All experiments were performed in triplicate. Hemoglobin was prepared and antioxidant activities were investigated to estimate degree of nonenzymatic hemoglobin glycosylation. RESULTS: There was no significantly difference between used extracts (extract of red clover and alfalfa and control of the hemoglobin glycosylation but using daidzein (P = 0.046, 0.029 and 0.021, respectively and genistein (P = 0.034, 0.036 and 0.028 significantly inhibited (P < 0.050 this reaction in 25 µg/100 ml, 250 and 500 ng/100 ml concentrations when compared to control. in 25 µg/100 ml, 250 ng and 500 ng/100 ml concentrations percentage of inhibition were 32, 80 and 74.5% respectively with used of daidzein and were 21, 83 and 76% respectively with consumption of genistein. CONCLUSION: According to decrease of glycation of hemoglobin with isoflavonoids, two used plant in this study containing isoflavonoid may be useful on diabetes.   

  5. Human Plasma N-glycosylation as Analyzed by Matrix-Assisted Laser Desorption/Ionization-Fourier Transform Ion Cyclotron Resonance-MS Associates with Markers of Inflammation and Metabolic Health.

    Science.gov (United States)

    Reiding, Karli R; Ruhaak, L Renee; Uh, Hae-Won; El Bouhaddani, Said; van den Akker, Erik B; Plomp, Rosina; McDonnell, Liam A; Houwing-Duistermaat, Jeanine J; Slagboom, P Eline; Beekman, Marian; Wuhrer, Manfred

    2017-02-01

    Glycosylation is an abundant co- and post-translational protein modification of importance to protein processing and activity. Although not template-defined, glycosylation does reflect the biological state of an organism and is a high-potential biomarker for disease and patient stratification. However, to interpret a complex but informative sample like the total plasma N-glycome, it is important to establish its baseline association with plasma protein levels and systemic processes. Thus far, large-scale studies (n >200) of the total plasma N-glycome have been performed with methods of chromatographic and electrophoretic separation, which, although being informative, are limited in resolving the structural complexity of plasma N-glycans. MS has the opportunity to contribute additional information on, among others, antennarity, sialylation, and the identity of high-mannose type species.Here, we have used matrix-assisted laser desorption/ionization (MALDI)-Fourier transform ion cyclotron resonance (FTICR)-MS to study the total plasma N-glycome of 2144 healthy middle-aged individuals from the Leiden Longevity Study, to allow association analysis with markers of metabolic health and inflammation. To achieve this, N-glycans were enzymatically released from their protein backbones, labeled at the reducing end with 2-aminobenzoic acid, and following purification analyzed by negative ion mode intermediate pressure MALDI-FTICR-MS. In doing so, we achieved the relative quantification of 61 glycan compositions, ranging from Hex 4 HexNAc 2 to Hex 7 HexNAc 6 dHex 1 Neu5Ac 4 , as well as that of 39 glycosylation traits derived thereof. Next to confirming known associations of glycosylation with age and sex by MALDI-FTICR-MS, we report novel associations with C-reactive protein (CRP), interleukin 6 (IL-6), body mass index (BMI), leptin, adiponectin, HDL cholesterol, triglycerides (TG), insulin, gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), and smoking. Overall

  6. EDEM2 and OS-9 are required for ER-associated degradation of non-glycosylated sonic hedgehog.

    Directory of Open Access Journals (Sweden)

    Hsiang-Yun Tang

    Full Text Available Misfolded proteins of the endoplasmic reticulum (ER are eliminated by the ER-associated degradation (ERAD in eukaryotes. In S. cerevisiae, ER-resident lectins mediate substrate recognition through bipartite signals consisting of an unfolded local structure and the adjacent glycan. Trimming of the glycan is essential for the directional delivery of the substrates. Whether a similar recognition and delivery mechanism exists in mammalian cells is unknown. In this study, we systematically study the function and substrate specificity of known mammalian ER lectins, including EDEM1/2/3, OS-9 and XTP-3B using the recently identified ERAD substrate sonic hedgehog (SHH, a soluble protein carrying a single N-glycan, as well as its nonglycosylated mutant N278A. Efficient ERAD of N278A requires the core processing complex of HRD1, SEL1L and p97, similar to the glycosylated SHH. While EDEM2 was required for ERAD of both glycosylated and non-glycosylated SHHs, EDEM3 was only necessary for glycosylated SHH and EDEM1 was dispensable for both. Degradation of SHH and N278A also required OS-9, but not the related lectin XTP3-B. Robust interaction of both EDEM2 and OS-9 with a non-glycosylated SHH variant indicates that the misfolded polypeptide backbone, rather than a glycan signature, functions as the predominant signal for recognition for ERAD. Notably, SHH-N278A is the first nonglycosylated substrate to require EDEM2 for recognition and targeting for ERAD. EDEM2 also interacts with calnexin and SEL1L, suggesting a potential avenue by which misfolded glycoproteins may be shunted towards SEL1L and ERAD rather than being released into the secretory pathway. Thus, ER lectins participate in the recognition and delivery of misfolded ER substrates differently in mammals, with an underlying mechanism distinct from that of S. cerevisiae.

  7. Main Strategies of Plant Expression System Glycoengineering for Producing Humanized Recombinant Pharmaceutical Proteins.

    Science.gov (United States)

    Rozov, S M; Permyakova, N V; Deineko, E V

    2018-03-01

    Most the pharmaceutical proteins are derived not from their natural sources, rather their recombinant analogs are synthesized in various expression systems. Plant expression systems, unlike mammalian cell cultures, combine simplicity and low cost of procaryotic systems and the ability for posttranslational modifications inherent in eucaryotes. More than 50% of all human proteins and more than 40% of the currently used pharmaceutical proteins are glycosylated, that is, they are glycoproteins, and their biological activity, pharmacodynamics, and immunogenicity depend on the correct glycosylation pattern. This review examines in detail the similarities and differences between N- and O-glycosylation in plant and mammalian cells, as well as the effect of plant glycans on the activity, pharmacokinetics, immunity, and intensity of biosynthesis of pharmaceutical proteins. The main current strategies of glycoengineering of plant expression systems aimed at obtaining fully humanized proteins for pharmaceutical application are summarized.

  8. Glycosylation of Recombinant Antigenic Proteins from Mycobacterium tuberculosis: In Silico Prediction of Protein Epitopes and Ex Vivo Biological Evaluation of New Semi-Synthetic Glycoconjugates.

    Science.gov (United States)

    Bavaro, Teodora; Tengattini, Sara; Piubelli, Luciano; Mangione, Francesca; Bernardini, Roberta; Monzillo, Vincenzina; Calarota, Sandra; Marone, Piero; Amicosante, Massimo; Pollegioni, Loredano; Temporini, Caterina; Terreni, Marco

    2017-06-29

    Tuberculosis is still one of the most deadly infectious diseases worldwide, and the use of conjugated antigens, obtained by combining antigenic oligosaccharides, such as the lipoarabinomannane (LAM), with antigenic proteins from Mycobacterium tuberculosis (MTB), has been proposed as a new strategy for developing efficient vaccines. In this work, we investigated the effect of the chemical glycosylation on two recombinant MTB proteins produced in E. coli with an additional seven-amino acid tag (recombinant Ag85B and TB10.4). Different semi-synthetic glycoconjugated derivatives were prepared, starting from mannose and two disaccharide analogs. The glycans were activated at the anomeric position with a thiocyanomethyl group, as required for protein glycosylation by selective reaction with lysines. The glycosylation sites and the ex vivo evaluation of the immunogenic activity of the different neo- glycoproteins were investigated. Glycosylation does not modify the immunological activity of the TB10.4 protein. Similarly, Ag85B maintains its B-cell activity after glycosylation while showing a significant reduction in the T-cell response. The results were correlated with the putative B- and T-cell epitopes, predicted using a combination of in silico systems. In the recombinant TB10.4, the unique lysine is not included in any T-cell epitope. Lys30 of Ag85B, identified as the main glycosylation site, proved to be the most important site involved in the formation of T-cell epitopes, reasonably explaining why its glycosylation strongly influenced the T-cell activity. Furthermore, additional lysines included in different epitopes (Lys103, -123 and -282) are also glycosylated. In contrast, B-cell epitopic lysines of Ag85B were found to be poorly glycosylated and, thus, the antibody interaction of Ag85B was only marginally affected after coupling with mono- or disaccharides.

  9. High-throughput analysis of endogenous fruit glycosyl hydrolases using a novel chromogenic hydrogel substrate assay

    DEFF Research Database (Denmark)

    Schückel, Julia; Kracun, Stjepan Kresimir; Lausen, Thomas Frederik

    2017-01-01

    A broad range of enzyme activities can be found in a wide range of different fruits and fruiting bodies but there is a lack of methods where many samples can be handled in a high-throughput and efficient manner. In particular, plant polysaccharide degrading enzymes – glycosyl hydrolases (GHs) play...... led to a more profound understanding of the importance of GH activity and regulation, current methods for determining glycosyl hydrolase activity are lacking in throughput and fail to keep up with data output from transcriptome research. Here we present the use of a versatile, easy...

  10. Phenylpropanoid Scent Compounds in Petunia x hybrida Are Glycosylated and Accumulate in Vacuoles

    Science.gov (United States)

    Cna'ani, Alon; Shavit, Reut; Ravid, Jasmin; Aravena-Calvo, Javiera; Skaliter, Oded; Masci, Tania; Vainstein, Alexander

    2017-01-01

    Floral scent has been studied extensively in the model plant Petunia. However, little is known about the intracellular fate of scent compounds. Here, we characterize the glycosylation of phenylpropanoid scent compounds in Petunia x hybrida. This modification reduces scent compounds' volatility, reactivity, and autotoxicity while increasing their water-solubility. Gas chromatography–mass spectrometry (GC–MS) analyses revealed that flowers of petunia cultivars accumulate substantial amounts of glycosylated scent compounds and that their increasing level parallels flower development. In contrast to the pool of accumulated aglycones, which drops considerably at the beginning of the light period, the collective pool of glycosides starts to increase at that time and does not decrease thereafter. The glycoside pool is dynamic and is generated or catabolized during peak scent emission, as inferred from phenylalanine isotope-feeding experiments. Using several approaches, we show that phenylpropanoid scent compounds are stored as glycosides in the vacuoles of petal cells: ectopic expression of Aspergillus niger β-glucosidase-1 targeted to the vacuole resulted in decreased glycoside accumulation; GC–MS analysis of intact vacuoles isolated from petal protoplasts revealed the presence of glycosylated scent compounds. Accumulation of glycosides in the vacuoles seems to be a common mechanism for phenylpropanoid metabolites. PMID:29163617

  11. Large animals as potential models of human mental and behavioral disorders.

    Science.gov (United States)

    Danek, Michał; Danek, Janusz; Araszkiewicz, Aleksander

    2017-12-30

    Many animal models in different species have been developed for mental and behavioral disorders. This review presents large animals (dog, ovine, swine, horse) as potential models of this disorders. The article was based on the researches that were published in the peer-reviewed journals. Aliterature research was carried out using the PubMed database. The above issues were discussed in the several problem groups in accordance with the WHO International Statistical Classification of Diseases and Related Health Problems 10thRevision (ICD-10), in particular regarding: organic, including symptomatic, disorders; mental disorders (Alzheimer's disease and Huntington's disease, pernicious anemia and hepatic encephalopathy, epilepsy, Parkinson's disease, Creutzfeldt-Jakob disease); behavioral disorders due to psychoactive substance use (alcoholic intoxication, abuse of morphine); schizophrenia and other schizotypal disorders (puerperal psychosis); mood (affective) disorders (depressive episode); neurotic, stress-related and somatoform disorders (posttraumatic stress disorder, obsessive-compulsive disorder); behavioral syndromes associated with physiological disturbances and physical factors (anxiety disorders, anorexia nervosa, narcolepsy); mental retardation (Cohen syndrome, Down syndrome, Hunter syndrome); behavioral and emotional disorders (attention deficit hyperactivity disorder). This data indicates many large animal disorders which can be models to examine the above human mental and behavioral disorders.

  12. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation.

    Directory of Open Access Journals (Sweden)

    Jeremy A Iwashkiw

    Full Text Available Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains resistant to multiple antibiotics is increasing at alarming rates. Although A. baumannii is considered as one of the more threatening "superbugs" for our healthcare system, little is known about the factors contributing to its pathogenesis. In this work we show that A. baumannii ATCC 17978 possesses an O-glycosylation system responsible for the glycosylation of multiple proteins. 2D-DIGE and mass spectrometry methods identified seven A. baumannii glycoproteins, of yet unknown function. The glycan structure was determined using a combination of MS and NMR techniques and consists of a branched pentasaccharide containing N-acetylgalactosamine, glucose, galactose, N-acetylglucosamine, and a derivative of glucuronic acid. A glycosylation deficient strain was generated by homologous recombination. This strain did not show any growth defects, but exhibited a severely diminished capacity to generate biofilms. Disruption of the glycosylation machinery also resulted in reduced virulence in two infection models, the amoebae Dictyostelium discoideum and the larvae of the insect Galleria mellonella, and reduced in vivo fitness in a mouse model of peritoneal sepsis. Despite A. baumannii genome plasticity, the O-glycosylation machinery appears to be present in all clinical isolates tested as well as in all of the genomes sequenced. This suggests the existence of a strong evolutionary pressure to retain this system. These results together indicate that O-glycosylation in A. baumannii is required for full virulence and therefore represents a novel target for the development of new antibiotics.

  13. Identification of a General O-linked Protein Glycosylation System in Acinetobacter baumannii and Its Role in Virulence and Biofilm Formation

    Science.gov (United States)

    Iwashkiw, Jeremy A.; Seper, Andrea; Weber, Brent S.; Scott, Nichollas E.; Vinogradov, Evgeny; Stratilo, Chad; Reiz, Bela; Cordwell, Stuart J.; Whittal, Randy; Schild, Stefan; Feldman, Mario F.

    2012-01-01

    Acinetobacter baumannii is an emerging cause of nosocomial infections. The isolation of strains resistant to multiple antibiotics is increasing at alarming rates. Although A. baumannii is considered as one of the more threatening “superbugs” for our healthcare system, little is known about the factors contributing to its pathogenesis. In this work we show that A. baumannii ATCC 17978 possesses an O-glycosylation system responsible for the glycosylation of multiple proteins. 2D-DIGE and mass spectrometry methods identified seven A. baumannii glycoproteins, of yet unknown function. The glycan structure was determined using a combination of MS and NMR techniques and consists of a branched pentasaccharide containing N-acetylgalactosamine, glucose, galactose, N-acetylglucosamine, and a derivative of glucuronic acid. A glycosylation deficient strain was generated by homologous recombination. This strain did not show any growth defects, but exhibited a severely diminished capacity to generate biofilms. Disruption of the glycosylation machinery also resulted in reduced virulence in two infection models, the amoebae Dictyostelium discoideum and the larvae of the insect Galleria mellonella, and reduced in vivo fitness in a mouse model of peritoneal sepsis. Despite A. baumannii genome plasticity, the O-glycosylation machinery appears to be present in all clinical isolates tested as well as in all of the genomes sequenced. This suggests the existence of a strong evolutionary pressure to retain this system. These results together indicate that O-glycosylation in A. baumannii is required for full virulence and therefore represents a novel target for the development of new antibiotics. PMID:22685409

  14. Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins

    Czech Academy of Sciences Publication Activity Database

    Stepper, J.; Shastri, S.; Loo, T. S.; Preston, J. C.; Novák, Petr; Man, Petr; Moore, Ch. H.; Havlíček, Vladimír; Patchett, M. L.; Norris, G. E.

    2011-01-01

    Roč. 585, č. 4 (2011), s. 645-650 ISSN 0014-5793 Institutional research plan: CEZ:AV0Z50200510 Keywords : Post-translational modification * Glycosylation * Bacteriocin Subject RIV: CE - Biochemistry Impact factor: 3.538, year: 2011

  15. Glycosylated hemoglobin as a forecast factor of progressing of diabetic nephropathy in patients with diabetes type 1

    Directory of Open Access Journals (Sweden)

    Pertseva N.O.

    2017-12-01

    Full Text Available The aim of the study was to propose a mathematical model for prediction of development of diabetic nephropathy in patients with diabetes mellitus by determining the level of glycosylated hemoglobin - as a factor in the development and progression of diabetic nephropathy. A survey of 136 patients with type 1 diabetes was performed in the endocrinology department of the OSH «Clinic of the Medical Academy», Dnipro in 2016-2017. Clinical laboratory examination included: determination of the level of glycosylated hemoglobin (HbA1c, level of blood creatinine, level of albuminuria. The GFR was calculated by the formula CKD-EPI. The obtained results of the study, using methods of correlation and regression analysis, show a clear correlation between the GFR score in patients with diabetes mellitus and the level of glycosylated hemoglobin. Statistical methods of analysis have shown that the level of glycosylated hemoglobin can be considered as an early predictor of development of diabetic nephropathy. The mathematical equation of prognosis for the onset of diabetic nephropathy can be used to determine the prognosis for the development of diabetic nephropathy in diabetes mellitus patients in clinical practice for the timely inclusion of patients with a high prognostic risk in a group requiring more stringent glycemic control.

  16. N-glycosylation of asparagine 8 regulates surface expression of major histocompatibility complex class I chain-related protein A (MICA) alleles dependent on threonine 24

    DEFF Research Database (Denmark)

    Pedersen, Maiken Mellergaard; Skovbakke, Sarah Line; Schneider, Christine L.

    2014-01-01

    for cell-surface expression and sought to identify the essential residues. We found that a single N-glycosylation site (N8) was important for MICA018 surface expression. The frequently expressed MICA allele 008, with an altered transmembrane and intracellular domain, was not affected by mutation of this N......-glycosylation site. Mutational analysis revealed that a single amino acid (T24) in the extracellular domain of MICA018 was essential for the N-glycosylation dependency, while the intracellular domain was not involved. The HHV7 immunoevasin, U21, was found to inhibit MICA018 surface expression by affecting N......-glycosylation and the retention was rescued by T24A substitution. Our study reveals N-glycosylation as an allele-specific regulatory mechanism important for regulation of surface expression of MICA018 and we pinpoint the residues essential for this N-glycosylation dependency. In addition we show that this regulatory mechanism...

  17. Production, crystallization and X-ray characterization of chemically glycosylated hen egg-white lysozyme

    International Nuclear Information System (INIS)

    López-Jaramillo, F. J.; Pérez-Banderas, F.; Hernández-Mateo, F.; Santoyo-González, F.

    2005-01-01

    The feasibility of glycosylation post-purification has been demonstrated by introducing glucose into the model protein lysozyme via a novel reaction that is compatible with biological samples. The crystallization of glycoproteins is one of the challenges to be confronted by the crystallographic community in the frame of what is known as glycobiology. The state of the art for the crystallization of glycoproteins is not promising and removal of the carbohydrate chains is generally suggested since they are flexible and a source of heterogeneity. In this paper, the feasibility of introducing glucose into the model protein hen egg-white lysozyme via a post-purification glycosylation reaction that may turn any protein into a model glycoprotein whose carbohydrate fraction can be manipulated is demonstrated

  18. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells

    International Nuclear Information System (INIS)

    Thim, L.; Bjoern, S.; Christensen, M.; Nicolaisen, E.M.; Lund-Hansen, T.; Pedersen, A.H.; Hedner, U.

    1988-01-01

    Blood coagulation factor VII is a vitamin K dependent glycoprotein which in its activated form, factor VII a , participates in the coagulation process by activating factor X and/or factor IX in the presence of Ca 2+ and tissue factor. Three types of potential posttranslational modifications exist in the human factor VII a molecule, namely, 10 γ-carboxylated, N-terminally located glutamic acid residues, 1 β-hydroxylated aspartic acid residue, and 2 N-glycosylated asparagine residues. In the present study, the amino acid sequence and posttranslational modifications of recombinant factor VII a as purified from the culture medium of a transfected baby hamster kidney cell line have been compared to human plasma factor VII a . By use of HPLC, amino acid analysis, peptide mapping, and automated Edman degradation, the protein backbone of recombinant factor VII a was found to be identical with human factor VII a . Asparagine residues 145 and 322 were found to be fully N-glycosylated in human plasma factor VII a . In the recombinant factor VII a , asparagine residue 322 was fully glycosylated whereas asparagine residue 145 was only partially (approximately 66%) glycosylated. Besides minor differences in the sialic acid and fucose contents, the overall carbohydrate compositions were nearly identical in recombinant factor VII a and human plasma factor VII a . These results show that factor VII a as produced in the transfected baby hamster kidney cells is very similar to human plasma factor VII a and that this cell line thus might represent an alternative source for human factor VII a

  19. DMPD: Nod1 and Nod2 in innate immunity and human inflammatory disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031249 Nod1 and Nod2 in innate immunity and human inflammatory disorders. Le Bour...w Nod1 and Nod2 in innate immunity and human inflammatory disorders. PubmedID 18031249 Title Nod1 and Nod2 in innate immunity and hum...an inflammatory disorders. Authors Le Bourhis L, Benko S

  20. Rapid and individual-specific glycoprofiling of the low abundance N-glycosylated protein tissue inhibitor of metalloproteinases-1

    DEFF Research Database (Denmark)

    Thaysen-Andersen, Morten; Thøgersen, Ida B.; Nielsen, Hans Jørgen

    2007-01-01

    A gel-based method for a mass spectrometric site-specific glycoanalysis was developed using a recombinant glycoprotein expressed in two different cell lines. Hydrophilic interaction liquid chromatography at nanoscale level was used to enrich for glycopeptides prior to MS. The glycoprofiling...... glycoprofiling of a low abundance glycoprotein performed in an individual-specific manner allows for future studies of glycosylated biomarkers for person-specific detection of altered glycosylation and may thus allow early detection and monitoring of diseases....

  1. Evolutionary Pattern of N-Glycosylation Sequon Numbers  in Eukaryotic ABC Protein Superfamilies

    Directory of Open Access Journals (Sweden)

    R. Shyama Prasad Rao

    2010-02-01

    Full Text Available Many proteins contain a large number of NXS/T sequences (where X is any amino acid except proline which are the potential sites of asparagine (N linked glycosylation. However, the patterns of occurrence of these N-glycosylation sequons in related proteins or groups of proteins and their underlying causes have largely been unexplored. We computed the actual and probabilistic occurrence of NXS/T sequons in ABC protein superfamilies from eight diverse eukaryotic organisms. The ABC proteins contained significantly higher NXS/T sequon numbers compared to respective genome-wide average, but the sequon density was significantly lower owing to the increase in protein size and decrease in sequon specific amino acids. However, mammalian ABC proteins have significantly higher sequon density, and both serine and threonine containing sequons (NXS and NXT have been positively selected—against the recent findings of only threonine specific Darwinian selection of sequons in proteins. The occurrence of sequons was positively correlated with the frequency of sequon specific amino acids and negatively correlated with proline and the NPS/T sequences. Further, the NPS/T sequences were significantly higher than expected in plant ABC proteins which have the lowest number of NXS/T sequons. Accord- ingly, compared to overall proteins, N-glycosylation sequons in ABC protein superfamilies have a distinct pattern of occurrence, and the results are discussed in an evolutionary perspective.

  2. Cell culture media supplementation of infrequently used sugars for the targeted shifting of protein glycosylation profiles.

    Science.gov (United States)

    Hossler, Patrick; Racicot, Christopher; Chumsae, Christopher; McDermott, Sean; Cochran, Keith

    2017-03-01

    Mammalian cells in culture rely on sources of carbohydrates to supply the energy requirements for proliferation. In addition, carbohydrates provide a large source of the carbon supply for supporting various other metabolic activities, including the intermediates involved in the protein glycosylation pathway. Glucose and galactose, in particular, are commonly used sugars in culture media for these purposes. However, there exists a very large repertoire of other sugars in nature, and many that have been chemically synthesized. These sugars are particularly interesting because they can be utilized by cells in culture in distinct ways. In the present work it has been found that many infrequently used sugars, and the corresponding cellular response towards them as substrates, led to differences in the protein N-glycosylation profile of a recombinant glycoprotein. The selective media supplementation of raffinose, trehalose, turanose, palatinose, melezitose, psicose, lactose, lactulose, and mannose were found to be capable of redirecting N-glycan oligosaccharide profiles. Despite this shifting of protein glycosylation, there were no other adverse changes in culture performance, including both cell growth and cellular productivity over a wide range of supplemented sugar concentrations. The approach presented highlights a potential means towards both the targeted shifting of protein glycosylation profiles and ensuring recombinant protein comparability, which up to this point in time has remained under-appreciated for these under-utilized compounds. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:511-522, 2017. © 2017 American Institute of Chemical Engineers.

  3. Glycosylation of voltage-gated calcium channels in health and disease

    Czech Academy of Sciences Publication Activity Database

    Lazniewska, Joanna; Weiss, Norbert

    2017-01-01

    Roč. 1859, č. 5 (2017), s. 662-668 ISSN 0005-2736 R&D Projects: GA ČR GA15-13556S; GA MŠk 7AMB15FR015 Institutional support: RVO:61388963 Keywords : calcium channels * voltage-gated calcium channels * N-glycosylation * ancillary subunit * trafficking * stability Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.498, year: 2016

  4. DMBT1 expression and glycosylation during the adenoma-carcinoma sequence in colorectal cancer

    DEFF Research Database (Denmark)

    Robbe, C; Paraskeva, C; Mollenhauer, J

    2005-01-01

    , location and its mode of secretion during malignant transformation in colorectal cancer. Using human colorectal PC/AA cell lines and tissue sections from individual patients, we have examined the expression of DMBT1 and its glycosylation in the adenoma-carcinoma sequence leading to the adenocarcinoma......The gene DMBT1 (deleted in malignant brain tumour-1) has been proposed to play a role in brain and epithelial cancer, but shows unusual features for a classical tumour-suppressor gene. On the one hand, DMBT1 has been linked to mucosal protection, whereas, on the other, it potentially plays a role...... in epithelial differentiation. Thus its function in a particular tissue is of mechanistic importance for its role in cancer. Because the former function requires secretion to the lumen and the latter function may depend on its presence in the extracellular matrix, we decided to investigate DMBT1 expression...

  5. The heterotaxy gene GALNT11 glycosylates Notch to orchestrate cilia type and laterality

    DEFF Research Database (Denmark)

    Boskovski, Marko T; Yuan, Shiaulou; Pedersen, Nis Borbye

    2013-01-01

    to such determination. We previously identified GALNT11 as a candidate disease gene in a patient with heterotaxy, and now demonstrate, in Xenopus tropicalis, that galnt11 activates Notch signalling. GALNT11 O-glycosylates human NOTCH1 peptides in vitro, thereby supporting a mechanism of Notch activation either...... by increasing ADAM17-mediated ectodomain shedding of the Notch receptor or by modification of specific EGF repeats. We further developed a quantitative live imaging technique for Xenopus left-right organizer cilia and show that Galnt11-mediated Notch1 signalling modulates the spatial distribution and ratio...... of motile and immotile cilia at the left-right organizer. galnt11 or notch1 depletion increases the ratio of motile cilia at the expense of immotile cilia and produces a laterality defect reminiscent of loss of the ciliary sensor Pkd2. By contrast, Notch overexpression decreases this ratio, mimicking...

  6. Perpetration of gross human rights violations in South Africa: association with psychiatric disorders.

    Science.gov (United States)

    Stein, Dan J; Williams, Stacey L; Jackson, Pamela B; Seedat, Soraya; Myer, Landon; Herman, Allen; Williams, David R

    2009-05-01

    A nationally representative study of psychiatric disorders in South Africa provided an opportunity to study the association between perpetration of human rights violations (HRVs) during apartheid and psychiatric disorder. Prior work has suggested an association between perpetration and post-traumatic stress disorder (PTSD), but this remains controversial. Subjects reported on their perpetration of human rights violations, purposeful injury, accidental injury and domestic violence. Lifetime and 12-month prevalence of DSM-IV (Diagnostic and Statistical Manual, 4th edition) disorders were assessed with Version 3.0 of the World Health Organization Composite International Diagnostic Interview (CIDI 3.0). Socio-demographic characteristics of these groups were calculated. Odds ratios for the association between the major categories of psychiatric disorders and perpetration were assessed. HRV perpetrators were more likely to be male, black and more educated, while perpetrators of domestic violence (DV) were more likely to be female, older, married, less educated and with lower income. HRV perpetration was associated with lifetime and 12-month anxiety and substance use disorders, particularly PTSD. Purposeful and DV perpetration were associated with lifetime and 12-month history of all categories of disorders, whereas accidental perpetration was associated most strongly with mood disorders. Socio-demographic profiles of perpetrators of HRV and DV in South Africa differ. While the causal relationship between perpetration and psychiatric disorders deserves further study, it is possible that some HRV and DV perpetrators were themselves once victims. The association between accidental perpetration and mood disorder also deserves further attention.

  7. The glycosylation and characterization of the candidate Gc macrophage activating factor.

    Science.gov (United States)

    Ravnsborg, Tina; Olsen, Dorthe T; Thysen, Anna Hammerich; Christiansen, Maja; Houen, Gunnar; Højrup, Peter

    2010-04-01

    The vitamin D binding protein, Gc globulin, has in recent years received some attention for its role as precursor for the extremely potent macrophage activating factor (GcMAF). An O-linked trisaccharide has been allocated to the threonine residue at position 420 in two of the three most common isoforms of Gc globulin (Gc1s and Gc1f). A substitution for a lysine residue at position 420 in Gc2 prevents this isoform from being glycosylated at that position. It has been suggested that Gc globulin subjected sequentially to sialidase and galactosidase treatment generates GcMAF in the form of Gc globulin with only a single GalNAc attached to T420. In this study we confirm the location of a linear trisaccharide on T420. Furthermore, we provide the first structural evidence of the generation of the proposed GcMAF by use of glycosidase treatment and mass spectrometry. Additionally the generated GcMAF candidate was tested for its effect on cytokine release from macrophages in human whole blood. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Viral Restriction Activity of Feline BST2 Is Independent of Its N-Glycosylation and Induction of NF-κB Activation.

    Directory of Open Access Journals (Sweden)

    Weiran Wang

    Full Text Available BST2 (CD317, tetherin, HM1.24 is an interferon-inducible transmembrane protein which can directly inhibit the release of enveloped virus particles from infected cells, and its anti-viral activity is reported to be related to the specific topological arrangement of its four structural domains. The N-terminal cytoplasmic tail of feline BST2 (fBST2 is characterized by a shorter N-terminal region compared to those of other known homologs. In this study, we investigated the functional impact of modifying the cytoplasmic tail region of fBST2 and its molecular mechanism. The fBST2 protein with the addition of a peptide at the N-terminus retained anti-release activity against human immunodeficiency virus type-1 and pseudovirus based on feline immunodeficiency virus at a weaker level compared with the wild-type fBST2. However, the fBST2 protein with addition of a peptide internally in the ectodomain proximal to the GPI anchor still retained its anti-viral activity well. Notably, the N-glycosylation state and the cell surface level of the N-terminally modified variants were unlike those of the wild-type protein, while no difference was observed in their intracellular localizations. However, in contrast to human BST2, the wild-type fBST2 did not show the ability to activate NF-κB. Consistent with previous reports, our findings showed that adding a peptide in the cytoplasmic tail region of fBST2 may influence its anti-viral activity. The shorter N-terminal cytoplasmic region of fBST2 compared with human BST2 did not apparently affect its anti-viral activity, which is independent of its N-glycosylation and ability to activate NF-κB.

  9. Towards the implementation of quality by design to the production of therapeutic monoclonal antibodies with desired glycosylation patterns.

    Science.gov (United States)

    del Val, Ioscani Jimenez; Kontoravdi, Cleo; Nagy, Judit M

    2010-01-01

    Quality by design (QbD) is a scheme for the development, manufacture, and approval of pharmaceutical products. The end goal of QbD is to ensure product quality by building it into the manufacturing process. The main regulatory bodies are encouraging its implementation to the manufacture of all new pharmaceuticals including biological products. Monoclonal antibodies (mAbs) are currently the leading products of the biopharmaceutical industry. It has been widely reported that glycosylation directly influences the therapeutic mechanisms by which mAbs function in vivo. In addition, glycosylation has been identified as one of the main sources of monoclonal antibody heterogeneity, and thus, a critical parameter to follow during mAb manufacture. This article reviews the research on glycosylation of mAbs over the past 2 decades under the QbD scope. The categories presented under this scope are: (a) definition of the desired clinical effects of mAbs, (b) definition of the glycosylation-associated critical quality attributes (glycCQAs) of mAbs, (c) assessment of process parameters that pose a risk for mAb glycCQAs, and (d) methods for accurately quantifying glycCQAs of mAbs. The information available in all four areas leads us to conclude that implementation of QbD to the manufacture of mAbs with specific glycosylation patterns will be a reality in the near future. We also foresee that the implementation of QbD will lead to the development of more robust and efficient manufacturing processes and to a new generation of mAbs with increased clinical efficacy. Copyright © 2010 American Institute of Chemical Engineers (AIChE).

  10. Human Cell Line-Derived Monoclonal IgA Antibodies for Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Felix Hart

    2017-05-01

    Full Text Available IgA antibodies have great potential to improve the functional diversity of current IgG antibody-based cancer immunotherapy options. However, IgA production and purification is not well established, which can at least in part be attributed to the more complex glycosylation as compared to IgG antibodies. IgA antibodies possess up to five N-glycosylation sites within their constant region of the heavy chain as compared to one site for IgG antibodies. The human GlycoExpress expression system was developed to produce biotherapeutics with optimized glycosylation and used here to generate a panel of IgA isotype antibodies directed against targets for solid (TA-mucin 1, Her2, EGFR, Thomsen–Friedenreich and hematological (CD20 cancer indications. The feasibility of good manufacturing practice was shown by the production of 11 g IgA within 35 days in a one liter perfusion bioreactor, and IgA antibodies in high purity were obtained after purification. The monoclonal IgA antibodies possessed a high sialylation degree, and no non-human glycan structures were detected. Kinetic analysis revealed increased avidity antigen binding for IgA dimers as compared to monomeric antibodies. The IgA antibodies exhibited potent Fab- and Fc-mediated functionalities against cancer cell lines, whereby especially granulocytes are recruited. Therefore, for patients who do not sufficiently benefit from therapeutic IgG antibodies, IgA antibodies may complement current regiment options and represent a promising strategy for cancer immunotherapy. In conclusion, a panel of novel biofunctional IgA antibodies with human glycosylation was successfully generated.

  11. The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis.

    Science.gov (United States)

    Ghanbari, Z; Housaindokht, M R; Bozorgmehr, M R; Izadyar, M

    2016-09-07

    Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Rapid chemical de-N-glycosylation and derivatization for liquid chromatography of immunoglobulin N-linked glycans.

    Directory of Open Access Journals (Sweden)

    Akihiko Kameyama

    Full Text Available Glycan analysis may result in exploitation of glycan biomarkers and evaluation of heterogeneity of glycosylation of biopharmaceuticals. For N-linked glycan analysis, we investigated alkaline hydrolysis of the asparagine glycosyl carboxamide of glycoproteins as a deglycosylation reaction. By adding hydroxylamine into alkaline de-N-glycosylation, we suppressed the degradation of released glycans and obtained a mixture of oximes, free glycans, and glycosylamines. The reaction was completed within 1 h, and the mixture containing oximes was easily tagged with 2-aminobenzamide by reductive amination. Here, we demonstrated N-linked glycan analysis using this method for a monoclonal antibody, and examined whether this method could liberate glycans without degradation from apo-transferrin containing NeuAc and NeuGc and horseradish peroxidase containing Fuc α1-3 GlcNAc at the reducing end. Furthermore, we compared glycan recoveries between conventional enzymatic glycan release and this method. Increasing the reaction temperature and reaction duration led to degradation, whereas decreasing these parameters resulted in lower release. Considering this balance, we proposed to carry out the reaction at 80°C for 1 h for asialo glycoproteins from mammals and at 50°C for 1 h for sialoglycoproteins.

  13. Dependency of the regio- and stereoselectivity of intramolecular, ring-closing glycosylations upon the ring size

    Directory of Open Access Journals (Sweden)

    Patrick Claude

    2011-12-01

    Full Text Available Phenyl 3,4,6-tri-O-benzyl-2-O-(3-carboxypropionyl-1-thio-β-D-galactopyranoside (1 was condensed via its pentafluorophenyl ester 2 with 5-aminopentyl (4a, 4-aminobutyl (4b, 3-aminopropyl (4c and 2-aminoethyl 4,6-O-benzylidene-β-D-glucopyranoside (4d, prepared from the corresponding N-Cbz protected glucosides 3a–d, to give the corresponding 2-[3-(alkylcarbamoylpropionyl] tethered saccharides 5a–d. Intramolecular, ring closing glycosylation of the saccharides with NIS and TMSOTf afforded the tethered β(1→3 linked disaccharides 6a–c, the α(1→3 linked disaccharides 7a–d and the α(1→2 linked disaccharide 8d in ratios depending upon the ring size formed during glycosylation. No β(1→2 linked disaccharides were formed. Molecular modeling of saccharides 6–8 revealed that a strong aromatic stacking interaction between the aromatic parts of the benzyl and benzylidene protecting groups in the galactosyl and glucosyl moieties was mainly responsible for the observed regioselectivity and anomeric selectivity of the ring-closing glycosylation step.

  14. Effects of laser acupoint irradiation on blood glucose and glycosylated hemoglobin in type 2 diabetes mellitus

    Science.gov (United States)

    Hui-Hui, Liu; Guo-Xin, Xiong; Li-Ping, Zhang

    2016-06-01

    To investigate the effects of semiconductor laser acupoint irradiation on blood glucose, glycosylated hemoglobin and physical fitness in type 2 diabetes mellitus, 44 cases of type 2 diabetic patients were randomly divided into a control group and a treatment group. All patients in both groups were given a drug treatment. The Hegu, Quchi and Zusanli acupoints of patients in the treatment group were then irradiated daily for 15 d with a 10 MW semiconductor laser. Before and after treatment, patients in both groups underwent a variety of tests and measurements: a two-hour postprandial blood glucose test; a glycosylated hemoglobin test and body mass index (BMI), waist-to-hip ratio (WHR) and body fat percentage (BFP) measurements. The data detected after treatment greatly decreased in the treatment group and was significantly different from that in the control group. It is shown that the acupoint irradiation with a semiconductor laser can improve two-hour postprandial blood glucose, glycosylated hemoglobin and some physical fitness measurements in type 2 diabetes mellitus patients.

  15. Gram-positive bacterial lipoglycans based on a glycosylated diacylglycerol lipid anchor are microbe-associated molecular patterns recognized by TLR2.

    Directory of Open Access Journals (Sweden)

    Landry Blanc

    Full Text Available Innate immune recognition is the first line of host defense against invading microorganisms. It is a based on the detection, by pattern recognition receptors (PRRs, of invariant molecular signatures that are unique to microorganisms. TLR2 is a PRR that plays a major role in the detection of Gram-positive bacteria by recognizing cell envelope lipid-linked polymers, also called macroamphiphiles, such as lipoproteins, lipoteichoic acids and mycobacterial lipoglycans. These microbe-associated molecular patterns (MAMPs display a structure based on a lipid anchor, being either an acylated cysteine, a glycosylated diacylglycerol or a mannosyl-phosphatidylinositol respectively, and having in common a diacylglyceryl moiety. A fourth class of macroamphiphile, namely lipoglycans, whose lipid anchor is made, as for lipoteichoic acids, of a glycosylated diacylglycerol unit rather than a mannosyl-phosphatidylinositol, is found in Gram-positive bacteria and produced by certain Actinobacteria, including Micrococcus luteus, Stomatococcus mucilaginosus and Corynebacterium glutamicum. We report here that these alternative lipoglycans are also recognized by TLR2 and that they stimulate TLR2-dependant cytokine production, including IL-8, TNF-α and IL-6, and cell surface co-stimulatory molecule CD40 expression by a human macrophage cell line. However, they differ by their co-receptor requirement and the magnitude of the innate immune response they elicit. M. luteus and S. mucilaginosus lipoglycans require TLR1 for recognition by TLR2 and induce stronger responses than C. glutamicum lipoglycan, sensing of which by TLR2 is dependent on TLR6. These results expand the repertoire of MAMPs recognized by TLR2 to lipoglycans based on a glycosylated diacylglycerol lipid anchor and reinforce the paradigm that macroamphiphiles based on such an anchor, including lipoteichoic acids and alternative lipoglycans, induce TLR2-dependant innate immune responses.

  16. Human Mendelian pain disorders: a key to discovery and validation of novel analgesics.

    Science.gov (United States)

    Goldberg, Y P; Pimstone, S N; Namdari, R; Price, N; Cohen, C; Sherrington, R P; Hayden, M R

    2012-10-01

    We have utilized a novel application of human genetics, illuminating the important role that rare genetic disorders can play in the development of novel drugs that may be of relevance for the treatment of both rare and common diseases. By studying a very rare Mendelian disorder of absent pain perception, congenital indifference to pain, we have defined Nav1.7 (endocded by SCN9A) as a critical and novel target for analgesic development. Strong human validation has emerged with SCN9A gain-of-function mutations causing inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder, both Mendelian disorder of spontaneous or easily evoked pain. Furthermore, variations in the Nav1.7 channel also modulate pain perception in healthy subjects as well as in painful conditions such as osteoarthritis and Parkinson disease. On the basis of this, we have developed a novel compound (XEN402) that exhibits potent, voltage-dependent block of Nav1.7. In a small pilot study, we showed that XEN402 blocks Nav1.7 mediated pain associated with IEM thereby demonstrating the use of rare genetic disorders with mutant target channels as a novel approach to rapid proof-of-concept. Our approach underscores the critical role that human genetics can play by illuminating novel and critical pathways pertinent for drug discovery. © 2012 John Wiley & Sons A/S.

  17. Stability of Curcuma longa rhizome lectin: Role of N-linked glycosylation.

    Science.gov (United States)

    Biswas, Himadri; Chattopadhyaya, Rajagopal

    2016-04-01

    Curcuma longa rhizome lectin, a mannose-binding protein of non-seed portions of turmeric, is known to have antifungal, antibacterial and α-glucosidase inhibitory activities. We studied the role of complex-type glycans attached to asparagine (Asn) 66 and Asn 110 to elucidate the role of carbohydrates in lectin activity and stability. Apart from the native lectin, the characteristics of a deglycosylated Escherichia coli expressed lectin, high-mannose oligosaccharides at both asparagines and its glycosylation mutants N66Q and N110Q expressed in Pichia pastoris, were compared to understand the relationship between glycosylation and activity. Far UV circular dichroism (CD) spectra, fluorescence emission maximum, hemagglutination assay show no change in secondary or tertiary structures or sugar-binding properties between wild-type and aforementioned recombinant lectins under physiological pH. But reduced agglutination activity and loss of tertiary structure are observed in the acidic pH range for the deglycosylated and the N110Q protein. In thermal and guanidine hydrochloride (GdnCl)-induced unfolding, the wild-type and high-mannose lectins possess higher stability compared with the deglycosylated recombinant lectin and both mutants, as measured by a higher Tm of denaturation or a greater free energy change, respectively. Reversibility experiments after thermal denaturation reveal that deglycosylated proteins tend to aggregate during thermal inactivation but the wild type shows a much greater recovery to the native state upon refolding. These results suggest that N-glycosylation in turmeric lectin is important for the maintenance of its proper folding upon changes in pH, and that the oligosaccharides help in maintaining the active conformation and prevent aggregation in unfolded or partially folded molecules. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Splitting of α-Helical Structure as Molecular Basis for Abolishing an Amyloid Formation by Multiple Glycosylation: A Molecular Dynamics Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youngjin [Hoseo University, Asan (Korea, Republic of); Cho, Eunae; Jung, Seunho [Konkuk University, Seoul (Korea, Republic of)

    2016-07-15

    Molecular details played by glycosylation are complicated by the subtle nature of variations in the glycan structure, and this complexity is one of the research barriers to establish structure-function relationship on the protein modification. This is particularly true for understanding the exact structural consequence of the glycosylation of the biological proteins. The present MD simulation revealed molecular-level mechanism of the glycosylation effect on the peptide to understand the experimentally observed phenomenon for inhibiting amyloid formation in the model peptide. The galactose residue on the Ser17 undermined the helical integrity of main protein region by enhancing sugar–amino acid interaction and perturbing natural interactions between amino acid residues.

  19. Avaliação de anticoagulantes naturais e de fatores da coagulação em pacientes com distúrbios congênitos de glicosilação (DCG tipo I An evaluation of natural anticoagulants and coagulation factors in patients with congenital disorders of glycosylation type I

    Directory of Open Access Journals (Sweden)

    Anna Letícia Soares

    2010-01-01

    Full Text Available Defeitos na incorporação de N-glicanos nas proteínas humanas ocasionam um grupo de doenças multissistêmicas denominadas coletivamente distúrbios congênitos de glicosilação (DCG. Os DCG manifestam-se na infância com sintomas neurológicos que incluem principalmente atraso psicomotor, ataxia, hipotonia e episódios de acidente vascular cerebral. Várias proteínas do sistema hemostático somente tornam-se biologicamente ativas após a glicosilação. O objetivo deste estudo foi avaliar os anticoagulantes naturais (proteína S livre, proteína C e antitrombina e os fatores da coagulação (VIII, IX e XI em pacientes com DCG tipo I. Foram avaliados 11 pacientes com diagnóstico positivo para DCG tipo I (três do gênero masculino e oito do gênero feminino, idade média de 5,6 anos; e oito pacientes com diagnóstico negativo para DCG(quatro do gênero masculino e quatro do gênero feminino, idade média de 4,5 anos (grupo-controle. O diagnóstico de DCG tipo I foi realizado pela identificação do padrão de hipoglicosilação da transferrina plasmática. Na avaliação dos anticoagulantes naturais pode-se observar redução dos valores de PS livre e PC e uma redução marcante de AT, quando comparados com o grupo controle. Em relação aos fatores de coagulação não houve diferença significativa para os fatores VIII e IX e houve redução marcante do fator XI. Os resultados do presente estudo sugerem que a deficiência combinada de anticoagulantes naturais é responsável pelo estado pró-trombótico observado em pacientes com DCG. Sugerimos também que a análise dos parâmetros hemostáticos seja realizada para pacientes com DCG quando apresentarem sintomas clínicos de alteração do sistema hemostático e antes de procedimentos invasivos.Defects in the biosynthesis of N-linked human protein glycosylation leads to a group of multisystem disorders collectively called congenital disorders of glycosylation (CDG. CDG present in infancy

  20. Self-regulating insulin delivery systems I. Synthesis and characterization of glycosylated insulin

    NARCIS (Netherlands)

    Jeong, Seo Young; Kim, Sung Wan; Eenink, Martinus J.D.; Feijen, Jan

    1984-01-01

    A design for a self-regulating insulin delivery system based on the competitive binding of glucose and glycosylated insulin to the lectin Concanavalin A is proposed. A differnt approach to diabetes therapy is the attempt to effect a permanent cure of the disease by supplementing the patient's

  1. Pre-column derivatisation method for the measurement of glycosylated hydroxylysines of collagenous proteins

    NARCIS (Netherlands)

    Bank, R.A.; Beekman, B.; Tenni, R.; Tekoppele, J.M.

    1997-01-01

    Measurement of the glycosylated hydroxylysines galactosyl- and glucosylgalactosylhydroxylysine (GH and GGH) in combination with other amino acids has been based on ion-exchange chromatography followed by reaction with ninhydrin. Here, a rapid and sensitive high-performance liquid chromatographic

  2. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions

    DEFF Research Database (Denmark)

    Wang, Shengjun; Mao, Yang; Narimatsu, Yoshiki

    2018-01-01

    in the LA linker regions of VLDLR, LRP1, and LRP2 (Megalin) from both cell lines and rat organs. Using a panel of gene-edited isogenic cell line models, we demonstrate that GalNAc-T11-mediated LDLR and VLDLR O-glycosylation is not required for transport and cell surface expression and stability...... of these receptors, but markedly enhances LDL and VLDL binding and uptake. Direct ELISA-based binding assays with truncated LDLR constructs revealed that O-glycosylation increased affinity for LDL by approximately 5-fold. The molecular basis for this observation is currently unknown, but these findings open up new...

  3. The Impact of O-Glycan Chemistry on the Stability of Intrinsically Disordered Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Prates, Erica T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Crowley, Michael F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Guan, Xiaoyang [University of Colorado; Li, Yaohao [University of Colorado; Wang, Xinfeng [University of Colorado; Chaffey, Patrick K. [University of Colorado; Skaf, Munir S. [University of Campinas; Tan, Zhongping [University of Colorado

    2018-03-02

    Protein glycosylation is a diverse post-translational modification that serves myriad biological functions. O-linked glycans in particular vary widely in extent and chemistry in eukaryotes, with secreted proteins from fungi and yeast commonly exhibiting O-mannosylation in intrinsically disordered regions of proteins, likely for proteolysis protection, among other functions. However, it is not well understood why mannose is often the preferred glycan, and more generally, if the neighboring protein sequence and glycan have coevolved to protect against proteolysis in glycosylated intrinsically disordered proteins (IDPs). Here, we synthesized variants of a model IDP, specifically a natively O-mannosylated linker from a fungal enzyme, with a-O-linked mannose, glucose, and galactose moieties, along with a non-glycosylated linker. Upon exposure to thermolysin, O-mannosylation, by far, provides the highest extent of proteolysis protection. To explain this observation, extensive molecular dynamics simulations were conducted, revealing that the axial configuration of the C2-hydroxyl group (2-OH) of a-mannose adjacent to the glycan-peptide bond strongly influences the conformational features of the linker. Specifically, a-mannose restricts the torsions of the IDP main chain more than other glycans whose equatorial 2-OH groups exhibit interactions that favor perpendicular glycan-protein backbone orientation. We suggest that IDP stiffening due to O-mannosylation impairs protease action, with contributions from protein-glycan interactions, protein flexibility, and protein stability. Our results further imply that resistance to proteolysis is an important driving force for evolutionary selection of a-mannose in eukaryotic IDPs, and more broadly, that glycan motifs for proteolysis protection likely coevolve with the protein sequence to which they attach.

  4. Cell culture media supplementation of uncommonly used sugars sucrose and tagatose for the targeted shifting of protein glycosylation profiles of recombinant protein therapeutics.

    Science.gov (United States)

    Hossler, Patrick; McDermott, Sean; Racicot, Christopher; Chumsae, Christopher; Raharimampionona, Haly; Zhou, Yu; Ouellette, David; Matuck, Joseph; Correia, Ivan; Fann, John; Li, Jianmin

    2014-01-01

    Protein glycosylation is an important post-translational modification toward the structure and function of recombinant therapeutics. The addition of oligosaccharides to recombinant proteins has been shown to greatly influence the overall physiochemical attributes of many proteins. It is for this reason that protein glycosylation is monitored by the developer of a recombinant protein therapeutic, and why protein glycosylation is typically considered a critical quality attribute. In this work, we highlight a systematic study toward the supplementation of sucrose and tagatose into cell culture media for the targeted modulation of protein glycosylation profiles on recombinant proteins. Both sugars were found to affect oligosaccharide maturation resulting in an increase in the percentage of high mannose N-glycan species, as well as a concomitant reduction in fucosylation. The latter effect was demonstrated to increase antibody-dependent cell-mediated cytotoxicity for a recombinant antibody. These aforementioned results were found to be reproducible at different scales, and across different Chinese hamster ovary cell lines. Through the selective supplementation of these described sugars, the targeted modulation of protein glycosylation profiles is demonstrated, as well as yet another tool in the cell culture toolbox for ensuring product comparability. © 2014 American Institute of Chemical Engineers.

  5. Human iPSC-derived neurons and lymphoblastoid cells for personalized medicine research in neuropsychiatric disorders.

    Science.gov (United States)

    Gurwitz, David

    2016-09-01

    The development and clinical implementation of personalized medicine crucially depends on the availability of high-quality human biosamples; animal models, although capable of modeling complex human diseases, cannot reflect the large variation in the human genome, epigenome, transcriptome, proteome, and metabolome. Although the biosamples available from public biobanks that store human tissues and cells may represent the large human diversity for most diseases, these samples are not always sufficient for developing biomarkers for patient-tailored therapies for neuropsychiatric disorders. Postmortem human tissues are available from many biobanks; nevertheless, collections of neuronal human cells from large patient cohorts representing the human diversity remain scarce. Two tools are gaining popularity for personalized medicine research on neuropsychiatric disorders: human induced pluripotent stem cell-derived neurons and human lymphoblastoid cell lines. This review examines and contrasts the advantages and limitations of each tool for personalized medicine research.

  6. A new mouse model for mania shares genetic correlates with human bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Michael C Saul

    Full Text Available Bipolar disorder (BPD is a debilitating heritable psychiatric disorder. Contemporary rodent models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain termed Madison (MSN that naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR. We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: Epor, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a novel genome enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21-22, 12q24, 16q24, and 17q25. Using a functional network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes.

  7. Convergent integration of animal model and human studies of bipolar disorder (manic-depressive illness).

    Science.gov (United States)

    Le-Niculescu, Helen; Patel, Sagar D; Niculescu, Alexander B

    2010-10-01

    Animal models and human studies of bipolar disorder and other psychiatric disorders are becoming increasingly integrated, prompted by recent successes. Particularly for genomics, the convergence and integration of data across species, experimental modalities and technical platforms is providing a fit-to-disease way of extracting reproducible and biologically important signal, in sharp contrast to the fit-to-cohort effect, disappointing findings to date, and limited reproducibility of human genetic analyses alone. Such work in psychiatry can provide an example of how to address other genetically complex disorders, and in turn will benefit by incorporating concepts from other areas, such as cancer biology and diabetes. Copyright © 2010. Published by Elsevier Ltd.

  8. Biochemical characterization of individual human glycosylated pro-insulin-like growth factor (IGF)-II and big-IGF-II isoforms associated with cancer.

    Science.gov (United States)

    Greenall, Sameer A; Bentley, John D; Pearce, Lesley A; Scoble, Judith A; Sparrow, Lindsay G; Bartone, Nicola A; Xiao, Xiaowen; Baxter, Robert C; Cosgrove, Leah J; Adams, Timothy E

    2013-01-04

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed "pro" and "big" IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling.

  9. Biochemical Characterization of Individual Human Glycosylated pro-Insulin-like Growth Factor (IGF)-II and big-IGF-II Isoforms Associated with Cancer

    Science.gov (United States)

    Greenall, Sameer A.; Bentley, John D.; Pearce, Lesley A.; Scoble, Judith A.; Sparrow, Lindsay G.; Bartone, Nicola A.; Xiao, Xiaowen; Baxter, Robert C.; Cosgrove, Leah J.; Adams, Timothy E.

    2013-01-01

    Insulin-like growth factor II (IGF-II) is a major embryonic growth factor belonging to the insulin-like growth factor family, which includes insulin and IGF-I. Its expression in humans is tightly controlled by maternal imprinting, a genetic restraint that is lost in many cancers, resulting in up-regulation of both mature IGF-II mRNA and protein expression. Additionally, increased expression of several longer isoforms of IGF-II, termed “pro” and “big” IGF-II, has been observed. To date, it is ambiguous as to what role these IGF-II isoforms have in initiating and sustaining tumorigenesis and whether they are bioavailable. We have expressed each individual IGF-II isoform in their proper O-glycosylated format and established that all bind to the IGF-I receptor and both insulin receptors A and B, resulting in their activation and subsequent stimulation of fibroblast proliferation. We also confirmed that all isoforms are able to be sequestered into binary complexes with several IGF-binding proteins (IGFBP-2, IGFBP-3, and IGFBP-5). In contrast to this, ternary complex formation with IGFBP-3 or IGFBP-5 and the auxillary protein, acid labile subunit, was severely diminished. Furthermore, big-IGF-II isoforms bound much more weakly to purified ectodomain of the natural IGF-II scavenging receptor, IGF-IIR. IGF-II isoforms thus possess unique biological properties that may enable them to escape normal sequestration avenues and remain bioavailable in vivo to sustain oncogenic signaling. PMID:23166326

  10. Physical and Chemical Processes and the Morphofunctional Characteristics of Human Erythrocytes in Hyperglycaemia

    Directory of Open Access Journals (Sweden)

    Victor V. Revin

    2017-08-01

    Full Text Available Background: This study examines the effect of graduated hyperglycaemia on the state and oxygen-binding ability of hemoglobin, the correlation of phospholipid fractions and their metabolites in the membrane, the activity of proteolytic enzymes and the morphofunctional state of erythrocytes.Methods: Conformational changes in the molecule of hemoglobin were determined by Raman spectroscopy. The structure of the erythrocytes was analyzed using laser interference microscopy (LIM. To determine the activity of NADN-methemoglobinreductase, we used the P.G. Board method. The degree of glycosylation of the erythrocyte membranes was determined using a method previously described by Felkoren et al. Lipid extraction was performed using the Bligh and Dyer method. Detection of the phospholipids was performed using V. E. Vaskovsky method.Results: Conditions of hyperglycaemia are characterized by a low affinity of hemoglobin to oxygen, which is manifested as a parallel decrease in the content of hemoglobin oxyform and the growth of deoxyform, methemoglobin and membrane-bound hemoglobin. The degree of glycosylation of membrane proteins and hemoglobin is high. For example, in the case of hyperglycaemia, erythrocytic membranes reduce the content of all phospholipid fractions with a simultaneous increase in lysoforms, free fatty acids and the diacylglycerol (DAG. Step wise hyperglycaemia in incubation medium and human erythrocytes results in an increased content of peptide components and general trypsin-like activity in the cytosol, with a simultaneous decreased activity of μ-calpain and caspase 3.Conclusions: Metabolic disorders and damage of cell membranes during hyperglycaemia cause an increase in the population of echinocytes and spherocytes. The resulting disorders are accompanied with a high probability of intravascular haemolysis.

  11. 2,4-dimethoxybenzyl: An amide protecting group for 2-acetamido glycosyl donors

    DEFF Research Database (Denmark)

    Kelly, N.M.; Jensen, Knud Jørgen

    2001-01-01

    2,4-Dimethoxybenzyl (Dmob) was used as an amide protecting group for 2-acetamido glycosyl donors. The N-Dmob group was introduced by imine formation between 2,4-dimethoxybenzaldehyde and d-glucosamine, followed by per-O-acylation, reduction to form the amine, and finally N-acetylation to give 1...

  12. [Effect of high-intensity interval training on the reduction of glycosylated hemoglobin in type-2 diabetic adult patients].

    Science.gov (United States)

    Aguilera Eguía, Raúl Alberto; Russell Guzmán, Javier Antonio; Soto Muñoz, Marcelo Enrique; Villegas González, Bastián Eduardo; Poblete Aro, Carlos Emilio; Ibacache Palma, Alejandro

    2015-03-05

    Type 2 diabetes mellitus is one of the major non-communicable chronic diseases in the world. Its prevalence in Chile is significant, and complications associated with this disease involve great costs, which is why prevention and treatment of this condition are essential. Physical exercise is an effective means for prevention and treatment of type 2 diabetes mellitus. The emergence of new forms of physical training, such as "high intensity interval training", presents novel therapeutic alternatives for patients and health care professionals. To assess the validity and applicability of the results regarding the effectiveness of high intensity interval training in reducing glycosylated hemoglobin in adult patients with type 2 diabetes mellitus and answer the following question: In subjects with type 2 diabetes, can the method of high intensity interval training compared to moderate intensity exercise decrease glycosylated hemoglobin? We performed a critical analysis of the article "Feasibility and preliminary effectiveness of high intensity interval training in type 2 diabetes". We found no significant differences in the amount of glycosylated hemoglobin between groups of high intensity interval training and moderate-intensity exercise upon completion of the study (p>0.05). In adult patients with type 2 diabetes mellitus, high intensity interval training does not significantly improve glycosylated hemoglobin levels. Despite this, the high intensity interval training method shows as much improvement in body composition and physical condition as the moderate intensity exercise program.

  13. Amphiphilic glycosylated block copolypeptides as macromolecular surfactants in the emulsion polymerization of styrene

    NARCIS (Netherlands)

    Jacobs, Jaco; Gathergood, N.; Heuts, J.P.A.; Heise, A.

    2015-01-01

    Diblock copolymers consisting of poly(L-phenyl alanine) and poly(benzyl-L-glutamate) or poly(CBZ-L-lysine), respectively, were synthesized via sequential NCA polymerization. After deprotection, subsequent partial glycosylation of the glutamic acid and lysine units with galactosamine hydrochloride or

  14. Mucin-type O-glycosylation and its potential use in drug and vaccine development

    DEFF Research Database (Denmark)

    Tarp, Mads Agervig; Clausen, Henrik

    2007-01-01

    decade an increasing number of GalNAc-transferase isoforms have been cloned and their substrate-specificities partly characterized. These differences in substrate specificities have been exploited for in vitro site-directed O-glycosylation. In GlycoPEGylation, polyehylene glycol (PEG) is transferred...

  15. Impact of O-glycosylation on the molecular and cellular adhesion properties of the Escherichia coli autotransporter protein Ag43.

    Science.gov (United States)

    Reidl, Sebastian; Lehmann, Annika; Schiller, Roswitha; Salam Khan, A; Dobrindt, Ulrich

    2009-08-01

    Antigen 43 (Ag43) represents an entire family of closely related autotransporter proteins in Escherichia coli and has been described to confer aggregation and fluffing of cells, to promote biofilm formation, uptake and survival in macrophages as well as long-term persistence of uropathogenic E. coli in the murine urinary tract. Furthermore, it has been reported that glycosylation of the Ag43 passenger domain (alpha(43)) stabilizes its conformation and increases adhesion to Hep-2 cells. We characterized the role of Ag43 as an adhesin and the impact of O-glycosylation on the function of Ag43. To analyze whether structural variations in the alpha(43) domain correlate with different functional properties, we cloned 5 different agn43 alleles from different E. coli subtypes and tested them for autoaggregation, biofilm formation, adhesion to different eukaryotic cell lines as well as to purified components of the extracellular matrix. These experiments were performed with nonglycosylated and O-glycosylated Ag43 variants. We show for the first time that Ag43 mediates bacterial adhesion in a cell line-specific manner and that structural variations of the alpha(43) domain correlate with increased adhesive properties to proteins of the extracellular matrix such as collagen and laminin. Whereas O-glycosylation of many alpha(43) domains led to impaired autoaggregation and a significantly reduced adhesion to eukaryotic cell lines, their interaction with collagen was significantly increased. These data demonstrate that O-glycosylation is not a prerequisite for Ag43 function and that the different traits mediated by Ag43, i.e., biofilm formation, autoaggregation, adhesion to eukaryotic cells and extracellular matrix proteins, rely on distinct mechanisms.

  16. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation

    NARCIS (Netherlands)

    Jansen, Jos C.; Cirak, Sebahattin; van Scherpenzeel, Monique; Timal, Sharita; Reunert, Janine; Rust, Stephan; Pérez, Belén; Vicogne, Dorothée; Krawitz, Peter; Wada, Yoshinao; Ashikov, Angel; Pérez-Cerdá, Celia; Medrano, Celia; Arnoldy, Andrea; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; Quelhas, Dulce; Diogo, Luisa; Rymen, Daisy; Jaeken, Jaak; Guffon, Nathalie; Cheillan, David; van den Heuvel, Lambertus P.; Maeda, Yusuke; Kaiser, Olaf; Schara, Ulrike; Gerner, Patrick; van den Boogert, Marjolein A. W.; Holleboom, Adriaan G.; Nassogne, Marie-Cécile; Sokal, Etienne; Salomon, Jody; van den Bogaart, Geert; Drenth, Joost P. H.; Huynen, Martijn A.; Veltman, Joris A.; Wevers, Ron A.; Morava, Eva; Matthijs, Gert; Foulquier, François; Marquardt, Thorsten; Lefeber, Dirk J.

    2016-01-01

    Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are

  17. Human Milk Glycoproteins Protect Infants Against Human Pathogens

    Science.gov (United States)

    Liu, Bo

    2013-01-01

    Abstract Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease. PMID:23697737

  18. Comparing ESC and iPSC—Based Models for Human Genetic Disorders

    Directory of Open Access Journals (Sweden)

    Tomer Halevy

    2014-10-01

    Full Text Available Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs from patients’ somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn’t be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.

  19. Comparing ESC and iPSC-Based Models for Human Genetic Disorders.

    Science.gov (United States)

    Halevy, Tomer; Urbach, Achia

    2014-10-24

    Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients' somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn't be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.

  20. An enzymatic glycosylation of nucleoside analogues using beta-galactosidase from Escherichia coli

    Czech Academy of Sciences Publication Activity Database

    Blažek, Jiří; Jansa, Petr; Baszczyňski, Ondřej; Kaiser, Martin Maxmilian; Otmar, Miroslav; Krečmerová, Marcela; Dračínský, Martin; Holý, Antonín; Králová, B.

    2012-01-01

    Roč. 20, č. 9 (2012), s. 3111-3118 ISSN 0968-0896 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : glycosylation * galactosylation * beta-galactosidase * enzymatic synthesis * nucleoside * acyclic nucleoside analogues Subject RIV: CC - Organic Chemistry Impact factor: 2.903, year: 2012

  1. Differences in both glycosylation and binding properties between rat and mouse liver prolactin receptors.

    Science.gov (United States)

    Lascols, O; Cherqui, G; Munier, A; Picard, J; Capeau, J

    1994-05-01

    To investigate whether glycanic chains of prolactin receptors (PRL-R) play a role in hormone binding activity, comparison was made of rat and mouse liver solubilized receptors with respect to both their affinity for the hormone and their glycosylation properties. As compared with rat receptors, mouse receptors exhibited a 2-fold higher affinity for human growth hormone (hGH), the hormone being bound by both tissues with a lactogenic specificity. Along with this increased affinity, mouse receptors had a 2 lower M(r) relative to rat receptors (62 kDa versus 64 kDa as measured on hGH cross-linked receptors). These differences could be ascribed to different glycosylation properties of the receptors from the two species, as supported by the followings. 1) After treatment with endoglycosidase F (endo F), rat and mouse PRL-R no longer exhibited any difference in their M(r) (54 kDa for both cross-linked receptors). 2) Neuraminidase treatment increased by 37% the binding of hGH to mouse receptors, but was ineffective on the hormone-binding to rat receptors. Conversely, wheat germ agglutinin (WGA), another sialic acid specific probe, decreased hGH binding to rat receptors by 25%, but had no effect on this process for mouse ones. 3) Marked differences were observed in the recoveries of rat and mouse hormone-receptor (HR) complexes from ricin-1- (RCA1-), concanavalin A- (ConA-) and WGA-immobilized lectins. These differences were reduced (RCA1 and ConA) or abolished (WGA) after rat and mouse receptor desialylation by neuraminidase, a treatment which decreased the M(r) of both receptors by 2 kDa. Taken together, these results strongly suggest that the PRL-R from rat and mouse liver contain biantennary N-linked oligosaccharidic chains with distinct type of sialylation, which may account for their differential hormone-binding affinities.

  2. Data on overlapping brain disorders and emerging drug targets in human Dopamine Receptors Interaction Network

    Directory of Open Access Journals (Sweden)

    Avijit Podder

    2017-06-01

    Full Text Available Intercommunication of Dopamine Receptors (DRs with their associate protein partners is crucial to maintain regular brain function in human. Majority of the brain disorders arise due to malfunctioning of such communication process. Hence, contributions of genetic factors, as well as phenotypic indications for various neurological and psychiatric disorders are often attributed as sharing in nature. In our earlier research article entitled “Human Dopamine Receptors Interaction Network (DRIN: a systems biology perspective on topology, stability and functionality of the network” (Podder et al., 2014 [1], we had depicted a holistic interaction map of human Dopamine Receptors. Given emphasis on the topological parameters, we had characterized the functionality along with the vulnerable properties of the network. In support of this, we hereby provide an additional data highlighting the genetic overlapping of various brain disorders in the network. The data indicates the sharing nature of disease genes for various neurological and psychiatric disorders in dopamine receptors connecting protein-protein interactions network. The data also indicates toward an alternative approach to prioritize proteins for overlapping brain disorders as valuable drug targets in the network.

  3. Association of endogenous retroviruses and long terminal repeats with human disorders

    Directory of Open Access Journals (Sweden)

    Iyoko eKatoh

    2013-09-01

    Full Text Available Since the human genome sequences became available in 2001, our knowledge about the human transposable elements which comprise ~40% of the total nucleotides has been expanding. Non- LTR (long terminal repeat retrotransposons are actively transposing in the present-day human genome, and have been found to cause ~100 identified clinical cases of varied disorders. In contrast, almost all of the human endogenous retroviruses (HERVs originating from ancient infectious retroviruses lost their infectivity and transposing activity at various times before the human-chimpanzee speciation (~6 million years ago, and no known HERV is presently infectious. Insertion of HERVs and mammalian apparent LTR retrotransposons (MaLRs into the chromosomal DNA influenced a number of host genes in various modes during human evolution. Apart from the aspect of genome evolution, HERVs and solitary LTRs being suppressed in normal biological processes can potentially act as extra transcriptional apparatuses of cellular genes by re-activation in individuals. There has been a reasonable prediction that aberrant LTR activation could trigger malignant disorders and autoimmune responses if epigenetic changes including DNA hypomethylation occur in somatic cells. Evidence supporting this hypothesis has begun to emerge only recently: a MaLR family LTR activation in the pathogenesis of Hodgkin’s lymphoma and a HERV-E antigen expression in an anti-renal cell carcinoma immune response. This mini review addresses the impacts of the remnant-form LTR retrotransposons on human pathogenesis.

  4. Structural differences between glycosylated, disulfide-linked heterodimeric Knob-into-Hole Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products.

    Science.gov (United States)

    Kuglstatter, A; Stihle, M; Neumann, C; Müller, C; Schaefer, W; Klein, C; Benz, J

    2017-09-01

    An increasing number of bispecific therapeutic antibodies are progressing through clinical development. The Knob-into-Hole (KiH) technology uses complementary mutations in the CH3 region of the antibody Fc fragment to achieve heavy chain heterodimerization. Here we describe the X-ray crystal structures of glycosylated and disulfide-engineered heterodimeric KiH Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products. The heterodimer structure confirms the KiH design principle and supports the hypothesis that glycosylation stabilizes a closed Fc conformation. Both homodimer structures show parallel Fc fragment architectures, in contrast to recently reported crystal structures of the corresponding aglycosylated Fc fragments which in the absence of disulfide mutations show an unexpected antiparallel arrangement. The glycosylated Knob-Knob Fc fragment is destabilized as indicated by variability in the relative orientation of its CH3 domains. The glycosylated Hole-Hole Fc fragment shows an unexpected intermolecular disulfide bond via the introduced Y349C Hole mutation which results in a large CH3 domain shift and a new CH3-CH3 interface. The crystal structures of glycosylated, disulfide-linked KiH Fc fragment and its Knob-Knob and Hole-Hole side products reported here will facilitate further design of highly efficient antibody heterodimerization strategies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Electrospray Ionization Mass Spectrometric Analysis of Highly Reactive Glycosyl Halides

    Directory of Open Access Journals (Sweden)

    Lajos Kovács

    2012-07-01

    Full Text Available Highly reactive glycosyl chlorides and bromides have been analysed by a routine mass spectrometric method using electrospray ionization and lithium salt adduct-forming agents in anhydrous acetonitrile solution, providing salient lithiated molecular ions [M+Li]+, [2M+Li]+ etc. The role of other adduct-forming salts has also been evaluated. The lithium salt method is useful for accurate mass determination of these highly sensitive compounds.

  6. Silyl-protective groups influencing the reactivity and selectivity in glycosylations

    DEFF Research Database (Denmark)

    Bols, Mikael; Pedersen, Christian Marcus

    2017-01-01

    Silyl groups such as TBDPS, TBDMS, TIPS or TMS are well-known and widely used alcohol protective groups in organic chemistry. Cyclic silylene protective groups are also becoming increasingly popular. In carbohydrate chemistry silyl protective groups have frequently been used primarily as an ortho...... protected. Within the last decade polysilylated glycosyl donors have been found to have unusual properties such as high (or low) reactivity or high stereoselectivity. This mini review will summarize these findings...

  7. N-linked glycosylation of SV2 is required for binding and uptake of botulinum neurotoxin A

    Science.gov (United States)

    Yao, Guorui; Zhang, Sicai; Mahrhold, Stefan; Lam, Kwok-ho; Stern, Daniel; Bagramyan, Karine; Perry, Kay; Kalkum, Markus; Rummel, Andreas; Dong, Min; Jin, Rongsheng

    2016-01-01

    Botulinum neurotoxin serotype A1 (BoNT/A1) is one of the most dangerous potential bioterrorism agents, and exerts its action by invading motoneurons. It is also a licensed drug widely used for medical and cosmetic applications. Here we report a 2.0 Å resolution crystal structure of BoNT/A1 receptor-binding domain in complex with its neuronal receptor, the glycosylated human SV2C. We find that the neuronal tropism of BoNT/A1 requires recognition of both the peptide moiety and an N-linked glycan on SV2. This N-glycan—conserved in all SV2 isoforms across vertebrates—is essential for BoNT/A1 binding to neurons and its potent neurotoxicity. The glycan-binding interface on SV2 is targeted by a human BoNT/A1-neutralizing antibody currently licensed as an anti-botulism drug. Our studies reveal a new paradigm of host-pathogen interactions, in which pathogens exploit conserved host post-translational modifications to achieve highly specific receptor binding while also tolerating genetic changes across multiple isoforms of receptors. PMID:27294781

  8. Ultrasound-Assisted Synthesis of 1-N-glycosyl-1H-1,2,3-Triazole Derivatives and their Anti-inflammatory Activity

    Directory of Open Access Journals (Sweden)

    Gilson Bezerra Silva

    2012-06-01

    Full Text Available We have been synthesized various glycosyl triazoles from the reaction between glycosyl azide (1 and terminal alkynes (2a-g. The glycopiranosyl 1,2,3-triazoles (3-9 have been obtained in moderate-to-excellent yields (63-99% through the copper (I-catalyst 1,3-dipolar cycloaddition reaction at room temperature using ultrasound irradiation. In addition, preliminary anti-inflammatory tests have been performed in the compounds conjugates with benzoheterocycles (3-7 moieties that shown moderate activity

  9. Glycosylation Disorders with Immunodeficiency

    Science.gov (United States)

    ... Relations Cyber Infrastructure Computational Biology Equal Employment Opportunity Ethics Global Research Office of Mission Integration and Financial Management Strategic Planning Workforce Effectiveness Workplace Solutions Technology Transfer Intellectual Property Division of AIDS ...

  10. DNA methylation in Cosmc promoter region and aberrantly glycosylated IgA1 associated with pediatric IgA nephropathy.

    Directory of Open Access Journals (Sweden)

    Qiang Sun

    Full Text Available IgA nephropathy (IgAN is one of the most common glomerular diseases leading to end-stage renal failure. Elevation of aberrantly glycosylated IgA1 is a key feature of it. The expression of the specific molecular chaperone of core1ß1, 3galactosyl transferase (Cosmc is known to be reduced in IgAN. We aimed to investigate whether the methylation of CpG islands of Cosmc gene promoter region could act as a possible mechanism responsible for down-regulation of Cosmc and related higher secretion of aberrantly glycosylated IgA1in lymphocytes from children with IgA nephropathy. Three groups were included: IgAN children (n = 26, other renal diseases (n = 11 and healthy children (n = 13. B-lymphocytes were isolated and cultured, treated or not with IL-4 or 5-Aza-2'-deoxycytidine (AZA. The levels of DNA methylation of Cosmc promotor region were not significantly different between the lymphocytes of the three children populations (P = 0.113, but there were significant differences between IgAN lymphocytes and lymphocytes of the other two children populations after IL-4 (P<0.0001 or AZA (P<0.0001. Cosmc mRNA expression was low in IgAN lymphocytes compared to the other two groups (P<0.0001. The level of aberrantly glycosylated IgA1 was markedly higher in IgAN group compared to the other groups (P<0.0001. After treatment with IL-4, the levels of Cosmc DNA methylation and aberrantly glycosylated IgA1 in IgAN lymphocytes were remarkably higher than the other two groups (P<0.0001 with more markedly decreased Cosmc mRNA content (P<0.0001. After treatment with AZA, the levels in IgAN lymphocytes were decreased, but was still remarkably higher than the other two groups (P<0.0001, while Cosmc mRNA content in IgAN lymphocytes were more markedly increased than the other two groups (P<0.0001. The alteration of DNA methylation by IL-4 or AZA specifically correlates in IgAN lymphocytes with alterations in Cosmc mRNA expression and with the level of aberrantly glycosylated

  11. Curcumin for neuropsychiatric disorders: a review of in vitro, animal and human studies.

    Science.gov (United States)

    Lopresti, Adrian L

    2017-03-01

    Turmeric has been used in traditional medicine for centuries to treat a range of ailments. Its primary active constituent curcumin, can influence an array of biological activities. Many of these, such as its anti-inflammatory, antioxidant, neuroprotective, and monoaminergic effects are dysregulated in several neuropsychiatric disorders. In this systematic review, in vitro, animal, and human studies investigating the potential of curcumin as a treatment for neuropsychiatric disorders such as major depressive disorder, post-traumatic stress disorder (PTSD), obsessive-compulsive disorder (OCD), bipolar disorder, psychotic disorders, and autism are reviewed, and directions for future research are proposed. It is concluded that curcumin is a promising, natural agent for many of these conditions, however, further research utilising robust, clinical designs are essential. The problem associated with the poor oral bioavailability of standard curcumin also requires consideration. Currently the greatest support for the efficacy of curcumin is for the treatment of major depressive disorder.

  12. A Knowledge-Based System for Display and Prediction of O-Glycosylation Network Behaviour in Response to Enzyme Knockouts.

    Directory of Open Access Journals (Sweden)

    Andrew G McDonald

    2016-04-01

    Full Text Available O-linked glycosylation is an important post-translational modification of mucin-type protein, changes to which are important biomarkers of cancer. For this study of the enzymes of O-glycosylation, we developed a shorthand notation for representing GalNAc-linked oligosaccharides, a method for their graphical interpretation, and a pattern-matching algorithm that generates networks of enzyme-catalysed reactions. Software for generating glycans from the enzyme activities is presented, and is also available online. The degree distributions of the resulting enzyme-reaction networks were found to be Poisson in nature. Simple graph-theoretic measures were used to characterise the resulting reaction networks. From a study of in-silico single-enzyme knockouts of each of 25 enzymes known to be involved in mucin O-glycan biosynthesis, six of them, β-1,4-galactosyltransferase (β4Gal-T4, four glycosyltransferases and one sulfotransferase, play the dominant role in determining O-glycan heterogeneity. In the absence of β4Gal-T4, all Lewis X, sialyl-Lewis X, Lewis Y and Sda/Cad glycoforms were eliminated, in contrast to knockouts of the N-acetylglucosaminyltransferases, which did not affect the relative abundances of O-glycans expressing these epitopes. A set of 244 experimentally determined mucin-type O-glycans obtained from the literature was used to validate the method, which was able to predict up to 98% of the most common structures obtained from human and engineered CHO cell glycoforms.

  13. The sweet side of a long pentraxin: how glycosylation affects PTX3 functions in innate immunity and inflammation

    Directory of Open Access Journals (Sweden)

    Antonio eInforzato

    2013-01-01

    Full Text Available Innate immunity represents the first line of defence against pathogens and plays key roles in activation and orientation of the adaptive immune response. The innate immune system comprises both a cellular and a humoral arm. Components of the humoral arm include soluble pattern recognition molecules (PRMs that recognise pathogen associated molecular patterns (PAMPs and initiate the immune response in coordination with the cellular arm, therefore acting as functional ancestors of antibodies. The long pentraxin PTX3 is a prototypic soluble PRM that is produced at sites of infection and inflammation by both somatic and immune cells. Gene targeting of this evolutionarily conserved protein has revealed a non-redundant role in resistance to selected pathogens. Moreover, PTX3 exerts important functions at the crossroad between innate immunity, inflammation and female fertility. The human PTX3 protein contains a single N-glycosylation site that is fully occupied by complex type oligosaccharides, mainly fucosylated and sialylated biantennary glycans. Glycosylation has been implicated in a number of PTX3 activities, including neutralization of influenza viruses, modulation of the complement system, and attenuation of leukocyte recruitment. Therefore, this post translational modification might act as a fine tuner of PTX3 functions in native immunity and inflammation.Here we review the studies on PTX3, with emphasis on the glycan-dependent mechanisms underlying pathogen recognition and crosstalk with other components of the innate immune system.

  14. Trends and approaches in N-Glycosylation engineering in Chinese hamster ovary cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    will summarize a group of recent strategies andapproaches and come up with case studies for N-glycosylation engineering in CHO cells and show several examples of relevantstudy cases from our research: 1) media and feed design, 2) culture process optimization, 3) substrate addition, 4) geneticengineering, 5...

  15. Microwave Effect for Glycosylation Promoted by Solid Super Acid in Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Takahiko Maeda

    2009-12-01

    Full Text Available The effects of microwave irradiation (2.45 GHz, 200 W on glycosylation promoted by a solid super acid in supercritical carbon dioxide was investigated with particular attention paid to the structure of the acceptor substrate. Because of the symmetrical structure and high diffusive property of supercritical carbon dioxide, microwave irradiation did not alter the temperature of the reaction solution, but enhanced reaction yield when aliphatic acceptors are employed. Interestingly, the use of a phenolic acceptor under the same reaction conditions did not show these promoting effects due to microwave irradiation. In the case of aliphatic diol acceptors, the yield seemed to be dependent on the symmetrical properties of the acceptors. The results suggest that microwave irradiation do not affect the reactivity of the donor nor promoter independently. We conclude that the effect of acceptor structure on glycosylation yield is due to electric delocalization of hydroxyl group and dielectrically symmetric structure of whole molecule.

  16. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian

    2015-01-01

    optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylationrelated product quality. In this work, different fed-batch processes with two chemically defined proprietary media......Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process...... and glutamine concentrations and uptake rates were positively correlated with intracellular UDP-Gal availability. All these findings are important for optimization of fed-batch culture for improving IgG production and directing glycosylation quality....

  17. Thermophilic and thermoacidophilic glycosylation genes and enzymes from Alicyclobacillus acidocaldarius and related organisms, methods

    Science.gov (United States)

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Reed, David W.; Lacey, Jeffrey A.

    2016-01-12

    Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for glycosylating and/or post-translationally modifying proteins using isolated and/or purified polypeptides and nucleic acid sequences from Alicyclobacillus acidocaldarius.

  18. A study of genetic variability of human parainfluenza virus type 1 in Croatia, 2011-2014.

    Science.gov (United States)

    Košutić-Gulija, Tanja; Slovic, Anamarija; Ljubin-Sternak, Sunčanica; Mlinarić-Galinović, Gordana; Forčić, Dubravko

    2016-08-01

    Molecular epidemiology of human parainfluenza viruses type 1 (HPIV1) was investigated. Samples were collected from patients hospitalized in Croatia during the three consecutive epidemic seasons (2011-2014). Results indicated co-circulation of two major genetic clusters of HPIV1. Samples from the current study refer to clades II and III in a phylogenetic tree of haemagglutinin-neuraminidase (HN) gene. Additional phylogenetic trees of fusion (F) and phosphoprotein (P) genes confirmed the topology. Analysis of nucleotide diversity of entire P, F and HN genes demonstrated similar values: 0.0255, 0.0236 and 0.0237, respectively. However, amino acid diversity showed F protein to be the most conserved, while P protein was the most tolerant to mutations. Potential N- and O-glycosylation sites suggested that HPIV1 HN protein is abundantly glycosylated, and a specific N-glycosylation pattern could distinguish between clades II and III. Analysis of potential O-glycosylation sites in F protein indicated that samples from this study have two potential O-glycosylation sites, while publicly available sequences have five potential sites. This study provides data on the molecular characterization and epidemic pattern of HPIV1 in Croatia.

  19. Model-based investigation of intracellular processes determining antibody Fc-glycosylation under mild hypothermia.

    Science.gov (United States)

    Sou, Si Nga; Jedrzejewski, Philip M; Lee, Ken; Sellick, Christopher; Polizzi, Karen M; Kontoravdi, Cleo

    2017-07-01

    Despite the positive effects of mild hypothermic conditions on monoclonal antibody (mAb) productivity (q mAb ) during mammalian cell culture, the impact of reduced culture temperature on mAb Fc-glycosylation and the mechanism behind changes in the glycan composition are not fully established. The lack of knowledge about the regulation of dynamic intracellular processes under mild hypothermia restricts bioprocess optimization. To address this issue, a mathematical model that quantitatively describes Chinese hamster ovary (CHO) cell behavior and metabolism, mAb synthesis and mAb N-linked glycosylation profile before and after the induction of mild hypothermia is constructed. Results from this study show that the model is capable of representing experimental results well in all of the aspects mentioned above, including the N-linked glycosylation profile of mAb produced under mild hypothermia. Most importantly, comparison between model simulation results for different culture temperatures suggests the reduced rates of nucleotide sugar donor production and galactosyltransferase (GalT) expression to be critical contributing factors that determine the variation in Fc-glycan profiles between physiological and mild hypothermic conditions in stable CHO transfectants. This is then confirmed using experimental measurements of GalT expression levels, thereby closing the loop between the experimental and the computational system. The identification of bottlenecks within CHO cell metabolism under mild hypothermic conditions will aid bioprocess optimization, for example, by tailoring feeding strategies to improve NSD production, or manipulating the expression of specific glycosyltransferases through cell line engineering. Biotechnol. Bioeng. 2017;114: 1570-1582. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals Inc. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals Inc.

  20. Human pluripotent stem cells in modeling human disorders: the case of fragile X syndrome.

    Science.gov (United States)

    Vershkov, Dan; Benvenisty, Nissim

    2017-01-01

    Human pluripotent stem cells (PSCs) generated from affected blastocysts or from patient-derived somatic cells are an emerging platform for disease modeling and drug discovery. Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, was one of the first disorders modeled in both embryonic stem cells and induced PCSs and can serve as an exemplary case for the utilization of human PSCs in the study of human diseases. Over the past decade, FXS-PSCs have been used to address the fundamental questions regarding the pathophysiology of FXS. In this review we summarize the methodologies for generation of FXS-PSCs, discuss their advantages and disadvantages compared with existing modeling systems and describe their utilization in the study of FXS pathogenesis and in the development of targeted treatment.

  1. Identification of the Mycobacterium marinum Apa antigen O-mannosylation sites reveals important glycosylation variability with the M. tuberculosis Apa homologue.

    Science.gov (United States)

    Coddeville, Bernadette; Wu, Sz-Wei; Fabre, Emeline; Brassart, Colette; Rombouts, Yoann; Burguière, Adeline; Kremer, Laurent; Khoo, Kay-Hooi; Elass-Rochard, Elisabeth; Guérardel, Yann

    2012-10-22

    The 45/47 kDa Apa, an immuno-dominant antigen secreted by Mycobacterium tuberculosis is O-mannosylated at multiple sites. Glycosylation of Apa plays a key role in colonization and invasion of the host cells by M. tuberculosis through interactions of Apa with the host immune system C-type lectins. Mycobacterium marinum (M.ma) a fish pathogen, phylogenetically close to M. tuberculosis, induces a granulomatous response with features similar to those described for M. tuberculosis in human. Although M.ma possesses an Apa homologue, its glycosylation status is unknown, and whether this represents a crucial element in the pathophysiology induced by M.ma remains to be addressed. To this aim, we have identified two concanavalin A-reactive 45/47 kDa proteins from M.ma, which have been further purified by a two-step anion exchange chromatography process. Advanced liquid chromatography-nanoESI mass spectrometry-based proteomic analyses of peptides, derived from either tryptic digestion alone or in combination with the Asp-N endoproteinase, established that M.ma Apa possesses up to seven distinct O-mannosylated sites with mainly single mannose substitutions, which can be further extended at the Ser/Thr/Pro rich region near the N-terminus. This opens the way to further studies focussing on the involvement and biological functions of Apa O-mannosylation using the M.ma/zebrafish model. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Rethinking dependent personality disorder: comparing different human relatedness in cultural contexts.

    Science.gov (United States)

    Chen, YuJu; Nettles, Margaret E; Chen, Shun-Wen

    2009-11-01

    We argue that the Diagnostic and Statistical Manual of Mental Disorders dependent personality disorder is a culturally related concept reflecting deeply rooted values, beliefs, and assumptions of American individualistic convictions about self and interpersonal relationship. This article integrates social psychology concepts into the exploration of psychopathology. Beginning with the construct of individualism and collectivism, we demonstrate the limitations of this commonly used framework. The indigenous Chinese concept of Confucianism and Chinese Relationalism is introduced to highlight that a well-differentiated self is not a universal premise of human beings, healthy existence. In East Asian Confucianism the manifestation of dependence and submission may be considered individuals' proper behavior and required for their social obligation, rather than a direct display of individuals' personality. Thus, the complexity of dependent personality disorder is beyond the neo-Kraepelinian approach assumed by the Diagnostic and Statistical Manual of Mental Disorders system.

  3. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.

    Science.gov (United States)

    Fan, Yuzhou; Jimenez Del Val, Ioscani; Müller, Christian; Wagtberg Sen, Jette; Rasmussen, Søren Kofoed; Kontoravdi, Cleo; Weilguny, Dietmar; Andersen, Mikael Rørdam

    2015-03-01

    Fed-batch Chinese hamster ovary (CHO) cell culture is the most commonly used process for IgG production in the biopharmaceutical industry. Amino acid and glucose consumption, cell growth, metabolism, antibody titer, and N-glycosylation patterns are always the major concerns during upstream process optimization, especially media optimization. Gaining knowledge on their interrelations could provide insight for obtaining higher immunoglobulin G (IgG) titer and better controlling glycosylation-related product quality. In this work, different fed-batch processes with two chemically defined proprietary media and feeds were studied using two IgG-producing cell lines. Our results indicate that the balance of glucose and amino acid concentration in the culture is important for cell growth, IgG titer and N-glycosylation. Accordingly, the ideal fate of glucose and amino acids in the culture could be mainly towards energy and recombinant product, respectively. Accumulation of by-products such as NH4(+) and lactate as a consequence of unbalanced nutrient supply to cell activities inhibits cell growth. The levels of Leu and Arg in the culture, which relate to cell growth and IgG productivity, need to be well controlled. Amino acids with the highest consumption rates correlate with the most abundant amino acids present in the produced IgG, and thus require sufficient availability during culture. Case-by-case analysis is necessary for understanding the effect of media and process optimization on glycosylation. We found that in certain cases the presence of Man5 glycan can be linked to limitation of UDP-GlcNAc biosynthesis as a result of insufficient extracellular Gln. However, under different culture conditions, high Man5 levels can also result from low α-1,3-mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase (GnTI) and UDP-GlcNAc transporter activities, which may be attributed to high level of NH4+ in the cell culture. Furthermore, galactosylation of the mAb Fc glycans

  4. Scanning the available Dictyostelium discoideum proteome for O-linked GlcNAc glycosylation sitesusing neural networks

    DEFF Research Database (Denmark)

    Gupta, Ramneek; Jung, Eva; Gooley, Andrew A

    1999-01-01

    Dictyostelium discoideum has been suggested as a eukaryotic model organism for glycobiology studies. Presently, the characteristics of acceptor sites for the N-acetylglucosaminyl-transferases in Dictyostelium discoideum, which link GlcNAc in an alpha linkage to hydroxyl residues, are largely...... unknown. This motivates the development of a species specific method for prediction of O-linked GlcNAc glycosylation sites in secreted and membrane proteins of D. discoideum. The method presented here employs a jury of artificial neural networks. These networks were trained to recognize the sequence...... context and protein surface accessibility in 39 experimentally determined O-alpha-GlcNAc sites found in D. discoideum glycoproteins expressed in vivo. Cross-validation of the data revealed a correlation in which 97% of the glycosylated and nonglycosylated sites were correctly identified. Based...

  5. Transferrin receptors on human reticulocytes: variation in site number in hematologic disorders

    International Nuclear Information System (INIS)

    Shumak, K.H.; Rachkewich, R.A.

    1984-01-01

    Assays of binding of 125iodine-labeled ( 125 I) human transferrin were used to study transferrin receptor sites on reticulocytes from 15 normal subjects and from 66 patients with various hematologic disorders. In normal subjects, few or no transferrin receptors were detected whereas the average number of receptors per reticulocyte varied greatly from patient to patient, ranging from 0 to 67,700 in samples, from 35 patients, on which Scatchard analysis of binding of [ 125 I]-transferrin was done. Marked heterogeneity in the number of reticulocyte transferrin receptors in different hematologic disorders was also found in assays with [ 125 I]-OKT9 (monoclonal antibody to the human transferrin receptor). The number of receptors was not correlated with either the reticulocyte count or the hemoglobin

  6. Nelfinavir Impairs Glycosylation of Herpes Simplex Virus 1 Envelope Proteins and Blocks Virus Maturation

    Directory of Open Access Journals (Sweden)

    Soren Gantt

    2015-01-01

    Full Text Available Nelfinavir (NFV is an HIV-1 aspartyl protease inhibitor that has numerous effects on human cells, which impart attractive antitumor properties. NFV has also been shown to have in vitro inhibitory activity against human herpesviruses (HHVs. Given the apparent absence of an aspartyl protease encoded by HHVs, we investigated the mechanism of action of NFV herpes simplex virus type 1 (HSV-1 in cultured cells. Selection of HSV-1 resistance to NFV was not achieved despite multiple passages under drug pressure. NFV did not significantly affect the level of expression of late HSV-1 gene products. Normal numbers of viral particles appeared to be produced in NFV-treated cells by electron microscopy but remain within the cytoplasm more often than controls. NFV did not inhibit the activity of the HSV-1 serine protease nor could its antiviral activity be attributed to inhibition of Akt phosphorylation. NFV was found to decrease glycosylation of viral glycoproteins B and C and resulted in aberrant subcellular localization, consistent with induction of endoplasmic reticulum stress and the unfolded protein response by NFV. These results demonstrate that NFV causes alterations in HSV-1 glycoprotein maturation and egress and likely acts on one or more host cell functions that are important for HHV replication.

  7. Huh-7 cell line as an alternative cultural model for the production of human like erythropoietin (EPO

    Directory of Open Access Journals (Sweden)

    Kausar Humera

    2011-11-01

    Full Text Available Abstract Background and Aims Erythropoietin (EPO is a glycoprotein hormone which is required to regulate the production of red blood cells. Deficiency of EPO is known to cause anemia in chronically infected renal patients and they require regular blood transfusion. Availability of recombinant EPO has eliminated the need for blood transfusion and now it is extensively used for the treatment of anemia. Glycosylation of erythropoietin is essential for its secretion, stability, protein conformation and biological activity. However, maintenance of human like glycosylation pattern during manufacturing of EPO is a major challenge in biotechnology. Currently, Chinese hamster ovary (CHO cell line is used for the commercial production of erythropoietin but this cell line does not maintain glycosylation resembling human system. With the trend to eliminate non-human constituent from biopharmaceutical products, as a preliminary approach, we have investigated the potential of human hepatoma cell line (Huh-7 to produce recombinant EPO. Materials and methods Initially, the secretory signal and Kozak sequences was added before the EPO mature protein sequence using overlap extension PCR technique. PCR-amplified cDNA fragments of EPO was inserted into mammalian expression vector under the control of the cytomegalovirus (CMV promoter and transiently expressed in CHO and Huh-7 cell lines. After RT-PCR analysis, ELISA and Western blotting was performed to verify the immunochemical properties of secreted EPO. Results Addition of secretory signal and Kozak sequence facilitated the extra-cellular secretion and enhanced the expression of EPO protein. Significant expression (P Conclusion Huh-7 cell line has a great potential to produce glycosylated EPO, suggesting the use of this cell line to produce glycoproteins of the therapeutic importance resembling to the natural human system.

  8. Dystonia and paroxysmal dyskinesias: under-recognized movement disorders in domestic animals? A comparison with human dystonia/paroxysmal dyskinesias.

    Directory of Open Access Journals (Sweden)

    Angelika eRichter

    2015-11-01

    Full Text Available Dystonia is defined as a neurological syndrome characterized by involuntary sustained or intermittent muscle contractions causing twisting, often repetitive movements and postures. Paroxysmal dyskinesias are episodic movement disorders encompassing dystonia, chorea, athetosis and ballism in conscious individuals. Several decades of research have enhanced the understanding of the etiology of human dystonia and dyskinesias that are associated with dystonia, but the pathophysiology remains largely unknown. The spontaneous occurrence of hereditary dystonia and paroxysmal dyskinesia is well documented in rodents used as animal models in basic dystonia research. Several hyperkinetic movement disorders, described in dogs, horses and cattle, show similarities to these human movement disorders. Although dystonia is regarded as the third most common movement disorder in humans, it is often misdiagnosed because of the heterogeneity of etiology and clinical presentation. Since these conditions are poorly known in veterinary practice, their prevalence may be underestimated in veterinary medicine. In order to attract attention to these movement disorders, i.e. dystonia and paroxysmal dyskinesias associated with dystonia, and to enhance interest in translational research, this review gives a brief overview of the current literature regarding dystonia/paroxysmal dyskinesia in humans, and summarizes similar hereditary movement disorders reported in domestic animals.

  9. Morphology, histochemistry and glycosylation of the placenta and associated tissues in the European hedgehog (Erinaceus europaeus)

    DEFF Research Database (Denmark)

    Jones, Carolyn J P; Carter, A M; Allen, W R

    2016-01-01

    glycosylated. Yolk sac inner and outer endoderm expressed similar glycans except for N-acetylgalactosamine residues in endodermal acini. DISCUSSION: New features of near-term hedgehog placenta and associated tissues are presented, including their glycosylation, and novel yolk sac acinar structures......INTRODUCTION: There are few descriptions of the placenta and associated tissues of the European hedgehog (Erinaceus europaeus) and here we present findings on a near-term pregnant specimen. METHODS: Tissues were examined grossly and then formalin fixed and wax-embedded for histology...... and immunocytochemistry (cytokeratin) and resin embedded for lectin histochemistry. RESULTS: Each of four well-developed and near term hoglets displayed a discoid, haemochorial placenta with typical labyrinth and spongy zones. In addition there was a paraplacenta incorporating Reichert's membrane and a largely detached...

  10. Understanding Alzheimer's disease by global quantification of protein phosphorylation and sialylated N-linked glycosylation profiles

    DEFF Research Database (Denmark)

    Lassen, Pernille S.; Thygesen, Camilla; Larsen, Martin R.

    2017-01-01

    elucidated them in neurodegenerative diseases such as Alzheimer's disease. Here, we comprehensively review Alzheimer's pathology in relation to protein phosphorylation and glycosylation on synaptic plasticity from neuroproteomics data. Moreover, we highlight several mass spectrometry-based sample processing...

  11. Investigations on aberrant glycosylation of glycosphingolipids in colorectal cancer tissues using liquid chromatography and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS).

    Science.gov (United States)

    Holst, Stephanie; Stavenhagen, Kathrin; Balog, Crina I A; Koeleman, Carolien A M; McDonnell, Liam M; Mayboroda, Oleg A; Verhoeven, Aswin; Mesker, Wilma E; Tollenaar, Rob A E M; Deelder, André M; Wuhrer, Manfred

    2013-11-01

    Cancer is a leading cause of death and alterations of glycosylation are characteristic features of malignant cells. Colorectal cancer is one of the most common cancers and its exact causes and biology are not yet well understood. Here, we compared glycosylation profiles of colorectal tumor tissues and corresponding control tissues of 13 colorectal cancer patients to contribute to the understanding of this cancer. Using MALDI-TOF(/TOF)-MS and 2-dimensional LC-MS/MS we characterized enzymatically released and 2-aminobenzoic acid labeled glycans from glycosphingolipids. Multivariate data analysis revealed significant differences between tumor and corresponding control tissues. Main discriminators were obtained, which represent the overall alteration in glycosylation of glycosphingolipids during colorectal cancer progression, and these were found to be characterized by (1) increased fucosylation, (2) decreased acetylation, (3) decreased sulfation, (4) reduced expression of globo-type glycans, as well as (5) disialyl gangliosides. The findings of our current research confirm former reports, and in addition expand the knowledge of glycosphingolipid glycosylation in colorectal cancer by revealing new glycans with discriminative power and characteristic, cancer-associated glycosylation alterations. The obtained discriminating glycans can contribute to progress the discovery of biomarkers to improve diagnostics and patient treatment.

  12. Investigations on Aberrant Glycosylation of Glycosphingolipids in Colorectal Cancer Tissues Using Liquid Chromatography and Matrix-Assisted Laser Desorption Time-of-Flight Mass Spectrometry (MALDI-TOF-MS)*

    Science.gov (United States)

    Holst, Stephanie; Stavenhagen, Kathrin; Balog, Crina I. A.; Koeleman, Carolien A. M.; McDonnell, Liam M.; Mayboroda, Oleg A.; Verhoeven, Aswin; Mesker, Wilma E.; Tollenaar, Rob A. E. M.; Deelder, André M.; Wuhrer, Manfred

    2013-01-01

    Cancer is a leading cause of death and alterations of glycosylation are characteristic features of malignant cells. Colorectal cancer is one of the most common cancers and its exact causes and biology are not yet well understood. Here, we compared glycosylation profiles of colorectal tumor tissues and corresponding control tissues of 13 colorectal cancer patients to contribute to the understanding of this cancer. Using MALDI-TOF(/TOF)-MS and 2-dimensional LC-MS/MS we characterized enzymatically released and 2-aminobenzoic acid labeled glycans from glycosphingolipids. Multivariate data analysis revealed significant differences between tumor and corresponding control tissues. Main discriminators were obtained, which represent the overall alteration in glycosylation of glycosphingolipids during colorectal cancer progression, and these were found to be characterized by (1) increased fucosylation, (2) decreased acetylation, (3) decreased sulfation, (4) reduced expression of globo-type glycans, as well as (5) disialyl gangliosides. The findings of our current research confirm former reports, and in addition expand the knowledge of glycosphingolipid glycosylation in colorectal cancer by revealing new glycans with discriminative power and characteristic, cancer-associated glycosylation alterations. The obtained discriminating glycans can contribute to progress the discovery of biomarkers to improve diagnostics and patient treatment. PMID:23878401

  13. Socially Impaired Robots: Human Social Disorders and Robots' Socio-Emotional Intelligence

    OpenAIRE

    Vitale, Jonathan; Williams, Mary-Anne; Johnston, Benjamin

    2016-01-01

    Social robots need intelligence in order to safely coexist and interact with humans. Robots without functional abilities in understanding others and unable to empathise might be a societal risk and they may lead to a society of socially impaired robots. In this work we provide a survey of three relevant human social disorders, namely autism, psychopathy and schizophrenia, as a means to gain a better understanding of social robots' future capability requirements. We provide evidence supporting...

  14. The glycosylation status of the murine hepatitis coronavirus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain

    International Nuclear Information System (INIS)

    Haan, Cornelis A.M. de; Wit, Marel de; Kuo, Lili; Montalto-Morrison, Cynthia; Haagmans, Bart L.; Weiss, Susan R.; Masters, Paul S.; Rottier, Peter J.M.

    2003-01-01

    The coronavirus M protein, the most abundant coronaviral envelope component, is invariably glycosylated, which provides the virion with a diffuse, hydrophilic cover on its outer surface. Remarkably, while the group 1 and group 3 coronaviruses all have M proteins with N-linked sugars, the M proteins of the group 2 coronaviruses [e.g., mouse hepatitis virus (MHV)] are O-glycosylated. The conservation of the N- and O-glycosylation motifs suggests that each of these types of carbohydrate modifications is beneficial to their respective virus. Since glycosylation of the M protein is not required for virus assembly, the oligosaccharides are likely to be involved in the virus-host interaction. In order to investigate the role of the M protein glycosylation in the host, two genetically modified MHVs were generated by using targeted RNA recombination. The recombinant viruses carried M proteins that were either N-glycosylated or not glycosylated at all, and these were compared with the parental, O-glycosylated, virus. The M protein glycosylation state did not influence the tissue culture growth characteristics of the recombinant viruses. However, it affected their interferogenic capacity as measured using fixed, virus-infected cells. Viruses containing M proteins with N-linked sugars induced type I interferons to higher levels than viruses carrying M proteins with O-linked sugars. MHV with unglycosylated M proteins appeared to be a poor interferon inducer. In mice, the recombinant viruses differed in their ability to replicate in the liver, but not in the brain, whereas their in vivo interferogenic capacity did not appear to be affected by their glycosylation status. Strikingly, their abilities to replicate in the liver correlated with their in vitro interferogenic capacity. This apparent correlation might be explained by the functioning of lectins, such as the mannose receptor, which are abundantly expressed in the liver but also play a role in the induction of interferon

  15. Chiral reagents in glycosylation and modification of carbohydrates.

    Science.gov (United States)

    Wang, Hao-Yuan; Blaszczyk, Stephanie A; Xiao, Guozhi; Tang, Weiping

    2018-02-05

    Carbohydrates play a significant role in numerous biological events, and the chemical synthesis of carbohydrates is vital for further studies to understand their various biological functions. Due to the structural complexity of carbohydrates, the stereoselective formation of glycosidic linkages and the site-selective modification of hydroxyl groups are very challenging and at the same time extremely important. In recent years, the rapid development of chiral reagents including both chiral auxiliaries and chiral catalysts has significantly improved the stereoselectivity for glycosylation reactions and the site-selectivity for the modification of carbohydrates. These new tools will greatly facilitate the efficient synthesis of oligosaccharides, polysaccharides, and glycoconjugates. In this tutorial review, we will summarize these advances and highlight the most recent examples.

  16. Video Analysis of Human Gait and Posture to Determine Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Ivan Lee

    2008-08-01

    Full Text Available This paper investigates the application of digital image processing techniques to the detection of neurological disorder. Visual information extracted from the postures and movements of a human gait cycle can be used by an experienced neurologist to determine the mental health of the person. However, the current visual assessment of diagnosing neurological disorder is based very much on subjective observation, and hence the accuracy of diagnosis heavily relies on experience. Other diagnostic techniques employed involve the use of imaging systems which can only be operated under highly constructed environment. A prototype has been developed in this work that is able to capture the subject's gait on video in a relatively simple setup, and from which to process the selected frames of the gait in a computer. Based on the static visual features such as swing distances and joint angles of human limbs, the system identifies patients with Parkinsonism from the test subjects. To our knowledge, it is the first time swing distances are utilized and identified as an effective means for characterizing human gait. The experimental results have shown a promising potential in medical application to assist the clinicians in diagnosing Parkinsonism.

  17. Nonenzymatic glycosylation of human serum albumin and its effect on antibodies profile in patients with diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Alok Raghav

    Full Text Available Albumin glycation and subsequent formation of advanced glycation end products (AGEs correlate with diabetes and associated complications.Human Serum Albumin (HSA was modified with D-glucose for a 40 day period under sterile conditions at 37°C. Modified samples along with native HSA (unmodified were analyzed for structural modifications by UV and fluorescence, FTIR, Liquid chromatography mass spectrometry (LCMS and X-ray crystallography. New-Zealand white female rabbits immunized with AGEs, represent auto-antibodies formation as assessed by competitive and direct binding enzyme-linked immunosorbent assay (ELISA. Neo-epitopesagainst In-vitro formed AGEs were characterized in patients with diabetes mellitus type 2 (n = 50, type 1 (n = 50, gestational diabetes (n = 50 and type 2 with chronic kidney disease (CKD with eGFR level 60-89 mL/min (n = 50 from serum direct binding ELISA.Glycated-HSA showed amarked increase in hyperchromicity of 65.82%,71.98%, 73.62% and 76.63% at λ280 nm along with anincreasein fluorescence intensity of 65.82%, 71.98%, 73.62% and 76.63% in glycated-HSA compared to native. FTIR results showed theshifting of Amide I peak from 1656 cm_1 to 1659 cm_1 and Amide II peak from 1554 cm_1 to 1564 cm_1 in glycated-HSA, with anew peak appearance of carbonyl group at 1737 cm-1. LCMS chromatogram of glycated-HSA showed thepresence of carboxymethyl lysine (CML at 279.1 m/z. Immunological analysis showed high antibody titre>1:12,800 in theserum of rabbits immunized with glycated-HSA (modified with 400 mg/dL glucose and inhibition of 84.65% at anantigen concentration of 20μg/mL. Maximum serum auto-antibody titre was found in T2DM (0.517±0.086, T1DM (0.108±0.092, GDM (0.611±0.041 and T2DM+CKD (0.096±0.25 patients immunized with glycated-HSA (modified with 400 mg/dL glucose.Non-enzymatic glycosylation of HSA manifests immunological complications in diabetes mellitus due to change in its structure that enhances neo-epitopes generation.

  18. Modeling human neurological disorders with induced pluripotent stem cells.

    Science.gov (United States)

    Imaizumi, Yoichi; Okano, Hideyuki

    2014-05-01

    Human induced pluripotent stem (iPS) cells obtained by reprogramming technology are a source of great hope, not only in terms of applications in regenerative medicine, such as cell transplantation therapy, but also for modeling human diseases and new drug development. In particular, the production of iPS cells from the somatic cells of patients with intractable diseases and their subsequent differentiation into cells at affected sites (e.g., neurons, cardiomyocytes, hepatocytes, and myocytes) has permitted the in vitro construction of disease models that contain patient-specific genetic information. For example, disease-specific iPS cells have been established from patients with neuropsychiatric disorders, including schizophrenia and autism, as well as from those with neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. A multi-omics analysis of neural cells originating from patient-derived iPS cells may thus enable investigators to elucidate the pathogenic mechanisms of neurological diseases that have heretofore been unknown. In addition, large-scale screening of chemical libraries with disease-specific iPS cells is currently underway and is expected to lead to new drug discovery. Accordingly, this review outlines the progress made via the use of patient-derived iPS cells toward the modeling of neurological disorders, the testing of existing drugs, and the discovery of new drugs. The production of human induced pluripotent stem (iPS) cells from the patients' somatic cells and their subsequent differentiation into specific cells have permitted the in vitro construction of disease models that contain patient-specific genetic information. Furthermore, innovations of gene-editing technologies on iPS cells are enabling new approaches for illuminating the pathogenic mechanisms of human diseases. In this review article, we outlined the current status of neurological diseases-specific iPS cell research and described recently obtained

  19. Identification of Tumor Antigen AF20 as Glycosylated Transferrin Receptor 1 in Complex with Heat Shock Protein 90 and/or Transporting ATPase.

    Directory of Open Access Journals (Sweden)

    Jason M Shapiro

    Full Text Available We previously isolated AF20, a murine monoclonal antibody that recognizes a cell surface glycoprotein of approximately 90-110 kDa. The AF20 antigen is specifically expressed in human hepatoma and colon cancer cell lines, and thus could serve as a cancer biomarker. To uncover the molecular identity of the AF20 antigen, a combination of ion-exchange chromatography, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis was employed to purify the AF20 antigen followed by trypsin digestion and mass spectrometry. Surprisingly, three host proteins were thus purified from human hepatoma and colon cancer cell lines: transferrin receptor 1 (TFR1, heat shock protein 90 (HSP90, and Na+/K+ ATPase or Mg++ ATPase. Co-immunoprecipitation followed by Western blot analysis confirmed interaction among the three proteins. However, only the cDNA encoding TFR1 conferred strong cell surface staining by the AF20 antibody following its transient transfection into a cell line lacking endogenous AF20. In support of the molecular identity of AF20 as TFR1, diferric but not iron-free transferrin could prevent AF20 antigen-antibody interaction during immunoprecipitation. Moreover, very similar patterns of AF20 and TFR1 overexpression was documented in colon cancer tissues. In conclusion, AF20 is glycosylated TFR1. This finding could explain the molecular structure of AF20, its cell surface localization, as well as overexpression in cancer cells. Glycosylated TFR1 should serve as a usefulness target for anti-cancer therapy, or a vehicle for delivery of anti-tumor drugs with high affinity and specificity. The biological significance of the complex formation between TFR1, HSP90, and/or transporting ATPase warrants further investigation.

  20. Animal models of human anxiety disorders: reappraisal from a developmental psychopathology vantage point.

    Science.gov (United States)

    Lampis, Valentina; Maziade, Michel; Battaglia, Marco

    2011-05-01

    We are witnessing a tremendous expansion of strategies and techniques that derive from basic and preclinical science to study the fine genetic, epigenetic, and proteomic regulation of behavior in the laboratory animal. In this endeavor, animal models of psychiatric illness are becoming the almost exclusive domain of basic researchers, with lesser involvement of clinician researchers in their conceptual design, and transfer into practice of new paradigms. From the side of human behavioral research, the growing interest in gene-environment interplay and the fostering of valid endophenotypes are among the few substantial innovations in the effort of linking common mental disorders to cutting-edge clinical research questions. We argue that it is time for cross-fertilization between these camps. In this article, we a) observe that the "translational divide" can-and should-be crossed by having investigators from both the basic and the clinical sides cowork on simpler, valid "endophenotypes" of neurodevelopmental relevance; b) emphasize the importance of unambiguous physiological readouts, more than behavioral equivalents of human symptoms/syndromes, for animal research; c) indicate and discuss how this could be fostered and implemented in a developmental framework of reference for some common anxiety disorders and ultimately lead to better animal models of human mental disorders.

  1. Temporal, Diagnostic, and Tissue-Specific Regulation of NRG3 Isoform Expression in Human Brain Development and Affective Disorders

    Science.gov (United States)

    Paterson, Clare; Wang, Yanhong; Hyde, Thomas M.; Weinberger, Daniel R.; Kleinman, Joel E.; Law, Amanda J.

    2018-01-01

    Objective Genes implicated in schizophrenia are enriched in networks differentially regulated during human CNS development. Neuregulin 3 (NRG3), a brain-enriched neurotrophin, undergoes alternative splicing and is implicated in several neurological disorders with developmental origins. Isoform-specific increases in NRG3 are observed in schizophrenia and associated with rs10748842, a NRG3 risk polymorphism, suggesting NRG3 transcriptional dysregulation as a molecular mechanism of risk. The authors quantitatively mapped the temporal trajectories of NRG3 isoforms (classes I–IV) in the neocortex throughout the human lifespan, examined whether tissue-specific regulation of NRG3 occurs in humans, and determined if abnormalities in NRG3 transcriptomics occur in mood disorders and are genetically determined. Method NRG3 isoform classes I–IV were quantified using quantitative real-time polymerase chain reaction in human postmortem dorsolateral prefrontal cortex from 286 nonpsychiatric control individuals, from gestational week 14 to 85 years old, and individuals diagnosed with either bipolar disorder (N=34) or major depressive disorder (N=69). Tissue-specific mapping was investigated in several human tissues. rs10748842 was genotyped in individuals with mood disorders, and association with NRG3 isoform expression examined. Results NRG3 classes displayed individually specific expression trajectories across human neocortical development and aging; classes I, II, and IV were significantly associated with developmental stage. NRG3 class I was increased in bipolar and major depressive disorder, consistent with observations in schizophrenia. NRG3 class II was increased in bipolar disorder, and class III was increased in major depression. The rs10748842 risk genotype predicted elevated class II and III expression, consistent with previous reports in the brain, with tissue-specific analyses suggesting that classes II and III are brain-specific isoforms of NRG3. Conclusions

  2. Playing Hide and Seek: How Glycosylation of the Influenza Virus Hemagglutinin Can Modulate the Immune Response to Infection

    Directory of Open Access Journals (Sweden)

    Michelle D. Tate

    2014-03-01

    Full Text Available Seasonal influenza A viruses (IAV originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the hemagglutinin (HA glycoprotein. The viral HA is the major target recognized by neutralizing antibodies and glycans have been proposed to shield antigenic sites on HA, thereby promoting virus survival in the face of widespread vaccination and/or infection. However, addition of glycans can also interfere with the receptor binding properties of HA and this must be compensated for by additional mutations, creating a fitness barrier to accumulation of glycosylation sites. In addition, glycans on HA are also recognized by phylogenetically ancient lectins of the innate immune system and the benefit provided by evasion of humoral immunity is balanced by attenuation of infection. Therefore, a fine balance must exist regarding the optimal pattern of HA glycosylation to offset competing pressures associated with recognition by innate defenses, evasion of humoral immunity and maintenance of virus fitness. In this review, we examine HA glycosylation patterns of IAV associated with pandemic and seasonal influenza and discuss recent advancements in our understanding of interactions between IAV glycans and components of innate and adaptive immunity.

  3. Playing Hide and Seek: How Glycosylation of the Influenza Virus Hemagglutinin Can Modulate the Immune Response to Infection

    Science.gov (United States)

    Tate, Michelle D.; Job, Emma R.; Deng, Yi-Mo; Gunalan, Vithiagaran; Maurer-Stroh, Sebastian; Reading, Patrick C.

    2014-01-01

    Seasonal influenza A viruses (IAV) originate from pandemic IAV and have undergone changes in antigenic structure, including addition of glycans to the hemagglutinin (HA) glycoprotein. The viral HA is the major target recognized by neutralizing antibodies and glycans have been proposed to shield antigenic sites on HA, thereby promoting virus survival in the face of widespread vaccination and/or infection. However, addition of glycans can also interfere with the receptor binding properties of HA and this must be compensated for by additional mutations, creating a fitness barrier to accumulation of glycosylation sites. In addition, glycans on HA are also recognized by phylogenetically ancient lectins of the innate immune system and the benefit provided by evasion of humoral immunity is balanced by attenuation of infection. Therefore, a fine balance must exist regarding the optimal pattern of HA glycosylation to offset competing pressures associated with recognition by innate defenses, evasion of humoral immunity and maintenance of virus fitness. In this review, we examine HA glycosylation patterns of IAV associated with pandemic and seasonal influenza and discuss recent advancements in our understanding of interactions between IAV glycans and components of innate and adaptive immunity. PMID:24638204

  4. ALG6-CDG: a recognizable phenotype with epilepsy, proximal muscle weakness, ataxia and behavioral and limb anomalies

    NARCIS (Netherlands)

    Morava, E.; Tiemes, V.; Thiel, C.; Seta, N.; Lonlay, P. de; Klerk, H. de; Mulder, M.; Rubio-Gozalbo, E.; Visser, G.; Hasselt, P. van; Horovitz, D.D.; Souza, C.F. de; Schwartz, I.V.; Green, A.; Al-Owain, M.; Uziel, G.; Sigaudy, S.; Chabrol, B.; Spronsen, F.J. van; Steinert, M.; Komini, E.; Wurm, D.; Bevot, A.; Ayadi, A.; Huijben, K.; Dercksen, M.; Witters, P.; Jaeken, J.; Matthijs, G.; Lefeber, D.J.; Wevers, R.A.

    2016-01-01

    INTRODUCTION: Alpha-1,3-glucosyltransferase congenital disorder of glycosylation (ALG6-CDG) is a congenital disorder of glycosylation. The original patients were described with hypotonia, developmental disability, epilepsy, and increased bleeding tendency. METHODS: Based on Euroglycan database

  5. ALG6-CDG : a recognizable phenotype with epilepsy, proximal muscle weakness, ataxia and behavioral and limb anomalies

    NARCIS (Netherlands)

    Morava, Eva; Tiemes, Vera; Thiel, Christian; Seta, Nathalie; de Lonlay, Pascale; de Klerk, Hans; Mulder, Margot; Rubio-Gozalbo, Estela; Visser, Gepke; van Hasselt, Peter; Horovitz, Dafne D. G.; Moura de Souza, Carolina Fischinger; Schwartz, Ida V. D.; Green, Andrew; Al-Owain, Mohammed; Uziel, Graciella; Sigaudy, Sabine; Chabrol, Brigitte; Spronsen, van Franc-Jan; Steinert, Martin; Komini, Eleni; Wurm, Donald; Bevot, Andrea; Ayadi, Addelkarim; Huijben, Karin; Dercksen, Marli; Witters, Peter; Jaeken, Jaak; Matthijs, Gert; Lefeber, Dirk J.; Wevers, Ron A.

    Introduction Alpha-1,3-glucosyltransferase congenital disorder of glycosylation (ALG6-CDG) is a congenital disorder of glycosylation. The original patients were described with hypotonia, developmental disability, epilepsy, and increased bleeding tendency. Methods Based on Euroglycan database

  6. Transmembrane neural cell-adhesion molecule (NCAM), but not glycosyl-phosphatidylinositol-anchored NCAM, down-regulates secretion of matrix metalloproteinases

    DEFF Research Database (Denmark)

    Edvardsen, K; Chen, W; Rucklidge, G

    1993-01-01

    proteinases, and proteinase inhibitors all participate in the construction, maintenance, and remodeling of extracellular matrix by cells. The neural cell-adhesion molecule (NCAM)-negative rat glioma cell line BT4Cn secretes substantial amounts of metalloproteinases, as compared with its NCAM-positive mother......During embryogenesis interactions between cells and extracellular matrix play a central role in the modulation of cell motility, growth, and differentiation. Modulation of matrix structure is therefore crucial during development; extracellular matrix ligands, their receptors, extracellular...... cell line BT4C. We have transfected the BT4Cn cell line with cDNAs encoding the human NCAM-B and -C isoforms. We report here that the expression of transmembrane NCAM-B, but not of glycosyl-phosphatidylinositol-linked NCAM-C, induces a down-regulation of 92-kDa gelatinase (matrix metalloproteinase 9...

  7. Risk factors for mental disorders in women survivors of human trafficking: a historical cohort study

    Science.gov (United States)

    2013-01-01

    Background Previous studies have found high levels of symptoms of depression, anxiety, and post-traumatic stress disorder among women survivors of human trafficking. No previous research has described risk factors for diagnosed mental disorders in this population. Methods A historical cohort study of women survivors of trafficked women aged 18 and over who returned to Moldova and registered for assistance with the International Organisation for Migration (IOM). Women were approached by IOM social workers and, if they gave informed consented to participate in the study, interviewed by the research team. At 2–12 months post-return to Moldova, a psychiatrist assessed DSM-IV mental disorders blind to information about women’s pre-trafficking and post-trafficking experiences using the Structured Clinical Interview for DSM-IV (SCID). A backwards stepwise selection procedure was used to create a multivariable regression model of risk factors for DSM-IV mental disorder measured at an average of 6 months post-return. Results 120/176 (68%) eligible women participated. At an average of 6 months post-return, 54% met criteria for any DSM-IV mental disorder: 35.8% of women had PTSD (alone or co-morbid), 12.5% had depression without PTSD and 5.8% had another anxiety disorder. Multivariable regression analysis found that childhood sexual abuse (Adjusted Odds Ratio [AOR] 4.68, 95% CI 1.04-20.92), increased number of post-trafficking unmet needs (AOR 1.80; 95% CI 1.28-2.52) and post-trafficking social support (AOR 0.64; 95% CI 0.52-0.79) were independent risk factors for mental disorder, and that duration of trafficking showed a borderline association with mental disorder (AOR 1.12, 95% CI 0.98-1.29). Conclusions Assessment for mental disorders should be part of re-integration follow-up care for women survivors of human trafficking. Mental disorders at that time, most commonly PTSD and depression, are likely to be influenced by a range of predisposing, precipitating and

  8. Risk factors for mental disorders in women survivors of human trafficking: a historical cohort study.

    Science.gov (United States)

    Abas, Melanie; Ostrovschi, Nicolae V; Prince, Martin; Gorceag, Viorel I; Trigub, Carolina; Oram, Siân

    2013-08-03

    Previous studies have found high levels of symptoms of depression, anxiety, and post-traumatic stress disorder among women survivors of human trafficking. No previous research has described risk factors for diagnosed mental disorders in this population. A historical cohort study of women survivors of trafficked women aged 18 and over who returned to Moldova and registered for assistance with the International Organisation for Migration (IOM). Women were approached by IOM social workers and, if they gave informed consented to participate in the study, interviewed by the research team. At 2-12 months post-return to Moldova, a psychiatrist assessed DSM-IV mental disorders blind to information about women's pre-trafficking and post-trafficking experiences using the Structured Clinical Interview for DSM-IV (SCID). A backwards stepwise selection procedure was used to create a multivariable regression model of risk factors for DSM-IV mental disorder measured at an average of 6 months post-return. 120/176 (68%) eligible women participated. At an average of 6 months post-return, 54% met criteria for any DSM-IV mental disorder: 35.8% of women had PTSD (alone or co-morbid), 12.5% had depression without PTSD and 5.8% had another anxiety disorder. Multivariable regression analysis found that childhood sexual abuse (Adjusted Odds Ratio [AOR] 4.68, 95% CI 1.04-20.92), increased number of post-trafficking unmet needs (AOR 1.80; 95% CI 1.28-2.52) and post-trafficking social support (AOR 0.64; 95% CI 0.52-0.79) were independent risk factors for mental disorder, and that duration of trafficking showed a borderline association with mental disorder (AOR 1.12, 95% CI 0.98-1.29). Assessment for mental disorders should be part of re-integration follow-up care for women survivors of human trafficking. Mental disorders at that time, most commonly PTSD and depression, are likely to be influenced by a range of predisposing, precipitating and maintaining factors. Care plans for survivors of

  9. A Novel Synthetic Approach to C-Glycosyl-D- and L-Alanines

    Directory of Open Access Journals (Sweden)

    Miroslava Martinková

    2008-12-01

    Full Text Available C-Glycosyl-(S- and (R-alanines 12a and 12b were synthesized from the known β-C-glycoside 1. The nitrogen function was introduced by aza-Claisen rearrangement of the allylic thiocyanate 7, derived from the corresponding alcohol 6. The absolute configuration of the newly created chiral carbon center (C-3 was assigned by X-ray diffraction analysis of the intermediate 3(S-isothiocyanato-D-glycero-D-galacto-decose 8a.

  10. O-Glycosylation Modulates Proprotein Convertase Activation of Angiopoietin-like Protein 3: POSSIBLE ROLE OF POLYPEPTIDE GalNAc-TRANSFERASE-2 IN REGULATION OF CONCENTRATIONS OF PLASMA LIPIDS

    DEFF Research Database (Denmark)

    Schjoldager, Katrine Ter-Borch Gram; Vester-Christensen, Malene B; Bennett, Eric Paul

    2010-01-01

    immediately C-terminal (TT(226)). We developed an in vivo model system in CHO ldlD cells that was used to show that O-glycosylation in the processing site blocked processing of ANGPTL3. Genome-wide SNP association studies have identified the polypeptide GalNAc-transferase gene, GALNT2, as a candidate gene...... for low HDL and high triglyceride blood levels. We hypothesized that the GalNAc-T2 transferase performed critical O-glycosylation of proteins involved in lipid metabolism. Screening of a panel of proteins known to affect lipid metabolism for potential sites glycosylated by GalNAc-T2 led to identification...

  11. Study of ethanol-induced Golgi disorganization reveals the potential mechanism of alcohol-impaired N-glycosylation

    Science.gov (United States)

    Casey, Carol A.; Bhat, Ganapati; Holzapfel, Melissa S.; Petrosyan, Armen

    2016-01-01

    Background It is known that ethanol (EtOH) and its metabolites have a negative effect on protein glycosylation. The fragmentation of the Golgi apparatus induced by alteration of the structure of largest Golgi matrix protein, giantin, is the major consequence of damaging effects of EtOH-metabolism on the Golgi, however, the link between this and abnormal glycosylation remains unknown. Because previously we have shown that Golgi morphology dictates glycosylation, we examined the effect EtOH administration has on function of Golgi residential enzymes involved in N-glycosylation. Methods HepG2 cells transfected with mouse ADH1 (VA-13 cells) were treated with 35 mM ethanol for 72 h. Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Characterization of Golgi-associated mannosyl (α-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (MGAT1), α-1,2-mannosidase (Man-I) and α-mannosidase II (Man-II) were performed in VA-13 cells and rat hepatocytes followed by 3D Structured Illumination Microscopy (SIM). Results First, we detected that EtOH administration results in the loss of sialylated N-glycans on asialoglycoprotein receptor, however the high mannose-type N-glycans are increased. Further analysis by 3D SIM microscopy revealed that EtOH treatment despite Golgi disorganization does not change cis-Golgi localization for Man-I, but does induce medial-to-cis relocation of MGAT1 and Man-II. Using different approaches, including electron microscopy, we revealed that EtOH treatment results in dysfunction of Arf1 GTPase followed by a deficiency in COPI vesicles at the Golgi. Silencing beta-COP or expression of GDP-bound mutant Arf1(T31N) mimics the EtOH effect on retaining MGAT1 and Man-II at the cis-Golgi, suggesting that (a) EtOH specifically blocks activation of Arf1, and (b) EtOH alters the proper localization of Golgi enzymes through impairment of COPI. Importantly, the level of MGAT1 was reduced, because likely MGAT1, contrary to Man-I and Man

  12. Identification and Evolutionary Analysis of Potential Candidate Genes in a Human Eating Disorder

    Directory of Open Access Journals (Sweden)

    Ubadah Sabbagh

    2016-01-01

    Full Text Available The purpose of this study was to find genes linked with eating disorders and associated with both metabolic and neural systems. Our operating hypothesis was that there are genetic factors underlying some eating disorders resting in both those pathways. Specifically, we are interested in disorders that may rest in both sleep and metabolic function, generally called Night Eating Syndrome (NES. A meta-analysis of the Gene Expression Omnibus targeting the mammalian nervous system, sleep, and obesity studies was performed, yielding numerous genes of interest. Through a text-based analysis of the results, a number of potential candidate genes were identified. VGF, in particular, appeared to be relevant both to obesity and, broadly, to brain or neural development. VGF is a highly connected protein that interacts with numerous targets via proteolytically digested peptides. We examined VGF from an evolutionary perspective to determine whether other available evidence supported a role for the gene in human disease. We conclude that some of the already identified variants in VGF from human polymorphism studies may contribute to eating disorders and obesity. Our data suggest that there is enough evidence to warrant eGWAS and GWAS analysis of these genes in NES patients in a case-control study.

  13. Identification and Evolutionary Analysis of Potential Candidate Genes in a Human Eating Disorder.

    Science.gov (United States)

    Sabbagh, Ubadah; Mullegama, Saman; Wyckoff, Gerald J

    2016-01-01

    The purpose of this study was to find genes linked with eating disorders and associated with both metabolic and neural systems. Our operating hypothesis was that there are genetic factors underlying some eating disorders resting in both those pathways. Specifically, we are interested in disorders that may rest in both sleep and metabolic function, generally called Night Eating Syndrome (NES). A meta-analysis of the Gene Expression Omnibus targeting the mammalian nervous system, sleep, and obesity studies was performed, yielding numerous genes of interest. Through a text-based analysis of the results, a number of potential candidate genes were identified. VGF, in particular, appeared to be relevant both to obesity and, broadly, to brain or neural development. VGF is a highly connected protein that interacts with numerous targets via proteolytically digested peptides. We examined VGF from an evolutionary perspective to determine whether other available evidence supported a role for the gene in human disease. We conclude that some of the already identified variants in VGF from human polymorphism studies may contribute to eating disorders and obesity. Our data suggest that there is enough evidence to warrant eGWAS and GWAS analysis of these genes in NES patients in a case-control study.

  14. Moisture-induced solid state instabilities in α-chymotrypsin and their reduction through chemical glycosylation

    Directory of Open Access Journals (Sweden)

    Solá Ricardo J

    2010-08-01

    Full Text Available Abstract Background Protein instability remains the main factor limiting the development of protein therapeutics. The fragile nature (structurally and chemically of proteins makes them susceptible to detrimental events during processing, storage, and delivery. To overcome this, proteins are often formulated in the solid-state which combines superior stability properties with reduced operational costs. Nevertheless, solid protein pharmaceuticals can also suffer from instability problems due to moisture sorption. Chemical protein glycosylation has evolved into an important tool to overcome several instability issues associated with proteins. Herein, we employed chemical glycosylation to stabilize a solid-state protein formulation against moisture-induced deterioration in the lyophilized state. Results First, we investigated the consequences of moisture sorption on the stability and structural conformation of the model enzyme α-chymotrypsin (α-CT under controlled humidity conditions. Results showed that α-CT aggregates and inactivates as a function of increased relative humidity (RH. Furthermore, α-CT loses its native secondary and tertiary structure rapidly at increasing RH. In addition, H/D exchange studies revealed that α-CT structural dynamics increased at increasing RH. The magnitude of the structural changes in tendency parallels the solid-state instability data (i.e., formation of buffer-insoluble aggregates, inactivation, and loss of native conformation upon reconstitution. To determine if these moisture-induced instability issues could be ameliorated by chemical glycosylation we proceeded to modify our model protein with chemically activated glycans of differing lengths (lactose and dextran (10 kDa. The various glycoconjugates showed a marked decrease in aggregation and an increase in residual activity after incubation. These stabilization effects were found to be independent of the glycan size. Conclusion Water sorption leads to

  15. Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders.

    Science.gov (United States)

    Lazzeri, Elena; Ronconi, Elisa; Angelotti, Maria Lucia; Peired, Anna; Mazzinghi, Benedetta; Becherucci, Francesca; Conti, Sara; Sansavini, Giulia; Sisti, Alessandro; Ravaglia, Fiammetta; Lombardi, Duccio; Provenzano, Aldesia; Manonelles, Anna; Cruzado, Josep M; Giglio, Sabrina; Roperto, Rosa Maria; Materassi, Marco; Lasagni, Laura; Romagnani, Paola

    2015-08-01

    The critical role of genetic and epigenetic factors in the pathogenesis of kidney disorders is gradually becoming clear, and the need for disease models that recapitulate human kidney disorders in a personalized manner is paramount. In this study, we describe a method to select and amplify renal progenitor cultures from the urine of patients with kidney disorders. Urine-derived human renal progenitors exhibited phenotype and functional properties identical to those purified from kidney tissue, including the capacity to differentiate into tubular cells and podocytes, as demonstrated by confocal microscopy, Western blot analysis of podocyte-specific proteins, and scanning electron microscopy. Lineage tracing studies performed with conditional transgenic mice, in which podocytes are irreversibly tagged upon tamoxifen treatment (NPHS2.iCreER;mT/mG), that were subjected to doxorubicin nephropathy demonstrated that renal progenitors are the only urinary cell population that can be amplified in long-term culture. To validate the use of these cells for personalized modeling of kidney disorders, renal progenitors were obtained from (1) the urine of children with nephrotic syndrome and carrying potentially pathogenic mutations in genes encoding for podocyte proteins and (2) the urine of children without genetic alterations, as validated by next-generation sequencing. Renal progenitors obtained from patients carrying pathogenic mutations generated podocytes that exhibited an abnormal cytoskeleton structure and functional abnormalities compared with those obtained from patients with proteinuria but without genetic mutations. The results of this study demonstrate that urine-derived patient-specific renal progenitor cultures may be an innovative research tool for modeling of genetic kidney disorders. Copyright © 2015 by the American Society of Nephrology.

  16. From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders.

    Science.gov (United States)

    VanElzakker, Michael B; Dahlgren, M Kathryn; Davis, F Caroline; Dubois, Stacey; Shin, Lisa M

    2014-09-01

    Nearly 100 years ago, Ivan Pavlov demonstrated that dogs could learn to use a neutral cue to predict a biologically relevant event: after repeated predictive pairings, Pavlov's dogs were conditioned to anticipate food at the sound of a bell, which caused them to salivate. Like sustenance, danger is biologically relevant, and neutral cues can take on great salience when they predict a threat to survival. In anxiety disorders such as posttraumatic stress disorder (PTSD), this type of conditioned fear fails to extinguish, and reminders of traumatic events can cause pathological conditioned fear responses for decades after danger has passed. In this review, we use fear conditioning and extinction studies to draw a direct line from Pavlov to PTSD and other anxiety disorders. We explain how rodent studies have informed neuroimaging studies of healthy humans and humans with PTSD. We describe several genes that have been linked to both PTSD and fear conditioning and extinction and explain how abnormalities in fear conditioning or extinction may reflect a general biomarker of anxiety disorders. Finally, we explore drug and neuromodulation treatments that may enhance therapeutic extinction in anxiety disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Glycosylation is essential for translocation of carp retinol-binding protein across the endoplasmic reticulum membrane

    International Nuclear Information System (INIS)

    Devirgiliis, Chiara; Gaetani, Sancia; Apreda, Marianna; Bellovino, Diana

    2005-01-01

    Retinoid transport is well characterized in many vertebrates, while it is still largely unexplored in fish. To study the transport and utilization of vitamin A in these organisms, we have isolated from a carp liver cDNA library retinol-binding protein, its plasma carrier. The primary structure of carp retinol-binding protein is very conserved, but presents unique features compared to those of the correspondent proteins isolated and characterized so far in other species: it has an uncleavable signal peptide and two N-glycosylation sites in the NH 2 -terminal region of the protein that are glycosylated in vivo. In this paper, we have investigated the function of the carbohydrate chains, by constructing three mutants deprived of the first, the second or both carbohydrates. The results of transient transfection of wild type and mutant retinol-binding protein in Cos cells followed by Western blotting and immunofluorescence analysis have shown that the absence of both carbohydrate moieties blocks secretion, while the presence of one carbohydrate group leads to an inefficient secretion. Experiments of carp RBP mRNA in vitro translation in a reticulocyte cell-free system in the presence of microsomes have demonstrated that N-glycosylation is necessary for efficient translocation across the endoplasmic reticulum membranes. Moreover, when Cos cells were transiently transfected with wild type and mutant retinol-binding protein (aa 1-67)-green fluorescent protein fusion constructs and semi-permeabilized with streptolysin O, immunofluorescence analysis with anti-green fluorescent protein antibody revealed that the double mutant is exposed to the cytosol, thus confirming the importance of glycan moieties in the translocation process

  18. Introduction of a glycosylation site in the constant region decreases the aggregation of adalimumab Fab.

    Science.gov (United States)

    Nakamura, Hitomi; Oda-Ueda, Naoko; Ueda, Tadashi; Ohkuri, Takatoshi

    2018-06-18

    The production of therapeutic monoclonal antibodies is costly; therefore, antigen-binding fragments (Fabs) can be used instead. However, their tendency toward aggregation can reduce the half-life in the plasma and the therapeutic effectiveness. To examine the effect of glycosylation on the properties of the Fab of a therapeutic antibody, an N-glycosylation site was introduced at position 178 of the H-chain constant region of adalimumab Fab through site-directed mutagenesis of L178 N (H:L178 N Fab), and then H:L178 N Fab was expressed in Pichia pastoris. SDS-PAGE analysis with treatment of N-glycosidase F or periodic acid-Schiff reagent showed that H:L178 N Fab contained a relatively low glycan level. Moreover, the H:L178 N mutation did not decrease the binding activity and thermal stability of Fab, and H:L178 N Fab was more resistant to protease digestion than wild-type Fab. The aggregation of Fab induced by pH-shift stress was measured by monitoring the optical density at 350 nm. Although the wild-type Fab showed a large increase in optical density with an increase of protein concentration, no such increase of turbidity during aggregation was found in H:L178 N Fab. These results demonstrated that glycosylation at position 178 of the H-chain constant region of adalimumab Fab can prevent protein aggregation, and therefore serve as a potentially effective platform for drug development. Copyright © 2018. Published by Elsevier Inc.

  19. Evidence for Differential Glycosylation of Trophoblast Cell Types*

    Science.gov (United States)

    Chen, Qiushi; Pang, Poh-Choo; Cohen, Marie E.; Longtine, Mark S.; Schust, Danny J.; Haslam, Stuart M.; Blois, Sandra M.; Dell, Anne; Clark, Gary F.

    2016-01-01

    Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3–4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2–3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2–3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered. PMID:26929217

  20. Evidence for Differential Glycosylation of Trophoblast Cell Types.

    Science.gov (United States)

    Chen, Qiushi; Pang, Poh-Choo; Cohen, Marie E; Longtine, Mark S; Schust, Danny J; Haslam, Stuart M; Blois, Sandra M; Dell, Anne; Clark, Gary F

    2016-06-01

    Human placental villi are surfaced by the syncytiotrophoblast (STB), with a layer of cytotrophoblasts (CTB) positioned just beneath the STB. STB in normal term pregnancies is exposed to maternal immune cells in the placental intervillous space. Extravillous cytotrophoblasts (EVT) invade the decidua and spiral arteries, where they act in conjunction with natural killer (NK) cells to convert the spiral arteries into flaccid conduits for maternal blood that support a 3-4 fold increase in the rate of maternal blood flow into the placental intervillous space. The functional roles of these distinct trophoblast subtypes during pregnancy suggested that they could be differentially glycosylated. Glycomic analysis of these trophoblasts has revealed the expression of elevated levels of biantennary N-glycans in STB and CTB, with the majority of them bearing a bisecting GlcNAc. N-glycans terminated with polylactosamine extensions were also detected at low levels. A subset of the N-glycans linked to these trophoblasts were sialylated, primarily with terminal NeuAcα2-3Gal sequences. EVT were decorated with the same N-glycans as STB and CTB, except in different proportions. The level of bisecting type N-glycans was reduced, but the level of N-glycans decorated with polylactosamine sequences were substantially elevated compared with the other types of trophoblasts. The level of triantennary and tetraantennary N-glycans was also elevated in EVT. The sialylated N-glycans derived from EVT were completely susceptible to an α2-3 specific neuraminidase (sialidase S). The possibility exists that the N-glycans associated with these different trophoblast subpopulations could act as functional groups. These potential relationships will be considered. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Puberty as a Critical Risk Period for Eating Disorders: A Review of Human and Animal Studies

    Science.gov (United States)

    Klump, Kelly L.

    2013-01-01

    Puberty is one of the most frequently discussed risk periods for the development of eating disorders. Prevailing theories propose environmentally mediated sources of risk arising from the psychosocial effects (e.g., increased body dissatisfaction, decreased self-esteem) of pubertal development in girls. However, recent research highlights the potential role of ovarian hormones in phenotypic and genetic risk for eating disorders during puberty. The goal of this paper is to review data from human and animal studies in support of puberty as a critical risk period for eating disorders and evaluate the evidence for hormonal contributions. Data are consistent in suggesting that both pubertal status and pubertal timing significantly impact risk for most eating disorders in girls, such that advanced pubertal development and early pubertal timing are associated with increased rates of eating disorders and their symptoms in both cross-sectional and longitudinal research. Findings in boys have been much less consistent and suggest a smaller role for puberty in risk for eating disorders in boys. Twin and animal studies indicate that at least part of the female-specific risk is due to genetic factors associated with estrogen activation at puberty. In conclusion, data thus far support a role for puberty in risk for eating disorders and highlight the need for additional human and animal studies of hormonal and genetic risk for eating disorders during puberty. PMID:23998681

  2. Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function.

    Science.gov (United States)

    Wang, Bin; Wang, Yujie; Frabutt, Dylan A; Zhang, Xihe; Yao, Xiaoyu; Hu, Dan; Zhang, Zhuo; Liu, Chaonan; Zheng, Shimin; Xiang, Shi-Hua; Zheng, Yong-Hui

    2017-04-07

    The Ebola virus (EBOV) trimeric envelope glycoprotein (GP) precursors are cleaved into the receptor-binding GP 1 and the fusion-mediating GP 2 subunits and incorporated into virions to initiate infection. GP 1 and GP 2 form heterodimers that have 15 or two N -glycosylation sites (NGSs), respectively. Here we investigated the mechanism of how N -glycosylation contributes to GP expression, maturation, and function. As reported before, we found that, although GP 1 NGSs are not critical, the two GP 2 NGSs, Asn 563 and Asn 618 , are essential for GP function. Further analysis uncovered that Asn 563 and Asn 618 regulate GP processing, demannosylation, oligomerization, and conformation. Consequently, these two NGSs are required for GP incorporation into EBOV-like particles and HIV type 1 (HIV-1) pseudovirions and determine viral transduction efficiency. Using CRISPR/Cas9 technology, we knocked out the two classical endoplasmic reticulum chaperones calnexin (CNX) and/or calreticulin (CRT) and found that both CNX and CRT increase GP expression. Nevertheless, NGSs are not required for the GP interaction with CNX or CRT. Together, we conclude that, although Asn 563 and Asn 618 are not required for EBOV GP expression, they synergistically regulate its maturation, which determines its functionality. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. A novel mass spectrometric strategy "BEMAP" reveals Extensive O-linked protein glycosylation in Enterotoxigenic Escherichia coli

    DEFF Research Database (Denmark)

    Boysen, Anders; Palmisano, Giuseppe; Krogh, Thøger Jensen

    2016-01-01

    The attachment of sugars to proteins via side-chain oxygen atoms (O-linked glycosylation) is seen in all three domains of life. However, a lack of widely-applicable analytical tools has restricted the study of this process, particularly in bacteria. In E. coli, only four O-linked glycoproteins have...... previously been characterized. Here we present a glycoproteomics technique, termed BEMAP, which is based on the beta-elimination of O-linked glycans followed by Michael-addition of a phosphonic acid derivative, and subsequent titanium dioxide enrichment. This strategy allows site-specific mass......-spectrometric identification of proteins with O-linked glycan modifications in a complex biological sample. Using BEMAP we identified cell surface-associated and membrane vesicle glycoproteins from Enterotoxigenic E. coli (ETEC) and non-pathogenic E. coli K-12. We identified 618 glycosylated Serine and Threonine residues...

  4. Integrated proteomic and N-glycoproteomic analyses of doxorubicin sensitive and resistant ovarian cancer cells reveal glycoprotein alteration in protein abundance and glycosylation

    Science.gov (United States)

    Hou, Junjie; Zhang, Chengqian; Xue, Peng; Wang, Jifeng; Chen, Xiulan; Guo, Xiaojing; Yang, Fuquan

    2017-01-01

    Ovarian cancer is one of the most common cancer among women in the world, and chemotherapy remains the principal treatment for patients. However, drug resistance is a major obstacle to the effective treatment of ovarian cancers and the underlying mechanism is not clear. An increased understanding of the mechanisms that underline the pathogenesis of drug resistance is therefore needed to develop novel therapeutics and diagnostic. Herein, we report the comparative analysis of the doxorubicin sensitive OVCAR8 cells and its doxorubicin-resistant variant NCI/ADR-RES cells using integrated global proteomics and N-glycoproteomics. A total of 1525 unique N-glycosite-containing peptides from 740 N-glycoproteins were identified and quantified, of which 253 N-glycosite-containing peptides showed significant change in the NCI/ADR-RES cells. Meanwhile, stable isotope labeling by amino acids in cell culture (SILAC) based comparative proteomic analysis of the two ovarian cancer cells led to the quantification of 5509 proteins. As about 50% of the identified N-glycoproteins are low-abundance membrane proteins, only 44% of quantified unique N-glycosite-containing peptides had corresponding protein expression ratios. The comparison and calibration of the N-glycoproteome versus the proteome classified 14 change patterns of N-glycosite-containing peptides, including 8 up-regulated N-glycosite-containing peptides with the increased glycosylation sites occupancy, 35 up-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy, 2 down-regulated N-glycosite-containing peptides with the decreased glycosylation sites occupancy, 46 down-regulated N-glycosite-containing peptides with the unchanged glycosylation sites occupancy. Integrated proteomic and N-glycoproteomic analyses provide new insights, which can help to unravel the relationship of N-glycosylation and multidrug resistance (MDR), understand the mechanism of MDR, and discover the new diagnostic and

  5. Effects of glycosylation on the conformation and dynamics of O-linked glycoproteins: Carbon-13 NMR studies of ovine submaxillary mucin

    International Nuclear Information System (INIS)

    Gerken, T.A.; Butenhof, K.J.; Shogren, R.

    1989-01-01

    Carbon-13 NMR spectroscopic studies of native and sequentially deglycosylated ovine submaxillary mucin (OSM) have been performed to examine the effects of glycosylation on the conformation and dynamics of the peptide core of O-linked glycoproteins. OSM is a large nonglobular glycoprotein in which nearly one-third of the amino acid residues are Ser and Thr which are glycosylated by the α-Neu-NAc(2-6)α-Ga1NAc- disaccharide. The β-carbon resonances of glycosylated Ser and Thr residues in intact and asialo mucin display considerable chemical shift heterogeneity which, upon the complete removal of carbohydrate, coalesces to single sharp resonances. This chemical shift heterogeneity is due to peptide sequence variability and is proposed to reflect the presence of sequence-dependent conformations of the peptide core. These different conformations are thought to be determined by steric interactions of the Ga1NAc residue with adjacent peptide residues. The absence of chemical shift heterogeneity in apo mucin is taken to indicate a loss in the peptide-carbohydrate steric interactions, consistent with a more relaxed random coiled structure. On the basis of the 13 C relaxation behavior the dynamics of the α-carbons appear to be unique to each amino acid type and glycosylation state. These results are consistent with the changes in molecular dimensions determined by light-scattering techniques for the same series of modified mucins. Taken together, these results further demonstrate that mucins possess a highly expanded conformation that is dominated by steric interactions between the peptide core and the O-linked Ga1NAc residue

  6. Increased Pathogenicity of West Nile Virus (WNV by Glycosylation of Envelope Protein and Seroprevalence of WNV in Wild Birds in Far Eastern Russia

    Directory of Open Access Journals (Sweden)

    Hiroaki Kariwa

    2013-12-01

    Full Text Available In this review, we discuss the possibility that the glycosylation of West Nile (WN virus E-protein may be associated with enhanced pathogenicity and higher replication of WN virus. The results indicate that E-protein glycosylation allows the virus to multiply in a heat-stable manner and therefore, has a critical role in enhanced viremic levels and virulence of WN virus in young-chick infection model. The effect of the glycosylation of the E protein on the pathogenicity of WN virus in young chicks was further investigated. The results indicate that glycosylation of the WN virus E protein is important for viral multiplication in peripheral organs and that it is associated with the strong pathogenicity of WN virus in birds. The micro-focus reduction neutralization test (FRNT in which a large number of serum samples can be handled at once with a small volume (15 μL of serum was useful for differential diagnosis between Japanese encephalitis and WN virus infections in infected chicks. Serological investigation was performed among wild birds in the Far Eastern region of Russia using the FRNT. Antibodies specific to WN virus were detected in 21 samples of resident and migratory birds out of 145 wild bird samples in the region.

  7. A Brief Review of Bioinformatics Tools for Glycosylation Analysis by Mass Spectrometry

    OpenAIRE

    Tsai, Pei-Lun; Chen, Sung-Fang

    2017-01-01

    The purpose of this review is to provide updated information regarding bioinformatic software for the use in the characterization of glycosylated structures since 2013. A comprehensive review by Woodin et al. Analyst 138: 2793?2803, 2013 (ref. 1) described two main approaches that are introduced for starting researchers in this area; analysis of released glycans and the identification of glycopeptide in enzymatic digests, respectively. Complementary to that report, this review focuses on m...

  8. Iron(III) chloride catalyzed glycosylation of peracylated sugars with allyl/alkynyl alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Narayanaperumal, Senthil; Silva, Rodrigo Cesar da; Monteiro, Julia L.; Correa, Arlene G.; Paixao, Marcio W., E-mail: mwpaixao@ufscar.br [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica

    2012-11-15

    In this work, the use of ferric chloride as an efficient catalyst in glycosylation reactions of sugars in the presence of allyl and alkynyl alcohols is described. The corresponding glycosides were obtained with moderate to good yields. This new procedure presented greater selectivity when compared to classic methods found in the literature. Principal features of this simple method include non-hazardous reaction conditions, low-catalyst loading, good yields and high anomeric selectivity (author)

  9. Saccharomyces cerevisiae KTR4, KTR5 and KTR7 encode mannosyltransferases differentially involved in the N- and O-linked glycosylation pathways.

    Science.gov (United States)

    Hernández, Nahúm V; López-Ramírez, Luz A; Díaz-Jiménez, Diana F; Mellado-Mojica, Erika; Martínez-Duncker, Iván; López, Mercedes G; Mora-Montes, Héctor M

    2017-10-01

    Saccharomyces cerevisiae is a model to understand basic aspects of protein glycosylation pathways. Although these metabolic routes have been thoroughly studied, there are still knowledge gaps; among them, the role of the MNT1/KRE2 gene family. This family is composed of nine members, with only six functionally characterized. The enzymes Ktr1, Ktr3, and Mnt1/Kre2 have overlapping activities in both O-linked and N-linked glycan synthesis; while Ktr2 and Yur1 participate exclusively in the elongation of the N-linked glycan outer chain. KTR6 encodes for a phosphomannosyltransferase that synthesizes the cell wall phosphomannan. Here, we aimed to establish the functional role of KTR4, KTR5 and KTR7 in the protein glycosylation pathways, by using heterologous complementation in Candida albicans null mutants lacking members of the MNT1/KRE2 gene family. The three S. cerevisiae genes restored defects in the C. albicans N-linked glycosylation pathway. KTR5 and KTR7 partially complemented a C. albicans null mutant with defects in the synthesis of O-linked glycans, and only KTR4 fully elongated the O-linked glycans like wild-type cells. Therefore, our results suggest that the three genes have a redundant activity in the S. cerevisiae N-linked glycosylation pathway, but KTR4 plays a major role in O-linked glycan synthesis. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl C-Glycosides.

    Science.gov (United States)

    Zhu, Feng; Rodriguez, Jacob; Yang, Tianyi; Kevlishvili, Ilia; Miller, Eric; Yi, Duk; O'Neill, Sloane; Rourke, Michael J; Liu, Peng; Walczak, Maciej A

    2017-12-13

    Stereoselective manipulations at the C1 anomeric position of saccharides are one of the central goals of preparative carbohydrate chemistry. Historically, the majority of reactions forming a bond with anomeric carbon has focused on reactions of nucleophiles with saccharide donors equipped with a leaving group. Here, we describe a novel approach to stereoselective synthesis of C-aryl glycosides capitalizing on the highly stereospecific reaction of anomeric nucleophiles. First, methods for the preparation of anomeric stannanes have been developed and optimized to afford both anomers of common saccharides in high anomeric selectivities. We established that oligosaccharide stannanes could be prepared from monosaccharide stannanes via O-glycosylation with Schmidt-type donors, glycal epoxides, or under dehydrative conditions with C1 alcohols. Second, we identified a general set of catalytic conditions with Pd 2 (dba) 3 (2.5 mol%) and a bulky ligand (JackiePhos, 10 mol%) controlling the β-elimination pathway. We demonstrated that the glycosyl cross-coupling resulted in consistently high anomeric selectivities for both anomers with mono- and oligosaccharides, deoxysugars, saccharides with free hydroxyl groups, pyranose, and furanose substrates. The versatility of the glycosyl cross-coupling reaction was probed in the total synthesis of salmochelins (siderophores) and commercial anti-diabetic drugs (gliflozins). Combined experimental and computational studies revealed that the β-elimination pathway is suppressed for biphenyl-type ligands due to the shielding of Pd(II) by sterically demanding JackiePhos, whereas smaller ligands, which allow for the formation of a Pd-F complex, predominantly result in a glycal product. Similar steric effects account for the diminished rates of cross-couplings of 1,2-cis C1-stannanes with aryl halides. DFT calculations also revealed that the transmetalation occurs via a cyclic transition state with retention of configuration at the anomeric

  11. Altered trafficking and unfolded protein response induction as a result of M3 muscarinic receptor impaired N-glycosylation.

    Science.gov (United States)

    Romero-Fernandez, Wilber; Borroto-Escuela, Dasiel O; Alea, Mileidys Perez; Garcia-Mesa, Yoelvis; Garriga, Pere

    2011-12-01

    The human M(3) muscarinic acetylcholine receptor is present in both the central and peripheral nervous system, and it is involved in the pathophysiology of several neurodegenerative and autoimmune diseases. We suggested a possible N-glycosylation map for the M(3) muscarinic receptor expressed in COS-7 cells. Here, we examined the role that N-linked glycans play in the folding and in the cell surface trafficking of this receptor. The five potential asparagine-linked glycosylation sites in the muscarinic receptor were mutated and transiently expressed in COS-7 cells. The elimination of N-glycan attachment sites did not affect the cellular expression levels of the receptor. However, proper receptor localization to the plasma membrane was affected as suggested by reduced [(3)H]-N-methylscopolamine binding. Confocal microscopy confirmed this observation and showed that the nonglycosylated receptor was primarily localized in the intracellular compartments. The mutant variant showed an increase in phosphorylation of the α-subunit of eukaryote initiation factor 2, and other well-known endoplasmic reticulum stress markers of the unfolded protein response pathway, which further supports the proposal of the improper intracellular accumulation of the nonglycosylated receptor. The receptor devoid of glycans showed more susceptibility to events that culminate in apoptosis reducing cell viability. Our findings suggest up-regulation of pro-apoptotic Bax protein, down-regulation of anti-apoptotic Bcl-2, and cleavage of caspase-3 effectors. Collectively, our data provide experimental evidence of the critical role that N-glycan chains play in determining muscarinic receptor distribution, localization, as well as cell integrity. © The Author 2011. Published by Oxford University Press. All rights reserved.

  12. The Influences of Glycosylation on the Antigenicity, Immunogenicity, and Protective Efficacy of Ebola Virus GP DNA Vaccines

    National Research Council Canada - National Science Library

    Dowling, William; Thompson, Elizabeth; Badger, Catherine; Mellquist, Jenny L; Garrison, Aura R; Smith, Jeffrey M; Paragas, Jason; Hogan, Robert J; Schmaljohn, Connie

    2006-01-01

    ... or with deletions in the central hypervariable mucin region. We showed that mutation of one of the two N-linked GP2 glycosylation sites was highly detrimental to the antigenicity and immunogenicity of GP...

  13. Genomics meets glycomics-the first GWAS study of human N-Glycome identifies HNF1α as a master regulator of plasma protein fucosylation.

    Directory of Open Access Journals (Sweden)

    Gordan Lauc

    2010-12-01

    Full Text Available Over half of all proteins are glycosylated, and alterations in glycosylation have been observed in numerous physiological and pathological processes. Attached glycans significantly affect protein function; but, contrary to polypeptides, they are not directly encoded by genes, and the complex processes that regulate their assembly are poorly understood. A novel approach combining genome-wide association and high-throughput glycomics analysis of 2,705 individuals in three population cohorts showed that common variants in the Hepatocyte Nuclear Factor 1α (HNF1α and fucosyltransferase genes FUT6 and FUT8 influence N-glycan levels in human plasma. We show that HNF1α and its downstream target HNF4α regulate the expression of key fucosyltransferase and fucose biosynthesis genes. Moreover, we show that HNF1α is both necessary and sufficient to drive the expression of these genes in hepatic cells. These results reveal a new role for HNF1α as a master transcriptional regulator of multiple stages in the fucosylation process. This mechanism has implications for the regulation of immunity, embryonic development, and protein folding, as well as for our understanding of the molecular mechanisms underlying cancer, coronary heart disease, and metabolic and inflammatory disorders.

  14. Emotion Recognition in Animated Compared to Human Stimuli in Adolescents with Autism Spectrum Disorder

    Science.gov (United States)

    Brosnan, Mark; Johnson, Hilary; Grawmeyer, Beate; Chapman, Emma; Benton, Laura

    2015-01-01

    There is equivocal evidence as to whether there is a deficit in recognising emotional expressions in Autism spectrum disorder (ASD). This study compared emotion recognition in ASD in three types of emotion expression media (still image, dynamic image, auditory) across human stimuli (e.g. photo of a human face) and animated stimuli (e.g. cartoon…

  15. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment.

    Science.gov (United States)

    Song, Ehwang; Mechref, Yehia

    2015-01-01

    Protein glycosylation is an important and common post-translational modification. More than 50% of human proteins are believed to be glycosylated to modulate the functionality of proteins. Aberrant glycosylation has been correlated to several diseases, such as inflammatory skin diseases, diabetes mellitus, cardiovascular disorders, rheumatoid arthritis, Alzheimer's and prion diseases, and cancer. Many approved cancer biomarkers are glycoproteins which are not highly abundant proteins. Therefore, effective qualitative and quantitative assessment of glycoproteins entails enrichment methods. This chapter summarizes glycoprotein enrichment methods, including lectin affinity, immunoaffinity, hydrazide chemistry, hydrophilic interaction liquid chromatography, and click chemistry. The use of these enrichment approaches in assessing the qualitative and quantitative changes of glycoproteins in different types of cancers are presented and discussed. This chapter highlights the importance of glycoprotein enrichment techniques for the identification and characterization of new reliable cancer biomarkers.

  16. Diversity Within the O-linked Protein Glycosylation Systems of Acinetobacter Species

    DEFF Research Database (Denmark)

    Scott, N. E.; Kinsella, R. L.; Edwards, A. V. G.

    2014-01-01

    nature of glycan biogenesis we investigated the composition, diversity, and properties of the Acinetobacter glycoproteome. Utilizing global and targeted mass spectrometry methods, we examined 15 strains and found extensive glycan diversity in the O-linked glycoproteome of Acinetobacter. Comparison......-linked glycosylation favors short (three to five residue) glycans with limited branching containing negatively charged sugars such as GlcNAc3NAcA4OAc or legionaminic/pseudaminic acid derivatives. These observations suggest that although highly diverse, the capsule/O-linked glycan biosynthetic pathways generate glycans...

  17. Puberty as a critical risk period for eating disorders: a review of human and animal studies.

    Science.gov (United States)

    Klump, Kelly L

    2013-07-01

    This article is part of a Special Issue "Puberty and Adolescence". Puberty is one of the most frequently discussed risk periods for the development of eating disorders. Prevailing theories propose environmentally mediated sources of risk arising from the psychosocial effects (e.g., increased body dissatisfaction, decreased self-esteem) of pubertal development in girls. However, recent research highlights the potential role of ovarian hormones in phenotypic and genetic risk for eating disorders during puberty. The goal of this paper is to review data from human and animal studies in support of puberty as a critical risk period for eating disorders and evaluate the evidence for hormonal contributions. Data are consistent in suggesting that both pubertal status and pubertal timing significantly impact risk for most eating disorders in girls, such that advanced pubertal development and early pubertal timing are associated with increased rates of eating disorders and their symptoms in both cross-sectional and longitudinal research. Findings in boys have been much less consistent and suggest a smaller role for puberty in risk for eating disorders in boys. Twin and animal studies indicate that at least part of the female-specific risk is due to genetic factors associated with estrogen activation at puberty. In conclusion, data thus far support a role for puberty in risk for eating disorders and highlight the need for additional human and animal studies of hormonal and genetic risk for eating disorders during puberty. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Cooperative roles of glucose and asparagine-linked glycosylation in T-type calcium channel expression

    Czech Academy of Sciences Publication Activity Database

    Lazniewska, Joanna; Rzhepetskyy, Yuriy; Zhang, F. X.; Zamponi, G. W.; Weiss, Norbert

    2016-01-01

    Roč. 468, 11/12 (2016), s. 1837-1851 ISSN 0031-6768 R&D Projects: GA ČR GA15-13556S; GA MŠk 7AMB15FR015 Institutional support: RVO:61388963 Keywords : calcium channel * T-type channel * Ca(v)3.2 * glucose * N-glycosylation * trafficking Subject RIV: CE - Biochemistry Impact factor: 3.156, year: 2016

  19. Quantitative Analysis of Human Salivary Gland-Derived Intact Proteome Using Top-Down Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Si; Brown, Joseph N.; Tolic, Nikola; Meng, Da; Liu, Xiaowen; Zhang, Haizhen; Zhao, Rui; Moore, Ronald J.; Pevzner, Pavel A.; Smith, Richard D.; Pasa-Tolic, Ljiljana

    2014-05-31

    There are several notable challenges inherent to fully characterizing the entirety of the human saliva proteome using bottom-up approaches, including polymorphic isoforms, post-translational modifications, unique splice variants, deletions, and truncations. To address these challenges, we have developed a top-down based liquid chromatography-mass spectrometry (LC-MS) approach, which cataloged 20 major human salivary proteins with a total of 83 proteoforms, containing a broad range of post-translational modifications. Among these proteins, several previously reported disease biomarker proteins were identified at the intact protein level, such as beta-2 microglobulin (B2M). In addition, intact glycosylated proteoforms of several saliva proteins were also characterized, including intact N-glycosylated protein prolactin inducible protein (PIP) and O-glycosylated acidic protein rich protein (aPRP). These characterized proteoforms constitute an intact saliva proteoform database, which was used for quantitative comparison of intact salivary proteoforms among six healthy individuals. Human parotid (PS) and submandibular/sublingual gland (SMSL) secretion samples (2 μg of protein each) from six healthy individuals were compared using RPLC coupled with the 12T FTICR mass spectrometer. Significantly different protein and PTM patterns were resolved with high reproducibility between PS and SMSL glands. The results from this study provide further insight into the potential mechanisms of PTM pathways in oral glandular secretion, expanding our knowledge of this complex yet easily accessible fluid. Intact protein LC-MS approach presented herein can potentially be applied for rapid and accurate identification of biomarkers from only a few microliters of human glandular saliva.

  20. Public and patient involvement in needs assessment and social innovation: a people-centred approach to care and research for congenital disorders of glycosylation.

    Science.gov (United States)

    de Freitas, Cláudia; Dos Reis, Vanessa; Silva, Susana; Videira, Paula A; Morava, Eva; Jaeken, Jaak

    2017-09-26

    Public and patient involvement in the design of people-centred care and research is vital for communities whose needs are underserved, as are people with rare diseases. Innovations devised collectively by patients, caregivers, professionals and other members of the public can foster transformative change toward more responsive services and research. However, attempts to involve lay and professional stakeholders in devising community-framed strategies to address the unmet needs of rare diseases are lacking. In this study, we engaged with the community of Congenital Disorders of Glycosylation (CDG) to assess its needs and elicit social innovations to promote people-centred care and research. Drawing on a qualitative study, we conducted three think tanks in France with a total of 48 participants, including patients/family members (n = 18), health care professionals (n = 7), researchers (n = 7) and people combining several of these roles (n = 16). Participants came from 20 countries across five continents. They were selected from the registry of the Second World Conference on CDG through heterogeneity and simple random sampling. Inductive and deductive approaches were employed to conduct interpretational analysis using open, axial and selective coding, and the constant-comparison method to facilitate the emergence of categories and core themes. The CDG community has unmet needs for information, quality health care, psychosocial support and representation in decision-making concerned with care and research. According to participants, these needs can be addressed through a range of social innovations, including peer-support communities, web-based information resources and a CDG expertise platform. This is one of the few studies to engage lay and professional experts in needs assessment and innovation for CDG at a global level. Implementing the innovations proposed by the CDG community is likely to have ethical, legal and social implications associated with the

  1. Examination on Impact of Air Ions toward Human Social Disorder Behavior

    International Nuclear Information System (INIS)

    Ganesha-Tri-Chandrasa

    2000-01-01

    Air ions are something that people can not see and feel. However, they exist surrounding human life. Imbalance inhalation of air ions can affect central nervous system, and physically it will affect human activities and create social disorder behavior. Some investigations have proved the relation above and devices for anticipating ionization have been innovated and available on the market. Furthermore, it has been found that individual resistance against ionization is different between genders. Therefore it is important to study character and to anticipate effects of ions and ionization, in order to build more comfortable environment. (author)

  2. Effects of cell culture conditions on antibody N-linked glycosylation--what affects high mannose 5 glycoform.

    Science.gov (United States)

    Pacis, Efren; Yu, Marcella; Autsen, Jennifer; Bayer, Robert; Li, Feng

    2011-10-01

    The glycosylation profile of therapeutic antibodies is routinely analyzed throughout development to monitor the impact of process parameters and to ensure consistency, efficacy, and safety for clinical and commercial batches of therapeutic products. In this study, unusually high levels of the mannose-5 (Man5) glycoform were observed during the early development of a therapeutic antibody produced from a Chinese hamster ovary (CHO) cell line, model cell line A. Follow up studies indicated that the antibody Man5 level was increased throughout the course of cell culture production as a result of increasing cell culture medium osmolality levels and extending culture duration. With model cell line A, Man5 glycosylation increased more than twofold from 12% to 28% in the fed-batch process through a combination of high basal and feed media osmolality and increased run duration. The osmolality and culture duration effects were also observed for four other CHO antibody producing cell lines by adding NaCl in both basal and feed media and extending the culture duration of the cell culture process. Moreover, reduction of Man5 level from model cell line A was achieved by supplementing MnCl2 at appropriate concentrations. To further understand the role of glycosyltransferases in Man5 level, N-acetylglucosaminyltransferase I GnT-I mRNA levels at different osmolality conditions were measured. It has been hypothesized that specific enzyme activity in the glycosylation pathway could have been altered in this fed-batch process. Copyright © 2011 Wiley Periodicals, Inc.

  3. Doxorubicin attached to HPMA copolymer via amide bond modifies the glycosylation pattern of EL4 cells.

    Science.gov (United States)

    Kovar, Lubomir; Etrych, Tomas; Kabesova, Martina; Subr, Vladimir; Vetvicka, David; Hovorka, Ondrej; Strohalm, Jiri; Sklenar, Jan; Chytil, Petr; Ulbrich, Karel; Rihova, Blanka

    2010-08-01

    To avoid the side effects of the anti-cancer drug doxorubicin (Dox), we conjugated this drug to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone. Dox was conjugated via an amide bond (Dox-HPMA(AM), PK1) or a hydrazone pH-sensitive bond (Dox-HPMA(HYD)). In contrast to Dox and Dox-HPMA(HYD), Dox-HPMA(AM) accumulates within the cell's intracellular membranes, including those of the Golgi complex and endoplasmic reticulum, both involved in protein glycosylation. Flow cytometry was used to determine lectin binding and cell death, immunoblot to characterize the presence of CD7, CD43, CD44, and CD45, and high-performance anion exchange chromatography with pulsed amperometric detector analysis for characterization of plasma membrane saccharide composition. Incubation of EL4 cells with Dox-HPMA(AM) conjugate, in contrast to Dox or Dox-HPMA(HYD), increased the amounts of membrane surface-associated glycoproteins, as well as saccharide moieties recognized by peanut agglutinin, Erythrina cristagalli, or galectin-1 lectins. Only Dox-HPMA(AM) increased expression of the highly glycosylated membrane glycoprotein CD43, while expression of others (CD7, CD44, and CD45) was unaffected. The binding sites for galectin-1 are present on CD43 molecule. Furthermore, we present that EL4 treated with Dox-HPMA(AM) possesses increased sensitivity to galectin-1-induced apoptosis. In this study, we demonstrate that Dox-HPMA(AM) treatment changes glycosylation of the EL4 T cell lymphoma surface and sensitizes the cells to galectin-1-induced apoptosis.

  4. From Pavlov to PTSD: The extinction of conditioned fear in rodents, humans, and in anxiety disorders

    Science.gov (United States)

    VanElzakker, Michael B.; Dahlgren, M. Kathryn; Davis, F. Caroline; Dubois, Stacey; Shin, Lisa M.

    2014-01-01

    Nearly 100 years ago, Ivan Pavlov demonstrated that dogs could learn to use a neutral cue to predict a biologically relevant event: after repeated predictive pairings, Pavlov's dogs were conditioned to anticipate food at the sound of a bell, which caused them to salivate. Like sustenance, danger is biologically relevant, and neutral cues can take on great salience when they predict a threat to survival. In anxiety disorders such as posttraumatic stress disorder (PTSD), this type of conditioned fear fails to extinguish, and reminders of traumatic events can cause pathological conditioned fear responses for decades after danger has passed. In this review, we use fear conditioning and extinction studies to draw a direct line from Pavlov to PTSD and other anxiety disorders. We explain how rodent studies have informed neuroimaging studies of healthy humans and humans with PTSD. We describe several genes that have been linked to both PTSD and fear conditioning and extinction and explain how abnormalities in fear conditioning or extinction may reflect a general biomarker of anxiety disorders. Finally, we explore drug and neuromodulation treatments that may enhance therapeutic extinction in anxiety disorders. PMID:24321650

  5. Identification of glycosylation sites in the SU component of the Avian Sarcoma/Leukosis virus Envelope Glycoprotein (Subgroup A) by mass spectrometry

    International Nuclear Information System (INIS)

    Kvaratskhelia, Mamuka; Clark, Patrick K.; Hess, Sonja; Melder, Deborah C.; Federspiel, Mark J.; Hughes, Stephen H.

    2004-01-01

    We used enzymatic digestion and mass spectrometry to identify the sites of glycosylation on the SU component of the Avian Sarcoma/Leukosis virus (ASLV) Envelope Glycoprotein (Subgroup A). The analysis was done with an SU(A)-rIgG fusion protein that binds the cognate receptor (Tva) specifically. PNGase F removed all the carbohydrate from the SU(A)-rIgG fusion. PNGase F is specific for N-linked carbohydrates; this shows that all the carbohydrate on SU(A) is N-linked. There are 10 modified aspargines in SU(A) (N17, N59, N80, N97, N117, N196, N230, N246, N254, and N330). All conform to the consensus site for N-linked glycosylation NXS/T. There is one potential glycosylation site (N236) that is not modified. Removing most of the carbohydrate from the mature SU(A)-rIgG by PNGase F treatment greatly reduces the ability of the protein to bind Tva, suggesting that carbohydrate may play a direct role in receptor binding

  6. Chemical structure, biosynthesis and synthesis of free and glycosylated pyridinolines formed by cross-link of bone and synovium collagen.

    Science.gov (United States)

    Anastasia, Luigi; Rota, Paola; Anastasia, Mario; Allevi, Pietro

    2013-09-21

    This review focuses on the chemical structure, biosynthesis and synthesis of free and glycosylated pyridinolines (Pyds), fluorescent collagen cross-links, with a pyridinium salt structure. Pyds derive from the degradation of bone collagen and have attracted attention for their use as biochemical markers of bone resorption and to assess fracture risk prediction in persons suffering from osteoporosis, bone cancer and other bone or collagen diseases. We consider and critically discuss all reported syntheses of free and glycosylated Pyds evidencing an unrevised chemistry, original and of general utility, analysis of which allows us to also support a previously suggested non-enzymatic formation of Pyds in collagen better rationalizing and justifying the chemical events.

  7. Aberrantly Glycosylated IgA1 as a Factor in the Pathogenesis of IgA Nephropathy

    Directory of Open Access Journals (Sweden)

    Mototsugu Tanaka

    2011-01-01

    Full Text Available Predominant or codominant immunoglobulin (Ig A deposition in the glomerular mesangium characterizes IgA nephropathy (IgAN. Accumulated glomerular IgA is limited to the IgA1 subclass and usually galactose-deficient. This underglycosylated IgA may play an important role in the pathogenesis of IgAN. Recently, antibodies against galactose-deficient IgA1 were found to be well associated with the development of IgAN. Several therapeutic strategies based on corticosteroids or other immunosuppressive agents have been shown to at least partially suppress the progression of IgAN. On the other hand, several case reports of kidney transplantation or acquired IgA deficiency uncovered a remarkable ability of human kidney to remove mesangial IgA deposition, resulting in the long-term stabilization of kidney function. Continuous exposure to circulating immune complexes containing aberrantly glycosylated IgA1 and sequential immune response seems to be essential in the disease progression of IgAN. Removal of mesangial IgA deposition may be a challenging, but fundamental approach in the treatment of IgAN.

  8. Postnatal Gene Therapy Improves Spatial Learning Despite the Presence of Neuronal Ectopia in a Model of Neuronal Migration Disorder

    Directory of Open Access Journals (Sweden)

    Huaiyu Hu

    2016-11-01

    Full Text Available Patients with type II lissencephaly, a neuronal migration disorder with ectopic neurons, suffer from severe mental retardation, including learning deficits. There is no effective therapy to prevent or correct the formation of neuronal ectopia, which is presumed to cause cognitive deficits. We hypothesized that learning deficits were not solely caused by neuronal ectopia and that postnatal gene therapy could improve learning without correcting the neuronal ectopia formed during fetal development. To test this hypothesis, we evaluated spatial learning of cerebral cortex-specific protein O-mannosyltransferase 2 (POMT2, an enzyme required for O-mannosyl glycosylation knockout mice and compared to the knockout mice that were injected with an adeno-associated viral vector (AAV encoding POMT2 into the postnatal brains with Barnes maze. The data showed that the knockout mice exhibited reduced glycosylation in the cerebral cortex, reduced dendritic spine density on CA1 neurons, and increased latency to the target hole in the Barnes maze, indicating learning deficits. Postnatal gene therapy restored functional glycosylation, rescued dendritic spine defects, and improved performance on the Barnes maze by the knockout mice even though neuronal ectopia was not corrected. These results indicate that postnatal gene therapy improves spatial learning despite the presence of neuronal ectopia.

  9. N-glycosylation by N-acetylglucosaminyltransferase V enhances the interaction of CD147/basigin with integrin β1 and promotes HCC metastasis.

    Science.gov (United States)

    Cui, Jian; Huang, Wan; Wu, Bo; Jin, Jin; Jing, Lin; Shi, Wen-Pu; Liu, Zhen-Yu; Yuan, Lin; Luo, Dan; Li, Ling; Chen, Zhi-Nan; Jiang, Jian-Li

    2018-05-01

    While the importance of protein N-glycosylation in cancer cell migration is well appreciated, the precise mechanisms by which N-acetylglucosaminyltransferase V (GnT-V) regulates cancer processes remain largely unknown. In the current study, we report that GnT-V-mediated N-glycosylation of CD147/basigin, a tumor-associated glycoprotein that carries β1,6-N-acetylglucosamine (β1,6-GlcNAc) glycans, is upregulated during TGF-β1-induced epithelial-to-mesenchymal transition (EMT), which correlates with tumor metastasis in patients with hepatocellular carcinoma (HCC). Interruption of β1,6-GlcNAc glycan modification of CD147/basigin decreased matrix metalloproteinase (MMP) expression in HCC cell lines and affected the interaction of CD147/basigin with integrin β1. These results reveal that β1,6-branched glycans modulate the biological function of CD147/basigin in HCC metastasis. Moreover, we showed that the PI3K/Akt pathway regulates GnT-V expression and that inhibition of GnT-V-mediated N-glycosylation suppressed PI3K signaling. In summary, β1,6-branched N-glycosylation affects the biological function of CD147/basigin and these findings provide a novel approach for the development of therapeutic strategies targeting metastasis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  10. Pentavalent Bismuth-Mediated Glycosylation Methods to Activate Sialic and Uronic Acids and the Incorporation of Sialic Acids Into Insulin

    Science.gov (United States)

    Kabotso, Daniel Elorm Kwame

    The negative charge at physiological pH of carboxylic acid-containing monosaccharides modulate the properties of many natural biomolecules such as oligosaccharides and glycoconjugates. Unfortunately, these altered electronic properties also make the incorporation of such acidic sugars more challenging as compared to the more commonly studied neutral sugars. Herein are reported the first demonstration of glycosylation reactions mediated by triphenylbis(1,1,1-trifluoromethanesulfonato)-bismuth with thioglycosides containing carboxylic acid substituents protected as esters. Unlike with many neutral sugar substrates, the addition of 1-propanethiol to the reactions proved critical to obtaining good yields of the desired glycosylation products using sialic acid, galacturonic acid, and glucuronic acid. The protocol was demonstrated to be amenable to automation using a liquid-handling platform. The consequences of artificially incorporating carboxylic-acid-containing sugars into proteins were tested by the design of a linker containing 1 to 4 sialic acids--a sugar found in many human proteins and brain tissues--that was attached via reductive amination of trityl thiopropylaldehyde at the phenyl alanine terminal end of the protein insulin produced through solid-phase peptide synthesis. Removal of the trityl group with neat trifluoroacetic acid furnished the thiol-free modified insulin that was ligated via a disulfide bond to the peptide scaffold bearing acetyl protected sialic acids. A 14-15% ammonium hydroxide solution was found to be effective in deprotecting the acetyl groups without degradation of the disulfide bond. In addition to maintaining the potency and bioactivity of insulin, the sialic acid-containing linker rendered insulin more resistant to aggregation due to heat and mechanical agitation compared to the unmodified protein.

  11. STATISTICAL INSIGHT INTO THE BINDING REGIONS IN DISORDERED HUMAN PROTEOME

    Directory of Open Access Journals (Sweden)

    Uttam Pal

    2016-03-01

    Full Text Available The human proteome contains a significant number of intrinsically disordered proteins (IDPs. They show unusual structural features that enable them to participate in diverse cellular functions and play significant roles in cell signaling and reorganization processes. In addition, the actions of IDPs, their functional cooperativity, conformational alterations and folding often accompany binding to a target macromolecule. Applying bioinformatics approaches and with the aid of statistical methodologies, we investigated the statistical parameters of binding regions (BRs found in disordered human proteome. In this report, we detailed the bioinformatics analysis of binding regions found in the IDPs. Statistical models for the occurrence of BRs, their length distribution and percent occupancy in the parent proteins are shown. The frequency of BRs followed a Poisson distribution pattern with increasing expectancy with the degree of disorderedness. The length of the individual BRs also followed Poisson distribution with a mean of 6 residues, whereas, percentage of residues in BR showed a normal distribution pattern. We also explored the physicochemical properties such as the grand average of hydropathy (GRAVY and the theoretical isoelectric points (pIs. The theoretical pIs of the BRs followed a bimodal distribution as in the parent proteins. However, the mean acidic/basic pIs were significantly lower/higher than that of the proteins, respectively. We further showed that the amino acid composition of BRs was enriched in hydrophobic residues such as Ala, Val, Ile, Leu and Phe compared to the average sequence content of the proteins. Sequences in a BR showed conformational adaptability mostly towards flexible coil structure and followed by helix, however, the ordered secondary structural conformation was significantly lower in BRs than the proteins. Combining and comparing these statistical information of BRs with other methods may be useful for high

  12. Crystal structure of human CRMP-4: correction of intensities for lattice-translocation disorder

    Energy Technology Data Exchange (ETDEWEB)

    Ponnusamy, Rajesh [Universidade Nova de Lisboa, Avenida da República, EAN, 2781-901 Oeiras (Portugal); Lebedev, Andrey A. [Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA (United Kingdom); Pahlow, Steffen [University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg (Germany); Lohkamp, Bernhard, E-mail: bernhard.lohkamp@ki.se [Karolinska Institutet, Tomtebodavägen 6, 4tr, 17177 Stockholm (Sweden); Universidade Nova de Lisboa, Avenida da República, EAN, 2781-901 Oeiras (Portugal)

    2014-06-01

    Crystals of human CRMP-4 showed severe lattice-translocation disorder. Intensities were demodulated using the so-called lattice-alignment method and a new more general method with simplified parameterization, and the structure is presented. Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs.

  13. Crystal structure of human CRMP-4: correction of intensities for lattice-translocation disorder

    International Nuclear Information System (INIS)

    Ponnusamy, Rajesh; Lebedev, Andrey A.; Pahlow, Steffen; Lohkamp, Bernhard

    2014-01-01

    Crystals of human CRMP-4 showed severe lattice-translocation disorder. Intensities were demodulated using the so-called lattice-alignment method and a new more general method with simplified parameterization, and the structure is presented. Collapsin response mediator proteins (CRMPs) are cytosolic phosphoproteins that are mainly involved in neuronal cell development. In humans, the CRMP family comprises five members. Here, crystal structures of human CRMP-4 in a truncated and a full-length version are presented. The latter was determined from two types of crystals, which were either twinned or partially disordered. The crystal disorder was coupled with translational NCS in ordered domains and manifested itself with a rather sophisticated modulation of intensities. The data were demodulated using either the two-lattice treatment of lattice-translocation effects or a novel method in which demodulation was achieved by independent scaling of several groups of intensities. This iterative protocol does not rely on any particular parameterization of the modulation coefficients, but uses the current refined structure as a reference. The best results in terms of R factors and map correlation coefficients were obtained using this new method. The determined structures of CRMP-4 are similar to those of other CRMPs. Structural comparison allowed the confirmation of known residues, as well as the identification of new residues, that are important for the homo- and hetero-oligomerization of these proteins, which are critical to nerve-cell development. The structures provide further insight into the effects of medically relevant mutations of the DPYSL-3 gene encoding CRMP-4 and the putative enzymatic activities of CRMPs

  14. Genetic Rescue of Glycosylation-deficient Fgf23 in the Galnt3 Knockout Mouse

    OpenAIRE

    Ichikawa, Shoji; Gray, Amie K.; Padgett, Leah R.; Allen, Matthew R.; Clinkenbeard, Erica L.; Sarpa, Nicole M.; White, Kenneth E.; Econs, Michael J.

    2014-01-01

    Fibroblast growth factor 23 (FGF23) is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. The FGF23 subtilisin-like proprotein convertase recognition sequence (176RHTR179↓) is protected by O-glycosylation through ppGalNAc-T3 (GALNT3) activity. Thus, inactivating GALNT3 mutations render FGF23 susceptible to proteolysis, thereby reducing circulating intact hormone levels and leading to hyperphosphatemic familial tumoral calcinosis. To further delineat...

  15. Strategies toward protecting group-free glycosylation through selective activation of the anomeric center

    Czech Academy of Sciences Publication Activity Database

    Downey, Alan Michael; Hocek, Michal

    2017-01-01

    Roč. 13, Jun 27 (2017), s. 1239-1279 ISSN 1860-5397 R&D Projects: GA TA ČR(CZ) TE01020028 Grant - others:AV ČR(CZ) AP1501 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:61388963 Keywords : glycosides * glycosylation * oligosaccharides * protecting groups Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 2.337, year: 2016 http://www.beilstein-journals.org/bjoc/articles/13/123

  16. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder.

    Science.gov (United States)

    Debashree, Bandopadhyay; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Natarajan, Archana; Christopher, Rita; Nalini, Atchayaram; Bindu, Parayil Sankaran; Gayathri, Narayanappa; Srinivas Bharath, Muchukunte Mukunda

    2018-02-09

    Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. © 2018 International Society for Neurochemistry.

  17. Phytosterol glycosides reduce cholesterol absorption in humans

    OpenAIRE

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series ...

  18. Structural analysis of PseH, the Campylobacter jejuni N-acetyltransferase involved in bacterial O-linked glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Song, Wan Seok; Nam, Mi Sun; Namgung, Byeol [Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Yoon, Sung-il, E-mail: sungil@kangwon.ac.kr [Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2015-03-20

    Campylobacter jejuni is a bacterium that uses flagella for motility and causes worldwide acute gastroenteritis in humans. The C. jejuni N-acetyltransferase PseH (cjPseH) is responsible for the third step in flagellin O-linked glycosylation and plays a key role in flagellar formation and motility. cjPseH transfers an acetyl group from an acetyl donor, acetyl coenzyme A (AcCoA), to the amino group of UDP-4-amino-4,6-dideoxy-N-acetyl-β-L-altrosamine to produce UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. To elucidate the catalytic mechanism of cjPseH, crystal structures of cjPseH alone and in complex with AcCoA were determined at 1.95 Å resolution. cjPseH folds into a single-domain structure of a central β-sheet decorated by four α-helices with two continuously connected grooves. A deep groove (groove-A) accommodates the AcCoA molecule. Interestingly, the acetyl end of AcCoA points toward an open space in a neighboring shallow groove (groove-S), which is occupied by extra electron density that potentially serves as a pseudosubstrate, suggesting that the groove-S may provide a substrate-binding site. Structure-based comparative analysis suggests that cjPseH utilizes a unique catalytic mechanism of acetylation that has not been observed in other glycosylation-associated acetyltransferases. Thus, our studies on cjPseH will provide valuable information for the design of new antibiotics to treat C. jejuni-induced gastroenteritis. - Highlights: • cjPseH adopts a single-domain structure of a central β-sheet decorated by α-helices. • cjPseH features two continuously connected grooves on the protein surface. • Acetyl coenzyme A (AcCoA) binds into a deep groove of cjPseH in an ‘L’ shape. • The acetyl end of AcCoA points to a wide groove, a potential substrate-binding site.

  19. In Vitro Membrane Permeation Studies and in Vivo Antinociception of Glycosylated Dmt(1)-DALDA Analogues

    DEFF Research Database (Denmark)

    Ballet, Steven; Betti, Cecilia; Novoa, Alexandre

    2014-01-01

    In this study the μ opioid receptor (MOR) ligands DALDA (Tyr-d-Arg-Phe-Lys-NH2) and Dmt(1)-DALDA (Dmt-d-Arg-Phe-Lys-NH2, Dmt = 2',6'-dimethyltyrosine) were glycosylated at the N- or C-terminus. Subsequently, the modified peptides were subjected to in vitro and in vivo evaluation. In contrast to t...

  20. Modulation of Ca(v)3.2 T-type calcium channel permeability by asparagine-linked glycosylation

    Czech Academy of Sciences Publication Activity Database

    Ondáčová, K.; Karmažínová, M.; Lazniewska, Joanna; Weiss, Norbert; Lacinová, L.

    2016-01-01

    Roč. 10, č. 3 (2016), s. 175-184 ISSN 1933-6950 R&D Projects: GA ČR GA15-13556S; GA MŠk 7AMB15FR015 Institutional support: RVO:61388963 Keywords : calcium channel * Ca(v)3.2 * gating * glycosylation * T-type channel Subject RIV: CE - Biochemistry Impact factor: 2.042, year: 2016