WorldWideScience

Sample records for human glioblastoma t98g

  1. X-ray radiation induced bystander effects of human glioblastoma T98G cells under hypoxia condition

    International Nuclear Information System (INIS)

    Zhang Jianghong; Jin Yizun; Shao Chunlin; Prise, K.M.

    2008-01-01

    Non-irradiated bystander human glioblastoma T98G cells were co-cultured (CC) with irradiated cells or treated with conditioned medium (CM) from irradiated cells under hypoxic condition, then micronucleus (MN) of both irradiated cells and bystander cells were measured for the investigation of radiation induced bystander effect and its mechanism. It has been found that the MN yield (Y MN ) of non-irradiated bystander T98G cells is obviously enhanced after the cell co-culture, or CM treatment, but this increment is diminished by free radical scavenger, dimethyl sulfoxide (DMSO). When hypoxic or normoxic T98G cells are treated with CM obtained from irradiated cells under either hypoxic or normoxic condition, the biggest bystander response has been observed in the group of hypoxic by- stander cells treated with CM from irradiated normoxic cells. However, all of these increments of bystander Y MN could be eliminated by aminoguanidine, an iNOS inhibitor. Therefore, under hypoxic condition, free radicals, especially reactive oxygen species and nitric oxide, are involved in the bystander response induced by irradiated T98G cells. (authors)

  2. 18F-FET and 18F-FCH uptake in human glioblastoma T98G cell lines

    International Nuclear Information System (INIS)

    Persico, Marco Giovanni; Buroni, Federica Eleonora; Pasi, Francesca; Lodola, Lorenzo; Aprile, Carlo; Nano, Rosanna; Hodolic, Marina

    2016-01-01

    Despite complex treatment of surgery, radiotherapy and chemotherapy, high grade gliomas often recur. Differentiation between post-treatment changes and recurrence is difficult. 18 F-methyl-choline ( 18 F-FCH) is frequently used in staging and detection of recurrent prostate cancer disease as well as some brain tumours; however accumulation in inflammatory tissue limits its specificity. The 18 F-ethyl-tyrosine ( 18 F-FET) shows a specific uptake in malignant cells, resulting from increased expression of amino acid transporters or diffusing through the disrupted blood-brain barrier. 18 F-FET exhibits lower uptake in machrophages and other inflammatory cells. Aim of this study was to evaluate 18 F-FCH and 18 F-FET uptake by human glioblastoma T98G cells. Human glioblastoma T98G or human dermal fibroblasts cells, seeded at a density to obtain 2 × 10 5 cells per flask when radioactive tracers were administered, grew adherent to the plastic surface at 37°C in 5% CO 2 in complete medium. Equimolar amounts of radiopharmaceuticals were added to cells for different incubation times (20 to 120 minutes) for 18 F-FCH and 18 F-FET respectively. The cellular radiotracer uptake was determined with a gamma counter. All experiments were carried out in duplicate and repeated three times. The uptake measurements are expressed as the percentage of the administered dose of tracer per 2 × 10 5 cells. Data (expressed as mean values of % uptake of radiopharmaceuticals) were compared using parametric or non-parametric tests as appropriate. Differences were regarded as statistically significant when p<0.05. A significant uptake of 18 F-FCH was seen in T98G cells at 60, 90 and 120 minutes. The percentage uptake of 18 F-FET in comparison to 18 F-FCH was lower by a factor of more than 3, with different kinetic curves. 18 F-FET showed a more rapid initial uptake up to 40 minutes and 18 F-FCH showed a progressive rise reaching a maximum after 90 minutes. 18 F-FCH and 18 F-FET are candidates

  3. The Effect of Z-Ligustilide on the Mobility of Human Glioblastoma T98G Cells.

    Directory of Open Access Journals (Sweden)

    Jun Yin

    Full Text Available Z-ligustilide (LIG, an essential oil extract from Radix Angelica sinensis, has broad pharmaceutical applications in treating cardio-vascular diseases and ischemic brain injury. Recently, LIG has been connected to Glioblastoma multiforme (GBM because of its structural similarity to 3-n-alkyphthalide (NBP, which is specifically cytotoxic to GBM cells. Hence, we investigated LIG's effect on GBM T98G cells. The study shows that LIG can significantly reduce T98G cells' migration in a dose-dependent manner. Furthermore, the attenuation of cellular mobility can be linked to the activity of the Rho GTPases (RhoA, Rac1 and Cdc42, the three critical molecular switches governing cytoskeleton remodeling; thus, regulating cell migration. LIG significantly reduces the expression of RhoA and affects in a milder manner the expression of Cdc42 and Rac1.

  4. Palmitic acid induces neurotoxicity and gliatoxicity in SH-SY5Y human neuroblastoma and T98G human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Yee-Wen Ng

    2018-04-01

    Full Text Available Background Obesity-related central nervous system (CNS pathologies like neuroinflammation and reactive gliosis are associated with high-fat diet (HFD related elevation of saturated fatty acids like palmitic acid (PA in neurons and astrocytes of the brain. Methods Human neuroblastoma cells SH-SY5Y (as a neuronal model and human glioblastoma cells T98G (as an astrocytic model, were treated with 100–500 µM PA, oleic acid (OA or lauric acid (LA for 24 h or 48 h, and their cell viability was assessed by 3-(4,5-dimetylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. The effects of stable overexpression of γ-synuclein (γ-syn, a neuronal protein recently recognized as a novel regulator of lipid handling in adipocytes, and transient overexpression of Parkinson’s disease (PD α-synuclein [α-syn; wild-type (wt and its pathogenic mutants A53T, A30P and E46K] in SH-SY5Y and T98G cells, were also evaluated. The effects of co-treatment of PA with paraquat (PQ, a Parkinsonian pesticide, and leptin, a hormone involved in the brain-adipose axis, were also assessed. Cell death mode and cell cycle were analyzed by Annexin V/PI flow cytometry. Reactive oxygen species (ROS level was determined using 2′,7′-dichlorofluorescien diacetate (DCFH-DA assay and lipid peroxidation level was determined using thiobarbituric acid reactive substances (TBARS assay. Results MTT assay revealed dose- and time-dependent PA cytotoxicity on SH-SY5Y and T98G cells, but not OA and LA. The cytotoxicity was significantly lower in SH-SY5Y-γ-syn cells, while transient overexpression of wt α-syn or its PD mutants (A30P and E46K, but not A53T modestly (but still significantly rescued the cytotoxicity of PA in SH-SY5Y and T98G cells. Co-treatment of increasing concentrations of PQ exacerbated PA’s neurotoxicity. Pre-treatment of leptin, an anti-apoptotic adipokine, did not successfully rescue SH-SY5Y cells from PA-induced cytotoxicity—suggesting a mechanism of PA

  5. The suppression of manganese superoxide dismutase decreased the survival of human glioblastoma multiforme T98G cells

    Directory of Open Access Journals (Sweden)

    Novi S. Hardiany

    2017-05-01

    Full Text Available Background: Glioblastoma multiforme (GBM is a primary malignant brain tumor which has poor prognosis. High incidence of oxidative stress-based therapy resistance could be related to the high antioxidant status of GBM cells. Our previous study has reported that manganese superoxide dismutase (MnSOD antioxidant expression was significantly higher in high grade glioma than in low grade. The aim of this study was to analyze the impact of MnSOD suppression toward GBM cell survival.Methods: This study is an experimental study using human glioblastoma multiforme T98G cell line. Suppression of MnSOD expression was performed using in vitro transfection MnSOD-siRNA. The MnSOD expression was analyzed by measuring the mRNA using real time RT-PCR, protein using ELISA technique, and specific activity of enzyme using inhibition of xantine oxidase. Concentration of reactive oxygen species (ROS intracellular was determined by measuring superoxide radical and hydrogen peroxide. Cell survival was analyzed by measuring viability, proliferation, and cell apoptosis.Results: In vitro transfection of MnSOD-siRNA suppressed the mRNA, protein, and specific activity of MnSOD. This treatment significantly increased the concentration of superoxide radical; however, it did not influence the concentration of hydrogen peroxide. Moreover, viability MnSOD-suppressing cell significantly decreased, accompanied by increase of cell apoptosis without affecting cell proliferation.Conclusion: The suppression of MnSOD expression leads to decrease glioblastoma multiforme cell survival, which was associated to the increase of cell apoptotic.

  6. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor β signal transduction in human glioblastoma cells

    International Nuclear Information System (INIS)

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra; Zupanska, Agata; Chouaib, Salem; Kaminska, Bozena

    2007-01-01

    Transforming growth factor-beta (TGF-β) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-β by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-β1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-β receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2 and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-β1-induced signalling

  7. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo.

    Science.gov (United States)

    Chakrabarti, Mrinmay; Ray, Swapan K

    2016-03-01

    Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo.

  8. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress

    International Nuclear Information System (INIS)

    Liu, Yingying; Fang, Shanshan; Sun, Qiushi; Liu, Bo

    2016-01-01

    Glioblastoma is one of the most vascular brain tumour and highly resistant to current therapy. Targeting both glioblastoma cells and angiogenesis may present an effective therapeutic strategy for glioblastoma. In our work, we show that an anthelmintic drug, ivermectin, is active against glioblastoma cells in vitro and in vivo, and also targets angiogenesis. Ivermectin significantly inhibits growth and anchorage-independent colony formation in U87 and T98G glioblastoma cells. It induces apoptosis in these cells through a caspase-dependent manner. Ivermectin significantly suppresses the growth of two independent glioblastoma xenograft mouse models. In addition, ivermectin effectively targets angiogenesis through inhibiting capillary network formation, proliferation and survival in human brain microvascular endothelial cell (HBMEC). Mechanistically, ivermectin decreases mitochondrial respiration, membrane potential, ATP levels and increases mitochondrial superoxide in U87, T98G and HBMEC cells exposed to ivermectin. The inhibitory effects of ivermectin are significantly reversed in mitochondria-deficient cells or cells treated with antioxidants, further confirming that ivermectin acts through mitochondrial respiration inhibition and induction of oxidative stress. Importantly, we show that ivermectin suppresses phosphorylation of Akt, mTOR and ribosomal S6 in glioblastoma and HBMEC cells, suggesting its inhibitory role in deactivating Akt/mTOR pathway. Altogether, our work demonstrates that ivermectin is a useful addition to the treatment armamentarium for glioblastoma. Our work also highlights the therapeutic value of targeting mitochondrial metabolism in glioblastoma. - Highlights: • Ivermectin is effective in glioblastoma cells in vitro and in vivo. • Ivermectin inhibits angiogenesis. • Ivermectin induces mitochondrial dysfunction and oxidative stress. • Ivermectin deactivates Akt/mTOR signaling pathway.

  9. Short Chemical Ischemia Triggers Phosphorylation of eIF2α and Death of SH-SY5Y Cells but not Proteasome Stress and Heat Shock Protein Response in both SH-SY5Y and T98G Cells.

    Science.gov (United States)

    Klacanova, Katarina; Pilchova, Ivana; Klikova, Katarina; Racay, Peter

    2016-04-01

    Both translation arrest and proteasome stress associated with accumulation of ubiquitin-conjugated protein aggregates were considered as a cause of delayed neuronal death after transient global brain ischemia; however, exact mechanisms as well as possible relationships are not fully understood. The aim of this study was to compare the effect of chemical ischemia and proteasome stress on cellular stress responses and viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells. Chemical ischemia was induced by transient treatment of the cells with sodium azide in combination with 2-deoxyglucose. Proteasome stress was induced by treatment of the cells with bortezomib. Treatment of SH-SY5Y cells with sodium azide/2-deoxyglucose for 15 min was associated with cell death observed 24 h after treatment, while glioblastoma T98G cells were resistant to the same treatment. Treatment of both SH-SY5Y and T98G cells with bortezomib was associated with cell death, accumulation of ubiquitin-conjugated proteins, and increased expression of Hsp70. These typical cellular responses to proteasome stress, observed also after transient global brain ischemia, were not observed after chemical ischemia. Finally, chemical ischemia, but not proteasome stress, was in SH-SY5Y cells associated with increased phosphorylation of eIF2α, another typical cellular response triggered after transient global brain ischemia. Our results showed that short chemical ischemia of SH-SY5Y cells is not sufficient to induce both proteasome stress associated with accumulation of ubiquitin-conjugated proteins and stress response at the level of heat shock proteins despite induction of cell death and eIF2α phosphorylation.

  10. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.

    Science.gov (United States)

    Li, Jie; Taich, Zachary J; Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C

    2014-09-15

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (pCIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients.

  11. Glioblastoma Inhibition by Cell Surface Immunoglobulin Protein EWI-2, In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Tatiana V. Kolesnikova

    2009-01-01

    Full Text Available EWI-2, a cell surface IgSF protein, is highly expressed in normal human brain but is considerably diminished in glioblastoma tumors and cell lines. Moreover, loss of EWI-2 expression correlated with a shorter survival time in human glioma patients, suggesting that EWI-2 might be a natural inhibitor of glioblastoma. In support of this idea, EWI-2 expression significantly impaired both ectopic and orthotopic tumor growth in nude mice in vivo. In vitro assays provided clues regarding EWI-2 functions. Expression of EWI-2 in T98G and/or U87-MG malignant glioblastoma cell lines failed to alter two-dimensional cell proliferation but inhibited glioblastoma colony formation in soft agar and caused diminished cell motility and invasion. At the biochemical level, EWI-2 markedly affects the organization of four molecules (tetraspanin proteins CD9 and CD81 and matrix metalloproteinases MMP-2 and MT1-MMP, which play key roles in the biology of astrocytes and gliomas. EWI-2 causes CD9 and CD81 to become more associated with each other, whereas CD81 and other tetraspanins become less associated with MMP-2 and MT1-MMP. We propose that EWI-2 inhibition of glioblastoma growth in vivo is at least partly explained by the capability of EWI-2 to inhibit growth and/or invasion in vitro. Underlying these functional effects, EWI-2 causes a substantial molecular reorganization of multiple molecules (CD81, CD9, MMP-2, and MT1-MMP known to affect proliferation and/or invasion of astrocytes and/or glioblastomas.

  12. A miR-21 inhibitor enhances apoptosis and reduces G2-M accumulation induced by ionizing radiation in human glioblastoma U251 cells

    International Nuclear Information System (INIS)

    Li, Yi; Li, Qiang; Asai, Akio; Kawamoto, Keiji; Zhao Shiguang; Zhen Yunbo; Teng Lei

    2011-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that take part in diverse biological processes by suppressing target gene expression. Elevated expression of miR-21 has been reported in many types of human cancers. Radiotherapy is a standard adjuvant treatment for patients with glioblastoma. However, the resistance of glioblastoma cells to radiation limits the success of this treatment. In this study, we found that miR-21 expression was upregulated in response to ionizing radiation (IR) in U251 cells, which suggested that miR-21 could be involved in the response of U251 cells to radiation. We showed that a miR-21 inhibitor enhanced IR-induced glioblastoma cell growth arrest and increased the level of apoptosis, which was probably caused by abrogation of the G 2 -M arrest induced by IR. Further research demonstrated that the miR-21 inhibitor induced the upregulation of Cdc25A. Taken together, these findings suggest that miR-21 inhibitor can increase IR-induced growth arrest and apoptosis in U251 glioblastoma cells, at least in part by abrogating G 2 -M arrest, and that Cdc25A is a potential target of miR-21. (author)

  13. Experimental study of hypoxia-imaging agent 99mTc-HL91 in mice bearing glioblastoma G422

    International Nuclear Information System (INIS)

    Zhou Ying; Qu Wanying; Yao Zhiming; Chen Fang; Zhu Ming; Zhu Lin

    1999-01-01

    Objective: To evaluate the ability of detecting cerebral tumor by 99m Tc-HL91 in mice bearing glioblastoma G422. Methods: Six model mice underwent static whole body planar imagings at once and at 1,2,3,4,6,7,8 h postinjection of 99m Tc-HL91. Three mice each were killed at 4 h and 8 h, respectively. the tumor, blood and organs were removed, weighted and the radioactivity was measured. ROIs were drawn around tumor, head, contralateral axilla and chest in whole body planar images, and the radioactivity ratios of tumor to head (T/H), contralateral axilla (T/A) and chest (T/C) were calculated. Results: Increased tumor activity was identified in static whole body planar images since 1 h postinjection. At 2h postinjection, T/H, T/A and T/C were 2.93 +- 0.51, 4.86 +- 0.79 and 2.00 +- 0.35 respectively, which were significantly higher than those at once and at 1h postinjection (P 99m Tc-HL91 in tumor tissue of mice bearing glioblastoma G422 is increased and clearance rate is decreased. 99m Tc-HL91 imaging is suitable for glioblastoma at 2 h postinjection. It is appropriate to image tumors in head, neck, thorax, bone and soft tissues, but not in abdominal area

  14. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    Science.gov (United States)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  15. The NFL-TBS.40-63 anti-glioblastoma peptide disrupts microtubule and mitochondrial networks in the T98G glioma cell line.

    Directory of Open Access Journals (Sweden)

    Romain Rivalin

    Full Text Available Despite aggressive therapies, including combinations of surgery, radiotherapy and chemotherapy, glioblastoma remains a highly aggressive brain cancer with the worst prognosis of any central nervous system disease. We have previously identified a neurofilament-derived cell-penetrating peptide, NFL-TBS.40-63, that specifically enters by endocytosis in glioblastoma cells, where it induces microtubule destruction and inhibits cell proliferation. Here, we explore the impact of NFL-TBS.40-63 peptide on the mitochondrial network and its functions by using global cell respiration, quantitative PCR analysis of the main actors directing mitochondrial biogenesis, western blot analysis of the oxidative phosphorylation (OXPHOS subunits and confocal microscopy. We show that the internalized peptide disturbs mitochondrial and microtubule networks, interferes with mitochondrial dynamics and induces a rapid depletion of global cell respiration. This effect may be related to reduced expression of the NRF-1 transcription factor and of specific miRNAs, which may impact mitochondrial biogenesis, in regard to default mitochondrial mobility.

  16. 4G/5G and A-844G Polymorphisms of Plasminogen Activator Inhibitor-1 Associated with Glioblastoma in Iran--a Case-Control Study.

    Science.gov (United States)

    Pooyan, Honari; Ahmad, Ebrahimi; Azadeh, Rakhshan

    2015-01-01

    Glioblastoma is a highly aggressive and malignant brain tumor. Risk factors are largely unknown however, although several biomarkers have been identified which may support development, angiogenesis and invasion of tumor cells. One of these biomarkers is PAI-1. 4G/5G and A-844G are two common polymorphisms in the gene promotor of PAI 1 that may be related to high transcription and expression of this gene. Studies have shown that the prevalence of the 4G and 844G allele is significantly higher in patients with some cancers and genetic disorders. We here assessed the association of 4G/5G and A-844G polymorphisms with glioblastoma cancer risk in Iranians in a case-control study. All 71 patients with clinically confirmed and 140 volunteers with no history and symptoms of glioblastoma as control group were screened for 4G/5G and A-844G polymorphisms of PAI-1, using ARMS-PCR. Genotype and allele frequencies of case and control groups were analyzed using the DeFinetti program. Our results showed significant associations between 4G/5G (p=0.01824) and A-844G (p=0.02012) polymorphisms of the PAI-1 gene with glioblastoma cancer risk in our Iranian population. The results of this study supporting an association of the PAI-1 4G/5G (p=0.01824) and A-844G (p=0.02012) polymorphisms with increasing glioblastoma cancer risk in Iranian patients.

  17. CAR T Cell Therapy for Glioblastoma: Recent Clinical Advances and Future Challenges.

    Science.gov (United States)

    Bagley, Stephen J; Desai, Arati S; Linette, Gerald P; June, Carl H; O'Rourke, Donald M

    2018-03-02

    In patients with certain hematologic malignancies, the use of autologous T cells genetically modified to express chimeric antigen receptors (CARs) has led to unprecedented clinical responses. Although progress in solid tumors has been elusive, recent clinical studies have demonstrated the feasibility and safety of CAR T cell therapy for glioblastoma. In addition, despite formidable barriers to T cell localization and effector function in glioblastoma, signs of efficacy have been observed in select patients. In this review, we begin with a discussion of established obstacles to systemic therapy in glioblastoma and how these may be overcome by CAR T cells. We continue with a summary of previously published CAR T cell trials in GBM, and end by outlining the key therapeutic challenges associated with the use of CAR T cells in this disease.

  18. CAR T-Cell Therapies in Glioblastoma: A First Look.

    Science.gov (United States)

    Migliorini, Denis; Dietrich, Pierre-Yves; Stupp, Roger; Linette, Gerald P; Posey, Avery D; June, Carl H

    2018-02-01

    Glioblastoma is an aggressive malignancy with a poor prognosis. The current standard of care for newly diagnosed glioblastoma patients includes surgery to the extent, temozolomide combined with radiotherapy, and alternating electric fields therapy. After recurrence, there is no standard therapy and survival is less than 9 months. Recurrent glioblastoma offers a unique opportunity to investigate new treatment approaches in a malignancy known for remarkable genetic heterogeneity, an immunosuppressive microenvironment, and a partially permissive anatomic blood-brain barrier. Results from three first-in-man chimeric antigen receptor (CAR) T-cell trials targeting IL13Rα2, Her2/CMV, and EGFRvIII have recently been reported. Each one of these trials addresses important questions, such as T-cell trafficking to CNS, engraftment and persistence, tumor microenvironment remodeling, and monitoring of glioma response to CAR T cells. Objective radiologic responses have been reported. Here, we discuss and summarize the results of these trials and suggest opportunities for the field. Clin Cancer Res; 24(3); 535-40. ©2017 AACR . ©2017 American Association for Cancer Research.

  19. An anatomic transcriptional atlas of human glioblastoma.

    Science.gov (United States)

    Puchalski, Ralph B; Shah, Nameeta; Miller, Jeremy; Dalley, Rachel; Nomura, Steve R; Yoon, Jae-Guen; Smith, Kimberly A; Lankerovich, Michael; Bertagnolli, Darren; Bickley, Kris; Boe, Andrew F; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Chapin, Mike; Datta, Suvro; Dee, Nick; Desta, Tsega; Dolbeare, Tim; Dotson, Nadezhda; Ebbert, Amanda; Feng, David; Feng, Xu; Fisher, Michael; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Hejazinia, Nika; Hohmann, John; Hothi, Parvinder; Howard, Robert; Joines, Kevin; Kriedberg, Ali; Kuan, Leonard; Lau, Chris; Lee, Felix; Lee, Hwahyung; Lemon, Tracy; Long, Fuhui; Mastan, Naveed; Mott, Erika; Murthy, Chantal; Ngo, Kiet; Olson, Eric; Reding, Melissa; Riley, Zack; Rosen, David; Sandman, David; Shapovalova, Nadiya; Slaughterbeck, Clifford R; Sodt, Andrew; Stockdale, Graham; Szafer, Aaron; Wakeman, Wayne; Wohnoutka, Paul E; White, Steven J; Marsh, Don; Rostomily, Robert C; Ng, Lydia; Dang, Chinh; Jones, Allan; Keogh, Bart; Gittleman, Haley R; Barnholtz-Sloan, Jill S; Cimino, Patrick J; Uppin, Megha S; Keene, C Dirk; Farrokhi, Farrokh R; Lathia, Justin D; Berens, Michael E; Iavarone, Antonio; Bernard, Amy; Lein, Ed; Phillips, John W; Rostad, Steven W; Cobbs, Charles; Hawrylycz, Michael J; Foltz, Greg D

    2018-05-11

    Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. The critical role of EGF-β-catenin signaling in the epithelial-mesenchymal transition in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Wang X

    2017-05-01

    Full Text Available Xingqiang Wang, Shanshi Wang, Xiaolong Li, Shigang Jin, Feng Xiong, Xin Wang Department of Neurosurgery, People’s Hospital of Rizhao, Jining Medical University, Rizhao, China Abstract: To date, β-catenin has been reported to be implicated in mediating the epithelial-mesenchymal transition (EMT in a variety of human cancers, which can be triggered by EGF. However, the mechanisms underlying EGF-β-catenin pathway-induced EMT of glioblastoma multiforme (GBM have not been reported previously. In the present study, immunohistochemistry, reverse transcription polymerase chain reaction, and Western blot were applied to investigate the effect of EGF-β-catenin pathway on EMT of GBM. Here, we identified that β-catenin mRNA and protein levels were up-regulated in GBM tissues and four kinds of glioblastoma cell lines, including T98G, A172, U87, and U251 cells, compared with normal brain tissue and astrocytes. In U87 cell line, inhibition of β-catenin by siRNA suppressed EGF-induced proliferation, migration, invasiveness, and the expression of EMT activators (Snail and Slug. In addition, the expression of epithelial markers (E-cadherin was up-regulated and the expression of mesenchymal markers (N-cadherin and MMP9 was down-regulated. Finally, inhibitor of PI3K/Akt signaling pathways inactivated the EGF-β-catenin-induced EMT. In conclusion, β-catenin-EMT pathway induced by EGF is important for GBM progression by the PI3K/Akt pathways. Inhibition of β-catenin leads to suppression of EGF pathway-induced EMT, which provides a new way to treat GBM patients. Keywords: EGF, β-catenin, EMT, GBM

  1. The response of human glioblastoma in culture to radiation

    International Nuclear Information System (INIS)

    Masuda, Koji; Aramaki, Ryoji; Takagi, Tosuke

    1980-01-01

    Cells from two human glioblastoma multiforme and one mouse glioma were grown in tissue cultures and their X-ray survival curve parameters were determined under oxygenated and hypoxic conditions. These were compared with the survival parameters for mouse fibroblasts (L5) and established cell lines from human carcinoma coli (HeLa S3) irradiated under identical conditions. There was no significant difference in response among the cell lines used. Repair of potentially lethal damage for human glioblastoma and HeLa S3 was assessed by the increase in survival which occurred as the cells were held in density inhibited stationary phase. The magnitude of repair of potentially lethal damage (slope modifying factors) for the glioblastoma and HeLa were 1.9 and 1.1, respectively. (author)

  2. Phenylbutyrate Sensitizes Human Glioblastoma Cells Lacking Wild-Type P53 Function to Ionizing Radiation

    International Nuclear Information System (INIS)

    Lopez, Carlos A.; Feng, Felix Y.; Herman, Joseph M.; Nyati, Mukesh K.; Lawrence, Theodore S.; Ljungman, Mats

    2007-01-01

    Purpose: Histone deacetylase (HDAC) inhibitors induce growth arrest, differentiation, and apoptosis in cancer cells. Phenylbutyrate (PB) is a HDAC inhibitor used clinically for treatment of urea cycle disorders. Because of its low cytotoxicity, cerebrospinal fluid penetration, and high oral bioavailability, we investigated PB as a potential radiation sensitizer in human glioblastoma cell lines. Methods and Materials: Four glioblastoma cell lines were selected for this study. Phenylbutyrate was used at a concentration of 2 mM, which is achievable in humans. Western blots were used to assess levels of acetylated histone H3 in tumor cells after treatment with PB. Flow cytometry was used for cell cycle analysis. Clonogenic assays were performed to assess the effect of PB on radiation sensitivity. We used shRNA against p53 to study the role of p53 in radiosensitization. Results: Treatment with PB alone resulted in hyperacetylation of histones, confirmed by Western blot analysis. The PB alone resulted in cytostatic effects in three cell lines. There was no evidence of G 1 arrest, increase in sub-G 1 fraction or p21 protein induction. Clonogenic assays showed radiosensitization in two lines harboring p53 mutations, with enhancement ratios (± SE) of 1.5 (± 0.2) and 1.3 (± 0.1), respectively. There was no radiopotentiating effect in two cell lines with wild-type p53, but knockdown of wild-type p53 resulted in radiosensitization by PB. Conclusions: Phenylbutyrate can produce p21-independent cytostasis, and enhances radiation sensitivity in p53 mutant human glioblastoma cells in vitro. This suggests the potential application of combined PB and radiotherapy in glioblastoma harboring mutant p53

  3. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells

    OpenAIRE

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2016-01-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphen...

  4. Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line

    Science.gov (United States)

    Yadav, Sanjeev Kumar; Srivastava, Anup Kumar; Dev, Atul; Kaundal, Babita; Choudhury, Subhasree Roy; Karmakar, Surajit

    2017-09-01

    Melatonin (MEL) has promising medicinal value as an anticancer agent in a variety of malignancies, but there are difficulties in achieving a therapeutic dose due to its short half-life, low bioavailability, poor solubility and extensive first-pass metabolism. In this study chitosan/tripolyphosphate (TPP) nanoparticles were prepared by an ionic gelation method to overcome the therapeutic challenges of melatonin and to improve its anticancer efficacy. Characterization of the melatonin-loaded chitosan (MEL-CS) nanoformulation was performed using transmission and scanning electron microscopies, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy and x-ray diffraction. In vitro release, cellular uptake and efficacy studies were tested for their enhanced anticancer potential in human U87MG glioblastoma cells. Confocal studies revealed higher cellular uptake of MEL-CS nanoparticles and enhanced anticancer efficacy in human malignant glioblastoma cancer cells than in healthy non-malignant human HEK293T cells in mono- and co-culture models. Our study has shown for the first time that MEL-CS nanocomposites are therapeutically more effective as compared to free MEL at inducing functional anticancer efficacy in the human brain tumour U87MG cell line.

  5. The critical role of ERK in death resistance and invasiveness of hypoxia-selected glioblastoma cells

    International Nuclear Information System (INIS)

    Kim, Jee-Youn; Kim, Yong-Jun; Lee, Sun; Park, Jae-Hoon

    2009-01-01

    The rapid growth of tumor parenchyma leads to chronic hypoxia that can result in the selection of cancer cells with a more aggressive behavior and death-resistant potential to survive and proliferate. Thus, identifying the key molecules and molecular mechanisms responsible for the phenotypic changes associated with chronic hypoxia has valuable implications for the development of a therapeutic modality. The aim of this study was to identify the molecular basis of the phenotypic changes triggered by chronic repeated hypoxia. Hypoxia-resistant T98G (HRT98G) cells were selected by repeated exposure to hypoxia and reoxygenation. Cell death rate was determined by the trypan blue exclusion method and protein expression levels were examined by western blot analysis. The invasive phenotype of the tumor cells was determined by the Matrigel invasion assay. Immunohistochemistry was performed to analyze the expression of proteins in the brain tumor samples. The Student T-test and Pearson Chi-Square test was used for statistical analyses. We demonstrate that chronic repeated hypoxic exposures cause T98G cells to survive low oxygen tension. As compared with parent cells, hypoxia-selected T98G cells not only express higher levels of anti-apoptotic proteins such as Bcl-2, Bcl-X L , and phosphorylated ERK, but they also have a more invasive potential in Matrigel invasion chambers. Activation or suppression of ERK pathways with a specific activator or inhibitor, respectively, indicates that ERK is a key molecule responsible for death resistance under hypoxic conditions and a more invasive phenotype. Finally, we show that the activation of ERK is more prominent in malignant glioblastomas exposed to hypoxia than in low grade astrocytic glial tumors. Our study suggests that activation of ERK plays a pivotal role in death resistance under chronic hypoxia and phenotypic changes related to the invasive phenotype of HRT98G cells compared to parent cells

  6. β-Arrestin 1 has an essential role in neurokinin-1 receptor-mediated glioblastoma cell proliferation and G2/M phase transition.

    Science.gov (United States)

    Zhang, Yi-Xin; Li, Xiao-Fang; Yuan, Guo-Qiang; Hu, Hui; Song, Xiao-Yun; Li, Jing-Yi; Miao, Xiao-Kang; Zhou, Tian-Xiong; Yang, Wen-Le; Zhang, Xiao-Wei; Mou, Ling-Yun; Wang, Rui

    2017-05-26

    Glioblastoma is the most common malignant brain tumor and has a poor prognosis. Tachykinin receptor neurokinin-1 (NK1R) is a promising target in glioblastoma therapy because of its overexpression in human glioblastoma. NK1R agonists promote glioblastoma cell growth, whereas NK1R antagonists efficiently inhibit cell growth both in vitro and in vivo However, the molecular mechanisms involved in these effects are incompletely understood. β-Arrestins (ARRBs) serve as scaffold proteins and adapters to mediate intracellular signal transduction. Here we show that the ARRB1-mediated signaling pathway is essential for NK1-mediated glioblastoma cell proliferation. ARRB1 knockdown significantly inhibited NK1-mediated glioblastoma cell proliferation and induced G 2 /M phase cell cycle arrest. ARRB1 knockdown cells showed remarkable down-regulation of CDC25C/CDK1/cyclin B1 activity. We also demonstrated that ARRB1 mediated prolonged phosphorylation of ERK1/2 and Akt in glioblastoma cells induced by NK1R activation. ERK1/2 and Akt phosphorylation are involved in regulating CDC25C/CDK1/cyclin B1 activity. The lack of long-term ERK1/2 and Akt activation in ARRB1 knockdown cells was at least partly responsible for the delayed cell cycle progression and proliferation. Moreover, we found that ARRB1-mediated ERK1/2 and Akt phosphorylation regulated the transcriptional activity of both NF-κB and AP-1, which were involved in cyclin B1 expression. ARRB1 deficiency increased the sensitivity of glioblastoma cells to the treatment of NK1R antagonists. Taken together, our results suggest that ARRB1 plays an essential role in NK1R-mediated cell proliferation and G 2 /M transition in glioblastoma cells. Interference with ARRB1-mediated signaling via NK1R may have potential significance for therapeutic strategies targeting glioblastoma. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Anticancer potential and mechanism of action of mango ginger (Curcuma amada Roxb.) supercritical CO₂ extract in human glioblastoma cells.

    Science.gov (United States)

    Ramachandran, Cheppail; Lollett, Ivonne V; Escalon, Enrique; Quirin, Karl-Werner; Melnick, Steven J

    2015-04-01

    Mango ginger (Curcuma amada Roxb.) is among the less-investigated species of Curcuma for anticancer properties. We have investigated the anticancer potential and the mechanism of action of a supercritical CO2 extract of mango ginger (CA) in the U-87MG human glioblastoma cell line. CA demonstrated higher cytotoxicity than temozolomide, etoposide, curcumin, and turmeric force with IC50, IC75, and IC90 values of 4.92 μg/mL, 12.87 μg/mL, and 21.30 μg/mL, respectively. Inhibitory concentration values of CA for normal embryonic mouse hypothalamus cell line (mHypoE-N1) is significantly higher than glioblastoma cell line, indicating the specificity of CA against brain tumor cells. CompuSyn analysis indicates that CA acts synergistically with temozolomide and etoposide for the cytotoxicity with combination index values of <1. CA treatment also induces apoptosis in glioblastoma cells in a dose-dependent manner and downregulates genes associated with apoptosis, cell proliferation, telomerase activity, oncogenesis, and drug resistance in glioblastoma cells. © The Author(s) 2014.

  8. Predominant contribution of L-type amino acid transporter to 4-borono-2-18F-fluoro-phenylalanine uptake in human glioblastoma cells

    International Nuclear Information System (INIS)

    Yoshimoto, Mitsuyoshi; Kurihara, Hiroaki; Honda, Natsuki; Kawai, Keiichi; Ohe, Kazuyo; Fujii, Hirofumi; Itami, Jun; Arai, Yasuaki

    2013-01-01

    Introduction: 4-Borono-2- 18 F-fluoro-phenylalanine ( 18 F-FBPA) has been used to anticipate the therapeutic effects of boron neutron capture therapy (BNCT) with 4-borono-L-phenylalanine (BPA). Similarly, L-[methyl- 11 C]-methionine ( 11 C-MET), the most popular amino acid PET tracer, is a possible candidate for this purpose. We investigated the transport mechanism of 18 F-FBPA and compared it with that of 14 C-MET in human glioblastoma cell lines. Methods: Uptake of 18 F-FBPA and 14 C-MET was examined in A172, T98G, and U-87MG cells using 2-aminobicyclo-(2.2.1)-heptane-2-carboxylic acid (a system L-specific substrate), 2-(methylamino)-isobutyric acid (a system A-specific substrate), and BPA. Gene expression was analyzed by quantitative real time polymerase chain reaction. Results: System L was mainly involved in the uptake of 18 F-FBPA (74.5%–81.1% of total uptake) and 14 C-MET (48.3%–59.4%). System A and ASC also contributed to the uptake of 14 C-MET. Inhibition experiments revealed that BPA significantly decreased the uptake of 18 F-FBPA, whereas 31%–42% of total 14 C-MET uptake was transported by BPA non-sensitive transporters. In addition, 18 F-FBPA uptake correlated with LAT1 and total LAT expressions. Conclusion: This study demonstrated that 18 F-FBPA was predominantly transported by system L in human glioblastoma cells compared to 14 C-MET. Although further studies are needed to elucidate the correlation between 18 F-FBPA uptake and BPA content in tumor tissues, 18 F-FBPA is suitable for the selection of patients who benefit from BNCT with BPA

  9. A novel prognostic six-CpG signature in glioblastomas

    OpenAIRE

    Yin , An-An; Lu , Nan; Etcheverry , Amandine; Aubry , Marc; Barnholtz-Sloan , Jill; Zhang , Lu-Hua; Mosser , Jean; Zhang , Wei; Zhang , Xiang; Liu , Yu-He; He , Ya-Long

    2018-01-01

    International audience; Aims: We aimed to identify a clinically useful biomarker using DNA methylation-based information to optimize individual treatment of patients with glioblastoma (GBM). Methods: A six-CpG panel was identified by incorporating genome-wide DNA methylation data and clinical information of three distinct discovery sets and was combined using a risk-score model. Different validation sets of GBMs and lower-grade gliomas and different statistical methods were implemented for pr...

  10. Long-term In Vitro Treatment of Human Glioblastoma Cells with Temozolomide Increases Resistance In Vivo through Up-regulation of GLUT Transporter and Aldo-Keto Reductase Enzyme AKR1C Expression

    Directory of Open Access Journals (Sweden)

    Benjamin Le Calvé

    2010-09-01

    Full Text Available Glioblastoma (GBM is the most frequent malignant glioma. Treatment of GBM patients is multimodal with maximum surgical resection, followed by concurrent radiation and chemotherapy with the alkylating drug temozolomide (TMZ. The present study aims to identify genes implicated in the acquired resistance of two human GBM cells of astrocytic origin, T98G and U373, to TMZ. Resistance to TMZ was induced by culturing these cells in vitro for months with incremental TMZ concentrations up to 1 mM. Only partial resistance to TMZ has been achieved and was demonstrated in vivo in immunocompromised mice bearing orthotopic U373 and T98G xenografts. Our data show that long-term treatment of human astroglioma cells with TMZ induces increased expression of facilitative glucose transporter/solute carrier GLUT/SLC2A family members, mainly GLUT-3, and of the AKR1C family of proteins. The latter proteins are phase 1 drug-metabolizing enzymes involved in the maintenance of steroid homeostasis, prostaglandin metabolism, and metabolic activation of polycyclic aromatic hydrocarbons. GLUT-3 has been previously suggested to exert roles in GBM neovascularization processes, and TMZ was found to exert antiangiogenic effects in experimental gliomas. AKR1C1 was previously shown to be associated with oncogenic potential, with proproliferative effects similar to AKR1C3 in the latter case. Both AKR1C1 and AKR1C2 proteins are involved in cancer pro-proliferative cell chemoresistance. Selective targeting of GLUT-3 in GBM and/or AKR1C proteins (by means of jasmonates, for example could thus delay the acquisition of resistance to TMZ of astroglioma cells in the context of prolonged treatment with this drug.

  11. Primary ciliogenesis defects are associated with human astrocytoma/glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Rattner Jerome B

    2009-12-01

    Full Text Available Abstract Background Primary cilia are non-motile sensory cytoplasmic organelles that have been implicated in signal transduction, cell to cell communication, left and right pattern embryonic development, sensation of fluid flow, regulation of calcium levels, mechanosensation, growth factor signaling and cell cycle progression. Defects in the formation and/or function of these structures underlie a variety of human diseases such as Alström, Bardet-Biedl, Joubert, Meckel-Gruber and oral-facial-digital type 1 syndromes. The expression and function of primary cilia in cancer cells has now become a focus of attention but has not been studied in astrocytomas/glioblastomas. To begin to address this issue, we compared the structure and expression of primary cilia in a normal human astrocyte cell line with five human astrocytoma/glioblastoma cell lines. Methods Cultured normal human astrocytes and five human astrocytoma/glioblastoma cell lines were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. Monospecific antibodies were used to detect primary cilia and map the relationship between the primary cilia region and sites of endocytosis. Results We show that expression of primary cilia in normal astrocytes is cell cycle related and the primary cilium extends through the cell within a unique structure which we show to be a site of endocytosis. Importantly, we document that in each of the five astrocytoma/glioblastoma cell lines fully formed primary cilia are either expressed at a very low level, are completely absent or have aberrant forms, due to incomplete ciliogenesis. Conclusions The recent discovery of the importance of primary cilia in a variety of cell functions raises the possibility that this structure may have a role in a variety of cancers. Our finding that the formation of the primary cilium is disrupted in cells derived from astrocytoma/glioblastoma tumors provides the first

  12. Deregulation of a STAT3-IL8 Signaling Pathway Promotes Human Glioblastoma Cell Proliferation and Invasiveness

    Science.gov (United States)

    de la Iglesia, Núria; Konopka, Genevieve; Lim, Kah Leong; Nutt, Catherine L.; Bromberg, Jacqueline F.; Frank, David A.; Mischel, Paul S.; Louis, David N.; Bonni, Azad

    2009-01-01

    Inactivation of the tumor suppressor PTEN is recognized as a major event in the pathogenesis of the brain tumor glioblastoma. However, the mechanisms by which PTEN loss specifically impacts the malignant behavior of glioblastoma cells including their proliferation and propensity for invasiveness remain poorly understood. Genetic studies suggest that the transcription factor STAT3 harbors a PTEN-regulated tumor suppressive function in mouse astrocytes. Here, we report that STAT3 plays a critical tumor suppressive role in PTEN-deficient human glioblastoma cells. Endogenous STAT3 signaling is specifically inhibited in PTEN-deficient glioblastoma cells. Strikingly, reactivation of STAT3 in PTEN-deficient glioblastoma cells inhibits their proliferation, invasiveness, and ability to spread on myelin. We also identify the chemokine IL8 as a novel target gene of STAT3 in human glioblastoma cells. Activated STAT3 occupies the endogenous IL8 promoter and directly represses IL8 transcription. Consistent with these results, IL8 is upregulated in PTEN-deficient human glioblastoma tumors. Importantly, IL8 repression mediates STAT3-inhibition of glioblastoma cell proliferation, invasiveness, and spreading on myelin. Collectively, our findings uncover a novel link between STAT3 and IL8 whose deregulation plays a key role in the malignant behavior of PTEN-deficient glioblastoma cells. These studies suggest that STAT3 activation or IL8 inhibition may have potential in patient-tailored treatment of PTEN-deficient brain tumors. PMID:18524891

  13. Impact of anemia prevention by recombinant human erythropoietin on the sensitivity of xenografted glioblastomas to fractionated irradiation

    International Nuclear Information System (INIS)

    Stueben, G.; Poettgen, C.; Knuehmann, K.; Sack, H.; Stuschke, M.; Thews, O.; Vaupel, P.

    2003-01-01

    Background: Pronounced oxygen deficiency in tumors which might be caused by a diminished oxygen transport capacity of the blood (e.g., in anemia) reduces the efficacy of ionizing radiation. The aim of this study was to analyze whether anemia prevention by recombinant human erythropoietin (rHuEPO) affects the radiosensitivity of human glioblastoma xenografts during fractionated irradiation. Material and Methods: Anemia was induced by total body irradiation (TBI, 2 x 4 Gy) of mice prior to tumor implantation into the subcutis of the hind leg. In one experimental group, the development of anemia was prevented by rHuEPO (750 U/kg s.c.) given three times weekly starting 10 days prior to TBI. 13 days after tumor implantation (tumor volume approx. 40 mm 3 ), fractionated irradiation (4 x 7 Gy, one daily fraction) of the glioblastomas was performed resulting in a growth delay with subsequent regrowth of the tumors. Results: Compared to nonanemic control animals (hemoglobin concentration cHb = 14.7 g/dl), the growth delay in anemic mice (cHb = 9.9 g/dl) was significantly shorter (49 ± 5 days vs. 79 ± 4 days to reach four times the initial tumor volume) upon fractionated radiation. The prevention of anemia by rHuEPO treatment (cHb = 13.3 g/dl) resulted in a significantly prolonged growth delay (61 ± 5 days) compared to the anemia group, even though the growth inhibition found in control animals was not completely achieved. Conclusions: These data indicate that moderate anemia significantly reduces the efficacy of radiotherapy. Prevention of anemia with rHuEPO partially restores the radiosensitivity of xenografted glioblastomas to fractionated irradiation. (orig.)

  14. Regulation of the oxidative balance with coenzyme Q10 sensitizes human glioblastoma cells to radiation and temozolomide.

    Science.gov (United States)

    Frontiñán-Rubio, Javier; Santiago-Mora, Raquel María; Nieva-Velasco, Consuelo María; Ferrín, Gustavo; Martínez-González, Alicia; Gómez, María Victoria; Moreno, María; Ariza, Julia; Lozano, Eva; Arjona-Gutiérrez, Jacinto; Gil-Agudo, Antonio; De la Mata, Manuel; Pesic, Milica; Peinado, Juan Ramón; Villalba, José M; Pérez-Romasanta, Luis; Pérez-García, Víctor M; Alcaín, Francisco J; Durán-Prado, Mario

    2018-05-18

    To investigate how the modulation of the oxidative balance affects cytotoxic therapies in glioblastoma, in vitro. Human glioblastoma U251 and T98 cells and normal astrocytes C8D1A were loaded with coenzyme Q10 (CoQ). Mitochondrial superoxide ion (O 2 - ) and H 2 O 2 were measured by fluorescence microscopy. OXPHOS performance was assessed in U251 cells with an oxytherm Clark-type electrode. Radio- and chemotherapy cytotoxicity was assessed by immunostaining of γH2AX (24 h), annexin V and nuclei morphology, at short (72 h) and long (15 d) time. Hif-1α, SOD1, SOD2 and NQO1 were determined by immunolabeling. Catalase activity was measured by classic enzymatic assay. Glutathione levels and total antioxidant capacity were quantified using commercial kits. CoQ did not affect oxygen consumption but reduced the level of O 2 - and H 2 O 2 while shifted to a pro-oxidant cell status mainly due to a decrease in catalase activity and SOD2 level. Hif-1α was dampened, echoed by a decrease lactate and several key metabolites involved in glutathione synthesis. CoQ-treated cells were twofold more sensitive than control to radiation-induced DNA damage and apoptosis in short and long-term clonogenic assays, potentiating TMZ-induced cytotoxicity, without affecting non-transformed astrocytes. CoQ acts as sensitizer for cytotoxic therapies, disarming GBM cells, but not normal astrocytes, against further pro-oxidant injuries, being potentially useful in clinical practice for this fatal pathology. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  16. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    International Nuclear Information System (INIS)

    Song, Yichen; Wang, Ping; Zhao, Wei; Yao, Yilong; Liu, Xiaobai; Ma, Jun; Xue, Yixue; Liu, Yunhui

    2014-01-01

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin

  17. MiR-18a regulates the proliferation, migration and invasion of human glioblastoma cell by targeting neogenin

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yichen, E-mail: jeff200064017@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Wang, Ping, E-mail: pingwang8000@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Zhao, Wei, E-mail: 15669746@qq.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Yao, Yilong, E-mail: yaoyilong_322@163.com [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China); Liu, Xiaobai, E-mail: paganizonda1991@qq.com [The 96th Class, 7-year Program, China Medical University, Shenyang, Liaoning Province 110001 (China); Ma, Jun, E-mail: majun_724@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Xue, Yixue, E-mail: xueyixue888@163.com [Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001 (China); Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001 (China); Liu, Yunhui, E-mail: liuyh@sj-hospital.org [Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004 (China)

    2014-05-15

    MiR-17-92 cluster has recently been reported as an oncogene in some tumors. However, the association of miR-18a, an important member of this cluster, with glioblastoma remains unknown. Therefore, this study aims to investigate the expression of miR-18a in glioblastoma and its role in biological behavior of U87 and U251 human glioblastoma cell lines. Quantitative RT-PCR results showed that miR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines compared with that in human brain tissues and primary normal human astrocytes, and the expression levels were increased along with the rising pathological grades of glioblastoma. Neogenin was identified as the target gene of miR-18a by dual-luciferase reporter assays. RT-PCR and western blot results showed that its expression levels were decreased along with the rising pathological grades of glioblastoma. Inhibition of miR-18a expression was established by transfecting exogenous miR-18a inhibitor into U87 and U251 cells, and its effects on the biological behavior of glioblastoma cells were studied using CCK-8 assay, transwell assay and flow cytometry. Inhibition of miR-18a expression in U87 and U251 cells significantly up-regulated neogenin, and dramatically suppressed the abilities of cell proliferation, migration and invasion, induced cell cycle arrest and promoted cellular apoptosis. Collectively, these results suggest that miR-18a may regulate biological behavior of human glioblastoma cells by targeting neogenin, and miR-18a can serve as a potential target in the treatment of glioblastoma. - Highlights: • MiR-18a was highly expressed in glioblastoma tissues and U87 and U251 cell lines. • Neogenin was identified as the target gene of miR-18a. • Neogenin expressions were decreased along with the rising pathological grades of glioblastoma. • Inhibition of miR-18a suppressed biological behavior of glioma cells by up-regulating neogenin.

  18. Remodeling the Vascular Microenvironment of Glioblastoma with α-Particles.

    Science.gov (United States)

    Behling, Katja; Maguire, William F; Di Gialleonardo, Valentina; Heeb, Lukas E M; Hassan, Iman F; Veach, Darren R; Keshari, Kayvan R; Gutin, Philip H; Scheinberg, David A; McDevitt, Michael R

    2016-11-01

    Tumors escape antiangiogenic therapy by activation of proangiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We previously investigated targeted α-particle therapy with 225 Ac-E4G10 as an antivascular approach and showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here, we investigated changes in tumor vascular morphology and functionality caused by 225 Ac-E4G10. We investigated remodeling of the tumor microenvironment in transgenic Ntva glioblastoma mice using a therapeutic 7.4-kBq dose of 225 Ac-E4G10. Immunofluorescence and immunohistochemical analyses imaged morphologic changes in the tumor blood-brain barrier microenvironment. Multicolor flow cytometry quantified the endothelial progenitor cell population in the bone marrow. Diffusion-weighted MR imaged functional changes in the tumor vascular network. The mechanism of drug action is a combination of remodeling of the glioblastoma vascular microenvironment, relief of edema, and depletion of regulatory T and endothelial progenitor cells. The primary remodeling event is the reduction of both endothelial and perivascular cell populations. Tumor-associated edema and necrosis were lessened, resulting in increased perfusion and reduced diffusion. Pharmacologic uptake of dasatinib into tumor was enhanced after α-particle therapy. Targeted antivascular α-particle radiation remodels the glioblastoma vascular microenvironment via a multimodal mechanism of action and provides insight into the vascular architecture of platelet-derived growth factor-driven glioblastoma. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  19. Biologically aggressive regions within glioblastoma identified by spin-lock contrast T1 relaxation in the rotating frame (T1ρ MRI

    Directory of Open Access Journals (Sweden)

    Ramon Francisco Barajas, Jr., MD

    2017-12-01

    Full Text Available Spin-lattice relaxation in the rotating frame magnetic resonance imaging allows for the quantitative assessment of spin-lock contrast within tissues. We describe the utility of spin-lattice relaxation in the rotating frame metrics in characterizing glioblastoma biological heterogeneity. A 84-year-old man presented to our institution with a right frontal temporal mass. Prior tissue sampling from a peripheral nonenhancing lesion was nondiagnostic. Stereotactic image-guided tissue sampling of the nonenhancing T2-fluid-attenuated inversion recovery hyperintense region involving the anterior cingulate gyrus with elevated spin-lattice relaxation in the rotating frame metrics provided a pathologic diagnosis of glioblastoma. This case illustrates the utility of spin-lattice relaxation in the rotating frame magnetic resonance imaging in identifying biologically aggressive regions within glioblastoma.

  20. Microenvironment involved in FPR1 expression by human glioblastomas

    NARCIS (Netherlands)

    Boer, J. C.; van Marion, D. M S; Joseph, J. V.; Kliphuis, N. M.; Timmer-Bosscha, H.; van Strijp, J. A G; de Vries, E. G E; den Dunnen, W. F A; Kruyt, F. A E; Walenkamp, A. M E

    2015-01-01

    Formyl peptide receptor 1 (FPR1) activity in U87 glioblastoma (GBM) cells contributes to tumor cell motility. The present study aimed to evaluate the FPR1 expression in human GBM, the possibility to elicit agonist induced FPR1 activation of GBM cells and inhibit this activation with chemotaxis

  1. Microenvironment involved in FPR1 expression by human glioblastomas

    NARCIS (Netherlands)

    Boer, J. C.; van Marion, D. M. S.; Vareecal Joseph, J.; Kliphuis, N. M.; Timmer-Bosscha, H.; van Strijp, J. A. G.; de Vries, E. G. E.; den Dunnen, W. F. A.; Kruyt, F. A. E.; Walenkamp, A. M. E.

    Formyl peptide receptor 1 (FPR1) activity in U87 glioblastoma (GBM) cells contributes to tumor cell motility. The present study aimed to evaluate the FPR1 expression in human GBM, the possibility to elicit agonist induced FPR1 activation of GBM cells and inhibit this activation with chemotaxis

  2. Chlorotoxin Fused to IgG-Fc Inhibits Glioblastoma Cell Motility via Receptor-Mediated Endocytosis

    Directory of Open Access Journals (Sweden)

    Tomonari Kasai

    2012-01-01

    Full Text Available Chlorotoxin is a 36-amino acid peptide derived from Leiurus quinquestriatus (scorpion venom, which has been shown to inhibit low-conductance chloride channels in colonic epithelial cells. Chlorotoxin also binds to matrix metalloproteinase-2 and other proteins on glioma cell surfaces. Glioma cells are considered to require the activation of matrix metalloproteinase-2 during invasion and migration. In this study, for targeting glioma, we designed two types of recombinant chlorotoxin fused to human IgG-Fcs with/without a hinge region. Chlorotoxin fused to IgG-Fcs was designed as a dimer of 60 kDa with a hinge region and a monomer of 30 kDa without a hinge region. The monomeric and dimeric forms of chlorotoxin inhibited cell proliferation at 300 nM and induced internalization in human glioma A172 cells. The monomer had a greater inhibitory effect than the dimer; therefore, monomeric chlorotoxin fused to IgG-Fc was multivalently displayed on the surface of bionanocapsules to develop a drug delivery system that targeted matrix metalloproteinase-2. The target-dependent internalization of bionanocapsules in A172 cells was observed when chlorotoxin was displayed on the bionanocapsules. This study indicates that chlorotoxin fused to IgG-Fcs could be useful for the active targeting of glioblastoma cells.

  3. Human Leukocyte Antigen-G Is Frequently Expressed in a Multicentric Study on Glioblastoma and May Be Induced in Vitro by Combined 5-aza-2'-deoxycytidine and Interferon-γ Treatments

    DEFF Research Database (Denmark)

    Wastowski, Isabela J; Simões, Renata T; Yaghi, Layale

    2012-01-01

    -G protein expression was associated with a better long-term survival rate. The mechanisms underlying HLA-G gene expression were investigated in glioma cell lines U251MG, D247MG, and U138MG. Induction of HLA-G transcriptional activity was dependent of 5-aza-2'-deoxycytidine treatment and enhanced......Human leukocyte antigen-G (HLA-G) is a nonclassical major histocompatibility complex (MHC) class I molecule involved in immune tolerance processes, playing an important role in the maintenance of the semi-allogeneic fetus. Although HLA-G expression is restricted in normal tissues, it is broadly...... expressed in malignant tumors and may favor tumor immune escape. We analyzed HLA-G protein and mRNA expression in tumor samples from patients with glioblastoma collected in France, Denmark, and Brazil. We found HLA-G protein expression in 65 of 108 samples and mRNA in 20 of 21 samples. The absence of HLA...

  4. Immunological targeting of cytomegalovirus for glioblastoma therapy

    OpenAIRE

    Nair, Smita K; Sampson, John H; Mitchell, Duane A

    2014-01-01

    Human cytomegalovirus (CMV) is purportedly present in glioblastoma (GBM) while absent from the normal brain, making CMV antigens potentially ideal immunological anti-GBM targets. We recently demonstrated that patient-derived CMV pp65-specific T cells are capable of recognizing and killing autologous GBM tumor cells. This data supports CMV antigen-directed immunotherapies against GBM.

  5. Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples.

    Science.gov (United States)

    Szulzewsky, Frank; Arora, Sonali; de Witte, Lot; Ulas, Thomas; Markovic, Darko; Schultze, Joachim L; Holland, Eric C; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-08-01

    Glioblastoma (GBM) is the most aggressive brain tumor in adults. It is strongly infiltrated by microglia and peripheral monocytes that support tumor growth. In the present study we used RNA sequencing to compare the expression profile of CD11b(+) human glioblastoma-associated microglia/monocytes (hGAMs) to CD11b(+) microglia isolated from non-tumor samples. Hierarchical clustering and principal component analysis showed a clear separation of the two sample groups and we identified 334 significantly regulated genes in hGAMs. In comparison to human control microglia hGAMs upregulated genes associated with mitotic cell cycle, cell migration, cell adhesion, and extracellular matrix organization. We validated the expression of several genes associated with extracellular matrix organization in samples of human control microglia, hGAMs, and the hGAMs-depleted fraction via qPCR. The comparison to murine GAMs (mGAMs) showed that both cell populations share a significant fraction of upregulated transcripts compared with their respective controls. These genes were mostly related to mitotic cell cycle. However, in contrast to murine cells, human GAMs did not upregulate genes associated to immune activation. Comparison of human and murine GAMs expression data to several data sets of in vitro-activated human macrophages and murine microglia showed that, in contrast to mGAMs, hGAMs share a smaller overlap to these data sets in general and in particular to cells activated by proinflammatory stimulation with LPS + INFγ or TNFα. Our findings provide new insights into the biology of human glioblastoma-associated microglia/monocytes and give detailed information about the validity of murine experimental models. GLIA 2016 GLIA 2016;64:1416-1436. © 2016 Wiley Periodicals, Inc.

  6. Opposing effects of PI3K/Akt and Smad-dependent signaling pathways in NAG-1-induced glioblastoma cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Zhiguo Zhang

    Full Text Available Nonsteroidal anti-inflammatory drug (NSAID activated gene-1 (NAG-1 is a divergent member of the transforming growth factor-beta (TGF-β superfamily. NAG-1 plays remarkable multifunctional roles in controlling diverse physiological and pathological processes including cancer. Like other TGF-β family members, NAG-1 can play dual roles during cancer development and progression by negatively or positively modulating cancer cell behaviors. In glioblastoma brain tumors, NAG-1 appears to act as a tumor suppressor gene; however, the precise underlying mechanisms have not been well elucidated. In the present study, we discovered that overexpression of NAG-1 induced apoptosis in U87 MG, U118 MG, U251 MG, and T98G cell lines via the intrinsic mitochondrial pathway, but not in A172 and LN-229 cell lines. NAG-1 could induce the phosphorylation of PI3K/Akt and Smad2/3 in all six tested glioblastoma cell lines, except Smad3 phosphorylation in A172 and LN-229 cell lines. In fact, Smad3 expression and its phosphorylation were almost undetectable in A172 and LN-229 cells. The PI3K inhibitors promoted NAG-1-induced glioblastoma cell apoptosis, while siRNAs to Smad2 and Smad3 decreased the apoptosis rate. NAG-1 also stimulated the direct interaction between Akt and Smad3 in glioblastoma cells. Elevating the level of Smad3 restored the sensitivity to NAG-1-induced apoptosis in A172 and LN-229 cells. In conclusion, our results suggest that PI3K/Akt and Smad-dependent signaling pathways display opposing effects in NAG-1-induced glioblastoma cell apoptosis.

  7. Histology-Based Expression Profiling Yields Novel Prognostic Markers in Human Glioblastoma

    Science.gov (United States)

    Dong, Shumin; Nutt, Catherine L.; Betensky, Rebecca A.; Stemmer-Rachamimov, Anat O.; Denko, Nicholas C.; Ligon, Keith L.; Rowitch, David H.; Louis, David N.

    2006-01-01

    Although the prognosis for patients with glioblastoma is poor, survival is variable, with some patients surviving longer than others. For this reason, there has been longstanding interest in the identi-fication of prognostic markers for glioblastoma. We hypothesized that specific histologic features known to correlate with malignancy most likely express molecules that are directly related to the aggressive behavior of these tumors. We further hypothesized that such molecules could be used as biomarkers to predict behavior in a manner that might add prognostic power to sole histologic observation of the feature. We reasoned that perinecrotic tumor cell palisading, which denotes the most aggressive forms of malignant gliomas, would be a striking histologic feature on which to test this hypothesis. We therefore used laser capture microdissection and oligonucleotide arrays to detect molecules differentially expressed in perinecrotic palisades. A set of RNAs (including POFUT2, PTDSR, PLOD2, ATF5, and HK2) that were differentially expressed in 3 initially studied, micro-dissected glioblastomas also provided prognostic information in an independent set of 28 glioblastomas that did not all have perinecrotic palisades. On validation in a second, larger independent series, this approach could be applied to other human glioma types to derive tissue biomarkers that could offer ancillary prognostic and predictive information alongside standard histopathologic examination. PMID:16254489

  8. Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Mohsen Sisakht

    Full Text Available Abstract Glioblastoma is the most common malignant brain tumor representing with poor prognosis, therapy resistance and high metastasis rate. Increased expression and activity of matrix metalloproteinase-2, a member of matrix metalloproteinase family proteins, has been reported in many cancers including glioblastoma. Inhibition of matrix metalloproteinase-2 expression has resulted in reduced aggression of glioblastoma tumors in several reports. In the present study, we evaluated effect of bee venom on expression and activity of matrix metalloproteinase-2 as well as potential toxicity and apoptogenic properties of bee venom on glioblastoma cells. Human A172 glioblastoma cells were treated with increasing concentrations of bee venom. Then, cell viability, apoptosis, matrix metalloproteinase-2 expression, and matrix metalloproteinase-2 activity were measured using MMT assay, propidium iodide staining, real time-PCR, and zymography, respectively. The IC50 value of bee venom was 28.5 µg/ml in which it leads to decrease of cell viability and induction of apoptosis. Incubation with bee venom also decreased the expression of matrix metalloproteinase-2 in this cell line (p < 0.05. In zymography, there was a reverse correlation between bee venom concentration and total matrix metalloproteinase-2 activity. Induction of apoptosis as well as inhibition of matrix metalloproteinase-2 activity and expression can be suggested as molecular mechanisms involved in cytotoxic and antimetastatic effects of bee venom against glioblastoma cells.

  9. A novel prognostic six-CpG signature in glioblastomas.

    Science.gov (United States)

    Yin, An-An; Lu, Nan; Etcheverry, Amandine; Aubry, Marc; Barnholtz-Sloan, Jill; Zhang, Lu-Hua; Mosser, Jean; Zhang, Wei; Zhang, Xiang; Liu, Yu-He; He, Ya-Long

    2018-03-01

    We aimed to identify a clinically useful biomarker using DNA methylation-based information to optimize individual treatment of patients with glioblastoma (GBM). A six-CpG panel was identified by incorporating genome-wide DNA methylation data and clinical information of three distinct discovery sets and was combined using a risk-score model. Different validation sets of GBMs and lower-grade gliomas and different statistical methods were implemented for prognostic evaluation. An integrative analysis of multidimensional TCGA data was performed to molecularly characterize different risk tumors. The six-CpG risk-score signature robustly predicted overall survival (OS) in all discovery and validation cohorts and in a treatment-independent manner. It also predicted progression-free survival (PFS) in available patients. The multimarker epigenetic signature was demonstrated as an independent prognosticator and had better performance than known molecular indicators such as glioma-CpG island methylator phenotype (G-CIMP) and proneural subtype. The defined risk subgroups were molecularly distinct; high-risk tumors were biologically more aggressive with concordant activation of proangiogenic signaling at multimolecular levels. Accordingly, we observed better OS benefits of bevacizumab-contained therapy to high-risk patients in independent sets, supporting its implication in guiding usage of antiangiogenic therapy. Finally, the six-CpG signature refined the risk classification based on G-CIMP and MGMT methylation status. The novel six-CpG signature is a robust and independent prognostic indicator for GBMs and is of promising value to improve personalized management. © 2018 John Wiley & Sons Ltd.

  10. Anti-EGFRvIII Chimeric Antigen Receptor-Modified T Cells for Adoptive Cell Therapy of Glioblastoma

    Science.gov (United States)

    Ren, Pei-pei; Li, Ming; Li, Tian-fang; Han, Shuang-yin

    2017-01-01

    Glioblastoma (GBM) is one of the most devastating brain tumors with poor prognosis and high mortality. Although radical surgical treatment with subsequent radiation and chemotherapy can improve the survival, the efficacy of such regimens is insufficient because the GBM cells can spread and destroy normal brain structures. Moreover, these non-specific treatments may damage adjacent healthy brain tissue. It is thus imperative to develop novel therapies to precisely target invasive tumor cells without damaging normal tissues. Immunotherapy is a promising approach due to its capability to suppress the growth of various tumors in preclinical model and clinical trials. Adoptive cell therapy (ACT) using T cells engineered with chimeric antigen receptor (CAR) targeting an ideal molecular marker in GBM, e.g. epidermal growth factor receptor type III (EGFRvIII) has demonstrated a satisfactory efficacy in treating malignant brain tumors. Here we summarize the recent progresses in immunotherapeutic strategy using CAR-modified T cells oriented to EGFRvIII against GBM. PMID:28302023

  11. Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma: Single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging

    Directory of Open Access Journals (Sweden)

    Tomas Kazda

    2016-01-01

    Full Text Available The accurate identification of glioblastoma progression remains an unmet clinical need. The aim of this prospective single-institutional study is to determine and validate thresholds for the main metabolite concentrations obtained by MR spectroscopy (MRS and the values of the apparent diffusion coefficient (ADC to enable distinguishing tumor recurrence from pseudoprogression. Thirty-nine patients after the standard treatment of a glioblastoma underwent advanced imaging by MRS and ADC at the time of suspected recurrence — median time to progression was 6.7 months. The highest significant sensitivity and specificity to call the glioblastoma recurrence was observed for the total choline (tCho to total N-acetylaspartate (tNAA concentration ratio with the threshold ≥1.3 (sensitivity 100.0% and specificity 94.7%. The ADCmean value higher than 1313 × 10−6 mm2/s was associated with the pseudoprogression (sensitivity 98.3%, specificity 100.0%. The combination of MRS focused on the tCho/tNAA concentration ratio and the ADCmean value represents imaging methods applicable to early non-invasive differentiation between a glioblastoma recurrence and a pseudoprogression. However, the institutional definition and validation of thresholds for differential diagnostics is needed for the elimination of setup errors before implementation of these multimodal imaging techniques into clinical practice, as well as into clinical trials.

  12. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Araceli Gutiérrez-Rodríguez

    2017-01-01

    Full Text Available Progesterone-induced blocking factor (PIBF is a progesterone (P4 regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM blocked this effect. PIBF (100 ng/mL increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h and U251 (24 and 48 h cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells.

  13. Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line.

    Science.gov (United States)

    Vassbotn, F S; Ostman, A; Langeland, N; Holmsen, H; Westermark, B; Heldin, C H; Nistér, M

    1994-02-01

    Human glioblastoma cells (A172) were found to concomitantly express PDGF-BB and PDGF beta-receptors. The receptors were constitutively autophosphorylated in the absence of exogenous ligand, suggesting the presence of an autocrine PDGF pathway. Neutralizing PDGF antibodies as well as suramin inhibited the autonomous PDGF receptor tyrosine kinase activity and resulted in up-regulation of receptor protein. The interruption of the autocrine loop by the PDGF antibodies reversed the transformed phenotype of the glioblastoma cell, as determined by (1) diminished DNA synthesis, (2) inhibition of tumor colony growth, and (3) reversion of the transformed morphology of the tumor cells. The PDGF antibodies showed no effect on the DNA synthesis of another glioblastoma cells line (U-343MGa 31L) or on Ki-ras-transformed fibroblasts. The present study demonstrates an endogenously activated PDGF pathway in a spontaneous human glioblastoma cell line. Furthermore, we provide evidence that the autocrine PDGF pathway drives the transformed phenotype of the tumor cells, a process that can be blocked by extracellular antagonists.

  14. G-cimp status prediction of glioblastoma samples using mRNA expression data.

    Science.gov (United States)

    Baysan, Mehmet; Bozdag, Serdar; Cam, Margaret C; Kotliarova, Svetlana; Ahn, Susie; Walling, Jennifer; Killian, Jonathan K; Stevenson, Holly; Meltzer, Paul; Fine, Howard A

    2012-01-01

    Glioblastoma Multiforme (GBM) is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA) expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data.

  15. Sinomenine Hydrochloride Inhibits the Metastasis of Human Glioblastoma Cells by Suppressing the Expression of Matrix Metalloproteinase-2/-9 and Reversing the Endogenous and Exogenous Epithelial-Mesenchymal Transition.

    Science.gov (United States)

    Jiang, Yumao; Jiao, Yue; Liu, Yang; Zhang, Meiyu; Wang, Zhiguo; Li, Yujuan; Li, Tao; Zhao, Xiaoliang; Wang, Danqiao

    2018-03-14

    As shown in our previous study, sinomenine hydrochloride (SH), the major bioactive alkaloid isolated from Sinomenium acutum Rehd. et Wils. (Fam. Menispermaceae ), initiates the autophagy-mediated death of human glioblastoma cells by generating reactive oxygen species and activating the autophagy-lysosome pathway. However, its effects on the migration and invasion of human glioblastoma cells have not yet been elucidated. Therefore, human glioblastoma U87 and SF767 cells were treated with SH (0.125 and 0.25 mM) for 24 h, and cell migration and invasion were assessed using scratch wound healing, migration and invasion assays. SH promoted G0/G1 phase arrest, inhibited the migration and invasion of the two cell lines, suppressed the activation of nuclear factor kappa B (NFκB) and the expression of matrix metalloproteinase (MMP)-2/-9, triggered endoplasmic reticulum (ER) stress, reversed the exogenous epithelial-mesenchymal transition (EMT) induced by the inflammatory microenvironment and the endogenous EMT. Additionally, NFκB p65 overexpression blocked the SH-mediated inhibitory effects on MMP-2/-9 expression and cell invasion. SH-induced autophagy was reduced in CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP) or autophagy-related 5 (ATG5)-silenced human glioblastoma cells and cells treated with 4-phenylbutyric acid (4-PBA) or 3-methyladenine (3-MA), as shown by the decreased levels of the microtubule-associated protein light chain 3B (LC3B)-II and autophagic vacuoles (AVs) stained with monodansylcadaverine (MDC), respectively. Moreover, knockdown of CHOP or ATG5 and treatment with 4-PBA or 3-MA abolished the SH-mediated inhibition of mesenchymal markers (vimentin, Snail and Slug) expression and cell invasion, respectively. Importantly, SH also regulated the above related pathways in nude mice. Based on these findings, SH inhibited cell proliferation by inducing cell cycle arrest, and attenuated the metastasis of U87 and SF767 cells by suppressing MMP

  16. Sinomenine Hydrochloride Inhibits the Metastasis of Human Glioblastoma Cells by Suppressing the Expression of Matrix Metalloproteinase-2/-9 and Reversing the Endogenous and Exogenous Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Yumao Jiang

    2018-03-01

    Full Text Available As shown in our previous study, sinomenine hydrochloride (SH, the major bioactive alkaloid isolated from Sinomenium acutum Rehd. et Wils. (Fam. Menispermaceae, initiates the autophagy-mediated death of human glioblastoma cells by generating reactive oxygen species and activating the autophagy-lysosome pathway. However, its effects on the migration and invasion of human glioblastoma cells have not yet been elucidated. Therefore, human glioblastoma U87 and SF767 cells were treated with SH (0.125 and 0.25 mM for 24 h, and cell migration and invasion were assessed using scratch wound healing, migration and invasion assays. SH promoted G0/G1 phase arrest, inhibited the migration and invasion of the two cell lines, suppressed the activation of nuclear factor kappa B (NFκB and the expression of matrix metalloproteinase (MMP-2/-9, triggered endoplasmic reticulum (ER stress, reversed the exogenous epithelial-mesenchymal transition (EMT induced by the inflammatory microenvironment and the endogenous EMT. Additionally, NFκB p65 overexpression blocked the SH-mediated inhibitory effects on MMP-2/-9 expression and cell invasion. SH-induced autophagy was reduced in CCAAT/enhancer binding protein (C/EBP homologous protein (CHOP or autophagy-related 5 (ATG5-silenced human glioblastoma cells and cells treated with 4-phenylbutyric acid (4-PBA or 3-methyladenine (3-MA, as shown by the decreased levels of the microtubule-associated protein light chain 3B (LC3B-II and autophagic vacuoles (AVs stained with monodansylcadaverine (MDC, respectively. Moreover, knockdown of CHOP or ATG5 and treatment with 4-PBA or 3-MA abolished the SH-mediated inhibition of mesenchymal markers (vimentin, Snail and Slug expression and cell invasion, respectively. Importantly, SH also regulated the above related pathways in nude mice. Based on these findings, SH inhibited cell proliferation by inducing cell cycle arrest, and attenuated the metastasis of U87 and SF767 cells by suppressing

  17. Characterization of radioresistant variant from U251 human glioblastoma cell line and the role of antioxdant enzymes in its radioresistancy

    International Nuclear Information System (INIS)

    Lee, Hyung Chahn; Park, In Chul; Park, Myung Jin; Woo, Sang Hyeok; Rhee, Chang Hum; Hong, Seok-II

    2004-01-01

    To investigate the radioresistant mechanism in glioblastoma multiforme(GBM), we isolated the radioresistant clone (RRC) from U251 human glioblastoma cell line by exposing to repeated fractions of 3 Gy γ-radiation for six months. RRC had higher radioresistance than the parent cell line as measured by clonogenic survival assay. FACS analysis showed that RRC had a delayed G2 arrest after radiation. Antioxidant enzymes, such as SOD, catalase, glutathione peroxidase (GPX), glutathione reductase (GR), were activated up to 5 folds in RRC after radiation. Erk 1/2 activation was higher in RRC than in the parent cell. Therefore, radioresistancy in RRC might be due to the delayed cell cycle, the coordinated high activation of antioxidant enzyme rather than a single enzyme alone,and higher activation of Erk 1/2

  18. Kinetics for exchange of imino protons in the d(C-G-C-G-A-A-T-T-C-G-C-G) double helix and in two similar helices that contain a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and an extra adenine, d(C-G-C-A-G-A-A-T-T-C-G-C-G).

    Science.gov (United States)

    Pardi, A; Morden, K M; Patel, D J; Tinoco, I

    1982-12-07

    The relaxation lifetimes of imino protons from individual base pairs were measured in (I) a perfect helix, d(C-G-C-G-A-A-T-T-C-G-C-G), (II) this helix with a G . C base pair replaced with a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and (III) the perfect helix with an extra adenine base in a mismatch, d(C-G-C-A-G-A-A-T-T-C-G-C-G). The lifetimes were measured by saturation recovery proton nuclear magnetic resonance experiments performed on the imino protons of these duplexes. The measured lifetimes of the imino protons were shown to correspond to chemical exchange lifetimes at higher temperatures and spin-lattice relaxation times at lower temperatures. Comparison of the lifetimes in these duplexes showed that the destabilizing effect of the G . T base pair in II affected the opening rate of only the nearest-neighbor base pairs. For helix III, the extra adenine affected the opening rates of all the base pairs in the helix and thus was a larger perturbation for opening of the base pairs than the G . T base pair. The temperature dependence of the exchange rates of the imino proton in the perfect helix gives values of 14-15 kcal/mol for activation energies of A . T imino protons. These relaxation rates were shown to correspond to exchange involving individual base pair opening in this helix, which means that one base-paired imino proton can exchange independent of the others. For the other two helices that contain perturbations, much larger activation energies for exchange of the imino protons were found, indicating that a cooperative transition involving exchange of at least several base pairs was the exchange mechanism of the imino protons. The effects of a perturbation in a helix on the exchange rates and the mechanisms for exchange of imino protons from oligonucleotide helices are discussed.

  19. Experimental studies on the radiosensitizing agents against cultured human glioblastoma and human neurinoma

    International Nuclear Information System (INIS)

    Sawatari, Yutaka

    1976-01-01

    The radiosensitivity increasing effect of bromo-2'-deoxyuridine (BUdR) and 5-fluorouracil (5-FU), alone and in combination, was studied comparatively using tissue culture of brain tumor cells (No. 60 cells originating in human glioblastoma and N cells originating in human neurinoma) with colony formation and growth curve as the quantitative indices and the phase contrast microscope and scanning electron microscope for morphological observation. The inhibitive effect of BUdR on growth of the N cells was above 4μg/ml, while 3000μg/ml was required in the case of the No. 60 cells. This indicates that there is a large difference between the sensitivities of these two cell types against BUdR. Increased sensitivity can be anticipated by pretreatment of the No. 60 cells or the N cells with BUdR with a dose of no growth inhibition effect. N cells have a lower radiosensitivity than No. 60 cells; but when both cells are pretreated with BUdR, N cells have a higher radiosensitivity than No. 60 cells. This increasing radiosensitivity of the N cells, which is clinically benign, suggests the possibility of wider application for radiotherapy in the future. A dose of 2μg/ml of 5-FU alone showed no growth inhibiting effect on either the N cells or the No. 60 cells, but it intensified the effect of BUdR. Using a phase contrast microscope and a scanning electron microscope for morphological observation of the No. 60 cells and the N cells which had been exposed to BUdR+5-FU+X-ray, unique findings were observed on the surface structures of these two kinds of cells. (J.P.N.)

  20. G-cimp status prediction of glioblastoma samples using mRNA expression data.

    Directory of Open Access Journals (Sweden)

    Mehmet Baysan

    Full Text Available Glioblastoma Multiforme (GBM is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data.

  1. Immunological Evasion in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Roxana Magaña-Maldonado

    2016-01-01

    Full Text Available Glioblastoma is the most aggressive tumor in Central Nervous System in adults. Among its features, modulation of immune system stands out. Although immune system is capable of detecting and eliminating tumor cells mainly by cytotoxic T and NK cells, tumor microenvironment suppresses an effective response through recruitment of modulator cells such as regulatory T cells, monocyte-derived suppressor cells, M2 macrophages, and microglia as well as secretion of immunomodulators including IL-6, IL-10, CSF-1, TGF-β, and CCL2. Other mechanisms that induce immunosuppression include enzymes as indolamine 2,3-dioxygenase. For this reason it is important to develop new therapies that avoid this immune evasion to promote an effective response against glioblastoma.

  2. Therapeutic efficacy of intralesional 131I-labelled hyaluronectin in grafted human glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Girard, N.; Courel, M.N.; Vera, P.; Delpech, B. [Centre Henri-Becquerel, Rouen (France). Laboratoire d' Oncologie Moleculaire

    2000-07-01

    The grafted human glioblastoma cell CB109 was used as a model for intralesional therapy with 131I-labelled hyaluronectin glycoprotein (131I-HN). 131I-HN bound specifically to in situ hyaluronic acid (HA), a main component of the extracellular matrix which is involved in tumour invasion. Labelling experimental conditions were determined and, finally, 25 {mu}Ci/{mu}gHN, 1 {mu}g chloramine-T/{mu}gHN and a 60-s stirring period provided a 131I-HN preparation with an optimal affinity for HA (64% compared to unlabelled HN). Following intratumoral injection, 131I-HN was retained with a limited diffusion outside the tumour. On day 4 the radioactivity concentrated in the tumour was still 25 times greater than that in the liver, spleen and kidneys combined. For therapeutic assays, 65 {mu}Ci 131I-HN was injected into the tumour, resulting in a delivery of 6.8 Gy over a 7-day period. Controls received unlabelled HN, heat-inactivated HN, a mixture of inactivated HN plus free 131I or no treatment (six animals per group). Tumour volumes were evaluated every second day from treatment day and the rate of tumour growth was expressed as a ratio of tumour size at time intervals to the tumour size at the time of injection. Growth curves were compared: heat-inactivated with or without free 131I had no anti-tumour effect. Unlabelled HN-injected tumours had a slightly slower growth rate than untreated tumours (p < 0.02) and growth rate of 131I-HN-injected tumours was much lower (p < 0.00002). A pronounced inhibitory effect with intralesional 131I-labelled HN injection resulted from a combination of a) blockage of HA, a proliferation facilitating factor, and b) local irradiation of tumoral tissue, while uptake in normal tissues was minimized.

  3. Therapeutic efficacy of intralesional 131I-labelled hyaluronectin in grafted human glioblastoma

    International Nuclear Information System (INIS)

    Girard, N.; Courel, M.N.; Vera, P.; Delpech, B.

    2000-01-01

    The grafted human glioblastoma cell CB109 was used as a model for intralesional therapy with 131I-labelled hyaluronectin glycoprotein (131I-HN). 131I-HN bound specifically to in situ hyaluronic acid (HA), a main component of the extracellular matrix which is involved in tumour invasion. Labelling experimental conditions were determined and, finally, 25 μCi/μgHN, 1 μg chloramine-T/μgHN and a 60-s stirring period provided a 131I-HN preparation with an optimal affinity for HA (64% compared to unlabelled HN). Following intratumoral injection, 131I-HN was retained with a limited diffusion outside the tumour. On day 4 the radioactivity concentrated in the tumour was still 25 times greater than that in the liver, spleen and kidneys combined. For therapeutic assays, 65 μCi 131I-HN was injected into the tumour, resulting in a delivery of 6.8 Gy over a 7-day period. Controls received unlabelled HN, heat-inactivated HN, a mixture of inactivated HN plus free 131I or no treatment (six animals per group). Tumour volumes were evaluated every second day from treatment day and the rate of tumour growth was expressed as a ratio of tumour size at time intervals to the tumour size at the time of injection. Growth curves were compared: heat-inactivated with or without free 131I had no anti-tumour effect. Unlabelled HN-injected tumours had a slightly slower growth rate than untreated tumours (p < 0.02) and growth rate of 131I-HN-injected tumours was much lower (p < 0.00002). A pronounced inhibitory effect with intralesional 131I-labelled HN injection resulted from a combination of a) blockage of HA, a proliferation facilitating factor, and b) local irradiation of tumoral tissue, while uptake in normal tissues was minimized

  4. 42 CFR 482.98 - Condition of participation: Human resources.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition of participation: Human resources. 482.98 Section 482.98 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... Specialty Hospitals Transplant Center Process Requirements § 482.98 Condition of participation: Human...

  5. Long non-coding RNA taurine upregulated 1 enhances tumor-induced angiogenesis through inhibiting microRNA-299 in human glioblastoma.

    Science.gov (United States)

    Cai, H; Liu, X; Zheng, J; Xue, Y; Ma, J; Li, Z; Xi, Z; Li, Z; Bao, M; Liu, Y

    2017-01-19

    Angiogenesis is one of the critical biological elements affecting the development and progression of cancer. Long non-coding RNAs (lncRNAs) are important regulators and aberrantly expressed in various types of human cancer. Our previous studies indicated that lncRNA taurine upregulated 1 (TUG1) implicated in the regulation of blood-tumor barrier permeability; however, its role in glioblastoma angiogenesis still unclear. Here we demonstrated that TUG1 was up-expressed in human glioblastoma tissues and glioblastoma cell lines. Knockdown of TUG1 remarkably suppressed tumor-induced endothelial cell proliferation, migration and tube formation as well as reducing spheroid-based angiogenesis ability in vitro, which are the critical steps for tumor angiogenesis. Besides, knockdown of TUG1 significantly increased the expression of mircroRNA-299 (miR-299), which was down-expressed in glioblastoma tissues and glioblastoma cell lines. Bioinformatics analysis and luciferase reporter assay revealed that TUG1 influenced tumor angiogenesis via directly binding to the miR-299 and there was a reciprocal repression between TUG1 and miR-299 in the same RNA-induced silencing complex. Moreover, knockdown of TUG1 reduced the expression of vascular endothelial growth factor A (VEGFA), which was defined as a functional downstream target of miR-299. In addition, knockdown of TUG1, shown in the in vivo studies, has effects on suppressing tumor growth, reducing tumor microvessel density and decreasing the VEGFA expression by upregulating miR-299 in xenograft glioblastoma model. Overall, the results demonstrated that TUG1 enhances tumor-induced angiogenesis and VEGF expression through inhibiting miR-299. Also, the inhibition of TUG1 could provide a novel therapeutic target for glioblastoma treatment.

  6. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    International Nuclear Information System (INIS)

    Li, Xuesong; Gong, Xuhai; Chen, Jing; Zhang, Jinghui; Sun, Jiahang; Guo, Mian

    2015-01-01

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2

  7. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuesong; Gong, Xuhai [Department of Neurology, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001 (China); Chen, Jing [Department of Neurology, Daqing Longnan Hospital, Daqing, Heilongjiang, 163001 China (China); Zhang, Jinghui [Department of Cardiology, The Fourth Hospital of Harbin City, Harbin, Heilongjiang 150026 (China); Sun, Jiahang [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China); Guo, Mian, E-mail: guomian_hyd@163.com [Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086 (China)

    2015-05-08

    Glioblastoma development is often associated with alteration in the activity and expression of cell cycle regulators, such as cyclin-dependent kinases (CKDs) and cyclins, resulting in aberrant cell proliferation. Recent studies have highlighted the pivotal roles of miRNAs in controlling the development and growth of glioblastoma. Here, we provide evidence for a function of miR-340 in the inhibition of glioblastoma cell proliferation. We found that miR-340 is downregulated in human glioblastoma tissue samples and several established glioblastoma cell lines. Proliferation and neurosphere formation assays revealed that miR-340 plays an oncosuppressive role in glioblastoma, and that its ectopic expression causes significant defect in glioblastoma cell growth. Further, using bioinformatics, luciferase assay and western blot, we found that miR-340 specifically targets the 3′UTRs of CDK6, cyclin-D1 and cyclin-D2, leading to the arrest of glioblastoma cells in the G0/G1 cell cycle phase. Confirming these results, we found that re-introducing CDK6, cyclin-D1 or cyclin-D2 expression partially, but significantly, rescues cells from the suppression of cell proliferation and cell cycle arrest mediated by miR-340. Collectively, our results demonstrate that miR-340 plays a tumor-suppressive role in glioblastoma and may be useful as a diagnostic biomarker and/or a therapeutic avenue for glioblastoma. - Highlights: • miR-340 is downregulated in glioblastoma samples and cell lines. • miR-340 inhibits glioblastoma cell proliferation. • miR-340 directly targets CDK6, cyclin-D1, and cyclin-D2. • miR-340 regulates glioblastoma cell proliferation via CDK6, cyclin-D1 and cyclin-D2.

  8. Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor activity.

    Science.gov (United States)

    Wang, Dongrui; Aguilar, Brenda; Starr, Renate; Alizadeh, Darya; Brito, Alfonso; Sarkissian, Aniee; Ostberg, Julie R; Forman, Stephen J; Brown, Christine E

    2018-05-17

    Chimeric antigen receptor-modified (CAR-modified) T cells have shown promising therapeutic effects for hematological malignancies, yet limited and inconsistent efficacy against solid tumors. The refinement of CAR therapy requires an understanding of the optimal characteristics of the cellular products, including the appropriate composition of CD4+ and CD8+ subsets. Here, we investigated the differential antitumor effect of CD4+ and CD8+ CAR T cells targeting glioblastoma-associated (GBM-associated) antigen IL-13 receptor α2 (IL13Rα2). Upon stimulation with IL13Rα2+ GBM cells, the CD8+ CAR T cells exhibited robust short-term effector function but became rapidly exhausted. By comparison, the CD4+ CAR T cells persisted after tumor challenge and sustained their effector potency. Mixing with CD4+ CAR T cells failed to ameliorate the effector dysfunction of CD8+ CAR T cells, while surprisingly, CD4+ CAR T cell effector potency was impaired when coapplied with CD8+ T cells. In orthotopic GBM models, CD4+ outperformed CD8+ CAR T cells, especially for long-term antitumor response. Further, maintenance of the CD4+ subset was positively correlated with the recursive killing ability of CAR T cell products derived from GBM patients. These findings identify CD4+ CAR T cells as a highly potent and clinically important T cell subset for effective CAR therapy.

  9. Human Endometrial CD98 Is Essential for Blastocyst Adhesion

    Science.gov (United States)

    Domínguez, Francisco; Simón, Carlos; Quiñonero, Alicia; Ramírez, Miguel Ángel; González-Muñoz, Elena; Burghardt, Hans; Cervero, Ana; Martínez, Sebastián; Pellicer, Antonio; Palacín, Manuel; Sánchez-Madrid, Francisco; Yáñez-Mó, María

    2010-01-01

    Background Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. Methods and Principal Findings Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. Conclusions These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window. PMID:20976164

  10. MicroRNA-139-5p acts as a tumor suppressor by targeting ELTD1 and regulating cell cycle in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shouping [Department of Diagnostic Imaging, Linyi People' s Hospital, Linyi, Shandong 276000 (China); Wang, Xianjun [Department of Neurology, Linyi People' s Hospital, Linyi, Shandong 276000 (China); Li, Xiao [Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Cao, Yuandong, E-mail: yuandongcao@sina.com [Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province (China)

    2015-11-13

    MicroRNA-139-5p was identified to be significantly down-regulated in glioblastoma multiform (GBM) by miRNA array. In this report we aimed to clarify its biological function, molecular mechanisms and direct target gene in GBM. Twelve patients with GBM were analyzed for the expression of miR-139-5p by quantitative RT-PCR. miR-139-5p overexpression was established by transfecting miR-139-5p-mimic into U87MG and T98G cells, and its effects on cell proliferation were studied using MTT assay and colony formation assays. We concluded that ectopic expression of miR-139-5p in GBM cell lines significantly suppressed cell proliferation and inducing apoptosis. Bioinformatics coupled with luciferase and western blot assays also revealed that miR-139-5p suppresses glioma cell proliferation by targeting ELTD1 and regulating cell cycle. - Highlights: • miR-139-5p is downregulated in GBM. • miR-139-5p regulates cell proliferation through inducing apoptosis. • miR-139-5p regulates glioblastoma tumorigenesis by targeting 3′UTR of ELTD1. • miR-139-5p is involved in cell cycle regulation.

  11. Three-dimensional Invasion of Human Glioblastoma Cells Remains Unchanged by X-ray and Carbon Ion Irradiation In Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Eke, Iris; Storch, Katja; Kaestner, Ina; Vehlow, Anne [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Faethe, Christina; Mueller-Klieser, Wolfgang [Institute of Physiology and Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz (Germany); Taucher-Scholz, Gisela [Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt (Germany); Temme, Achim; Schackert, Gabriele [Section of Experimental Neurosurgery/Tumor Immunology, Department of Neurosurgery, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Cordes, Nils, E-mail: Nils.Cordes@Oncoray.de [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Department of Radiation Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany)

    2012-11-15

    Purpose: Cell invasion represents one of the major determinants that treatment has failed for patients suffering from glioblastoma. Contrary findings have been reported for cell migration upon exposure to ionizing radiation. Here, the migration and invasion capability of glioblastoma cells on and in collagen type I were evaluated upon irradiation with X-rays or carbon ions. Methods and Materials: Migration on and invasion in collagen type I were evaluated in four established human glioblastoma cell lines exposed to either X-rays or carbon ions. Furthermore, clonogenic radiation survival, proliferation (5-bromo-2-deoxyuridine positivity), DNA double-strand breaks ({gamma}H2AX/53BP1-positive foci), and expression of invasion-relevant proteins (eg, {beta}1 integrin, FAK, MMP2, and MMP9) were explored. Migration and invasion assays for primary glioblastoma cells also were carried out with X-ray irradiation. Results: Neither X-ray nor carbon ion irradiation affected glioblastoma cell migration and invasion, a finding similarly observed in primary glioblastoma cells. Intriguingly, irradiated cells migrated unhampered, despite DNA double-strand breaks and reduced proliferation. Clonogenic radiation survival was increased when cells had contact with extracellular matrix. Specific inhibition of the {beta}1 integrin or proliferation-associated signaling molecules revealed a critical function of JNK, PI3K, and p38 MAPK in glioblastoma cell invasion. Conclusions: These findings indicate that X-rays and carbon ion irradiation effectively reduce proliferation and clonogenic survival without modifying the migration and invasion ability of glioblastoma cells in a collagen type I environment. Addition of targeted agents against members of the MAPK and PI3K signaling axis to conventional chemoradiation therapy seems potentially useful to optimize glioblastoma therapy.

  12. Targeting and killing of glioblastoma with activated T cells armed with bispecific antibodies

    International Nuclear Information System (INIS)

    Zitron, Ian M; Thakur, Archana; Norkina, Oxana; Barger, Geoffrey R; Lum, Lawrence G; Mittal, Sandeep

    2013-01-01

    Since most glioblastomas express both wild-type EGFR and EGFRvIII as well as HER2/neu, they are excellent targets for activated T cells (ATC) armed with bispecific antibodies (BiAbs) that target EGFR and HER2. ATC were generated from PBMC activated for 14 days with anti-CD3 monoclonal antibody in the presence of interleukin-2 and armed with chemically heteroconjugated anti-CD3×anti-HER2/neu (HER2Bi) and/or anti-CD3×anti-EGFR (EGFRBi). HER2Bi- and/or EGFRBi-armed ATC were examined for in vitro cytotoxicity using MTT and 51 Cr-release assays against malignant glioma lines (U87MG, U118MG, and U251MG) and primary glioblastoma lines. EGFRBi-armed ATC killed up to 85% of U87, U118, and U251 targets at effector:target ratios (E:T) ranging from 1:1 to 25:1. Engagement of tumor by EGFRBi-armed ATC induced Th1 and Th2 cytokine secretion by armed ATC. HER2Bi-armed ATC exhibited comparable cytotoxicity against U118 and U251, but did not kill HER2-negative U87 cells. HER2Bi- or EGFRBi-armed ATC exhibited 50—80% cytotoxicity against four primary glioblastoma lines as well as a temozolomide (TMZ)-resistant variant of U251. Both CD133– and CD133+ subpopulations were killed by armed ATC. Targeting both HER2Bi and EGFRBi simultaneously showed enhanced efficacy than arming with a single BiAb. Armed ATC maintained effectiveness after irradiation and in the presence of TMZ at a therapeutic concentration and were capable of killing multiple targets. High-grade gliomas are suitable for specific targeting by armed ATC. These data, together with additional animal studies, may provide the preclinical support for the use of armed ATC as a valuable addition to current treatment regimens

  13. Age groups related glioblastoma study based on radiomics approach.

    Science.gov (United States)

    Li, Zeju; Wang, Yuanyuan; Yu, Jinhua; Guo, Yi; Zhang, Qi

    2017-12-01

    Glioblastoma is the most aggressive malignant brain tumor with poor prognosis. Radiomics is a newly emerging and promising technique to reveal the complex relationships between high-throughput medical image features and deep information of disease including pathology, biomarkers and genomics. An approach was developed to investigate the internal relationship between magnetic resonance imaging (MRI) features and the age-related origins of glioblastomas based on a quantitative radiomics method. A fully automatic image segmentation method was applied to segment the tumor regions from three dimensional MRI images. 555 features were then extracted from the image data. By analyzing large numbers of quantitative image features, some predictive and prognostic information could be obtained by the radiomics approach. 96 patients diagnosed with glioblastoma pathologically have been divided into two age groups (age groups (T test, p age difference (T test, p= .006). In conclusion, glioblastoma in different age groups present different radiomics-feature patterns with statistical significance, which indicates that glioblastoma in different age groups should have different pathologic, protein, or genic origins.

  14. First-in-human intraoperative near-infrared fluorescence imaging of glioblastoma using cetuximab-IRDye800.

    Science.gov (United States)

    Miller, Sarah E; Tummers, Willemieke S; Teraphongphom, Nutte; van den Berg, Nynke S; Hasan, Alifia; Ertsey, Robert D; Nagpal, Seema; Recht, Lawrence D; Plowey, Edward D; Vogel, Hannes; Harsh, Griffith R; Grant, Gerald A; Li, Gordon H; Rosenthal, Eben L

    2018-04-06

    Maximizing extent of surgical resection with the least morbidity remains critical for survival in glioblastoma patients, and we hypothesize that it can be improved by enhancements in intraoperative tumor detection. In a clinical study, we determined if therapeutic antibodies could be repurposed for intraoperative imaging during resection. Fluorescently labeled cetuximab-IRDye800 was systemically administered to three patients 2 days prior to surgery. Near-infrared fluorescence imaging of tumor and histologically negative peri-tumoral tissue was performed intraoperatively and ex vivo. Fluorescence was measured as mean fluorescence intensity (MFI), and tumor-to-background ratios (TBRs) were calculated by comparing MFIs of tumor and histologically uninvolved tissue. The mean TBR was significantly higher in tumor tissue of contrast-enhancing (CE) tumors on preoperative imaging (4.0 ± 0.5) compared to non-CE tumors (1.2 ± 0.3; p = 0.02). The TBR was higher at a 100 mg dose than at 50 mg (4.3 vs. 3.6). The smallest detectable tumor volume in a closed-field setting was 70 mg with 50 mg of dye and 10 mg with 100 mg. On sections of paraffin embedded tissues, fluorescence positively correlated with histological evidence of tumor. Sensitivity and specificity of tumor fluorescence for viable tumor detection was calculated and fluorescence was found to be highly sensitive (73.0% for 50 mg dose, 98.2% for 100 mg dose) and specific (66.3% for 50 mg dose, 69.8% for 100 mg dose) for viable tumor tissue in CE tumors while normal peri-tumoral tissue showed minimal fluorescence. This first-in-human study demonstrates the feasibility and safety of antibody based imaging for CE glioblastomas.

  15. Multifuntional Nanotherapeutics for the Combinatorial Drug and Gene Therapy in the Treatment of Glioblastoma Multiforme

    Science.gov (United States)

    Hourigan, Breanne

    Glioblastoma multiforme (GBM), a grade IV glioma, is the most common primary brain tumor, affecting about 3 out of 100,000 persons per year in the United States. GBM accounts for about 80% of primary malignant brain tumors, and is also the most aggressive of malignant brain tumors. With exhaustive treatment, survival only averages between 12 and 15 months, with a 2-year survival rate less than 25%. New therapeutic strategies are necessary to improve the outcomes of this disease. Chemotherapy with temozolomide (TMZ), a DNA alkylating agent, is used as a first-line of treatment for GBM. However, GBM tumors develop resistance to TMZ over time due to increased expression of O6-methylguanine-DNA methyltransferase (MGMT), a gene responsible for DNA repair. We previously developed cationic, amphiphilic copolymer poly(lactide-co-glycolide)-g-polyethylenimine (PgP) and demonstrated its utility for nucleic acid delivery. Here, we examine the ability of PgP polyplexes to overcome TMZ resistance and improve therapeutic efficacy through combination drug and gene therapy for GBM treatment. In this study, we evaluated the ability of PgP to deliver siRNA targeting to MGMT (siMGMT), a gene responsible for drug resistance in GBM. Our results demonstrated that PgP effectively forms stable complex with siRNA and protects siRNAs from heparin competition assay, serum- and ribonuclease-mediated degradation, confirming the potential of the polyplex for in vivo delivery. Results from MTT assays showed that PgP/siRNA polyplexes exhibited minimal cytotoxicity compared to untreated cells when incubated with T98G human GBM cells. We also demonstrated that PgP/siMGMT polyplexes mediate knockdown of MGMT protein as well as a significant ˜56% and ˜68% knockdown of MGMT mRNA in T98G GBM cells compared to cells treated with PgP complexed with non-targeting siRNA (siNT) at a 60:1 and 80:1 nitrogen:phosphate (N:P) ratio, respectively. Further, co-incubation of PgP/siMGMT polyplexes with TMZ

  16. Fc receptors for mouse IgG1 on human monocytes: polymorphism and role in antibody-induced T cell proliferation.

    Science.gov (United States)

    Tax, W J; Hermes, F F; Willems, R W; Capel, P J; Koene, R A

    1984-09-01

    In previous studies, it was shown that there is polymorphism in the mitogenic effect of mouse IgG1 monoclonal antibodies against the T3 antigen of human T cells. This polymorphism implies that IgG1 anti-T3 antibodies are not mitogenic for T cells from 30% of healthy individuals. The present results demonstrate that this polymorphism is caused by polymorphism of an Fc receptor for mouse IgG1, present on human monocytes. The Fc receptor for murine IgG1 could be detected by a newly developed rosetting assay on monocytes from all individuals responsive to the mitogenic effect of IgG1 anti-T3 antibodies. This Fc receptor was not detectable on monocytes from those individuals exhibiting no mitogenic responses to IgG1 anti-T3 monoclonal antibodies. Cross-linking of T3 antigens appears to be essential for antibody-induced mitosis of T cells, because mononuclear cells that did not proliferate in response to WT 31 (an IgG1 antibody against T3 antigen) showed a proliferative response to Sepharose beads coated with WT 31. The Fc receptor--if functionally present--may be involved in the cross-linking of T3 antigens through anti-T3 antibodies. Further evidence for the involvement of this Fc receptor in antibody-induced T cell proliferation was provided by inhibition studies. Immune complexes containing IgG1 antibodies were able to inhibit the proliferative response to IgG1 anti-T3 antibodies. This inhibition by immune complexes appears to be mediated through the monocyte Fc receptor for mouse IgG1. These findings are important for the interpretation of previously described inhibitory effects of anti-T cell monoclonal antibodies on T cell proliferation, and show that such inhibitory effects may be monocyte-mediated (via immune complexes) rather than caused by a direct involvement of the respective T cell antigens in T cell mitosis. The Fc receptor for mouse IgG1 plays a role in antibody-induced T cell proliferation. Its polymorphism may have important implications for the

  17. Arctigenin, a natural lignan compound, induces G0/G1 cell cycle arrest and apoptosis in human glioma cells.

    Science.gov (United States)

    Maimaitili, Aisha; Shu, Zunhua; Cheng, Xiaojiang; Kaheerman, Kadeer; Sikandeer, Alifu; Li, Weimin

    2017-02-01

    The aim of the current study was to investigate the anticancer potential of arctigenin, a natural lignan compound, in malignant gliomas. The U87MG and T98G human glioma cell lines were treated with various concentrations of arctigenin for 48 h and the effects of arctigenin on the aggressive phenotypes of glioma cells were assessed. The results demonstrated that arctigenin dose-dependently inhibited the growth of U87MG and T98G cells, as determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and bromodeoxyuridine incorporation assays. Arctigenin exposure also induced a 60-75% reduction in colony formation compared with vehicle-treated control cells. However, arctigenin was not observed to affect the invasiveness of glioma cells. Arctigenin significantly increased the proportion of cells in the G 0 /G 1 phase and reduced the number of cells in the S phase, as compared with the control group (Parctigenin increased the expression levels of p21, retinoblastoma and p53 proteins, and significantly decreased the expression levels of cyclin D1 and cyclin-dependent kinase 4 proteins. Additionally, arctigenin was able to induce apoptosis in glioma cells, coupled with increased expression levels of cleaved caspase-3 and the pro-apoptotic BCL2-associated X protein. Furthermore, arctigenin-induced apoptosis was significantly suppressed by the pretreatment of cells with Z-DEVD-FMK, a caspase-3 inhibitor. In conclusion, the results suggest that arctigenin is able to inhibit cell proliferation and may induce apoptosis and cell cycle arrest at the G 0 /G 1 phase in glioma cells. These results warrant further investigation of the anticancer effects of arctigenin in animal models of gliomas.

  18. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Honghai; Du, Bin [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Jiang, Huili [Friendship Nephrology and Blood Purification Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China); Gao, Jun, E-mail: gaoj1666@126.com [Department of Neurosurgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013 (China)

    2016-01-22

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  19. Over-expression of CHAF1A promotes cell proliferation and apoptosis resistance in glioblastoma cells via AKT/FOXO3a/Bim pathway

    International Nuclear Information System (INIS)

    Peng, Honghai; Du, Bin; Jiang, Huili; Gao, Jun

    2016-01-01

    Chromatinassembly factor 1 subunit A (CHAF1A) has been reported to be involved in several human diseases including cancer. However, the biological and clinical significance of CHAF1A in glioblastoma progression remains largely unknown. In this study, we found that up-regulation of CHAF1A happens frequently in glioblastoma tissues and is associated with glioblastoma prognosis. Knockout of CHAF1A by CRISPR/CAS9 technology induce G1 phase arrest and apoptosis in glioblastoma cell U251 and U87. In addition, inhibition of CHAF1A influenced the signal transduction of the AKT/FOXO3a/Bim axis, which is required for glioblastoma cell proliferation. Taken together, these results show that CHAF1A contributes to the proliferation of glioblastoma cells and may be developed as a de novo drug target and prognosis biomarker of glioblastoma.

  20. Extracellular sphingosine-1-phosphate: a novel actor in human glioblastoma stem cell survival.

    Directory of Open Access Journals (Sweden)

    Elena Riccitelli

    Full Text Available Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs, a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ, and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source

  1. CAR T-cell therapy for glioblastoma: ready for the next round of clinical testing?

    Science.gov (United States)

    Prinzing, Brooke L; Gottschalk, Stephen M; Krenciute, Giedre

    2018-05-01

    The outcome for patients with glioblastoma (GBM) remains poor, and there is an urgent need to develop novel therapeutic approaches. T cells genetically modified with chimeric antigen receptors (CARs) hold the promise to improve outcomes since they recognize and kill cells through different mechanisms than conventional therapeutics. Areas covered: This article reviews CAR design, tumor associated antigens expressed by GBMs that can be targeted with CAR T cells, preclinical and clinical studies conducted with CAR T cells, and genetic approaches to enhance their effector function. Expert commentary: While preclinical studies have highlighted the potent anti-GBM activity of CAR T cells, the initial foray of CAR T-cell therapies into the clinic resulted only in limited benefits for GBM patients. Additional genetic modification of CAR T cells has resulted in a significant increase in their anti-GBM activity in preclinical models. We are optimistic that clinical testing of these enhanced CAR T cells will be safe and result in improved anti-glioma activity in GBM patients.

  2. Direct anti-inflammatory effects of granulocyte colony-stimulating factor (G-CSF) on activation and functional properties of human T cell subpopulations in vitro.

    Science.gov (United States)

    Malashchenko, Vladimir Vladimirovich; Meniailo, Maxsim Evgenievich; Shmarov, Viacheslav Anatolievich; Gazatova, Natalia Dinislamovna; Melashchenko, Olga Borisovna; Goncharov, Andrei Gennadievich; Seledtsova, Galina Victorovna; Seledtsov, Victor Ivanovich

    2018-03-01

    We investigated the direct effects of human granulocyte colony-stimulating factor (G-CSF) on functionality of human T-cell subsets. CD3 + T-lymphocytes were isolated from blood of healthy donors by positive magnetic separation. T cell activation with particles conjugated with antibodies (Abs) to human CD3, CD28 and CD2 molecules increased the proportion of cells expressing G-CSF receptor (G-CSFR, CD114) in all T cell subpopulations studied (CD45RA + /CD197 + naive T cells, CD45RA - /CD197 + central memory T cells, CD45RA - /CD197 - effector memory T cells and CD45RA + /CD197 - terminally differentiated effector T cells). Upon T-cell activation in vitro, G-CSF (10.0 ng/ml) significantly and specifically enhanced the proportion of CD114 + T cells in central memory CD4 + T cell compartment. A dilution series of G-CSF (range, 0.1-10.0 ng/ml) was tested, with no effect on the expression of CD25 (interleukin-2 receptor α-chain) on activated T cells. Meanwhile, G-CSF treatment enhanced the proportion of CD38 + T cells in CD4 + naïve T cell, effector memory T cell and terminally differentiated effector T cell subsets, as well as in CD4 - central memory T cells and terminally differentiated effector T cells. G-CSF did not affect IL-2 production by T cells; relatively low concentrations of G-CSF down-regulated INF-γ production, while high concentrations of this cytokine up-regulated IL-4 production in activated T cells. The data obtained suggests that G-CSF could play a significant role both in preventing the development of excessive and potentially damaging inflammatory reactivity, and in constraining the expansion of potentially cytodestructive T cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Immunotherapeutic Potential of Oncolytic H-1 Parvovirus: Hints of Glioblastoma Microenvironment Conversion towards Immunogenicity.

    Science.gov (United States)

    Angelova, Assia L; Barf, Milena; Geletneky, Karsten; Unterberg, Andreas; Rommelaere, Jean

    2017-12-15

    Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, including the autonomous protoparvovirus H-1 (H-1PV), show great promise as novel immunotherapeutic tools. In a first phase I/IIa clinical trial (ParvOryx01), H-1PV was safe and well tolerated when locally or systemically administered to recurrent glioblastoma patients. The virus was able to cross the blood-brain (tumor) barrier after intravenous infusion. Importantly, H-1PV treatment of glioblastoma patients was associated with immunogenic changes in the tumor microenvironment. Tumor infiltration with activated cytotoxic T cells, induction of cathepsin B and inducible nitric oxide (NO) synthase (iNOS) expression in tumor-associated microglia/macrophages (TAM), and accumulation of activated TAM in cluster of differentiation (CD) 40 ligand (CD40L)-positive glioblastoma regions was detected. These are the first-in-human observations of H-1PV capacity to switch the immunosuppressed tumor microenvironment towards immunogenicity. Based on this pilot study, we present a tentative model of H-1PV-mediated modulation of glioblastoma microenvironment and propose a combinatorial therapeutic approach taking advantage of H-1PV-induced microglia/macrophage activation for further (pre)clinical testing.

  4. 211At-α-dose dependence of poly-ADP-ribosylation of human glioblastoma cells in vitro. Suitability in cancer therapy?

    International Nuclear Information System (INIS)

    Schneeweiss, F.H.A.

    1999-01-01

    Aim: It was intended to test the biological response (poly-ADP-ribosylation of cellular proteins) of α-particles from extracellular 211 At for enhanced damage to human glioblastoma cells in vitro and to discuss its suitability for potential application in therapy of high-grade gliomas. Materials and Methods: Confluent cultures of human glioblastoma cells were exposed to different doses of α-radiations from homogeneously distributed extracellular 211 At. Cellular poly-ADP-ribosylation of all proteins including histones was monitored since it is an indirect but sensitive indicator of chromatin damage and putative repair in both normal and malignant mammalian cells. Results: A significant diminution (average 85.6%) in poly-ADP-ribosylation of total cellular proteins relative to that for non-irradiated glioblastoma cells was observed following 0.025 to 1.0 Gy α-radiations. In the dose range of 0.0025 to 0.01 Gy there was an increase with a maximum value of approximately 119.0% at 0.0025 Gy. Below 0.0025 Gy no change in poly-ADP-ribosylation was observed. Conclusions: Level of cellular poly-ADP-ribosylation of proteins at 0.025 to 1.0 Gy of α-radiation dose from 211 At appears to cause enhanced damage by creating molecular conditions which are not conductive to repair of DNA damages in human glioblastoma cells in vitro. Therefore, it is assumed that clinical application of 211 At at least in this dose range might enhance clinical efficacy in radiotherapy of cancer. (orig.) [de

  5. Ultrastructural characterization of primary cilia in pathologically characterized human glioblastoma multiforme (GBM) tumors.

    Science.gov (United States)

    Moser, Joanna J; Fritzler, Marvin J; Rattner, Jerome B

    2014-01-01

    Primary cilia are non-motile sensory cytoplasmic organelles that are involved in cell cycle progression. Ultrastructurally, the primary cilium region is complex, with normal ciliogenesis progressing through five distinct morphological stages in human astrocytes. Defects in early stages of ciliogenesis are key features of astrocytoma/glioblastoma cell lines and provided the impetus for the current study which describes the morphology of primary cilia in molecularly characterized human glioblastoma multiforme (GBM) tumors. Seven surgically resected human GBM tissue samples were molecularly characterized according to IDH1/2 mutation status, EGFR amplification status and MGMT promoter methylation status and were examined for primary cilia expression and structure using indirect immunofluorescence and electron microscopy. We report for the first time that primary cilia are disrupted in the early stages of ciliogenesis in human GBM tumors. We confirm that immature primary cilia and basal bodies/centrioles have aberrant ciliogenesis characteristics including absent paired vesicles, misshaped/swollen vesicular hats, abnormal configuration of distal appendages, and discontinuity of centriole microtubular blades. Additionally, the transition zone plate is able to form in the absence of paired vesicles on the distal end of the basal body and when a cilium progresses beyond the early stages of ciliogenesis, it has electron dense material clumped along the transition zone and a darkening of the microtubules at the proximal end of the cilium. Primary cilia play a role in a variety of human cancers. Previously primary cilia structure was perturbed in cultured cell lines derived from astrocytomas/glioblastomas; however there was always some question as to whether these findings were a cell culture phenomena. In this study we confirm that disruptions in ciliogenesis at early stages do occur in GBM tumors and that these ultrastructural findings bear resemblance to those previously

  6. Base pair mismatches and carcinogen-modified bases in DNA: an NMR study of G x T and G x O4meT pairing in dodecanucleotide duplexes

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Kouchakdjian, M.; Li, B.F.L.; Swann, P.F.; Patel, D.J.

    1988-01-01

    High-resolution two-dimensional NMR studies have been completed on the self-complementary d(C-G-C-G-A-G-C-T-T-G-C-G) duplex (designated G x T 12-mer) and the self-complementary d(C-G-C-G-A-G-C-T-O 4 meT-G-C-G) duplex (designated G x O 4 meT 12-mer) containing G x T and G x O 4 meT pairs at identical positions four base pairs in from either end of the duplex. The exchangeable and nonexchangeable proton resonances have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOESY) spectra for the G x T 12-mer and G x O 4 meT 12-mer duplexes in H 2 O and D 2 O solution. The guanosine and thymidine imino protons in the G x T mismatch resonate at 10.57 and 11.98 ppm, respectively, and exhibit a strong NOE between themselves and to imino protons of flanking base pairs in the G x T 12-mer duplex. The large upfield chemical shift of this proton relative to that of the imino proton resonance of G in the G x T mismatch or in G x C base pairs indicates that hydrogen bonding to O 4 meT is either very weak or absent. This guanosine imino proton has an NOE to the OCH 3 group of O 4 meT across the pair and NOEs to the imino protons of flanking base pairs. Taken together with data from the NMR of nonexchangeable protons, this shows that both G and O 4 meT have anti-glycosidic torsion angles and are stacked into the duplex. Comparison of the intensity of the NOEs between the guanosine imino proton and the OCH 3 of O 4 meT as well as other protons in its vicinity demonstrates that the OCH 3 group of O 4 meT adopts the syn orientation with respect to N3 of the methylated thymidine. The authors propose an alternate base pairing mode stabilized by one short hydrogen bond between the 2-amino group of guanosine and the 2-carbonyl group of O 4 met

  7. CAR T Cells Targeting Podoplanin Reduce Orthotopic Glioblastomas in Mouse Brains.

    Science.gov (United States)

    Shiina, Satoshi; Ohno, Masasuke; Ohka, Fumiharu; Kuramitsu, Shunichiro; Yamamichi, Akane; Kato, Akira; Motomura, Kazuya; Tanahashi, Kuniaki; Yamamoto, Takashi; Watanabe, Reiko; Ito, Ichiro; Senga, Takeshi; Hamaguchi, Michinari; Wakabayashi, Toshihiko; Kaneko, Mika K; Kato, Yukinari; Chandramohan, Vidyalakshmi; Bigner, Darell D; Natsume, Atsushi

    2016-03-01

    Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in adults with a 5-year overall survival rate of less than 10%. Podoplanin (PDPN) is a type I transmembrane mucin-like glycoprotein, expressed in the lymphatic endothelium. Several solid tumors overexpress PDPN, including the mesenchymal type of GBM, which has been reported to present the worst prognosis among GBM subtypes. Chimeric antigen receptor (CAR)-transduced T cells can recognize predefined tumor surface antigens independent of MHC restriction, which is often downregulated in gliomas. We constructed a lentiviral vector expressing a third-generation CAR comprising a PDPN-specific antibody (NZ-1-based single-chain variable fragment) with CD28, 4-1BB, and CD3ζ intracellular domains. CAR-transduced peripheral blood monocytes were immunologically evaluated by calcein-mediated cytotoxic assay, ELISA, tumor size, and overall survival. The generated CAR T cells were specific and effective against PDPN-positive GBM cells in vitro. Systemic injection of the CAR T cells into an immunodeficient mouse model inhibited the growth of intracranial glioma xenografts in vivo. CAR T-cell therapy that targets PDPN would be a promising adoptive immunotherapy to treat mesenchymal GBM. ©2016 American Association for Cancer Research.

  8. Identification of a candidate biomarker from perfusion MRI to anticipate glioblastoma progression after chemoradiation

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, J. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Radiation Oncology, Toulouse (France); Tensaouti, F. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Chaltiel, L. [Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Biostatistics, Toulouse (France); Lotterie, J.A. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); CHU Rangueil, Department of Nuclear Medicine, Toulouse (France); Catalaa, I. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); CHU Rangueil, Department of Radiology, Toulouse (France); Sunyach, M.P. [Centre Leon Berard, Department of Radiation Oncology, Lyon (France); Ibarrola, D. [CERMEP - Imagerie du Vivant, Lyon (France); Noel, G. [EA 3430, University of Strasbourg, Department of Radiation Oncology, Centre Paul Strauss, Strasbourg (France); Truc, G. [Centre Georges-Francois Leclerc, Department of Radiation Oncology, Dijon (France); Walker, P. [University of Burgundy, Laboratory of Electronics, Computer Science and Imaging (Le2I), UMR 6306 CNRS, Dijon (France); Magne, N. [Institut de cancerologie Lucien-Neuwirth, Department of Radiation Oncology, Saint-Priest-en-Jarez (France); Charissoux, M. [Department of Radiation Oncology, Institut du Cancer de Montpellier, Montpellier (France); Ken, S. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Medical Physics, Toulouse (France); Peran, P. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); Universite Toulouse III Paul Sabatier, UMR 1214, Toulouse (France); Berry, I. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (France); CHU Rangueil, Department of Nuclear Medicine, Toulouse (France); Universite Toulouse III Paul Sabatier, UMR 1214, Toulouse (France); Moyal, E.C. [Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Radiation Oncology, Toulouse (France); Universite Toulouse III Paul Sabatier, Toulouse (France); INSERM U1037, Centre de Recherches contre le Cancer de Toulouse, Toulouse (FR); Laprie, A. [INSERM UMR 1214, TONIC (TOulouse NeuroImaging Centre), Toulouse (FR); Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopole, Department of Radiation Oncology, Toulouse (FR); Universite Toulouse III Paul Sabatier, Toulouse (FR)

    2016-11-15

    To identify relevant relative cerebral blood volume biomarkers from T2* dynamic-susceptibility contrast magnetic resonance imaging to anticipate glioblastoma progression after chemoradiation. Twenty-five patients from a prospective study with glioblastoma, primarily treated by chemoradiation, were included. According to the last follow-up MRI confirmed status, patients were divided into: relapse group (n = 13) and control group (n = 12). The time of last MR acquisition was t{sub end}; MR acquisitions performed at t{sub end-2M}, t{sub end-4M} and t{sub end-6M} (respectively 2, 4 and 6 months before t{sub end}) were analyzed to extract relevant variations among eleven perfusion biomarkers (B). These variations were assessed through R(B), as the absolute value of the ratio between ∇B from t{sub end-4M} to t{sub end-2M} and ∇B from t{sub end-6M} to t{sub end-4M}. The optimal cut-off for R(B) was determined using receiver-operating-characteristic curve analysis. The fraction of hypoperfused tumor volume (F{sub h}P{sub g}) was a relevant biomarker. A ratio R(F{sub h}P{sub g}) ≥ 0.61 would have been able to anticipate relapse at the next follow-up with a sensitivity/specificity/accuracy of 92.3 %/63.6 %/79.2 %. High R(F{sub h}Pg) (≥0.61) was associated with more relapse at t{sub end} compared to low R(F{sub h}Pg) (75 % vs 12.5 %, p = 0.008). Iterative analysis of F{sub h}P{sub g} from consecutive examinations could provide surrogate markers to predict progression at the next follow-up. (orig.)

  9. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1 Dose-Escalation Trial.

    Science.gov (United States)

    Ahmed, Nabil; Brawley, Vita; Hegde, Meenakshi; Bielamowicz, Kevin; Kalra, Mamta; Landi, Daniel; Robertson, Catherine; Gray, Tara L; Diouf, Oumar; Wakefield, Amanda; Ghazi, Alexia; Gerken, Claudia; Yi, Zhongzhen; Ashoori, Aidin; Wu, Meng-Fen; Liu, Hao; Rooney, Cliona; Dotti, Gianpietro; Gee, Adrian; Su, Jack; Kew, Yvonne; Baskin, David; Zhang, Yi Jonathan; New, Pamela; Grilley, Bambi; Stojakovic, Milica; Hicks, John; Powell, Suzanne Z; Brenner, Malcolm K; Heslop, Helen E; Grossman, Robert; Wels, Winfried S; Gottschalk, Stephen

    2017-08-01

    Glioblastoma is an incurable tumor, and the therapeutic options for patients are limited. To determine whether the systemic administration of HER2-specific chimeric antigen receptor (CAR)-modified virus-specific T cells (VSTs) is safe and whether these cells have antiglioblastoma activity. In this open-label phase 1 dose-escalation study conducted at Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, patients with progressive HER2-positive glioblastoma were enrolled between July 25, 2011, and April 21, 2014. The duration of follow-up was 10 weeks to 29 months (median, 8 months). Monotherapy with autologous VSTs specific for cytomegalovirus, Epstein-Barr virus, or adenovirus and genetically modified to express HER2-CARs with a CD28.ζ-signaling endodomain (HER2-CAR VSTs). Primary end points were feasibility and safety. The key secondary end points were T-cell persistence and their antiglioblastoma activity. A total of 17 patients (8 females and 9 males; 10 patients ≥18 years [median age, 60 years; range, 30-69 years] and 7 patients VSTs (1 × 106/m2 to 1 × 108/m2) without prior lymphodepletion. Infusions were well tolerated, with no dose-limiting toxic effects. HER2-CAR VSTs were detected in the peripheral blood for up to 12 months after the infusion by quantitative real-time polymerase chain reaction. Of 16 evaluable patients (9 adults and 7 children), 1 had a partial response for more than 9 months, 7 had stable disease for 8 weeks to 29 months, and 8 progressed after T-cell infusion. Three patients with stable disease are alive without any evidence of progression during 24 to 29 months of follow-up. For the entire study cohort, median overall survival was 11.1 months (95% CI, 4.1-27.2 months) from the first T-cell infusion and 24.5 months (95% CI, 17.2-34.6 months) from diagnosis. Infusion of autologous HER2-CAR VSTs is safe and can be associated with clinical benefit for patients with progressive glioblastoma

  10. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes

    Directory of Open Access Journals (Sweden)

    Yuan Xie

    2015-10-01

    Full Text Available Glioblastoma (GBM is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs. To meet the present shortage of relevant GBM cell (GC lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research.

  11. Radiotherapy effect on the release of tumor micro-vesicles by glioblastoma cells

    International Nuclear Information System (INIS)

    Ding, Haixia

    2014-01-01

    Radiation therapy is a major therapeutic tool for glioblastoma (GBM). However, the post-radiation recurrence is almost inevitable, due to the emergence of a subpopulation of radioresistant cancer cells with greater proliferative, invasive, and pro-angiogenic capacities. The objective of this study was to investigate in vitro how irradiated cancer cells affect the function of untreated neighboring tumor cells and endothelial cells, focusing on signals exchange initiated by irradiation, such as soluble factors and tumor micro-vesicles (TMVs). Radiotherapy has slowed down the proliferation of GBM cells (T98G, U87) and induced mitotic death of 50-60%, without significant apoptosis. Through long-term monitoring of cell growth (xCELLigence) and wound-healing assay, we have confirmed that surviving GBM cells after irradiation release signals that can change the functions of endothelial cells HUVEC and non-irradiated tumor cells. In addition to the secretion of known soluble factors (VEGF, uPA), we were able to show using scanning electron microscopy and the Nanoparticle Tracking Analysis (NTA), the release of tumor micro-vesicles (TMVS), whose size was generally less than 500 nm. By NTA and flow cytometry, we have shown that the release of TMVs (exosome + 'shedding vesicles') can be significantly stimulated by irradiation in two lines, in a time-dependent manner. According to the proteomics analysis, soluble factors such as VEGF or IL-8, well known as pro-angiogenic factors, rather contribute to promote the survival or proliferation of HUVEC, while the released TMVs after irradiation, significantly altered the migration abilities of non-irradiated HUVEC and tumor cells. The pro-migratory properties of TMVs could thus contribute to glioblastoma recurrence after irradiation. (author) [fr

  12. Early neuroimaging findings of glioblastoma mimicking non-neoplastic cerebral lesion.

    Science.gov (United States)

    Jung, Tae-Young; Jung, Shin

    2007-09-01

    A 54-year-old man and a 63-year-old woman presented with glioblastoma manifesting as seizure and headache, respectively. Magnetic resonance imaging of the two patients revealed hypointense area on T(1)-weighted imaging, and hyperintense area on T(2)-weighted and diffusion-weighted imaging, with no enhancement after gadolinium administration. Both patients underwent conservative therapy under diagnoses of non-neoplastic cerebral lesion. Six months later, they suffered aggravated symptoms and new neurological deficits. Follow-up magnetic resonance imaging revealed hypointense area on diffusion-weighted imaging and ring enhancement on T(1)-weighted imaging with gadolinium at the site of the previously detected lesions. The tumors showed growth pattern of superficial origin. The large enhanced masses were totally removed through craniotomy under neuronavigator guidance. The histological diagnoses were glioblastoma. Glioblastoma may mimic non-neoplastic conditions on neuroimaging in the early stages. Close follow up of such patients is essential.

  13. Development of bioactive materials for glioblastoma therapy

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-09-01

    Full Text Available Glioblastoma is the most common and deadly human brain cancers. Unique barriers hinder the drug delivering pathway due to the individual position of glioblastoma, including blood-brain barrier and blood-brain tumor barrier. Numerous bioactive materials have been exploited and applied as the transvascular delivery carriers of therapeutic drugs. They promote site-specific accumulation and long term release of the encapsulated drugs at the tumor sites and reduce side effects with systemic delivery. And the delivery systems exhibit a certain extent of anti-glioblastoma effect and extend the median survival time. However, few of them step into the clinical trials. In this review, we will investigate the recent studies of bioactive materials for glioblastoma chemotherapy, including the inorganic materials, lipids and polymers. These bioactive materials construct diverse delivery vehicles to trigger tumor sites in brain intravenously. Herein, we exploit their functionality in drug delivery and discuss the deficiency for the featured tumors, to provide guidance for establishing optimized therapeutic drug formulation for anti-glioblastoma therapy and pave the way for clinical application.

  14. Dynamic association of NUP98 with the human genome.

    Directory of Open Access Journals (Sweden)

    Yun Liang

    Full Text Available Faithful execution of developmental gene expression programs occurs at multiple levels and involves many different components such as transcription factors, histone-modification enzymes, and mRNA processing proteins. Recent evidence suggests that nucleoporins, well known components that control nucleo-cytoplasmic trafficking, have wide-ranging functions in developmental gene regulation that potentially extend beyond their role in nuclear transport. Whether the unexpected role of nuclear pore proteins in transcription regulation, which initially has been described in fungi and flies, also applies to human cells is unknown. Here we show at a genome-wide level that the nuclear pore protein NUP98 associates with developmentally regulated genes active during human embryonic stem cell differentiation. Overexpression of a dominant negative fragment of NUP98 levels decreases expression levels of NUP98-bound genes. In addition, we identify two modes of developmental gene regulation by NUP98 that are differentiated by the spatial localization of NUP98 target genes. Genes in the initial stage of developmental induction can associate with NUP98 that is embedded in the nuclear pores at the nuclear periphery. Alternatively, genes that are highly induced can interact with NUP98 in the nuclear interior, away from the nuclear pores. This work demonstrates for the first time that NUP98 dynamically associates with the human genome during differentiation, revealing a role of a nuclear pore protein in regulating developmental gene expression programs.

  15. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-06-01

    Full Text Available Abstract Background Glioblastoma multiforme (GBM is an invariably fatal central nervous system tumor despite treatment with surgery, radiation, and chemotherapy. Further insights into the molecular and cellular mechanisms that drive GBM formation are required to improve patient outcome. MicroRNAs are emerging as important regulators of cellular differentiation and proliferation, and have been implicated in the etiology of a variety of cancers, yet the role of microRNAs in GBM remains poorly understood. In this study, we investigated the role of microRNAs in regulating the differentiation and proliferation of neural stem cells and glioblastoma-multiforme tumor cells. Methods We used quantitative RT-PCR to assess microRNA expression in high-grade astrocytomas and adult mouse neural stem cells. To assess the function of candidate microRNAs in high-grade astrocytomas, we transfected miR mimics to cultured-mouse neural stem cells, -mouse oligodendroglioma-derived stem cells, -human glioblastoma multiforme-derived stem cells and -glioblastoma multiforme cell lines. Cellular differentiation was assessed by immunostaining, and cellular proliferation was determined using fluorescence-activated cell sorting. Results Our studies revealed that expression levels of microRNA-124 and microRNA-137 were significantly decreased in anaplastic astrocytomas (World Health Organization grade III and glioblastoma multiforme (World Health Organization grade IV relative to non-neoplastic brain tissue (P erbB tumors and cluster of differentiation 133+ human glioblastoma multiforme-derived stem cells (SF6969. Transfection of microRNA-124 or microRNA-137 also induced G1 cell cycle arrest in U251 and SF6969 glioblastoma multiforme cells, which was associated with decreased expression of cyclin-dependent kinase 6 and phosphorylated retinoblastoma (pSer 807/811 proteins. Conclusion microRNA-124 and microRNA-137 induce differentiation of adult mouse neural stem cells, mouse

  16. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells

    Science.gov (United States)

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; de Oliveira, Daniela Mara; Marti, Luciana C.; Cabral, Francisco Romero; de Souza, Jean Gabriel; Boufleur, Pamela; Malheiros, Suzana M.F.; de Paiva Neto, Manuel A.; da Cruz, Edgard Ferreira; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2016-01-01

    Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types. PMID:27244897

  17. Activation of p53 by nutlin-3a induces apoptosis and cellular senescence in human glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Ruth Villalonga-Planells

    2011-04-01

    Full Text Available Glioblastoma multiforme (GBM is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.

  18. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  19. Pluronic-based micelle encapsulation potentiates myricetin-induced cytotoxicity in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Tang XJ

    2016-10-01

    Full Text Available Xiang-Jun Tang,1,* Kuan-Ming Huang,1,* Hui Gui,1,* Jun-Jie Wang,2 Jun-Ti Lu,1 Long-Jun Dai,1,3 Li Zhang,1 Gang Wang2 1Department of Neurosurgery, TaiHe Hospital, Hubei University of Medicine, Shiyan, 2Department of Pharmaceutics, Shanghai Eighth People’s Hospital, Jiangsu University, Shanghai, People’s Republic of China; 3Department of Surgery, University of British Columbia, Vancouver, BC, Canada *These authors contributed equally to this work Abstract: As one of the natural herbal flavonoids, myricetin has attracted much research interest, mainly owing to its remarkable anticancer properties and negligible side effects. It holds great potential to be developed as an ideal anticancer drug through improving its bioavailability. This study was performed to investigate the effects of Pluronic-based micelle encapsulation on myricetin-induced cytotoxicity and the mechanisms underlying its anticancer properties in human glioblastoma cells. Cell viability was assessed using a methylthiazol tetrazolium assay and a real-time cell analyzer. Immunoblotting and quantitative reverse transcriptase polymerase chain reaction techniques were used for determining the expression levels of related molecules in protein and mRNA. The results indicated that myricetin-induced cytotoxicity was highly potentiated by the encapsulation of myricetin. Mitochondrial apoptotic pathway was demonstrated to be involved in myricetin-induced glioblastoma cell death. The epidermal growth factor receptor (EGFR/PI3K/Akt pathway located in the plasma membrane and cytosol and the RAS-ERK pathway located in mitochondria served as upstream and downstream targets, respectively, in myricetin-induced apoptosis. MiR-21 inhibitors interrupted the expression of EGFR, p-Akt, and K-Ras in the same fashion as myricetin-loaded mixed micelles (MYR-MCs and miR-21 expression were dose-dependently inhibited by MYR-MCs, indicating the interaction of miR-21 with MYR-MCs. This study provided evidence

  20. Human Leukocyte Antigen-G and Regulatory T Cells during Specific Immunotherapy for Pollen Allergy

    DEFF Research Database (Denmark)

    Sørensen, Anja Elaine; Johnsen, Claus R; Dalgaard, Louise Torp

    2013-01-01

    of the cytokine profile towards a TH1-polarized immune response. We investigated the effects of SIT on T cells, on immunomodulation of human leukocyte antigen (HLA)-G, which has been associated with allergy, on regulatory cytokine expression, and on serum allergen-specific antibody subclasses (IgE and IgG4......). Methods: Eleven birch and/or grass pollen-allergic patients and 10 healthy nonatopic controls were studied before and during SIT. Tregs, chemokine receptors, soluble HLA-G (sHLA-G), Ig-like transcript (ILT) 2, specific IgE, and IgG4 were studied. Peripheral blood mononuclear cells (PBMCs) were stimulated...... with pollen extract in vitro and immune factors were evaluated. Results: During SIT, the main changes in the peripheral blood were an increase in CXCR3+CD4+CD25+CD127low/- Tregs and a decrease in CCR4+CD4+CD25+CD127low/- Tregs, an increase in allergen-specific IgG4, and a decrease in sHLA-G during the first...

  1. Adult, embryonic and fetal hemoglobin are expressed in human glioblastoma cells.

    Science.gov (United States)

    Emara, Marwan; Turner, A Robert; Allalunis-Turner, Joan

    2014-02-01

    Hemoglobin is a hemoprotein, produced mainly in erythrocytes circulating in the blood. However, non-erythroid hemoglobins have been previously reported in other cell types including human and rodent neurons of embryonic and adult brain, but not astrocytes and oligodendrocytes. Human glioblastoma multiforme (GBM) is the most aggressive tumor among gliomas. However, despite extensive basic and clinical research studies on GBM cells, little is known about glial defence mechanisms that allow these cells to survive and resist various types of treatment. We have shown previously that the newest members of vertebrate globin family, neuroglobin (Ngb) and cytoglobin (Cygb), are expressed in human GBM cells. In this study, we sought to determine whether hemoglobin is also expressed in GBM cells. Conventional RT-PCR, DNA sequencing, western blot analysis, mass spectrometry and fluorescence microscopy were used to investigate globin expression in GBM cell lines (M006x, M059J, M059K, M010b, U87R and U87T) that have unique characteristics in terms of tumor invasion and response to radiotherapy and hypoxia. The data showed that α, β, γ, δ, ζ and ε globins are expressed in all tested GBM cell lines. To our knowledge, we are the first to report expression of fetal, embryonic and adult hemoglobin in GBM cells under normal physiological conditions that may suggest an undefined function of those expressed hemoglobins. Together with our previous reports on globins (Ngb and Cygb) expression in GBM cells, the expression of different hemoglobins may constitute a part of series of active defence mechanisms supporting these cells to resist various types of treatments including chemotherapy and radiotherapy.

  2. High-voltage horizontal shaft squirrel cage type induction motor TOSMIGHTY{sub TM}-T98 series; Yokojiku koatsu kagogata yudo dendoki TOSMIGHTY{sub TM}-T98 series

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    T98 series developed as succeeding series of T90 for as short as 2 years expanded a standardization range from 450- 630 to 450-900 in frame number, and covered a power range up to 15,000kW in 4-pole motor base. The concept of T98 series is as follows: (1) ON TIME (rapid correspondence to requests, delivery time shortest in the world), (2) ON SPEC (security for customer`s demand quality, satisfaction of various international standards), and (3) ON PRICE (compactness, space saving and reasonable price by development of elementary technologies through joint research with the research division). This series is placed as strategic series for sales promotion through the existing electronic catalog (CD-ROM) and acquisition of further BASEEFA certifications. (translated by NEDO)

  3. High-voltage horizontal shaft squirrel cage type induction motor TOSMIGHTY[sub TM]-T98 series. Yokojiku koatsu kagogata yudo dendoki TOSMIGHTY[sub TM]-T98 series

    Energy Technology Data Exchange (ETDEWEB)

    1999-03-01

    T98 series developed as succeeding series of T90 for as short as 2 years expanded a standardization range from 450- 630 to 450-900 in frame number, and covered a power range up to 15,000kW in 4-pole motor base. The concept of T98 series is as follows: (1) ON TIME (rapid correspondence to requests, delivery time shortest in the world), (2) ON SPEC (security for customer's demand quality, satisfaction of various international standards), and (3) ON PRICE (compactness, space saving and reasonable price by development of elementary technologies through joint research with the research division). This series is placed as strategic series for sales promotion through the existing electronic catalog (CD-ROM) and acquisition of further BASEEFA certifications. (translated by NEDO)

  4. Differential modulation of a radiation-induced bystander effect in glioblastoma cells by pifithrin-alpha and wortmannin

    Energy Technology Data Exchange (ETDEWEB)

    Shao Chunlin, E-mail: clshao@shmu.edu.c [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China); Zhang Jianghong [Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032 (China); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Lisburn Road, Belfast BT9 7AB (United Kingdom)

    2010-03-15

    The implication of radiation-induced bystander effect (RIBE) for both radiation protection and radiotherapy has attracted significant attention, but a key question is how to modulate the RIBE. The present study found that, when a fraction of glioblastoma cells in T98G population were individually targeted with precise helium particles through their nucleus, micronucleus (MN) were induced and its yield increased non-linearly with radiation dose. After co-culturing with irradiated cells, additional MN could be induced in the non-irradiated bystander cells and its yield was independent of irradiation dose, giving direct evidence of a RIBE. Further results showed that the RIBE could be eliminated by pifithrin-alpha (p53 inhibitor) but enhanced by wortmannin (PI3K inhibitor). Moreover, it was found that nitric oxide (NO) contributed to this RIBE, and the levels of NO of both irradiated cells and bystander cells could be extensively diminished by pifithrin-alpha but insignificantly reduced by wortmannin. Our results indicate that RIBE can be modulated by p53 and PI3K through a NO-dependent and NO-independent pathway, respectively.

  5. Transfection of wild type ADVP53 gene into human brain tumor cell lines has a radiosensitizing effect independent of apoptosis

    International Nuclear Information System (INIS)

    Geng, L.; Walter, S; Vaughan, A.T.M.

    1997-01-01

    Purpose: Despite attempts with a variety of therapeutic approaches there has been little impact on the survival of patients with Glioblastoma multiforme, with median survivals reported of approximately 12 months. In this study a replication restricted adenovirus vector is used to transfer the wild type p53 gene into two cell lines derived from a human astrocytoma U87MG or glioblastoma T98G, to determine its ability to act as a radiosensitizer in conjunction with conventional radiotherapy. Methods: An adenovirus vector containing the human wild type p53 (Advp53) gene was used in addition to a control vector containing the β-galactosidase (Advγgal) reporter gene. To achieve cellular incorporation both vectors were incubated with cells for 30 minutes - washed and returned to culture. The successful incorporation of each vector was determined by either a p53 assay using either a western blotting or flow cytometry techniques, or specific staining for β-galactosidase activity. The presence of each vector was assayed until the constructs were eliminated from the cell. To determine the effects of these vectors on cell survival sufficient vector was added to produce a measurable reduction in clonogenic survival and this value was used in subsequent irradiation experiments. To determine the ability of wild type p53 to induce apoptosis the cells were examined from 1 to 5 days after irradiation by H and E staining for the characteristic morphology indicating an apoptotic process. Results: Both the Advp53 and Advβgal vectors were successfully incorporated into each cell line. Expression of each gene was reduced to approximately half by 5 days and virtually eliminated by 15 days after transfection in both lines. At the doses used the wild type Advp53 adenovirus was toxic to both cell lines giving surviving fractions between 39-74%. When this toxicity was taken into account the presence of the Advp53 gene had a radiosensitizing effect in each cell line. To determine the

  6. Implanting Glioblastoma Spheroids into Rat Brains and Monitoring Tumor Growth by MRI Volumetry.

    Science.gov (United States)

    Löhr, Mario; Linsenmann, Thomas; Jawork, Anna; Kessler, Almuth F; Timmermann, Nils; Homola, György A; Ernestus, Ralf-Ingo; Hagemann, Carsten

    2017-01-01

    The outcome of patients suffering from glioblastoma multiforme (GBM) remains poor with a median survival of less than 15 months. To establish innovative therapeutical approaches or to analyze the effect of protein overexpression or protein knockdown by RNA interference in vivo, animal models are mandatory. Here, we describe the implantation of C6 glioma spheroids into the rats' brain and how to follow tumor growth by MRI scans. We show that C6 cells grown in Sprague-Dawley rats share several morphologic features of human glioblastoma like pleomorphic cells, areas of necrosis, vascular proliferation, and tumor cell invasion into the surrounding brain tissue. In addition, we describe a method for tumor volumetry utilizing the CISS 3D- or contrast-enhanced T1-weighted 3D sequence and freely available post-processing software.

  7. Mesothelin as a novel biomarker and immunotherapeutic target in human glioblastoma

    DEFF Research Database (Denmark)

    Liu, Zhenjiang; Rao, Martin; Poiret, Thomas

    2017-01-01

    Glioblastoma multiforme (GBM) presents the most malignant form of glioma, with a 5-year survival rate below 3% despite standard therapy. Novel immune-based therapies in improving treatment outcomes in GBM are therefore warranted. Several molecularly defined targets have been identified mediating...... anti-GBM cellular immune responses. Mesothelin is a tumor-associated antigen (TAA) which is expressed in several solid tumors with different histology. Here, we report the immunological significance of mesothelin in human malignant glioma. Expression of mature, surface-bound mesothelin protein...... was found to bein human GBM defined by immunofluorescence microscopy, and on freshly isolated, single cell suspension of GBM tumor cells and GBM tumor cell lines, determined by based on flow cytometric analysis. Peripheral blood (PB) from patients with GBM, stimulated with mesothelin peptides and IL-2, IL...

  8. Fusion of NUP98 and the SET binding protein 1 (SETBP1) gene in a paediatric acute T cell lymphoblastic leukaemia with t(11;18)(p15;q12)

    DEFF Research Database (Denmark)

    Panagopoulos, Ioannis; Kerndrup, Gitte; Carlsen, Niels

    2007-01-01

    Three NUP98 chimaeras have previously been reported in T cell acute lymphoblastic leukaemia (T-ALL): NUP98/ADD3, NUP98/CCDC28A, and NUP98/RAP1GDS1. We report a T-ALL with t(11;18)(p15;q12) resulting in a novel NUP98 fusion. Fluorescent in situ hybridisation showed NUP98 and SET binding protein 1(...... in leukaemias; however, it encodes a protein that specifically interacts with SET, fused to NUP214 in a case of acute undifferentiated leukaemia.......Three NUP98 chimaeras have previously been reported in T cell acute lymphoblastic leukaemia (T-ALL): NUP98/ADD3, NUP98/CCDC28A, and NUP98/RAP1GDS1. We report a T-ALL with t(11;18)(p15;q12) resulting in a novel NUP98 fusion. Fluorescent in situ hybridisation showed NUP98 and SET binding protein 1...

  9. HAX-1 Protects Glioblastoma Cells from Apoptosis through the Akt1 Pathway

    Directory of Open Access Journals (Sweden)

    Xin Deng

    2017-12-01

    Full Text Available Glioblastoma is the most common malignant tumor in central nervous system (CNS, and it is still insurmountable and has a poor prognosis. The proliferation and survival mechanism of glioma cells needs to be explored further for the development of glioma treatment. Hematopoietic-substrate-1 associated protein X-1 (HAX-1 has been reported as an anti-apoptosis protein that plays an important role in several malignant tumors. However, the effect and mechanism of HAX-1 in glioblastomas remains unknown. This study aimed to investigate the effect of HAX-1 in glioblastoma cells and explore the mechanism. The results of clone formation and Edu proliferation assay showed slower multiplication in HAX-1 knock-out cells. Flow cytometry showed cell cycle arrest mainly in G0/G1 phase. Apoptosis due to oxidative stress was increased after HAX-1 was knocked out. Western-blot assay exhibited that the levels of p21, Bax, and p53 proteins were significantly raised, and that the activation of the caspase cascade was enhanced in the absence of HAX-1. The degradation rate and ubiquitination of p53 declined because of the decrease in phosphorylation of proteins MDM2 and Akt1. Co-immunoprecipitation (Co-IP and immunefluorescent co-localization assays were performed to test the influence of HAX-1 on the interaction between Akt1 and Hsp90, which is crucial for the activity of Akt1. In conclusion, this novel study suggested that HAX-1 could affect the Akt1 pathway through Hsp90. The knock-out of HAX-1 leads to the inactivity of the Ak1t/MDM2 axis, which leads to increased levels of p53, and finally generates cell cycle arrest and results in the apoptosis of glioblastoma cells.

  10. The orthotopic xenotransplant of human glioblastoma successfully recapitulates glioblastoma-microenvironment interactions in a non-immunosuppressed mouse model.

    Science.gov (United States)

    Garcia, Celina; Dubois, Luiz Gustavo; Xavier, Anna Lenice; Geraldo, Luiz Henrique; da Fonseca, Anna Carolina Carvalho; Correia, Ana Helena; Meirelles, Fernanda; Ventura, Grasiella; Romão, Luciana; Canedo, Nathalie Henriques Silva; de Souza, Jorge Marcondes; de Menezes, João Ricardo Lacerda; Moura-Neto, Vivaldo; Tovar-Moll, Fernanda; Lima, Flavia Regina Souza

    2014-12-08

    Glioblastoma (GBM) is the most common primary brain tumor and the most aggressive glial tumor. This tumor is highly heterogeneous, angiogenic, and insensitive to radio- and chemotherapy. Here we have investigated the progression of GBM produced by the injection of human GBM cells into the brain parenchyma of immunocompetent mice. Xenotransplanted animals were submitted to magnetic resonance imaging (MRI) and histopathological analyses. Our data show that two weeks after injection, the produced tumor presents histopathological characteristics recommended by World Health Organization for the diagnosis of GBM in humans. The tumor was able to produce reactive gliosis in the adjacent parenchyma, angiogenesis, an intense recruitment of macrophage and microglial cells, and presence of necrosis regions. Besides, MRI showed that tumor mass had enhanced contrast, suggesting a blood-brain barrier disruption. This study demonstrated that the xenografted tumor in mouse brain parenchyma develops in a very similar manner to those found in patients affected by GBM and can be used to better understand the biology of GBM as well as testing potential therapies.

  11. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    International Nuclear Information System (INIS)

    Sara, V.; Prisell, Per; Sjoegren, Barbro; Enberg, Goesta

    1986-01-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of 125 1-IGF-2 but not 125 1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. (author)

  12. Enhancement of insulin-like growth factor 2 receptors in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Sara, V; Prisell, P; Sjoegren, B; Persson, L; Boethius, J; Enberg, G

    1986-09-01

    The somatomedins (IGF-1/IGF-2) are a family of growth-promoting hormones which have been identified in the human central nervous system where their specific receptors are distributed. The present study identified somatomedin receptors in glioblastoma and compared them with those found in normal brain. A significant enhancement in the binding of /sup 125/1-IGF-2 but not /sup 125/1-IGF-1 to glioblastoma membranes was found. A fourfold increase in IGF-2 receptor concentration was observed. These findings indicate enhanced expression of the IGF-2 receptor in glioblastoma. 14 refs.

  13. Enhanced tumor control of human Glioblastoma Multiforme xenografts with the concomitant use of radiotherapy and an attenuated herpes simplex-1 virus (ASTRO research fellowship)

    International Nuclear Information System (INIS)

    Song, Paul Y.; Sibley, Gregory S.; Advani, Sunil; Hallahan, Dennis; Hyland, John; Kufe, Donald W.; Chou, Joany; Roizman, Bernard; Weichselbaum, Ralph R.

    1996-01-01

    Purpose: Glioblastoma Multiforme remains one of the most incurable of human tumors. The current treatment outcomes are dismal. There are several recent reports which suggest that some human glioblastoma xenografts implanted in the brains of athymic mice may be potentially cured with the use of an attenuated herpes simplex-1 virus alone. We have chosen a replication competent, non-neurovirulent HSV-1 mutant, designated R3616 to determine whether there is an interactive cell killing and enhanced tumor control with radiotherapy in the treatment of a human glioblastoma xenograft. Materials and Methods: In vivo, 1 mm 3 pieces of U-87 human glioblastoma cell line xenografts were implanted into the right hind limb of athymic mice and grown to > 200 mm 3 . A total of 112 mice were then equally distributed within four treatment arms (see chart below) based upon tumor volume. Xenografts selected to receive virus as part of the therapy were inoculated with three injections of 2 x 10 7 plaque forming units (PFU) of R3616 virus given on day 1, 2, and 3 for a total dose of 6 x 10 7 PFU. R3616 is a non-neurovirulent HSV-1 mutant created by the deletion of the γ 34.5 gene. Local field irradiation was delivered on day 2 (20 Gy) and day 3 (25 Gy). The mice were then followed for 60 days during which time the xenografts were measured twice weekly. A clinically non-palpable tumor (< 10% original volume) was scored as a cure. In addition percent-fractional tumor volume (FTV) and mean tumor volume (MTV) were calculated for each group. Results: Conclusion: While our tumor control with R3616 alone is similar to that reported in the literature, we have seen significantly enhanced tumor control and cell killing with the addition of RT suggesting a synergistic interaction between an oncolytic virus and radiation in the treatment of human glioblastoma multiforme xenografts

  14. Human T-lymphotropic virus type-1 p30 alters cell cycle G2 regulation of T lymphocytes to enhance cell survival

    Directory of Open Access Journals (Sweden)

    Silverman Lee

    2007-07-01

    Full Text Available Abstract Background Human T-lymphotropic virus type-1 (HTLV-1 causes adult T-cell leukemia/lymphoma and is linked to a number of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13 and p30, whose roles are still being defined in the virus life cycle and in HTLV-1 virus-host cell interactions. Proviral clones of HTLV-1 with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. p30 expressed exogenously differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and while acting as a repressor of many genes including Tax, in part by blocking tax/rex RNA nuclear export, selectively enhances key gene pathways involved in T-cell signaling/activation. Results Herein, we analyzed the role of p30 in cell cycle regulation. Jurkat T-cells transduced with a p30 expressing lentivirus vector accumulated in the G2-M phase of cell cycle. We then analyzed key proteins involved in G2-M checkpoint activation. p30 expression in Jurkat T-cells resulted in an increase in phosphorylation at serine 216 of nuclear cell division cycle 25C (Cdc25C, had enhanced checkpoint kinase 1 (Chk1 serine 345 phosphorylation, reduced expression of polo-like kinase 1 (PLK1, diminished phosphorylation of PLK1 at tyrosine 210 and reduced phosphorylation of Cdc25C at serine 198. Finally, primary human lymphocyte derived cell lines immortalized by a HTLV-1 proviral clone defective in p30 expression were more susceptible to camptothecin induced apoptosis. Collectively these data are consistent with a cell survival role of p30 against genotoxic insults to HTLV-1 infected lymphocytes. Conclusion Collectively, our data are the first to indicate that HTLV-1 p30 expression results in activation of the G2-M cell cycle checkpoint, events that would promote early viral spread and T

  15. Acyclovir inhibition of IDO to decrease Tregs as a glioblastoma treatment adjunct

    Directory of Open Access Journals (Sweden)

    Söderlund Johan

    2010-08-01

    Full Text Available Abstract Regulatory T cells, Tregs, are a subset of lymphocytes that have immunosuppressive attributes. They are elevated in blood of glioblastoma patients and within this tumor's tissue itself. Indoleamine 2,3-dioxygenase, IDO, converts tryptophan to kynurenine. IDO activity enhances Treg formation by pathways that are unknown. Experimentally, inhibition of IDO decreases Treg function and number in rodents. The common anti-viral agent acyclovir inhibits IDO. Acyclovir may thereby decrease Treg function in glioblastoma. If it can be confirmed that Treg counts are elevated in glioblastoma patients' tumor tissue, and if we can document acyclovir's lowering of tissue Treg counts by a small trial of acyclovir in pre-operative glioblastoma patients, a trial of acyclovir effect on survival should be done given the current poor prognosis of glioblastoma and the well-established safety and low side effect burden of acyclovir.

  16. Epidermal growth factor receptor activation in glioblastoma through novel missense mutations in the extracellular domain.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Lee

    2006-12-01

    Full Text Available Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy.Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132 of glioblastomas and 12.5% (1/8 of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors.Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma.

  17. Target-specific delivery of doxorubicin to human glioblastoma cell ...

    Indian Academy of Sciences (India)

    Abdullah Tahir Bayraç

    2018-01-29

    Jan 29, 2018 ... was previously selected for specific recognition of glioblastoma and represented many advantageous ... antigens, receptors or any 3-D structure on the target cells ..... both PSMA (?) and PSMA (-) prostate cancers.

  18. Inhibition of AKT signaling by supercritical CO2 extract of mango ginger (Curcuma amada Roxb.) in human glioblastoma cells.

    Science.gov (United States)

    Ramachandran, Cheppail; Portalatin, Gilda; Quirin, Karl-W; Escalon, Enrique; Khatib, Ziad; Melnick, Steven J

    2015-12-01

    Mango ginger (Curcuma amada Roxb.) is a less-investigated herb for anticancer properties than other related Curcuma species. AKT (a serine/threonine protein kinase B, originally identified as an oncogene in the transforming retrovirus AKT8) plays a central role in the development and promotion of cancer. In this investigation, we have analyzed the effect of supercritical CO2 extract of mango ginger (CA) on the genetic pathways associated with AKT signaling in human glioblastoma cells. The inhibitory effect of supercritical CO2 extract of mango ginger (Curcuma amada) on AKT signaling was investigated in U-87MG glioblastoma cells. CA was highly cytotoxic to glioblastoma cell line (IC50=4.92±0.81 µg/mL) compared to mHypoE-N1 normal mouse hypothalamus cell line (IC50=40.57±0.06 µg/mL). CA inhibits AKT (protein Kinase B) and adenosine monophophate -activated protein kinase α (AMPKα) phosphorylation significantly in a dose-dependent manner. The cell migration which is necessary for invasion and metastasis was also inhibited by CA treatment, with about 43% reduction at 20 µg/mL concentration. Analysis of mRNA and protein expression of genes associated with apoptosis, cell proliferation and angiogenesis showed that CA modulates expression of genes associated with apoptosis (Bax, Bcl-2, Bcl-X, BNIP3, caspase-3, mutant p53 and p21), cell proliferation (Ki67) and angiogenesis vascular endothelial growth factor (VEGF). Additionally, heat shock protein 90 (HSP90) and AMPKα genes interacting with the AKT signaling pathway were also downregulated by CA treatment. These results indicate the molecular targets and mechanisms underlying the anticancer effect of CA in human glioblastoma cells.

  19. Activation of PPARγ mediates icaritin-induced cell cycle arrest and apoptosis in glioblastoma multiforme.

    Science.gov (United States)

    Liu, Yongji; Shi, Ling; Liu, Yuan; Li, Peng; Jiang, Guoping; Gao, Xiaoning; Zhang, Yongbin; Jiang, Chuanwu; Zhu, Weiping; Han, Hongxing; Ju, Fang

    2018-04-01

    Glioblastoma multiforme (GBM) is the most prevalent primary malignancy of the brain. This study was designed to investigate whether icaritin exerts anti-neoplastic activity against GBM in vitro. Cell Counting Kit-8 (CCK-8) assay was utilized to examine the viability of GBM cells. The apoptotic cell population was measured by flow cytometry analysis. Cell cycle distribution was detected by flow cytometry as well. Western blot analysis was performed to examine the level of biomarker proteins in GBM cells. Levels of PPARγ mRNA and protein were detected by qPCR and western blot analysis, respectively. To examine the role of PPARγ in the anti-neoplastic activity of icaritin, PPARγ antagonist GW9662 or PPARγ siRNA was used. The activity of PPARγ was determined by DNA binding and luciferase assays. Our findings revealed that icaritin markedly suppresses cell growth in a dose-dependent and time-dependent fashion. The cell population at the G0/G1 phase of the cell cycle was significantly increased following icaritin treatment. Meanwhile, icaritin promoted apoptotic cell death in T98G and U87MG cells. Further investigation showed upregulation of PPARγ played a key role in the anti-neoplastic activities of icaritin. Moreover, our result demonstrated activation of AMPK signaling by icaritin mediated the modulatory effect of icaritin on PPARγ. Our results suggest the PPARγ may mediate anti-neoplastic activities against GBM. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Expression of Cathepsins B, D, and G in Isocitrate Dehydrogenase-Wildtype Glioblastoma

    Directory of Open Access Journals (Sweden)

    Sabrina P. Koh

    2017-05-01

    Full Text Available AimTo investigate the expression of cathepsins B, D, and G, in relation to the cancer stem cell (CSC subpopulations, we have previously characterized within isocitrate dehydogenase (IDH-wildtype glioblastoma (IDHWGB.Methods3,3-Diaminobezidine (DAB immunohistochemical (IHC staining for cathepsins B, D, and G, was performed on 4μm-thick formalin-fixed paraffin-embedded IDHWGB samples obtained from six patients. Two representative DHWGB samples from the original cohort of patients were selected for immunofluorescent (IF IHC staining, to identify the localization of the cathepsins in relation to the CSC subpopulations. NanoString gene expression analysis and colorimetric in situ hybridization (CISH were conducted to investigate the transcriptional activation of genes encoding for cathepsins B, D, and G. Data obtained from cell counting of DAB IHC-stained slides and from NanoString analysis were subjected to statistical analyses to determine significance.ResultsCathepsin B and cathepsin D were detected in IDHWGB by DAB IHC staining. IF IHC staining demonstrated the expression of both cathepsin B and cathepsin D by the OCT4+ and SALL4+ CSC subpopulations. NanoString gene analysis and CISH confirmed the abundant transcript expression of these cathepsins. The transcriptional and translational expressions of cathepsin G were minimal and were confined to cells within the microvasculature.ConclusionThis study demonstrated the expression of cathepsin B and cathepsin D but not cathepsin G within the CSC subpopulations of IDHWGB at both the transcriptional and translational level. Cathepsin G was expressed at low levels and was not localized to the CSC population of IDHWGB. The novel finding of cathepsin B and cathepsin D in IDHWGB suggests the presence of bypass loops for the renin-angiotensin system, which may facilitate the production of angiotensin peptides. Elucidating the precise role of these cathepsins may lead to better understanding and more

  1. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines

    Science.gov (United States)

    Masi, A; Becchetti, A; Restano-Cassulini, R; Polvani, S; Hofmann, G; Buccoliero, A M; Paglierani, M; Pollo, B; Taddei, G L; Gallina, P; Di Lorenzo, N; Franceschetti, S; Wanke, E; Arcangeli, A

    2005-01-01

    Recent studies have led to considerable advancement in our understanding of the molecular mechanisms that underlie the relentless cell growth and invasiveness of human gliomas. Partial understanding of these mechanisms has (1) improved the classification for gliomas, by identifying prognostic subgroups, and (2) pointed to novel potential therapeutic targets. Some classes of ion channels have turned out to be involved in the pathogenesis and malignancy of gliomas. We studied the expression and properties of K+ channels in primary cultures obtained from surgical specimens: human ether a gò-gò related (hERG)1 voltage-dependent K+ channels, which have been found to be overexpressed in various human cancers, and human ether a gò-gò-like 2 channels, that share many of hERG1's biophysical features. The expression pattern of these two channels was compared to that of the classical inward rectifying K+ channels, IRK, that are widely expressed in astrocytic cells and classically considered a marker of astrocytic differentiation. In our study, hERG1 was found to be specifically overexpressed in high-grade astrocytomas, that is, glioblastoma multiforme (GBM). In addition, we present evidence that, in GBM cell lines, hERG1 channel activity actively contributes to malignancy by promoting vascular endothelial growth factor secretion, thus stimulating the neoangiogenesis typical of high-grade gliomas. Our data provide important confirmation for studies proposing the hERG1 channel as a molecular marker of tumour progression and a possible target for novel anticancer therapies. PMID:16175187

  2. Segmentation of corpus callosum using diffusion tensor imaging: validation in patients with glioblastoma

    International Nuclear Information System (INIS)

    Nazem-Zadeh, Mohammad-Reza; Saksena, Sona; Babajani-Fermi, Abbas; Jiang, Quan; Soltanian-Zadeh, Hamid; Rosenblum, Mark; Mikkelsen, Tom; Jain, Rajan

    2012-01-01

    This paper presents a three-dimensional (3D) method for segmenting corpus callosum in normal subjects and brain cancer patients with glioblastoma. Nineteen patients with histologically confirmed treatment naïve glioblastoma and eleven normal control subjects underwent DTI on a 3T scanner. Based on the information inherent in diffusion tensors, a similarity measure was proposed and used in the proposed algorithm. In this algorithm, diffusion pattern of corpus callosum was used as prior information. Subsequently, corpus callosum was automatically divided into Witelson subdivisions. We simulated the potential rotation of corpus callosum under tumor pressure and studied the reproducibility of the proposed segmentation method in such cases. Dice coefficients, estimated to compare automatic and manual segmentation results for Witelson subdivisions, ranged from 94% to 98% for control subjects and from 81% to 95% for tumor patients, illustrating closeness of automatic and manual segmentations. Studying the effect of corpus callosum rotation by different Euler angles showed that although segmentation results were more sensitive to azimuth and elevation than skew, rotations caused by brain tumors do not have major effects on the segmentation results. The proposed method and similarity measure segment corpus callosum by propagating a hyper-surface inside the structure (resulting in high sensitivity), without penetrating into neighboring fiber bundles (resulting in high specificity)

  3. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis.

    Science.gov (United States)

    Cui, Qi; Yang, Su; Ye, Peng; Tian, E; Sun, Guoqiang; Zhou, Jiehua; Sun, Guihua; Liu, Xiaoxuan; Chen, Chao; Murai, Kiyohito; Zhao, Chunnian; Azizian, Krist T; Yang, Lu; Warden, Charles; Wu, Xiwei; D'Apuzzo, Massimo; Brown, Christine; Badie, Behnam; Peng, Ling; Riggs, Arthur D; Rossi, John J; Shi, Yanhong

    2016-02-03

    Glioblastomas have been proposed to be maintained by highly tumorigenic glioblastoma stem cells (GSCs) that are resistant to current therapy. Therefore, targeting GSCs is critical for developing effective therapies for glioblastoma. In this study, we identify the regulatory cascade of the nuclear receptor TLX and the DNA hydroxylase Ten eleven translocation 3 (TET3) as a target for human GSCs. We show that knockdown of TLX expression inhibits human GSC tumorigenicity in mice. Treatment of human GSC-grafted mice with viral vector-delivered TLX shRNA or nanovector-delivered TLX siRNA inhibits tumour development and prolongs survival. Moreover, we identify TET3 as a potent tumour suppressor downstream of TLX to regulate the growth and self-renewal in GSCs. This study identifies the TLX-TET3 axis as a potential therapeutic target for glioblastoma.

  4. In vivo preclinical low field MRI monitoring of tumor growth following a suicide gene therapy in an ortho-topic mice model of human glioblastoma

    International Nuclear Information System (INIS)

    Breton, E.; Goetz, Ch.; Aubertin, G.; Constantinesco, A.; Choquet, Ph.; Kintz, J.; Accart, N.; Grellier, B.; Erbs, Ph.; Rooke, R.

    2010-01-01

    Purpose The aim of this study was to monitor in vivo with low field MRI growth of a murine ortho-topic glioma model following a suicide gene therapy. Methods The gene therapy consisted in the stereotactic injection in the mice brain of a modified vaccinia virus Ankara (M.V.A.) vector encoding for a suicide gene (FCU1) that transforms a non toxic pro-drug 5-fluoro-cytosine (5-F.C.) to its highly cytotoxic derivatives 5-fluorouracil (5-F.U.) and 5-fluoro-uridine-5 monophosphate (5-F.U.M.P.). Using a warmed-up imaging cell, sequential 3D T1 and T2 0.1T MRI brain examinations were performed on 16 Swiss female nu/nu mice bearing ortho-topic human glioblastoma (U 87-MG cells). The 6-week in vivo MRI follow-up consisted in a weekly measurement of the intracerebral tumor volume leading to a total of 65 examinations. Mice were divided in four groups: sham group (n = 4), sham group treated with 5-F.C. only (n = 4), sham group with injection of M.V.A.-FCU1 vector only (n = 4), therapy group administered with M.V.A.-FCU1 vector and 5-F.C. (n = 4). Measurements of tumor volumes were obtained after manual segmentation of T1- and T2-weighted images. Results Intra-observer and inter-observer tumor volume measurements show no significant differences. No differences were found between T1 and T2 volume tumor doubling times between the three sham groups. A significant statistical difference (p < 0.05) in T1 and T2 volume tumor doubling times between the three sham groups and the animals treated with the intratumoral injection of M.V.A.-FCU1 vector in combination with 2 weeks per os 5-F.C. administration was demonstrated. Conclusion Preclinical low field MRI was able to monitor efficacy of suicide gene therapy in delaying the tumor growth in an in vivo mouse model of ortho-topic glioblastoma. (authors)

  5. T cell suppression by naturally occurring HLA-G-expressing regulatory CD4+ T cells is IL-10-dependent and reversible.

    Science.gov (United States)

    Huang, Yu-Hwa; Zozulya, Alla L; Weidenfeller, Christian; Schwab, Nicholas; Wiendl, Heinz

    2009-08-01

    CD4(+) T cells constitutively expressing the immune-tolerogenic HLA-G have been described recently as a new type of nT(reg) (HLA-G(pos) T(reg)) in humans. HLA-G(pos) T(reg) accumulate at sites of inflammation and are potent suppressors of T cell proliferation in vitro, suggesting their role in immune regulation. We here characterize the mechanism of how CD4(+) HLA-G(pos) T(reg) influence autologous HLA-G(neg) T(resp) function. Using a suppression system free of APC, we demonstrate a T-T cell interaction, resulting in suppression of HLA-G(neg) T(resp), which is facilitated by TCR engagement on HLA-G(pos) T(reg). Suppression is independent of cell-cell contact and is reversible, as the removal of HLA-G(pos) T(reg) from the established coculture restored the proliferative capability of responder cells. Further, HLA-G(pos) T(reg)-mediated suppression critically depends on the secretion of IL-10 but not TGF-beta.

  6. Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A

    OpenAIRE

    Pitre, Aaron; Davis, Nathan; Paul, Madhumita; Orr, A Wayne; Skalli, Omar

    2012-01-01

    The intermediate filament protein synemin is present in astrocyte progenitors and glioblastoma cells but not in mature astrocytes. Here we demonstrate a role for synemin in enhancing glioblastoma cell proliferation and clonogenic survival, as synemin RNA interference decreased both behaviors by inducing G1 arrest along with Rb hypophosphorylation and increased protein levels of the G1/S inhibitors p21Cip1 and p27Kip1. Akt involvement was demonstrated by decreased phosphorylation of its substr...

  7. Mobile phone specific electromagnetic fields induce transient DNA damage and nucleotide excision repair in serum-deprived human glioblastoma cells.

    Science.gov (United States)

    Al-Serori, Halh; Ferk, Franziska; Kundi, Michael; Bileck, Andrea; Gerner, Christopher; Mišík, Miroslav; Nersesyan, Armen; Waldherr, Monika; Murbach, Manuel; Lah, Tamara T; Herold-Mende, Christel; Collins, Andrew R; Knasmüller, Siegfried

    2018-01-01

    Some epidemiological studies indicate that the use of mobile phones causes cancer in humans (in particular glioblastomas). It is known that DNA damage plays a key role in malignant transformation; therefore, we investigated the impact of the UMTS signal which is widely used in mobile telecommunications, on DNA stability in ten different human cell lines (six brain derived cell lines, lymphocytes, fibroblasts, liver and buccal tissue derived cells) under conditions relevant for users (SAR 0.25 to 1.00 W/kg). We found no evidence for induction of damage in single cell gel electrophoresis assays when the cells were cultivated with serum. However, clear positive effects were seen in a p53 proficient glioblastoma line (U87) when the cells were grown under serum free conditions, while no effects were found in p53 deficient glioblastoma cells (U251). Further experiments showed that the damage disappears rapidly in U87 and that exposure induced nucleotide excision repair (NER) and does not cause double strand breaks (DSBs). The observation of NER induction is supported by results of a proteome analysis indicating that several proteins involved in NER are up-regulated after exposure to UMTS; additionally, we found limited evidence for the activation of the γ-interferon pathway. The present findings show that the signal causes transient genetic instability in glioma derived cells and activates cellular defense systems.

  8. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zi-xuan [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Rao, Wei [Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Huan [Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Nan-ding [Department of Cardiology, Xi' an Traditional Chinese Medicine Hospital, Xi' an, 710032 (China); Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China); Wang, Zong-ren, E-mail: zongren@fmmu.edu.cn [Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, Xi' an, 710032 (China)

    2015-02-13

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion.

  9. Modeled microgravity suppressed invasion and migration of human glioblastoma U87 cells through downregulating store-operated calcium entry

    International Nuclear Information System (INIS)

    Shi, Zi-xuan; Rao, Wei; Wang, Huan; Wang, Nan-ding; Si, Jing-Wen; Zhao, Jiao; Li, Jun-chang; Wang, Zong-ren

    2015-01-01

    Glioblastoma is the most common brain tumor and is characterized with robust invasion and migration potential resulting in poor prognosis. Previous investigations have demonstrated that modeled microgravity (MMG) could decline the cell proliferation and attenuate the metastasis potential in several cell lines. In this study, we studied the effects of MMG on the invasion and migration potentials of glioblastoma in human glioblastoma U87 cells. We found that MMG stimulation significantly attenuated the invasion and migration potentials, decreased thapsigargin (TG) induced store-operated calcium entry (SOCE) and downregulated the expression of Orai1 in U87 cells. Inhibition of SOCE by 2-APB or stromal interaction molecule 1 (STIM1) downregulation both mimicked the effects of MMG on the invasion and migration potentials in U87 cells. Furthermore, upregulation of Orai1 significantly weakened the effects of MMG on the invasion and migration potentials in U87 cells. Therefore, these findings indicated that MMG stimulation inhibited the invasion and migration potentials of U87 cells by downregulating the expression of Orai1 and sequentially decreasing the SOCE, suggesting that MMG might be a new potential therapeutic strategy in glioblastoma treatment in the future. - Highlights: • Modeled microgravity (MMG) suppressed migration and invasion in U87 cells. • MMG downregulated the SOCE and the expression of Orai1. • SOCE inhibition mimicked the effects of MMG on migration and invasion potentials. • Restoration of SOCE diminished the effects of MMG on migration and invasion

  10. Bacterial Carriers for Glioblastoma Therapy

    Directory of Open Access Journals (Sweden)

    Nalini Mehta

    2017-03-01

    Full Text Available Treatment of aggressive glioblastoma brain tumors is challenging, largely due to diffusion barriers preventing efficient drug dosing to tumors. To overcome these barriers, bacterial carriers that are actively motile and programmed to migrate and localize to tumor zones were designed. These carriers can induce apoptosis via hypoxia-controlled expression of a tumor suppressor protein p53 and a pro-apoptotic drug, Azurin. In a xenograft model of human glioblastoma in rats, bacterial carrier therapy conferred a significant survival benefit with 19% overall long-term survival of >100 days in treated animals relative to a median survival of 26 days in control untreated animals. Histological and proteomic analyses were performed to elucidate the safety and efficacy of these carriers, showing an absence of systemic toxicity and a restored neural environment in treated responders. In the treated non-responders, proteomic analysis revealed competing mechanisms of pro-apoptotic and drug-resistant activity. This bacterial carrier opens a versatile avenue to overcome diffusion barriers in glioblastoma by virtue of its active motility in extracellular space and can lead to tailored therapies via tumor-specific expression of tumoricidal proteins.

  11. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl‑2 family proteins.

    Science.gov (United States)

    Ji, Chen-Chen; Tang, Hai-Feng; Hu, Yi-Yang; Zhang, Yun; Zheng, Min-Hua; Qin, Hong-Yan; Li, San-Zhong; Wang, Xiao-Yang; Fei, Zhou; Cheng, Guang

    2016-07-01

    Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor, and is associated with a poor prognosis. Saponin 6, derived from Anemone taipaiensis, exerts potent cytotoxic effects against the human hepatocellular carcinoma HepG2 cell line and the human promyelocytic leukemia HL‑60 cell line; however, the effects of saponin 6 on glioblastoma remain unknown. The present study aimed to evaluate the effects of saponin 6 on human U87 malignant glioblastoma (U87 MG) cells. The current study revealed that saponin 6 induced U87 MG cell death in a dose‑ and time‑dependent manner, with a half maximal inhibitory concentration (IC50) value of 2.83 µM after treatment for 48 h. However, saponin 6 was needed to be used at a lesser potency in HT‑22 cells, with an IC50 value of 6.24 µM. Cell apoptosis was assessed by flow cytometry using Annexin V‑fluorescein isothiocyanate/propidium iodide double staining. DNA fragmentation and alterations in nuclear morphology were examined by terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling and transmission electron microscopy, respectively. The present study demonstrated that treatment with saponin 6 induced cell apoptosis in U87 MG cells, and resulted in DNA fragmentation and nuclear morphological alterations typical of apoptosis. In addition, flow cytometric analysis revealed that saponin 6 was able to induce cell cycle arrest. The present study also demonstrated that saponin 6‑induced apoptosis of U87 MG cells was attributed to increases in the protein expression levels of Fas, Fas ligand, and cleaved caspase‑3, ‑8 and ‑9, and decreases in the levels of B‑cell lymphoma 2. The current study indicated that saponin 6 may exhibit selective cytotoxicity toward U87 MG cells by activating apoptosis via the extrinsic and intrinsic pathways. Therefore, saponin 6 derived from A. taipaiensis may possess therapeutic potential for the treatment of GBM.

  12. CD98 Heavy Chain Is a Potent Positive Regulator of CD4+ T Cell Proliferation and Interferon-γ Production In Vivo.

    Directory of Open Access Journals (Sweden)

    Takeshi Kurihara

    Full Text Available Upon their recognition of antigens presented by the MHC, T cell proliferation is vital for clonal expansion and the acquisition of effector functions, which are essential for mounting adaptive immune responses. The CD98 heavy chain (CD98hc, Slc3a2 plays a crucial role in the proliferation of both CD4+ and CD8+ T cells, although it is unclear if CD98hc directly regulates the T cell effector functions that are not linked with T cell proliferation in vivo. Here, we demonstrate that CD98hc is required for both CD4+ T cell proliferation and Th1 functional differentiation. T cell-specific deletion of CD98hc did not affect T cell development in the thymus. CD98hc-deficient CD4+ T cells proliferated in vivo more slowly as compared with control T cells. C57BL/6 mice lacking CD98hc in their CD4+ T cells could not control Leishmania major infections due to lowered IFN-γ production, even with massive CD4+ T cell proliferation. CD98hc-deficient CD4+ T cells exhibited lower IFN-γ production compared with wild-type T cells, even when comparing IFN-γ expression in cells that underwent the same number of cell divisions. Therefore, these data indicate that CD98hc is required for CD4+ T cell expansion and functional Th1 differentiation in vivo, and suggest that CD98hc might be a good target for treating Th1-mediated immune disorders.

  13. Nanotechnology Applications for Glioblastoma

    Science.gov (United States)

    Nduom, Edjah; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G.

    2012-01-01

    Synopsis Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. While conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting the residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds much promise in the use of multifunctional nanoparticles for the imaging and targeted therapy of GBM.. Nanoparticles have emerged as potential “theranostic” agents that can permit the diagnosis and therapeutic treatment of GBM tumors. A recent human clinical trial with magnetic nanoparticles has provided feasibility and efficacy data for potential treatment of GBM patients with thermotherapy. Here we examine the current state of nanotechnology in the treatment of glioblastoma and interesting directions of further study. PMID:22748656

  14. CANINE BUTTERFLY GLIOBLASTOMAS: A NEURORADIOLOGICAL REVIEW

    Directory of Open Access Journals (Sweden)

    John Henry Rossmeisl

    2016-05-01

    Full Text Available In humans, high-grade gliomas may infiltrate across the corpus callosum resulting in bihemispheric lesions that may have symmetrical, winged-like appearances. This particular tumor manifestation has been coined a ‘butterfly’ glioma (BG. While canine and human gliomas share many neuroradiological and pathological features, the BG morphology has not been previously reported in dogs. Here we describe the magnetic resonance imaging (MRI characteristics of BG in three dogs, and review the potential differential diagnoses based on neuroimaging findings. All dogs presented with generalized seizures and interictal neurological deficits referable to multifocal or diffuse forebrain disease. MRI examinations revealed asymmetrical (2/3 or symmetrical (1/3, bihemispheric intra-axial mass lesions that predominantly affected the frontoparietal lobes and associated with extensive perilesional edema, and involvement of the corpus callosum. The masses displayed heterogeneous T1, T2, and FLAIR signal intensities, variable contrast enhancement (2/3, and mass effect. All tumors demonstrated classical histopathological features of glioblastoma (GBM including glial cell pseudopalisading, serpentine necrosis, microvascular proliferation, as well as invasion of the corpus callosum by neoplastic astrocytes. Although rare, GBM should be considered a differential diagnosis in dogs with MRI evidence of asymmetric or symmetric bilateral, intra-axial cerebral mass lesions with signal characteristics compatible with glioma.

  15. Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas

    International Nuclear Information System (INIS)

    Kaaijk, P.; Academic Medical Center, Amsterdam; Troost, D.; Leenstra, S.; Bosch, D.A.; Sminia, P.; Hulshof, M.C.C.M..; Kracht, A.H.W. van der

    1997-01-01

    The aim of this study was to examine the effect of radiation on glioblastoma, using an organotypic multicellular spheroid (OMS) model. Most glioblastoma cell lines are, in contrast to glioblastomas in vivo, relatively radiosensitive. This limits the value of using cell lines for studying the radiation effect of glioblastomas. The advantage of OMS is maintenance of the characteristics of the original tumour, which is lost in conventional cell cultures. OMS prepared from four glioblastomas were treated with hypofractionated radiation with a radiobiologically equivalent dose to standard radiation treatment for glioblastomas patients. After treatment, the histology as well as the cell proliferation of the OMS was examined. After radiation, a significant decrease in cell proliferation was found, although no histological damage to the OMS was observed. The modest effects of radiation on the OMS are in agreement with the limited therapeutic value of radiotherapy for glioblastoma patients. Therefore, OMS seems to be a good alternative for cell lines to study the radiobiological effect on glioblastomas. (author)

  16. Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas

    Energy Technology Data Exchange (ETDEWEB)

    Kaaijk, P [Academic Medical Center, Amsterdam (Netherlands). Dept. of (Neuro) Pathology; [Academic Medical Center, Amsterdam (Netherlands). Dept. of Neurosurgery; Troost, D [Academic Medical Center, Amsterdam (Netherlands). Dept. of (Neuro) Pathology; Leenstra, S; Bosch, D A [Academic Medical Center, Amsterdam (Netherlands). Dept. of Neurosurgery; Sminia, P; Hulshof, M C.C.M.; Kracht, A.H.W. van der [Academic Medical Center, Amsterdam (Netherlands). Dept. of (Experimental) Radiotherapy

    1997-04-01

    The aim of this study was to examine the effect of radiation on glioblastoma, using an organotypic multicellular spheroid (OMS) model. Most glioblastoma cell lines are, in contrast to glioblastomas in vivo, relatively radiosensitive. This limits the value of using cell lines for studying the radiation effect of glioblastomas. The advantage of OMS is maintenance of the characteristics of the original tumour, which is lost in conventional cell cultures. OMS prepared from four glioblastomas were treated with hypofractionated radiation with a radiobiologically equivalent dose to standard radiation treatment for glioblastomas patients. After treatment, the histology as well as the cell proliferation of the OMS was examined. After radiation, a significant decrease in cell proliferation was found, although no histological damage to the OMS was observed. The modest effects of radiation on the OMS are in agreement with the limited therapeutic value of radiotherapy for glioblastoma patients. Therefore, OMS seems to be a good alternative for cell lines to study the radiobiological effect on glioblastomas. (author).

  17. High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98.

    Science.gov (United States)

    Li, Xin-Xin; Liu, Yue-Mei; Li, You-Jie; Xie, Ning; Yan, Yun-Fei; Chi, Yong-Liang; Zhou, Ling; Xie, Shu-Yang; Wang, Ping-Yu

    2016-06-01

    Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin-D2-regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p-RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2-3' untranslated region is targeted by miR-98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p-RB1 expression was regulated by miR-98. The results indicated that miR-98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR-98 might be related to regulation of Bcl-2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR-98 decreased in 4.5 g/l glucose-treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR-98 significantly decreased in aortas of established streptozotocin (STZ)-induced diabetic rat model compared with that in control rats; but cyclin D2 and p-RB1 levels remarkably increased in aortas of STZ-induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up-regulation and miR-98 down-regulation in the RAOECs. By regulating cyclin D2, miR-98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. FUNCTIONAL SUBCLONE PROFILING FOR PREDICTION OF TREATMENT-INDUCED INTRA-TUMOR POPULATION SHIFTS AND DISCOVERY OF RATIONAL DRUG COMBINATIONS IN HUMAN GLIOBLASTOMA

    Science.gov (United States)

    Reinartz, Roman; Wang, Shanshan; Kebir, Sied; Silver, Daniel J.; Wieland, Anja; Zheng, Tong; Küpper, Marius; Rauschenbach, Laurèl; Fimmers, Rolf; Shepherd, Timothy M.; Trageser, Daniel; Till, Andreas; Schäfer, Niklas; Glas, Martin; Hillmer, Axel M.; Cichon, Sven; Smith, Amy A.; Pietsch, Torsten; Liu, Ying; Reynolds, Brent A.; Yachnis, Anthony; Pincus, David W.; Simon, Matthias; Brüstle, Oliver; Steindler, Dennis A.; Scheffler, Björn

    2016-01-01

    Purpose Investigation of clonal heterogeneity may be key to understanding mechanisms of therapeutic failure in human cancer. However, little is known on the consequences of therapeutic intervention on the clonal composition of solid tumors. Experimental Design Here, we used 33 single cell-derived subclones generated from five clinical glioblastoma specimens for exploring intra- and inter-individual spectra of drug resistance profiles in vitro. In a personalized setting, we explored whether differences in pharmacological sensitivity among subclones could be employed to predict drug-dependent changes to the clonal composition of tumors. Results Subclones from individual tumors exhibited a remarkable heterogeneity of drug resistance to a library of potential anti-glioblastoma compounds. A more comprehensive intra-tumoral analysis revealed that stable genetic and phenotypic characteristics of co-existing subclones could be correlated with distinct drug sensitivity profiles. The data obtained from differential drug response analysis could be employed to predict clonal population shifts within the naïve parental tumor in vitro and in orthotopic xenografts. Furthermore, the value of pharmacological profiles could be shown for establishing rational strategies for individualized secondary lines of treatment. Conclusions Our data provide a previously unrecognized strategy for revealing functional consequences of intra-tumor heterogeneity by enabling predictive modeling of treatment-related subclone dynamics in human glioblastoma. PMID:27521447

  19. Congenital heart block maternal sera autoantibodies target an extracellular epitope on the α1G T-type calcium channel in human fetal hearts.

    Directory of Open Access Journals (Sweden)

    Linn S Strandberg

    Full Text Available Congenital heart block (CHB is a transplacentally acquired autoimmune disease associated with anti-Ro/SSA and anti-La/SSB maternal autoantibodies and is characterized primarily by atrioventricular (AV block of the fetal heart. This study aims to investigate whether the T-type calcium channel subunit α1G may be a fetal target of maternal sera autoantibodies in CHB.We demonstrate differential mRNA expression of the T-type calcium channel CACNA1G (α1G gene in the AV junction of human fetal hearts compared to the apex (18-22.6 weeks gestation. Using human fetal hearts (20-22 wks gestation, our immunoprecipitation (IP, Western blot analysis and immunofluorescence (IF staining results, taken together, demonstrate accessibility of the α1G epitope on the surfaces of cardiomyocytes as well as reactivity of maternal serum from CHB affected pregnancies to the α1G protein. By ELISA we demonstrated maternal sera reactivity to α1G was significantly higher in CHB maternal sera compared to controls, and reactivity was epitope mapped to a peptide designated as p305 (corresponding to aa305-319 of the extracellular loop linking transmembrane segments S5-S6 in α1G repeat I. Maternal sera from CHB affected pregnancies also reacted more weakly to the homologous region (7/15 amino acids conserved of the α1H channel. Electrophysiology experiments with single-cell patch-clamp also demonstrated effects of CHB maternal sera on T-type current in mouse sinoatrial node (SAN cells.Taken together, these results indicate that CHB maternal sera antibodies readily target an extracellular epitope of α1G T-type calcium channels in human fetal cardiomyocytes. CHB maternal sera also show reactivity for α1H suggesting that autoantibodies can target multiple fetal targets.

  20. Endothelial trans-differentiation in glioblastoma recurring after radiotherapy.

    Science.gov (United States)

    De Pascalis, Ivana; Morgante, Liliana; Pacioni, Simone; D'Alessandris, Quintino Giorgio; Giannetti, Stefano; Martini, Maurizio; Ricci-Vitiani, Lucia; Malinverno, Matteo; Dejana, Elisabetta; Larocca, Luigi M; Pallini, Roberto

    2018-04-30

    We hypothesized that in glioblastoma recurring after radiotherapy, a condition whereby the brain endothelium undergoes radiation-induced senescence, tumor cells with endothelial phenotype may be relevant for tumor neovascularization. Matched glioblastoma samples obtained at primary surgery and at surgery for tumor recurrence after radiotherapy, all expressing epidermal growth factor receptor variant III (EGFRvIII), were assessed by a technique that combines fluorescent in situ hybridization (FISH) for the EGFR/CEP7 chromosomal probe with immunostaining for endothelial cells (CD31) and activated pericytes (α Smooth Muscle Actin). Five EGFRvIII-expressing paired primary/recurrent glioblastoma samples, in which the tumor cells showed EGFR/CEP7 amplification, were then assessed by CD31 and α Smooth Muscle Actin immunofluorescence. In glomeruloid bodies, the ratio between CD31+ cells with amplified EGFR/CEP7 signal and the total CD31+ cells was 0.23 ± 0.09 (mean ± sem) and 0.63 ± 0.07 in primary tumors and in recurrent ones, respectively (p < 0.002, Student-t test). In capillaries, the ratio of CD31+ cells with amplified EGFR/CEP7 over the total CD31+ cells lining the capillary lumen was 0.21 ± 0.06 (mean ± sem) and 0.42 ± 0.07 at primary surgery and at recurrence, respectively (p < 0.005, Student-t test). Expression of α Smooth Muscle Actin by cells with EGFR/CEP7 amplification was not observed. Then, in glioblastoma recurring after radiotherapy, where the brain endothelium suffers from radiation-induced cell senescence, tumor-derived endothelium plays a role in neo-vascularization.

  1. Repopulation capacity during fractionated irradiation of squamous cell carcinomas and glioblastomas in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Budach, Wilfried; Gioioso, Danielle; Taghian, Alphonse; Stuschke, Martin; Suit, Herman D

    1997-10-01

    Purpose: Determination of clonogenic cell proliferation of three highly malignant squamous cell carcinomas (SCC) and two glioblastoma cell lines during a 20-day course of fractionated irradiation under in vitro conditions. Methods and Materials: Tumor cells in exponential growth phase were plated in 24-well plastic flasks and irradiated 24 h after plating with 250 kV x-rays at room temperature. Six fractions with single doses between 0.6 and 9 Gy were administered in 1.67, 5, 10, 15, and 20 days. Colony growth was monitored for at least 60 days after completion of irradiation. Wells with confluent colonies were considered as 'recurrences' and wells without colonies as 'controlled'. The dose required to control 50% of irradiated wells (WCD{sub 50}) was estimated by a logistic regression for the different overall treatment times. The effective doubling time of clonogenic cells (T{sub eff}) was determined by a direct fit using the maximum likelihood method. Results: The increase of WCD{sub 50} within 18.3 days was highly significant for all tumor cell lines accounting for 7.9 and 12.0 Gy in the two glioblastoma cell lines and for 12.7, 14.0, and 21.7 Gy in the three SCC cell lines. The corresponding T{sub eff}s were 4.4 and 2.0 days for glioblastoma cell lines and 2.4, 4.2, and 1.8 days for SCC cell lines. Population doubling times (PDT) of untreated tumor cells ranged from 1.0 to 1.9 days, showing no correlation with T{sub eff}s. T{sub eff} was significantly longer than PDT in three of five tumor cell lines. No significant differences were observed comparing glioblastomas and SCC. Increase of WCD{sub 50} with time did not correlate with T{sub eff} but with T{sub eff}* InSF2 (surviving fraction at 2 Gy). Conclusion: The intrinsic ability of SCC and glioblastoma cells to repopulate during fractionated irradiation could be demonstrated. Repopulation induced dose loss per day depends on T{sub eff} and intrinsic radiation sensitivity. Proliferation during treatment was

  2. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells

    International Nuclear Information System (INIS)

    Oka, Naoki; Soeda, Akio; Inagaki, Akihito; Onodera, Masafumi; Maruyama, Hidekazu; Hara, Akira; Kunisada, Takahiro; Mori, Hideki; Iwama, Toru

    2007-01-01

    There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche

  3. Comparison between the Prebolus T1 Measurement and the Fixed T1 Value in Dynamic Contrast-Enhanced MR Imaging for the Differentiation of True Progression from Pseudoprogression in Glioblastoma Treated with Concurrent Radiation Therapy and Temozolomide Chemotherapy.

    Science.gov (United States)

    Nam, J G; Kang, K M; Choi, S H; Lim, W H; Yoo, R-E; Kim, J-H; Yun, T J; Sohn, C-H

    2017-12-01

    Glioblastoma is the most common primary brain malignancy and differentiation of true progression from pseudoprogression is clinically important. Our purpose was to compare the diagnostic performance of dynamic contrast-enhanced pharmacokinetic parameters using the fixed T1 and measured T1 on differentiating true from pseudoprogression of glioblastoma after chemoradiation with temozolomide. This retrospective study included 37 patients with histopathologically confirmed glioblastoma with new enhancing lesions after temozolomide chemoradiation defined as true progression ( n = 15) or pseudoprogression ( n = 22). Dynamic contrast-enhanced pharmacokinetic parameters, including the volume transfer constant, the rate transfer constant, the blood plasma volume per unit volume, and the extravascular extracellular space per unit volume, were calculated by using both the fixed T1 of 1000 ms and measured T1 by using the multiple flip-angle method. Intra- and interobserver reproducibility was assessed by using the intraclass correlation coefficient. Dynamic contrast-enhanced pharmacokinetic parameters were compared between the 2 groups by using univariate and multivariate analysis. The diagnostic performance was evaluated by receiver operating characteristic analysis and leave-one-out cross validation. The intraclass correlation coefficients of all the parameters from both T1 values were fair to excellent (0.689-0.999). The volume transfer constant and rate transfer constant from the fixed T1 were significantly higher in patients with true progression ( P = .048 and .010, respectively). Multivariate analysis revealed that the rate transfer constant from the fixed T1 was the only independent variable (OR, 1.77 × 10 5 ) and showed substantial diagnostic power on receiver operating characteristic analysis (area under the curve, 0.752; P = .002). The sensitivity and specificity on leave-one-out cross validation were 73.3% (11/15) and 59.1% (13/20), respectively. The dynamic

  4. Comparing sequencing assays and human-machine analyses in actionable genomics for glioblastoma.

    Science.gov (United States)

    Wrzeszczynski, Kazimierz O; Frank, Mayu O; Koyama, Takahiko; Rhrissorrakrai, Kahn; Robine, Nicolas; Utro, Filippo; Emde, Anne-Katrin; Chen, Bo-Juen; Arora, Kanika; Shah, Minita; Vacic, Vladimir; Norel, Raquel; Bilal, Erhan; Bergmann, Ewa A; Moore Vogel, Julia L; Bruce, Jeffrey N; Lassman, Andrew B; Canoll, Peter; Grommes, Christian; Harvey, Steve; Parida, Laxmi; Michelini, Vanessa V; Zody, Michael C; Jobanputra, Vaidehi; Royyuru, Ajay K; Darnell, Robert B

    2017-08-01

    To analyze a glioblastoma tumor specimen with 3 different platforms and compare potentially actionable calls from each. Tumor DNA was analyzed by a commercial targeted panel. In addition, tumor-normal DNA was analyzed by whole-genome sequencing (WGS) and tumor RNA was analyzed by RNA sequencing (RNA-seq). The WGS and RNA-seq data were analyzed by a team of bioinformaticians and cancer oncologists, and separately by IBM Watson Genomic Analytics (WGA), an automated system for prioritizing somatic variants and identifying drugs. More variants were identified by WGS/RNA analysis than by targeted panels. WGA completed a comparable analysis in a fraction of the time required by the human analysts. The development of an effective human-machine interface in the analysis of deep cancer genomic datasets may provide potentially clinically actionable calls for individual patients in a more timely and efficient manner than currently possible. NCT02725684.

  5. Cerebral peritumoral oedema study: Does a single dynamic MR sequence assessing perfusion and permeability can help to differentiate glioblastoma from metastasis?

    International Nuclear Information System (INIS)

    Lehmann, Pierre; Saliou, Guillaume; Marco, Giovanni de; Monet, Pauline; Souraya, Stoquart-Elsankari; Bruniau, Alexis; Vallée, Jean Noel; Ducreux, Denis

    2012-01-01

    Our purpose was to differentiate glioblastoma from metastasis using a single dynamic MR sequence to assess perfusion and permeability parameters. 24 patients with glioblastoma or cerebral metastasis with peritumoral oedema were recruited and explored with a 3 T MR unit. Post processing used DPTools software. Regions of interest were drawn around contrast enhancement to assess relative cerebral blood volume and permeability parameters. Around the contrast enhancement Glioblastoma present high rCBV with modification of the permeability, metastasis present slight modified rCBV without modification of permeability. In conclusion, peritumoral T2 hypersignal exploration associating morphological MR and functional MR parameters can help to differentiate cerebral metastasis from glioblastoma.

  6. EGFR gene overexpression retained in an invasive xenograft model by solid orthotopic transplantation of human glioblastoma multiforme into nude mice.

    Science.gov (United States)

    Yi, Diao; Hua, Tian Xin; Lin, Huang Yan

    2011-03-01

    Orthotopic xenograft animal model from human glioblastoma multiforme (GBM) cell lines often do not recapitulate an extremely important aspect of invasive growth and epidermal growth factor receptor (EGFR) gene overexpression of human GBM. We developed an orthotopic xenograft model by solid transplantation of human GBM into the brain of nude mouse. The orthotopic xenografts sharing the same histopathological features with their original human GBMs were highly invasive and retained the overexpression of EGFR gene. The murine orthotopic GBM models constitute a valuable in vivo system for preclinical studies to test novel therapies for human GBM.

  7. Carbon ion beam is more effective to induce cell death in sphere-type A172 human glioblastoma cells compared with X-rays.

    Science.gov (United States)

    Takahashi, Momoko; Hirakawa, Hirokazu; Yajima, Hirohiko; Izumi-Nakajima, Nakako; Okayasu, Ryuichi; Fujimori, Akira

    2014-12-01

    To obtain human glioblastoma cells A172 expressing stem cell-related protein and comparison of radiosensitivity in these cells with X-rays and carbon beam. Human monolayer-type A172 glioblastoma cells were maintained in normal medium with 10% bovine serum. In order to obtain sphere-type A172 cells the medium was replaced with serum-free medium supplemented with growth factors. Both types of A172 cells were irradiated with either X-rays or carbon ion beams and their radiosensitivity was evaluated. Serum-free medium induced expression of stem cell-related proteins in A172 cells along with the neurosphere-like appearance. These sphere-type cells were found resistant to both X-rays and carbon ion beams. Phosphorylation of histone H2A family member X persisted for a longer period in the cells exposed to carbon ion beams than in those exposed to X-rays and it disappeared quicker in the sphere type than in the monolayer type. Relative radioresistance of the sphere type cells was smaller for carbon ion beams than for X-rays. We demonstrated that glioblastoma A172 cells with induced stem cell-related proteins turned resistant to irradiation. Accelerated heavy ion particles may have advantage over X-rays in overcoming the tumor resistance due to cell stemness.

  8. Multifaceted role of galectin-3 on human glioblastoma cell motility

    International Nuclear Information System (INIS)

    Debray, Charles; Vereecken, Pierre; Belot, Nathalie; Teillard, Peggy; Brion, Jean-Pierre; Pandolfo, Massimo; Pochet, Roland

    2004-01-01

    Astrocytic tumors' aggressiveness results from an imbalance between cell proliferation and cell death favoring growth, but also from the propensity of tumor cells to detach from the primary tumor site, migrate, and invade the surrounding parenchyma. Astrocytic tumor progression is known to be associated with an increased expression of galectin-3. We investigated in cell culture how galectin-3 expression affects astrocytoma cell motility. Galectin-3 deficient cells were obtained by stable transfection of the U373 glioblastoma cell line with a specific expression antisense plasmid. Cultured galectin-3 deficient glioblastoma cells showed increased motility potential on laminin and modifications in the cytoskeleton reorganization. In addition, c-DNA microarrays and quantitative immunofluorescence analysis showed that galectin-3 deficient U373 cells have an increased expression of integrins-α6 and -β1, proteins known to be implicated in the regulation of cell adhesion

  9. Aptamer-conjugated dendrimer-modified quantum dots for glioblastoma cells imaging

    International Nuclear Information System (INIS)

    Li Zhiming; Huang Peng; He Rong; Bao Chenchen; Cui Daxiang; Zhang Xiaomin; Ren Qiushi

    2009-01-01

    Targeted quantum dots have shown potential as a platform for development of cancer imaging. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In present work, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified quantum dots were conjugated with DNA aptamer, GBI-10, can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. Aptamer-conjugated quantum dots can specifically target U251 human glioblastoma cells. High-performance aptamer-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as cancer imaging.

  10. [G894T (NOS3) and G1958A (MTHFD1) gene polymorphisms and risk of ischemic heart disease in Yucatan, Mexico].

    Science.gov (United States)

    García-González, Igrid; Solís-Cárdenas, Alberto de Jesús; Flores-Ocampo, Jorge A; Alejos-Mex, Ricardo; Herrera-Sánchez, Luis Fernando; González-Herrera, Lizbeth Josefina

    2015-01-01

    Cardiovascular medicine is focused on the search for genetic risk markers with predictive and/or prognostic value. Among the genetic variants of interest are G894T endothelial nitric oxide synthase and G1958A methylenetetrahydrofolate dehydrogenase1 gene polymorphisms. The aim of this study was to determine the possible association between these polymorphisms and ischemic heart disease in patients from Southern of Mexico (Yucatán). Case-control study matched by age, sex and origin was designed. We studied 98 patients with coronary disease and 101 controls. Participants were evaluated for the usual risk factors. The polymorphisms were identified using the polymerase chain reaction/restriction fragment length polymorphism analysis. Informed consent was obtained from all participants. The G894T and G1958A polymorphisms were not associated with ischemic heart disease, however, the TT genotype (G894T) was associated with the angina (OR=10.2; 95%CI, 1.51-68.8; p=0.025). The genotype GT (G894T) was the most frequent in patients with family history of coronary artery disease. Multiple logistic regression analysis identified smoking (OR=5.21; 95%CI, 2.1-12.9; p=0.000), hypertension (OR=3.54; 95%CI, 1.47-8.56; p=0.005) and obesity (OR=1.16; 95%CI, 1.1-1.27; p=0.001) as risk factors predicting the ischemic heart disease. The G894T and G1958A polymorphisms showed not association with ischemic heart disease. However, homozygosis for the 894T allele (NOS3) confers at risk to develop angina on Yucatán. Copyright © 2014 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  11. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    International Nuclear Information System (INIS)

    Schuuring, Janneke; Bussink, Johan; Bernsen, Hans; Peeters, Wenny; Kogel, Albert J. van der

    2005-01-01

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, when combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone

  12. Ion channels in glioblastoma.

    Science.gov (United States)

    Molenaar, Remco J

    2011-01-01

    Glioblastoma is the most common primary brain tumor with the most dismal prognosis. It is characterized by extensive invasion, migration, and angiogenesis. Median survival is only 15 months due to this behavior, rendering focal surgical resection ineffective and adequate radiotherapy impossible. At this moment, several ion channels have been implicated in glioblastoma proliferation, migration, and invasion. This paper summarizes studies on potassium, sodium, chloride, and calcium channels of glioblastoma. It provides an up-to-date overview of the literature that could ultimately lead to new therapeutic targets.

  13. Hypofractionated radiation induces a decrease in cell proliferation but no histological damage to organotypic multicellular spheroids of human glioblastomas

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; Sminia, P.; Hulshof, M. C.; van der Kracht, A. H.; Leenstra, S.; Bosch, D. A.

    1997-01-01

    The aim of this study was to examine the effect of radiation on glioblastoma, using an organotypic multicellular spheroid (OMS) model. Most glioblastoma cell lines are, in contrast to glioblastomas in vivo, relatively radiosensitive. This limits the value of using cell lines for studying the

  14. Elevated chemokine CC-motif receptor-like 2 (CCRL2) promotes cell migration and invasion in glioblastoma.

    Science.gov (United States)

    Yin, Fengqiong; Xu, Zhenhua; Wang, Zifeng; Yao, Hong; Shen, Zan; Yu, Fang; Tang, Yiping; Fu, Dengli; Lin, Sheng; Lu, Gang; Kung, Hsiang-Fu; Poon, Wai Sang; Huang, Yunchao; Lin, Marie Chia-Mi

    2012-12-14

    Chemokine CC-motif receptor-like 2 (CCRL2) is a 7-transmembrane G protein-coupled receptor which plays a key role in lung dendritic cell trafficking to peripheral lymph nodes. The function and expression of CCRL2 in cancer is not understood at present. Here we report that CCRL2 expression level is elevated in human glioma patient samples and cell lines. The magnitude of increase is positively associated with increasing tumor grade, with the highest level observed in grade IV glioblastoma. By gain-of-function and loss-of-function studies, we further showed that CCRL2 did not regulate the growth of human glioblatoma U87 and U373 cells. Importantly, we demonstrated that over-expression of CCRL2 significantly enhanced the migration rate and invasiveness of the glioblastoma cells. Taken together, these results suggest for the first time that elevated CCRL2 in glioma promotes cell migration and invasion. The potential roles of CCRL2 as a novel therapeutic target and biomarker warrant further investigations. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Sulforaphane inhibits invasion via activating ERK1/2 signaling in human glioblastoma U87MG and U373MG cells.

    Directory of Open Access Journals (Sweden)

    Chunliu Li

    Full Text Available Glioblastoma has highly invasive potential, which might result in poor prognosis and therapeutic failure. Hence, the key we study is to find effective therapies to repress migration and invasion. Sulforaphane (SFN was demonstrated to inhibit cell growth in a variety of tumors. Here, we will further investigate whether SFN inhibits migration and invasion and find the possible mechanisms in human glioblastoma U87MG and U373MG cells.First, the optimal time and dose of SFN for migration and invasion study were determined via cell viability and cell morphological assay. Further, scratch assay and transwell invasion assay were employed to investigate the effect of SFN on migration and invasion. Meanwhile, Western blots were used to detect the molecular linkage among invasion related proteins phosphorylated ERK1/2, matrix metalloproteinase-2 (MMP-2 and CD44v6. Furthermore, Gelatin zymography was performed to detect the inhibition of MMP-2 activation. In addition, ERK1/2 blocker PD98059 (25 µM was integrated to find the link between activated ERK1/2 and invasion, MMP-2 and CD44v6.The results showed that SFN (20 µM remarkably reduced the formation of cell pseudopodia, indicating that SFN might inhibit cell motility. As expected, scratch assay and transwell invasion assay showed that SFN inhibited glioblastoma cell migration and invasion. Western blot and Gelatin zymography showed that SFN phosphorylated ERK1/2 in a sustained way, which contributed to the downregulated MMP-2 expression and activity, and the upregulated CD44v6 expression. These molecular interactions resulted in the inhibition of cell invasion.SFN inhibited migration and invasion processes. Furthermore, SFN inhibited invasion via activating ERK1/2 in a sustained way. The accumulated ERK1/2 activation downregulated MMP-2 expression and decreased its activity and upregulated CD44v6. SFN might be a potential therapeutic agent by activating ERK1/2 signaling against human glioblastoma.

  16. [RITA combined with temozolomide inhibits the proliferation of human glioblastoma U87 cells].

    Science.gov (United States)

    He, Xiao-Yan; Feng, Xiao-Li; Song, Xin-Pei; Zeng, Huan-Chao; Cao, Zhong-Xu; Xiao, Wei-Wei; Zhang, Bao; Wu, Qing-Hua

    2016-10-20

    To observe the effect of RITA, a small molecule that targets p53, combined with temozolomide (TMZ) on proliferation, colony formation and apoptosis of human glioblastoma U87 cells and explore the underlying mechanism. Cultured U87 cells were treated with RITA (1, 5, 10, 20 µmol/L), TMZ, or RITA+TMZ (half dose) for 24, 48 or 72 h. MTS assay were used to detect the cell proliferation, and the cell proliferation rate and inhibitory rate were calculated. The effect of combined treatments was evaluated by the q value. The expressions of p53, p21 and other apoptosis-associated genes were detected by qRT-PCR and Western blotting; cell apoptosis was assayed using flow cytometry with Annexin V/PI double staining; colony formation of the cells was detected with crystal violet staining. MTS assay showed that RITA at the 4 doses more potently inhibited U87 cell viability than TMZ at 72 h (P=0.000) with inhibitory rates of 25.94%-41.38% and 3.84%-8.20%, respectively. RITA combined with TMZ caused a more significant inhibition of U87 cells (29.21%-52.11%) than RITA (PRITA+TMZ for 48 h resulted in q values exceeding 1.2 and showed an obvious synergistic effect of the drugs. Both RITA and TMZ, especially the latter, significantly increased the expressions of p53, p21, puma, and other apoptosis-associated genes to accelerate apoptosis and inhibit the growth and colony formation of U87 cells, and the effect was more obvious with a combined treatment. RITA inhibits the growth of human glioblastoma cells and enhance their sensitivity to TMZ by up-regulating p53 expression, and when combined, RITA and TMZ show a synergistic effect to cause a stronger cell inhibition.

  17. A gene delivery system with a human artificial chromosome vector based on migration of mesenchymal stem cells towards human glioblastoma HTB14 cells.

    Science.gov (United States)

    Kinoshita, Yusuke; Kamitani, Hideki; Mamun, Mahabub Hasan; Wasita, Brian; Kazuki, Yasuhiro; Hiratsuka, Masaharu; Oshimura, Mitsuo; Watanabe, Takashi

    2010-05-01

    Mesenchymal stem cells (MSCs) have been expected to become useful gene delivery vehicles against human malignant gliomas when coupled with an appropriate vector system, because they migrate towards the lesion. Human artificial chromosomes (HACs) are non-integrating vectors with several advantages for gene therapy, namely, no limitations on the size and number of genes that can be inserted. We investigated the migration of human immortalized MSCs bearing a HAC vector containing the herpes simplex virus thymidine kinase gene (HAC-tk-hiMSCs) towards malignant gliomas in vivo. Red fluorescence protein-labeled human glioblastoma HTB14 cells were implanted into a subcortical region in nude mice. Four days later, green fluorescence protein-labeled HAC-tk-hiMSCs were injected into a contralateral subcortical region (the HTB14/HAC-tk-hiMSC injection model). Tropism to the glioma mass and the route of migration were visualized by fluorescence microscopy and immunohistochemical staining. HAC-tk-hiMSCs began to migrate toward the HTB14 glioma area via the corpus callosum on day 4, and gathered around the HTB14 glioma mass on day 7. To test whether the delivered gene could effectively treat glioblastoma in vivo, HTB14/HAC-tk-hiMSC injected mice were treated with ganciclovir (GCV) or PBS. The HTB14 glioma mass was significantly reduced by GCV treatment in mice injected with HAC-tk-hiMSCs. It was confirmed that gene delivery by our HAC-hiMSC system was effective after migration of MSCs to the glioma mass in vivo. Therefore, MSCs containing HACs carrying an anticancer gene or genes may provide a new tool for the treatment of malignant gliomas and possibly of other tumor types.

  18. A Phase 1 trial of intravenous boronophenylalanine-fructose complex in patients with glioblastoma multiforme

    International Nuclear Information System (INIS)

    Bergland, R.; Elowitz, E.; Chadha, M.; Coderre, J.A.; Joel, D.

    1996-01-01

    Boron neutron capture therapy (BNCT) of glioblastoma multiforme was initially performed at the Brookhaven National Laboratory in the early 1950's While this treatment for malignant brain tumors has continued in Japan, new worldwide interest has been stimulated by the development of new and more selective boron compounds. Boronophenylalanine (BPA) is a blood-brain barrier penetrating compound that has been used in BNCT of malignant melanomas. SPA has been employed experimentally in BNCT of rat gliosarcoma and has potential use in the treatment of human glioblastoma. As a preface to clinical BNCT trials, we studied the biodistribution of SPA in patients with glioblastoma

  19. Cancer association study of aminoacyl-tRNA synthetase signaling network in glioblastoma.

    Directory of Open Access Journals (Sweden)

    Yong-Wan Kim

    Full Text Available Aminoacyl-tRNA synthetases (ARSs and ARS-interacting multifunctional proteins (AIMPs exhibit remarkable functional versatility beyond their catalytic activities in protein synthesis. Their non-canonical functions have been pathologically linked to cancers. Here we described our integrative genome-wide analysis of ARSs to show cancer-associated activities in glioblastoma multiforme (GBM, the most aggressive malignant primary brain tumor. We first selected 23 ARS/AIMPs (together referred to as ARSN, 124 cancer-associated druggable target genes (DTGs and 404 protein-protein interactors (PPIs of ARSs using NCI's cancer gene index. 254 GBM affymetrix microarray data in The Cancer Genome Atlas (TCGA were used to identify the probe sets whose expression were most strongly correlated with survival (Kaplan-Meier plots versus survival times, log-rank t-test <0.05. The analysis identified 122 probe sets as survival signatures, including 5 of ARSN (VARS, QARS, CARS, NARS, FARS, and 115 of DTGs and PPIs (PARD3, RXRB, ATP5C1, HSP90AA1, CD44, THRA, TRAF2, KRT10, MED12, etc. Of note, 61 survival-related probes were differentially expressed in three different prognosis subgroups in GBM patients and showed correlation with established prognosis markers such as age and phenotypic molecular signatures. CARS and FARS also showed significantly higher association with different molecular networks in GBM patients. Taken together, our findings demonstrate evidence for an ARSN biology-dominant contribution in the biology of GBM.

  20. Identification of Rotavirus VP6-Specific CD4+ T Cell Epitopes in a G1P[8] Human Rotavirus-Infected Rhesus Macaque

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2008-01-01

    Full Text Available A non-human primate model was used to evaluate its potential for identification of rotavirus viral protein 6 (VP6 CD4+ T cell epitopes. Four juvenile rhesus macaques were inoculated with a mixed inoculum (G1P[8] and G9P[8] of human rotaviruses. Infection accompanied by G1P[8] shedding was achieved in the two macaques that had no rotavirus immunoglobulin A (IgA in plasma. To measure the interferon gamma (IFN-γ and tumor necrosis factor (TNF anti-viral cytokines produced by peripheral CD4+ cells that recognize VP6 epitopes, whole blood cells from one infected macaque were stimulated in vitro with VP6 peptides. Stimulation with peptide pools derived from the simian rotavirus VP6 161–395 region revealed reactivity of CD4+ T cells with the VP6 281–331 domain. A VP6 301–315 region was identified as the epitope responsible for IFN-γ production while a broader VP6 293–327 domain was linked to TNF production. These results suggest that human rotavirus-infected macaques can be used for identification of additional epitopes and domains to address specific questions related to the development of pediatric vaccines.

  1. Nanotechnology applications for glioblastoma.

    Science.gov (United States)

    Nduom, Edjah K; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-07-01

    Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. Although conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds promise in the use of multifunctional nanoparticles for imaging and targeted therapy of glioblastoma. This article examines the current state of nanotechnology in the treatment of glioblastoma and directions of further study. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Dissection of the transformation of primary human hematopoietic cells by the oncogene NUP98-HOXA9.

    Directory of Open Access Journals (Sweden)

    Enas R Yassin

    2009-08-01

    Full Text Available NUP98-HOXA9 is the prototype of a group of oncoproteins associated with acute myeloid leukemia. It consists of an N-terminal portion of NUP98 fused to the homeodomain of HOXA9 and is believed to act as an aberrant transcription factor that binds DNA through the homeodomain. Here we show that NUP98-HOXA9 can regulate transcription without binding to DNA. In order to determine the relative contributions of the NUP98 and HOXA9 portions to the transforming ability of NUP98-HOXA9, the effects of NUP98-HOXA9 on primary human CD34+ cells were dissected and compared to those of wild-type HOXA9. In contrast to previous findings in mouse cells, HOXA9 had only mild effects on the differentiation and proliferation of primary human hematopoietic cells. The ability of NUP98-HOXA9 to disrupt the differentiation of primary human CD34+ cells was found to depend primarily on the NUP98 portion, whereas induction of long-term proliferation required both the NUP98 moiety and an intact homeodomain. Using oligonucleotide microarrays in primary human CD34+ cells, a group of genes was identified whose dysregulation by NUP98-HOXA9 is attributable primarily to the NUP98 portion. These include RAP1A, HEY1, and PTGS2 (COX-2. Their functions may reflect the contribution of the NUP98 moiety of NUP98-HOXA9 to leukemic transformation. Taken together, these results suggest that the effects of NUP98-HOXA9 on gene transcription and cell transformation are mediated by at least two distinct mechanisms: one that involves promoter binding through the homeodomain with direct transcriptional activation, and another that depends predominantly on the NUP98 moiety and does not involve direct DNA binding.

  3. Live attenuated measles virus vaccine therapy for locally established malignant glioblastoma tumor cells

    Directory of Open Access Journals (Sweden)

    Al-Shammari AM

    2014-05-01

    Full Text Available Ahmed M Al-Shammari,1 Farah E Ismaeel,2 Shahlaa M Salih,2 Nahi Y Yaseen11Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Researches, Mustansiriya University, 2Departments of Biotechnology, College of Science, Al-Nahrain University, Baghdad, IraqAbstract: Glioblastoma multiforme is the most aggressive malignant primary brain tumor in humans, with poor prognosis. A new glioblastoma cell line (ANGM5 was established from a cerebral glioblastoma multiforme in a 72-year-old Iraqi man who underwent surgery for an intracranial tumor. This study was carried out to evaluate the antitumor effect of live attenuated measles virus (MV Schwarz vaccine strain on glioblastoma multiforme tumor cell lines in vitro. Live attenuated MV Schwarz strain was propagated on Vero, human rhabdomyosarcoma, and human glioblastoma-multiform (ANGM5 cell lines. The infected confluent monolayer appeared to be covered with syncytia with granulation and vacuolation, as well as cell rounding, shrinkage, and large empty space with cell debris as a result of cell lysis and death. Cell lines infected with virus have the ability for hemadsorption to human red blood cells after 72 hours of infection, whereas no hemadsorption of uninfected cells is seen. Detection of MV hemagglutinin protein by monoclonal antibodies in infected cells of all cell lines by immunocytochemistry assay gave positive results (brown color in the cytoplasm of infected cells. Cell viability was measured after 72 hours of infection by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Results showed a significant cytotoxic effect for MV (P≤0.05 on growth of ANGM5 and rhabdomyosarcoma cell lines after 72 hours of infection. Induction of apoptosis by MV was assessed by measuring mitochondrial membrane potentials in tumor cells after 48, 72, and 120 hours of infection. Apoptotic cells were counted, and the mean percentage of dead cells was significantly higher after 48, 72

  4. Human tonsillar IgE biosynthesis in vitro. I. Enhancement of IgE and IgG synthesis in the presence of pokeweed mitogen by T-cell irradiation

    International Nuclear Information System (INIS)

    Ohta, K.; Manzara, T.; Harbeck, R.J.; Kirkpatrick, C.H.

    1982-01-01

    A study of the events regulating human IgE biosynthesis in vitro was undertaken with tonsillar lymphocytes. IgG synthesis was also studied to evaluate the specificity of our observations. T-cell irradiation significantly enhanced synthesis of IgE by pokeweed mitogen (PWM)-stimulated B cells from 12 of 18 donors and IgG in all 18 donors. This enhancement was the result of de novo immunoglobulin synthesis, since the amount of IgE and IgG spontaneously released from lysed and lysed-and-cultured mononuclear cells was significantly less than that detected in the cell cultures, and the augmentation was completely ablated by the treatment of the cells with cycloheximide or mitomycin C. Enhancement was also dependent on the presence of PWM; T-cell irradiation did not enhance IgE synthesis in unstimulated cultures. Moreover, this enhancement was also observed in the co-cultures of B cells and allogeneic irradiated T cells. These observations suggest that radiosensitive T cells exert a suppressive activity that contributes to regulation of human IgE and IgG synthesis and that the suppressor function as well as the helper function can overcome allogeneic disparities

  5. CD147 and CD98 complex-mediated homotypic aggregation attenuates the CypA-induced chemotactic effect on Jurkat T cells.

    Science.gov (United States)

    Guo, Na; Zhang, Kui; Lv, Minghua; Miao, Jinlin; Chen, Zhinan; Zhu, Ping

    2015-02-01

    Homotypic cell aggregation plays important roles in physiological and pathological processes, including embryogenesis, immune responses, angiogenesis, tumor cell invasion and metastasis. CD147 has been implicated in most of these phenomena, and it was identified as a T cell activation-associated antigen due to its obvious up-regulation in activated T cells. However, the explicit function and mechanism of CD147 in T cells have not been fully elucidated. In this study, large and compact aggregates were observed in Jurkat T cells after treatment with the specific CD147 monoclonal antibody HAb18 or after the expression of CD147 was silenced by RNA interference, which indicated an inhibitory effect of CD147 in T cell homotypic aggregation. Knocking down CD147 expression resulted in a significant decrease in CD98, along with prominent cell aggregation, similar to that treated by CD98 and CD147 monoclonal antibodies. Furthermore, decreased cell chemotactic activity was observed following CD147- and CD98-mediated cell aggregation, and increased aggregation was correlated with a decrease in the chemotactic ability of the Jurkat T cells, suggesting that CD147- and CD98-mediated homotypic cell aggregation plays a negative role in T cell chemotaxis. Our data also showed that p-ERK, p-ZAP70, p-CD3ζ and p-LCK were significantly decreased in the CD147- and CD98-knocked down Jurkat T cells, which suggested that decreased CD147- and/or CD98-induced homotypic T cell aggregation and aggregation-inhibited chemotaxis might be associated with these signaling pathways. A role for CD147 in cell aggregation and chemotaxis was further indicated in primary CD4(+) T cells. Similarly, low expression of CD147 in primary T cells induced prominent cell aggregation and this aggregation attenuated primary T cell chemotactic ability in response to CypA. Our results have demonstrated the correlation between homotypic cell aggregation and the chemotactic response of T cells to CypA, and these data

  6. Omega-3 fatty acid supplementation in cancer therapy. Does eicosapentanoic acid influence the radiosensitivity of tumor cells?

    Energy Technology Data Exchange (ETDEWEB)

    Manda, Katrin; Kriesen, Stephan; Hildebrandt, Guido [Rostock Univ. (Germany). Dept. of Radiotherapy; Fietkau, Rainer; Klautke, Gunther [Univ. Hospital Erlangen, Erlangen (Germany). Dept. of Radiation Oncology

    2011-02-15

    Purpose: The aim of this study was to evaluate whether the omega-3 polyunsaturated fatty acid cis-5,8,11,14,17-eicosapentanoic acid (EPA) can enhance the radiosensitivity of different human tumor cell lines. Materials and Methods: Colon adenocarcinoma cells HT-29, and two glioblastoma multiforme tumor cells T98G and U251 were cultured under standard conditions. Cell growth was observed during administration with different concentrations of EPA, using it as the free fatty acid dissolved in ethanol or bound to bovine serum albumin. To investigate the influence of EPA (free and bound) on radiosensitivity, tumor cells were pretreated 30 minutes or 24 hours prior to irradiation with the fatty acid. Cell survival was measured by colony-forming assays. Results: When combined with irradiation, incubation with EPA was found to result in enhanced radiosensitivity with substantial variation: while there was strong radiosensitization for HT-29 and U251 cells, almost no effect for T98G cells was observed. A marked radiosensitization was clearly dependent on the treatment schedule. Conclusion: The observations suggest that EPA is not only a nutritional adjuvant but also may be a potential candidate to enhance the efficacy of irradiation on human cancer cells. (orig.)

  7. Mechanism of Anti-glioblastoma Effect of Temzolomide Involved in ROS-Mediated SIRT 1 Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-03-01

    Full Text Available Objective: To explore the new molecular mechanism of anti-tumor effect of temzolomide (TMZon glioblastoma cell strain. Methods: MTT methods and Hoechst 33342 staining method were applied to determine the effect of TMZ on the proliferation and apoptosis of glioblastoma cell strains U251 and SHG44, while flow cytometry was used to detect the impact of TMZ on cellular cycles. Additionally, DCFH-DA probe was adopted to test intracellular reactive oxygen species (ROS level while Real-time PCR and Western blot tests were applied to determine the influence of TMZ on SIRT1 expression. Results: TMZ in different concentrations added into glioblastoma cell strain for 72 h could concentration-dependently inhibit the proliferation of glioblastoma cells, 100 μmol/L of which could also block cells in phase G2/M and improve cellular apoptosis. In addition, TMZ could evidently increase intracellular ROS level so as to activate SIRT1. Conclusion: The mechanism of anti-tumor effect of TMZ on glioblastoma may be associated with ROS-induced SIRT1 pathway, providing theoretical basis for the clinical efficacy of TMZ.

  8. Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells

    Science.gov (United States)

    Valdor, Rut; García-Bernal, David; Bueno, Carlos; Ródenas, Mónica; Moraleda, José M.; Macian, Fernando; Martínez, Salvador

    2017-01-01

    The establishment of immune tolerance during Glioblastoma Multiforme (GBM) progression, is characterized by high levels expression of anti-inflammatory cytokines, which suppress the function of tumor assocciated myeloid cells, and the activation and expansion of tumor antigen specific T cells. However, the mechanisms underlying the failed anti-tumor immune response around the blood vessels during GBM, are poorly understood. The consequences of possible interactions between cancer cells and the perivascular compartment might affect the tumor growth. In this work we show for the first time that GBM cells induce immunomodulatory changes in pericytes in a cell interaction-dependent manner, acquiring an immunosuppresive function that possibly assists the evasion of the anti-tumor immune response and consequently participates in tumor growth promotion. Expression of high levels of anti-inflammatory cytokines was detected in vitro and in vivo in brain pericytes that interacted with GBM cells (GBC-PC). Furthermore, reduction of surface expression of co-stimulatory molecules and major histocompatibility complex molecules in GBC-PC correlated with a failure of antigen presentation to T cells and the acquisition of the ability to supress T cell responses. In vivo, orthotopic xenotransplant of human glioblastoma in an immunocompetent mouse model showed significant GBM cell proliferation and tumor growth after the establishment of interspecific immunotolerance that followed GMB interaction with pericytes. PMID:28978142

  9. Glioblastoma stem-like cells give rise to tumour endothelium

    NARCIS (Netherlands)

    Wang, Rong; Chadalavada, Kalyani; Wilshire, Jennifer; Kowalik, Urszula; Hovinga, Koos E.; Geber, Adam; Fligelman, Boris; Leversha, Margaret; Brennan, Cameron; Tabar, Viviane

    2010-01-01

    Glioblastoma (GBM) is among the most aggressive of human cancers. A key feature of GBMs is the extensive network of abnormal vasculature characterized by glomeruloid structures and endothelial hyperplasia. Yet the mechanisms of angiogenesis and the origin of tumour endothelial cells remain poorly

  10. TCGA Workshop: Genomics and Biology of Glioblastoma Multiforme (GBM) - TCGA

    Science.gov (United States)

    The National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI) held a workshop entitled, “Genomics and Biology of Glioblastoma Multiforme (GBM),” to review the initial GBM data from the TCGA pilot project.

  11. N-(4-Hydroxyphenyl) retinamide potentiated paclitaxel for cell cycle arrest and apoptosis in glioblastoma C6 and RG2 cells

    Science.gov (United States)

    Janardhanan, Rajiv; Butler, Jonathan T.; Banik, Naren L.; Ray, Swapan K.

    2009-01-01

    Glioblastoma grows aggressively due to its ability to maintain abnormally high potentials for cell proliferation. The present study examines the synergistic actions of N-(4-hdroxyphenyl) retinamide (4-HPR) and paclitaxel (PTX) to control the growth of rat glioblastoma C6 and RG2 cell lines. 4-HPR induced astrocytic differentiation was accompanied by increased expression of the tight junction protein e-cadherin and sustained down regulation of Id2 (member of inhibitor of differentiation family), catalytic subunit of rat telomerase reverse transcriptase (rTERT), and proliferating cell nuclear antigen (PCNA). Flow cytometric analysis showed that the microtubule stabilizer PTX caused cell cycle deregulation due to G2/M arrest. This in turn could alter the fate of kinetochore-spindletube dynamics thereby halting cell cycle progression. An interesting observation was induction of G1/S arrest by combination of 4-HPR and PTX, altering the G2/M arrest induced by PTX alone. This was further ratified by the upregulation of tumor suppressor protein retinoblastoma, which repressed the expression of the key signaling moieties to induce G1/S arrest. Collectively, combination of 4-HPR and PTX diminished the survival factors (e.g., rTERT, PCNA, and Bcl-2) to make glioblastoma cells highly prone to apoptosis with activation of cysteine proteases (e.g., calpain, cathepsins, caspase-8, caspase-3) in two glioblastoma cell lines. Hence, combination 4-HPR and PTX can be considered as an effective therapeutic strategy for controlling the growth of heterogeneous glioblastoma cell populations. PMID:19285047

  12. Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells

    DEFF Research Database (Denmark)

    Fornara, O; Bartek, J; Rahbar, A

    2016-01-01

    Glioblastoma (GBM) is associated with poor prognosis despite aggressive surgical resection, chemotherapy, and radiation therapy. Unfortunately, this standard therapy does not target glioma cancer stem cells (GCSCs), a subpopulation of GBM cells that can give rise to recurrent tumors. GBMs express...... human cytomegalovirus (HCMV) proteins, and previously we found that the level of expression of HCMV immediate-early (IE) protein in GBMs is a prognostic factor for poor patient survival. In this study, we investigated the relation between HCMV infection of GBM cells and the presence of GCSCs. Primary...... GBMs were characterized by their expression of HCMV-IE and GCSCs marker CD133 and by patient survival. The extent to which HCMV infection of primary GBM cells induced a GCSC phenotype was evaluated in vitro. In primary GBMs, a large fraction of CD133-positive cells expressed HCMV-IE, and higher co...

  13. Interference with PSMB4 Expression Exerts an Anti-Tumor Effect by Decreasing the Invasion and Proliferation of Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chen Cheng

    2018-01-01

    Full Text Available Background/Aims: Glioblastoma (GBM is a malignant brain tumor with a poor prognosis. Proteasome subunit beta type-4 (PSMB4 is an essential subunit that contributes to the assembly of the 20S proteasome complex. However, the role of PSMB4 in glioblastomas remains to be clarified. The aim of this study was to investigate the role of PSMB4 in GBM tumor progression. Methods: We first analyzed the PSMB4 protein and mRNA expression in 80 clinical brain specimens and 77 datasets from the National Center for Biotechnology Information (NCBI Gene Expression Omnibus (GEO database. Next, we inhibited the PSMB4 expression by siRNA in cellular and animal models to explore PSMB4’s underlying mechanisms. The cell survival after siPSMB4 transfection was assayed by MTT assay. Annexin V and propidium iodide staining was used to monitor the apoptosis by flow cytometric analysis. Moreover, the migration and invasion were evaluated by wound healing and Transwell assays. The expression of migration-related and invasion-related proteins after PSMB4 inhibition was detected by Western blotting. In addition, an orthotropic xenograft mouse model was used to assay the effect of PSMB4 knockdown in the in vivo study. Results: Basis on the results of bioinformatics study, glioma patients with higher PSMB4 expression had a shorter survival time than those with lower PSMB4 expression. The staining of clinical brain tissues showed elevated PSMB4 expression in GBM tissues compared with normal brain tissues. The PSMB4 inhibition decreased proliferation, migration and invasion abilities in human GBM cells. Downregulated PSMB4 resulted in cell cycle arrest and apoptosis in vitro. In an orthotropic xenograft mouse model, the glioma tumors progression was reduced when PSMB4 was down-regulated. The decreased PSMB4 enhanced the anti-tumor effect of temozolomide (TMZ on tumor growth. In addition, the absence of PSMB4 decreased the expression of phosphorylated focal adhesion kinase and

  14. The rates of G:C[yields]T:A and G:C[yields]C:G transversions at CpG dinucleotides in the human factor IX gene

    Energy Technology Data Exchange (ETDEWEB)

    Ketterling, R.P.; Vielhaber, E.; Sommer, S.S. (Mayo Clinic/Foundation, Rochester, MN (United States))

    1994-05-01

    The authors have identified eight independent transversions at CpG in 290 consecutive families with hemophilia B. These eight transversions account for 16.3% of all independent transversions in the sample, yet the expected frequency of CpG transversions at random in the factor IX gene is only 2.6% (P<0.1). The aggregate data suggest that the two types of CpG transversions (G:C[yields]T:A and G:C[yields]C:G) possess similar mutation rates (24.8 [times] 10[sup [minus]10] and 20.6 [times] 10[sup [minus]10], respectively), which are about fivefold greater than the comparable rates for transversions at non-CpG dinucleotides. The enhancement of transversions at CpG suggest that the model by which mutations occur at CpG may need to be reevaluated. The relationship, if any, between deamination of 5-methyl cytosine and enhancement of transversions at CpG remains to be defined. 28 refs., 2 tabs.

  15. The Role of RhoA, RhoB and RhoC GTPases in Cell Morphology, Proliferation and Migration in Human Cytomegalovirus (HCMV Infected Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Melpomeni Tseliou

    2016-01-01

    Full Text Available Background/Aims: Rho GTPases are crucial regulators of the actin cytoskeleton, membrane trafficking and cell signaling and their importance in cell migration and invasion is well- established. The human cytomegalovirus (HCMV is a widespread pathogen responsible for generally asymptomatic and persistent infections in healthy people. Recent evidence indicates that HCMV gene products are expressed in over 90% of malignant type glioblastomas (GBM. In addition, the HCMV Immediate Early-1 protein (IE1 is expressed in >90% of tumors analyzed. Methods: RhoA, RhoB and RhoC were individually depleted in U373MG glioblastoma cells as well as U373MG cells stably expressing the HCMV IE1 protein (named U373MG-IE1 cells shRNA lentivirus vectors. Cell proliferation assays, migration as well as wound-healing assays were performed in uninfected and HCMV-infected cells. Results: The depletion of RhoA, RhoB and RhoC protein resulted in significant alterations in the morphology of the uninfected cells, which were further enhanced by the cytopathic effect caused by HCMV. Furthermore, in the absence or presence of HCMV, the knockdown of RhoB and RhoC proteins decreased the proliferation rate of the parental and the IE1-expressing glioblastoma cells, whereas the knockdown of RhoA protein in the HCMV infected cell lines restored their proliferation rate. In addition, wound healing assays in U373MG cells revealed that depletion of RhoA, RhoB and RhoC differentially reduced their migration rate, even in the presence or the absence of HCMV. Conclusion: Collectively, these data show for the first time a differential implication of Rho GTPases in morphology, proliferation rate and motility of human glioblastoma cells during HCMV infection, further supporting an oncomodulatory role of HCMV depending on the Rho isoforms' state.

  16. Amplification of the epidermal growth factor receptor gene in glioblastoma: an analysis of the relationship between genotype and phenotype by CISH method.

    Science.gov (United States)

    Miyanaga, Tomomi; Hirato, Junko; Nakazato, Yoichi

    2008-04-01

    We examined epidermal growth factor receptor (EGFR) overexpression and EGFR gene amplification using immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH) in 109 glioblastomas, including 98 primary glioblastomas and 11 secondary glioblastomas. EGFR overexpression and EGFR gene amplification were found in 33% and 24% of glioblastoma, respectively, and all of those cases were primary glioblastoma. Large ischemic necrosis was significantly more frequent in primary glioblastomas than in secondary glioblastomas (54% vs. 18%), but pseudopalisading necrosis was not (65% vs. 54%). EGFR gene amplification was detected significantly more frequently in cases with both types of necrosis. Although glioblastomas with EGFR gene amplification invariably exhibited EGFR overexpression at the level of the whole tumor, tumor cells with EGFR gene amplification did not always show EGFR overexpression at the level of individual tumor cells. Cases of "strong" EGFR overexpression on IHC could be regarded as having EGFR gene amplification, and cases without EGFR overexpression could not. Cases of "weak" EGFR overexpression should be tested with CISH to confirm the presence of EGFR gene amplification. We found that 54% of glioblastomas with EGFR gene amplification were composed of areas with and without EGFR gene amplification; however, there were no obvious differences in morphology between tumor cells with and without EGFR gene amplification. Although small cell architecture might be associated with EGFR gene amplification at the level of the whole tumor, it did not always suggest amplification of the EGFR gene at the level of individual tumor cells. In one case, it seemed to suggest that a clone with EGFR gene amplification may arise in pre-existing tumor tissue and extend into the surrounding area. In cases of overall EGFR amplification, CISH would be a useful tool to decide the tumor border in areas infiltrated by tumor cells.

  17. Transgenic nude mouse with green fluorescent protein expression-based human glioblastoma multiforme animal model with EGFR expression and invasiveness.

    Science.gov (United States)

    Tan, Guo-Wei; Lan, Fo-Lin; Gao, Jian-Guo; Jiang, Cai-Mou; Zhang, Yi; Huang, Xiao-Hong; Ma, Yue-Hong; Shao, He-Dui; He, Xue-Yang; Chen, Jin-Long; Long, Jian-Wu; Xiao, Hui-Sheng; Guo, Zhi-Tong; Diao, Yi

    2012-08-01

    Previously, we developed an orthotopic xenograft model of human glioblastoma multiforme (GBM) with high EGFR expression and invasiveness in Balb/c nu/nu nude mice. Now we also developed the same orthotopic xenograft model in transgenic nude mice with green fluorescent protein (GFP) expression. The present orthotopic xenografts labeled by phycoerythrin fluorescing red showed high EGFR expression profile, and invasive behavior under a bright green-red dual-color fluorescence background. A striking advantage in the present human GBM model is that the change of tumor growth can be observed visually instead of sacrificing animals in our further antitumor therapy studies.

  18. Human IgG repertoire of malaria antigen-immunized human immune system (HIS) mice.

    Science.gov (United States)

    Nogueira, Raquel Tayar; Sahi, Vincent; Huang, Jing; Tsuji, Moriya

    2017-08-01

    Humanized mouse models present an important tool for preclinical evaluation of new vaccines and therapeutics. Here we show the human variable repertoire of antibody sequences cloned from a previously described human immune system (HIS) mouse model that possesses functional human CD4+ T cells and B cells, namely HIS-CD4/B mice. We sequenced variable IgG genes from single memory B-cell and plasma-cell sorted from splenocytes or whole blood lymphocytes of HIS-CD4/B mice that were vaccinated with a human plasmodial antigen, a recombinant Plasmodium falciparum circumsporozoite protein (rPfCSP). We demonstrate that rPfCSP immunization triggers a diverse B-cell IgG repertoire composed of various human VH family genes and distinct V(D)J recombinations that constitute diverse CDR3 sequences similar to humans, although low hypermutated sequences were generated. These results demonstrate the substantial genetic diversity of responding human B cells of HIS-CD4/B mice and their capacity to mount human IgG class-switched antibody response upon vaccination. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  19. Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Noorden, Cornelis J. F.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and most aggressive malignant primary brain tumor in humans. Current GBM treatment includes surgery, radiation therapy, and chemotherapy, sometimes supplemented with novel therapies. Despite recent advances, survival of GBM patients remains poor.

  20. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    Science.gov (United States)

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

  1. A kinome-wide RNAi screen in Drosophila Glia reveals that the RIO kinases mediate cell proliferation and survival through TORC2-Akt signaling in glioblastoma.

    Directory of Open Access Journals (Sweden)

    Renee D Read

    Full Text Available Glioblastoma, the most common primary malignant brain tumor, is incurable with current therapies. Genetic and molecular analyses demonstrate that glioblastomas frequently display mutations that activate receptor tyrosine kinase (RTK and Pi-3 kinase (PI3K signaling pathways. In Drosophila melanogaster, activation of RTK and PI3K pathways in glial progenitor cells creates malignant neoplastic glial tumors that display many features of human glioblastoma. In both human and Drosophila, activation of the RTK and PI3K pathways stimulates Akt signaling along with other as-yet-unknown changes that drive oncogenesis. We used this Drosophila glioblastoma model to perform a kinome-wide genetic screen for new genes required for RTK- and PI3K-dependent neoplastic transformation. Human orthologs of novel kinases uncovered by these screens were functionally assessed in mammalian glioblastoma models and human tumors. Our results revealed that the atypical kinases RIOK1 and RIOK2 are overexpressed in glioblastoma cells in an Akt-dependent manner. Moreover, we found that overexpressed RIOK2 formed a complex with RIOK1, mTor, and mTor-complex-2 components, and that overexpressed RIOK2 upregulated Akt signaling and promoted tumorigenesis in murine astrocytes. Conversely, reduced expression of RIOK1 or RIOK2 disrupted Akt signaling and caused cell cycle exit, apoptosis, and chemosensitivity in glioblastoma cells by inducing p53 activity through the RpL11-dependent ribosomal stress checkpoint. These results imply that, in glioblastoma cells, constitutive Akt signaling drives RIO kinase overexpression, which creates a feedforward loop that promotes and maintains oncogenic Akt activity through stimulation of mTor signaling. Further study of the RIO kinases as well as other kinases identified in our Drosophila screen may reveal new insights into defects underlying glioblastoma and related cancers and may reveal new therapeutic opportunities for these cancers.

  2. Andrographolide suppresses the migratory ability of human glioblastoma multiforme cells by targeting ERK1/2-mediated matrix metalloproteinase-2 expression

    OpenAIRE

    Yang, Shih-Liang; Kuo, Fu-Hsuan; Chen, Pei-Ni; Hsieh, Yi-Hsien; Yu, Nuo-Yi; Yang, Wei-En; Hsieh, Ming-Ju; Yang, Shun-Fa

    2017-01-01

    Glioblastoma multiforme (GBM) can be a fatal tumor because of difficulties in treating the related metastasis. Andrographolide is the bioactive component of the Andrographis paniculata. Andrographolide possesses the anti-inflammatory activity and inhibits the growth of various cancers; however, its effect on GBM cancer motility remains largely unknown. In this study, we examined the antimetastatic properties of andrographolide in human GBM cells. Our results revealed that andrographolide inhi...

  3. MicroRNA involvement in glioblastoma pathogenesis

    International Nuclear Information System (INIS)

    Novakova, Jana; Slaby, Ondrej; Vyzula, Rostislav; Michalek, Jaroslav

    2009-01-01

    MicroRNAs are endogenously expressed regulatory noncoding RNAs. Altered expression levels of several microRNAs have been observed in glioblastomas. Functions and direct mRNA targets for these microRNAs have been relatively well studied over the last years. According to these data, it is now evident, that impairment of microRNA regulatory network is one of the key mechanisms in glioblastoma pathogenesis. MicroRNA deregulation is involved in processes such as cell proliferation, apoptosis, cell cycle regulation, invasion, glioma stem cell behavior, and angiogenesis. In this review, we summarize the current knowledge of miRNA functions in glioblastoma with an emphasis on its significance in glioblastoma oncogenic signaling and its potential to serve as a disease biomarker and a novel therapeutic target in oncology.

  4. EG-10LONG NON-CODING RNAs IN GLIOBLASTOMA

    Science.gov (United States)

    Pastori, Chiara; Kapranov, Philipp; Penas, Clara; Laurent, Georges St.; Ayad, Nagi; Wahlestedt, Claes

    2014-01-01

    Glioblastoma (GBM) is the most common, aggressive and incurable primary brain tumor in adults. Genome studies have confirmed that GBM is extremely heterogeneous with many genetically different subgroups. Consequently, there is much current interest in epigenetic drugs that may be active across genetically distinct tumors. In support of this, some epigenetic drugs has recently shown efficacy against several cancers including glioblastoma. Much recent interest has also been devoted to long non-coding RNAs (lncRNAs), which can modulate gene expression regulating chromatin architecture, in part through the interaction with epigenetic protein machineries. To date, however, only a few lncRNAs have been studied in human cancer. We therefore embarked on a comprehensive genomic and functional analysis of lncRNAs in GBM. Using the Helicos Single Molecule Sequencing platform glioblastoma samples were sequenced resulting in the identification of hundreds of dysregulated lncRNAs. Among these the lncRNA HOTAIR was found massively increased in GBM. This observation parallels findings in other cancers where HOTAIR's increased expression has been linked to poor prognosis due to metastatic events. Interestingly, here we show that in glioblastoma HOTAIR does not promote metastasis, but instead sustains the ability of these cells to proliferate. In fact, we demonstrate that HOTAIR knockdown in GBM strongly impairs cell proliferation and induces apoptosis in vitro and in vivo. Further, we implicate HOTAIR in the mechanism of action of certain epigenetic drugs. In summary, long noncoding RNAs (newly discovered epigenomic factors) play a vital role in GBM and deserve attention as entirely novel drug targets as well as biomarkers.

  5. Molecular and cellular heterogeneity: the hallmark of glioblastoma.

    Science.gov (United States)

    Aum, Diane J; Kim, David H; Beaumont, Thomas L; Leuthardt, Eric C; Dunn, Gavin P; Kim, Albert H

    2014-12-01

    There has been increasing awareness that glioblastoma, which may seem histopathologically similar across many tumors, actually represents a group of molecularly distinct tumors. Emerging evidence suggests that cells even within the same tumor exhibit wide-ranging molecular diversity. Parallel to the discoveries of molecular heterogeneity among tumors and their individual cells, intense investigation of the cellular biology of glioblastoma has revealed that not all cancer cells within a given tumor behave the same. The identification of a subpopulation of brain tumor cells termed "glioblastoma cancer stem cells" or "tumor-initiating cells" has implications for the management of glioblastoma. This focused review will therefore summarize emerging concepts on the molecular and cellular heterogeneity of glioblastoma and emphasize that we should begin to consider each individual glioblastoma to be an ensemble of molecularly distinct subclones that reflect a spectrum of dynamic cell states.

  6. Histone deacetylase inhibitor, 2-propylpentanoic acid, increases the chemosensitivity and radiosensitivity of human glioma cell lines in vitro

    Institute of Scientific and Technical Information of China (English)

    SHAO Cui-jie; WU Ming-wei; CHEN Fu-rong; LI Cong; XIA Yun-fei; CHEN Zhong-ping

    2012-01-01

    Background Treatment for malignant glioma generally consists of cytoreductive surgery followed by radiotherapy and chemotherapy.In this study,we intended to investigate the effects of 2-propylpentanoic acid (VPA),a histone deacetylase inhibitor,on chemosensitivity and radiosensitivity in human glioma cell lines.Methods Human glioma cell lines,T98-G,and SF295,were treated with temozolomide (TMZ) or irradiation (IR),with or without VPA (1.0 mmol/L).Then,cytotoxicity and clonogenic survival assay was performed.Cell cycle stage,apoptosis,and autophagy were also detected using flow cytometry and dansyl monocadaverin (MDC) incorporation assay.One-way analysis of variance (ANOVA) and t-test were used to analyze the differences among variant groups.Results Mild cytotoxicity of VPA was revealed in both cell lines,T98-G and SF295,with the 50% inhibiting concentration (IC50) value of (3.85±0.58) mmol/L and (2.15±0.38) mmol/L,respectively; while the IC50 value of TMZ was (0.20±0.09) mmol/L for T98-G and (0.08±0.02) mmol/L for SF295.Moreover,if combined with VPA (1.0 mmol/L) for 96hours,the sensitivity of glioma cells to TMZ was significant increased (P <0.05).The surviving fractions at 2 Gy (SF2) of T98-G and SF295 cells exposed to IR alone were 0.52 and 0.58.However,when VPA was combined with IR,the SF2 of T98-G and SF295 dropped to 0.39 (P=0.047) and 0.49 (P=-0.049),respectively.Treatment with VPA plus TMZ or IR also resulted in a significant decrease in the proportion of cells in the G2 phase and increased apoptotic rates as well as autophagy in T98-G and SF295 cell lines (P <0.01).Conclusion VPA may enhance the activities of TMZ and IR on glioma cells possibly through cell cycle block and promote autophagy,and thus could be a potential sensitizer of glioma treatment.

  7. Non-shoring construction for T/G pedestal beams

    International Nuclear Information System (INIS)

    Abe, T.

    1992-01-01

    The T/G pedestal construction work has been the critical path within the T/B construction work of BWR type nuclear power plant. In order to meet the requirement of shortening the construction period and improved in safety on a Turbine Building (T/B) construction work, Non-soring construction for T/G Pedestal Beams was developed. By applying this method to T/G pedestal construction work, we succeeded in shortening the T/B construction period and improvement in safety significantly. (author)

  8. TWIST1 promotes invasion through mesenchymal change in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Wakimoto Hiroaki

    2010-07-01

    Full Text Available Abstract Background Tumor cell invasion into adjacent normal brain is a mesenchymal feature of GBM and a major factor contributing to their dismal outcomes. Therefore, better understandings of mechanisms that promote mesenchymal change in GBM are of great clinical importance to address invasion. We previously showed that the bHLH transcription factor TWIST1 which orchestrates carcinoma metastasis through an epithelial mesenchymal transition (EMT is upregulated in GBM and promotes invasion of the SF767 GBM cell line in vitro. Results To further define TWIST1 functions in GBM we tested the impact of TWIST1 over-expression on invasion in vivo and its impact on gene expression. We found that TWIST1 significantly increased SNB19 and T98G cell line invasion in orthotopic xenotransplants and increased expression of genes in functional categories associated with adhesion, extracellular matrix proteins, cell motility and locomotion, cell migration and actin cytoskeleton organization. Consistent with this TWIST1 reduced cell aggregation, promoted actin cytoskeletal re-organization and enhanced migration and adhesion to fibronectin substrates. Individual genes upregulated by TWIST1 known to promote EMT and/or GBM invasion included SNAI2, MMP2, HGF, FAP and FN1. Distinct from carcinoma EMT, TWIST1 did not generate an E- to N-cadherin "switch" in GBM cell lines. The clinical relevance of putative TWIST target genes SNAI2 and fibroblast activation protein alpha (FAP identified in vitro was confirmed by their highly correlated expression with TWIST1 in 39 human tumors. The potential therapeutic importance of inhibiting TWIST1 was also shown through a decrease in cell invasion in vitro and growth of GBM stem cells. Conclusions Together these studies demonstrated that TWIST1 enhances GBM invasion in concert with mesenchymal change not involving the canonical cadherin switch of carcinoma EMT. Given the recent recognition that mesenchymal change in GBMs is

  9. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis

    Science.gov (United States)

    Huang, Jia-Lin; Jiang, Gan; Song, Qing-Xiang; Gu, Xiao; Hu, Meng; Wang, Xiao-Lin; Song, Hua-Hua; Chen, Le-Pei; Lin, Ying-Ying; Jiang, Di; Chen, Jun; Feng, Jun-Feng; Qiu, Yong-Ming; Jiang, Ji-Yao; Jiang, Xin-Guo; Chen, Hong-Zhuan; Gao, Xiao-Ling

    2017-05-01

    Hyperactivated Ras regulates many oncogenic pathways in several malignant human cancers including glioblastoma and it is an attractive target for cancer therapies. Ras activation in cancer cells drives protein internalization via macropinocytosis as a key nutrient-gaining process. By utilizing this unique endocytosis pathway, here we create a biologically inspired nanostructure that can induce cancer cells to `drink drugs' for targeting activating transcription factor-5 (ATF5), an overexpressed anti-apoptotic transcription factor in glioblastoma. Apolipoprotein E3-reconstituted high-density lipoprotein is used to encapsulate the siRNA-loaded calcium phosphate core and facilitate it to penetrate the blood-brain barrier, thus targeting the glioblastoma cells in a macropinocytosis-dependent manner. The nanostructure carrying ATF5 siRNA exerts remarkable RNA-interfering efficiency, increases glioblastoma cell apoptosis and inhibits tumour cell growth both in vitro and in xenograft tumour models. This strategy of targeting the macropinocytosis caused by Ras activation provides a nanoparticle-based approach for precision therapy in glioblastoma and other Ras-activated cancers.

  10. Matrine induced G0/G1 arrest and apoptosis in human acute T-cell lymphoblastic leukemia (T-ALL cells

    Directory of Open Access Journals (Sweden)

    Aslı Tetik Vardarlı

    2018-05-01

    Full Text Available Matrine, a natural product extracted from the root of Sophora flavescens, is a promising alternative drug in different types of cancer. Here, we aimed to investigate the therapeutic effects and underlying molecular mechanisms of matrine on human acute lymphoblastic leukemia (ALL cell line, CCRF-CEM. Cell viability and IC50 values were determined by WST-1 cell cytotoxicity assay. Cell cycle distribution and apoptosis rates were analyzed by flow cytometry. Expression patterns of 44 selected miRNAs and 44 RNAs were analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR using the Applied Biosystems 7500 Fast Real-Time PCR System. Matrine inhibited cell viability and induced apoptosis of CCRF-CEM cells in a dose-dependent manner. Cell cycle analysis demonstrated that matrine-treated CCRF-CEM cells significantly accumulated in the G0/G1 phase compared with the untreated control cells. hsa-miR-376b-3p (-37.09 fold, p = 0.008 and hsa-miR-106b-3p (-16.67 fold, p = 0.028 expressions were decreased, whereas IL6 (95.47 fold, p = 0.000011 and CDKN1A (140.03 fold, p = 0.000159 expressions were increased after matrine treatment. Our results suggest that the downregulation of hsa-miR-106b-3p leads to the upregulation of target p21 gene, CDKN1A, and plays a critical role in the cell cycle progression by arresting matrine-treated cells in the G0/G1 phase.

  11. Glioblastoma multiforme of the pineal region: case report Glioblastoma multiforme de região pineal: relato de caso

    Directory of Open Access Journals (Sweden)

    Emerson Leandro Gasparetto

    2003-06-01

    tomografia computadorizada revelou lesão hipodensa mal delimitada na topografia de pineal, com captação heterogênea de contraste. A ressonância magnética demonstrou lesão na região pineal com infiltração de tálamo à direita. A paciente foi submetida a craniotomia direita com ressecção parcial do tumor. O exame histológico definiu o diagnóstico de glioblastoma multiforme. No pós-operatório foi indicada radioterapia, mas a paciente recusou o tratamento e morreu dois meses depois. CONCLUSÃO: Apesar de raro nesta topografia, os glioblastomas multiformes devem ser considerados no diagnóstico diferencial de lesões agressivas localizadas na glândula pineal.

  12. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma

    Directory of Open Access Journals (Sweden)

    Spyros Darmanis

    2017-10-01

    Full Text Available Summary: Glioblastoma (GBM is the most common primary brain cancer in adults and is notoriously difficult to treat because of its diffuse nature. We performed single-cell RNA sequencing (RNA-seq on 3,589 cells in a cohort of four patients. We obtained cells from the tumor core as well as surrounding peripheral tissue. Our analysis revealed cellular variation in the tumor’s genome and transcriptome. We were also able to identify infiltrating neoplastic cells in regions peripheral to the core lesions. Despite the existence of significant heterogeneity among neoplastic cells, we found that infiltrating GBM cells share a consistent gene signature between patients, suggesting a common mechanism of infiltration. Additionally, in investigating the immunological response to the tumors, we found transcriptionally distinct myeloid cell populations residing in the tumor core and the surrounding peritumoral space. Our data provide a detailed dissection of GBM cell types, revealing an abundance of information about tumor formation and migration. : Darmanis et al. perform single-cell transcriptomic analyses of neoplastic and stromal cells within and proximal to primary glioblastomas. The authors describe a population of neoplastic-infiltrating glioblastoma cells as well as a putative role of tumor-infiltrating immune cells in supporting tumor growth. Keywords: single cell, RNA-seq, glioma, glioblastoma, GBM, brain, heterogeneity, infiltrating, diffuse, checkpoint

  13. Radiolabeled Humanized Anti-CD3 Monoclonal Antibody Visilizumab for Imaging Human T-Lymphocytes

    NARCIS (Netherlands)

    Malviya, Gaurav; D'Alessandria, Calogero; Bonanno, Elena; Vexler, Vladimir; Massari, Roberto; Trotta, Carlo; Scopinaro, Francesco; Dierckx, Rudi; Signore, Alberto

    2009-01-01

    Visilizumab is an IgG(2) humanized monoclonal antibody (mAb) characterized by non-Fc gamma R binding and specific to the CD3 antigen, expressed on more than 95% of circulating resting T-lymphocytes and on activated T-lymphocytes homing in inflamed tissues. We hypothesized that the use of a

  14. FBXW7/hCDC4 controls glioma cell proliferation in vitro and is a prognostic marker for survival in glioblastoma patients

    Directory of Open Access Journals (Sweden)

    Hagedorn Martin

    2007-02-01

    Full Text Available Abstract Background In the quest for novel molecular mediators of glioma progression, we studied the regulation of FBXW7 (hCDC4/hAGO/SEL10, its association with survival of patients with glioblastoma and its potential role as a tumor suppressor gene in glioma cells. The F-box protein Fbxw7 is a component of SCFFbxw7, a Skp1-Cul1-F-box E3 ubiquitin ligase complex that tags specific proteins for proteasome degradation. FBXW7 is mutated in several human cancers and functions as a haploinsufficient tumor suppressor in mice. Any of the identified targets, Cyclin E, c-Myc, c-Jun, Notch1/4 and Aurora-A may have oncogenic properties when accumulated in tumors with FBXW7 loss. Results We tested the expression of FBXW7 in human glioma biopsies by quantitative PCR and compared the transcript levels of grade IV glioma (glioblastoma, G-IV with those of grade II tumors (G-II. In more than 80% G-IV, expression of FBXW7 was significantly reduced. In addition, levels of FBXW7 were correlated with survival indicating a possible implication in tumor aggressiveness. Locus 4q31.3 which carries FBXW7 was investigated by in situ hybridization on biopsy touchprints. This excluded allelic loss as the principal cause for low expression of FBXW7 in G-IV tumors. Two targets of Fbxw7, Aurora-A and Notch4 were preferentially immunodetected in G-IV biopsies. Next, we investigated the effects of FBXW7 misregulation in glioma cells. U87 cells overexpressing nuclear isoforms of Fbxw7 lose the expression of the proliferation markers PCNA and Ki-67, and get counterselected in vitro. This observation fits well with the hypothesis that Fbxw7 functions as a tumor suppressor in astroglial cells. Finally, FBXW7 knockdown in U87 cells leads to defects in mitosis that may promote aneuploidy in progressing glioma. Conclusion Our results show that FBXW7 expression is a prognostic marker for patients with glioblastoma. We suggest that loss of FBXW7 plays an important role in glioma

  15. Treatment of glioblastoma with herbal medicines.

    Science.gov (United States)

    Trogrlić, Ivo; Trogrlić, Dragan; Trogrlić, Darko; Trogrlić, Amina Kadrić

    2018-02-13

    In the latest years, a lot of research studies regarding the usage of active agents from plants in the treatment of tumors have been published, but there is no data about successful usage of herbal remedies in the treatment of glioblastoma in humans. The phytotherapy involved five types of herbal medicine which the subjects took in the form of tea, each type once a day at regular intervals. Three patients took herbal medicine along with standard oncological treatment, while two patients applied for phytotherapy after completing medical treatment. The composition of herbal medicine was modified when necessary, which depended on the results of the control scans using the nuclear magnetic resonance technique and/or computed tomography. Forty-eight months after the introduction of phytotherapy, there were no clinical or radiological signs of the disease, in three patients; in one patient, the tumor was reduced and his condition was stable, and one patient lived for 48 months in spite of a large primary tumor and a massive recurrence, which developed after the treatment had been completed. The results achieved in patients in whom tumor regression occurred exclusively through the use of phytotherapy deserve special attention. In order to treat glioblastoma more effectively, it is necessary to develop innovative therapeutic strategies and medicines that should not be limited only to the field of conventional medicine. The results presented in this research paper are encouraging and serve as a good basis for further research on the possibilities of phytotherapy in the treatment of glioblastoma.

  16. Adenoid glioblastoma

    Directory of Open Access Journals (Sweden)

    Cui-yun SUN

    2018-04-01

    Full Text Available Objective To report the diagnosis and treatment of one case of adenoid glioblastoma and investigate the clinicopathological features, diagnosis and differential diagnosis. Methods and Results A 63-year-old male patient suffered from left-skewed corner of the mouth for more than 10 d. Brain enhanced MRI revealed a cystic mass in left frontotemporal lobe and metastatic tumor was considered. 18F-fluoro-2-deoxy-D-glucose (18F-FDG PET did not detected any sign of malignant neoplasm in the whole body. Under the guide of neuronavigation and ultrasound, the tumor was totally removed under microscope. Histologically, the tumor was located in brain parenchyma and presented a growing pattern of multicentric sheets or nests. Mucus scattered in some regions. Tumor cells were arranged in strip, cribriform, adenoid or papillary patterns. Tumor cells contained few cytoplasm with round or oval uniform hyperchromatic nuclei and occasionally obvious nucleoli. Proliferation of glomeruloid vascular endothelial cells could be seen. Immunohistochemical staining showed the cytoplasm of tumor cells was diffusively positive for glial fibrillary acidic protein (GFAP, vimentin (Vim and phosphatase and tensin homologue (PTEN; nuclei was positive for oligodendrocytes transcription factor-2 (Olig-2 and P53; cytoplasm and nuclei were positive for S-100 protein (S-100; membrane was positive for epidermal growth factor receptor (EGFR. The tumor cells showed a negative reaction for cytokeratin (CK, epithelial membrane antigen (EMA, carcinoembryonic antigen (CEA, thyroid transcription factor-1 (TTF-1, CD31, CD34, CAM5.2 and isocitrate dehydrogenase 1 (IDH1. Ki-67 labeling index was 76.80%. The final pathological diagnosis was adenoid glioblastoma. The patient died of respiratroy failure and circulation function failure 12 d after operation. Conclusions Adenoid glioblastoma was a rare glioblastoma subtype. A clear diagnosis depends on histological findings and immunohistochemical

  17. GPR56/ADGRG1 Inhibits Mesenchymal Differentiation and Radioresistance in Glioblastoma

    NARCIS (Netherlands)

    Moreno, Marta; Pedrosa, Leire; Pare, Laia; Pineda, Estela; Bejarano, Leire; Martinez, Josefina; Balasubramaniyan, Veerakumar; Ezhilarasan, Ravesanker; Kallarackal, Naveen; Kim, Sung-Hak; Wang, Jia; Audia, Alessandra; Conroy, Siobhan; Marin, Mercedes; Ribalta, Teresa; Pujol, Teresa; Herreros, Antoni; Tortosa, Avelina; Mira, Helena; Alonso, Marta M.; Gomez-Manzano, Candelaria; Graus, Francesc; Sulman, Erik P.; Piao, Xianhua; Nakano, Ichiro; Prat, Aleix; Bhat, Krishna P.; de la Iglesia, Nuria

    2017-01-01

    A mesenchymal transition occurs both during the natural evolution of glioblastoma (GBM) and in response to therapy. Here, we report that the adhesion G-protein-coupled receptor, GPR56/ADGRG1, inhibits GBM mesenchymal differentiation and radioresistance. GPR56 is enriched in proneural and

  18. Dexamethasone-Mediated Upregulation of Calreticulin Inhibits Primary Human Glioblastoma Dispersal Ex Vivo

    Directory of Open Access Journals (Sweden)

    Mohan Nair

    2018-02-01

    Full Text Available Dispersal of Glioblastoma (GBM renders localized therapy ineffective and is a major cause of recurrence. Previous studies have demonstrated that Dexamethasone (Dex, a drug currently used to treat brain tumor–related edema, can also significantly reduce dispersal of human primary GBM cells from neurospheres. It does so by triggering α5 integrin activity, leading to restoration of fibronectin matrix assembly (FNMA, increased neurosphere cohesion, and reduction of neurosphere dispersal velocity (DV. How Dex specifically activates α5 integrin in these GBM lines is unknown. Several chaperone proteins are known to activate integrins, including calreticulin (CALR. We explore the role of CALR as a potential mediator of Dex-dependent induction of α5 integrin activity in primary human GBM cells. We use CALR knock-down and knock-in strategies to explore the effects on FNMA, aggregate compaction, and dispersal velocity in vitro, as well as dispersal ex vivo on extirpated mouse retina and brain slices. We show that Dex increases CALR expression and that siRNA knockdown suppresses Dex-mediated FNMA. Overexpression of CALR in GBM cells activates FNMA, increases compaction, and decreases DV in vitro and on explants of mouse retina and brain slices. Our results define a novel interaction between Dex, CALR, and FNMA as inhibitors of GBM dispersal.

  19. Topical herpes simplex virus 2 (HSV-2) vaccination with human papillomavirus vectors expressing gB/gD ectodomains induces genital-tissue-resident memory CD8+ T cells and reduces genital disease and viral shedding after HSV-2 challenge.

    Science.gov (United States)

    Çuburu, Nicolas; Wang, Kening; Goodman, Kyle N; Pang, Yuk Ying; Thompson, Cynthia D; Lowy, Douglas R; Cohen, Jeffrey I; Schiller, John T

    2015-01-01

    No herpes simplex virus 2 (HSV-2) vaccine has been licensed for use in humans. HSV-2 glycoproteins B (gB) and D (gD) are targets of neutralizing antibodies and T cells, but clinical trials involving intramuscular (i.m.) injection of HSV-2 gB and gD in adjuvants have not been effective. Here we evaluated intravaginal (ivag) genetic immunization of C57BL/6 mice with a replication-defective human papillomavirus pseudovirus (HPV PsV) expressing HSV-2 gB (HPV-gB) or gD (HPV-gD) constructs to target different subcellular compartments. HPV PsV expressing a secreted ectodomain of gB (gBsec) or gD (gDsec), but not PsV expressing a cytoplasmic or membrane-bound form, induced circulating and intravaginal-tissue-resident memory CD8(+) T cells that were able to secrete gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α) as well as moderate levels of serum HSV neutralizing antibodies. Combined immunization with HPV-gBsec and HPV-gDsec (HPV-gBsec/gDsec) vaccines conferred longer survival after vaginal challenge with HSV-2 than immunization with HPV-gBsec or HPV-gDsec alone. HPV-gBsec/gDsec ivag vaccination was associated with a reduced severity of genital lesions and lower levels of viral shedding in the genital tract after HSV-2 challenge. In contrast, intramuscular vaccination with a soluble truncated gD protein (gD2t) in alum and monophosphoryl lipid A (MPL) elicited high neutralizing antibody titers and improved survival but did not reduce genital lesions and viral shedding. Vaccination combining ivag HPV-gBsec/gDsec and i.m. gD2t-alum-MPL improved survival and reduced genital lesions and viral shedding. Finally, high levels of circulating HSV-2-specific CD8(+) T cells, but not serum antibodies, correlated with reduced viral shedding. Taken together, our data underscore the potential of HPV PsV as a platform for a topical mucosal vaccine to control local manifestations of primary HSV-2 infection. Genital herpes is a highly prevalent chronic disease caused by

  20. The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma

    NARCIS (Netherlands)

    van Roosmalen, Ingrid A. M.; Dos Reis, Carlos R; Setroikromo, Rita; Yuvaraj, Saravanan; Joseph, Justin V.; Tepper, Pieter G.; Kruyt, Frank A. E.; Quax, Wim J.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumour in humans and is highly resistant to current treatment modalities. We have explored the combined treatment of the endoplasmic reticulum (ER) stress-inducing agent 2,5-dimethyl-celecoxib (DMC) and TNF-related

  1. Histone H1 interphase phosphorylation becomes largely established in G1 or early S phase and differs in G1 between T-lymphoblastoid cells and normal T cells

    Directory of Open Access Journals (Sweden)

    Gréen Anna

    2011-08-01

    Full Text Available Abstract Background Histone H1 is an important constituent of chromatin, and is involved in regulation of its structure. During the cell cycle, chromatin becomes locally decondensed in S phase, highly condensed during metaphase, and again decondensed before re-entry into G1. This has been connected to increasing phosphorylation of H1 histones through the cell cycle. However, many of these experiments have been performed using cell-synchronization techniques and cell cycle-arresting drugs. In this study, we investigated the H1 subtype composition and phosphorylation pattern in the cell cycle of normal human activated T cells and Jurkat T-lymphoblastoid cells by capillary electrophoresis after sorting of exponentially growing cells into G1, S and G2/M populations. Results We found that the relative amount of H1.5 protein increased significantly after T-cell activation. Serine phosphorylation of H1 subtypes occurred to a large extent in late G1 or early S phase in both activated T cells and Jurkat cells. Furthermore, our data confirm that the H1 molecules newly synthesized during S phase achieve a similar phosphorylation pattern to the previous ones. Jurkat cells had more extended H1.5 phosphorylation in G1 compared with T cells, a difference that can be explained by faster cell growth and/or the presence of enhanced H1 kinase activity in G1 in Jurkat cells. Conclusion Our data are consistent with a model in which a major part of interphase H1 phosphorylation takes place in G1 or early S phase. This implies that H1 serine phosphorylation may be coupled to changes in chromatin structure necessary for DNA replication. In addition, the increased H1 phosphorylation of malignant cells in G1 may be affecting the G1/S transition control and enabling facilitated S-phase entry as a result of relaxed chromatin condensation. Furthermore, increased H1.5 expression may be coupled to the proliferative capacity of growth-stimulated T cells.

  2. Noether symmetry approach in f(G,T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M.F.; Ahmad, Mushtaq [National University of Computer and Emerging Sciences, Lahore Campus (Pakistan)

    2017-01-15

    We explore the recently introduced modified Gauss-Bonnet gravity (Sharif and Ikram in Eur Phys J C 76:640, 2016), f(G,T) pragmatic with G, the Gauss-Bonnet term, and T, the trace of the energy-momentum tensor. Noether symmetry approach has been used to develop some cosmologically viable f(G,T) gravity models. The Noether equations of modified gravity are reported for flat FRW universe. Two specific models have been studied to determine the conserved quantities and exact solutions. In particular, the well known deSitter solution is reconstructed for some specific choice of f(G,T) gravity model. (orig.)

  3. Specific central nervous system recruitment of HLA-G(+) regulatory T cells in multiple sclerosis.

    Science.gov (United States)

    Huang, Yu-Hwa; Zozulya, Alla L; Weidenfeller, Christian; Metz, Imke; Buck, Dorothea; Toyka, Klaus V; Brück, Wolfgang; Wiendl, Heinz

    2009-08-01

    We have recently described a novel population of natural regulatory T cells (T(reg)) that are characterized by the expression of HLA-G and may be found at sites of tissue inflammation (HLA-G(pos) T(reg)). Here we studied the role of these cells in multiple sclerosis (MS), a prototypic autoimmune inflammatory disorder of the central nervous system (CNS). Sixty-four patients with different types of MS, 9 patients with other neurological diseases, and 20 healthy donors were included in this study. Inflamed brain lesions from 5 additional untreated MS patients were examined. HLA-G(pos) T(reg) were analyzed in the cerebrospinal fluid (CSF) by flow cytometry and in inflammatory demyelinating lesions of MS brain specimens by immunohistochemistry. Functional capacity was accessed and transmigration was determined using an in vitro model of the human blood-brain barrier (BBB). HLA-G(pos) T(reg) were found enriched in the inflamed CSF of MS patients and in inflammatory demyelinating lesions of MS brain specimens. HLA-G(pos) T(reg) showed a strong propensity to transmigrate across BBB, which was vigorously driven by inflammatory chemokines, and associated with a gain of suppressive capacity upon transmigration. CSF-derived HLA-G(pos) T(reg) of MS patients represented a population of activated central memory activated T cells with an upregulated expression of inflammatory chemokine receptors and exhibiting full suppressive capacity. Unlike natural FoxP3-expressing T(reg), HLA-G(pos) T(reg) derived from peripheral blood were functionally unimpaired in MS. In MS, HLA-G(pos) T(reg) may serve to control potentially destructive immune responses directly at the sites of CNS inflammation and to counterbalance inflammation once specifically recruited to the CNS.

  4. Quantification of Tumor Vessels in Glioblastoma Patients Using Time-of-Flight Angiography at 7 Tesla: A Feasibility Study

    Science.gov (United States)

    Radbruch, Alexander; Eidel, Oliver; Wiestler, Benedikt; Paech, Daniel; Burth, Sina; Kickingereder, Philipp; Nowosielski, Martha; Bäumer, Philipp; Wick, Wolfgang; Schlemmer, Heinz-Peter; Bendszus, Martin; Ladd, Mark; Nagel, Armin Michael; Heiland, Sabine

    2014-01-01

    Purpose To analyze if tumor vessels can be visualized, segmented and quantified in glioblastoma patients with time of flight (ToF) angiography at 7 Tesla and multiscale vessel enhancement filtering. Materials and Methods Twelve patients with newly diagnosed glioblastoma were examined with ToF angiography (TR = 15 ms, TE = 4.8 ms, flip angle = 15°, FOV = 160×210 mm2, voxel size: 0.31×0.31×0.40 mm3) on a whole-body 7 T MR system. A volume of interest (VOI) was placed within the border of the contrast enhancing part on T1-weighted images of the glioblastoma and a reference VOI was placed in the non-affected contralateral white matter. Automated segmentation and quantification of vessels within the two VOIs was achieved using multiscale vessel enhancement filtering in ImageJ. Results Tumor vessels were clearly visible in all patients. When comparing tumor and the reference VOI, total vessel surface (45.3±13.9 mm2 vs. 29.0±21.0 mm2 (pTesla MRI enables characterization and quantification of the internal vascular morphology of glioblastoma and may be used for the evaluation of therapy response within future studies. PMID:25415327

  5. A comprehensive profile of recurrent glioblastoma

    DEFF Research Database (Denmark)

    Campos, B.; Olsen, Lars Rønn; Urup, T.

    2016-01-01

    In spite of relentless efforts to devise new treatment strategies, primary glioblastomas invariably recur as aggressive, therapy-resistant relapses and patients rapidly succumb to these tumors. Many therapeutic agents are first tested in clinical trials involving recurrent glioblastomas. Remarkab...... 2016; doi:10.1038/onc.2016.85....

  6. Thermodynamics in f(G,T Gravity

    Directory of Open Access Journals (Sweden)

    M. Sharif

    2018-01-01

    Full Text Available This paper explores the nonequilibrium behavior of thermodynamics at the apparent horizon of isotropic and homogeneous universe model in f(G,T gravity (G and T represent the Gauss-Bonnet invariant and trace of the energy-momentum tensor, resp.. We construct the corresponding field equations and analyze the first as well as generalized second law of thermodynamics in this scenario. It is found that an auxiliary term corresponding to entropy production appears due to the nonequilibrium picture of thermodynamics in first law. The universal condition for the validity of generalized second law of thermodynamics is also obtained. Finally, we check the validity of generalized second law of thermodynamics for the reconstructed f(G,T models (de Sitter and power-law solutions. We conclude that this law holds for suitable choices of free parameters.

  7. PCDH10 is required for the tumorigenicity of glioblastoma cells

    International Nuclear Information System (INIS)

    Echizen, Kanae; Nakada, Mitsutoshi; Hayashi, Tomoatsu; Sabit, Hemragul; Furuta, Takuya; Nakai, Miyuki; Koyama-Nasu, Ryo; Nishimura, Yukiko; Taniue, Kenzui; Morishita, Yasuyuki; Hirano, Shinji; Terai, Kenta; Todo, Tomoki; Ino, Yasushi; Mukasa, Akitake; Takayanagi, Shunsaku; Ohtani, Ryohei; Saito, Nobuhito; Akiyama, Tetsu

    2014-01-01

    Highlights: • PCDH10 is required for the proliferation, survival and self-renewal of glioblastoma cells. • PCDH10 is required for glioblastoma cell migration and invasion. • PCDH10 is required for the tumorigenicity of glioblastoma cells. • PCDH10 may be a promising target for the therapy of glioblastoma. - Abstract: Protocadherin10 (PCDH10)/OL-protocadherin is a cadherin-related transmembrane protein that has multiple roles in the brain, including facilitating specific cell–cell connections, cell migration and axon guidance. It has recently been reported that PCDH10 functions as a tumor suppressor and that its overexpression inhibits proliferation or invasion of multiple tumor cells. However, the function of PCDH10 in glioblastoma cells has not been elucidated. In contrast to previous reports on other tumors, we show here that suppression of the expression of PCDH10 by RNA interference (RNAi) induces the growth arrest and apoptosis of glioblastoma cells in vitro. Furthermore, we demonstrate that knockdown of PCDH10 inhibits the growth of glioblastoma cells xenografted into immunocompromised mice. These results suggest that PCDH10 is required for the proliferation and tumorigenicity of glioblastoma cells. We speculate that PCDH10 may be a promising target for the therapy of glioblastoma

  8. Coordination of glioblastoma cell motility by PKCι

    Directory of Open Access Journals (Sweden)

    Baldwin R Mitchell

    2010-09-01

    Full Text Available Abstract Background Glioblastoma is one of the deadliest forms of cancer, in part because of its highly invasive nature. The tumor suppressor PTEN is frequently mutated in glioblastoma and is known to contribute to the invasive phenotype. However the downstream events that promote invasion are not fully understood. PTEN loss leads to activation of the atypical protein kinase C, PKCι. We have previously shown that PKCι is required for glioblastoma cell invasion, primarily by enhancing cell motility. Here we have used time-lapse videomicroscopy to more precisely define the role of PKCι in glioblastoma. Results Glioblastoma cells in which PKCι was either depleted by shRNA or inhibited pharmacologically were unable to coordinate the formation of a single leading edge lamellipod. Instead, some cells generated multiple small, short-lived protrusions while others generated a diffuse leading edge that formed around the entire circumference of the cell. Confocal microscopy showed that this behavior was associated with altered behavior of the cytoskeletal protein Lgl, which is known to be inactivated by PKCι phosphorylation. Lgl in control cells localized to the lamellipod leading edge and did not associate with its binding partner non-muscle myosin II, consistent with it being in an inactive state. In PKCι-depleted cells, Lgl was concentrated at multiple sites at the periphery of the cell and remained in association with non-muscle myosin II. Videomicroscopy also identified a novel role for PKCι in the cell cycle. Cells in which PKCι was either depleted by shRNA or inhibited pharmacologically entered mitosis normally, but showed marked delays in completing mitosis. Conclusions PKCι promotes glioblastoma motility by coordinating the formation of a single leading edge lamellipod and has a role in remodeling the cytoskeleton at the lamellipod leading edge, promoting the dissociation of Lgl from non-muscle myosin II. In addition PKCι is required

  9. Pattern of Failure After Limited Margin Radiotherapy and Temozolomide for Glioblastoma

    International Nuclear Information System (INIS)

    McDonald, Mark W.; Shu, Hui-Kuo G.; Curran, Walter J.; Crocker, Ian R.

    2011-01-01

    Purpose: To evaluate the pattern of failure after limited margin radiotherapy for glioblastoma. Methods and Materials: We analyzed 62 consecutive patients with newly diagnosed glioblastoma treated between 2006 and 2008 with standard fractionation to a total dose of 60Gy with concurrent temozolomide (97%) or arsenic trioxide (3%). The initial clinical target volume included postoperative T2 abnormality with a median margin of 0.7cm. The boost clinical target volume included residual T1-enhancing tumor and resection cavity with a median margin of 0.5cm. Planning target volumes added a 0.3- or 0.5-cm margin to clinical target volumes. The total boost planning target volume (PTV boost ) margin was 1cm or less in 92% of patients. The volume of recurrent tumor (new T1 enhancement) was categorized by the percent within the 60-Gy isodose line as central (>95%), infield (81-95%), marginal (20-80%), or distant ( boost with a 2.5-cm margin were created for each patient. Results: With a median follow-up of 12 months, radiographic tumor progression developed in 43 of 62 patients. Imaging was available for analysis in 41: 38 (93%) had central or infield failure, 2 (5%) had marginal failure, and 1 (2%) had distant failure relative to the 60-Gy isodose line. The treated PTV boost (median, 140cm 3 ) was, on average, 70% less than the PTV boost with a 2.5-cm margin (median, 477cm 3 ) (p boost margin of 1cm or less did not appear to increase the risk of marginal and/or distant tumor failures compared with other published series. With careful radiation planning and delivery, it appears that treatment margins for glioblastoma can be reduced.

  10. Evaluation of photodynamic treatment efficiency on glioblastoma cells received from malignant lesions: initial studies

    Science.gov (United States)

    Borisova, Ekaterina; Kyurkchiev, Dobroslav; Tumangelova-Yuzeir, Kalina; Angelov, Ivan; Genova-Hristova, Tsanislava; Semyachkina-Glushkovskaya, Oxana; Minkin, Krassimir

    2018-04-01

    Photodynamic therapy is well-established and extensively used method in treatment of different cancer types. This research reveals its potential in the treatment of cultivated human glioblastoma cells with adherent morphology. As the blood-brain barrier (BBB) permeability of the drugs is a significant problem that could not be solved easily for large biomolecules, we search for an appropriate low-molecular weight photosensitizer that could be applied for photodynamic treatment of glioblastoma cells. We used delta-aminolevulinic acid (5-ALA), which could pass BBB and plays the role of precursor of a protoporphyrin IX (PpIX) - photosensitizer, that is accumulated selectively in the tumour cells and could be a proper tool in PDT of glioblastoma. However, differences from patient to patient and between the cell activities could also lead to different effectiveness of the PDT treatment of the tumour areas. Therefore in our study we investigated not only the effect of using different fluence rates and light doses, but aims to establish more efficient values for further clinical applications for each sub-type of the GBM lesions. For the needs of PDT application an illumination device was developed in Laboratory of Biophotonics, BAS based on light-emitting diode (LED) matrix light sources for therapeutic application emitting at 635 nm. The device is optimized for PDT in combination with aminolevulinic acid/protoporphyrin IX applied as a photosensitizer drug. By the means of FACSCalibur flow cytometer (Becton Dickinson, USA) and Cell Quest Software was made evaluation of PDT effect on used human glioblastoma cells. Treatment of glioblastoma tumours continues to be a very serious issue and there is growing need in development of new concepts, methods and cancer-fighting strategies. PDT may contribute in accomplishing better results in cancer treatment and can be applied as well in combination with other techniques.

  11. Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients.

    Directory of Open Access Journals (Sweden)

    Daniel Paech

    Full Text Available BACKGROUND AND PURPOSE: Nuclear Overhauser Enhancement (NOE mediated chemical exchange saturation transfer (CEST is a novel magnetic resonance imaging (MRI technique on the basis of saturation transfer between exchanging protons of tissue proteins and bulk water. The purpose of this study was to evaluate and compare the information provided by three dimensional NOE mediated CEST at 7 Tesla (7T and standard MRI in glioblastoma patients. PATIENTS AND METHODS: Twelve patients with newly diagnosed histologically proven glioblastoma were enrolled in this prospective ethics committee-approved study. NOE mediated CEST contrast was acquired with a modified three-dimensional gradient-echo sequence and asymmetry analysis was conducted at 3.3 ppm (B1 = 0.7 µT to calculate the magnetization transfer ratio asymmetry (MTR(asym. Contrast enhanced T1 (CE-T1 and T2-weighted images were acquired at 3T and used for data co-registration and comparison. RESULTS: Mean NOE mediated CEST signal based on MTR(asym values over all patients was significantly increased (p<0.001 in CE-T1 tumor (-1.99 ± 1.22%, tumor necrosis (-1.36 ± 1.30% and peritumoral CEST hyperintensities (PTCH within T2 edema margins (-3.56 ± 1.24% compared to contralateral normal appearing white matter (-8.38 ± 1.19%. In CE-T1 tumor (p = 0.015 and tumor necrosis (p<0.001 mean MTR(asym values were significantly higher than in PTCH. Extent of the surrounding tumor hyperintensity was smaller in eight out of 12 patients on CEST than on T2-weighted images, while four displayed at equal size. In all patients, isolated high intensity regions (0.40 ± 2.21% displayed on CEST within the CE-T1 tumor that were not discernible on CE-T1 or T2-weighted images. CONCLUSION: NOE mediated CEST Imaging at 7 T provides additional information on the structure of peritumoral hyperintensities in glioblastoma and displays isolated high intensity regions within the CE-T1 tumor that cannot be acquired on CE-T1 or T2

  12. Angiogenic Gene Signature Derived from Subtype Specific Cell Models Segregate Proneural and Mesenchymal Glioblastoma

    Directory of Open Access Journals (Sweden)

    Aman Sharma

    2017-07-01

    Full Text Available Intertumoral molecular heterogeneity in glioblastoma identifies four major subtypes based on expression of molecular markers. Among them, the two clinically interrelated subtypes, proneural and mesenchymal, are the most aggressive with proneural liable for conversion to mesenchymal upon therapy. Using two patient-derived novel primary cell culture models (MTA10 and KW10, we developed a minimal but unique four-gene signature comprising genes vascular endothelial growth factor A (VEGF-A, vascular endothelial growth factor B (VEGF-B and angiopoietin 1 (ANG1, angiopoietin 2 (ANG2 that effectively segregated the proneural (MTA10 and mesenchymal (KW10 glioblastoma subtypes. The cell culture preclassified as mesenchymal showed elevated expression of genes VEGF-A, VEGF-B and ANG1, ANG2 as compared to the other cell culture model that mimicked the proneural subtype. The differentially expressed genes in these two cell culture models were confirmed by us using TCGA and Verhaak databases and we refer to it as a minimal multigene signature (MMS. We validated this MMS on human glioblastoma tissue sections with the use of immunohistochemistry on preclassified (YKL-40 high or mesenchymal glioblastoma and OLIG2 high or proneural glioblastoma tumor samples (n = 30. MMS segregated mesenchymal and proneural subtypes with 83% efficiency using a simple histopathology scoring approach (p = 0.008 for ANG2 and p = 0.01 for ANG1. Furthermore, MMS expression negatively correlated with patient survival. Importantly, MMS staining demonstrated spatiotemporal heterogeneity within each subclass, adding further complexity to subtype identification in glioblastoma. In conclusion, we report a novel and simple sequencing-independent histopathology-based biomarker signature comprising genes VEGF-A, VEGF-B and ANG1, ANG2 for subtyping of proneural and mesenchymal glioblastoma.

  13. EG-05COMBINATION OF GENE COPY GAIN AND EPIGENETIC DEREGULATION ARE ASSOCIATED WITH THE ABERRANT EXPRESSION OF A STEM CELL RELATED HOX-SIGNATURE IN GLIOBLASTOMA

    Science.gov (United States)

    Kurscheid, Sebastian; Bady, Pierre; Sciuscio, Davide; Samarzija, Ivana; Shay, Tal; Vassallo, Irene; Van Criekinge, Wim; Domany, Eytan; Stupp, Roger; Delorenzi, Mauro; Hegi, Monika

    2014-01-01

    We previously reported a stem cell related HOX gene signature associated with resistance to chemo-radiotherapy (TMZ/RT- > TMZ) in glioblastoma. However, underlying mechanisms triggering overexpression remain mostly elusive. Interestingly, HOX genes are neither involved in the developing brain, nor expressed in normal brain, suggestive of an acquired gene expression signature during gliomagenesis. HOXA genes are located on CHR 7 that displays trisomy in most glioblastoma which strongly impacts gene expression on this chromosome, modulated by local regulatory elements. Furthermore we observed more pronounced DNA methylation across the HOXA locus as compared to non-tumoral brain (Human methylation 450K BeadChip Illumina; 59 glioblastoma, 5 non-tumoral brain sampes). CpG probes annotated for HOX-signature genes, contributing most to the variability, served as input into the analysis of DNA methylation and expression to identify key regulatory regions. The structural similarity of the observed correlation matrices between DNA methylation and gene expression in our cohort and an independent data-set from TCGA (106 glioblastoma) was remarkable (RV-coefficient, 0.84; p-value < 0.0001). We identified a CpG located in the promoter region of the HOXA10 locus exerting the strongest mean negative correlation between methylation and expression of the whole HOX-signature. Applying this analysis the same CpG emerged in the external set. We then determined the contribution of both, gene copy aberration (CNA) and methylation at the selected probe to explain expression of the HOX-signature using a linear model. Statistically significant results suggested an additive effect between gene dosage and methylation at the key CpG identified. Similarly, such an additive effect was also observed in the external data-set. Taken together, we hypothesize that overexpression of the stem-cell related HOX signature is triggered by gain of trisomy 7 and escape from compensatory DNA methylation at

  14. SNAI2/Slug promotes growth and invasion in human gliomas

    International Nuclear Information System (INIS)

    Yang, Hong Wei; Menon, Lata G; Black, Peter M; Carroll, Rona S; Johnson, Mark D

    2010-01-01

    Numerous factors that contribute to malignant glioma invasion have been identified, but the upstream genes coordinating this process are poorly known. To identify genes controlling glioma invasion, we used genome-wide mRNA expression profiles of primary human glioblastomas to develop an expression-based rank ordering of 30 transcription factors that have previously been implicated in the regulation of invasion and metastasis in cancer. Using this approach, we identified the oncogenic transcriptional repressor, SNAI2/Slug, among the upper tenth percentile of invasion-related transcription factors overexpressed in glioblastomas. SNAI2 mRNA expression correlated with histologic grade and invasive phenotype in primary human glioma specimens, and was induced by EGF receptor activation in human glioblastoma cells. Overexpression of SNAI2/Slug increased glioblastoma cell proliferation and invasion in vitro and promoted angiogenesis and glioblastoma growth in vivo. Importantly, knockdown of endogenous SNAI2/Slug in glioblastoma cells decreased invasion and increased survival in a mouse intracranial human glioblastoma transplantation model. This genome-scale approach has thus identified SNAI2/Slug as a regulator of growth and invasion in human gliomas

  15. Chromosomal abnormalities in human glioblastomas: gain in chromosome 7p correlating with loss in chromosome 10q.

    Science.gov (United States)

    Inda, María del Mar; Fan, Xing; Muñoz, Jorge; Perot, Christine; Fauvet, Didier; Danglot, Giselle; Palacio, Ana; Madero, Pilar; Zazpe, Idoya; Portillo, Eduardo; Tuñón, Teresa; Martínez-Peñuela, José María; Alfaro, Jorge; Eiras, José; Bernheim, Alain; Castresana, Javier S

    2003-01-01

    Various genomic alterations have been detected in glioblastoma. Chromosome 7p, with the epidermal growth factor receptor locus, together with chromosome 10q, with the phosphatase and tensin homologue deleted in chromosome 10 and deleted in malignant brain tumors-1 loci, and chromosome 9p, with the cyclin-dependent kinase inhibitor 2A locus, are among the most frequently damaged chromosomal regions in glioblastoma. In this study, we evaluated the genetic status of 32 glioblastomas by comparative genomic hybridization; the sensitivity of comparative genomic hybridization versus differential polymerase chain reaction to detect deletions at the phosphatase and tensin homologue deleted in chromosome 10, deleted in malignant brain tumors-1, and cyclin-dependent kinase inhibitor 2A loci and amplifications at the cyclin-dependent kinase 4 locus; the frequency of genetic lesions (gain or loss) at 16 different selected loci (including oncogenes, tumor-suppressor genes, and proliferation markers) mapping on 13 different chromosomes; and the possible existence of a statistical association between any pair of molecular markers studied, to subdivide the glioblastoma entity molecularly. Comparative genomic hybridization showed that the most frequent region of gain was chromosome 7p, whereas the most frequent losses occurred on chromosomes 10q and 13q. The only statistically significant association was found for 7p gain and 10q loss. Copyright 2002 Wiley-Liss, Inc.

  16. Human T-cell responses to oral streptococci in human PBMC-NOD/SCID mice.

    Science.gov (United States)

    Salam, M A; Nakao, R; Yonezawa, H; Watanabe, H; Senpuku, H

    2006-06-01

    We investigated cellular and humoral immune responses to oral biofilm bacteria, including Streptococcus mutans, Streptococcus anginosus, Streptococcus sobrinus, and Streptococcus sanguinis, in NOD/SCID mice immunized with human peripheral blood mononuclear cells (hu-PBMC-NOD/SCID mice) to explore the pathogenicity of each of those organisms in dental and oral inflammatory diseases. hu-PBMC-NOD/SCID mice were immunized by intraperitoneal injections with the whole cells of the streptococci once a week for 3 weeks. FACS analyses were used to determine the percentages of various hu-T cell types, as well as intracellular cytokine production of interleukin-4 and interferon-gamma. Serum IgG and IgM antibody levels in response to the streptococci were also determined by enzyme-linked immunosorbent assay. S. anginosus induced a significant amount of the proinflammatory cytokine interferon-gamma in CD4(+) and CD8(+) T cells in comparison with the other streptococci. However, there was no significant differences between the streptococci in interleukin-4 production by CD4(+) and CD8(+) T cells after inoculation. Further, S. mutans significantly induced human anti-S. mutans IgG, IgG(1), IgG(2), and IgM antibodies in comparison with the other organisms. In conclusion, S. anginosus up-regulated Th1 and Tc1 cells, and S. mutans led to increasing levels of their antibodies, which was associated with the induction of Th2 cells. These results may contribute to a better understanding of human lymphocyte interactions to biofilm bacteria, along with their impact on dental and mucosal inflammatory diseases, as well as endocarditis.

  17. Advance Care Planning in Glioblastoma Patients

    Directory of Open Access Journals (Sweden)

    Lara Fritz

    2016-11-01

    Full Text Available Despite multimodal treatment with surgery, radiotherapy and chemotherapy, glioblastoma is an incurable disease with a poor prognosis. During the disease course, glioblastoma patients may experience progressive neurological deficits, symptoms of increased intracranial pressure such as drowsiness and headache, incontinence, seizures and progressive cognitive dysfunction. These patients not only have cancer, but also a progressive brain disease. This may seriously interfere with their ability to make their own decisions regarding treatment. It is therefore warranted to involve glioblastoma patients early in the disease trajectory in treatment decision-making on their future care, including the end of life (EOL care, which can be achieved with Advance Care Planning (ACP. Although ACP, by definition, aims at timely involvement of patients and proxies in decision-making on future care, the optimal moment to initiate ACP discussions in the disease trajectory of glioblastoma patients remains controversial. Moreover, the disease-specific content of these ACP discussions needs to be established. In this article, we will first describe the history of patient participation in treatment decision-making, including the shift towards ACP. Secondly, we will describe the possible role of ACP for glioblastoma patients, with the specific aim of treatment of disease-specific symptoms such as somnolence and dysphagia, epileptic seizures, headache, and personality changes, agitation and delirium in the EOL phase, and the importance of timing of ACP discussions in this patient population.

  18. REST controls self-renewal and tumorigenic competence of human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Luciano Conti

    Full Text Available The Repressor Element 1 Silencing Transcription factor (REST/NRSF is a master repressor of neuronal programs in non-neuronal lineages shown to function as a central regulator of developmental programs and stem cell physiology. Aberrant REST function has been associated with a number of pathological conditions. In cancer biology, REST has been shown to play a tumor suppressor activity in epithelial cancers but an oncogenic role in brain childhood malignancies such as neuroblastoma and medulloblastoma. Here we examined REST expression in human glioblastoma multiforme (GBM specimens and its role in GBM cells carrying self-renewal and tumorigenic competence. We found REST to be expressed in GBM specimens, its presence being particularly enriched in tumor cells in the perivascular compartment. Significantly, REST is highly expressed in self-renewing tumorigenic-competent GBM cells and its knock down strongly reduces their self-renewal in vitro and tumor-initiating capacity in vivo and affects levels of miR-124 and its downstream targets. These results indicate that REST contributes to GBM maintenance by affecting its self-renewing and tumorigenic cellular component and that, hence, a better understanding of these circuitries in these cells might lead to new exploitable therapeutic targets.

  19. Glioblastoma multiforme of the cerebellum: description of three cases.

    Science.gov (United States)

    Luccarelli, G

    1980-01-01

    Only 43 cases of glioblastoma multiforme of the cerebellum have been reported in the literature. This report is based on the findings of 3 cerebellar glioblastomas in a review of 1,206 consecutive confirmed cases of glioblastoma operated on between 1947 and 1977 at the Istituto Neurologico of Milan, giving an incidence of 0.24%. Clinical features are similar to those of any other fast-growing subtentorial tumour. Neuroradiological studies, including CAT, are of little help in predicting the exact nature of these tumours before surgery. A correct diagnosis can be reached only by microscopic examination. Histological patterns appear in no way to differ from those of cerebral glioblastoma. The biological behaviour of these tumours is in all respects identical to that of glioblastoma of cerebral hemispheres.

  20. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment.

    Science.gov (United States)

    Kang, Bo; Zhou, Yanwen; Zheng, Min; Wang, Ying-Jie

    2015-09-01

    A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.

  1. Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models.

    Science.gov (United States)

    Saha, Dipongkor; Wakimoto, Hiroaki; Peters, Cole W; Antoszczyk, Slawomir J; Rabkin, Samuel D; Martuza, Robert L

    2018-03-29

    Purpose: Glioblastoma (GBM), a fatal brain cancer, contains a subpopulation of GBM stem-like cells (GSCs) that contribute to resistance to current therapy. Angiogenesis also plays a key role in GBM progression. Therefore, we developed a strategy to target the complex GBM microenvironment, including GSCs and tumor vasculature. Experimental Design: We evaluated the cytotoxic effects of VEFGR tyrosine kinase inhibitor (TKI) axitinib in vitro and then tested antitumor efficacy of axitinib in combination with oncolytic herpes simplex virus (oHSV) expressing antiangiogenic cytokine murine IL12 (G47Δ-mIL12) in two orthotopic GSC-derived GBM models: patient-derived recurrent MGG123 GSCs, forming vascular xenografts in immunodeficient mice; and mouse 005 GSCs, forming syngeneic tumors in immunocompetent mice. Results: GSCs form endothelial-like tubes and were sensitive to axitinib. G47Δ-mIL12 significantly improved survival, as did axitinib, while dual combinations further extended survival significantly compared with single therapies alone in both models. In MGG123 tumors, axitinib was effective only at high doses (50 mg/kg), alone and in combination with G47Δ-mIL12, and this was associated with greatly decreased vascularity, increased macrophage infiltration, extensive tumor necrosis, and PDGFR/ERK pathway inhibition. In the mouse 005 model, antiglioma activity, after single and combination therapy, was only observed in immunocompetent mice and not the T-cell-deficient athymic mice. Interestingly, immune checkpoint inhibition did not improve efficacy. Conclusions: Systemic TKI (axitinib) beneficially combines with G47Δ-mIL12 to enhance antitumor efficacy in both immunodeficient and immunocompetent orthotopic GBM models. Our results support further investigation of TKIs in combination with oHSV for GBM treatment. Clin Cancer Res; 1-14. ©2018 AACR. ©2018 American Association for Cancer Research.

  2. Protective Effect of Gwakhyangjeonggisan Herbal Acupuncture Solution in Glioblastoma Cells: Microarray Analysis of Gene Expression

    Directory of Open Access Journals (Sweden)

    Hong-Seok Lee

    2005-12-01

    Full Text Available Objectives : Neurological disorders have been one of main therapeutic targets of acupuncture. The present study investigated the protective effects of Gwakhyangjeonggisan herbal acupuncture solution (GHAS. Methods : We performed 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay in glioblastoma cells, and did microarray analysis with cells exposed to reactive oxigen species (ROS of hydrogen peroxide by 8.0 k Human cDNA, with cut-off level of 2-fold changes in gene expression. Results : MTT assay showed protective effect of GHAS on the glioblastoma cells exposed to hydrogen peroxide. When glioblastoma cells were exposed to hydrogen peroxide, 24 genes were downregulated. When the cells were pretreated with GHAS before exposure to hydrogen peroxide, 46 genes were downregulated. Many of the genes downregulated by hydrogen peroxide stimulation were decreased in the amount of downregulation or reversed to upregulation. Conclusions : The gene expression changes observed in the present study are supposed to be related to the protective molecular mechanism of GHAS in the glioblastoma cells exposed to ROS stress.

  3. Impact of commercial cigarette smoke condensate on brain tissue co-cultured with astrocytes and blood-brain barrier endothelial cells.

    Science.gov (United States)

    Lee, Seon-Bong; Kim, Ju-Hyeong; Cho, Myung-Haing; Choe, Eun-Sang; Kim, Kwang-Sik; Shim, Soon-Mi

    2017-01-01

    The purpose of the current study was to investigate the effect of two commercial cigarette smoke condensates (CCSC) on oxidative stress and cell cytotoxicity in human brain (T98G) or astrocytes (U-373 MG) in the presence of human brain microvascular endothelial cells (HBMEC). Cell viability of mono-culture of T98G or U-373 MG was markedly decreased in a concentration-dependent manner, and T98G was more susceptible than U-373 MG to CCSC exposure. Cytotoxicity was less prominent when T98G was co-cultured with HBMEC than when T98G was co-cultured with U-373 MG. Significant reduction in trans-epithelial electric resistance (TEER), a biomarker of cellular integrity was noted in HBMEC co-cultured with T98G (HBMEC-T98G co-culture) and U-373 MG co-cultured with T98G (U-373 MG-T98G co-culture) after 24 or 48 hr CCSC exposure, respectively. TEER value of U-373 MG co-cultured with T98G (79-84%) was higher than HBMEC co-cultured with T98G (62-63%) within 120-hr incubation with CCSC. Reactive oxygen species (ROS) generated by CCSC in mono-culture of T98G and U-373 MG reached highest levels at 4 and 16 mg/ml, respectively. ROS production by T98G fell when co-cultured with HBMEC or U-373MG. These findings suggest that adverse consequences of CCSC treatment on brain cells may be protected by blood-brain barrier or astrocytes, but with chronic exposure toxicity may be worsened due to destruction of cellular integrity.

  4. Validation of an amino-acid-based radionuclide therapy plus external beam radiotherapy in heterotopic glioblastoma models

    Energy Technology Data Exchange (ETDEWEB)

    Israel, Ina [Department of Nuclear Medicine, University of Wuerzburg, D-97080 Wuerzburg (Germany); Blass, Georg [Department of Radiotherapy and Radiooncology, Saarland University Medical Center, Homburg (Germany); Reiners, Christoph [Department of Nuclear Medicine, University of Wuerzburg, D-97080 Wuerzburg (Germany); Samnick, Samuel, E-mail: samnick_s@klinik.uni-wuerzburg.d [Department of Nuclear Medicine, University of Wuerzburg, D-97080 Wuerzburg (Germany)

    2011-05-15

    Background and purpose: Malignant gliomas represent a major therapeutic challenge because no efficient treatment is currently available. p-[{sup 131}I]iodo-L-phenylalanine ([{sup 131}I]IPA) is a glioma avid radiopharmaceutical that demonstrated antiproliferative and tumoricidal effects in gliomas. The present study validated the therapeutic efficiency of [{sup 131}I]IPA combined with external beam radiotherapy in experimental gliomas. Materials and methods: Glioma cells derived from the primary human A1207, T5135, Tx3868 and M059K glioblastoma cell lines or rat F98 glioma cell line were treated with various doses of [{sup 131}I]IPA, external photon irradiation (RT) or combined [{sup 131}I]IPA/RT treatment. Responsiveness of glioma cells to the different therapy modalities was investigated at 24, 48 and 72 h after treatments by trypan blue, WST-1 assay, propidium iodide and bisbenzimide staining as well as by clonogenic assay. In addition, the therapy-induced DNA damage and repair were evaluated using phosphorylated histone H2AX ({gamma}-H2AX). In vivo, the effectiveness of the combination treatment was validated in human Tx3868 and A1207 glioblastoma xenografts in CD1 nu/nu mice and RNU rats. Results: In vitro, the combination treatment resulted in a greater than additive increase in cytotoxic effect in glioma cell lines. Cell survival rate following a treatment with 1.0 {mu}Ci (37 kBq) of [{sup 131}I]IPA amounted to 70%{+-}15% and 60%{+-}10% after 48 and 72 h, respectively, and decreased under 20% after additional RT with 5 Gy. At higher RT doses, cell survival rate decreased below 5%. As a measure of DNA double-strand break, nuclear {gamma}-H2AX foci were determined as a function of time. Within 24 h, the number of {gamma}-H2AX foci per cell was significantly greater after combined modality compared with the individual treatments. In vivo, when combined with RT, the radionuclide therapy with [{sup 131}I]IPA resulted in an extended tumor growth delay, a reduction

  5. Negative control of the HGF/c-MET pathway by TGF-β: a new look at the regulation of stemness in glioblastoma.

    Science.gov (United States)

    Papa, Eleanna; Weller, Michael; Weiss, Tobias; Ventura, Elisa; Burghardt, Isabel; Szabó, Emese

    2017-12-13

    Multiple target inhibition has gained considerable interest in combating drug resistance in glioblastoma, however, understanding the molecular mechanisms of crosstalk between signaling pathways and predicting responses of cancer cells to targeted interventions has remained challenging. Despite the significant role attributed to transforming growth factor (TGF)-β family and hepatocyte growth factor (HGF)/c-MET signaling in glioblastoma pathogenesis, their functional interactions have not been well characterized. Using genetic and pharmacological approaches to stimulate or antagonize the TGF-β pathway in human glioma-initiating cells (GIC), we observed that TGF-β exerts an inhibitory effect on c-MET phosphorylation. Inhibition of either mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) or phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway attenuated this effect. A comparison of c-MET-driven and c-MET independent GIC models revealed that TGF-β inhibits stemness in GIC at least in part via its negative regulation of c-MET activity, suggesting that stem cell (SC) maintenance may be controlled by the balance between these two oncogenic pathways. Importantly, immunohistochemical analyses of human glioblastoma and ex vivo single-cell gene expression profiling of TGF-β and HGF confirm the negative interaction between both pathways. These novel insights into the crosstalk of two major pathogenic pathways in glioblastoma may explain some of the disappointing results when targeting either pathway alone in human glioblastoma patients and inform on potential future designs on targeted pharmacological or genetic intervention.

  6. Lipoprotein internalisation induced by oncogenic AMPK activation is essential to maintain glioblastoma cell growth.

    Science.gov (United States)

    Ríos, M; Foretz, M; Viollet, B; Prieto, A; Fraga, M; García-Caballero, T; Costoya, J A; Señarís, R

    2014-12-01

    Metabolic adaptations are essential during tumour growth to maintain the high proliferation levels exhibited by cancer cells. In this study, we examined the transformations that occurred in the lipid metabolism in astrocytic tumours, and the possible role of the fuel-sensing enzyme AMPK. Metabolic targets might help design new and effective drugs for cancer. To accomplish this objective, we studied both mice and human astrocytic tumours. We first used a mouse model of astrocytoma driven by oncogenic H-RasV12 and/or with PTEN deletion based on the common constitutive activation of the Raf/MEK/ERK and PI3K/AKT cascades in human astrocytomas. We then confirmed the results in human glioblastoma cell lines and in glioblastoma tissue samples from patients. We show that the high levels of activated AMPK, observed in astrocytic tumours, increase extracellular lipid internalisation and reduce energy expenditure by inhibiting 'de novo' fatty acid (FA) synthesis, which allows tumour cells to obtain building blocks and energy to be able to create new organelles and new cells. Our findings demonstrate that AMPK plays a crucial role in glioblastoma cell growth and suggest that blocking lipoprotein receptors could potentially be used as a plausible therapeutic approach for these and other type of tumours with high levels of AMPK. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A Distinct DNA Methylation Shift in a Subset of Glioma CpG Island Methylator Phenotypes during Tumor Recurrence

    Directory of Open Access Journals (Sweden)

    Camila Ferreira de Souza

    2018-04-01

    Full Text Available Summary: Glioma diagnosis is based on histomorphology and grading; however, such classification does not have predictive clinical outcome after glioblastomas have developed. To date, no bona fide biomarkers that significantly translate into a survival benefit to glioblastoma patients have been identified. We previously reported that the IDH mutant G-CIMP-high subtype would be a predecessor to the G-CIMP-low subtype. Here, we performed a comprehensive DNA methylation longitudinal analysis of diffuse gliomas from 77 patients (200 tumors to enlighten the epigenome-based malignant transformation of initially lower-grade gliomas. Intra-subtype heterogeneity among G-CIMP-high primary tumors allowed us to identify predictive biomarkers for assessing the risk of malignant recurrence at early stages of disease. G-CIMP-low recurrence appeared in 9.5% of all gliomas, and these resembled IDH-wild-type primary glioblastoma. G-CIMP-low recurrence can be characterized by distinct epigenetic changes at candidate functional tissue enhancers with AP-1/SOX binding elements, mesenchymal stem cell-like epigenomic phenotype, and genomic instability. Molecular abnormalities of longitudinal G-CIMP offer possibilities to defy glioblastoma progression. : IDH-mutant lower-grade glioma glioblastoma often progresses to a more aggressive phenotype upon recurrence. de Souza et al. examines the intra-subtype heterogeneity of initial G-CIMP-high and use this information to identify predictive biomarkers for assessing the risk of recurrence and malignant transformation. Keywords: longitudinal gliomas, DNA methylation, IDH mutation, G-CIMP-high, intra-subtype heterogeneity, malignant transformation and recurrence, G-CIMP-low, stem cell-like glioblastoma, predictive biomarkers

  8. Amnesia due to bilateral hippocampal glioblastoma

    International Nuclear Information System (INIS)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K.

    1989-01-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.)

  9. Human glioblastoma multiforme: p53 reactivation by a novel MDM2 inhibitor.

    Directory of Open Access Journals (Sweden)

    Barbara Costa

    Full Text Available Cancer development and chemo-resistance are often due to impaired functioning of the p53 tumor suppressor through genetic mutation or sequestration by other proteins. In glioblastoma multiforme (GBM, p53 availability is frequently reduced because it binds to the Murine Double Minute-2 (MDM2 oncoprotein, which accumulates at high concentrations in tumor cells. The use of MDM2 inhibitors that interfere with the binding of p53 and MDM2 has become a valid approach to inhibit cell growth in a number of cancers; however little is known about the efficacy of these inhibitors in GBM. We report that a new small-molecule inhibitor of MDM2 with a spirooxoindolepyrrolidine core structure, named ISA27, effectively reactivated p53 function and inhibited human GBM cell growth in vitro by inducing cell cycle arrest and apoptosis. In immunoincompetent BALB/c nude mice bearing a human GBM xenograft, the administration of ISA27 in vivo activated p53, inhibited cell proliferation and induced apoptosis in tumor tissue. Significantly, ISA27 was non-toxic in an in vitro normal human cell model and an in vivo mouse model. ISA27 administration in combination with temozolomide (TMZ produced a synergistic inhibitory effect on GBM cell viability in vitro, suggesting the possibility of lowering the dose of TMZ used in the treatment of GBM. In conclusion, our data show that ISA27 releases the powerful antitumor capacities of p53 in GBM cells. The use of this MDM2 inhibitor could become a novel therapy for the treatment of GBM patients.

  10. Ebselen abrogates TNFα induced pro‐inflammatory response in glioblastoma

    OpenAIRE

    Tewari, Richa; Sharma, Vivek; Koul, Nitin; Ghosh, Abhishek; Joseph, Christy; Hossain Sk, Ugir; Sen, Ellora

    2008-01-01

    We investigated the pro‐inflammatory response mediated by TNFα in glioblastoma and whether treatment with organoselenium Ebselen (2‐phenyl‐1,2‐benzisoselenazol‐3[2H]one) can affect TNFα induced inflammatory response. Exposure to TNFα increased the expression of pro‐inflammatory mediator interleukin IL‐6, IL‐8, monocyte chemoattractant protein‐1 (MCP‐1) and cyclooxygenase (COX‐2). Treatment with Ebselen abrogated TNFα induced increase in pro‐inflammatory mediators. Ebselen not only abrogated T...

  11. Bcl-w Enhances Mesenchymal Changes and Invasiveness of Glioblastoma Cells by Inducing Nuclear Accumulation of β-Catenin

    Science.gov (United States)

    Lee, Woo Sang; Woo, Eun Young; Kwon, Junhye; Park, Myung-Jin; Lee, Jae-Seon; Han, Young-Hoon; Bae, In Hwa

    2013-01-01

    Bcl-w a pro-survival member of the Bcl-2 protein family, is expressed in a variety of cancer types, including gastric and colorectal adenocarcinomas, as well as glioblastoma multiforme (GBM), the most common and lethal brain tumor type. Previously, we demonstrated that Bcl-w is upregulated in gastric cancer cells, particularly those displaying infiltrative morphology. These reports propose that Bcl-w is strongly associated with aggressive characteristic, such as invasive or mesenchymal phenotype of GBM. However, there is no information from studies of the role of Bcl-w in GBM. In the current study, we showed that Bcl-w is upregulated in human glioblastoma multiforme (WHO grade IV) tissues, compared with normal and glioma (WHO grade III) tissues. Bcl-w promotes the mesenchymal traits of glioblastoma cells by inducing vimentin expression via activation of transcription factors, β-catenin, Twist1 and Snail in glioblastoma U251 cells. Moreover, Bcl-w induces invasiveness by promoting MMP-2 and FAK activation via the PI3K-p-Akt-p-GSK3β-β-catenin pathway. We further confirmed that Bcl-w has the capacity to induce invasiveness in several human cancer cell lines. In particular, Bcl-w-stimulated β-catenin is translocated into the nucleus as a transcription factor and promotes the expression of target genes, such as mesenchymal markers or MMPs, thereby increasing mesenchymal traits and invasiveness. Our findings collectively indicate that Bcl-w functions as a positive regulator of invasiveness by inducing mesenchymal changes and that trigger their aggressiveness of glioblastoma cells. PMID:23826359

  12. T1ρ-weighted Dynamic Glucose-enhanced MR Imaging in the Human Brain.

    Science.gov (United States)

    Paech, Daniel; Schuenke, Patrick; Koehler, Christina; Windschuh, Johannes; Mundiyanapurath, Sibu; Bickelhaupt, Sebastian; Bonekamp, David; Bäumer, Philipp; Bachert, Peter; Ladd, Mark E; Bendszus, Martin; Wick, Wolfgang; Unterberg, Andreas; Schlemmer, Heinz-Peter; Zaiss, Moritz; Radbruch, Alexander

    2017-12-01

    Purpose To evaluate the ability to detect intracerebral regions of increased glucose concentration at T1ρ-weighted dynamic glucose-enhanced (DGE) magnetic resonance (MR) imaging at 7.0 T. Materials and Methods This prospective study was approved by the institutional review board. Nine patients with newly diagnosed glioblastoma and four healthy volunteers were included in this study from October 2015 to July 2016. Adiabatically prepared chemical exchange-sensitive spin-lock imaging was performed with a 7.0-T whole-body unit with a temporal resolution of approximately 7 seconds, yielding the time-resolved DGE contrast. T1ρ-weighted DGE MR imaging was performed with injection of 100 mL of 20% d-glucose via the cubital vein. Glucose enhancement, given by the relative signal intensity change at T1ρ-weighted MR imaging (DGEρ), was quantitatively investigated in brain gray matter versus white matter of healthy volunteers and in tumor tissue versus normal-appearing white matter of patients with glioblastoma. The median signal intensities of the assessed brain regions were compared by using the Wilcoxon rank-sum test. Results In healthy volunteers, the median signal intensity in basal ganglia gray matter (DGEρ = 4.59%) was significantly increased compared with that in white matter tissue (DGEρ = 0.65%) (P = .028). In patients, the median signal intensity in the glucose-enhanced tumor region as displayed on T1ρ-weighted DGE images (DGEρ = 2.02%) was significantly higher than that in contralateral normal-appearing white matter (DGEρ = 0.08%) (P brain glucose physiology and pathophysiologically increased glucose uptake and may have the potential to provide information about glucose metabolism in tumor tissue. © RSNA, 2017 Online supplemental material is available for this article.

  13. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.

    Science.gov (United States)

    Miao, Hongsheng; Choi, Bryan D; Suryadevara, Carter M; Sanchez-Perez, Luis; Yang, Shicheng; De Leon, Gabriel; Sayour, Elias J; McLendon, Roger; Herndon, James E; Healy, Patrick; Archer, Gary E; Bigner, Darell D; Johnson, Laura A; Sampson, John H

    2014-01-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs) targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR) T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.

  14. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma.

    Directory of Open Access Journals (Sweden)

    Hongsheng Miao

    Full Text Available Glioblastoma (GBM is the most common primary malignant brain tumor in adults and is uniformly lethal. T-cell-based immunotherapy offers a promising platform for treatment given its potential to specifically target tumor tissue while sparing the normal brain. However, the diffuse and infiltrative nature of these tumors in the brain parenchyma may pose an exceptional hurdle to successful immunotherapy in patients. Areas of invasive tumor are thought to reside behind an intact blood brain barrier, isolating them from effective immunosurveillance and thereby predisposing the development of "immunologically silent" tumor peninsulas. Therefore, it remains unclear if adoptively transferred T cells can migrate to and mediate regression in areas of invasive GBM. One barrier has been the lack of a preclinical mouse model that accurately recapitulates the growth patterns of human GBM in vivo. Here, we demonstrate that D-270 MG xenografts exhibit the classical features of GBM and produce the diffuse and invasive tumors seen in patients. Using this model, we designed experiments to assess whether T cells expressing third-generation chimeric antigen receptors (CARs targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, would localize to and treat invasive intracerebral GBM. EGFRvIII-targeted CAR (EGFRvIII+ CAR T cells demonstrated in vitro EGFRvIII antigen-specific recognition and reactivity to the D-270 MG cell line, which naturally expresses EGFRvIII. Moreover, when administered systemically, EGFRvIII+ CAR T cells localized to areas of invasive tumor, suppressed tumor growth, and enhanced survival of mice with established intracranial D-270 MG tumors. Together, these data demonstrate that systemically administered T cells are capable of migrating to the invasive edges of GBM to mediate antitumor efficacy and tumor regression.

  15. Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma.

    Science.gov (United States)

    Jung, Narae; Kwon, Ho Jeong; Jung, Hye Jin

    2018-01-01

    Glioblastoma stem cell targeted therapies have become a powerful strategy for the treatment of this deadliest brain tumor. We demonstrate for the first time that downregulation of mitochondrial ubiquinol-cytochrome c reductase binding protein (UQCRB) inhibits the cancer stem cell-like properties in human glioblastoma cells. The synthetic small molecules targeting UQCRB significantly suppressed not only the self-renewal capacity such as growth and neurosphere formation, but also the metastatic potential such as migration and invasion of glioblastoma stem‑like cells (GSCs) derived from U87MG and U373MG at subtoxic concentrations. Notably, the UQCRB inhibitors repressed c‑Met-mediated downstream signal transduction and hypoxia‑inducible factor‑1α (HIF‑1α) activation, thereby reducing the expression levels of GSC markers including CD133, Nanog, Oct4 and Sox2 in the GSCs. Furthermore, the UQCRB inhibitors decreased mitochondrial ROS generation and mitochondrial membrane potential in the GSCs, indicating that they regulate the mitochondrial function in GSCs. Indeed, the knockdown of UQCRB gene by UQCRB siRNA significantly inhibited the cancer stem cell-like phenotypes as well as the expression of stemness markers by blocking mitochondrial ROS/HIF‑1α/c‑Met pathway in U87MG GSCs. These findings suggest that UQCRB and its inhibitors could be a new therapeutic target and lead compounds for eliminating cancer stem cells in glioblastoma.

  16. Regulation of YKL-40 expression during genotoxic or microenvironmental stress in human glioblastoma cells

    DEFF Research Database (Denmark)

    Junker, Nanna; Johansen, Julia S; Hansen, Lasse T

    2005-01-01

    YKL-40 is a 40 kDa secreted glycoprotein belonging to the family of 'mammalian chitinase-like proteins', but without chitinase activity. YKL-40 has a proliferative effect on fibroblasts, chondrocytes and synoviocytes, and chemotactic effect on endothelium and vascular smooth muscle cells. Elevated...... material from glioblastomas patients. We investigated the expression of YKL-40 in three human malignant glioma cell lines exposed to different types of stress. Whereas a polymerase chain reaction transcript was detectable in all three cell lines, only U87 produced measurable amounts of YKL-40 protein. In U...... is attenuated by p53. In contrast, both basic fibroblast growth factor and tumor necrosing factor-alpha repressed YKL-40. These are the first data on regulation of YKL-40 in cancer cells. Diverse types of stress resulted in YKL-40 elevation, which strongly supports an involvement of YKL-40 in the malignant...

  17. Clonal expansion of CD4+ Cytotoxic T Lymphocytes in IgG4-related disease

    Science.gov (United States)

    Mattoo, Hamid; Mahajan, Vinay S.; Maehara, Takashi; Deshpande, Vikram; Della-Torre, Emanuel; Wallace, Zachary S.; Kulikova, Maria; Drijvers, Jefte M.; Daccache, Joe; Carruthers, Mollie N.; Castellino, Flavia; Stone, James R.; Stone, John H.; Pillai, Shiv

    2016-01-01

    Background IgG4-related disease (IgG4-RD) is a systemic condition of unknown etiology, characterized by highly fibrotic lesions with dense lymphoplasmacytic infiltrates. CD4+ T cells constitute the major inflammatory cell population in IgG4-RD lesions. Objective We used an unbiased approach to characterize CD4+ T cell subsets in IgG4-RD subjects based on their clonal expansion and their ability to infiltrate affected tissue sites. Methods We used flow cytometry to identify CD4+ effector/memory T cells (TEM) in a cohort of 101 IgG4-related disease (IgG4-RD) patients. These expanded cells were characterized by gene expression analysis and flow cytometry. Next-generation sequencing of the T cell receptor β chain gene was performed on CD4+SLAMF7+ CTLs and CD4+GATA3+ TH2 cells in a subset of patients to identify their clonality. Tissue infiltration by specific T cells was examined using quantitative multi-color imaging. Results CD4+ effector/memory T cells with a cytolytic phenotype were expanded in IgG4-RD patients. Next-generation sequencing revealed prominent clonal expansions of these CD4+CTLs but not CD4+GATA3+ memory TH2 cells in subjects with IgG4-RD. The dominant T cells infiltrating a range of inflamed IgG4-RD tissue sites were clonally-expanded CD4+CTLs that expressed SLAMF7, granzyme A, IL-1β, and TGF-β1. Clinical remission induced by rituximab-mediated B cell depletion was associated with a reduction in disease-associated CD4+ CTLs Conclusions IgG4-RD is prominently linked to clonally-expanded, IL-1β, and TGF- β1 secreting, CD4+ CTLs in peripheral blood as well as in inflammatory tissue lesions. These active, terminally-differentiated, cytokine-secreting effector CD4+ T cells are now linked to a human disease characterized by chronic inflammation and fibrosis. PMID:26971690

  18. The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir.

    Science.gov (United States)

    Kast, Richard E

    2015-04-09

    Based on reporting in the last several years, an impressive but dismal list of cytotoxic chemotherapies that fail to prolong the median overall survival of patients with glioblastoma has prompted the development of treatment protocols designed to interfere with growth-facilitating signaling systems by using non-cytotoxic, non-oncology drugs. Recent recognition of the pro-mobility stimulus, interleukin-18, as a driver of centrifugal glioblastoma cell migration allows potential treatment adjuncts with disulfiram and ritonavir. Disulfiram and ritonavir are well-tolerated, non-cytotoxic, non-oncology chemotherapeutic drugs that are marketed for the treatment of alcoholism and human immunodeficiency virus (HIV) infection, respectively. Both drugs exhibit an interleukin-18-inhibiting function. Given the favorable tolerability profile of disulfiram and ritonavir, the unlikely drug-drug interaction with temozolomide, and the poor prognosis of glioblastoma, trials of addition of disulfiram and ritonavir to current standard initial treatment of glioblastoma would be warranted.

  19. Tectal glioblastoma Glioblastoma tetal

    Directory of Open Access Journals (Sweden)

    Feres Chaddad Neto

    2007-12-01

    Full Text Available Brain stem gliomas are a heterogeneous group of neoplasms arising mostly in paediatric patients. Tectal plate gliomas represent a particular type of brain stem tumours usually with a benign, indolent clinical course, presenting with signs of raised intracranial hipertension due to supra-tentorialhydrocephalous caused by aqueductal stenosis. Seldom high-grade lesions arise in this location with tremendous therapeutic implications. When a malignant tumour is clinically and radiographically suspected a biopsy should be performed to obtain histhological confirmation. Treatment is then planned in a case-by-case basis. We present the case of a glioblastoma of the tectal plate in a 22 years-old woman operated upon by a supracerebellar-infratentorial approach.Os gliomas do tronco cerebral são um grupo heterogêneo de neoplasias que acometem habitualmente crianças. Os gliomas da placa quadrigeminal representam um tipo particular de tumores do tronco cerebral, habitualmente com um curso benigno e indolente, surgindo com sinais de hipertensão intracraniana devido a hidrocefalia supra-tentorial provocada por compressão do aqueduto cerebral. Raramente surgem lesões de alto grau nesta região, mas as implicações terapêuticas são tremendas. Quando existe suspeita clínica e imagiológica de que se trata de lesão maligna, esta deve ser biopsada para se obter confirmação histológica. O tratamento deve então ser planejado caso a caso. Apresentamos o caso de glioblastoma da placa quadrigeminal em uma paciente de 22 anos intervencionado por via supracerebelar-infratentorial.

  20. Distinct human and mouse membrane trafficking systems for sweet taste receptors T1r2 and T1r3.

    Science.gov (United States)

    Shimizu, Madoka; Goto, Masao; Kawai, Takayuki; Yamashita, Atsuko; Kusakabe, Yuko

    2014-01-01

    The sweet taste receptors T1r2 and T1r3 are included in the T1r taste receptor family that belongs to class C of the G protein-coupled receptors. Heterodimerization of T1r2 and T1r3 is required for the perception of sweet substances, but little is known about the mechanisms underlying this heterodimerization, including membrane trafficking. We developed tagged mouse T1r2 and T1r3, and human T1R2 and T1R3 and evaluated membrane trafficking in human embryonic kidney 293 (HEK293) cells. We found that human T1R3 surface expression was only observed when human T1R3 was coexpressed with human T1R2, whereas mouse T1r3 was expressed without mouse T1r2 expression. A domain-swapped chimera and truncated human T1R3 mutant showed that the Venus flytrap module and cysteine-rich domain (CRD) of human T1R3 contain a region related to the inhibition of human T1R3 membrane trafficking and coordinated regulation of human T1R3 membrane trafficking. We also found that the Venus flytrap module of both human T1R2 and T1R3 are needed for membrane trafficking, suggesting that the coexpression of human T1R2 and T1R3 is required for this event. These results suggest that the Venus flytrap module and CRD receive taste substances and play roles in membrane trafficking of human T1R2 and T1R3. These features are different from those of mouse receptors, indicating that human T1R2 and T1R3 are likely to have a novel membrane trafficking system.

  1. Analysis of complete genome sequences of G9P[19] rotavirus strains from human and piglet with diarrhea provides evidence for whole-genome interspecies transmission of nonreassorted porcine rotavirus.

    Science.gov (United States)

    Yodmeeklin, Arpaporn; Khamrin, Pattara; Chuchaona, Watchaporn; Kumthip, Kattareeya; Kongkaew, Aphisek; Vachirachewin, Ratchaya; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2017-01-01

    Whole genomes of G9P[19] human (RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19]) and porcine (RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19]) rotaviruses concurrently detected in the same geographical area in northern Thailand were sequenced and analyzed for their genetic relationships using bioinformatic tools. The complete genome sequence of human rotavirus RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] was most closely related to those of porcine rotavirus RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19] and to those of porcine-like human and porcine rotaviruses reference strains than to those of human rotavirus reference strains. The genotype constellation of G9P[19] detected in human and piglet were identical and displayed as the G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotypes with the nucleotide sequence identities of VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4, and NSP5 at 99.0%, 99.5%, 93.2%, 97.7%, 97.7%, 85.6%, 89.5%, 93.2%, 92.9%, 94.0%, and 98.1%, respectively. The findings indicate that human rotavirus strain RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] containing the genome segments of porcine genetic backbone is most likely a human rotavirus of porcine origin. Our data provide an evidence of interspecies transmission and whole-genome transmission of nonreassorted G9P[19] porcine RVA to human occurring in nature in northern Thailand. Copyright © 2016. Published by Elsevier B.V.

  2. A highly invasive human glioblastoma pre-clinical model for testing therapeutics

    Directory of Open Access Journals (Sweden)

    Cao Brian

    2008-12-01

    Full Text Available Abstract Animal models greatly facilitate understanding of cancer and importantly, serve pre-clinically for evaluating potential anti-cancer therapies. We developed an invasive orthotopic human glioblastoma multiforme (GBM mouse model that enables real-time tumor ultrasound imaging and pre-clinical evaluation of anti-neoplastic drugs such as 17-(allylamino-17-demethoxy geldanamycin (17AAG. Clinically, GBM metastasis rarely happen, but unexpectedly most human GBM tumor cell lines intrinsically possess metastatic potential. We used an experimental lung metastasis assay (ELM to enrich for metastatic cells and three of four commonly used GBM lines were highly metastatic after repeated ELM selection (M2. These GBM-M2 lines grew more aggressively orthotopically and all showed dramatic multifold increases in IL6, IL8, MCP-1 and GM-CSF expression, cytokines and factors that are associated with GBM and poor prognosis. DBM2 cells, which were derived from the DBTRG-05MG cell line were used to test the efficacy of 17AAG for treatment of intracranial tumors. The DMB2 orthotopic xenografts form highly invasive tumors with areas of central necrosis, vascular hyperplasia and intracranial dissemination. In addition, the orthotopic tumors caused osteolysis and the skull opening correlated to the tumor size, permitting the use of real-time ultrasound imaging to evaluate antitumor drug activity. We show that 17AAG significantly inhibits DBM2 tumor growth with significant drug responses in subcutaneous, lung and orthotopic tumor locations. This model has multiple unique features for investigating the pathobiology of intracranial tumor growth and for monitoring systemic and intracranial responses to antitumor agents.

  3. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status.

    Science.gov (United States)

    Bady, Pierre; Sciuscio, Davide; Diserens, Annie-Claire; Bloch, Jocelyne; van den Bent, Martin J; Marosi, Christine; Dietrich, Pierre-Yves; Weller, Michael; Mariani, Luigi; Heppner, Frank L; Mcdonald, David R; Lacombe, Denis; Stupp, Roger; Delorenzi, Mauro; Hegi, Monika E

    2012-10-01

    The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Recent studies in anaplastic glioma suggest a prognostic value for MGMT methylation. Investigation of pathogenetic and epigenetic features of this intriguingly distinct behavior requires accurate MGMT classification to assess high throughput molecular databases. Promoter methylation-mediated gene silencing is strongly dependent on the location of the methylated CpGs, complicating classification. Using the HumanMethylation450 (HM-450K) BeadChip interrogating 176 CpGs annotated for the MGMT gene, with 14 located in the promoter, two distinct regions in the CpG island of the promoter were identified with high importance for gene silencing and outcome prediction. A logistic regression model (MGMT-STP27) comprising probes cg12434587 [corrected] and cg12981137 provided good classification properties and prognostic value (kappa = 0.85; log-rank p CIMP) positive tumors was found in glioblastomas from The Cancer Genome Atlas than in low grade and anaplastic glioma cohorts, while in CIMP-negative gliomas MGMT was classified as methylated in approximately 50 % regardless of tumor grade. The proposed MGMT-STP27 prediction model allows mining of datasets derived on the HM-450K or HM-27K BeadChip to explore effects of distinct epigenetic context of MGMT methylation suspected to modulate treatment resistance in different tumor types.

  4. Norovirus-specific memory T cell responses in adult human donors

    Directory of Open Access Journals (Sweden)

    Maria Malm

    2016-10-01

    Full Text Available Norovirus (NoV is a leading cause of acute gastroenteritis in people of all ages worldwide. NoV specific serum antibodies which block the binding of NoV virus-like particles (VLPs to the cell receptors have been thoroughly investigated. In contrast, only a few publications are available on the NoV capsid VP1 protein-specific T cell responses in humans naturally infected with the virus. Freshly isolated peripheral blood mononuclear cells of eight healthy adult human donors previously exposed to NoV were stimulated with purified VLPs derived from NoV GII.4-1999, GII.4-2012 (Sydney, and GI.3, and IFN-g production was measured by an ELISPOT assay. In addition, 76 overlapping synthetic peptides spanning the entire 539 amino acid sequence of GII.4 VP1 were pooled into two-dimensional matrices and used to identify putative T cell epitopes. Seven of the eight subjects produced IFN-g in response to the peptides and five subjects produced IFN-g in response to the VLPs of the same origin. In general, stronger T cell responses were induced with the peptides in each donor compared to the VLPs. A CD8+ T cell epitope in the shell domain of the VP1 (134SPSQVTMFPHIIVDVRQL151 was identified in two subjects, both having human leukocyte antigen (HLA-A*02:01 allele. To our knowledge, this is the first report using synthetic peptides to study NoV-specific T cell responses in human subjects and identify T cell epitopes.

  5. Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A.

    Science.gov (United States)

    Pitre, Aaron; Davis, Nathan; Paul, Madhumita; Orr, A Wayne; Skalli, Omar

    2012-04-01

    The intermediate filament protein synemin is present in astrocyte progenitors and glioblastoma cells but not in mature astrocytes. Here we demonstrate a role for synemin in enhancing glioblastoma cell proliferation and clonogenic survival, as synemin RNA interference decreased both behaviors by inducing G1 arrest along with Rb hypophosphorylation and increased protein levels of the G1/S inhibitors p21(Cip1) and p27(Kip1). Akt involvement was demonstrated by decreased phosphorylation of its substrate, p21(Cip1), and reduced Akt catalytic activity and phosphorylation at essential activation sites. Synemin silencing, however, did not affect the activities of PDPK1 and mTOR complex 2, which directly phosphorylate Akt activation sites, but instead enhanced the activity of the major regulator of Akt dephosphorylation, protein phosphatase type 2A (PP2A). This was accompanied by changes in PP2A subcellular distribution resulting in increased physical interactions between PP2A and Akt, as shown by proximity ligation assays (PLAs). PLAs and immunoprecipitation experiments further revealed that synemin and PP2A form a protein complex. In addition, treatment of synemin-silenced cells with the PP2A inhibitor cantharidic acid resulted in proliferation and pAkt and pRb levels similar to those of controls. Collectively these results indicate that synemin positively regulates glioblastoma cell proliferation by helping sequester PP2A away from Akt, thereby favoring Akt activation.

  6. Advanced magnetic resonance imaging of the physical processes in human glioblastoma.

    Science.gov (United States)

    Kalpathy-Cramer, Jayashree; Gerstner, Elizabeth R; Emblem, Kyrre E; Andronesi, Ovidiu; Rosen, Bruce

    2014-09-01

    The most common malignant primary brain tumor, glioblastoma multiforme (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than two years and fewer than 10% of patients survive more than five years. Magnetic resonance imaging (MRI) can have great utility in the diagnosis, grading, and management of patients with GBM as many of the physical manifestations of the pathologic processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced and dynamic susceptibility contrast MRI provide functional information about the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We, here, review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma, including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We conclude with challenges and opportunities for further research in applying physical principles to better understand the biologic process in this deadly disease. See all articles in this Cancer Research section, "Physics in Cancer Research." ©2014 American Association for Cancer Research.

  7. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    Science.gov (United States)

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the genetic level and are

  8. Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in assessing glioblastoma microvasculature

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Zhong Zheng, E-mail: jzz2397@163.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Shi, Wei, E-mail: sw740104@hotmail.com [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu (China); Shi, Jin Long, E-mail: shij_ns@163.com [Department of Neurosurgery, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu (China); Shen, Dan Dan, E-mail: 1021121084@qq.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Gu, Hong Mei, E-mail: guhongmei71@163.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China); Zhou, Xue Jun, E-mail: 56516400@qq.com [Department of Radiology, Affiliated Hospital of Nantong University, No. 20 Xisi Road Nantong 226001, Jiangsu (China)

    2017-02-15

    Purpose: Perfusion computed tomography (PCT) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provide independent measurements of biomarkers related to tumor perfusion. The aim of this study was to compare the two techniques in assessing glioblastoma microvasculature. Materials and methods: Twenty-five patients diagnosed with glioblastoma (14 males and 11 females; 51 ± 11 years old, ranging from 33 to 70 years) were includede in this prospective study. All patients underwent both PCT and DCE-MRI. Imaging was performed on a 256-slice CT scanner and a 3-T MRI system. PCT yielded permeability surface-area product (PS) using deconvolution physiological models; meanwhile, DCE-MRI determined volume transfer constant (K{sup trans}) using the Tofts-Kermode compartment model. All cases were submitted to surgical intervention, and CD105-microvascular density (CD105-MVD) was measured in each glioblastoma specimen. Then, Spearman’s correlation coefficients and Bland-Altman plots were obtained for PS, K{sup trans} and CD105-MVD. P < 0.05 was considered statistically significant. Results: Tumor PS and K{sup trans} values were correlated with CD105-MVD (r = 0.644, P < 0.001; r = 0.683, P < 0.001). In addition, PS was correlated with K{sup trans} in glioblastoma (r = 0.931, P < 0.001). Finally, Bland-Altman plots showed no significant differences between PS and K{sup trans} (P = 0.063). Conclusion: PCT and DCE-MRI measurements of glioblastoma perfusion biomarkers have similar results, suggesting that both techniques may have comparable utility. Therefore, PCT may serve as an alternative modality to DCE-MRI for the in vivo evaluation of glioblastoma microvasculature.

  9. Adhesion signaling promotes protease‑driven polyploidization of glioblastoma cells.

    Science.gov (United States)

    Mercapide, Javier; Lorico, Aurelio

    2014-11-01

    An increase in ploidy (polyploidization) causes genomic instability in cancer. However, the determinants for the increased DNA content of cancer cells have not yet been fully elucidated. In the present study, we investigated whether adhesion induces polyploidization in human U87MG glioblastoma cells. For this purpose, we employed expression vectors that reported transcriptional activation by signaling networks implicated in cancer. Signaling activation induced by intercellular integrin binding elicited both extracellular signal‑regulated kinase (ERK) and Notch target transcription. Upon the prolonged activation of both ERK and Notch target transcription induced by integrin binding to adhesion protein, cell cultures accumulated polyploid cells, as determined by cell DNA content distribution analysis and the quantification of polynucleated cells. This linked the transcriptional activation induced by integrin adhesion to the increased frequency of polyploidization. Accordingly, the inhibition of signaling decreased the extent of polyploidization mediated by protease‑driven intracellular invasion. Therefore, the findings of this study indicate that integrin adhesion induces polyploidization through the stimulation of glioblastoma cell invasiveness.

  10. Sequence analysis of the whole genomes of five African human G9 rotavirus strains.

    Science.gov (United States)

    Nyaga, Martin M; Jere, Khuzwayo C; Peenze, Ina; Mlera, Luwanika; van Dijk, Alberdina A; Seheri, Mapaseka L; Mphahlele, M Jeffrey

    2013-06-01

    The G9 rotaviruses are amongst the most common global rotavirus strains causing severe childhood diarrhoea. However, the whole genomes of only a few G9 rotaviruses have been fully sequenced and characterised of which only one G9P[6] and one G9P[8] are from Africa. We determined the consensus sequence of the whole genomes of five African human group A G9 rotavirus strains, four G9P[8] strains and one G9P[6] strain collected in Cameroon (central Africa), Kenya (eastern Africa), South Africa and Zimbabwe (southern Africa) in 1999, 2009 and 2010. Strain RVA/Human-wt/ZWE/MRC-DPRU1723/2009/G9P[8] from Zimbabwe, RVA/Human-wt/ZAF/MRC-DPRU4677/2010/G9P[8] from South Africa, RVA/Human-wt/CMR/1424/2009/G9P[8] from Cameroon and RVA/Human-wt/KEN/MRC-DPRU2427/2010/G9P[8] from Kenya were on a Wa-like genetic backbone and were genotyped as G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Strain RVA/Human-wt/ZAF/MRC-DPRU9317/1999/G9P[6] from South Africa was genotyped as G9-P[6]-I2-R2-C2-M2-A2-N1-T2-E2-H2. Rotavirus A strain MRC-DPRU9317 is the second G9 strain to be reported on a DS-1-like genetic backbone, the other being RVA/Human-wt/ZAF/GR10924/1999/G9P[6]. MRC-DPRU9317 was found to be a reassortant between DS-1-like (I2, R2, C2, M2, A2, T2, E2 and H2) and Wa-like (N1) genome segments. All the genome segments of the five strains grouped strictly according to their genotype Wa- or DS-1-like clusters. Within their respective genotypes, the genome segments of the three G9 study strains from southern Africa clustered most closely with rotaviruses from the same geographical origin and with those with the same G and P types. The highest nucleotide identity of genome segments of the study strains from eastern and central Africa regions on a Wa-like backbone was not limited to rotaviruses with G9P[8] genotypes only, they were also closely related to G12P[6], G8P[8], G1P[8] and G11P[25] rotaviruses, indicating a close inter-genotype relationship between the G9 and other rotavirus genotypes

  11. Cell cycle and aging, morphogenesis, and response to stimuli genes are individualized biomarkers of glioblastoma progression and survival

    Directory of Open Access Journals (Sweden)

    Southey Bruce R

    2011-06-01

    Full Text Available Abstract Background Glioblastoma is a complex multifactorial disorder that has swift and devastating consequences. Few genes have been consistently identified as prognostic biomarkers of glioblastoma survival. The goal of this study was to identify general and clinical-dependent biomarker genes and biological processes of three complementary events: lifetime, overall and progression-free glioblastoma survival. Methods A novel analytical strategy was developed to identify general associations between the biomarkers and glioblastoma, and associations that depend on cohort groups, such as race, gender, and therapy. Gene network inference, cross-validation and functional analyses further supported the identified biomarkers. Results A total of 61, 47 and 60 gene expression profiles were significantly associated with lifetime, overall, and progression-free survival, respectively. The vast majority of these genes have been previously reported to be associated with glioblastoma (35, 24, and 35 genes, respectively or with other cancers (10, 19, and 15 genes, respectively and the rest (16, 4, and 10 genes, respectively are novel associations. Pik3r1, E2f3, Akr1c3, Csf1, Jag2, Plcg1, Rpl37a, Sod2, Topors, Hras, Mdm2, Camk2g, Fstl1, Il13ra1, Mtap and Tp53 were associated with multiple survival events. Most genes (from 90 to 96% were associated with survival in a general or cohort-independent manner and thus the same trend is observed across all clinical levels studied. The most extreme associations between profiles and survival were observed for Syne1, Pdcd4, Ighg1, Tgfa, Pla2g7, and Paics. Several genes were found to have a cohort-dependent association with survival and these associations are the basis for individualized prognostic and gene-based therapies. C2, Egfr, Prkcb, Igf2bp3, and Gdf10 had gender-dependent associations; Sox10, Rps20, Rab31, and Vav3 had race-dependent associations; Chi3l1, Prkcb, Polr2d, and Apool had therapy-dependent associations

  12. RNA Polymerase III Output Is Functionally Linked to tRNA Dimethyl-G26 Modification.

    Directory of Open Access Journals (Sweden)

    Aneeshkumar G Arimbasseri

    2015-12-01

    Full Text Available Control of the differential abundance or activity of tRNAs can be important determinants of gene regulation. RNA polymerase (RNAP III synthesizes all tRNAs in eukaryotes and it derepression is associated with cancer. Maf1 is a conserved general repressor of RNAP III under the control of the target of rapamycin (TOR that acts to integrate transcriptional output and protein synthetic demand toward metabolic economy. Studies in budding yeast have indicated that the global tRNA gene activation that occurs with derepression of RNAP III via maf1-deletion is accompanied by a paradoxical loss of tRNA-mediated nonsense suppressor activity, manifested as an antisuppression phenotype, by an unknown mechanism. We show that maf1-antisuppression also occurs in the fission yeast S. pombe amidst general activation of RNAP III. We used tRNA-HydroSeq to document that little changes occurred in the relative levels of different tRNAs in maf1Δ cells. By contrast, the efficiency of N2,N2-dimethyl G26 (m(22G26 modification on certain tRNAs was decreased in response to maf1-deletion and associated with antisuppression, and was validated by other methods. Over-expression of Trm1, which produces m(22G26, reversed maf1-antisuppression. A model that emerges is that competition by increased tRNA levels in maf1Δ cells leads to m(22G26 hypomodification due to limiting Trm1, reducing the activity of suppressor-tRNASerUCA and accounting for antisuppression. Consistent with this, we show that RNAP III mutations associated with hypomyelinating leukodystrophy decrease tRNA transcription, increase m(22G26 efficiency and reverse antisuppression. Extending this more broadly, we show that a decrease in tRNA synthesis by treatment with rapamycin leads to increased m(22G26 modification and that this response is conserved among highly divergent yeasts and human cells.

  13. Survival and PHA-stimulation of #betta#-irradiated human peripheral blood T lymphocyte subpopulations

    International Nuclear Information System (INIS)

    Schwartz, J.L.; Darr, D.C.; Daulden, M.E.

    1983-01-01

    Human peripheral blood T lymphocyte subpopulations were identified and isolated on the basis of their ability to bind IgG (T-G), IgM (T-M), or neither immunoglobulin class (T-null). Lymphocytes were exposed to 0, 0.5, 1.0, 2.5 or 5.0 Gy of 60 Co #betta#-rays either as a T-cell suspension or as separated T cell subsets. Survival curves, determined 5 days after irradiation, revealed that each subset has radiosensitive and radioresistant portions, and that the T-G cell is the most sensitive subset. Mitotic indices of 48-h cultures showed that the response of unirradiated T lymphocytes to PHA varied greatly among the subsets, the highest indices being obtained for the T-M and the lowest for the T-G cells. With the possible exception of the T-G cells, the subsets are realtively resistant to mitotic effects of #betta#-rays. T-G cells suppress the PHA-induced mitotic response of the other T lymphocyte subsets, and this suppressor effect is radiosensitive, being abolished by 1.0 Gy. It is concluded that lymphocytes exposed to >= 1 Gy of #betta#-rays will have very few dividing B lymphocytes or T-G cells. This together with radiation-induced loss of T-G suppressor action means that the predominant lymphocyte types in mitosis after >=1 Gy are the radioresistant T-M and T-null cells. (orig.)

  14. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines

    DEFF Research Database (Denmark)

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz

    2015-01-01

    carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied...... carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells...

  15. Positive transcriptional regulation of the human micro opioid receptor gene by poly(ADP-ribose) polymerase-1 and increase of its DNA binding affinity based on polymorphism of G-172 -> T.

    Science.gov (United States)

    Ono, Takeshi; Kaneda, Toshio; Muto, Akihiro; Yoshida, Tadashi

    2009-07-24

    Micro opioid receptor (MOR) agonists such as morphine are applied widely in clinical practice as pain therapy. The effects of morphine through MOR, such as analgesia and development of tolerance and dependence, are influenced by individual specificity. Recently, we analyzed single nucleotide polymorphisms on the human MOR gene to investigate the factors that contribute to individual specificity. In process of single nucleotide polymorphisms analysis, we found that specific nuclear proteins bound to G(-172) --> T region in exon 1 in MOR gene, and its affinity to DNA was increased by base substitution from G(-172) to T(-172). The isolated protein was identified by mass spectrometry and was confirmed by Western blotting to be poly(ADP-ribose) polymerase-1 (PARP-1). The overexpressed PARP-1 bound to G(-172) --> T and enhanced the transcription of reporter vectors containing G(-172) and T(-172). Furthermore, PARP-1 inhibitor (benzamide) decreased PARP-1 binding to G(-172) --> T without affecting mRNA or protein expression level of PARP-1 and down-regulated the subsequent MOR gene expression in SH-SY5Y cells. Moreover, we found that tumor necrosis factor-alpha enhanced MOR gene expression as well as increased PARP-1 binding to the G(-172) --> T region and G(-172) --> T-dependent transcription in SH-SY5Y cells. These effects were also inhibited by benzamide. In this study, our data suggest that PARP-1 positively regulates MOR gene transcription via G(-172) --> T, which might influence individual specificity in therapeutic opioid effects.

  16. Microtubule-severing ATPase spastin in glioblastoma: increased expression in human glioblastoma cell lines and inverse roles in cell motility and proliferation

    Czech Academy of Sciences Publication Activity Database

    Dráberová, Eduarda; Vinopal, Stanislav; Morfini, G.; Liu, P. S.; Sládková, Vladimíra; Sulimenko, Tetyana; Burns, M.R.; Solowska, J.; Kulandaivel, K.; De Chadarévian, J.P.; Legido, A.; Mork, S.J.; Janáček, Jiří; Baas, P.; Dráber, Pavel; Katsetos, C.D.

    2011-01-01

    Roč. 70, č. 9 (2011), s. 811-826 ISSN 0022-3069 R&D Projects: GA ČR GAP302/10/1701; GA ČR GA204/09/1777; GA ČR(CZ) GD204/09/H084; GA AV ČR KAN200520701; GA MŠk LC545 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50110509 Keywords : spastin * glioblastoma * cell motility Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.258, year: 2011

  17. Orthotopic Patient-Derived Glioblastoma Xenografts in Mice.

    Science.gov (United States)

    Xu, Zhongye; Kader, Michael; Sen, Rajeev; Placantonakis, Dimitris G

    2018-01-01

    Patient-derived xenografts (PDX) provide in vivo glioblastoma (GBM) models that recapitulate actual tumors. Orthotopic tumor xenografts within the mouse brain are obtained by injection of GBM stem-like cells derived from fresh surgical specimens. These xenografts reproduce GBM's histologic complexity and hallmark biological behaviors, such as brain invasion, angiogenesis, and resistance to therapy. This method has become essential for analyzing mechanisms of tumorigenesis and testing the therapeutic effect of candidate agents in the preclinical setting. Here, we describe a protocol for establishing orthotopic tumor xenografts in the mouse brain with human GBM cells.

  18. Diffusion tensor imaging for target volume definition in glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Berberat, Jatta; Remonda, Luca [Cantonal Hospital, Department of Neuro-radiology, Aarau (Switzerland); McNamara, Jane; Rogers, Susanne [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); Bodis, Stephan [Cantonal Hospital, Department of Radiation Oncology, Aarau (Switzerland); University Hospital, Department of Radiation Oncology, Zurich (Switzerland)

    2014-10-15

    Diffusion tensor imaging (DTI) is an MR-based technique that may better detect the peritumoural region than MRI. Our aim was to explore the feasibility of using DTI for target volume delineation in glioblastoma patients. MR tensor tracts and maps of the isotropic (p) and anisotropic (q) components of water diffusion were coregistered with CT in 13 glioblastoma patients. An in-house image processing program was used to analyse water diffusion in each voxel of interest in the region of the tumour. Tumour infiltration was mapped according to validated criteria and contralateral normal brain was used as an internal control. A clinical target volume (CTV) was generated based on the T{sub 1}-weighted image obtained using contrast agent (T{sub 1Gd}), tractography and the infiltration map. This was compared to a conventional T{sub 2}-weighted CTV (T{sub 2}-w CTV). Definition of a diffusion-based CTV that included the adjacent white matter tracts proved highly feasible. A statistically significant difference was detected between the DTI-CTV and T{sub 2}-w CTV volumes (p < 0.005, t = 3.480). As the DTI-CTVs were smaller than the T{sub 2}-w CTVs (tumour plus peritumoural oedema), the pq maps were not simply detecting oedema. Compared to the clinical planning target volume (PTV), the DTI-PTV showed a trend towards volume reduction. These diffusion-based volumes were smaller than conventional volumes, yet still included sites of tumour recurrence. Extending the CTV along the abnormal tensor tracts in order to preserve coverage of the likely routes of dissemination, whilst sparing uninvolved brain, is a rational approach to individualising radiotherapy planning for glioblastoma patients. (orig.) [German] Die Diffusions-Tensor-Bildgebung (DTI) ist eine MR-Technik, die dank der Erfassung des peritumoralen Bereichs eine Verbesserung bezueglich MRI bringt. Unser Ziel war die Pruefung der Machbarkeit der Verwendung der DTI fuer die Zielvolumenabgrenzung fuer Patienten mit

  19. The small molecule, LLL12, inhibits STAT3 phosphorylation and induces apoptosis in medulloblastoma and glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Sarah Ball

    Full Text Available Tumors of the central nervous system represent a major source of cancer-related deaths, with medulloblastoma and glioblastoma being the most common malignant brain tumors in children and adults respectively. While significant advances in treatment have been made, with the 5-year survival rate for medulloblastoma at 70-80%, treating patients under 3 years of age still poses a problem due to the deleterious effects of radiation on the developing brain, and the median survival for patients with glioblastoma is only 15 months. The transcription factor, STAT3, has been found constitutively activated in a wide variety of cancers and in recent years it has become an attractive therapeutic target. We designed a non-peptide small molecule STAT3 inhibitor, LLL12, using structure-based design. LLL12 was able to inhibit STAT3 phosphorylation, decrease cell viability and induce apoptosis in medulloblastoma and glioblastoma cell lines with elevated levels of p-STAT3 (Y705. IC(50 values for LLL12 were found to be between 1.07 µM and 5.98 µM in the five cell lines expressing phosphorylated STAT3. STAT3 target genes were found to be downregulated and a decrease in STAT3 DNA binding was observed following LLL12 treatment, indicating that LLL12 is an effective STAT3 inhibitor. LLL12 was also able to inhibit colony formation, wound healing and decreased IL-6 and LIF secretion. Our results suggest that LLL12 is a potent STAT3 inhibitor and that it may be a potential therapeutic treatment for medulloblastoma and glioblastoma.

  20. An anti-VEGF ribozyme embedded within the adenoviral VAI sequence inhibits glioblastoma cell angiogenic potential in vitro.

    Science.gov (United States)

    Ciafrè, Silvia Anna; Niola, Francesco; Wannenes, Francesca; Farace, Maria Giulia

    2004-01-01

    Vascular endothelial growth factor (VEGF) plays an important role in tumor angiogenesis, where it functions as one of the major angiogenic factors sustaining growth and draining catabolites. In this study, we developed an anti-VEGF ribozyme targeted to the 5' part of human VEGF mRNA. We endowed this ribozyme with an additional feature expected to improve its activity in vivo, by cloning it into a VAI transcriptional cassette. VAI is originally part of the adenovirus genome, and is characterized by high transcription rates, good stability due to its strong secondary structure and cytoplasmic localization. Transfection of U87 human glioblastoma cells with plasmid vectors encoding for this ribozyme resulted in a strong (-56%) reduction of VEGF secreted in the extracellular medium, indicating a good biological activity of the ribozyme. Moreover, this reduction in VEGF secretion had the important functional consequence of drastically diminishing the formation of tube-like structures of human umbilical vascular endothelial cells in a Matrigel in vitro angiogenesis assay. In conclusion, our VAI-embedded anti-VEGF ribozyme is a good inhibitor of angiogenesis in vitro, in a glioblastoma cell context. Thus, it may represent a useful tool for future applications in vivo, for antiangiogenic gene therapy of glioblastoma and of highly vascularized tumors. Copyright 2004 S. Karger AG, Basel

  1. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Directory of Open Access Journals (Sweden)

    Julia Pollak

    Full Text Available Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  2. Ion channel expression patterns in glioblastoma stem cells with functional and therapeutic implications for malignancy.

    Science.gov (United States)

    Pollak, Julia; Rai, Karan G; Funk, Cory C; Arora, Sonali; Lee, Eunjee; Zhu, Jun; Price, Nathan D; Paddison, Patrick J; Ramirez, Jan-Marino; Rostomily, Robert C

    2017-01-01

    Ion channels and transporters have increasingly recognized roles in cancer progression through the regulation of cell proliferation, migration, and death. Glioblastoma stem-like cells (GSCs) are a source of tumor formation and recurrence in glioblastoma multiforme, a highly aggressive brain cancer, suggesting that ion channel expression may be perturbed in this population. However, little is known about the expression and functional relevance of ion channels that may contribute to GSC malignancy. Using RNA sequencing, we assessed the enrichment of ion channels in GSC isolates and non-tumor neural cell types. We identified a unique set of GSC-enriched ion channels using differential expression analysis that is also associated with distinct gene mutation signatures. In support of potential clinical relevance, expression of selected GSC-enriched ion channels evaluated in human glioblastoma databases of The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project correlated with patient survival times. Finally, genetic knockdown as well as pharmacological inhibition of individual or classes of GSC-enriched ion channels constrained growth of GSCs compared to normal neural stem cells. This first-in-kind global examination characterizes ion channels enriched in GSCs and explores their potential clinical relevance to glioblastoma molecular subtypes, gene mutations, survival outcomes, regional tumor expression, and experimental responses to loss-of-function. Together, the data support the potential biological and therapeutic impact of ion channels on GSC malignancy and provide strong rationale for further examination of their mechanistic and therapeutic importance.

  3. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma.

    Science.gov (United States)

    Tomaselli, Sara; Galeano, Federica; Alon, Shahar; Raho, Susanna; Galardi, Silvia; Polito, Vinicia Assunta; Presutti, Carlo; Vincenti, Sara; Eisenberg, Eli; Locatelli, Franco; Gallo, Angela

    2015-01-13

    ADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA (miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome and the progression of glioblastoma is not known. By integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies, we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221 and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with important effects on cell proliferation and migration. Our findings disclose an additional layer of complexity in miRNome regulation and provide information to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer.

  4. Crisis of Modern Man and Perspective of Eternity in Light of T. G. Masaryk's Thinking

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jan

    2014-01-01

    Roč. 11, č. 2 (2014), s. 130-135 ISSN 1214-4967 Institutional support: RVO:67985955 Keywords : T.G. Masaryk's thinking * crisis of modern man * perspective of eternity * new religion * human rights Subject RIV: AA - Philosophy ; Religion

  5. Evaluation of heterogeneous metabolic profile in an orthotopic human glioblastoma xenograft model using compressed sensing hyperpolarized 3D 13C magnetic resonance spectroscopic imaging.

    Science.gov (United States)

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J; James, C David; Pieper, Russell O; Ronen, Sabrina M; Vigneron, Daniel B; Nelson, Sarah J

    2013-07-01

    High resolution compressed sensing hyperpolarized (13)C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in (13)C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D (13)C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-(13)C]-pyruvate using a 3T scanner. The (13)C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing (13)C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct (13)C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of (13)C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. Copyright © 2012 Wiley Periodicals, Inc.

  6. 4-IBP, a σ1 Receptor Agonist, Decreases the Migration of Human Cancer Cells, Including Glioblastoma Cells, In Vitro and Sensitizes Them In Vitro and In Vivo to Cytotoxic Insults of Proapoptotic and Proautophagic Drugs

    Directory of Open Access Journals (Sweden)

    Veronique Mégalizzi

    2007-05-01

    Full Text Available Although the molecular function of cr receptors has not been fully defined and the natural ligand(s is still not known, there is increasing evidence that these receptors and their ligands might play a significant role in cancer biology. 4-(N-tibenzylpiperidin-4-yl-4iodobenzamide (4-IBP, a selective σ1, agonist, has been used to investigate whether this compound is able to modify: 1 in vitro the migration and proliferation of human cancer cells; 2 in vitro the sensitivity of human glioblastoma cells to cytotoxic drugs; and 3 in vivo in orthotopic glioblastoma and non-small cell lung carcinoma (NSCLC models the survival of mice coadministered cytotoxic agents. 4-IBP has revealed weak anti proliferative effects on human U373-MG glioblastoma and C32 melanoma cells but induced marked concentration-dependent decreases in the growth of human A549 NSCLC and PC3 prostate cancer cells. The compound was also significantly antimigratory in all four cancer cell lines. This may result, at least in U373-MG cells, from modifications to the actin cytoskeleton. 4-IBP modified the sensitivity of U373-MG cells in vitro to proapoptotic lomustin and proautophagic temozolomide, and markedly decreased the expression of two proteins involved in drug resistance: glucosylceramide synthase and Rho guanine nucleotide dissociation inhibitor. In vivo, 4-IBP increased the antitumor effects of temozolomide and irinotecan in immunodeficient mice that were orthotopically grafted with invasive cancer cells.

  7. Comparison of vitamins K1, K2 and K3 effects on growth of rat glioma and human glioblastoma multiforme cells in vitro.

    Science.gov (United States)

    Oztopçu, Pinar; Kabadere, Selda; Mercangoz, Ayşe; Uyar, Ruhi

    2004-09-01

    Glioblastoma multiforme is characterized as highly invasive and rapidly growing astrocytomas, and scientists have sought for efficient treatment against malignant gliomas for a long time. Therefore, we compared the respond of rat glioma (C6) and glioblastoma multiforme cells derived from two patients to vitamins K1, K2 and K3. The cells were exposed to 100, 250, 500, 750 and 1000 microM of vitamins K1 and K2, and 1, 10, 25, 50, 75 and 100 microM of vitamin K3 for 24 hours in an incubator atmosphere of 5% CO2, 37 degrees C and 100% humidity. Cell viability was estimated by MTT assay. Vitamin K1 showed no growth effect on all the glioma cells examined. Vitamin K2 did not cause any change in number of C6, however induced growth inhibition in a dose-dependent manner on glioblastoma multiforme. The IC50 values of vitamin K2 were 960 microM and 970 microM for glioblastoma multiforme, respectively. Vitamin K3 had also growth inhibitory effect in a dose-dependent manner on both C6 and glioblastoma multiforme. The IC50 values were 41 microM, 24 microM and 23 microM for vitamin K3, respectively. We concluded that vitamin K3 is more effective than vitamin K2 for inhibition of cancer cell growth, and might have an alternative value as an anticancer drug against glioblastoma multiforme.

  8. Characterization of two subsets of human T gamma cells

    NARCIS (Netherlands)

    van de Griend, R. J.; ten Berge, I.; Tanke, H. J.; Roos, D.; Schellekens, P. T.; Melief, C. J.; Zeijlemaker, W. P.; Astaldi, A.

    1982-01-01

    Normal human E rosette-forming, Fc-IgG receptor-bearing cells (so-called T gamma cells) were separated into two functionally different subpopulations. Both subpopulations bind the monoclonal antibody OKM1 (directed against an antigen present also on monocytes and granulocytes). The first

  9. Saponin 1 induces apoptosis and suppresses NF-κB-mediated survival signaling in glioblastoma multiforme (GBM.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells and human hepatocellular carcinoma (Hep-G2 cells. Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhibitory concentration at 24 h of 7.4 µg/ml in U251MG cells and 8.6 µg/ml in U87MG cells, respectively. Nuclear fluorescent staining and electron microscopy showed that saponin 1 caused characteristic apoptotic morphological changes in the GBM cell lines. Saponin 1-induced apoptosis was also verified by DNA ladder electrophoresis and flow cytometry. Additionally, immunocytochemistry and western blotting analyses revealed a time-dependent decrease in the expression and nuclear location of NF-κB following saponin 1 treatment. Western blotting data indicated a significant decreased expression of inhibitors of apoptosis (IAP family members,(e.g., survivin and XIAP by saponin 1. Moreover, saponin 1 caused a decrease in the Bcl-2/Bax ratio and initiated apoptosis by activating caspase-9 and caspase-3 in the GBM cell lines. These findings indicate that saponin 1 inhibits cell growth of GBM cells at least partially by inducing apoptosis and inhibiting survival signaling mediated by NF-κB. In addition, in vivo study also demonstrated an obvious inhibition of saponin 1 treatment on the tumor growth of U251MG and U87MG cells-produced xenograft tumors in nude mice. Given the minimal toxicities of saponin 1 in non-neoplastic astrocytes, our results suggest that saponin 1 exhibits significant in vitro and in vivo anti-tumor efficacy and merits further investigation as a potential therapeutic agent for GBM.

  10. Saponin 1 Induces Apoptosis and Suppresses NF-κB-Mediated Survival Signaling in Glioblastoma Multiforme (GBM)

    Science.gov (United States)

    Tang, Chi; Li, Bo; Wang, Yuangang; Gao, Zhenhui; Luo, Peng; Yin, Anan; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-01-01

    Saponin 1 is a triterpeniod saponin extracted from Anemone taipaiensis, a traditional Chinese medicine against rheumatism and phlebitis. It has also been shown to exhibit significant anti-tumor activity against human leukemia (HL-60 cells) and human hepatocellular carcinoma (Hep-G2 cells). Herein we investigated the effect of saponin 1 in human glioblastoma multiforme (GBM) U251MG and U87MG cells. Saponin 1 induced significant growth inhibition in both glioblastoma cell lines, with a 50% inhibitory concentration at 24 h of 7.4 µg/ml in U251MG cells and 8.6 µg/ml in U87MG cells, respectively. Nuclear fluorescent staining and electron microscopy showed that saponin 1 caused characteristic apoptotic morphological changes in the GBM cell lines. Saponin 1-induced apoptosis was also verified by DNA ladder electrophoresis and flow cytometry. Additionally, immunocytochemistry and western blotting analyses revealed a time-dependent decrease in the expression and nuclear location of NF-κB following saponin 1 treatment. Western blotting data indicated a significant decreased expression of inhibitors of apoptosis (IAP) family members,(e.g., survivin and XIAP) by saponin 1. Moreover, saponin 1 caused a decrease in the Bcl-2/Bax ratio and initiated apoptosis by activating caspase-9 and caspase-3 in the GBM cell lines. These findings indicate that saponin 1 inhibits cell growth of GBM cells at least partially by inducing apoptosis and inhibiting survival signaling mediated by NF-κB. In addition, in vivo study also demonstrated an obvious inhibition of saponin 1 treatment on the tumor growth of U251MG and U87MG cells-produced xenograft tumors in nude mice. Given the minimal toxicities of saponin 1 in non-neoplastic astrocytes, our results suggest that saponin 1 exhibits significant in vitro and in vivo anti-tumor efficacy and merits further investigation as a potential therapeutic agent for GBM. PMID:24278406

  11. Radiotherapy Results of Brain Astrocytoma and Glioblastoma Multiforme

    International Nuclear Information System (INIS)

    Choi, Doo Ho; Kim, Il Han; Ha, Sung Whan; Chi, Je Geun

    1988-01-01

    A retrospective analysis was performed on 49 patients with astrocytoma of glioblastoma multiforme of brain who received postoperative radiotherapy in the period between February 1979 and December 1985. Fourteen patients had grade I astrocytoma, 11 patients grade II, 14 patients grade III, and 10 patients glioblastoma multiforme. Three year actuarial survival rates were 85.7%, 44.6% and 23.1% for grade I, II, and III astrocytomas, respectively. One and 2 year actuarial survival rates for patients with glioblastoma multiforme were 54.5% and 27.3%, respectively. Histologic grade, age, extent of operation and tumor location were revealed to be prognosticators

  12. Anticancer activity of 7-epiclusianone, a benzophenone from Garcinia brasiliensis, in glioblastoma.

    Science.gov (United States)

    Sales, Leilane; Pezuk, Julia Alejandra; Borges, Kleiton Silva; Brassesco, María Sol; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga; dos Santos, Marcelo Henrique; Ionta, Marisa; de Oliveira, Jaqueline Carvalho

    2015-10-30

    Glioblastoma is the most common tumor of the central nervous system and one of the hardest tumors to treat. Consequently, the search for novel therapeutic options is imperative. 7-epiclusianone, a tetraprenylated benzophenone isolated from the epicarp of the native plant Garcinia brasiliensis, exhibits a range of biological activities but its prospect anticancer activity is underexplored. Thus, the aim of the present study was to evaluate the influence of 7-epiclusianone on proliferation, clonogenic capacity, cell cycle progression and induction of apoptosis in two glioblastoma cell lines (U251MG and U138MG). Cell viability was measured by the MTS assay; for the clonogenic assay, colonies were stained with Giemsa and counted by direct visual inspection; For cell cycle analysis, cells were stained with propidium iodide and analyzed by cytometry; Cyclin A expression was determined by immunoblotting; Apoptotic cell death was determined by annexin V fluorescein isothiocyanate labeling and Caspase-3 activity in living cells. Viability of both cell lines was drastically inhibited; moreover, the colony formation capacity was significantly reduced, demonstrating long-term effects even after removal of the drug. 7-epiclusianone treatment at low concentrations also altered cell cycle progression, decreased the S and G2/M populations and at higher concentrations increased the number of cells at sub-G1, in concordance with the increase of apoptotic cells. The present study demonstrates for the first time the anticancer potential of 7-epiclusianone against glioblastoma cells, thus meriting its further investigation as a potential therapeutic agent.

  13. Utilization of titanium sponge in H. T. G. R

    Energy Technology Data Exchange (ETDEWEB)

    Tone, H [Japan Atomic Energy Research Inst., Oarai, Ibaraki. Oarai Research Establishment

    1977-10-01

    The high temperature, gas-cooled reactor (H.T.G.R.) uses helium as a coolant and graphite as both the moderator and the fuel tube material. At first sight, there should not be any problem concerning the compatibility of these materials in the H.T.G.R. core region where temperature exceeds 700/sup 0/C, however, it is possible that the graphite core and other structural materials are oxidized by traces of impurities in the coolant. In large-power H.T.G.R., water inleakage from both heat exchangers and coolant circulation pumps will probably be the major source of impurity which will react with the graphite-producing H/sub 2/, CO and CO/sub 2/. In the near future, the nuclear heat of H.T.G.R. will be used as a major heat source for steel production and the chemical industry. For these purposes, it will be necessary to construct a reactor using a helium coolant of greater than 1000/sup 0/C. Therefore, not only the development of refractory metals as structural materials but also an effective helium coolant purification system are the keys for H.T.G.R. construction. Recently, in the helium coolant purification system of H.T.G. Reactors, which have been developed in the several nations advanced in atomic reactors, titanium sponge is used very frequently to remove hydrogen gas as an impurity in helium coolant. Titanium sponge can absorb very large quantities of hydrogen and its absorption-capacity can be very easily controlled by controlling the temperature of the titanium sponge-since titanium hydride is formed by endothermic reaction. The titanium sponge trap is used also in OGL-1 (Oarai Gas Loop-1), helium coolant purification system for large scale irradiation apparatus which is used for nuclear fuels of H.T.G.R. This apparatus has been installed in the Japan Material Testing Reactor. In this report, the coolant purification system of H.T.G.R., OGL-1 and the experimental results of the titanium sponge trap are explained briefly.

  14. Immunotherapy for the Treatment of Glioblastoma

    Science.gov (United States)

    Thomas, Alissa A.; Ernstoff, Marc S.; Fadul, Camilo E.

    2012-01-01

    Glioblastoma, the most aggressive primary brain tumor, thrives in a microenvironment of relative immunosuppression within the relatively immune-privileged central nervous system. Despite treatments with surgery, radiation therapy, and chemotherapy, prognosis remains poor. The recent success of immunotherapy in the treatment of other cancers has renewed interest in vaccine therapy for the treatment of gliomas. In this article, we outline various immunotherapeutic strategies, review recent clinical trials data, and discuss the future of vaccine therapy for glioblastoma. PMID:22290259

  15. Protocols for BNCT of glioblastoma multiforme at Brookhaven: Practical considerations

    Energy Technology Data Exchange (ETDEWEB)

    Chanana, A.D.; Coderre, J.A.; Joel, D.D.; Slatkin, D.N.

    1996-12-31

    In this report we discuss some issues considered in selecting initial protocols for boron neutron capture therapy (BNCT) of human glioblastoma multiforme. First the tolerance of normal tissues, especially the brain, to the radiation field. Radiation doses limits were based on results with human and animal exposures. Estimates of tumor control doses were based on the results of single-fraction photon therapy and single fraction BNCT both in humans and experimental animals. Of the two boron compounds (BSH and BPA), BPA was chosen since a FDA-sanctioned protocol for distribution in humans was in effect at the time the first BNCT protocols were written and therapy studies in experimental animals had shown it to be more effective than BSH.

  16. Clinico-pathological studies of CSF dissemination of glioblastoma and medulloblastoma

    International Nuclear Information System (INIS)

    Kato, Kyozo; Yoshida, Jun; Kageyama, Naoki

    1986-01-01

    Clinico-pathological findings of CSF dissemination which was diagnosed on CT scan, were studied on 13 cases of glioblastoma and 9 cases of medulloblastoma. The type of CSF dissemination and the prognosis of patients were both different between glioblastoma and medulloblastoma. In the former, the dissemination was predominantly in ventricular walls and in the latter, in basal cisterns. The mean survival time after the diagnosis of dissemination is 6 months of glioblastoma as compared with 13 months of medulloblastoma. The Pathological studies show that subependymal and/or subpial infiltration of tumor cells, and thickness of arachnoid membrane by marked mesodermal reaction were demonstrated in cases of glioblastoma. On the contrary, tumor cells of medulloblastoma grow markedly in the subarachnoid space and/or on the ependymal layers. From these pathological findings of CSF dissemination, it will be resulted that the prognosis of glioblastoma is much more poor that of medulloblastoma. (author)

  17. Paucity of natural killer and cytotoxic T cells in human neuromyelitis optica lesions

    Science.gov (United States)

    Saadoun, Samira; Bridges, Leslie R.; Verkman, A. S.; Papadopoulos, Marios C.

    2013-01-01

    Neuromyelitis optica is a severe inflammatory demyelinating disease of the central nervous system. Most patients with neuromyelitis optica have circulating immunoglobulin G (IgG) antibodies against the astrocytic water channel protein aquaporin-4 (AQP4), which are pathogenic. Anti-AQP4 IgG-mediated complement-dependent astrocyte toxicity is a key mechanism of central nervous system damage in neuromyelitis optica, but the role of natural killer and cytotoxic T cells is unknown. Our objective was to determine whether natural killer and cytotoxic T cells play a role in human neuromyelitis optica lesions. We immunostained four actively demyelinating lesions, obtained from patients with anti-AQP4 IgG positive neuromyelitis optica, for Granzyme B and Perforin. The inflammatory cells were perivascular neutrophils, eosinophils and macrophages, with only occasional Granzyme B+ or Perforin + cells. Greater than 95% of inflamed vessels in each lesion had no surrounding Granzyme B+ or Perforin + cells. Granzyme B+ or Perforin+ cells were abundant in human spleen (positive control). Although natural killer cells produce central nervous system damage in mice injected with anti-AQP4 IgG, our findings here indicate that natural killer-mediated and T cell-mediated cytotoxicity are probably not involved in central nervous system damage in human neuromyelitis optica. PMID:23108041

  18. C-reactive protein + 1059 G>C polymorphism in type 2 diabetes and coronary artery disease patients.

    Science.gov (United States)

    Kaur, Ramandeep; Matharoo, Kawaljit; Sharma, Rubina; Bhanwer, A J S

    2013-12-01

    Human C-reactive protein (CRP) is an acute phase reactant involved in chronic and acute inflammation. CRP is associated with metabolic syndrome, obesity, atherosclerosis, unstable angina, insulin resistance and diabetes. The present study evaluates the association of + 1059 G>C silent polymorphism in exon 2 of CRP gene in 581 cases [CAD (206), T2D (266), T2D with CAD (109)] and 235 controls in the population of Punjab (North-West India). The frequency of + 1059 G allele is highest in CAD (98.3%) followed by T2D (98.1%), T2D + CAD cases (97.7%) and controls (94.7%). G-allele is associated with increased risk of T2D [P = 0.003, OR = 2.93 (1.39-6.17)] and CAD [P = 0.004, OR = 3.25 (1.39-7.60)] in comparison to controls. Recessive model shows that GG genotype increases the risk of CAD by 4 fold (P = 0.003, OR = 4.19, 1.62-10.80), T2D by 3 fold (P = 0.008, OR = 3.23, 1.36-7.60) and T2D + CAD by 3.5 fold (P = 0.029, OR = 3.64, 1.14-11.66). Factor analyses show that BMI, WC, and WHR are core predictors for CAD and T2D, whereas CHO, TG and VLDL for T2D + CAD. The present study concludes that GG genotype of CRP + 1059 G>C polymorphism and clustering of obesity and dyslipidemia underlie the risk towards CAD, T2D and T2D + CAD in the North-West Indian population of Punjab.

  19. Implications of\tenhanced\teffectiveness\tof\tvincristine\tsulfate/ε-viniferin combination\tcompared\tto\tvincristine\tsulfate\tonly\ton\tHepG2\tcells

    Directory of Open Access Journals (Sweden)

    Filiz\tÖzdemir

    2016-12-01

    Full Text Available Objective: This\tstudy\twas\tdesigned\tto\tinvestigate\tthe\teffects\tof\tε-viniferin\t(ε-VNF\ton\tthe\tmitochondrial\tpathway\tof\tapoptosis and\ton\tlate\tapoptosis\tin\tHepG2\tcell\tlines.\tTo\tobserve\tthese\teffects,\tε-VNF\tand\tvincristine\tsulfate\t(VNC,\tanti-cancer\tdrugs\tused for\ttreatment\ton\tHepG2\tcells,\twere\tadministered\teither\talone\tor\tin\tcombination\tat\tdifferent\ttime\tintervals. Methods:\tMitochondrial\tmembrane\tpotential\tchanges\tin\tthe\tcells\t(ΔΨm\twere\tevaluated\tusing\tcationic\tdye\tJC-1,\twhile\tBax,\tBcl- 2\texpression\tlevels\twith\tRT-PCR\tand\tcaspase-3\tactivity\twere\tanalyzed\tusing\ta\tkit.\tFor\tdetection\tof\tapoptotic\tactivity,\tan\tin\tsitu TUNEL\tassay\twas\tperformed. Results: When 98.3µM ε-VNF, 52.5µM VNC and the 11.25+15.8µM VNC+ε-VNF combination were compared with the control group,\tΔΨm\tchanges\tat\tthe\t6th\thour\twere\tfound\tto\tbe\t19.5%,\t5.5%,\t24.6%,\tand\t3.5%\t,\trespectively.\tThese\tfinding\tshow\tthat\tthe combination\tgroup\t(24.6%\tresulted\tin\tearly\tapoptosis\tof\tthe\tcell\tat\tthe\t6th\thour.\tBax\tmRNA\texpression\tincreased\tat\tthe\t24th hour in the VNC+ε-VNF group compared to control group (160%, and caspase-3 activation increased in the 1.25+15.8 µM[VNC+ε-VNF]\tgroup\tcompared\tto\tthe\tcontrol\tgroup\tat\tthe\t48th\thour.\tThe\tdetection\tof\tDNA\tfragments\tin\tHepG2\tcells\twithin 24\thours\tsuggests\tdirect\tapoptosis. Conclusion: These findings demonstrate that the doses administered to the VNC+ε-VNF combination group\twere\tlower than those\tadministered\tto\tgroups\tusing\tone\tagent\talone\t(e.g.\tVNC,\tthe\tresults\tof\twhich\treduce\tthe\tpossibility\tof\tadministering\ttoxic doses.

  20. Down-regulation of Connexin43 expression reveals the involvement of caveolin-1 containing lipid rafts in human U251 glioblastoma cell invasion.

    Science.gov (United States)

    Strale, Pierre-Olivier; Clarhaut, Jonathan; Lamiche, Coralie; Cronier, Laurent; Mesnil, Marc; Defamie, Norah

    2012-11-01

    Glioblastoma cells are characterized by high proliferation and invasive capacities. Tumor development has been associated with a decrease of gap-junctional intercellular communication, but the concrete involvement of gap junction proteins, connexins, remains elusive since they are also suspected to promote cell invasion. In order to better understand how connexins control the glioma cell phenotype, we studied the consequences of inhibiting the intrinsic expression of the major astrocytic connexin, Connexin43, in human U251 glioblastoma cells by the shRNA strategy. The induced down-regulation of Cx43 expression has various effects on the U251 cells such as increased clonogenicity, angiogenesis and decreased adhesion on specific extracellular matrix proteins. We demonstrate that the invasion capacity measured in vitro and ex vivo correlates with Cx43 expression level. For the first time in a cancer cell context, our work demonstrates that Cx43 cofractionates, colocalizes and coimmunoprecipitates with a lipid raft marker, caveolin-1 and that this interaction is inversely correlated to the level of Cx43. This localization of Cx43 in these lipid raft microdomains regulates both homo- and heterocellular gap junctional communications (respectively between U251 cells, or between U251 cells and astrocytes). Moreover, the adhesive and invasive capacities are not dependent, in our model, on Cav-1 expression level. Our results tend to show that heterocellular gap junctional communication between cancer and stroma cells may affect the behavior of the tumor cells. Altogether, our data demonstrate that Cx43 controls the tumor phenotype of glioblastoma U251 cells and in particular, invasion capacity, through its localization in lipid rafts containing Cav-1. Copyright © 2011 Wiley Periodicals, Inc.

  1. Glioblastoma: does the pre-treatment geometry matter? A postcontrast T1 MRI-based study

    International Nuclear Information System (INIS)

    Perez-Beteta, Julian; Martinez-Gonzalez, Alicia; Molina, David; Amo-Salas, Mariano; Luque, Belen; Perez-Garcia, Victor M.; Arregui, Elena; Calvo, Manuel; Borras, Jose M.; Lopez, Carlos; Claramonte, Marta; Barcia, Juan A.; Iglesias, Lidia; Avecillas, Josue; Albillo, David; Navarro, Miguel; Villanueva, Jose M.; Paniagua, Juan C.; Perez-Romasanta, Luis; Martino, Juan; Velasquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Delgado, Maria del Carmen; Valle, Ana del; Falkov, Anthony; Schucht, Philippe; Arana, Estanislao

    2017-01-01

    The potential of a tumour's volumetric measures obtained from pretreatment MRI sequences of glioblastoma (GBM) patients as predictors of clinical outcome has been controversial. Mathematical models of GBM growth have suggested a relation between a tumour's geometry and its aggressiveness. A multicenter retrospective clinical study was designed to study volumetric and geometrical measures on pretreatment postcontrast T1 MRIs of 117 GBM patients. Clinical variables were collected, tumours segmented, and measures computed including: contrast enhancing (CE), necrotic, and total volumes; maximal tumour diameter; equivalent spherical CE width and several geometric measures of the CE ''rim''. The significance of the measures was studied using proportional hazards analysis and Kaplan-Meier curves. Kaplan-Meier and univariate Cox survival analysis showed that total volume [p = 0.034, Hazard ratio (HR) = 1.574], CE volume (p = 0.017, HR = 1.659), spherical rim width (p = 0.007, HR = 1.749), and geometric heterogeneity (p = 0.015, HR = 1.646) were significant parameters in terms of overall survival (OS). Multivariable Cox analysis for OS provided the later two parameters as age-adjusted predictors of OS (p = 0.043, HR = 1.536 and p = 0.032, HR = 1.570, respectively). Patients with tumours having small geometric heterogeneity and/or spherical rim widths had significantly better prognosis. These novel imaging biomarkers have a strong individual and combined prognostic value for GBM patients. (orig.)

  2. High frequency of a single nucleotide substitution (c.-6-180T>G) of the canine MDR1/ABCB1 gene associated with phenobarbital-resistant idiopathic epilepsy in Border Collie dogs.

    Science.gov (United States)

    Mizukami, Keijiro; Yabuki, Akira; Chang, Hye-Sook; Uddin, Mohammad Mejbah; Rahman, Mohammad Mahbubur; Kushida, Kazuya; Kohyama, Moeko; Yamato, Osamu

    2013-01-01

    A single nucleotide substitution (c.-6-180T>G) associated with resistance to phenobarbital therapy has been found in the canine MDR1/ABCB1 gene in Border Collies with idiopathic epilepsy. In the present study, a PCR-restriction fragment length polymorphism assay was developed for genotyping this mutation, and a genotyping survey was carried out in a population of 472 Border Collies in Japan to determine the current allele frequency. The survey demonstrated the frequencies of the T/T wild type, T/G heterozygote, and G/G mutant homozygote to be 60.0%, 30.3%, and 9.8%, respectively, indicating that the frequency of the mutant G allele is extremely high (24.9%) in Border Collies. The results suggest that this high mutation frequency of the mutation is likely to cause a high prevalence of phenobarbital-resistant epilepsy in Border Collies.

  3. In vivo bioluminescence imaging validation of a human biopsy-derived orthotopic mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Jarzabek, Monika A; Huszthy, Peter C; Skaftnesmo, Kai O; McCormack, Emmet; Dicker, Patrick; Prehn, Jochen H M; Bjerkvig, Rolf; Byrne, Annette T

    2013-05-01

    Glioblastoma multiforme (GBM), the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI). A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI) were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.

  4. In Vivo Bioluminescence Imaging Validation of a Human Biopsy–Derived Orthotopic Mouse Model of Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Monika A. Jarzabek

    2013-05-01

    Full Text Available Glioblastoma multiforme (GBM, the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI. A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.

  5. Quantification of tumor vessels in glioblastoma patients using time-of-flight angiography at 7 Tesla: a feasibility study.

    Directory of Open Access Journals (Sweden)

    Alexander Radbruch

    Full Text Available PURPOSE: To analyze if tumor vessels can be visualized, segmented and quantified in glioblastoma patients with time of flight (ToF angiography at 7 Tesla and multiscale vessel enhancement filtering. MATERIALS AND METHODS: Twelve patients with newly diagnosed glioblastoma were examined with ToF angiography (TR = 15 ms, TE = 4.8 ms, flip angle = 15°, FOV = 160 × 210 mm(2, voxel size: 0.31 × 0.31 × 0.40 mm(3 on a whole-body 7 T MR system. A volume of interest (VOI was placed within the border of the contrast enhancing part on T1-weighted images of the glioblastoma and a reference VOI was placed in the non-affected contralateral white matter. Automated segmentation and quantification of vessels within the two VOIs was achieved using multiscale vessel enhancement filtering in ImageJ. RESULTS: Tumor vessels were clearly visible in all patients. When comparing tumor and the reference VOI, total vessel surface (45.3 ± 13.9 mm(2 vs. 29.0 ± 21.0 mm(2 (p<0.035 and number of branches (3.5 ± 1.8 vs. 1.0 ± 0.6 (p<0.001 per cubic centimeter were significantly higher, while mean vessel branch length was significantly lower (3.8 ± 1.5 mm vs 7.2 ± 2.8 mm (p<0.001 in the tumor. DISCUSSION: ToF angiography at 7-Tesla MRI enables characterization and quantification of the internal vascular morphology of glioblastoma and may be used for the evaluation of therapy response within future studies.

  6. 45 CFR 98.90 - Monitoring.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Monitoring. 98.90 Section 98.90 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Monitoring, Non-compliance and Complaints § 98.90 Monitoring. (a) The Secretary will monitor programs funded under...

  7. Glioblastoma as differential diagnosis of autoimmune encephalitis.

    Science.gov (United States)

    Vogrig, Alberto; Joubert, Bastien; Ducray, Francois; Thomas, Laure; Izquierdo, Cristina; Decaestecker, Kévin; Martinaud, Olivier; Gerardin, Emmanuel; Grand, Sylvie; Honnorat, Jérome

    2018-03-01

    To identify the clinical and radiological features that should raise suspicion for the autoimmune encephalitis (AE)-like presentation of glioblastoma. This is an observational, retrospective case series of patients referred to the French National Reference Center on Paraneoplastic Neurological Diseases for suspected AE (possible, probable or definite, using the 2016 criteria) who later received a final diagnosis of glioblastoma according to 2016 WHO criteria. An extensive literature search was also conducted for similar existing cases. Between 2014 and 2016, 306 patients were referred to our center for suspected AE. Six of these patients (2%) later developed pathologically confirmed glioblastoma. Thirteen patients (9 male) were included for analysis (6 from the present series and 7 from the literature); median age was 63. Initially, a diagnosis of AE was clinically suspected based on: working memory deficits (77%), seizures (62%) (including status epilepticus in 23%), and psychiatric symptoms (46%). Initial brain MRI was not in favor of a typical glioblastoma pattern and showed bilateral (54%) or unilateral selective limbic involvement. Five patients exhibited initial slight contrast enhancement. A clear inflammatory CSF was present in five patients and three from the literature showed autoantibody positivity (NMDAR, VGKC, GluRepsilon2). Median delay between suspicions of AE to GBM diagnosis was 3 months (range 1.5-24) and one patient from the literature was diagnosed post-mortem. An alternative diagnosis of glioblastoma should be considered in patients presenting initially as AE, especially in patients who do not fulfill the criteria for definite AE and in those with a poor clinical evolution despite initial improvement.

  8. Evidence for presumable feline origin of sporadic G6P[9] rotaviruses in humans.

    Science.gov (United States)

    Pietsch, Corinna; Liebert, Uwe G

    2018-05-31

    Species A rotaviruses are highly diverse and impose a substantial burden to human and animal health. Interspecies transmission between livestock, domestic animals and humans is commonly observed, but spread of animal-like rotaviruses within the human population is limited. During the continued monitoring of rotavirus strains in Germany, an unusual G6P[9] rotavirus strain was detected in feces of a child. The complete rotavirus coding sequences revealed a unique G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E2-H3 genotype constellation. The virus was phylogenetically related to feline G3P[9] strains and other human G6P[9] rotaviruses of presumable zoonotic origin. Analysis of primer binding sites of G6 specific genotyping revealed further evidence of a G6P[9] feline reservoir. Moreover, substantial deficits of conventional semi-nested PCR genotyping approaches in detecting contemporary G6P[9] were revealed. Rotavirus strain GER29-14 most likely resulted from a direct or recent interspecies transmission from a cat to human. Further studies could assess nucleic acid sequences and genotype constellations of feline rotavirus to confirm the likely feline origin of sporadic human G6P[9] strains. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Glucocorticoids promote a glioma stem cell-like phenotype and resistance to chemotherapy in human glioblastoma primary cells

    DEFF Research Database (Denmark)

    Kostopoulou, Ourania N; Mohammad, Abdul-Aleem; Bartek, Jiri

    2018-01-01

    Glioma stem cells (GSCs) are glioblastoma (GBM) cells that are resistant to therapy and can give rise to recurrent tumors. The identification of patient-related factors that support GSCs is thus necessary to design effective therapies for GBM patients. Glucocorticoids (GCs) are used to treat GBM......-associated edema. However, glucocorticoids participate in the physiological response to psychosocial stress, which has been linked to poor cancer prognosis. This raises concern that glucocorticoids affect the tumor and GSCs. Here, we treated primary human GBM cells with dexamethasone and evaluated GC......-driven changes in cell morphology, proliferation, migration, gene expression, secretory activity and growth as neurospheres. Dexamethasone treatment of GBM cells appeared to promote the development of a GSC-like phenotype and conferred resistance to physiological stress and chemotherapy. We also analyzed...

  10. A Novel Molecular Diagnostic of Glioblastomas: Detection of an Extracellular Fragment of Protein Tyrosine Phosphatase μ

    Directory of Open Access Journals (Sweden)

    Susan M. Burden-Gulley

    2010-04-01

    Full Text Available We recently found that normal human brain and low-grade astrocytomas express the receptor protein tyrosine phosphatase mu (PTPμ and that the more invasive astrocytomas, glioblastoma multiforme (GBM, downregulate full-length PTPμ expression. Loss of PTPμ expression in GBMs is due to proteolytic cleavage that generates an intracellular and potentially a cleaved and released extracellular fragment of PTPμ. Here, we identify that a cleaved extracellular fragment containing the domains required for PTPμ-mediated adhesion remains associated with GBM tumor tissue. We hypothesized that detection of this fragment would make an excellent diagnostic tool for the localization of tumor tissue within the brain. To this end, we generated a series of fluorescently tagged peptide probes that bind the PTPμ fragment. The peptide probes specifically recognize GBM cells in tissue sections of surgically resected human tumors. To test whether the peptide probes are able to detect GBM tumors in vivo, the PTPμ peptide probes were tested in both mouse flank and intracranial xenograft human glioblastoma tumor model systems. The glial tumors were molecularly labeled with the PTPμ peptide probes within minutes of tail vein injection using the Maestro FLEX In Vivo Imaging System. The label was stable for at least 3 hours. Together, these results indicate that peptide recognition of the PTPμ extracellular fragment provides a novel molecular diagnostic tool for detection of human glioblastomas. Such a tool has clear translational applications and may lead to improved surgical resections and prognosis for patients with this devastating disease.

  11. Dynamic Quantitative T1 Mapping in Orthotopic Brain Tumor Xenografts

    Directory of Open Access Journals (Sweden)

    Kelsey Herrmann

    2016-04-01

    Full Text Available Human brain tumors such as glioblastomas are typically detected using conventional, nonquantitative magnetic resonance imaging (MRI techniques, such as T2-weighted and contrast enhanced T1-weighted MRI. In this manuscript, we tested whether dynamic quantitative T1 mapping by MRI can localize orthotopic glioma tumors in an objective manner. Quantitative T1 mapping was performed by MRI over multiple time points using the conventional contrast agent Optimark. We compared signal differences to determine the gadolinium concentration in tissues over time. The T1 parametric maps made it easy to identify the regions of contrast enhancement and thus tumor location. Doubling the typical human dose of contrast agent resulted in a clearer demarcation of these tumors. Therefore, T1 mapping of brain tumors is gadolinium dose dependent and improves detection of tumors by MRI. The use of T1 maps provides a quantitative means to evaluate tumor detection by gadolinium-based contrast agents over time. This dynamic quantitative T1 mapping technique will also enable future quantitative evaluation of various targeted MRI contrast agents.

  12. A Distinct DNA Methylation Shift in a Subset of Glioma CpG Island Methylator Phenotypes during Tumor Recurrence.

    Science.gov (United States)

    de Souza, Camila Ferreira; Sabedot, Thais S; Malta, Tathiane M; Stetson, Lindsay; Morozova, Olena; Sokolov, Artem; Laird, Peter W; Wiznerowicz, Maciej; Iavarone, Antonio; Snyder, James; deCarvalho, Ana; Sanborn, Zachary; McDonald, Kerrie L; Friedman, William A; Tirapelli, Daniela; Poisson, Laila; Mikkelsen, Tom; Carlotti, Carlos G; Kalkanis, Steven; Zenklusen, Jean; Salama, Sofie R; Barnholtz-Sloan, Jill S; Noushmehr, Houtan

    2018-04-10

    Glioma diagnosis is based on histomorphology and grading; however, such classification does not have predictive clinical outcome after glioblastomas have developed. To date, no bona fide biomarkers that significantly translate into a survival benefit to glioblastoma patients have been identified. We previously reported that the IDH mutant G-CIMP-high subtype would be a predecessor to the G-CIMP-low subtype. Here, we performed a comprehensive DNA methylation longitudinal analysis of diffuse gliomas from 77 patients (200 tumors) to enlighten the epigenome-based malignant transformation of initially lower-grade gliomas. Intra-subtype heterogeneity among G-CIMP-high primary tumors allowed us to identify predictive biomarkers for assessing the risk of malignant recurrence at early stages of disease. G-CIMP-low recurrence appeared in 9.5% of all gliomas, and these resembled IDH-wild-type primary glioblastoma. G-CIMP-low recurrence can be characterized by distinct epigenetic changes at candidate functional tissue enhancers with AP-1/SOX binding elements, mesenchymal stem cell-like epigenomic phenotype, and genomic instability. Molecular abnormalities of longitudinal G-CIMP offer possibilities to defy glioblastoma progression. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor

    DEFF Research Database (Denmark)

    Cherezov, Vadim; Rosenbaum, Daniel M; Hanson, Michael A

    2007-01-01

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to t...

  14. Xenograft transplantation of human malignant astrocytoma cells into immunodeficient rats: an experimental model of glioblastoma.

    Science.gov (United States)

    Miura, Flávio Key; Alves, Maria Jose Ferreira; Rocha, Mussya Cisotto; da Silva, Roseli; Oba-Shinjo, Sueli Mieko; Marie, Suely Kazue Nagahashi

    2010-03-01

    Astrocytic gliomas are the most common intracranial central nervous system neoplasias, accounting for about 60% of all primary central nervous system tumors. Despite advances in the treatment of gliomas, no effective therapeutic approach is yet available; hence, the search for a more realistic model to generate more effective therapies is essential. To develop an experimental malignant astrocytoma model with the characteristics of the human tumor. Primary cells from subcutaneous xenograft tumors produced with malignant astrocytoma U87MG cells were inoculated intracerebrally by stereotaxis into immunosuppressed (athymic) Rowett rats. All four injected animals developed non-infiltrative tumors, although other glioblastoma characteristics, such as necrosis, pseudopalisading cells and intense mitotic activity, were observed. A malignant astrocytoma intracerebral xenograft model with poorly invasive behavior was achieved in athymic Rowett rats. Tumor invasiveness in an experimental animal model may depend on a combination of several factors, including the cell line used to induce tumor formation, the rat strains and the status of the animal's immune system.

  15. Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity

    International Nuclear Information System (INIS)

    Roy, Kanaklata; Wang, Lilin; Makrigiorgos, G. Mike; Price, Brendan D.

    2006-01-01

    Glioblastomas are among the malignancies most resistant to radiation therapy. In contrast, cells lacking the ATM protein are highly sensitive to ionizing radiation. The relationship between ATM protein expression and radiosensitivity in 3 glioma cell lines was examined. T98G cells exhibited normal levels of ATM protein, whereas U118 and U87 cells had significantly lower levels of ATM and increased (>2-fold) sensitivity to ionizing radiation compared to T98G cells. The ATM promoter was methylated in U87 cells. Demethylation by azacytidine treatment increased ATM protein levels in the U87 cells and decreased their radiosensitivity. In contrast, the ATM promoter in U118 cells was not methylated. Further, expression of exogenous ATM did not significantly alter the radiosensitivity of U118 cells. ATM expression is therefore heterogeneous in the glioma cells examined. In conclusion, methylation of the ATM promoter may account for the variable radiosensitivity and heterogeneous ATM expression in a fraction of glioma cells

  16. Cellular and subcellular distribution of BSH in human glioblastoma multiforme

    International Nuclear Information System (INIS)

    Neumann, M.; Gabel, D.

    2000-01-01

    The cellular and subcellular distribution of mercaptoundecahydrododecaborate (BSH) in seven glioblastoma multiforme tissue sections of six patients having received BSH prior to surgery was investigated by light, fluorescence and electron microscopy. With use of specific antibodies against BSH its localization could be found in tissue sections predominantly (approx. 90%) in the cytoplasm of GFAP-positive cells of all but one patient. The latter was significantly younger (33 years in contrast of 46-71 (mean 60) years). In none of the tissue sections BSH could be found to a significant amount in the cell nuclei. In contrast, electron microscopy studies show BSH as well associated with the cell membrane as with the chromatin in the nucleus. (author)

  17. Modulation of nuclear T3 binding by T3 in a human hepatocyte cell-line (Chang-liver) - T3 stimulation of cell growth but not of malic enzyme, glucose-6-phosphatdehydrogenase or 6-phosphogluconate-dehydrogenase

    DEFF Research Database (Denmark)

    Matzen, L E; Kristensen, S R; Kvetny, J

    1991-01-01

    The T3 modulation of nuclear T3 binding (NBT3), the T3 effect on cell growth, and the T3 and insulin effects on malic enzyme (ME), glucose-6-phosphat-dehydrogenase (G6PD) and 6-phosphogluconat-dehydrogenase (G6PD) were studied in a human hepatocyte cell-line (Chang-liver). T3 was bound to a high ...

  18. Metronomic Doses of Temozolomide Enhance the Efficacy of Carbon Nanotube CpG Immunotherapy in an Invasive Glioma Model.

    Directory of Open Access Journals (Sweden)

    Mao Ouyang

    Full Text Available Even when treated with aggressive current therapies, most patients with glioblastoma survive less than two years. Rapid tumor growth, an invasive nature, and the blood-brain barrier, which limits the penetration of large molecules into the brain, all contribute to the poor tumor response associated with conventional therapies. Immunotherapy has emerged as a therapeutic approach that may overcome these challenges. We recently reported that single-walled carbon nanotubes (SWCNTs can be used to dramatically increase the immunotherapeutic efficacy of CpG oligonucleotides in a mouse model of glioma. Following implantation in the mouse brain, the tumor cell line used in these previous studies (GL261 tends to form a spherical tumor with limited invasion into healthy brain. In order to evaluate SWCNT/CpG therapy under more clinically-relevant conditions, here we report the treatment of a more invasive mouse glioma model (K-Luc that better recapitulates human disease. In addition, a CpG sequence previously tested in humans was used to formulate the SWCNT/CpG which was combined with temozolomide, the standard of care chemotherapy for glioblastoma patients. We found that, following two intracranial administrations, SWCNT/CpG is well-tolerated and improves the survival of mice bearing invasive gliomas. Interestingly, the efficacy of SWCNT/CpG was enhanced when combined with temozolomide. This enhanced anti-tumor efficacy was correlated to an increase of tumor-specific cytotoxic activity in splenocytes. These results reinforce the emerging understanding that immunotherapy can be enhanced by combining it with chemotherapy and support the continued development of SWCNT/CpG.

  19. A reproducible brain tumour model established from human glioblastoma biopsies

    International Nuclear Information System (INIS)

    Wang, Jian; Chekenya, Martha; Bjerkvig, Rolf; Enger, Per Ø; Miletic, Hrvoje; Sakariassen, Per Ø; Huszthy, Peter C; Jacobsen, Hege; Brekkå, Narve; Li, Xingang; Zhao, Peng; Mørk, Sverre

    2009-01-01

    Establishing clinically relevant animal models of glioblastoma multiforme (GBM) remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates. In this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features. The tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages in vivo, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days ± 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 in vivo passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms. In vivo passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to in vitro propagated cell lines for dissecting mechanisms of brain tumour progression

  20. A reproducible brain tumour model established from human glioblastoma biopsies

    Directory of Open Access Journals (Sweden)

    Li Xingang

    2009-12-01

    Full Text Available Abstract Background Establishing clinically relevant animal models of glioblastoma multiforme (GBM remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates. Methods In this work, we collected data on growth kinetics from a material of 29 biopsies xenografted in nude rats, and characterised this model with an emphasis on neuropathological and radiological features. Results The tumour take rate for xenografted GBM biopsies were 96% and remained close to 100% at subsequent passages in vivo, whereas only one of four lower grade tumours engrafted. Average time from transplantation to the onset of symptoms was 125 days ± 11.5 SEM. Histologically, the primary xenografts recapitulated the invasive features of the parent tumours while endothelial cell proliferations and necrosis were mostly absent. After 4-5 in vivo passages, the tumours became more vascular with necrotic areas, but also appeared more circumscribed. MRI typically revealed changes related to tumour growth, several months prior to the onset of symptoms. Conclusions In vivo passaging of patient GBM biopsies produced tumours representative of the patient tumours, with high take rates and a reproducible disease course. The model provides combinations of angiogenic and invasive phenotypes and represents a good alternative to in vitro propagated cell lines for dissecting mechanisms of brain tumour progression.

  1. EG-11DYSREGULATION OF MGMT IN GLIOBLASTOMA: FRIEND OR FOE?

    Science.gov (United States)

    Rapkins, Robert W.; Hitchins, Megan P.; McDonald, Kerrie L.

    2014-01-01

    Glioblastoma (GBM) is the most common and lethal form of brain cancer (median survival <15 months). The DNA alkylating agent, temozolomide, is used as the standard chemotherapeutic agent, resulting in mispairing of guanine with thymidine that leads to cellular arrest. However, in GBM patients the O6-methylguanine-DNA methyltransferase (MGMT) protein protects DNA from damage induced by temozolomide. Nevertheless, loss of MGMT expression is a frequent event in human malignancies and typically the result of MGMT promoter methylation. MGMT methylation has been strongly associated with the T-allele of the rs16906252 SNP (C/T) in colorectal carcinoma, pleural mesothelioma, and lung cancers. We therefore examined the T-allele and MGMT methylation in temozolmide-treated GBM patients. In 255 temozolomide-treated GBM patients, we found that the T-allele was significantly more frequent in patients with a methylated MGMT promoter. The unadjusted hazard ratio for death in carriers of the T-allele compared to wild-type, irrespective of methylation status, was 0.39 (95%CI:0.21-0.73; p = 0.003), indicating a 61% relative reduction in the risk for death of T-allele carriers. Surprisingly, GBM patients harboring the T-allele in the absence of MGMT methylation showed a survival benefit comparable to those with MGMT methylation (median survival: 15.5 months) and significantly better than the median survival of wild-type, unmethylated patients (median survival: 10.3 months). This suggests that the T-allele may reduce MGMT activity by mechanisms independent of methylation. Genotyping of 451 healthy controls indicated the frequency of carriage of the T-allele was 13% (MAF 0.065). In contrast, carriage of the T-allele in 160 GBM patients was 17%. Significantly, elevated risks were associated with carriage of the T-allele and development of GBM (odds ratio of 2.62 [95%CI:1.7-4.2]). We report that the T-allele (rs16906252) has predictive (response to temozolomide) and prognostic value (MGMT

  2. Radiation induced glioblastoma. A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Naoki; Kayama, Takamasa; Sakurada, Kaori; Saino, Makoto; Kuroki, Akira [Yamagata Univ. (Japan). School of Medicine

    2000-05-01

    We report a surgical case of a 54-year-old woman with a radiation induced glioblastoma. At the age of 34, the patient was diagnosed to have a non-functioning pituitary adenoma. It was partially removed followed by 50 Gy focal irradiation with a 5 x 5 cm lateral opposed field. Twenty years later, she suffered from rapidly increasing symptoms such as aphasia and right hemiparesis. MRI showed a large mass lesion in the left temporal lobe as well as small mass lesions in the brain stem and the right medial temporal lobe. These lesions situated within the irradiated field. Magnetic resonance spectroscopy revealed relatively high lactate signal and decreased N-acetyl aspartate, choline, creatine and phosphocreatine signals. Increased lactate signal meant anaerobic metabolism that suggested the existence of a rapidly growing malignant tumor. Thus, we planned surgical removal of the left temporal lesion with the diagnosis of a radiation induced malignant glioma. The histological examination revealed a glioblastoma with radiation necrosis. MIB-1 staining index was 65%. Postoperatively, her symptoms improved, but she died from pneumonia 1 month after the surgery. A autopsy was obtained. The lesion of the left temporal lobe was found to have continuity to the lesion in the midbrain, the pons and the right temporal lobe as well. High MIB-1 staining index suggested that a radiation induced glioblastoma had high proliferative potential comparing with a de novo and secondary glioblastoma. (author)

  3. High Frequency of a Single Nucleotide Substitution (c.-6-180T>G of the Canine MDR1/ABCB1 Gene Associated with Phenobarbital-Resistant Idiopathic Epilepsy in Border Collie Dogs

    Directory of Open Access Journals (Sweden)

    Keijiro Mizukami

    2013-01-01

    Full Text Available A single nucleotide substitution (c.-6-180T>G associated with resistance to phenobarbital therapy has been found in the canine MDR1/ABCB1 gene in Border Collies with idiopathic epilepsy. In the present study, a PCR-restriction fragment length polymorphism assay was developed for genotyping this mutation, and a genotyping survey was carried out in a population of 472 Border Collies in Japan to determine the current allele frequency. The survey demonstrated the frequencies of the T/T wild type, T/G heterozygote, and G/G mutant homozygote to be 60.0%, 30.3%, and 9.8%, respectively, indicating that the frequency of the mutant G allele is extremely high (24.9% in Border Collies. The results suggest that this high mutation frequency of the mutation is likely to cause a high prevalence of phenobarbital-resistant epilepsy in Border Collies.

  4. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene.

    Directory of Open Access Journals (Sweden)

    Rebecca L Skalsky

    Full Text Available Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers.

  5. Extracts of Artocarpus communis Induce Mitochondria-Associated Apoptosis via Pro-oxidative Activity in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Chiang-Wen Lee

    2018-05-01

    Full Text Available Glioblastoma multiforme (GBM is an extremely aggressive and devastating malignant tumor in the central nervous system. Its incidence is increasing and the prognosis is poor. Artocarpin is a natural prenylated flavonoid with various anti-inflammatory and anti-tumor properties. Studies have shown that artocarpin is associated with cell death of primary glioblastoma cells. However, the in vivo effects and the cellular and molecular mechanisms modulating the anticancer activities of artocarpin remain unknown. In this study, we demonstrated that treating the glioblastoma cell lines U87 and U118 cells with artocarpin induced apoptosis. Artocarpin-induced apoptosis is associated with caspase activation and poly (ADP-ribose polymerase (PARP cleavage and is mediated by the mitochondrial pathway. This is associated with mitochondrial depolarization, mitochondrial-derived reactive oxidative species (ROS production, cytochrome c release, Bad and Bax upregulations, and Bcl-2 downregulation. Artocarpin induced NADPH oxidase/ROS generation plays an important role in the mitochondrial pathway activation. Furthermore, we found artocarpin-induced ROS production in mitochondria is associated with Akt- and ERK1/2 activation. After treatment with artocarpin, ROS causes PI3K/Akt/ERK1/2-induced cell death of these tumor cells. These observations were further verified by the results from the implantation of both U87 and U118 cells into in vivo mouse. In conclusion, our findings suggest that artocarpin induces mitochondria-associated apoptosis of glioma cells, suggesting that artocarpine can be a potential chemotherapeutic agent for future GBM treatment.

  6. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity

    Directory of Open Access Journals (Sweden)

    Thiel Cora S

    2012-01-01

    Full Text Available Abstract In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.

  7. Volume of high-risk intratumoral subregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yi; Li, Ruijiang [Stanford University, Department of Radiation Oncology, Palo Alto, CA (United States); Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido (Japan); Ren, Shangjie [Tianjin University, School of Electrical Engineering and Automation, Tianjin Shi (China); Tha, Khin Khin; Shirato, Hiroki [Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido (Japan); Hokkaido University, Department of Radiology and Nuclear Medicine, Hokkaido (Japan); Wu, Jia [Stanford University, Department of Radiation Oncology, Palo Alto, CA (United States)

    2017-09-15

    To develop and validate a volume-based, quantitative imaging marker by integrating multi-parametric MR images for predicting glioblastoma survival, and to investigate its relationship and synergy with molecular characteristics. We retrospectively analysed 108 patients with primary glioblastoma. The discovery cohort consisted of 62 patients from the cancer genome atlas (TCGA). Another 46 patients comprising 30 from TCGA and 16 internally were used for independent validation. Based on integrated analyses of T1-weighted contrast-enhanced (T1-c) and diffusion-weighted MR images, we identified an intratumoral subregion with both high T1-c and low ADC, and accordingly defined a high-risk volume (HRV). We evaluated its prognostic value and biological significance with genomic data. On both discovery and validation cohorts, HRV predicted overall survival (OS) (concordance index: 0.642 and 0.653, P < 0.001 and P = 0.038, respectively). HRV stratified patients within the proneural molecular subtype (log-rank P = 0.040, hazard ratio = 2.787). We observed different OS among patients depending on their MGMT methylation status and HRV (log-rank P = 0.011). Patients with unmethylated MGMT and high HRV had significantly shorter survival (median survival: 9.3 vs. 18.4 months, log-rank P = 0.002). Volume of the high-risk intratumoral subregion identified on multi-parametric MRI predicts glioblastoma survival, and may provide complementary value to genomic information. (orig.)

  8. 45 CFR 98.14 - Plan process.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Plan process. 98.14 Section 98.14 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND General Application Procedures § 98.14 Plan process. In the development of each Plan, as required pursuant to § 98.17...

  9. Isolation of reovirus T3D mutants capable of infecting human tumor cells independent of junction adhesion molecule-A.

    Directory of Open Access Journals (Sweden)

    Diana J M van den Wollenberg

    Full Text Available Mammalian Reovirus is a double-stranded RNA virus with a distinctive preference to replicate in and lyse transformed cells. On that account, Reovirus type 3 Dearing (T3D is clinically evaluated as oncolytic agent. The therapeutic efficacy of this approach depends in part on the accessibility of the reovirus receptor Junction Adhesion Molecule-A (JAM-A on the target cells. Here, we describe the isolation and characterization of reovirus T3D mutants that can infect human tumor cells independent of JAM-A. The JAM-A-independent (jin mutants were isolated on human U118MG glioblastoma cells, which do not express JAM-A. All jin mutants harbour mutations in the S1 segments close to the region that encodes the sialic acid-binding pocket in the shaft of the spike protein. In addition, two of the jin mutants encode spike proteins with a Q336R substitution in their head domain. The jin mutants can productively infect a wide range of cell lines that resist wt reovirus T3D infection, including chicken LMH cells, hamster CHO cells, murine endothelioma cells, human U2OS and STA-ET2.1 cells, but not primary human fibroblasts. The jin-mutants rely on the presence of sialic-acid residues on the cell surface for productive infection, as is evident from wheat germ agglutinin (WGA inhibition experiments, and from the jin-reovirus resistance of CHO-Lec2 cells, which have a deficiency of sialic-acids on their glycoproteins. The jin mutants may be useful as oncolytic agents for use in tumors in which JAM-A is absent or inaccessible.

  10. Shape coexistence in the odd-odd nucleus Y98 : The role of the g9/2 neutron extruder

    Energy Technology Data Exchange (ETDEWEB)

    Urban, W.; Czerwiński, M.; Kurpeta, J.; Rząca-Urban, T.; Wiśniewski, J.; Materna, T.; Iskra, Ł. W.; Smith, A. G.; Ahmad, I.; Blanc, A.; Faust, H.; Köster, U.; Jentschel, M.; Mutti, P.; Soldner, T.; Simpson, G. S.; Pinston, J. A.; de France, G.; Ur, C. A.; Elomaa, V. -V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Rissanen, J.; Saastamoinen, A.; Szerypo, J.; Weber, C.; Äystö, J.

    2017-10-01

    Excited states in Y-98, populated in neutron-induced fission of U-235 and in spontaneous fission of Cm-248 and Cf-252, have been studied by means of gamma spectroscopy using the Lohengrin fission-fragment separator at ILL Grenoble and the EXILL, Eurogam2, and Gammasphere Ge arrays. Two new isomers have been found in Y-98: a deformed one with T-1/2 = 180(7) ns and a rotational band on top of it, and a spherical one with T-1/2 = 0.45(15) mu s, analogous to the 8(+) isomer in Y-96, corresponding to the (nu g(7/2), pi g(9/2))(8+) spherical configuration. Using the JYFLTRAP Penning trap, an accurate excitation energy of 465.7(7) keV has been determined for the 2.36-s isomer in Y-98. This result and the studies of excited levels in Zr-98, populated in beta-decay of the isomer, indicate a new spin-parity, I-pi = (7)(+) for the isomer. The high spin and the decay properties of this isomer suggest the presence of the 9/2(+)[ 404] neutron extruder orbital in its structure. This is consistent with the large deformation of the isomer, reported recently. The present work does not provide arguments to support the special role of the nu g(7/2)-pi g(9/2) interaction (the spin-orbit-partner, or SOP, mechanism).

  11. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    International Nuclear Information System (INIS)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-jun; Yoshida, Takeshi; Funa, Keiko

    2016-01-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  12. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Erik; Zhai, Qiwei [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Zeng, Zhao-jun [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Molecular Biology Research Center, School of Life Sciences, Central South University, 110, Xiangya Road, Changsha, Hunan 410078 (China); Yoshida, Takeshi [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden); Funa, Keiko, E-mail: keiko.funa@gu.se [Sahlgrenska Cancer Center at the Sahlgrenska Academy, University of Gothenburg, Box 425, SE 405 30 Gothenburg (Sweden)

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. - Highlights: • TLX knockdown enhances TGF-β dependent Smad signaling in glioblastoma cells • TLX knockdown increases the protein level of TGF-β receptor II. • TLX stabilizes and retains Smurf1 in the cytoplasm. • TLX enhances Smurf1-dependent ubiquitination and degradation of TGF-β receptor II.

  13. Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosinedeaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma

    Czech Academy of Sciences Publication Activity Database

    Altanerova, V.; Cihova, M.; Babič, Michal; Rychly, B.; Ondicova, K.; Mravec, B.; Altaner, C.

    2012-01-01

    Roč. 130, č. 10 (2012), s. 2455-2463 ISSN 0020-7136 Institutional research plan: CEZ:AV0Z40500505 Keywords : glioblastoma * mesenchymal stem cells * suicide gene therapy Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.198, year: 2012

  14. Radiation induced sarcoma after treatment of glioblastoma: case report; Sarcoma radioinduzido pós-tratamento de glioblastoma: relato de caso

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Victor Domingos Lisita; Anjos, Caroline Souza dos; Candido, Priscila Barile Marchi; Dias Junior, Antonio Soares; Santos, Evandro Airton Sordi dos; Godoy, Antonio Carlos Cavalcante; Saggioro, Fabiano P.; Carlotti Junior, Carlos Gilberto; Oliveira, Harley Francisco de; Peria, Fernanda Maris, E-mail: fernandaperia@fmrp.usp.br, E-mail: victor_lisita@yahoo.com.br, E-mail: carolinesanjos@gmail.com, E-mail: priscilabarile@yahoo.com.br [Universidade de Sao Paulo (USP), Ribeirão Preto, SP (Brazil). Hospital das Clinicas

    2016-07-01

    Introduction: Glioblastoma multiform is the most lethal central nervous system neoplasm, with a median survival of around 13 months and the worst prognosis among all gliomas. The therapeutic approach of glioblastoma consists in neurosurgery with maximum possible resection of tumor volume, followed by radiotherapy and chemotherapy. Radiotherapy reduces the risk of tumor recurrence through direct and indirect damage to tumor deoxyribonucleic acid. The long-term effects of radiation therapy include tissue necrosis, vasculopathy, and radiation-induced neoplasia. The most reported secondary intracranial malignant tumors include meningiomas, gliomas, and sarcomas. The latency period between skull radiotherapy and the appearance of radioinduced lesions varies in the literature from six months to 47 years, with an average of 18.7 years. Case report: The present report describes the appearance of high-grade spindle cell sarcoma after ten months in a patient who received glioblastoma treatment at Hospital das Clínicas of Ribeirão Preto of the University of São Paulo. Conclusion: The rarity of this association is probably due to the poor survival of patients with glioblastoma, thus limiting the time to development of secondary neoplasia.

  15. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Hee, E-mail: leedneo@gmail.com [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Kim, Dong-Wook [Department of Microbiology, Immunology, and Cancer Biology, University of VA (United States); Jung, Chang-Hwa [Division of Metabolism and Functionality Research, Korea Food Research Institute (Korea, Republic of); Lee, Yong J. [Departments of Surgery and Pharmacology and Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA (United States); Park, Daeho, E-mail: daehopark@gist.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  16. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    International Nuclear Information System (INIS)

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-01-01

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway

  17. Saponin B, a novel cytostatic compound purified from Anemone taipaiensis, induces apoptosis in a human glioblastoma cell line.

    Science.gov (United States)

    Wang, Yuangang; Tang, Haifeng; Zhang, Yun; Li, Juan; Li, Bo; Gao, Zhenhui; Wang, Xiaoyang; Cheng, Guang; Fei, Zhou

    2013-11-01

    Glioblastoma multiforme (GBM) is one of the most common malignant brain tumors. Saponin B, a novel compound isolated from the medicinal plant, Anemone taipaiensis, has been found to have a strong time- and dose-dependent cytostatic effect on human glioma cells and to suppress the growth of U87MG GBM cells. In this study, we investigated whether saponin B induces the apoptosis of glioblastoma cells and examined the underlying mechanism(s) of action of saponin B. Saponin B significantly suppressed U87MG cell proliferation. Flow cytometric analysis of DNA in the U87MG cells confirmed that saponin B blocked the cell cycle at the S phase. Furthermore, treatment of the U87MG cells with saponin B induced chromatin condensation and led to the formation of apoptotic bodies, as observed under a fluorescence microscope, and Annexin V/PI assay further suggested that phosphatidylserine (PS) externalization was apparent at higher drug concentrations. Treatment with saponin B activated the receptor-mediated pathway of apoptosis, as western blot analysis revealed the activation of Fas-l. Saponin B increased the Bax and caspase-3 ratio and decreased the protein expression of Bcl-2. The results from the present study demonstrate that the novel compound, saponin B, effectively induces the apoptosis of GBM cells and inhibits glioma cell growth and survival. Therefore, saponin B may be a potential candidate for the development of novel cancer therapeutics with antitumor activity against gliomas.

  18. Cytomegalovirus-targeted immunotherapy and glioblastoma: hype or hope?

    Science.gov (United States)

    Ferguson, Sherise D; Srinivasan, Visish M; Ghali, Michael Gz; Heimberger, Amy B

    2016-01-01

    Malignant gliomas, including glioblastoma (GBM), are the most common primary brain tumors. Despite extensive research only modest gains have been made in long-term survival. Standard of care involves maximizing safe surgical resection followed by concurrent chemoradiation with temozolomide. Immunotherapy for GBM is an area of intense research in recent years. New immunotherapies, although promising, have not been integrated into standard practice. Human cytomegalovirus (HCMV) is a DNA virus of the family Herpesviridae. Human seroprevalence is approximately 80%, and in most cases, is associated with asymptomatic infection. HCMV may be an important agent in the initiation, promotion and/or progression of tumorigenesis. Regardless of a possible etiologic role in GBM, interest has centered on exploiting this association for development of immunomodulatory therapies.

  19. Diffusion tensor magnetic resonance imaging driven growth modeling for radiotherapy target definition in glioblastoma

    DEFF Research Database (Denmark)

    Jensen, Morten B; Guldberg, Trine L; Harbøll, Anja

    2017-01-01

    the microscopic tumor cell spread. Gliomas favor spread along the white matter fiber tracts. Tumor growth models incorporating the MRI diffusion tensors (DTI) allow to account more consistently for the glioma growth. The aim of the study was to investigate the potential of a DTI driven growth model to improve...... target definition in glioblastoma (GBM). MATERIAL AND METHODS: Eleven GBM patients were scanned using T1w, T2w FLAIR, T1w + Gd and DTI. The brain was segmented into white matter, gray matter and cerebrospinal fluid. The Fisher-Kolmogorov growth model was used assuming uniform proliferation...

  20. Regression of established renal cell carcinoma in nude mice using lentivirus-transduced human T cells expressing a human anti-CAIX chimeric antigen receptor

    Directory of Open Access Journals (Sweden)

    Agnes Shuk-Yee Lo

    2014-01-01

    Full Text Available Carbonic anhydrase IX (CAIX is a tumor-associated antigen and marker of hypoxia that is overexpressed on > 90% of clear-cell type renal cell carcinoma (RCC but not on neighboring normal kidney tissue. Here, we report on the construction of two chimeric antigen receptors (CARs that utilize a carbonic anhydrase (CA domain mapped, human single chain antibody (scFv G36 as a targeting moiety but differ in their capacity to provide costimulatory signaling for optimal T cell proliferation and tumor cell killing. The resulting anti-CAIX CARs were expressed on human primary T cells via lentivirus transduction. CAR-transduced T cells (CART cells expressing second-generation G36-CD28-TCRζ exhibited more potent in vitro antitumor effects on CAIX+ RCC cells than first-generation G36-CD8-TCRζ including cytotoxicity, cytokine secretion, proliferation, and clonal expansion. Adoptive G36-CD28-TCRζ CART cell therapy combined with high-dose interleukin (IL-2 injection also lead to superior regression of established RCC in nude mice with evidence of tumor cell apoptosis and tissue necrosis. These results suggest that the fully human G36-CD28-TCRζ CARs should provide substantial improvements over first-generation mouse anti-CAIX CARs in clinical use through reduced human anti-mouse antibody responses against the targeting scFv and administration of lower doses of T cells during CART cell therapy of CAIX+ RCC.

  1. Hypoxia-inducible factor-2α (HIF-2α), but not HIF-1α, is essential for hypoxic induction of class III β-tubulin expression in human glioblastoma cells.

    Science.gov (United States)

    Bordji, Karim; Grandval, Alexandra; Cuhna-Alves, Leilane; Lechapt-Zalcman, Emmanuèle; Bernaudin, Myriam

    2014-12-01

    Glioblastoma multiforme (GBM) is the deadliest form of primary brain cancer. Several reports have indicated aberrant levels of βIII-tubulin (βIII-t) in human GBM. βIII-t overexpression was linked to increasing malignancy in glial tumors and described to determine the onset of resistance to chemotherapy. Furthermore, a linkage was suggested between the induction of βIII-t expression and hypoxia, a hallmark of GBM. We investigated the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the regulation of the βIII-t gene (TUBB3) in GBM cells cultured in either normoxia or hypoxia. We report for the first time that HIF-2α, but not HIF-1α, is involved in hypoxia-induced βIII-t expression in GBM cells. By gene-reporter experiments and site-directed mutagenesis, we found that two overlapping hypoxia response elements located in the 3' UTR of the gene were involved in the activation of TUBB3. This occurred through an enhanced binding of HIF-2α to the 3' region, as revealed by an electrophoretic mobility shift assay. Conversely, the promoter of TUBB3 was shown to be inactive. In addition, we observed that HIF-1α exhibits a repressive effect on βIII-t expression in cells cultured in normoxia. These results show that both HIF-α isoforms have opposing effects on βIII-t expression in GBM cells. Finally, we observed that hypoxia-induced βIII-t expression is well correlated with the kinetics of HIF-2α protein stabilization. The evidence for a direct linkage between HIF-2α and increased expression of βIII-t by hypoxia suggests that an anti-HIF-2α strategy (i.e. by downregulating βIII-t) could be of potential interest for improving the treatment of GBM. © 2014 FEBS.

  2. Therapeutic Advances using Combinational Therapy in the Treatment of Glioblastoma

    DEFF Research Database (Denmark)

    Staberg, Mikkel

    2017-01-01

    Glioblastoma is the most malignant brain tumor in adults. Median survival is only about 15 months despite aggressive treatment, consisting of surgery followed by radio- and chemotherapy, stressing the need for new therapies. Development of glioblastoma is thought to be a result of both genetic...... and epigenetic alterations, ultimately leading to oncogenic transformation of normal glia cells. Several features are suggested to give rise to the poor prognosis of glioblastoma including treatment resistance, a high degree of abnormal blood vessels, and high heterogeneity, both within the single tumor and from...... patient to patient. Thus, investigations are needed to identify the genetic-molecular alterations that glioblastoma tumors depend on in order to overcome treatment and regrow after initial surgery. The findings presented in this thesis illustrate the promising potential of combinational treatments...

  3. Nuclear Overhauser Enhancement imaging of glioblastoma at 7 Tesla: region specific correlation with apparent diffusion coefficient and histology.

    Science.gov (United States)

    Paech, Daniel; Burth, Sina; Windschuh, Johannes; Meissner, Jan-Eric; Zaiss, Moritz; Eidel, Oliver; Kickingereder, Philipp; Nowosielski, Martha; Wiestler, Benedikt; Sahm, Felix; Floca, Ralf Omar; Neumann, Jan-Oliver; Wick, Wolfgang; Heiland, Sabine; Bendszus, Martin; Schlemmer, Heinz-Peter; Ladd, Mark Edward; Bachert, Peter; Radbruch, Alexander

    2015-01-01

    To explore the correlation between Nuclear Overhauser Enhancement (NOE)-mediated signals and tumor cellularity in glioblastoma utilizing the apparent diffusion coefficient (ADC) and cell density from histologic specimens. NOE is one type of chemical exchange saturation transfer (CEST) that originates from mobile macromolecules such as proteins and might be associated with tumor cellularity via altered protein synthesis in proliferating cells. For 15 patients with newly diagnosed glioblastoma, NOE-mediated CEST-contrast was acquired at 7 Tesla (asymmetric magnetization transfer ratio (MTRasym) at 3.3ppm, B1 = 0.7 μT). Contrast enhanced T1 (CE-T1), T2 and diffusion-weighted MRI (DWI) were acquired at 3 Tesla and coregistered. The T2 edema and the CE-T1 tumor were segmented. ADC and MTRasym values within both regions of interest were correlated voxelwise yielding the correlation coefficient rSpearman (rSp). In three patients who underwent stereotactic biopsy, cell density of 12 specimens per patient was correlated with corresponding MTRasym and ADC values of the biopsy site. Eight of 15 patients showed a weak or moderate positive correlation of MTRasym and ADC within the T2 edema (0.16≤rSp≤0.53, pcorrelations were statistically insignificant (p>0.05, n = 4) or yielded rSp≈0 (pcorrelation between MTRasym and ADC was found in CE-T1 tumor (-0.310.05, n = 6). The biopsy-analysis within CE-T1 tumor revealed a strong positive correlation between tumor cellularity and MTRasym values in two of the three patients (rSppatient3 = 0.69 and rSppatient15 = 0.87, pcorrelation of ADC and cellularity was heterogeneous (rSppatient3 = 0.545 (p = 0.067), rSppatient4 = -0.021 (p = 0.948), rSppatient15 = -0.755 (p = 0.005)). NOE-imaging is a new contrast promising insight into pathophysiologic processes in glioblastoma regarding cell density and protein content, setting itself apart from DWI. Future studies might be based on the assumption that NOE-mediated CEST visualizes

  4. Glioblastoma: does the pre-treatment geometry matter? A postcontrast T1 MRI-based study

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Beteta, Julian; Martinez-Gonzalez, Alicia; Molina, David; Amo-Salas, Mariano; Luque, Belen; Perez-Garcia, Victor M. [Universidad de Castilla-La Mancha, Laboratory of Mathematical Oncology, Edificio Politecnico, Instituto de Matematica Aplicada a la Ciencia y la Ingenieria, Ciudad Real (Spain); Arregui, Elena; Calvo, Manuel; Borras, Jose M.; Lopez, Carlos; Claramonte, Marta [Hospital General de Ciudad Real, Ciudad Real (Spain); Barcia, Juan A.; Iglesias, Lidia; Avecillas, Josue [Hospital Clinico San Carlos, Madrid (Spain); Albillo, David; Navarro, Miguel; Villanueva, Jose M.; Paniagua, Juan C.; Perez-Romasanta, Luis [Hospital Universitario de Salamanca, Salamanca (Spain); Martino, Juan; Velasquez, Carlos [Hospital Marques de Valdecilla, Santander (Spain); Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael [Hospital Carlos Haya, Malaga (Spain); Delgado, Maria del Carmen; Valle, Ana del [Universidad de Sevilla, Facultad de Matematicas, Sevilla (Spain); Falkov, Anthony [Auckland Radiation Oncology, Auckland (New Zealand); Schucht, Philippe [Bern Inselspital, Neurosurgery Department, Bern (Switzerland); Arana, Estanislao [Instituto Valenciano de Oncologia, Valencia (Spain)

    2017-03-15

    The potential of a tumour's volumetric measures obtained from pretreatment MRI sequences of glioblastoma (GBM) patients as predictors of clinical outcome has been controversial. Mathematical models of GBM growth have suggested a relation between a tumour's geometry and its aggressiveness. A multicenter retrospective clinical study was designed to study volumetric and geometrical measures on pretreatment postcontrast T1 MRIs of 117 GBM patients. Clinical variables were collected, tumours segmented, and measures computed including: contrast enhancing (CE), necrotic, and total volumes; maximal tumour diameter; equivalent spherical CE width and several geometric measures of the CE ''rim''. The significance of the measures was studied using proportional hazards analysis and Kaplan-Meier curves. Kaplan-Meier and univariate Cox survival analysis showed that total volume [p = 0.034, Hazard ratio (HR) = 1.574], CE volume (p = 0.017, HR = 1.659), spherical rim width (p = 0.007, HR = 1.749), and geometric heterogeneity (p = 0.015, HR = 1.646) were significant parameters in terms of overall survival (OS). Multivariable Cox analysis for OS provided the later two parameters as age-adjusted predictors of OS (p = 0.043, HR = 1.536 and p = 0.032, HR = 1.570, respectively). Patients with tumours having small geometric heterogeneity and/or spherical rim widths had significantly better prognosis. These novel imaging biomarkers have a strong individual and combined prognostic value for GBM patients. (orig.)

  5. Amnesia due to bilateral hippocampal glioblastoma. MRI finding

    Energy Technology Data Exchange (ETDEWEB)

    Shimauchi, M.; Wakisaka, S.; Kinoshita, K. (Miyazaki Medical Coll., Kiyotake (Japan). Dept. of Neurosurgery)

    1989-11-01

    The authors report a unique case of glioblastoma which caused permanent amnesia. Magnetic resonance imaging showed the lesion to be limited to the hippocampal formation bilaterally. Although glioblastoma extends frequently into fiber pathways and expands into the opposite cerebral hemisphere, making a 'butterfly' lesion, it is unusual for it to invade the limbic system selectively to this extent. (orig.).

  6. Somatic mutations associated with MRI-derived volumetric features in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, David A.; Dunn, William D. [Emory University School of Medicine, Departments of Neurology, Atlanta, GA (United States); Emory University School of Medicine, Biomedical Informatics, Atlanta, GA (United States); Grossmann, Patrick; Alexander, Brian M. [Harvard Medical School, Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, MA (United States); Cooper, Lee A.D. [Emory University School of Medicine, Biomedical Informatics, Atlanta, GA (United States); Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, GA (United States); Holder, Chad A. [Emory University School of Medicine, Radiology and Imaging Sciences, Atlanta, GA (United States); Ligon, Keith L. [Brigham and Women' s Hospital, Harvard Medical School, Pathology, Dana-Farber Cancer Institute, Boston, MA (United States); Aerts, Hugo J.W.L. [Harvard Medical School, Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, MA (United States); Brigham and Women' s Hospital, Harvard Medical School, Radiology, Dana-Farber Cancer Institute, Boston, MA (United States)

    2015-12-15

    MR imaging can noninvasively visualize tumor phenotype characteristics at the macroscopic level. Here, we investigated whether somatic mutations are associated with and can be predicted by MRI-derived tumor imaging features of glioblastoma (GBM). Seventy-six GBM patients were identified from The Cancer Imaging Archive for whom preoperative T1-contrast (T1C) and T2-FLAIR MR images were available. For each tumor, a set of volumetric imaging features and their ratios were measured, including necrosis, contrast enhancing, and edema volumes. Imaging genomics analysis assessed the association of these features with mutation status of nine genes frequently altered in adult GBM. Finally, area under the curve (AUC) analysis was conducted to evaluate the predictive performance of imaging features for mutational status. Our results demonstrate that MR imaging features are strongly associated with mutation status. For example, TP53-mutated tumors had significantly smaller contrast enhancing and necrosis volumes (p = 0.012 and 0.017, respectively) and RB1-mutated tumors had significantly smaller edema volumes (p = 0.015) compared to wild-type tumors. MRI volumetric features were also found to significantly predict mutational status. For example, AUC analysis results indicated that TP53, RB1, NF1, EGFR, and PDGFRA mutations could each be significantly predicted by at least one imaging feature. MRI-derived volumetric features are significantly associated with and predictive of several cancer-relevant, drug-targetable DNA mutations in glioblastoma. These results may shed insight into unique growth characteristics of individual tumors at the macroscopic level resulting from molecular events as well as increase the use of noninvasive imaging in personalized medicine. (orig.)

  7. Somatic mutations associated with MRI-derived volumetric features in glioblastoma

    International Nuclear Information System (INIS)

    Gutman, David A.; Dunn, William D.; Grossmann, Patrick; Alexander, Brian M.; Cooper, Lee A.D.; Holder, Chad A.; Ligon, Keith L.; Aerts, Hugo J.W.L.

    2015-01-01

    MR imaging can noninvasively visualize tumor phenotype characteristics at the macroscopic level. Here, we investigated whether somatic mutations are associated with and can be predicted by MRI-derived tumor imaging features of glioblastoma (GBM). Seventy-six GBM patients were identified from The Cancer Imaging Archive for whom preoperative T1-contrast (T1C) and T2-FLAIR MR images were available. For each tumor, a set of volumetric imaging features and their ratios were measured, including necrosis, contrast enhancing, and edema volumes. Imaging genomics analysis assessed the association of these features with mutation status of nine genes frequently altered in adult GBM. Finally, area under the curve (AUC) analysis was conducted to evaluate the predictive performance of imaging features for mutational status. Our results demonstrate that MR imaging features are strongly associated with mutation status. For example, TP53-mutated tumors had significantly smaller contrast enhancing and necrosis volumes (p = 0.012 and 0.017, respectively) and RB1-mutated tumors had significantly smaller edema volumes (p = 0.015) compared to wild-type tumors. MRI volumetric features were also found to significantly predict mutational status. For example, AUC analysis results indicated that TP53, RB1, NF1, EGFR, and PDGFRA mutations could each be significantly predicted by at least one imaging feature. MRI-derived volumetric features are significantly associated with and predictive of several cancer-relevant, drug-targetable DNA mutations in glioblastoma. These results may shed insight into unique growth characteristics of individual tumors at the macroscopic level resulting from molecular events as well as increase the use of noninvasive imaging in personalized medicine. (orig.)

  8. The association of -656T > G and 1349T > G polymorphisms of ApE1 gene and the risk of female infertility.

    Science.gov (United States)

    Mashayekhi, Farhad; Yousefi, Mostafa; Salehi, Zivar; Pournourali, Mostafa

    2016-05-01

    Despite enormous progress in the understanding of human reproductive physiology, the underlying cause of male infertility remains undefined in about 50.0% of cases, which are referred to as idiopathic infertility. Human apurinic/apyrimidinic endonuclease 1 (ApE1) is a multifunctional protein that has an important role in the base excision repair pathway. The present study aimed to evaluate whether two functional ApE1 polymorphisms (-656T > G and 1349T > G) are associated with the susceptibility of female infertility. Blood samples were collected from 100 patients diagnosed with female infertility and 100 control subjects and genotyped by tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR). The results indicated that individuals with the variant TG genotypes had a significantly increased risk of female infertility (p = 0.035, OR = 1.98, 95% CI = 1.04-3.74). Whereas, a significant association between 1349T > G polymorphism and female infertility risk was not observed (p = 0.1). Larger studies with more patients and controls are required to confirm the results.

  9. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection

    Science.gov (United States)

    Korbecki, Jan; Gutowska, Izabela; Kojder, Ireneusz; Jeżewski, Dariusz; Goschorska, Marta; Łukomska, Agnieszka; Lubkowska, Anna; Chlubek, Dariusz; Baranowska-Bosiacka, Irena

    2018-01-01

    Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the ‘hallmarks of cancer’ in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme. PMID:29467963

  10. Human Leucocyte Antigen-G (HLA-G and Its Murine Functional Homolog Qa2 in the Trypanosoma cruzi Infection

    Directory of Open Access Journals (Sweden)

    Fabrício C. Dias

    2015-01-01

    Full Text Available Genetic susceptibility factors, parasite strain, and an adequate modulation of the immune system seem to be crucial for disease progression after Trypanosoma cruzi infection. HLA-G and its murine functional homolog Qa2 have well-recognized immunomodulatory properties. We evaluated the HLA-G 3′ untranslated region (3′UTR polymorphic sites (associated with mRNA stability and target for microRNA binding and HLA-G tissue expression (heart, colon, and esophagus in patients presenting Chagas disease, stratified according to the major clinical variants. Further, we investigated the transcriptional levels of Qa2 and other pro- and anti-inflammatory genes in affected mouse tissues during T. cruzi experimental acute and early chronic infection induced by the CL strain. Chagas disease patients exhibited differential HLA-G 3′UTR susceptibility allele/genotype/haplotype patterns, according to the major clinical variant (digestive/cardiac/mixed/indeterminate. HLA-G constitutive expression on cardiac muscle and colonic cells was decreased in Chagasic tissues; however, no difference was observed for Chagasic and non-Chagasic esophagus tissues. The transcriptional levels of Qa2 and other anti and proinflammatory (CTLA-4, PDCD1, IL-10, INF-γ, and NOS-2 genes were induced only during the acute T. cruzi infection in BALB/c and C57BL/6 mice. We present several lines of evidence indicating the role of immunomodulatory genes and molecules in human and experimental T. cruzi infection.

  11. SOX9-mediated upregulation of LGR5 is important for glioblastoma tumorigenicity

    International Nuclear Information System (INIS)

    Hiraoka, Koji; Hayashi, Tomoatsu; Kaneko, Ryusuke; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Kawasaki, Yoshihiro; Akiyama, Tetsu

    2015-01-01

    LGR5 plays an important role in the self-renewal of stem cells and is used as a marker identifying self-renewing stem cells in small intestine and hair follicles. Moreover, LGR5 has been reported to be overexpressed in several cancers. SOX9 is a transcription factor that plays a key role in development, differentiation and lineage commitment in various tissues. It has also been reported that SOX9 is overexpressed in a variety of cancers and contributes to their malignant phenotype. Here we show that LGR5 is required for the tumorigenicity of glioblastoma cells. We further show that SOX9 is upregulated in glioblastoma cells and directly enhances the expression of LGR5. We also demonstrate that knockdown of SOX9 suppresses the proliferation and tumorigenicity of glioblastoma cells. These results suggest that SOX9-mediated transcriptional regulation of LGR5 is critical for the tumorigenicity of glioblastoma cells. We speculate that the SOX9-LGR5 pathway could be a potentially promising target for the therapy of glioblastoma. - Highlights: • LGR5 is required for the tumorigenicity of glioblastoma cells. • SOX9 directly enhances the expression of LGR5. • SOX9 is required for the tumorigenicity of glioblastoma cells

  12. SOX9-mediated upregulation of LGR5 is important for glioblastoma tumorigenicity

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Koji; Hayashi, Tomoatsu; Kaneko, Ryusuke; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Kawasaki, Yoshihiro; Akiyama, Tetsu, E-mail: akiyama@iam.u-tokyo.ac.jp

    2015-05-01

    LGR5 plays an important role in the self-renewal of stem cells and is used as a marker identifying self-renewing stem cells in small intestine and hair follicles. Moreover, LGR5 has been reported to be overexpressed in several cancers. SOX9 is a transcription factor that plays a key role in development, differentiation and lineage commitment in various tissues. It has also been reported that SOX9 is overexpressed in a variety of cancers and contributes to their malignant phenotype. Here we show that LGR5 is required for the tumorigenicity of glioblastoma cells. We further show that SOX9 is upregulated in glioblastoma cells and directly enhances the expression of LGR5. We also demonstrate that knockdown of SOX9 suppresses the proliferation and tumorigenicity of glioblastoma cells. These results suggest that SOX9-mediated transcriptional regulation of LGR5 is critical for the tumorigenicity of glioblastoma cells. We speculate that the SOX9-LGR5 pathway could be a potentially promising target for the therapy of glioblastoma. - Highlights: • LGR5 is required for the tumorigenicity of glioblastoma cells. • SOX9 directly enhances the expression of LGR5. • SOX9 is required for the tumorigenicity of glioblastoma cells.

  13. Osthole Suppresses the Migratory Ability of Human Glioblastoma Multiforme Cells via Inhibition of Focal Adhesion Kinase-Mediated Matrix Metalloproteinase-13 Expression

    Directory of Open Access Journals (Sweden)

    Cheng-Fang Tsai

    2014-03-01

    Full Text Available Glioblastoma multiforme (GBM is the most common type of primary and malignant tumor occurring in the adult central nervous system. GBM often invades surrounding regions of the brain during its early stages, making successful treatment difficult. Osthole, an active constituent isolated from the dried C. monnieri fruit, has been shown to suppress tumor migration and invasion. However, the effects of osthole in human GBM are largely unknown. Focal adhesion kinase (FAK is important for the metastasis of cancer cells. Results from this study show that osthole can not only induce cell death but also inhibit phosphorylation of FAK in human GBM cells. Results from this study show that incubating GBM cells with osthole reduces matrix metalloproteinase (MMP-13 expression and cell motility, as assessed by cell transwell and wound healing assays. This study also provides evidence supporting the potential of osthole in reducing FAK activation, MMP-13 expression, and cell motility in human GBM cells.

  14. Glioblastoma, gadolinium (III) and NCT. An in vitro study

    International Nuclear Information System (INIS)

    Mercanti, D.; Casalbore, P.; Sanita, F.; Rosi, F.; Festinesi, A.; Pallini, R.; Gilbert, B.; Stasio, G. de

    2000-01-01

    We treated cultured human glioblastoma cells with gadolinium (III) [gadopentetic acid] and we found that: a) cells do internalise this element; b) gadolinium can be localised in the cells nuclei; c) exposure of the cultures to a neutron beam produced a significant and immediate cell death. Although cell survival was also influenced in the irradiated controls it was further reduced (about 50%) in cells pre-exposed to 10 mg/ml gadopentetic acid. We also found that Gd uptake, as measured by ICP-AES, was concentration dependent. (author)

  15. Generation and characterization of APOBEC3G-positive 293T cells for HIV-1 Vif study

    OpenAIRE

    Piroozmand, Ahmad; Yamamoto, Yoshihiko; Khamsri, Boonruang; Fujita, Mikako; Uchiyama, Tsuneo; Adachi, Akio

    2007-01-01

    We have established a number of 293T cell lines that express a human anti HIV-1 factor APOBEC3G. Out of seven cell clones examined, four were readily demonstrated to express APOBEC3G by immunoblotting analysis. In particular, two clones (A3G-C1 and -C4) were found to produce a much higher level of functional APOBEC3G relative to that by pooled cell clones. The transfection efficiency of all these cell clones were similar to that of the parental cells, producing a comparable level of virions u...

  16. Autotaxin inhibition with PF8380 enhances the radiosensitivity of human and murine glioblastoma cell lines

    Directory of Open Access Journals (Sweden)

    Sandeep R Bhave

    2013-09-01

    Full Text Available Purpose: Glioblastoma multiforme (GBM is an aggressive primary brain tumor that is radio-resistant and recurs despite aggressive surgery, chemo and radiotherapy. Autotaxin (ATX is over expressed in various cancers including GBM and is implicated in tumor progression, invasion, and angiogenesis. Using the ATX specific inhibitor, PF-8380, we studied ATX as a potential target to enhance radiosensitivity in GBM.Methods and Materials: Mouse GL-261 and Human U87MG cells were used as GBM cell models. Clonogenic survival assays and tumor transwell invasion assays were performed using PF-8380 to evaluate role of ATX in survival and invasion. Radiation dependent activation of Akt was analyzed by immunoblotting. Tumor induced angiogenesis was studied using the dorsal skin-fold model in Gl-261. Heterotopic mouse GL-261 tumors were used to evaluate the efficacy of PF-8380 as a radiosensitizer.Results: Pretreatment of GL-261 and U87-MG cells with 1µM PF-8380 followed by 4Gy irradiation resulted in decreased clonogenic survival, decreased migration (33% in GL-261;P = 0.002 and 17.9% in U87; P = 0.012 decreased invasion (35.6% in GL-261; P = 0.0037 and 31.8% in U87; P = 0.002, and attenuated radiation induced Akt phosphorylation. In the tumor window model inhibition of ATX abrogated radiation-induced tumor neovascularization (65%; P=0.011. In a heterotopic mouse GL-261 tumors untreated mice took 11.2 days to reach a tumor volume of 7000 mm3 , however combination of PF-8380 (10mg/kg with irradiation (5 fractions of 2Gy took more than 32 days to reach a tumor volume of 7000 mm3 .Conclusion: Inhibition of ATX by PF8380 led to decreased invasion and enhanced radiosensitization of glioma cells. Radiation induced activation of Akt was abrogated by inhibition of ATX. Furthermore, inhibition of ATX led to diminished tumor vascularity and delayed tumor growth. These results suggest that inhibition of ATX may ameliorate glioblastoma response to radiotherapy.

  17. 45 CFR 98.32 - Parental complaints.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Parental complaints. 98.32 Section 98.32 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Program Operations (Child Care Services)-Parental Rights and Responsibilities § 98.32 Parental complaints...

  18. Metástases intrarraquidianas de glioblastoma multiforme supratentorial da infância: relato de caso Spinal cord metastatic glioblastoma multiforme of childhood: case report

    Directory of Open Access Journals (Sweden)

    Patricia Imperatriz Porto Rondinelli

    2002-09-01

    Full Text Available Relatamos o caso de uma menina de onze anos de idade com glioblastoma multiforme na região têmporo-parietal direita, completamente ressecado cirurgicamente, submetida a radioterapia craniana pós-operatória. Houve recaída três meses após, em topografia distante do sítio primário, na porção caudal do canal raquidiano. Após, ocorreu evolução rápida para o óbito. A propósito desse caso, discutimos nossa experiência quanto à conduta nesses tumores e a literatura sobre o assunto.We report the case of an eleven years-old girl with a right temporo-parietal glioblastoma multiforme. The tumor was totally resected on neurossurgery, and cranial radioteraphy was applied at next. The tumor recurred three months later, far from primary site, in the caudal portion of the spinal canal. Death occurred in less than one month later. Taking into account the data of this case, we discuss our experience in the management of such tumors and the literature on the subject.

  19. HLA-G in human reproduction

    DEFF Research Database (Denmark)

    Hviid, Thomas Vauvert F

    2005-01-01

    The non-classical human leukocyte antigen (HLA) class Ib genes, HLA-E, -G and -F, are located on chromosome 6 in the human major histocompatibility complex (MHC). HLA class Ib antigens resemble the HLA class Ia antigens in many ways, but several major differences have been described. This review ...... transplantation and in inflammatory or autoimmune disease, and of HLA-G in an evolutionary context, are also briefly examined....

  20. In situ depletion of CD4(+) T cells in human skin by Zanolimumab

    DEFF Research Database (Denmark)

    Villadsen, L.S.; Skov, L.; Dam, T.N.

    2007-01-01

    CD4(+) T cells, in activated or malignant form, are involved in a number of diseases including inflammatory skin diseases such as psoriasis, and T cell lymphomas such as the majority of cutaneous T cell lymphomas (CTCL). Targeting CD4 with an antibody that inhibits and/or eliminates disease......-driving T cells in situ may therefore be a useful approach in the treatment of inflammatory and malignant skin diseases. Depletion of CD4(+) T cells in intact inflamed human skin tissue by Zanolimumab, a fully human therapeutic monoclonal antibody (IgG1, kappa) against CD4, was studied in a human psoriasis......(+), but not CD8(+) CD3(+) T cells. The capacity of Zanolimumab to deplete the CD4(+) T cells in the skin may be of importance in diseases where CD4(+) T cells play a central role. Indeed, in a phase II clinical trial Zanolimumab has shown a dose-dependent clinical response in patients with CTCL and the antibody...

  1. [Glioblastoma in 2017].

    Science.gov (United States)

    Duffau, Hugues

    2017-02-01

    Glioblastomas are serious tumours of the central nervous system. Recurrence is systematic and prognosis poor. Radiotherapy and chemotherapy follow surgery, when surgery is possible, to lengthen survival, while preserving quality of life as much as possible. In this respect, symptomatic treatments and supportive care are necessary. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. High-resolution blood-pool-contrast-enhanced MR angiography in glioblastoma: tumor-associated neovascularization as a biomarker for patient survival. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Josep; Blasco, Gerard; Remollo, Sebastian; Hernandez, David; Pedraza, Salvador [Hospital Universitari Dr Josep Trueta, Research Unit of Diagnostic Imaging Institute (IDI), Department of Radiology [Girona Biomedical Research Institute] IDIBGI, Girona (Spain); Daunis-i-Estadella, Josep; Mateu, Gloria [University of Girona, Department of Computer Science, Applied Mathematics and Statistics, Girona (Spain); Alberich-Bayarri, Angel [La Fe Polytechnics and University Hospital, Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia (Spain); Essig, Marco [University of Manitoba, Department of Radiology, Winnipeg (Canada); Jain, Rajan [NYU School of Medicine, Division of Neuroradiology, Department of Radiology, New York, NY (United States); Puigdemont, Montserrat [Hospital Universitari Dr Josep Trueta, Catalan Institute of Oncology (ICO), Hospital Cancer Registry, Girona (Spain); Sanchez-Gonzalez, Javier [Philips Healthcare Iberica, Madrid (Spain); Wintermark, Max [Stanford University, Department of Radiology, Neuroradiology Division, Palo Alto, CA (United States)

    2016-01-15

    The objective of the study was to determine whether tumor-associated neovascularization on high-resolution gadofosveset-enhanced magnetic resonance angiography (MRA) is a useful biomarker for predicting survival in patients with newly diagnosed glioblastomas. Before treatment, 35 patients (25 men; mean age, 64 ± 14 years) with glioblastoma underwent MRI including first-pass dynamic susceptibility contrast (DSC) perfusion and post-contrast T1WI sequences with gadobutrol (0.1 mmol/kg) and, 48 h later, high-resolution MRA with gadofosveset (0.03 mmol/kg). Volumes of interest for contrast-enhancing lesion (CEL), non-CEL, and contralateral normal-appearing white matter were obtained, and DSC perfusion and DWI parameters were evaluated. Prognostic factors were assessed by Kaplan-Meier survival and Cox proportional hazards model. Eighteen (51.42 %) glioblastomas were hypervascular on high-resolution MRA. Hypervascular glioblastomas were associated with higher CEL volume and lower Karnofsky score. Median survival rates for patients with hypovascular and hypervascular glioblastomas treated with surgery, radiotherapy, and chemotherapy were 15 and 9.75 months, respectively (P < 0.001). Tumor-associated neovascularization was the best predictor of survival at 5.25 months (AUC = 0.794, 81.2 % sensitivity, 77.8 % specificity, 76.5 % positive predictive value, 82.4 % negative predictive value) and yielded the highest hazard ratio (P < 0.001). Tumor-associated neovascularization detected on high-resolution blood-pool-contrast-enhanced MRA of newly diagnosed glioblastoma seems to be a useful biomarker that correlates with worse survival. (orig.)

  3. Gravastars in f (G ,T ) gravity

    Science.gov (United States)

    Shamir, M. Farasat; Ahmad, Mushtaq

    2018-05-01

    This work proposes a stellar model under Gauss-Bonnet f (G ,T ) gravity with the conjecture theorized by Mazur and Mottola, well known as the gravitational vacuum stars (gravastars). By taking into account the f (G ,T ) stellar model, the structure of the gravastar with its exclusive division of three different regions, namely, (i) the core interior region, (ii) the junction region (shell), and (iii) the exterior region, has been investigated with reference to the existence of energy density, pressure, ultrarelativistic plasma, and repulsive forces. The different physical features, like the equation of state parameter, length of the shell, entropy, and energy-thickness relation of the gravastar shell model, have been discussed. Also, some other physically valid aspects have been presented with the connection to nonsingular and event-horizon-free gravastar solutions, which in contrast to a black hole solution, might be stable without containing any information paradox.

  4. CCL5, CCR1 and CCR5 in murine glioblastoma: immune cell infiltration and survival rates are not dependent on individual expression of either CCR1 or CCR5

    OpenAIRE

    Pham, Kien; Luo, Defang; Liu, Che; Harrison, Jeffrey K.

    2012-01-01

    Glioblastoma multiforme (GBM) is the most malignant brain tumor. Microglia/macrophages are found within human GBM where they likely promote tumor progression. We report that CCL5, CCR1, and CCR5 are expressed in glioblastoma. Individual deletion of CCR1 or CCR5 had little to no effect on survival of tumor bearing mice, or numbers of glioblastoma-infiltrated microglia/macrophages or lymphocytes. CCL5 promoted in vitro migration of wild type, CCR1- or CCR5-deficient microglia/macrophages that w...

  5. Inhibition of NF-κB Pathway and Modulation of MAPK Signaling Pathways in Glioblastoma and Implications for Lovastatin and Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL Combination Therapy.

    Directory of Open Access Journals (Sweden)

    Pi Chu Liu

    Full Text Available Glioblastoma is a common malignant brain tumor and it is refractory to therapy because it usually contains a mixture of cell types. The tumor necrosis factor-related apoptosis inducing ligand (TRAIL has been shown to induce apoptosis in a range of tumor cell types. Previously, we found that two human glioblastoma cell lines are resistant to TRAIL, while lovastatin sensitizes these glioblastoma cells to TRAIL-induced cell death. In this study, we investigated the mechanisms underlying the TRAIL-induced apoptosis in human glioblastoma cell lines by lovastatin. Furthermore, we have confirmed the anti-tumor effect of combination therapy with lovastatin and TRAIL in the subcutaneous brain tumor model. We showed that lovastatin significantly up-regulated the expression of death receptor 5 (DR5 in glioblastoma cell lines as well as in tumor-bearing mice with peri-tumoral administration of lovastatin. Further study in glioblastoma cell lines suggested that lovastatin treatment could inhibit NF-κB and Erk/MAPK pathways but activates JNK pathway. These results suggest that lovastatin sensitizes TRAIL-induced apoptosis by up-regulation of DR5 level via NF-κB inactivation, but also directly induces apoptosis by dysregulation of MAPK pathway. Our in vivo study showed that local peri-tumoral co-injection of lovastatin and TRAIL substantially reduced tumor growth compared with single injection of lovastatin or TRAIL in subcutaneous nude mice model. This study suggests that combined treatment of lovastatin and TRAIL is a promising therapeutic strategy to TRAIL-resistant glioblastoma.

  6. PARPi-FL - a Fluorescent PARP1 Inhibitor for Glioblastoma Imaging

    Directory of Open Access Journals (Sweden)

    Christopher P. Irwin

    2014-05-01

    Full Text Available New intravital optical imaging technologies have revolutionized our understanding of mammalian biology and continue to evolve rapidly. However, there are only a limited number of imaging probes available to date. In this study, we investigated in mouse models of glioblastoma whether a fluorescent small molecule inhibitor of the DNA repair enzyme PARP1, PARPi-FL, can be used as an imaging agent to detect glioblastomas in vivo. We demonstrated that PARPi-FL has appropriate biophysical properties, low toxicity at concentrations used for imaging, high stability in vivo, and accumulates selectively in glioblastomas due to high PARP1 expression. Importantly, subcutaneous and orthotopic glioblastoma xenografts were imaged with high contrast clearly defining tumor tissue from normal surrounding tissue. This research represents a step toward exploring and developing PARPi-FL as an optical intraoperative imaging agent for PARP1 in the clinic.

  7. 45 CFR 98.31 - Parental access.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Parental access. 98.31 Section 98.31 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Program Operations (Child Care Services)-Parental Rights and Responsibilities § 98.31 Parental access. The...

  8. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    Science.gov (United States)

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells. Copyright © 2016. Published by Elsevier Inc.

  9. Possible association of 3' UTR +357 A>G, IVS11-nt 93 T>C, c.1311 C>T polymorphism with G6PD deficiency.

    Science.gov (United States)

    Sirdah, Mahmoud M; Shubair, Mohammad E; Al-Kahlout, Mustafa S; Al-Tayeb, Jamal M; Prchal, Josef T; Reading, N Scott

    2017-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked inherited enzymopathic disorder affecting more than 500 million people worldwide. It has so far been linked to 217 distinct genetic variants in the exons and exon-intron boundaries of the G6PD gene, giving rise to a wide range of biochemical heterogeneity and clinical manifestations. Reports from different settings suggested the association of intronic and other mutations outside the reading frame of the G6PD gene with reduced enzyme activity and presenting clinical symptoms. The present study aimed to investigate any association of other variations apart of the exonic or exonic intronic boundaries in the development of G6PD deficiency. Sixty-seven unrelated Palestinian children admitted to the pediatric hospital with hemolytic crises due to G6PD deficiency were studied. In our Palestinian cohort of 67 [59 males (M) and 8 females (F)] G6PD-deficient children, previously hospitalized for acute hemolytic anemia due to favism, molecular sequencing of the G6PD gene revealed four cases (3M and 1F) that did not have any of the variants known to cause G6PD deficiency, but the 3' UTR c.*+357A>G (rs1050757) polymorphism in association with IVS 11 (c.1365-13T>C; rs2071429), and c.1311C>T (rs2230037). We now provide an additional evidence form Palestinian G6PD-deficient subjects for a possible role of 3' UTR c.*+357 A>G, c.1365-13T>C, and/or c.1311C>T polymorphism for G6PD deficiency, suggesting that not only a single variation in the exonic or exonic intronic boundaries, but also a haplotype of G6PD should considered as a cause for G6PD deficiency.

  10. Preliminary results of a new radioimmunoassay for thyroxine binding globulin (T.B.G.)

    International Nuclear Information System (INIS)

    Bisset, J.-P.; Sauvan, R.; Roux, F.; Hourtoule, P.

    1978-01-01

    A radioimmunoassay for the accurate measurement of T.B.G., developed by Crouzat-Reynes, was used to perform T.B.G. concentration in sera of euthyroid subjects in different clinical situations, in hypothyroid and hyperthyroid patients. In normal control, the T.B.G. concentration was not different from men and women, from young and old subjects. On the other hand, in women either pregnant or receving oral contraception, the T.B.G. levels were significantly higher than euthyro subjects. Cirrhosis of the liver and liver carcinoma were without apparent effect on T.B.G. levels because it was a too few number of patients and the group was too heterogeneous. In the group of hypothyroid and hyperthyroid patients, the T.B.G. serum concentrations were not significantly different from normal. The ratio T4/T.B.G. as I.T.L. (T4 x T3 uptake) permit to bring back in normal range T4 levels changed by extrathyroidal process; however, this ratio seems to be less interesting than standard I.T.L. The T.B.G. assay has not to be considered only as a substitution of T3 uptake because they do not study the same parameters [fr

  11. Individualized targeted therapy for glioblastoma: fact or fiction?

    Science.gov (United States)

    Weller, Michael; Stupp, Roger; Hegi, Monika; Wick, Wolfgang

    2012-01-01

    This review will address the current state of individualized cancer therapy for glioblastoma. Glioblastomas are highly malignant primary brain tumors presumably originating from neuroglial progenitor cells. Median survival is less than 1 year. Recent developments in the morphologic, clinical, and molecular classification of glioblastoma were reviewed, and their impact on clinical decision making was analyzed. Glioblastomas can be classified by morphology, clinical characteristics, complex molecular signatures, single biomarkers, or imaging parameters. Some of these characteristics, including age and Karnofsky Performance Scale score, provide important prognostic information. In contrast, few markers help to choose between various treatment options. Promoter methylation of the O-methylguanine methyltransferase gene seems to predict benefit from alkylating agent chemotherapy. Hence, it is used as an entry criterion for alkylator-free experimental combination therapy with radiotherapy. Screening for a specific type of epidermal growth factor receptor mutation is currently being explored as a biomarker for selecting patients for vaccination. Positron emission tomography for the detection of ανβ3/5 integrins could be used to select patients for treatment with anti-integrin antiangiogenic approaches. Despite extensive efforts at defining biological markers as a basis for selecting therapies, most treatment decisions for glioblastoma patients are still based on age and performance status. However, several ongoing clinical trials may enrich the repertoire of criteria for clinical decision making in the very near future. The concept of individualized or personalized targeted cancer therapy has gained significant attention throughout oncology. Yet, data in support of such an approach to glioblastoma, the most malignant subtype of glioma, are limited, and personalized medicine plays a minor role in current clinical neuro-oncology practice. In essence, this concept proposes

  12. Glioblastoma formation from cell population depleted of Prominin1-expressing cells.

    Directory of Open Access Journals (Sweden)

    Kenji Nishide

    2009-08-01

    Full Text Available Prominin1 (Prom1, also known as CD133 in human has been widely used as a marker for cancer stem cells (CSCs, which self-renew and are tumorigenic, in malignant tumors including glioblastoma multiforme (GBM. However, there is other evidence showing that Prom1-negative cancer cells also form tumors in vivo. Thus it remains controversial whether Prom1 is a bona fide marker for CSCs. To verify if Prom1-expressing cells are essential for tumorigenesis, we established a mouse line, whose Prom1-expressing cells can be eliminated conditionally by a Cre-inducible DTA gene on the Prom1 locus together with a tamoxifen-inducible CreER(TM, and generated glioma-initiating cells (GICs-LD by overexpressing both the SV40 Large T antigen and an oncogenic H-Ras(L61 in neural stem cells of the mouse line. We show here that the tamoxifen-treated GICs-LD (GICs-DTA form tumor-spheres in culture and transplantable GBM in vivo. Thus, our studies demonstrate that Prom1-expressing cells are dispensable for gliomagenesis in this mouse model.

  13. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Adam Herman; Moser, Franklin G.; Maya, Marcel [Cedars-Sinai Medical Center, Department of Medical Imaging, Los Angeles, CA (United States); Erly, William; Nael, Kambiz [University of Arizona Medical Center, Department of Medical Imaging, Tucson, AZ (United States)

    2015-07-15

    Solitary brain metastasis (MET) and glioblastoma multiforme (GBM) can appear similar on conventional MRI. The purpose of this study was to identify magnetic resonance (MR) perfusion and diffusion-weighted biomarkers that can differentiate MET from GBM. In this retrospective study, patients were included if they met the following criteria: underwent resection of a solitary enhancing brain tumor and had preoperative 3.0 T MRI encompassing diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast (DSC) perfusion. Using co-registered images, voxel-based fractional anisotropy (FA), mean diffusivity (MD), K{sup trans}, and relative cerebral blood volume (rCBV) values were obtained in the enhancing tumor and non-enhancing peritumoral T2 hyperintense region (NET2). Data were analyzed by logistic regression and analysis of variance. Receiver operating characteristic (ROC) analysis was performed to determine the optimal parameter/s and threshold for predicting of GBM vs. MET. Twenty-three patients (14 M, age 32-78 years old) met our inclusion criteria. Pathology revealed 13 GBMs and 10 METs. In the enhancing tumor, rCBV, K{sup trans}, and FA were higher in GBM, whereas MD was lower, neither without statistical significance. In the NET2, rCBV was significantly higher (p = 0.05) in GBM, but MD was significantly lower (p < 0.01) in GBM. FA and K{sup trans} were higher in GBM, though not reaching significance. The best discriminative power was obtained in NET2 from a combination of rCBV, FA, and MD, resulting in an area under the curve (AUC) of 0.98. The combination of MR diffusion and perfusion matrices in NET2 can help differentiate GBM over solitary MET with diagnostic accuracy of 98 %. (orig.)

  14. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion

    International Nuclear Information System (INIS)

    Bauer, Adam Herman; Moser, Franklin G.; Maya, Marcel; Erly, William; Nael, Kambiz

    2015-01-01

    Solitary brain metastasis (MET) and glioblastoma multiforme (GBM) can appear similar on conventional MRI. The purpose of this study was to identify magnetic resonance (MR) perfusion and diffusion-weighted biomarkers that can differentiate MET from GBM. In this retrospective study, patients were included if they met the following criteria: underwent resection of a solitary enhancing brain tumor and had preoperative 3.0 T MRI encompassing diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast (DSC) perfusion. Using co-registered images, voxel-based fractional anisotropy (FA), mean diffusivity (MD), K trans , and relative cerebral blood volume (rCBV) values were obtained in the enhancing tumor and non-enhancing peritumoral T2 hyperintense region (NET2). Data were analyzed by logistic regression and analysis of variance. Receiver operating characteristic (ROC) analysis was performed to determine the optimal parameter/s and threshold for predicting of GBM vs. MET. Twenty-three patients (14 M, age 32-78 years old) met our inclusion criteria. Pathology revealed 13 GBMs and 10 METs. In the enhancing tumor, rCBV, K trans , and FA were higher in GBM, whereas MD was lower, neither without statistical significance. In the NET2, rCBV was significantly higher (p = 0.05) in GBM, but MD was significantly lower (p < 0.01) in GBM. FA and K trans were higher in GBM, though not reaching significance. The best discriminative power was obtained in NET2 from a combination of rCBV, FA, and MD, resulting in an area under the curve (AUC) of 0.98. The combination of MR diffusion and perfusion matrices in NET2 can help differentiate GBM over solitary MET with diagnostic accuracy of 98 %. (orig.)

  15. The effects of antiepileptic drugs on the growth of glioblastoma cell lines

    OpenAIRE

    Lee, Ching-Yi; Lai, Hung-Yi; Chiu, Angela; Chan, She-Hung; Hsiao, Ling-Ping; Lee, Shih-Tseng

    2016-01-01

    To determine the effects of antiepileptic drug compounds on glioblastoma cellular growth, we exposed glioblastoma cell lines to select antiepileptic drugs. The effects of selected antiepileptic drugs on glioblastoma cells were measured by MTT assay. For compounds showing significant inhibition, cell cycle analysis was performed. Statistical analysis was performed using SPSS. The antiepileptic compounds selected for screening included carbamazepine, ethosuximide, gabapentin, lamotrigine, levet...

  16. Two-peaked 5-ALA-induced PpIX fluorescence emission spectrum distinguishes glioblastomas from low grade gliomas and infiltrative component of glioblastomas.

    Science.gov (United States)

    Montcel, Bruno; Mahieu-Williame, Laurent; Armoiry, Xavier; Meyronet, David; Guyotat, Jacques

    2013-04-01

    5-ALA-induced protoporphyrin IX (PpIX) fluorescence enables to guiding in intra-operative surgical glioma resection. However at present, it has yet to be shown that this method is able to identify infiltrative component of glioma. In extracted tumor tissues we measured a two-peaked emission in low grade gliomas and in the infiltrative component of glioblastomas due to multiple photochemical states of PpIX. The second emission peak appearing at 620 nm (shifted by 14 nm from the main peak at 634 nm) limits the sensibility of current methods to measured PpIX concentration. We propose new measured parameters, by taking into consideration the two-peaked emission, to overcome these limitations in sensitivity. These parameters clearly distinguish the solid component of glioblastomas from low grade gliomas and infiltrative component of glioblastomas.

  17. Estimation of Tumor Volumes by 11C-MeAIB and 18F-FDG PET in an Orthotopic Glioblastoma Rat Model

    DEFF Research Database (Denmark)

    Halle, Bo; Thisgaard, Helge; Hvidsten, Svend

    2015-01-01

    starting immediately after the injection of 11C-methylaminoisobutyric acid (11C-MeAIB). One hour later, 18F-FDG was injected, followed by a 3-h dynamic PET scan. Images were reconstructed using 2-dimensional ordered-subsets expectation maximization and 3-dimensional maximum a posteriori probability (MAP3D......UNLABELLED: Brain tumor volume assessment is a major challenge. Molecular imaging using PET may be a promising option because it reflects the biologically active cells. We compared the agreement between PET- and histology-derived tumor volumes in an orthotopic glioblastoma rat model...... with a noninfiltrating (U87MG) and an infiltrating (T87) tumor phenotype using 2 different radiotracers, 2 different image reconstruction algorithms, parametric imaging, and 2 different image segmentation techniques. METHODS: Rats with U87MG- and T87-derived glioblastomas were continuously scanned with PET for 1 h...

  18. Estimation of transition doses for human glioblastoma, neuroblastoma and prostate cell lines using the linear-quadratic formalism

    Directory of Open Access Journals (Sweden)

    John Akudugu

    2015-09-01

    Full Text Available Purpose: The introduction of stereotactic radiotherapy has raised concerns regarding the use of the linear-quadratic (LQ model for predicting radiation response for large fractional doses. To partly address this issue, a transition dose D* below which the LQ model retains its predictive strength has been proposed. Estimates of D* which depends on the a, β, and D0 parameters are much lower than fractional doses typically encountered in stereotactic radiotherapy. D0, often referred to as the final slope of the cell survival curve, is thought to be constant. In vitro cell survival curves generally extend over the first few logs of cell killing, where D0-values derived from the multi-target formalism may be overestimated and can lead to low transition doses. Methods:  D0-values were calculated from first principles for each decade of cell killing, using experimentally-determined a and β parameters for 17 human glioblastoma, neuroblastoma, and prostate cell lines, and corresponding transition doses were derived.Results: D0 was found to decrease exponentially with cell killing. Using D0-values at cell surviving fractions of the order of 10-10 yielded transition doses ~3-fold higher than those obtained from D0-values obtained from conventional approaches. D* was found to increase from 7.84 ± 0.56, 8.91 ± 1.20, and 6.55 ± 0.91 Gy to 26.84 ± 2.83, 23.95 ± 2.03, and 22.49 ± 2.31 Gy for the glioblastoma, neuroblastoma, and prostate cell lines, respectively. Conclusion: These findings suggest that the linear-quadratic formalism might be valid for estimating the effect of stereotactic radiotherapy with fractional doses in excess of 20 Gy.

  19. Postmastectomy Radiation Therapy in Women with T1-T2 Tumors and 1 to 3 Positive Lymph Nodes: Analysis of the Breast International Group 02-98 Trial.

    Science.gov (United States)

    Zeidan, Youssef H; Habib, Joyce G; Ameye, Lieveke; Paesmans, Marianne; de Azambuja, Evandro; Gelber, Richard D; Campbell, Ian; Nordenskjöld, Bo; Gutiérez, Jorge; Anderson, Michael; Lluch, Ana; Gnant, Michael; Goldhirsch, Aron; Di Leo, Angelo; Joseph, David J; Crown, John; Piccart-Gebhart, Martine; Francis, Prudence A

    2018-06-01

    To analyze the impact of postmastectomy radiation therapy (PMRT) for patients with T1-T2 tumors and 1 to 3 positive lymph nodes enrolled on the Breast International Group (BIG) 02-98 trial. The BIG 02-98 trial randomized patients to receive adjuvant anthracycline with or without taxane chemotherapy. Delivery of PMRT was nonrandomized and performed according to institutional preferences. The present analysis was performed on participants with T1-T2 breast cancer and 1 to 3 positive lymph nodes who had undergone mastectomy and axillary nodal dissection. The primary objective of the present study was to examine the effect of PMRT on risk of locoregional recurrence (LRR), breast cancer-specific survival, and overall survival. We identified 684 patients who met the inclusion criteria and were included in the analysis, of whom 337 (49%) had received PMRT. At 10 years, LRR risk was 2.5% in the PMRT group and 6.5% in the no-PMRT group (hazard ratio 0.29, 95% confidence interval 0.12-0.73; P = .005). Lower LRR after PMRT was noted for patients randomized to receive adjuvant chemotherapy with no taxane (10-year LRR: 3.4% vs 9.1%; P = .02). No significant differences in breast cancer-specific survival (84.3% vs 83.9%) or overall survival (81.7% vs 78.3%) were observed according to receipt of PMRT. Our analysis of the BIG 02-98 trial shows excellent outcomes in women with T1-T2 tumors and 1 to 3 positive lymph nodes found in axillary dissection. Although PMRT improved LRR in this cohort, the number of events remained low at 10 years. In all groups, 10-year rates of LRR were relatively low compared with historical studies. As such, the use of PMRT in women with 1 to 3 positive nodes should be tailored to individual patient risks. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Dopamine signaling: target in glioblastoma

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk

    2014-01-01

    Roč. 5, č. 5 (2014), 1116-1117 ISSN 1949-2553 Institutional support: RVO:68378050 Keywords : Dopamine signaling * glioblastoma * MAPK Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.359, year: 2014

  1. Glioblastoma familiar

    Directory of Open Access Journals (Sweden)

    Walter O. Arruda

    1995-06-01

    Full Text Available The authors describe a family with three members affected by glioblastoma. The proband patient, a 7 year-old girl, developed a rare complication, a pulmonary metastasis. Chromosomal analysis of her peripheral blood lymphocytes showed a normal karyotype (46, XX, without structural abnormalities. Cytogenetic study of the tumor cells disclosed several abnormalities: 46, XX, 7q - / 46, XX, -2, 4p-, 7p-, +15/ 46, XX. Some aspects about genetics of glial neoplasms are discussed.

  2. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers.

    Directory of Open Access Journals (Sweden)

    Stefanie Wohlfart

    Full Text Available BACKGROUND: Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid (PLGA nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. METHODOLOGY: The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA or human serum albumin (PLGA/HSA as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3 × 2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. CONCLUSION: The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations.

  3. MiR-196a exerts its oncogenic effect in glioblastoma multiforme by inhibition of IκBα both in vitro and in vivo

    KAUST Repository

    Yang, Guang

    2014-01-23

    BackgroundRecent studies have revealed that miR-196a is upregulated in glioblastoma multiforme (GBM) and that it correlates with the clinical outcome of patients with GBM. However, its potential regulatory mechanisms in GBM have never been reported.MethodsWe used quantitative real-time PCR to assess miR-196a expression levels in 132 GBM specimens in a single institution. Oncogenic capability of miR-196a was detected by apoptosis and proliferation assays in U87MG and T98G cells. Immunohistochemistry was used to determine the expression of IκBα in GBM tissues, and a luciferase reporter assay was carried out to confirm whether IκBα is a direct target of miR-196a. In vivo, xenograft tumors were examined for an antiglioma effect of miR-196a inhibitors.ResultsWe present for the first time evidence that miR-196a could directly interact with IκBα 3′-UTR to suppress IκBα expression and subsequently promote activation of NF-κB, consequently promoting proliferation of and suppressing apoptosis in GBM cells both in vitro and in vivo. Our study confirmed that miR-196a was upregulated in GBM specimens and that high levels of miR-196a were significantly correlated with poor outcome in a large cohort of GBM patients. Our data from human tumor xenografts in nude mice treated with miR-196 inhibitors demonstrated that inhibition of miR-196a could ameliorate tumor growth in vivo.ConclusionsMiR-196a exerts its oncogenic effect in GBM by inhibiting IκBα both in vitro and in vivo. Our findings provide new insights into the pathogenesis of GBM and indicate that miR-196a may predict clinical outcome of GBM patients and serve as a new therapeutic target for GBM. © 2014 © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Development of a multi-fraction radiation protocol for intracerebral human glioblastoma xenografts

    International Nuclear Information System (INIS)

    Ozawa, T.; Santos, R.A.; Hu, L.H.; Faddegon, B.A.; Lamborn, K.R.; Deen, D.F.

    2003-01-01

    Patients with malignant gliomas are typically treated by surgery, radiation therapy and chemotherapy. Fractionated radiotherapy consists of 30 daily doses of 1.8 to 2 Gy given over a 6-week period. We have investigated a multi-fraction radiation protocol in which rats bearing intracerebral tumors are irradiated once daily for 10 days with a 2-day break in the middle. This scheme simulates the first third of a typical human radiation protocol, and it is a practical scheme to conduct in the laboratory. U-87 MG or U-251 MG human glioblastoma cells were implanted into the right caudate-putamens of male athymic rats. We irradiated rats using an irradiation jig that allowed us to deliver Cesium-137 photons at a dose rate of 280 cGy/minute selectively to the portion of the head containing the tumor. This device adequately shields all other parts of rat, including the critically sensitive oropharynx. Animals received the first radiation dose when intracerebral tumors were ∼20 mg in size. Untreated U-87 MG tumor-bearing rats died with a median survival of 23 days, while tumor bearing rats that were given ten 1-Gy doses died with a median survival of 28.5 days. Untreated U-251 MG tumor-bearing rats died with a median survival of 34.5 days, while tumor-bearing rats that were given ten 1-Gy doses died with a median survival of 58 days. However, 5 of 14 of these rats had a lifespan >68 days and were considered cured. A daily dose of 0.75 Gy produced a median survival of 43 days, but again 2 rats had a lifespan >70 days. Currently, we are seeking a dose that causes reproducible tumor growth delay of 1 to 2 weeks, without curing any animals, to use in future studies that combine radiation with other anti-tumor agents

  5. Can Immunotherapy Succeed in Glioblastoma?

    Science.gov (United States)

    Researchers are hopeful that, for the deadly brain cancer glioblastoma, immunotherapy might succeed where other therapies have not. As this Cancer Currents post reports, different immunotherapy approaches are being tested in clinical trials.

  6. Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay

    Science.gov (United States)

    Meleis, Ahmed M.; Mahtabfar, Aria; Danish, Shabbar

    2017-01-01

    Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex), a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal. PMID:29040322

  7. Dexamethasone-mediated inhibition of Glioblastoma neurosphere dispersal in an ex vivo organotypic neural assay.

    Directory of Open Access Journals (Sweden)

    Ahmed M Meleis

    Full Text Available Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex, a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal.

  8. Different angiogenic phenotypes in primary and secondary glioblastomas.

    Science.gov (United States)

    Karcher, Sibylle; Steiner, Hans-Herbert; Ahmadi, Rezvan; Zoubaa, Saida; Vasvari, Gergely; Bauer, Harry; Unterberg, Andreas; Herold-Mende, Christel

    2006-05-01

    Primary and secondary glioblastomas (pGBM, sGBM) are supposed to evolve through different genetic pathways, including EGF receptor and PDGF and its receptor and thus genes that are involved in tumor-induced angiogenesis. However, whether other angiogenic cytokines are also differentially expressed in these glioblastoma subtypes is not known so far, but this knowledge might be important to optimize an antiangiogenic therapy. Therefore, we studied the expression of several angiogenic cytokines, including VEGF-A, HGF, bFGF, PDGF-AB, PDGF-BB, G-CSF and GM-CSF in pGBMs and sGBMs as well as in gliomas WHO III, the precursor lesions of sGBMs. In tumor tissues, expression of all cytokines was observed albeit with marked differences concerning intensity and distribution pattern. Quantification of the cytokines in the supernatant of 30 tissue-corresponding glioma cultures revealed a predominant expression of VEGF-A in pGBMs and significantly higher expression levels of PDGF-AB in sGBMs. HGF and bFGF were determined in nearly all tumor cultures but with no GBM subtype or malignancy-related differences. Interestingly, GM-CSF and especially G-CSF were produced less frequently by tumor cells. However, GM-CSF secretion occurred together with an increased number of simultaneously secreted cytokines and correlated with a worse patient prognosis and may thus represent a more aggressive angiogenic phenotype. Finally, we confirmed an independent contribution of each tumor-derived cytokine analyzed to tumor-induced vascularization. Our data indicate that an optimal antiangiogenic therapy may require targeting of multiple angiogenic pathways that seem to differ markedly in pGBMs and sGBMs. 2005 Wiley-Liss, Inc.

  9. Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9.

    Science.gov (United States)

    Jackman, Jane E; Montange, Rebecca K; Malik, Harmit S; Phizicky, Eric M

    2003-05-01

    Methylation of tRNA at the N-1 position of guanosine to form m(1)G occurs widely in nature. It occurs at position 37 in tRNAs from all three kingdoms, and the methyltransferase that catalyzes this reaction is known from previous work of others to be critically important for cell growth in Escherichia coli and the yeast Saccharomyces cerevisiae. m(1)G is also widely found at position 9 in eukaryotic tRNAs, but the corresponding methyltransferase was unknown. We have used a biochemical genomics approach with a collection of purified yeast GST-ORF fusion proteins to show that m(1)G(9) formation of yeast tRNA(Gly) is associated with ORF YOL093w, named TRM10. Extracts lacking Trm10p have undetectable levels of m(1)G(9) methyltransferase activity but retain normal m(1)G(37) methyltransferase activity. Yeast Trm10p purified from E. coli quantitatively modifies the G(9) position of tRNA(Gly) in an S-adenosylmethionine-dependent fashion. Trm10p is responsible in vivo for most if not all m(1)G(9) modification of tRNAs, based on two results: tRNA(Gly) purified from a trm10-Delta/trm10-Delta strain is lacking detectable m(1)G; and a primer extension block occurring at m(1)G(9) is removed in trm10-Delta/trm10-Delta-derived tRNAs for all 9 m(1)G(9)-containing species that were testable by this method. There is no obvious growth defect of trm10-Delta/trm10-Delta strains. Trm10p bears no detectable resemblance to the yeast m(1)G(37) methyltransferase, Trm5p, or its orthologs. Trm10p homologs are found widely in eukaryotes and many archaea, with multiple homologs in several metazoans, including at least three in humans.

  10. NOG-hIL-4-Tg, a new humanized mouse model for producing tumor antigen-specific IgG antibody by peptide vaccination.

    Directory of Open Access Journals (Sweden)

    Yoshie Kametani

    Full Text Available Immunodeficient mice transplanted with human peripheral blood mononuclear cells (PBMCs are promising tools to evaluate human immune responses to vaccines. However, these mice usually develop severe graft-versus-host disease (GVHD, which makes estimation of antigen-specific IgG production after antigen immunization difficult. To evaluate antigen-specific IgG responses in PBMC-transplanted immunodeficient mice, we developed a novel NOD/Shi-scid-IL2rγnull (NOG mouse strain that systemically expresses the human IL-4 gene (NOG-hIL-4-Tg. After human PBMC transplantation, GVHD symptoms were significantly suppressed in NOG-hIL-4-Tg compared to conventional NOG mice. In kinetic analyses of human leukocytes, long-term engraftment of human T cells has been observed in peripheral blood of NOG-hIL-4-Tg, followed by dominant CD4+ T rather than CD8+ T cell proliferation. Furthermore, these CD4+ T cells shifted to type 2 helper (Th2 cells, resulting in long-term suppression of GVHD. Most of the human B cells detected in the transplanted mice had a plasmablast phenotype. Vaccination with HER2 multiple antigen peptide (CH401MAP or keyhole limpet hemocyanin (KLH successfully induced antigen-specific IgG production in PBMC-transplanted NOG-hIL-4-Tg. The HLA haplotype of donor PBMCs might not be relevant to the antibody secretion ability after immunization. These results suggest that the human PBMC-transplanted NOG-hIL-4-Tg mouse is an effective tool to evaluate the production of antigen-specific IgG antibodies.

  11. Increased radiosensitivity and radiothermosensitivity of human pancreatic MIA PaCa-2 and U251 glioblastoma cell lines treated with the novel Hsp90 inhibitor NVP-HSP990

    International Nuclear Information System (INIS)

    Milanović, Dušan; Firat, Elke; Grosu, Anca Ligia; Niedermann, Gabriele

    2013-01-01

    Heat shock Protein 90 (Hsp90) is a molecular chaperone that folds, stabilizes, and functionally regulates many cellular proteins involved in oncogenic signaling and in the regulation of radiosensitivity. It is upregulated in response to stress such a heat. Hyperthermia is a potent radiosensitizer, but induction of Hsp90 may potentially limit its efficacy. Our aim was to investigate whether the new Hsp90 inhibitor NVP-HSP990 increases radiosensitivity, thermosensitivity and radiothermosensitivity of human tumor cell lines. U251 glioblastoma and MIA PaCa-2 pancreatic carcinoma cells were used. To determine clonogenic survival, colony forming assays were performed. Cell viability and proliferation were assesed by Trypan blue staining. Cell cycle and apoptosis analyses were performed by flow cytometry. DAPI staining was used to detect mitotic catastrophe. NVP-HSP990 increased the thermosensitivity, radiosensitivity and radio-thermosensitivity of both cell lines in clonogenic assays. 72 hours after irradiation with 4 Gy, a significant reduction in cell number associated with considerable G2/M acumulation and mitotic catastrophe as well as cell death by apoptosis/necrosis was observed. Treatment with NVP-HSP990 strongly sensitized U251 and MIA PaCa-2 cells to hyperthermia and ionizing radiation or combination thereof through augmentation of G2/M arrest, mitotic catastrophe and associated apoptosis

  12. Particle deposition and clearance of atmospheric particles in the human respiratory tract during LACE 98

    Science.gov (United States)

    Bundke, U.; Hänel, G.

    2003-04-01

    During the LACE 98footnote{Lindenberg Aerosol Characterization Experiment, (Germany) 1998} experiment microphysical, chemical and optical properties of atmospheric particles were measured by several groups. (Bundke et al.). The particle deposition and clearance of the particles in the human respiratory tract was calculated using the ICRP (International Commission on Radiological Protection) deposition and clearance model (ICRP 1994). Particle growth as function of relative humidity outside the body was calculated from measurement data using the model introduced by Bundke et al.. Particle growth inside the body was added using a non-equilibrium particle growth model. As a result of the calculations, time series of the total dry particle mass and -size distribution were obtained for all compartments of the human respiratory tract defined by ICRP 1994. The combined ICRP deposition and clearance model was initialized for different probationers like man, woman, children of different ages and several circumstances like light work, sitting, sleeping etc. Keeping the conditions observed during LACE 98 constant a approximation of the aerosol burdens of the different compartments was calculated up to 4 years of exposure and compared to the results from Snipes et al. for the "Phoenix" and "Philadelphia" aerosol. References: footnotesize{ Bundke, U. et al.,it{Aerosol Optical Properties during the Lindenberg Aerosol Characterization Experiment (LACE 98)} ,10.1029/2000JD000188, JGR, 2002 ICRP,it{Human Respiratory Tract Model for Radiological Protection, Bd. ICRP Publication 66}, Annals of the ICRP, 24,1-3, Elsevier Science, Ocford, 1994 Snipes et al. ,it{The 1994 ICRP66 Human Respiratory Tract Model as a Tool for predicting Lung Burdens from Exposure to Environmental Aerosols}, Appl. Occup. Environ. Hyg., 12, 547-553,1997}

  13. LatY136F knock-in mouse model for human IgG4-related disease.

    Science.gov (United States)

    Yamada, Kazunori; Zuka, Masahiko; Ito, Kiyoaki; Mizuguchi, Keishi; Kakuchi, Yasushi; Onoe, Tamehito; Suzuki, Yasunori; Yamagishi, Masakazu; Izui, Shozo; Malissen, Marie; Malissen, Bernard; Kawano, Mitsuhiro

    2018-01-01

    The adaptor protein Linker for activation of T cell (LAT) is a key signaling hub used by the T cell antigen receptor. Mutant mice expressing loss-of-function mutations affecting LAT and including a mutation in which tyrosine 136 is replaced by a phenylalanine (LatY136F) develop lymphoproliferative disorder involving T helper type 2 effector cells capable of triggering a massive polyclonal B cell activation that leads to hypergammaglobulinemia G1 and E and to non-resolving inflammation and autoimmunity. The purpose of this study was to evaluate whether the phenotypes of LatY136F knock-in mice resemble the immunohistopathological features of immunoglobulin G4-related disease (IgG4-RD). LatY136F knock-in mice were sacrificed at 4-20 weeks of age, and pancreas, kidney, salivary gland and lung were obtained. All organs were stained with hematoxylin-eosin and with Azan for estimation of collagen in fibrosis, and the severity scores of inflammation and fibrosis were evaluated. Immunostainings were performed to analyze the types of infiltrating cells. In addition, the effects of corticosteroid treatment on the development of tissue lesions and serum levels of IgG1 were assessed. Tissue lesions characterized by inflammatory mononuclear cell infiltration and fibrosis were detected in pancreas, kidney, and salivary gland starting from 6 weeks of age. Immunostainings showed pronounced infiltration of plasma cells, CD4-positive T cells, and macrophages. Infiltrating plasma cells predominantly expressed IgG1. The extent of inflammation in pancreas and salivary glands was markedly reduced by corticosteroid treatment. LatY136F knock-in mice displayed increased production of Th2-type IgG1 (a homologue of human IgG4) and developed multiple organ tissue lesions reminiscent of those seen in patients with IgG4-RD. Moreover, the development of these tissue lesions was highly sensitive to corticosteroid treatment like in IgG4-RD. For these reasons we consider the LatY136F knock-in mouse

  14. Tumor suppressor WWOX and p53 alterations and drug resistance in glioblastomas

    Directory of Open Access Journals (Sweden)

    Ming-Fu eChiang

    2013-03-01

    Full Text Available Tumor suppressor p53 are frequently mutated in glioblastomas (GBMs and appears to contribute, in part, to resistance to temozolomide and therapeutic drugs. WW domain-containing oxidoreductase WWOX (FOR or WOX1 is a proapoptotic protein and is considered as a tumor suppressor. Loss of WWOX gene expression is frequently seen in malignant cancer cells due to promoter hypermethylation, genetic alterations, and translational blockade. Intriguingly, ectopic expression of wild type WWOX preferentially induces apoptosis in human glioblastoma cells harboring mutant p53. WWOX is known to physically bind and stabilize wild type p53. Here, we provide an overview for the updated knowledge in p53 and WWOX, and postulate a potential scenarios that wild type and mutant p53, or isoforms, modulate the apoptotic function of WWOX. We propose that triggering WWOX activation by therapeutic drugs under p53 functional deficiency is needed to overcome TMZ resistance and induce GBM cell death.

  15. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance

    Science.gov (United States)

    Yip, Stephen; Miao, Jiangyong; Cahill, Daniel P.; Iafrate, A. John; Aldape, Ken; Nutt, Catherine L.; Louis, David N.

    2009-01-01

    Purpose Over the past few years, the alkylating agent temozolomide (TMZ) has become the standard-of-care therapy for patients with glioblastoma, the most common brain tumor. Recently, large-scale cancer genome sequencing efforts have identified a hypermutation phenotype and inactivating MSH6 mismatch repair gene mutations in recurrent, post-TMZ glioblastomas, particularly those growing more rapidly during TMZ treatment. This study aimed to clarify the timing and role of MSH6 mutations in mediating glioblastoma TMZ resistance. Experimental Design MSH6 sequence and microsatellite instability (MSI) status were determined in matched pre- and post-chemotherapy glioblastomas identified by The Cancer Genome Atlas (TCGA) as having post-treatment MSH6 mutations. TMZ-resistant lines were derived in vitro via selective growth under TMZ and the MSH6 gene was sequenced in resistant clones. The role of MSH6 inactivation in mediating resistance was explored using lentiviral shRNA knockdown and MSH6 reconstitution. Results MSH6 mutations were confirmed in post-treatment TCGA glioblastomas but absent in matched pre-treatment tumors. The post-treatment hypermutation phenotype displayed a signature bias toward CpC transitions and was not associated with MSI. In vitro modeling via exposure of an MSH6-wildtype glioblastoma line to TMZ resulted in resistant clones; one clone showed an MSH6 mutation, Thr1219Ile, that had been independently noted in two treated TCGA glioblastomas. Knockdown of MSH6 in the glioblastoma line U251 increased resistance to TMZ cytotoxicity and reconstitution restored cytotoxicity in MSH6-null glioma cells. Conclusions MSH6 mutations are selected for in glioblastomas during TMZ therapy both in vitro and in vivo, and are causally associated with TMZ resistance. PMID:19584161

  16. Dormant glioblastoma cells acquire stem cell characteristics and are differentially affected by Temozolomide and AT101 treatment.

    Science.gov (United States)

    Adamski, Vivian; Hempelmann, Annika; Flüh, Charlotte; Lucius, Ralph; Synowitz, Michael; Hattermann, Kirsten; Held-Feindt, Janka

    2017-12-08

    Cellular dormancy is defined as a state in which cells enter quiescence driven by intrinsic or extrinsic factors, and striking parallels exist between the concept of cellular dormancy in malignancies and the cancer stem cell theory. We showed now that the proven dormancy markers insulin-like growth factor-binding protein 5, ephrin receptor A5 and histone cluster 1 H2B family member K were expressed in human glioblastomas in situ , were located in single tumor cells, and could be co-stained with each other and with the stem cell markers krüppel-like factor 4, octamer binding transcription factor 4 and sex determining region Y-box 2. Human non-stem glioblastoma cell lines and primary cultures were characterized by expression of individual, cell-type specific dormancy- and stemness-associated markers, which were (up)regulated and could be co-stained in a cell-type specific manner upon Temozolomide-induced dormancy in vitro . The induction patterns of dormancy- and stemness-associated markers were reflected by cell-type specific responses to Temozolomide-induced and combined Temozolomide/AT101-mediated cytotoxicity in different glioblastoma cell lines and primary cultures in vitro , and accompanied by higher self-renewal capacity and lower TMZ-sensitivity of Temozolomide-pretreated cells. We postulate that a better understanding of the dormant state of tumor cells is essential to further improve efficiency of treatment.

  17. HLA class I is most tightly linked to levels of tapasin compared with other antigen-processing proteins in glioblastoma.

    Science.gov (United States)

    Thuring, Camilla; Follin, Elna; Geironson, Linda; Freyhult, Eva; Junghans, Victoria; Harndahl, Mikkel; Buus, Søren; Paulsson, Kajsa M

    2015-09-15

    Tumour cells can evade the immune system by dysregulation of human leukocyte antigens (HLA-I). Low quantity and/or altered quality of HLA-I cell surface expression is the result of either HLA-I alterations or dysregulations of proteins of the antigen-processing machinery (APM). Tapasin is an APM protein dedicated to the maturation of HLA-I and dysregulation of tapasin has been linked to higher malignancy in several different tumours. We studied the expression of APM components and HLA-I, as well as HLA-I tapasin-dependency profiles in glioblastoma tissues and corresponding cell lines. Tapasin displayed the strongest correlation to HLA-I heavy chain but also clustered with β2-microglobulin, transporter associated with antigen processing (TAP) and LMP. Moreover, tapasin also correlated to survival of glioblastoma patients. Some APM components, for example, TAP1/TAP2 and LMP2/LMP7, showed variable but coordinated expression, whereas ERAP1/ERAP2 displayed an imbalanced expression pattern. Furthermore, analysis of HLA-I profiles revealed variable tapasin dependence of HLA-I allomorphs in glioblastoma patients. Expression of APM proteins is highly variable between glioblastomas. Tapasin stands out as the APM component strongest correlated to HLA-I expression and we proved that HLA-I profiles in glioblastoma patients include tapasin-dependent allomorphs. The level of tapasin was also correlated with patient survival time. Our results support the need for individualisation of immunotherapy protocols.

  18. MINA controls proliferation and tumorigenesis of glioblastoma by epigenetically regulating cyclins and CDKs via H3K9me3 demethylation.

    Science.gov (United States)

    Huang, M-Y; Xuan, F; Liu, W; Cui, H-J

    2017-01-19

    It is generally known that histone demethylases regulate gene transcription by altering the methylate status on histones, but their roles in cancers and the underlying molecular mechanisms still remain unclear. MYC-induced nuclear antigen (MINA) is reported to be a histone demethylase and highly expressed in many cancers. Here, for the first time, we show that MINA is involved in glioblastoma carcinogenesis and reveal the probable mechanisms of it in cell-cycle control. Kaplan-Meier analysis of progression-free survival showed that high MINA expression was strongly correlated with poor outcome and advancing tumor stage. MINA knockdown significantly repressed the cell proliferation and tumorigenesis abilities of glioblastoma cells in vitro and in vivo that were rescued by overexpressing the full-length MINA afterwards. Microarray analysis after knockdown of MINA revealed that MINA probably regulated glioblastoma carcinogenesis through the predominant cell-cycle pathways. Further investigation showed that MINA deficiency led to a cell-cycle arrest in G1 and G2 phases. And among the downstream genes, we found that cyclins and cyclin-dependent kinases were directly activated by MINA via the demethylation of H3K9me3.

  19. Methylation-mediated deamination of 5-methylcytosine appears to give rise to mutations causing human inherited disease in CpNpG trinucleotides, as well as in CpG dinucleotides

    Directory of Open Access Journals (Sweden)

    Cooper David N

    2010-08-01

    Full Text Available Abstract The cytosine-guanine (CpG dinucleotide has long been known to be a hotspot for pathological mutation in the human genome. This hypermutability is related to its role as the major site of cytosine methylation with the attendant risk of spontaneous deamination of 5-methylcytosine (5mC to yield thymine. Cytosine methylation, however, also occurs in the context of CpNpG sites in the human genome, an unsurprising finding since the intrinsic symmetry of CpNpG renders it capable of supporting a semi-conservative model of replication of the methylation pattern. Recently, it has become clear that significant DNA methylation occurs in a CpHpG context (where H = A, C or T in a variety of human somatic tissues. If we assume that CpHpG methylation also occurs in the germline, and that 5mC deamination can occur within a CpHpG context, then we might surmise that methylated CpHpG sites could also constitute mutation hotspots causing human genetic disease. To test this postulate, 54,625 missense and nonsense mutations from 2,113 genes causing inherited disease were retrieved from the Human Gene Mutation Database http://www.hgmd.org. Some 18.2 per cent of these pathological lesions were found to be C → T and G → A transitions located in CpG dinucleotides (compatible with a model of methylation-mediated deamination of 5mC, an approximately ten-fold higher proportion than would have been expected by chance alone. The corresponding proportion for the CpHpG trinucleotide was 9.9 per cent, an approximately two-fold higher proportion than would have been expected by chance. We therefore estimate that ~5 per cent of missense/nonsense mutations causing human inherited disease may be attributable to methylation-mediated deamination of 5mC within a CpHpG context.

  20. Detection in Japan of an equine-like G3P[8] reassortant rotavirus A strain that is highly homologous to European strains across all genome segments.

    Science.gov (United States)

    Kikuchi, Wakako; Nakagomi, Toyoko; Gauchan, Punita; Agbemabiese, Chantal Ama; Noguchi, Atsuko; Nakagomi, Osamu; Takahashi, Tsutomu

    2018-03-01

    Equine-like G3P[8] rotavirus A strains with DS-1-like backbone genes have emerged since 2013. An equine-like RVA/Human-wt/JPN/15R429/2015/G3P[8] strain possessing I2-R2-C2-M2-A2-N2-T2-E2-H2 was detected in Japan in 2015. Its VP7 gene was ≥ 99.3% identical to those of equine-like G3P[4] strains detected in Japan, and the remaining 10 genes were 98.6-99.8% identical to G1P[8] double-gene reassortants detected in Japan, Thailand and the Philippines. Thus, 15R429 was likely generated through reassortment between the equine-like G3P[4] and G1P[8] reassortant strains. Notably, 15R429 was 98.5-99.8% identical across all 11 genes of the equine-like G3P[8] strains detected in Spain and Hungary in 2015.

  1. Energy conditions in f(G,T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Ikram, Ayesha [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-11-15

    The aim of this paper is to introduce a new modified gravity theory named f(G,T) gravity (G and T are the Gauss-Bonnet invariant and trace of the energy-momentum tensor, respectively) and investigate energy conditions for two reconstructed models in the context of FRW universe. We formulate general field equations, divergence of energy-momentum tensor, equation of motion for test particles as well as corresponding energy conditions. The massive test particles follow non-geodesic lines of geometry due to the presence of an extra force. We express the energy conditions in terms of cosmological parameters like the deceleration, jerk, and snap parameters. The reconstruction technique is applied to this theory using de Sitter and power-law cosmological solutions. We analyze the energy bounds and obtain feasible constraints on the free parameters. (orig.)

  2. DNA loop domain organization in nucleoids from cells of different types.

    Science.gov (United States)

    Afanasieva, Katerina; Chopei, Marianna; Lozovik, Alexandra; Semenova, Anastasia; Lukash, Lyubov; Sivolob, Andrei

    2017-01-29

    The loop domain organization of chromatin plays an important role in transcription regulation and thus may be assumed to vary in cells of different types. We investigated the kinetics of DNA loop migration during single cell gel electrophoresis (the comet assay) for nucleoids obtained from human lymphocytes, lymphoblasts and glioblastoma T98G cells. The results confirm our previous observation that there are three parts of DNA in nucleoids: DNA on the nucleoid surface, loops up to ∼150 kb inside the nucleoid, and larger loops that cannot migrate. However, the relative amounts of the three parts were found to be very different for different cell types. The distributions of the loop length up to 150 kb were shown to be exponential, with the distribution parameter, the loop density, to be dependent on the cell type. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. P53-dependent antiproliferative and pro-apoptotic effects of trichostatin A (TSA) in glioblastoma cells.

    Science.gov (United States)

    Bajbouj, K; Mawrin, C; Hartig, R; Schulze-Luehrmann, J; Wilisch-Neumann, A; Roessner, A; Schneider-Stock, R

    2012-05-01

    Glioblastomas are known to be highly chemoresistant, but HDAC inhibitors (HDACi) have been shown to be of therapeutic relevance for this aggressive tumor type. We treated U87 glioblastoma cells with trichostatin A (TSA) to define potential epigenetic targets for HDACi-mediated antitumor effects. Using a cDNA array analysis covering 96 cell cycle genes, cyclin-dependent kinase inhibitor p21(WAF1) was identified as the major player in TSA-induced cell cycle arrest. TSA slightly inhibited proliferation and viability of U87 cells, cumulating in a G1/S cell cycle arrest. This effect was accompanied by a significant up-regulation of p53 and its transcriptional target p21(WAF1) and by down-regulation of key G1/S regulators, such as cdk4, cdk6, and cyclin D1. Nevertheless, TSA did not induce apoptosis in U87 cells. As expected, TSA promoted the accumulation of total acetylated histones H3 and H4 and a decrease in endogenous HDAC activity. Characterizing the chromatin modulation around the p21(WAF1) promoter after TSA treatment using chromatin immunoprecipitation, we found (1) a release of HDAC1, (2) an increase of acetylated H4 binding, and (3) enhanced recruitment of p53. p53-depleted U87 cells showed an abrogation of the G1/S arrest and re-entered the cell cycle. Immunofluorescence staining revealed that TSA induced the nuclear translocation of p21(WAF1) verifying a cell cycle arrest. On the other hand, a significant portion of p21(WAF1) was present in the cytoplasmic compartment causing apoptosis resistance. Furthermore, TSA-treated p53-mutant cell line U138 failed to show an induction in p21(WAF1), showed a deficient G2/M checkpoint, and underwent mitotic catastrophe. We suggest that HDAC inhibition in combination with other clinically used drugs may be considered an effective strategy to overcome chemoresistance in glioblastoma cells.

  4. Key concepts in glioblastoma therapy

    DEFF Research Database (Denmark)

    Bartek, Jiri; Ng, Kimberly; Bartek, Jiri

    2012-01-01

    principles that drive the formulation of therapeutic strategies in glioblastoma. Specifically, the concepts of tumour heterogeneity, oncogene addiction, non-oncogene addiction, tumour initiating cells, tumour microenvironment, non-coding sequences and DNA damage response will be reviewed....

  5. Early presentation of primary glioblastoma.

    Science.gov (United States)

    Faguer, R; Tanguy, J-Y; Rousseau, A; Clavreul, A; Menei, P

    2014-08-01

    Clinical and neuroimaging findings of glioblastomas (GBM) at an early stage have rarely been described and those tumors are most probably under-diagnosed. Furthermore, their genetic alterations, to our knowledge, have never been previously reported. We report the clinical as well as neuroimaging findings of four early cases of patients with GBM. In our series, early stage GBM occurred at a mean age of 57 years. All patients had seizures as their first symptom. In all early stages, MRI showed a hyperintense signal on T2-weighted sequences and an enhancement on GdE-T1WI sequences. A hyperintense signal on diffusion sequences with a low ADC value was also found. These early observed occurrences of GBM developed rapidly and presented the MRI characteristics of classic GBM within a few weeks. The GBM size was multiplied by 32 in one month. Immunohistochemical analysis indicated the de novo nature of these tumors, i.e. absence of mutant IDH1 R132H protein expression, which is a diagnostic marker of low-grade diffuse glioma and secondary GBM. A better knowledge of early GBM presentation would allow a more suitable management of the patients and may improve their prognosis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Radiation induced sarcoma after treatment of glioblastoma: case report

    International Nuclear Information System (INIS)

    Rosa, Victor Domingos Lisita; Anjos, Caroline Souza dos; Candido, Priscila Barile Marchi; Dias Junior, Antonio Soares; Santos, Evandro Airton Sordi dos; Godoy, Antonio Carlos Cavalcante; Saggioro, Fabiano P.; Carlotti Junior, Carlos Gilberto; Oliveira, Harley Francisco de; Peria, Fernanda Maris

    2016-01-01

    Introduction: Glioblastoma multiform is the most lethal central nervous system neoplasm, with a median survival of around 13 months and the worst prognosis among all gliomas. The therapeutic approach of glioblastoma consists in neurosurgery with maximum possible resection of tumor volume, followed by radiotherapy and chemotherapy. Radiotherapy reduces the risk of tumor recurrence through direct and indirect damage to tumor deoxyribonucleic acid. The long-term effects of radiation therapy include tissue necrosis, vasculopathy, and radiation-induced neoplasia. The most reported secondary intracranial malignant tumors include meningiomas, gliomas, and sarcomas. The latency period between skull radiotherapy and the appearance of radioinduced lesions varies in the literature from six months to 47 years, with an average of 18.7 years. Case report: The present report describes the appearance of high-grade spindle cell sarcoma after ten months in a patient who received glioblastoma treatment at Hospital das Clínicas of Ribeirão Preto of the University of São Paulo. Conclusion: The rarity of this association is probably due to the poor survival of patients with glioblastoma, thus limiting the time to development of secondary neoplasia

  7. LuIII parvovirus selectively and efficiently targets, replicates in, and kills human glioma cells.

    Science.gov (United States)

    Paglino, Justin C; Ozduman, Koray; van den Pol, Anthony N

    2012-07-01

    Because productive infection by parvoviruses requires cell division and is enhanced by oncogenic transformation, some parvoviruses may have potential utility in killing cancer cells. To identify the parvovirus(es) with the optimal oncolytic effect against human glioblastomas, we screened 12 parvoviruses at a high multiplicity of infection (MOI). MVMi, MVMc, MVM-G17, tumor virus X (TVX), canine parvovirus (CPV), porcine parvovirus (PPV), rat parvovirus 1A (RPV1A), and H-3 were relatively ineffective. The four viruses with the greatest oncolytic activity, LuIII, H-1, MVMp, and MVM-G52, were tested for the ability, at a low MOI, to progressively infect the culture over time, causing cell death at a rate higher than that of cell proliferation. LuIII alone was effective in all five human glioblastomas tested. H-1 progressively infected only two of five; MVMp and MVM-G52 were ineffective in all five. To investigate the underlying mechanism of LuIII's phenotype, we used recombinant parvoviruses with the LuIII capsid replacing the MVMp capsid or with molecular alteration of the P4 promoter. The LuIII capsid enhanced efficient replication and oncolysis in MO59J gliomas cells; other gliomas tested required the entire LuIII genome to exhibit enhanced infection. LuIII selectively infected glioma cells over normal glial cells in vitro. In mouse models, human glioblastoma xenografts were selectively infected by LuIII when administered intratumorally; LuIII reduced tumor growth by 75%. LuIII also had the capacity to selectively infect subcutaneous or intracranial gliomas after intravenous inoculation. Intravenous or intracranial LuIII caused no adverse effects. Intracranial LuIII caused no infection of mature mouse neurons or glia in vivo but showed a modest infection of developing neurons.

  8. Mutation in WDR4 impairs tRNA m(7)G46 methylation and causes a distinct form of microcephalic primordial dwarfism.

    Science.gov (United States)

    Shaheen, Ranad; Abdel-Salam, Ghada M H; Guy, Michael P; Alomar, Rana; Abdel-Hamid, Mohamed S; Afifi, Hanan H; Ismail, Samira I; Emam, Bayoumi A; Phizicky, Eric M; Alkuraya, Fowzan S

    2015-09-28

    Primordial dwarfism is a state of extreme prenatal and postnatal growth deficiency, and is characterized by marked clinical and genetic heterogeneity. Two presumably unrelated consanguineous families presented with an apparently novel form of primordial dwarfism in which severe growth deficiency is accompanied by distinct facial dysmorphism, brain malformation (microcephaly, agenesis of corpus callosum, and simplified gyration), and severe encephalopathy with seizures. Combined autozygome/exome analysis revealed a novel missense mutation in WDR4 as the likely causal variant. WDR4 is the human ortholog of the yeast Trm82, an essential component of the Trm8/Trm82 holoenzyme that effects a highly conserved and specific (m(7)G46) methylation of tRNA. The human mutation and the corresponding yeast mutation result in a significant reduction of m(7)G46 methylation of specific tRNA species, which provides a potential mechanism for primordial dwarfism associated with this lesion, since reduced m(7)G46 modification causes a growth deficiency phenotype in yeast. Our study expands the number of biological pathways underlying primordial dwarfism and adds to a growing list of human diseases linked to abnormal tRNA modification.

  9. Refining prognostic stratification of human papillomavirus-related oropharyngeal squamous cell carcinoma: different prognosis between T1 and T2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Min; Lee, Sang Wook; Park, Sun Min [Dept. of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); and others

    2017-09-15

    To validate the 8th edition of the American Joint Committee on Cancer/Union for International Cancer Control (AJCC/UICC) TNM staging system for human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OPSCC) and investigate whether a modified classification better reflects the prognosis. Medical records of patients diagnosed with non-metastatic HPV-related OPSCC between 2010 and 2016 at a single institution were retrospectively reviewed. HPV status was determined by immunohistochemical analysis of p16 and/or HPV DNA polymerase chain reaction (PCR). We reclassified TNM stage T0-1 and N0-1 as group A, T2-3 or N2 as B, and T4 or N3 as C. Survival analysis according to 8th AJCC/UICC TNM staging and the modified classification was performed. Of 383 OPSCC patients, 211 were positive for HPV DNA PCR or p16. After exclusion, 184 patients were included in this analysis. Median age was 56 years (range, 31 to 81 years). Most primary tumors were in the palatine tonsil (148 tumors, 80%). The eighth AJCC/UICC TNM classification could not differentiate between stage I and II (p = 0.470) or II and III (p = 0.209). Applying modified grouping, the 3-year overall survival rate of group A was significantly higher than that of group B and C (98% vs. 91%, p = 0.039 and 98% vs. 78%, p < 0.001, respectively). Differentiation between group B and C was marginally significant (p = 0.053). The 8th AJCC/UICC TNM staging system did not clearly distinguish the prognosis of stage II from that of other stages. Including the T2N0-1 group in stage II may improve prognostic stratification.

  10. Adoptive Cell Therapies for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Kevin James Bielamowicz

    2013-11-01

    Full Text Available Glioblastoma (GBM is the most common and most aggressive primary brain malignancy and, as it stands, is virtually incurable. With the current standard-of-care, maximum feasible surgical resection followed by radical radiotherapy and adjuvant temozolomide, survival rates are at a median of 14.6 months from diagnosis in molecularly unselected patients(1. Collectively, the current knowledge suggests that the continued tumor growth and survival is in part due to failure to mount an effective immune response. While this tolerance is subtended by the tumor being utterly self, it is to a great extent due to local and systemic immune compromise mediated by the tumor. Different cell modalities including lymphokine-activated killer (LAK cells, natural killer (NK cells, cytotoxic T lymphocytes (CTL, and transgenic chimeric antigen receptor (CAR- or αβ T cell receptor (TCR grafted T cells are being explored to recover and or redirect the specificity of the cellular arm of the immune system towards the tumor complex. Promising phase I/II trials of such modalities have shown early indications of potential efficacy while maintaining a favorable toxicity profile. Efficacy will need to be formally tested in phase II/III clinical trials. Given the high morbidity and mortality of GBM, it is imperative to further investigate and possibly integrate such novel cell-based therapies into the current standards-of-care and herein we collectively assess and critique the state-of-the-knowledge pertaining to these efforts.

  11. Adoptive Cell Therapies for Glioblastoma

    Science.gov (United States)

    Bielamowicz, Kevin; Khawja, Shumaila; Ahmed, Nabil

    2013-01-01

    Glioblastoma (GBM) is the most common and most aggressive primary brain malignancy and, as it stands, is virtually incurable. With the current standard of care, maximum feasible surgical resection followed by radical radiotherapy and adjuvant temozolomide, survival rates are at a median of 14.6 months from diagnosis in molecularly unselected patients (1). Collectively, the current knowledge suggests that the continued tumor growth and survival is in part due to failure to mount an effective immune response. While this tolerance is subtended by the tumor being utterly “self,” it is to a great extent due to local and systemic immune compromise mediated by the tumor. Different cell modalities including lymphokine-activated killer cells, natural killer cells, cytotoxic T lymphocytes, and transgenic chimeric antigen receptor or αβ T cell receptor grafted T cells are being explored to recover and or redirect the specificity of the cellular arm of the immune system toward the tumor complex. Promising phase I/II trials of such modalities have shown early indications of potential efficacy while maintaining a favorable toxicity profile. Efficacy will need to be formally tested in phase II/III clinical trials. Given the high morbidity and mortality of GBM, it is imperative to further investigate and possibly integrate such novel cell-based therapies into the current standards-of-care and herein we collectively assess and critique the state-of-the-knowledge pertaining to these efforts. PMID:24273748

  12. Internet of things (IoT) in 5G mobile technologies

    CERN Document Server

    Mastorakis, George; Batalla, Jordi

    2016-01-01

    This book reports on the latest advances in the modeling, analysis and efficient management of information in Internet of Things (IoT) applications in the context of 5G access technologies. It presents cutting-edge applications made possible by the implementation of femtocell networks and millimeter wave communications solutions, examining them from the perspective of the universally and constantly connected IoT. Moreover, it describes novel architectural approaches to the IoT and presents the new framework possibilities offered by 5G mobile networks, including middleware requirements, node-centrality and the location of extensive functionalities at the edge. By providing researchers and professionals with a timely snapshot of emerging mobile communication systems, and highlighting the main pitfalls and potential solutions, the book fills an important gap in the literature and will foster the further developments of 5G hosting IoT devices.

  13. Emerging anisotropic compact stars in f(G,T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M.F.; Ahmad, Mushtaq [National University of Computer and Emerging Sciences, Lahore (Pakistan)

    2017-10-15

    The possible emergence of compact stars has been investigated in the recently introduced modified Gauss-Bonnet f(G,T) gravity, where G is the Gauss-Bonnet term and T is the trace of the energy-momentum tensor (Sharif and Ikram, Eur Phys J C 76:640, 2016). Specifically, for this modified f(G,T) theory, the analytic solutions of Krori and Barua have been applied to an anisotropic matter distribution. To determine the unknown constants appearing in the Krori and Barua metric, the well-known three models of the compact stars, namely 4U1820-30, Her X-I, and SAX J 1808.4-3658 have been used. The analysis of the physical behaviour of the compact stars has been presented and the physical features like energy density and pressure, energy conditions, static equilibrium, stability, measure of anisotropy, and regularity of the compact stars, have been discussed. (orig.)

  14. The effect of combining recombinant human tumor necrosis factor-alpha with local radiation on tumor control probability of a human glioblastoma multiforme xenograft in nude mice

    International Nuclear Information System (INIS)

    Huang, Peigen; Allam, Ayman; Perez, Luis A.; Taghian, Alphonse; Freeman, Jill; Suit, Herman D.

    1995-01-01

    Purpose: To evaluate the antitumor activity of recombinant human tumor necrosis factor-alpha (rHuTNF-α) on a human glioblastoma multiforme (U87) xenograft in nude mice, and to study the effect of combining rHuTNF-α with local radiation on the tumor control probability of this tumor model. Methods and Materials: U87 xenograft was transplanted SC into the right hindleg of NCr/Sed nude mice (7-8 weeks old, male). When tumors reached a volume of about 110 mm 3 , mice were randomly assigned to treatment: rHuTNF-α alone compared with normal saline control; or local radiation plus rHuTNF-α vs. local radiation plus normal saline. Parameters of growth delay, volume doubling time, percentage of necrosis, and cell loss factor were used to assess the antitumor effects of rHuTNF-α on this tumor. The TCD 50 (tumor control dose 50%) was used as an endpoint to determine the effect of combining rHuTNF-α with local radiation. Results: Tumor growth in mice treated with a dose of 150 μg/kg body weight rHuTNF-α, IP injection daily for 7 consecutive days, was delayed about 8 days compared to that in controls. Tumors in the treatment group had a significantly longer volume doubling time, and were smaller in volume and more necrotic than matched tumors in control group. rHuTNF-α also induced a 2.3 times increase of cell loss factor. The administration of the above-mentioned dose of rHuTNF-α starting 24 h after single doses of localized irradiation under hypoxic condition, resulted in a significant reduction in TCD 50 from the control value of 60.9 Gy to 50.5 Gy (p 50 value in the treatment vs. the control groups

  15. Rapid progression of gliomatosis cerebri to secondary glioblastoma, factors that affects the progression rate: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Yu, In Kyu; Kim, Seung Min; Kim, Joo Heon; Lee, Seung Hoon; Lee, Seung Yeon [Eulji University Hospital, Daejeon (Korea, Republic of)

    2017-03-15

    Glioblastomas may develop de novo or through progression from low-grade or anaplastic astrocytomas. The term 'primary glioblastoma' refers to a glioblastoma that lacks a precursor lesion and has a clinical history of less than three months. On the other hand, the term 'secondary glioblastoma' indicates that the glioblastoma has progressed from a low-grade tumor after a long latency period and often manifests in younger patients. These subtypes of glioblastoma develop via different genetic pathways, and they differ in prognosis and response to therapy. Thus, differential diagnosis of these subtypes and prediction of the factors that affect the progression from low-grade diffuse astrocytoma to secondary glioblastoma would be clinically very important. We present a rare case of secondary glioblastoma, which developed only three months after the follow up imaging evaluations, with a history of low grade glioma, and present the factors that cause rapid progression.

  16. Angiotensinogen and HLA class II predict bevacizumab response in recurrent glioblastoma patients

    DEFF Research Database (Denmark)

    Urup, Thomas; Michaelsen, Signe Regner; Olsen, Lars Rønn

    2016-01-01

    Background: Bevacizumab combination therapy is among the most frequently used treatments in recurrent glioblastoma and patients who achieve response to bevacizumab have improved survival as well as quality of life. Accordingly, the aim of this study was to identify predictive biomarkers for bevac......Background: Bevacizumab combination therapy is among the most frequently used treatments in recurrent glioblastoma and patients who achieve response to bevacizumab have improved survival as well as quality of life. Accordingly, the aim of this study was to identify predictive biomarkers...... for bevacizumab response in recurrent glioblastoma patients. Methods: The study included a total of 82 recurrent glioblastoma patients treated with bevacizumab combination therapy whom were both response and biomarker evaluable. Gene expression of tumor tissue was analyzed by using a customized Nano...

  17. Endothelial nitric oxide synthase polymorphism G298T in ...

    Indian Academy of Sciences (India)

    Supplementary data: Endothelial nitric oxide synthase polymorphism G298T in association with oxidative DNA damage in coronary atherosclerosis. Rajesh G. Kumar, Mrudula K. Spurthi, Kishore G. Kumar, Sanjib K. Sahu and Surekha H. Rani. J. Genet. 91, 349–352. Table 1. The demographic and clinical data of the CHD ...

  18. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype

    Science.gov (United States)

    Gabrusiewicz, Konrad; Rodriguez, Benjamin; Wei, Jun; Hashimoto, Yuuri; Healy, Luke M.; Maiti, Sourindra N.; Wang, Qianghu; Elakkad, Ahmed; Liebelt, Brandon D.; Yaghi, Nasser K.; Ezhilarasan, Ravesanker; Huang, Neal; Weinberg, Jeffrey S.; Prabhu, Sujit S.; Rao, Ganesh; Sawaya, Raymond; Langford, Lauren A.; Bruner, Janet M.; Fuller, Gregory N.; Bar-Or, Amit; Li, Wei; Colen, Rivka R.; Curran, Michael A.; Bhat, Krishna P.; Antel, Jack P.; Cooper, Laurence J.; Sulman, Erik P.; Heimberger, Amy B.

    2016-01-01

    Glioblastomas are highly infiltrated by diverse immune cells, including microglia, macrophages, and myeloid-derived suppressor cells (MDSCs). Understanding the mechanisms by which glioblastoma-associated myeloid cells (GAMs) undergo metamorphosis into tumor-supportive cells, characterizing the heterogeneity of immune cell phenotypes within glioblastoma subtypes, and discovering new targets can help the design of new efficient immunotherapies. In this study, we performed a comprehensive battery of immune phenotyping, whole-genome microarray analysis, and microRNA expression profiling of GAMs with matched blood monocytes, healthy donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1, M2a, M2c macrophages. Glioblastoma patients had an elevated number of monocytes relative to healthy donors. Among CD11b+ cells, microglia and MDSCs constituted a higher percentage of GAMs than did macrophages. GAM profiling using flow cytometry studies revealed a continuum between the M1- and M2-like phenotype. Contrary to current dogma, GAMs exhibited distinct immunological functions, with the former aligned close to nonpolarized M0 macrophages. PMID:26973881

  19. Daily Tracking of Glioblastoma Resection Cavity, Cerebral Edema, and Tumor Volume with MRI-Guided Radiation Therapy.

    Science.gov (United States)

    Mehta, Shahil; Gajjar, Shefali R; Padgett, Kyle R; Asher, David; Stoyanova, Radka; Ford, John C; Mellon, Eric A

    2018-03-19

    Radiation therapy (RT) plays a critical role in the treatment of glioblastoma. Studies of brain imaging during RT for glioblastoma have demonstrated changes in the brain during RT. However, frequent or daily utilization of standalone magnetic resonance imaging (MRI) scans during RT have limited feasibility. The recent release of the tri-cobalt-60 MRI-guided RT (MR-IGRT) device (ViewRay MRIdian, Cleveland, OH) allows for daily brain MRI for the RT setup. Daily MRI of three postoperative patients undergoing RT and temozolomide for glioblastoma over a six-week course allowed for the identification of changes to the cavity, edema, and visible tumor on a daily basis. The volumes and dimensions of the resection cavities, edema, and T2-hyperintense tumor were measured. A general trend of daily decreases in cavity measurements was observed in all patients. For the one patient with edema, a trend of daily increases followed by a trend of daily decreases were observed. These results suggest that daily MRI could be used for onboard resimulation and adaptive RT for future fluctuations in the sizes of brain tumors, cavities, or cystic components. This could improve tumor targeting and reduce RT of healthy brain tissue.

  20. A conceptually new treatment approach for relapsed glioblastoma: Coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care

    Science.gov (United States)

    Kast, Richard E.; Boockvar, John A.; Brüning, Ansgar; Cappello, Francesco; Chang, Wen-Wei; Cvek, Boris; Dou, Q. Ping; Duenas-Gonzalez, Alfonso; Efferth, Thomas; Focosi, Daniele; Ghaffari, Seyed H.; Karpel-Massler, Georg; Ketola, Kirsi; Khoshnevisan, Alireza; Keizman, Daniel; Magné, Nicolas; Marosi, Christine; McDonald, Kerrie; Muñoz, Miguel; Paranjpe, Ameya; Pourgholami, Mohammad H.; Sardi, Iacopo; Sella, Avishay; Srivenugopal, Kalkunte S.; Tuccori, Marco; Wang, Weiguang; Wirtz, Christian R.; Halatsch, Marc-Eric

    2013-01-01

    To improve prognosis in recurrent glioblastoma we developed a treatment protocol based on a combination of drugs not traditionally thought of as cytotoxic chemotherapy agents but that have a robust history of being well-tolerated and are already marketed and used for other non-cancer indications. Focus was on adding drugs which met these criteria: a) were pharmacologically well characterized, b) had low likelihood of adding to patient side effect burden, c) had evidence for interfering with a recognized, well-characterized growth promoting element of glioblastoma, and d) were coordinated, as an ensemble had reasonable likelihood of concerted activity against key biological features of glioblastoma growth. We found nine drugs meeting these criteria and propose adding them to continuous low dose temozolomide, a currently accepted treatment for relapsed glioblastoma, in patients with recurrent disease after primary treatment with the Stupp Protocol. The nine adjuvant drug regimen, Coordinated Undermining of Survival Paths, CUSP9, then are aprepitant, artesunate, auranofin, captopril, copper gluconate, disulfiram, ketoconazole, nelfinavir, sertraline, to be added to continuous low dose temozolomide. We discuss each drug in turn and the specific rationale for use- how each drug is expected to retard glioblastoma growth and undermine glioblastoma's compensatory mechanisms engaged during temozolomide treatment. The risks of pharmacological interactions and why we believe this drug mix will increase both quality of life and overall survival are reviewed. PMID:23594434

  1. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    Science.gov (United States)

    Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina

    2004-03-15

    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.

  2. Bioactive form of resveratrol in glioblastoma cells and its safety for normal brain cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu

    2013-05-01

    Full Text Available ABSTRACTBackground: Resveratrol, a plant polyphenol existing in grapes and many other natural foods, possesses a wide range of biological activities including cancer prevention. It has been recognized that resveratrol is intracellularly biotransformed to different metabolites, but no direct evidence has been available to ascertain its bioactive form because of the difficulty to maintain resveratrol unmetabolized in vivo or in vitro. It would be therefore worthwhile to elucidate the potential therapeutic implications of resveratrol metabolism using a reliable resveratrol-sensitive cancer cells.Objective: To identify the real biological form of trans-resveratrol and to evaluate the safety of the effective anticancer dose of resveratrol for the normal brain cells.Methods: The samples were prepared from the condition media and cell lysates of human glioblastoma U251 cells, and were purified by solid phase extraction (SPE. The samples were subjected to high performance liquid chromatography (HPLC and liquid chromatography/tandem mass spectrometry (LC/MS analysis. According to the metabolite(s, trans-resveratrol was biotransformed in vitro by the method described elsewhere, and the resulting solution was used to treat U251 cells. Meanwhile, the responses of U251 and primarily cultured rat normal brain cells (glial cells and neurons to 100μM trans-resveratrol were evaluated by multiple experimental methods.Results: The results revealed that resveratrol monosulfate was the major metabolite in U251 cells. About half fraction of resveratrol monosulfate was prepared in vitro and this trans-resveratrol and resveratrol monosulfate mixture showed little inhibitory effect on U251 cells. It is also found that rat primary brain cells (PBCs not only resist 100μM but also tolerate as high as 200μM resveratrol treatment.Conclusions: Our study thus demonstrated that trans-resveratrol was the bioactive form in glioblastoma cells and, therefore, the biotransforming

  3. High Quality Draft Genomes of the Type Strains Geobacillus thermocatenulatus DSM 730T, G. uzenensis DSM 23175T And Parageobacillus galactosidasius DSM 18751T.

    Science.gov (United States)

    Ramaloko, Winnie Thabisa; Koen, Nadine; Polliack, Shamara; Aliyu, Habibu; Lebre, Pedro Humberto; Mohr, Teresa; Oswald, Florian; Zwick, Michaela; Zeigler, Daniel Ray; Neumann, Anke; Syldatk, Christoph; Cowan, Don Arthur; De Maayer, Pieter

    2018-01-01

    The thermophilic 'Geobacilli' are important sources of thermostable enzymes and other biotechnologically relevant macromolecules. The present work reports the high quality draft genome sequences of previously unsequenced type strains of Geobacillus uzenensis (DSM 23175 T ), G. thermocatenulatus (DSM 730 T ) and Parageobacillus galactosidasius (DSM 18751 T ). Phylogenomic analyses revealed that DSM 18751 T and DSM 23175 T represent later heterotypic synonyms of P. toebii and G. subterraneus , respectively, while DSM 730 T represents the type strain for the species G. thermocatenulatus . These genome sequences will contribute towards a deeper understanding of the ecological and biological diversity and the biotechnological exploitation of the 'geobacilli'.

  4. T-cell receptor transfer into human T cells with ecotropic retroviral vectors.

    Science.gov (United States)

    Koste, L; Beissert, T; Hoff, H; Pretsch, L; Türeci, Ö; Sahin, U

    2014-05-01

    Adoptive T-cell transfer for cancer immunotherapy requires genetic modification of T cells with recombinant T-cell receptors (TCRs). Amphotropic retroviral vectors (RVs) used for TCR transduction for this purpose are considered safe in principle. Despite this, TCR-coding and packaging vectors could theoretically recombine to produce replication competent vectors (RCVs), and transduced T-cell preparations must be proven free of RCV. To eliminate the need for RCV testing, we transduced human T cells with ecotropic RVs so potential RCV would be non-infectious for human cells. We show that transfection of synthetic messenger RNA encoding murine cationic amino-acid transporter 1 (mCAT-1), the receptor for murine retroviruses, enables efficient transient ecotropic transduction of human T cells. mCAT-1-dependent transduction was more efficient than amphotropic transduction performed in parallel, and preferentially targeted naive T cells. Moreover, we demonstrate that ecotropic TCR transduction results in antigen-specific restimulation of primary human T cells. Thus, ecotropic RVs represent a versatile, safe and potent tool to prepare T cells for the adoptive transfer.

  5. MicroRNA biomarkers in glioblastoma

    DEFF Research Database (Denmark)

    Hermansen, Simon Kjær; Kristensen, Bjarne Winther

    2013-01-01

    tissues. Understanding these alterations is key to developing new biomarkers and intelligent treatment strategies. This review presents an overview of current knowledge about miRNA alterations in glioblastoma while focusing on the clinical future of miRNAs as biomarkers and discussing the strengths...

  6. Analysis of fractional anisotropy facilitates differentiation of glioblastoma and brain metastases in a clinical setting

    Energy Technology Data Exchange (ETDEWEB)

    Bette, Stefanie, E-mail: stefanie.bette@tum.de [Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Huber, Thomas; Wiestler, Benedikt; Boeckh-Behrens, Tobias [Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Gempt, Jens; Ringel, Florian; Meyer, Bernhard [Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich (Germany); Zimmer, Claus; Kirschke, Jan S. [Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich (Germany)

    2016-12-15

    Purpose: Differentiating glioblastoma from brain metastases is important for therapy planning. Diffusion tensor imaging (DTI) was described as a promising tool, however with conflicting results. Aim: of this study was to analyze the clinical utility of DTI for the differentiation of brain metastases and glioblastoma. Methods: 294 patients (165 glioblastoma, 129 brain metastases) with preoperative DTI were included in this retrospective study. Fractional anisotropy (FA) was measured via regions of interest (ROIs) in the contrast-enhancing tumor, the necrosis and the FLAIR-hyperintense non-enhancing peritumoral region (NEPTR). Two neuroradiologists classified patient cases as glioblastoma or brain metastases without and with knowledge of FA values. Results: Glioblastoma showed significantly higher FA{sub contrast} (median glioblastoma = 0.33, metastases = 0.23; P < 0.001) whereas no significant difference was observed for FA{sub NEPTR} (0.21 vs. 0.22; P = 0.28) and for FA{sub necrosis} (0.17 vs. 0.18, P = 0.37). FA improved diagnostic accuracy of the neuroradiologists significantly from an AUC of 0.84/0.85 (Reader1/Reader2) to 0.89/0.92. Conclusions: Glioblastoma show significantly higher FA values in the contrast enhancing tumor part than brain metastases. Implementation of a ROI-based measurement of FA values and FA color maps in clinical routine helps to differentiate between glioblastoma and brain metastases.

  7. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma

    DEFF Research Database (Denmark)

    Sehested, Astrid Marie

    2016-01-01

    Pediatric glioblastoma is one of the most common and most deadly brain tumors in childhood. Using an integrative genetic analysis of 53 pediatric glioblastomas and five in vitro model systems, we identified previously unidentified gene fusions involving the MET oncogene in ∼10% of cases. These MET...

  8. In vivo preclinical low field MRI monitoring of tumor growth following a suicide gene therapy in an ortho-topic mice model of human glioblastoma;Controle par IRM bas champ in vivo de l'efficacite d'une therapie genique par gene suicide dans un modele murin de glioblastome orthotopique

    Energy Technology Data Exchange (ETDEWEB)

    Breton, E.; Goetz, Ch.; Aubertin, G.; Constantinesco, A.; Choquet, Ph. [Service de biophysique et medecine nucleaire, hopital de Hautepierre, CHRU de Strasbourg, 67 - Strasbourg (France); Institut de mecanique des fluides et des solides, CNRS, universite de Strasbourg, 67 - Strasbourg (France); Kintz, J.; Accart, N.; Grellier, B.; Erbs, Ph.; Rooke, R. [Transgene SA, parc d' innovation, 67 - Illkirch Graffenstaden (France)

    2010-03-15

    Purpose The aim of this study was to monitor in vivo with low field MRI growth of a murine ortho-topic glioma model following a suicide gene therapy. Methods The gene therapy consisted in the stereotactic injection in the mice brain of a modified vaccinia virus Ankara (M.V.A.) vector encoding for a suicide gene (FCU1) that transforms a non toxic pro-drug 5-fluoro-cytosine (5-F.C.) to its highly cytotoxic derivatives 5-fluorouracil (5-F.U.) and 5-fluoro-uridine-5 monophosphate (5-F.U.M.P.). Using a warmed-up imaging cell, sequential 3D T1 and T2 0.1T MRI brain examinations were performed on 16 Swiss female nu/nu mice bearing ortho-topic human glioblastoma (U 87-MG cells). The 6-week in vivo MRI follow-up consisted in a weekly measurement of the intracerebral tumor volume leading to a total of 65 examinations. Mice were divided in four groups: sham group (n = 4), sham group treated with 5-F.C. only (n = 4), sham group with injection of M.V.A.-FCU1 vector only (n = 4), therapy group administered with M.V.A.-FCU1 vector and 5-F.C. (n = 4). Measurements of tumor volumes were obtained after manual segmentation of T1- and T2-weighted images. Results Intra-observer and inter-observer tumor volume measurements show no significant differences. No differences were found between T1 and T2 volume tumor doubling times between the three sham groups. A significant statistical difference (p < 0.05) in T1 and T2 volume tumor doubling times between the three sham groups and the animals treated with the intratumoral injection of M.V.A.-FCU1 vector in combination with 2 weeks per os 5-F.C. administration was demonstrated. Conclusion Preclinical low field MRI was able to monitor efficacy of suicide gene therapy in delaying the tumor growth in an in vivo mouse model of ortho-topic glioblastoma. (authors)

  9. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line.

    Science.gov (United States)

    Hosseini, Masoumeh Mansoubi; Karimi, Aliasghar; Behroozaghdam, Mitra; Javidi, Mohammad Amin; Ghiasvand, Saeedeh; Bereimipour, Ahmad; Aryan, Hoda; Nassiri, Farbod; Jangholi, Ehsan

    2017-12-01

    Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary cerebral tumor. The median survival time is 15 months despite maximum treatment because the tumor is resistant to most therapeutic modalities. Several studies have indicated chemopreventive and chemotherapeutic activity of cyanidin-3-glucoside (C3G) as an anthocyanin component. We aimed to illustrate the cytotoxic and apoptogenic effects of C3G in the U87 cell line (human GBM cell line). Cytotoxic activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium assay after treatment with C3G at different concentrations in the U87 cell line. Cisplatin was used as a positive control for 24 and 48 hours. The percentage of apoptotic cells was determined using an Annexin V/propidium iodide assay, and the expression of bax, bcl2, and p53 genes was assessed using real-time polymerase chain reaction. Treatment of U87 cells with 40 μg/mL of C3G resulted in 32% apoptotic cells after 24 hours. To further confirm that C3G treatment induced apoptosis in U87 cells, RNA expression of bax, bcl2, and p53 genes was investigated after treatment. Real-time polymerase chain reaction indicated that the expression of bax and p53 increased, whereas the expression of bcl2 decreased. C3G had an apoptogenic effect in the GBM cell line. New information regarding the therapeutic effects of C3G in GBM could ultimately lead to the production of new drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Genetic characterization and phylogeny of human T-cell lymphotropic virus type I from Chile.

    Science.gov (United States)

    Ramirez, E; Cartier, L; Villota, C; Fernandez, J

    2002-03-20

    Infection with Human T-Cell Lymphotropic Virus type I (HTLV-I) have been associated with the development of the HTLV-I associated myelopathy/tropical spastic paraparesis (HAM/TSP). Phylogenetic analyses of HTLV-I isolates have revealed that HTLV-I can be classified into three major groups: the Cosmopolitan, Central African and Melanesian. In the present study, we analyzed the tax, 5' ltr, gag, pol, and env sequences of proviruses of PBMC from ten HAM/TSP patients to investigate the phylogenetic characterization of HTLV-I in Chilean patients. HTLV-I provirus in PBMC from ten Chilean patients with HAM/TSP were amplified by PCR using primers of tax, 5' ltr, gag, pol, and env genes. Amplified products of the five genes were purified and nucleotide sequence was determined by the dideoxy termination procedure. DNA sequences were aligned with the CLUSTAL W program. The results of this study showed that the tax, 5' ltr, gag, pol, and env gene of the Chilean HTLV-I strains had a nucleotide homology ranged from 98.1 to 100%, 95 to 97%, 98.9 to 100%, 94 to 98%, and 94.2 to 98.5% respect to ATK-1 clone, respectively. According to molecular phylogeny with 5' ltr gene, the Chilean HTLV-I strains were grouped with each other suggesting one cluster included in Transcontinental subgroup.

  11. Altered cellular distribution and subcellular sorting of gamma-tubulin in diffuse astrocytic gliomas and human glioblastoma cell lines

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.; Path, M.; Reddy, G.; Dráberová, Eduarda; Šmejkalová, Barbora; Del Valle, L.; Asfraf, Q.; Tadevosyan, A.; Yelin, K.; Maraziotis, T.; Mörk, S.; Mishra, O.; Legido, A.; Nissanov, J.; Baas, P.; De Chadarevian, J.; Dráber, Pavel

    2006-01-01

    Roč. 65, č. 5 (2006), s. 465-477 ISSN 0022-3069 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z5052915 Keywords : anaplastic changes * glioblastoma * gamma tubulin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.371, year: 2006

  12. P16.30 4th ventricle glioblastoma

    Science.gov (United States)

    Unal, E.; Isik, S.; Gurbuz, M.; Kilic, K.

    2017-01-01

    Abstract Introduction: We present the 2nd case ever known in English literature describing a glioblastoma of the fourth ventricle originating from cerebellar peduncle. CASE DESCIPTION: A 66 years old woman was admitted to hospital with dizziness and nausea for four months. An MRI scan showed fourth ventricle mass. First impression was an ependymoma due to MRI scan characteristics. Results: A surgery was performed and histopathology revealed Grade IV glial tumor. Radiotherapy was done. CONCLUSION: This report suggests that GBM can mimic every tumor in the CNS. Surgery is the best option for these tumors not only for aggressive behaviour of glioblastoma but also to prevent hydrocephalus and associated symptoms.

  13. 45 CFR 98.65 - Audits and financial reporting.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Audits and financial reporting. 98.65 Section 98... DEVELOPMENT FUND Financial Management § 98.65 Audits and financial reporting. (a) Each Lead Agency shall have... independent standards. (g) The Secretary shall require financial reports as necessary. ...

  14. 42 CFR 460.98 - Service delivery.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Service delivery. 460.98 Section 460.98 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED..., national origin, religion, sex, age, sexual orientation, mental or physical disability, or source of...

  15. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Science.gov (United States)

    Nitta, Masayuki; Kozono, David; Kennedy, Richard; Stommel, Jayne; Ng, Kimberly; Zinn, Pascal O; Kushwaha, Deepa; Kesari, Santosh; Inda, Maria-del-Mar; Wykosky, Jill; Furnari, Frank; Hoadley, Katherine A; Chin, Lynda; DePinho, Ronald A; Cavenee, Webster K; D'Andrea, Alan; Chen, Clark C

    2010-05-24

    Despite the critical role of Epidermal Growth Factor Receptor (EGFR) in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER) genes required for the repair of Reactive Oxygen Species (ROS)-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1). Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  16. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Directory of Open Access Journals (Sweden)

    Masayuki Nitta

    Full Text Available Despite the critical role of Epidermal Growth Factor Receptor (EGFR in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER genes required for the repair of Reactive Oxygen Species (ROS-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1. Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  17. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis.

    Science.gov (United States)

    Esteller, M; Risques, R A; Toyota, M; Capella, G; Moreno, V; Peinado, M A; Baylin, S B; Herman, J G

    2001-06-15

    Defects in DNA repair may be responsible for the genesis of mutations in key genes in cancer cells. The tumor suppressor gene p53 is commonly mutated in human cancer by missense point mutations, most of them G:C to A:T transitions. A recognized cause for this type of change is spontaneous deamination of the methylcytosine. However, the persistence of a premutagenic O(6)-methylguanine can also be invoked. This last lesion is removed in the normal cell by the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT). In many tumor types, epigenetic silencing of MGMT by promoter hypermethylation has been demonstrated and linked to the appearance of G to A mutations in the K-ras oncogene in colorectal tumors. To study the relevance of defective MGMT function by aberrant methylation in relation to the presence of p53 mutations, we studied 314 colorectal tumors for MGMT promoter hypermethylation and p53 mutational spectrum. Inactivation of MGMT by aberrant methylation was associated with the appearance of G:C to A:T transition mutations at p53 (Fischer's exact test, two-tailed; P = 0.01). Overall, MGMT methylated tumors displayed p53 transition mutations in 43 of 126 (34%) cases, whereas MGMT unmethylated tumors only showed G:C to A:T changes in 37 of 188 (19%) tumors. A more striking association was found in G:C to A:T transitions in non-CpG dinucleotides; 71% (12 of 17) of the total non-CpG transition mutations in p53 were observed in MGMT aberrantly methylated tumors (Fischer's exact test, two-tailed; P = 0.008). Our data suggest that epigenetic silencing of MGMT by promoter hypermethylation may lead to G:C to A:T transition mutations in p53.

  18. Rapid detection of SNP (c.309T>G in the MDM2 gene by the Duplex SmartAmp method.

    Directory of Open Access Journals (Sweden)

    Yasuaki Enokida

    Full Text Available BACKGROUND: Genetic polymorphisms in the human MDM2 gene are suggested to be a tumor susceptibility marker and a prognostic factor for cancer. It has been reported that a single nucleotide polymorphism (SNP c.309T>G in the MDM2 gene attenuates the tumor suppressor activity of p53 and accelerates tumor formation in humans. METHODOLOGY: In this study, to detect the SNP c.309T>G in the MDM2 gene, we have developed a new SNP detection method, named "Duplex SmartAmp," which enabled us to simultaneously detect both 309T and 309G alleles in one tube. To develop this new method, we introduced new primers i.e., nBP and oBPs, as well as two different fluorescent dyes that separately detect those genetic polymorphisms. RESULTS AND CONCLUSIONS: By the Duplex SmartAmp method, the genetic polymorphisms of the MDM2 gene were detected directly from a small amount of genomic DNA or blood samples. We used 96 genomic DNA and 24 blood samples to validate the Duplex SmartAmp by comparison with results of the conventional PCR-RFLP method; consequently, the Duplex SmartAmp results agreed totally with those of the PCR-RFLP method. Thus, the new SNP detection method is considered useful for detecting the SNP c.309T>G in the MDM2 gene so as to judge cancer susceptibility against some cellular stress in the clinical setting, and also to handle a large number of samples and enable rapid clinical diagnosis.

  19. Performance Analysis of Dual-Polarized Massive MIMO System with Human-Care IoT Devices for Cellular Networks

    Directory of Open Access Journals (Sweden)

    Jun-Ki Hong

    2018-01-01

    Full Text Available The performance analysis of the dual-polarized massive multiple-input multiple-output (MIMO system with Internet of things (IoT devices is studied when outdoor human-care IoT devices are connected to a cellular network via a dual-polarized massive MIMO system. The research background of the performance analysis of dual-polarized massive MIMO system with IoT devices is that recently the data usage of outdoor human-care IoT devices has increased. Therefore, the outdoor human-care IoT devices are necessary to connect with 5G cellular networks which can expect 1000 times higher performance compared with 4G cellular networks. Moreover, in order to guarantee the safety of the patient for emergency cases, a human-care Iot device must be connected to cellular networks which offer more stable communication for outdoors compared to short-range communication technologies such as Wi-Fi, Zigbee, and Bluetooth. To analyze the performance of the dual-polarized massive MIMO system for human-care IoT devices, a dual-polarized MIMO spatial channel model (SCM is proposed which considers depolarization effect between the dual-polarized transmit-antennas and the receive-antennas. The simulation results show that the performance of the dual-polarized massive MIMO system is improved about 16% to 92% for 20 to 150 IoT devices compared to conventional single-polarized massive MIMO system for identical size of the transmit array.

  20. High-resolution mechanical imaging of glioblastoma by multifrequency magnetic resonance elastography.

    Directory of Open Access Journals (Sweden)

    Kaspar-Josche Streitberger

    Full Text Available OBJECTIVE: To generate high-resolution maps of the viscoelastic properties of human brain parenchyma for presurgical quantitative assessment in glioblastoma (GB. METHODS: Twenty-two GB patients underwent routine presurgical work-up supplemented by additional multifrequency magnetic resonance elastography. Two three-dimensional viscoelastic parameter maps, magnitude |G*|, and phase angle φ of the complex shear modulus were reconstructed by inversion of full wave field data in 2-mm isotropic resolution at seven harmonic drive frequencies ranging from 30 to 60 Hz. RESULTS: Mechanical brain maps confirmed that GB are composed of stiff and soft compartments, resulting in high intratumor heterogeneity. GB could be easily differentiated from healthy reference tissue by their reduced viscous behavior quantified by φ (0.37±0.08 vs. 0.58±0.07. |G*|, which in solids more relates to the material's stiffness, was significantly reduced in GB with a mean value of 1.32±0.26 kPa compared to 1.54±0.27 kPa in healthy tissue (P = 0.001. However, some GB (5 of 22 showed increased stiffness. CONCLUSION: GB are generally less viscous and softer than healthy brain parenchyma. Unrelated to the morphology-based contrast of standard magnetic resonance imaging, elastography provides an entirely new neuroradiological marker and contrast related to the biomechanical properties of tumors.

  1. Biochemical characterization of the deafness-associated mitochondrial tRNASer(UCN) A7445G mutation in osteosarcoma cell cybrids

    International Nuclear Information System (INIS)

    Li Xiaoming; Zhang, Linda S.; Fischel-Ghodsian, Nathan; Guan Minxin

    2005-01-01

    The deafness-associated A7445G mutation in the precursor of mitochondrial tRNA Ser(UCN) has been identified in several pedigrees from different ethnic backgrounds. To determine the role of nuclear background in the biochemical manifestation associated with the A7445G mutation, we performed a biochemical characterization of this mutation using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a New Zealand family into human osteosarcoma mtDNA-less (ρ 0 ) cells. Compared with three control cybrids, three cybrids derived from an affected matrilineal relative carrying the homoplasmic A7445G mutation exhibited ∼38-57% decrease in the steady-state level of tRNA Ser(UCN) , which is less reduced levels than in lymphoblastoid cells in the previous study. Furthermore, ∼22% reduction in the level of aminoacylation of tRNA Ser(UCN) was observed in the mutant cybrid cells. Interestingly, ∼60-63% decrease of steady-state level of ND6 gene, which belongs to the same precursor as that of tRNA Ser(UCN) , in cybrid cell lines carrying the A7445G mutation, is more than that observed in lymphoblastoid cells. These observations strongly point out a mechanistic link between the processing defect of the tRNA Ser(UCN) precursor and decreased stability of ND6 mRNA precursor. These results also imply the influence of nuclear background on the biochemical phenotype associated with the A7445G mutation

  2. Identification of Aquifex aeolicus tRNA (m2(2G26) methyltransferase gene.

    Science.gov (United States)

    Takeda, Hiroshi; Hori, Hiroyuki; Endo, Yaeta

    2002-01-01

    The modifications of N2,N2-dimethylguanine (m2(2)G) are found in tRNAs and rRNAs from eukarya and archaea. In tRNAs, modification at position G26 is generated by tRNA (m2(2)G26) methyltransferase, which is encoded by the corresponding gene, trm1. This enzyme catalyzes the methyl-transfer from S-adenosyl-L-methionine to the semi-conserved residue, G26, via the intermediate modified base, m2G26. Recent genome sequencing project has been reported that the putative trm1 is encoded in the genome of Aquifex aeolicus, a hyper-thermophilic eubacterium as only one exception among eubacteria. In order to confirm whether this bacterial trm1 gene product is a real tRNA (m2(2)G26) methyltransferase or not, we expressed this protein by wheat germ in vitro cell-free translation system. Our biochemical analysis clearly showed that this gene product possessed tRNA (m2(2)G26) methyltransferase activity.

  3. A critical role of T follicular helper cells in human mucosal anti-influenza response that can be enhanced by immunological adjuvant CpG-DNA.

    Science.gov (United States)

    Aljurayyan, A N; Sharma, R; Upile, N; Beer, H; Vaughan, C; Xie, C; Achar, P; Ahmed, M S; McNamara, P S; Gordon, S B; Zhang, Q

    2016-08-01

    T Follicular helper cells (TFH) are considered critical for B cell antibody response, and recent efforts have focused on promoting TFH in order to enhance vaccine efficacy. We studied the frequency and function of TFH in nasopharynx-associated lymphoid tissues (NALT) from children and adults, and its role in anti-influenza antibody response following stimulation by a live-attenuated influenza vaccine (LAIV) or an inactivated seasonal virus antigen (sH1N1). We further studied whether CpG-DNA promotes TFH and by which enhances anti-influenza response. We showed NALT from children aged 1.5-10 years contained abundant TFH, suggesting efficient priming of TFH during early childhood. Stimulation by LAIV induced a marked increase in TFH that correlated with a strong production of anti-hemagglutinin (HA) IgA/IgG/IgM antibodies in tonsillar cells. Stimulation by the inactivated sH1N1 antigen induced a small increase in TFH which was markedly enhanced by CpG-DNA, accompanied by enhanced anti-HA antibody responses. In B cell co-culture experiment, anti-HA responses were only seen in the presence of TFH, and addition of plasmacytoid dendritic cell to TFH-B cell co-culture enhanced the TFH-mediated antibody production following CpG-DNA and sH1N1 antigen stimulation. Induction of TFH differentiation from naïve T cells was also shown following the stimulation. Our results support a critical role of TFH in human mucosal anti-influenza antibody response. Use of an adjuvant such as CpG-DNA that has the capacity to promote TFH by which to enhance antigen-induced antibody responses in NALT tissue may have important implications for future vaccination strategies against respiratory pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. MiRNA expression patterns predict survival in glioblastoma

    International Nuclear Information System (INIS)

    Niyazi, Maximilian; Belka, Claus; Zehentmayr, Franz; Niemöller, Olivier M; Eigenbrod, Sabina; Kretzschmar, Hans; Osthoff, Klaus-Schulze; Tonn, Jörg-Christian; Atkinson, Mike; Mörtl, Simone

    2011-01-01

    In order to define new prognostic subgroups in patients with glioblastoma a miRNA screen (> 1000 miRNAs) from paraffin tissues followed by a bio-mathematical analysis was performed. 35 glioblastoma patients treated between 7/2005 - 8/2008 at a single institution with surgery and postoperative radio(chemo)therapy were included in this retrospective analysis. For microarray analysis the febit biochip 'Geniom ® Biochip MPEA homo-sapiens' was used. Total RNA was isolated from FFPE tissue sections and 1100 different miRNAs were analyzed. It was possible to define a distinct miRNA expression pattern allowing for a separation of distinct prognostic subgroups. The defined miRNA pattern was significantly associated with early death versus long-term survival (split at 450 days) (p = 0.01). The pattern and the prognostic power were both independent of the MGMT status. At present, this is the first dataset defining a prognostic role of miRNA expression patterns in patients with glioblastoma. Having defined such a pattern, a prospective validation of this observation is required

  5. Clinical implications of microRNAs in human glioblastoma

    Directory of Open Access Journals (Sweden)

    Masahiro eMizoguchi

    2013-02-01

    Full Text Available Glioblastoma (GBM is one of the most common and dismal brain tumors in adults. Further elucidation of the molecular pathogenesis of GBM is mandatory to improve the overall survival of patients. A novel small non-coding RNA molecule, microRNA (miRNA, appears to represent one of the most attractive target molecules contributing to the pathogenesis of various types of tumors. Recent global analyses have revealed that several miRNAs are clinically implicated in GBM, with some reports indicating the association of miRNA dysregulation with acquired temozolomide (TMZ resistance. More recent studies have revealed that miRNAs could play a role in cancer stem cell (CSC properties, contributing to treatment resistance. In addition, greater impact might be expected from miRNA-targeted therapies based on tumor-derived exosomes that contain numerous functional miRNAs, which could be transferred between tumor cells and surrounding structures. Tumor-derived miRNAs are now considered to be a novel molecular mechanism promoting the progression of GBM. Establishment of miRNA-targeted therapies based on miRNA dysregulation of CSCs could provide effective therapeutic strategies for TMZ-resistant GBM. Recent progress has revealed that miRNAs are not only putative biological markers for diagnosis, but also one of the most promising targets for GBM treatment. Herein, we summarize the translational aspects of miRNAs in the diagnosis and treatment of GBM.

  6. Glioblastomas with Oligodendroglial Component ? Common Origin of the Different Histological Parts and Genetic Subclassification

    OpenAIRE

    Klink, Barbara; Schlingelhof, Ben; Klink, Martin; Stout-Weider, Karen; Patt, Stephan; Schrock, Evelin

    2010-01-01

    Background: Glioblastomas are the most common and most malignant brain tumors in adults. A small subgroup of glioblastomas contains areas with histological features of oligodendroglial differentiation (GBMO). Our objective was to genetically characterize the oligodendroglial and the astrocytic parts of GBMOs and correlate morphologic and genetic features with clinical data. Methods: The oligodendroglial and the ?classic? glioblastoma parts of 13 GBMO were analyzed separately by interphase flu...

  7. The role of TLR4 896 A>G and 1196 C>T in susceptibility to infections: a review and meta-analysis of genetic association studies.

    Directory of Open Access Journals (Sweden)

    Panayiotis D Ziakas

    Full Text Available BACKGROUND: Toll-like receptor 4 plays a role in pathogen recognition, and common polymorphisms may alter host susceptibility to infectious diseases. PURPOSE: To review the association of two common polymorphisms (TLR4 896A>G and TLR4 1196C>T with infectious diseases. DATA SOURCES: We searched PubMed and EMBASE up to March 2013 for pertinent literature in English, and complemented search with references lists of eligible studies. STUDY SELECTION: We included all studies that: reported an infectious outcome; had a case-control design and reported the TLR4 896A>G and/or TLR4 1196C>T genotype frequencies; 59 studies fulfilled these criteria and were analyzed. DATA EXTRACTION: Two authors independently extracted study data. DATA SYNTHESIS: The generalized odds ratio metric (ORG was used to quantify the impact of TLR4 variants on disease susceptibility. A meta-analysis was undertaken for outcomes reported in >1 study. Eleven of 37 distinct outcomes were significant. TLR4 896 A>G increased risk for all parasitic infections (ORG 1.59; 95%CI 1.05-2.42, malaria (1.31; 95%CI 1.04-1.66, brucellosis (2.66; 95%CI 1.66-4.27, cutaneous leishmaniasis (7.22; 95%CI 1.91-27.29, neurocysticercosis (4.39; 95%CI 2.53-7.61, Streptococcus pyogenes tonsillar disease (2.93; 95%CI 1.24-6.93 , typhoid fever (2.51; 95%CI 1.18-5.34 and adult urinary tract infections (1.98; 95%CI 1.04-3.98, but was protective for leprosy (0.36; 95%CI 0.22-0.60. TLR4 1196 C>T effects were similar to TLR4 896 A>G for brucellosis, cutaneous leishmaniasis, leprosy, typhoid fever and S. pyogenes tonsillar disease, and was protective for bacterial vaginosis in pregnancy (0.55; 95%CI 0.31-0.98 and Haemophilus influenzae tonsillar disease (0.42; 95%CI 0.17-1.00. The majority of significant associations were among predominantly Asian populations and significant associations were rare among European populations. CONCLUSIONS: Depending on the type of infection and population, TLR4 polymorphisms are

  8. 45 CFR 98.34 - Parental rights and responsibilities.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Parental rights and responsibilities. 98.34 Section 98.34 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Program Operations (Child Care Services)-Parental Rights and Responsibilities § 98.34...

  9. Toward a noncytotoxic glioblastoma therapy: blocking MCP-1 with the MTZ Regimen

    Directory of Open Access Journals (Sweden)

    Salacz ME

    2016-04-01

    Full Text Available Michael E Salacz,1,2 Richard E Kast,3 Najmaldin Saki,4 Ansgar Brüning,5 Georg Karpel-Massler,6 Marc-Eric Halatsch6 1Department of Internal Medicine, 2Department of Neurosurgery, University of Kansas, Kansas City, KS, USA; 3IIAIGC Study Center, Burlington, VT, USA; 4Health Research Institute, Research Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; 5Molecular Biology Laboratory, University Hospital Munich, Munich, Germany; 6Department of Neurosurgery, University of Ulm, Ulm, Germany Abstract: To improve the prognosis of glioblastoma, we developed an adjuvant treatment directed to a neglected aspect of glioblastoma growth, the contribution of nonmalignant monocyte lineage cells (MLCs (monocyte, macrophage, microglia, dendritic cells that infiltrated a main tumor mass. These nonmalignant cells contribute to glioblastoma growth and tumor homeostasis. MLCs comprise of approximately 10%–30% of glioblastoma by volume. After integration into the tumor mass, these become polarized toward an M2 immunosuppressive, pro-angiogenic phenotype that promotes continued tumor growth. Glioblastoma cells initiate and promote this process by synthesizing 13 kDa MCP-1 that attracts circulating monocytes to the tumor. Infiltrating monocytes, after polarizing toward an M2 phenotype, synthesize more MCP-1, forming an amplification loop. Three noncytotoxic drugs, an antibiotic – minocycline, an antihypertensive drug – telmisartan, and a bisphosphonate – zoledronic acid, have ancillary attributes of MCP-1 synthesis inhibition and could be re-purposed, singly or in combination, to inhibit or reverse MLC-mediated immunosuppression, angiogenesis, and other growth-enhancing aspects. Minocycline, telmisartan, and zoledronic acid – the MTZ Regimen – have low-toxicity profiles and could be added to standard radiotherapy and temozolomide. Re-purposing older drugs has advantages of established safety and low

  10. Repair of 3-methyladenine and abasic sites by base excision repair mediates glioblastoma resistance to temozolomide

    Energy Technology Data Exchange (ETDEWEB)

    Bobola, Michael S.; Kolstoe, Douglas D.; Blank, A. [Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA (United States); Chamberlain, Marc C. [Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA (United States); Department of Neurology, University of Washington Medical Center, Seattle, WA (United States); Silber, John R., E-mail: jrsilber@u.washington.edu [Department of Neurological Surgery, University of Washington Medical Center, Seattle, WA (United States)

    2012-11-30

    Alkylating agents have long played a central role in the adjuvant therapy of glioblastoma (GBM). More recently, inclusion of temozolomide (TMZ), an orally administered methylating agent with low systemic toxicity, during and after radiotherapy has markedly improved survival. Extensive in vitro and in vivo evidence has shown that TMZ-induced O{sup 6}-methylguanine (O{sup 6}-meG) mediates GBM cell killing. Moreover, low or absent expression of O{sup 6}-methylguanine-DNA methyltransferase (MGMT), the sole human repair protein that removes O{sup 6}-meG from DNA, is frequently associated with longer survival in GBMs treated with TMZ, promoting interest in developing inhibitors of MGMT to counter resistance. However, the clinical efficacy of TMZ is unlikely to be due solely to O{sup 6}-meG, as the agent produces approximately a dozen additional DNA adducts, including cytotoxic N3-methyladenine (3-meA) and abasic sites. Repair of 3-meA and abasic sites, both of which are produced in greater abundance than O{sup 6}-meG, is mediated by the base excision repair (BER) pathway, and occurs independently of removal of O{sup 6}-meG. These observations indicate that BER activities are also potential targets for strategies to potentiate TMZ cytotoxicity. Here we review the evidence that 3-meA and abasic sites mediate killing of GBM cells. We also present in vitro and in vivo evidence that alkyladenine-DNA glycosylase, the sole repair activity that excises 3-meA from DNA, and Ape1, the major human abasic site endonuclease, mediate TMZ resistance in GBMs and represent potential anti-resistance targets.

  11. Overexpression of endothelin B receptor in glioblastoma: a prognostic marker and therapeutic target?

    KAUST Repository

    Vasaikar, Suhas

    2018-02-06

    BackgroundGlioblastoma (GBM) is the most common malignant brain tumor with median survival of 12-15 months. Owing to uncertainty in clinical outcome, additional prognostic marker(s) apart from existing markers are needed. Since overexpression of endothelin B receptor (ETBR) has been demonstrated in gliomas, we aimed to test whether ETBR is a useful prognostic marker in GBM and examine if the clinically available endothelin receptor antagonists (ERA) could be useful in the disease treatment.MethodsData from The Cancer Genome Atlas and the Gene Expression Omnibus database were analyzed to assess ETBR expression. For survival analysis, glioblastoma samples from 25 Swedish patients were immunostained for ETBR, and the findings were correlated with clinical history. The druggability of ETBR was assessed by protein-protein interaction network analysis. ERAs were analyzed for toxicity in in vitro assays with GBM and breast cancer cells.ResultsBy bioinformatics analysis, ETBR was found to be upregulated in glioblastoma patients, and its expression levels were correlated with reduced survival. ETBR interacts with key proteins involved in cancer pathogenesis, suggesting it as a druggable target. In vitro viability assays showed that ERAs may hold promise to treat glioblastoma and breast cancer.ConclusionsETBR is overexpressed in glioblastoma and other cancers and may be a prognostic marker in glioblastoma. ERAs may be useful for treating cancer patients.

  12. Autopsy findings in a long-term survivor with glioblastoma multiforme. Case report

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Shozo; Endo, Yuzo; Takada, Koji; Usui, Masaaki; Hara, Mitsuru [Toranomon Hospital, Tokyo (Japan); Hirose, Takanori

    1998-02-01

    Autopsy detected no tumor tissues in a patient who died 6.5 years after the diagnosis of glioblastoma multiforme. A 54-year-old male developed left hemiparesis one month prior to admission. Computed tomography demonstrated a cystic lesion in the right frontal region with irregular ring-like enhancement. The tumor was extensively removed together with the surrounding tissues followed by irradiation (whole brain 32.4 Gy, local 28.8 Gy), and intravenous administration of interferon-{beta}. Histological examination confirmed the diagnosis of glioblastoma multiform. He died of accidental head trauma 6.5 years after surgery. Autopsy of the brain detected no evidence of glioblastoma multiform. The only findings were cerebral edema and hematoma caused by head trauma, as well as histological changes due to radiation damage. This case apparently confirms the histological disappearance of tumor tissue in a long-term survivor with glioblastoma multiform. (author)

  13. Autopsy findings in a long-term survivor with glioblastoma multiforme. Case report

    International Nuclear Information System (INIS)

    Yamada, Shozo; Endo, Yuzo; Takada, Koji; Usui, Masaaki; Hara, Mitsuru; Hirose, Takanori.

    1998-01-01

    Autopsy detected no tumor tissues in a patient who died 6.5 years after the diagnosis of glioblastoma multiforme. A 54-year-old male developed left hemiparesis one month prior to admission. Computed tomography demonstrated a cystic lesion in the right frontal region with irregular ring-like enhancement. The tumor was extensively removed together with the surrounding tissues followed by irradiation (whole brain 32.4 Gy, local 28.8 Gy), and intravenous administration of interferon-β. Histological examination confirmed the diagnosis of glioblastoma multiform. He died of accidental head trauma 6.5 years after surgery. Autopsy of the brain detected no evidence of glioblastoma multiform. The only findings were cerebral edema and hematoma caused by head trauma, as well as histological changes due to radiation damage. This case apparently confirms the histological disappearance of tumor tissue in a long-term survivor with glioblastoma multiform. (author)

  14. 18F-FET microPET and microMRI for anti-VEGF and anti-PlGF response assessment in an orthotopic murine model of human glioblastoma

    DEFF Research Database (Denmark)

    Nedergaard, Mette Kjoelhede; Michaelsen, Signe Regner; Urup, Thomas

    2015-01-01

    BACKGROUND: Conflicting data exist for anti-cancer effects of anti-placental growth factor (anti-PlGF) in combination with anti-VEGF. Still, this treatment combination has not been evaluated in intracranial glioblastoma (GBM) xenografts. In clinical studies, position emission tomography (PET) using......-FET MicroPET and MicroMRI for evaluation of anti-VEGF and anti-PlGF treatment response in GBM xenografts. METHODS: Mice with intracranial GBM were treated with anti-VEGF, anti-PlGF + anti-VEGF or saline. Bioluminescence imaging (BLI), 18F-FET MicroPET and T2-weighted (T2w)-MRI were used to follow tumour...... development. Primary end-point was survival, and tumours were subsequently analysed for Ki67 proliferation index and micro-vessel density (MVD). Further, PlGF and VEGFR-1 expression were examined in a subset of the xenograft tumours and in 13 GBM patient tumours. RESULTS: Anti-VEGF monotherapy increased...

  15. Identification of a new human mtDNA polymorphism (A14290G in the NADH dehydrogenase subunit 6 gene

    Directory of Open Access Journals (Sweden)

    M. Houshmand

    2006-06-01

    Full Text Available Leber's hereditary optic neuropathy (LHON is a maternally inherited form of retinal ganglion cell degeneration leading to optic atrophy in young adults. Several mutations in different genes can cause LHON (heterogeneity. The ND6 gene is one of the mitochondrial genes that encodes subunit 6 of complex I of the respiratory chain. This gene is a hot spot gene. Fourteen Persian LHON patients were analyzed with single-strand conformational polymorphism and DNA sequencing techniques. None of these patients had four primary mutations, G3460A, G11788A, T14484C, and G14459A, related to this disease. We identified twelve nucleotide substitutions, G13702C, T13879C, T14110C, C14167T, G14199T, A14233G, G14272C, A14290G, G14365C, G14368C, T14766C, and T14798C. Eleven of twelve nucleotide substitutions had already been reported as polymorphism. One of the nucleotide substitutions (A14290G has not been reported. The A14290G nucleotide substitution does not change its amino acid (glutamic acid. We looked for base conservation using DNA star software (MEGALIGN program as a criterion for pathogenic or nonpathogenic nucleotide substitution in A14290G. The results of ND6 gene alignment in humans and in other species (mouse, cow, elegans worm, and Neurospora crassa mold revealed that the 14290th base was not conserved. Fifty normal controls were also investigated for this polymorphism in the Iranian population and two had A14290G polymorphism (4%. This study provides evidence that the mtDNA A14290G allele is a new nonpathogenic polymorphism. We suggest follow-up studies regarding this polymorphism in different populations.

  16. Novel MET/TIE2/VEGFR2 inhibitor altiratinib inhibits tumor growth and invasiveness in bevacizumab-resistant glioblastoma mouse models

    Science.gov (United States)

    Piao, Yuji; Park, Soon Young; Henry, Verlene; Smith, Bryan D.; Tiao, Ningyi; Flynn, Daniel L.

    2016-01-01

    Background Glioblastoma highly expresses the proto-oncogene MET in the setting of resistance to bevacizumab. MET engagement by hepatocyte growth factor (HGF) results in receptor dimerization and autophosphorylation mediating tumor growth, invasion, and metastasis. Evasive revascularization and the recruitment of TIE2-expressing macrophages (TEMs) are also triggered by anti-VEGF therapy. Methods We investigated the activity of altiratinib (a novel balanced inhibitor of MET/TIE2/VEGFR2) against human glioblastoma stem cell lines in vitro and in vivo using xenograft mouse models. The biological activity of altiratinib was assessed in vitro by testing the expression of HGF-stimulated MET phosphorylation as well as cell viability after altiratinib treatment. Tumor volume, stem cell and mesenchymal marker levels, microvessel density, and TIE2-expressing monocyte infiltration were evaluated in vivo following treatment with a control, bevacizumab alone, bevacizumab combined with altiratinib, or altiratinib alone. Results In vitro, HGF-stimulated MET phosphorylation was completely suppressed by altiratinib in GSC17 and GSC267, and altiratinib markedly inhibited cell viability in several glioblastoma stem cell lines. More importantly, in multiple xenograft mouse models, altiratinib combined with bevacizumab dramatically reduced tumor volume, invasiveness, mesenchymal marker expression, microvessel density, and TIE2-expressing monocyte infiltration compared with bevacizumab alone. Furthermore, in the GSC17 xenograft model, altiratinib combined with bevacizumab significantly prolonged survival compared with bevacizumab alone. Conclusions Together, these data suggest that altiratinib may suppress tumor growth, invasiveness, angiogenesis, and myeloid cell infiltration in glioblastoma. Thus, altiratinib administered alone or in combination with bevacizumab may overcome resistance to bevacizumab and prolong survival in patients with glioblastoma. PMID:26965451

  17. Combining Immunotherapy with Standard Glioblastoma Therapy

    Science.gov (United States)

    This clinical trial is testing standard therapy (surgery, radiation and temozolomide) plus immunotherapy with pembrolizumab with or without a cancer treatment vaccine for patients with newly diagnosed glioblastoma, a common and deadly type of brain tumor.

  18. Stereotactic Radiosurgery and Hypofractionated Radiotherapy for Glioblastoma.

    Science.gov (United States)

    Shah, Jennifer L; Li, Gordon; Shaffer, Jenny L; Azoulay, Melissa I; Gibbs, Iris C; Nagpal, Seema; Soltys, Scott G

    2018-01-01

    Glioblastoma is the most common primary brain tumor in adults. Standard therapy depends on patient age and performance status but principally involves surgical resection followed by a 6-wk course of radiation therapy given concurrently with temozolomide chemotherapy. Despite such treatment, prognosis remains poor, with a median survival of 16 mo. Challenges in achieving local control, maintaining quality of life, and limiting toxicity plague treatment strategies for this disease. Radiotherapy dose intensification through hypofractionation and stereotactic radiosurgery is a promising strategy that has been explored to meet these challenges. We review the use of hypofractionated radiotherapy and stereotactic radiosurgery for patients with newly diagnosed and recurrent glioblastoma. Copyright © 2017 by the Congress of Neurological Surgeons.

  19. The TLR4 D299G and T399I SNPs are constitutively active to up-regulate expression of Trif-dependent genes.

    Directory of Open Access Journals (Sweden)

    Georgina L Hold

    Full Text Available Dysregulated Toll-Like Receptor (TLR signalling and genetic polymorphisms in these proteins are linked to many human diseases. We investigated TLR4 functional variants D299G and T399I to assess the impact on LPS-induced responsiveness in comparison to wild-type TLR4. The mechanism by which this occurs in unclear as these SNPs do not lie within the lipid A binding domain or dimerisation sites of the LPS-TLR4/MD2 receptor complexes. Transfection of TLR4D299G, TLR4T399I or TLR4D299G. T399I into HEK cells resulted in constitutive activation of an NF-κB reporter gene and a blunting of the LPS-induced reporter activation compared to WT-TLR4. Unstimulated human monocyte/macrophages, from patients with the D299G and T399I SNPs demonstrated a downregulation of many genes, particularly Tram/Trif signalling pathway constitutents compared to the TLR4 wild-type subjects supporting the concept of basal receptor activity. Monocyte/macrophages from carriers of the TLR4 D299G and T399I polymorphisms stimulated with LPS showed >6 fold lower levels of NF-κB and ∼12 fold higher IFN-β gene expression levels compared to wild-type subjects (P<0.05; MWU test and dramatically altered resultant cytokine profiles. We conclude that these TLR4 SNPs affect constitutive receptor activity which impacts on the hosts ability to respond to LPS challenge leading to a dysregulated sub-optimal immune response to infection.

  20. Phenotypic and Proteomic Analysis of the Aspergillus fumigatus ΔPrtT, ΔXprG and ΔXprG/ΔPrtT Protease-Deficient Mutants

    Directory of Open Access Journals (Sweden)

    Einav Shemesh

    2017-12-01

    Full Text Available Aspergillus fumigatus is the most common mold species to cause disease in immunocompromised patients. Infection usually begins when its spores (conidia are inhaled into the airways, where they germinate, forming hyphae that penetrate and destroy the lungs and disseminate to other organs, leading to high mortality. The ability of hyphae to penetrate the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases that are thought to enhance penetration by degrading host structural barriers. This study explores the role of the A. fumigatus transcription factor XprG in controlling secreted proteolytic activity and fungal virulence. We deleted xprG, alone and in combination with prtT, a transcription factor previously shown to regulate extracellular proteolysis. xprG deletion resulted in abnormal conidiogenesis and formation of lighter colored, more fragile conidia and a moderate reduction in the ability of culture filtrates (CFs to degrade substrate proteins. Deletion of both xprG and prtT resulted in an additive reduction, generating a mutant strain producing CF with almost no ability to degrade substrate proteins. Detailed proteomic analysis identified numerous secreted proteases regulated by XprG and PrtT, alone and in combination. Interestingly, proteomics also identified reduced levels of secreted cell wall modifying enzymes (glucanases, chitinases and allergens following deletion of these genes, suggesting they target additional cellular processes. Surprisingly, despite the major alteration in the secretome of the xprG/prtT null mutant, including two to fivefold reductions in the level of 24 proteases, 18 glucanases, 6 chitinases, and 19 allergens, it retained wild-type virulence in murine systemic and pulmonary models of infection. This study highlights the extreme adaptability of A. fumigatus during infection based on extensive gene redundancy.

  1. Tumor Mesenchymal Stem-Like Cell as a Prognostic Marker in Primary Glioblastoma

    Directory of Open Access Journals (Sweden)

    Seon-Jin Yoon

    2016-01-01

    Full Text Available The isolation from brain tumors of tumor mesenchymal stem-like cells (tMSLCs suggests that these cells play a role in creating a microenvironment for tumor initiation and progression. The clinical characteristics of patients with primary glioblastoma (pGBM positive for tMSLCs have not been determined. This study analyzed samples from 82 patients with pGBM who had undergone tumor removal, pathological diagnosis, and isolation of tMSLC from April 2009 to October 2014. Survival, extent of resection, molecular markers, and tMSLC culture results were statistically evaluated. Median overall survival was 18.6 months, 15.0 months in tMSLC-positive patients and 29.5 months in tMSLC-negative patients (P=0.014. Multivariate cox regression model showed isolation of tMSLC (OR = 2.5, 95% CI = 1.1~5.6, P=0.021 showed poor outcome while larger extent of resection (OR = 0.5, 95% CI = 0.2~0.8, P=0.011 has association with better outcome. The presence of tMSLCs isolated from the specimen of pGBM is associated with the survival of patient.

  2. CDK4/6 inhibitor PD0332991 in glioblastoma treatment: does it have a future?

    Directory of Open Access Journals (Sweden)

    Lisette eSchroder

    2015-11-01

    Full Text Available Glioblastoma is aggressive, highly infiltrating, and the most frequent malignant form of brain cancer. With a median survival time of only 14.6 months, when treated with the standard of care, it is essential to find new therapeutic options. A specific CDK4/6 inhibitor, PD0332991, obtained accelerated approval from the Food and Drug Administration for the treatment of patients with advanced estrogen receptor-positive and HER2-negative breast cancer. Common alterations in the cyclin D1-Cyclin Dependent Kinase 4/6-Retinoblastoma 1 pathway in glioblastoma make PD0332991 also an interesting drug for the treatment of glioblastoma. Promising results in in vitro studies, where patient derived glioblastoma cell lines showed sensitivity to PD0332991, gave motive to start in vivo studies. Outcomes of these studies have been contrasting in terms of PD0332991 efficacy within the brain: more research is necessary to conclude whether CDK4/6 inhibitor can be beneficial in the treatment of glioblastoma.

  3. Micro RNAs as molecular markers of glioblastoma multiform

    Energy Technology Data Exchange (ETDEWEB)

    Farace, M G [Department Experimental Medicine and Biochemical Sciences, University of Tor Vergata, Rome (Italy); Finocchiaro, G [Istituto Neurologico Besta, Milan (Italy); Ricci Vitiani, L [Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanita, Rome (Italy)

    2009-07-01

    The aim of this project was to unravel the role that miR-221 and miR-222, of which we had already demonstrated the specific differential expression in glioblastoma multiforme compared to normal brain, play in the control of cell proliferation, with the ultimate goal to provide new insights in the molecular basis of cancer. The results of our research allowed to identify an important molecular target for miRNA-221 and miR-222, highly expressed in glioblastoma multiforme tissues and cell lines, and to precisely recognize the mRNA regions responsible for this regulation.

  4. Micro RNAs as molecular markers of glioblastoma multiform

    International Nuclear Information System (INIS)

    Farace, M.G.; Finocchiaro, G.; Ricci Vitiani, L.

    2009-01-01

    The aim of this project was to unravel the role that miR-221 and miR-222, of which we had already demonstrated the specific differential expression in glioblastoma multiforme compared to normal brain, play in the control of cell proliferation, with the ultimate goal to provide new insights in the molecular basis of cancer. The results of our research allowed to identify an important molecular target for miRNA-221 and miR-222, highly expressed in glioblastoma multiforme tissues and cell lines, and to precisely recognize the mRNA regions responsible for this regulation

  5. Disturbances of ligand potency and enhanced degradation of the human glycine receptor at affected positions G160 and T162 originally identified in patients suffering from hyperekplexia

    Directory of Open Access Journals (Sweden)

    Sinem eAtak

    2015-12-01

    Full Text Available Ligand-binding of Cys-loop receptors is determined by N-terminal extracellular loop structures from the plus as well as from the minus side of two adjacent subunits in the pentameric receptor complex. An aromatic residue in loop B of the glycine receptor (GlyR undergoes direct interaction with the incoming ligand via cation-π interactions. Recently we showed that mutated residues in loop B identified from human patients suffering from hyperekplexia disturb ligand-binding. Here, we exchanged the affected human residues by amino acids found in related members of the Cys-loop receptor family to determine the effects of side chain volume for ion channel properties. GlyR variants were characterized in vitro following transfection into cell lines in order to analyze protein expression, trafficking, degradation and ion channel function. GlyR α1 G160 mutations significantly decrease glycine potency arguing for a positional effect on neighboring aromatic residues and consequently glycine-binding within the ligand-binding pocket. Disturbed glycinergic inhibition due to T162 α1 mutations is an additive effect of affected biogenesis and structural changes within the ligand-binding site. Protein trafficking from the ER towards ER-Golgi intermediate compartment, the secretory Golgi pathways and finally the cell surface is largely diminished, but still sufficient to deliver ion channels that are functional at least at high glycine concentrations. The majority of T162 mutant protein accumulates in the ER and is conducted to ER-associated proteasomal degradation. Hence, G160 is an important determinant during glycine binding. In contrast, T162 assigns primarily receptor biogenesis whereas exchanges in functionality are secondary effects thereof.

  6. Autophagy suppression potentiates the anti-glioblastoma effect of asparaginase in vitro and in vivo

    Science.gov (United States)

    Chen, Qicheng; Ye, Li; Fan, Jiajun; Zhang, Xuyao; Wang, Huan; Liao, Siyang; Song, Ping; Wang, Ziyu; Wang, Shaofei; Li, Yubin; Luan, Jingyun; Wang, Yichen; Chen, Wei; Zai, Wenjing; Yang, Ping; Cao, Zhonglian; Ju, Dianwen

    2017-01-01

    Asparaginase has been reported to be effective in the treatment of various leukemia and several malignant solid cancers. However, the anti-tumor effect of asparaginase is always restricted due to complicated mechanisms. Herein, we investigated the mechanisms of how glioblastoma resisted asparaginase treatment and reported a novel approach to enhance the anti-glioblastoma effect of asparaginase. We found that asparaginase could induce growth inhibition and caspase-dependent apoptosis in U87MG/U251MG glioblastoma cells. Meanwhile, autophagy was activated as indicated by autophagosomes formation and upregulated expression of LC3-II. Importantly, abolishing autophagy using chloroquine (CQ) and LY294002 enhanced the cytotoxicity and apoptosis induced by asparaginase in U87MG/U251MG cells. Further study proved that Akt/mTOR and Erk signaling pathways participated in autophagy induction, while reactive oxygen species (ROS) served as an intracellular regulator for both cytotoxicity and autophagy in asparaginase-treated U87MG/U251MG cells. Moreover, combination treatment with autophagy inhibitor CQ significantly enhanced anti-glioblastoma efficacy of asparaginase in U87MG cell xenograft model. Taken together, our results demonstrated that inhibition of autophagy potentiated the anti-tumor effect of asparagine depletion on glioblastoma, indicating that targeting autophagy and asparagine could be a potential approach for glioblastoma treatment. PMID:29207624

  7. Tonsillary carcinoma after temozolomide treatment for glioblastoma multiforme: treatment-related or dual-pathology?

    Science.gov (United States)

    Binello, E; Germano, I M

    2009-08-01

    Glioblastoma multiforme is a primary malignant brain tumor with a prognosis of typically less than 2 years. Standard treatment paradigms include surgery, radiation therapy and temozolomide. Little data exists for temozolomide recommendations after the first 6 months. We present a case of a patient with glioblastoma multiforme treated with surgery, radiation and chronic temozolomide for 6 years. He continues to survive glioblastoma-recurrence-free, but developed tonsillary carcinoma. This case raises the question of whether this secondary solid-organ malignancy is treatment-related or dual pathology.

  8. Early post-operative magnetic resonance imaging in glioblastoma: correlation among radiological findings and overall survival in 60 patients

    International Nuclear Information System (INIS)

    Majos, Carles; Cos, Monica; Castaner, Sara; Gil, Miguel; Plans, Gerard; Lucas, Anna; Bruna, Jordi; Aguilera, Carles

    2016-01-01

    To evaluate early post-operative magnetic resonance (EPMR) as a prognostic tool after resection of glioblastoma. Sixty EPMR examinations were evaluated for perioperative infarct, tumour growth between diagnosis and EPMR, contrast enhancement pattern, and extent of resection (EOR). The EOR was approached with the subjective evaluation of radiologists and by quantifying volumes. These parameters were tested as predictors of survival using the Kaplan-Meier method. Contrast enhancement was found in 59 patients (59/60; 98 %). Showing a thin-linear pattern of enhancement was the most favourable finding. Patients with this pattern survived longer than patients with thick-linear (median overall survival (OS) thin-linear=609 days; thick-linear=432 days; P =.023) or nodular (median OS = 318 days; P =.001) enhancements. The subjective evaluation of the EOR performed better than its quantification. Patients survived longer when resection was total (median OS total resection=609 days; subtotal=371 days; P =.001). When resection was subtotal, patients survived longer if it was superior to 95 % (median OS resection superior to 95 %=559 days; inferior to 95 %=256 days; P =.034). EPMR provides valuable prognostic information after surgical resection of glioblastomas. A thin-linear pattern of contrast enhancement is the most favourable finding. Further prognostic stratification may be obtained by assessing the EOR. (orig.)

  9. Early post-operative magnetic resonance imaging in glioblastoma: correlation among radiological findings and overall survival in 60 patients

    Energy Technology Data Exchange (ETDEWEB)

    Majos, Carles [IDI Centre Bellvitge, HU de Bellvitge, Department of Radiology, Barcelona (Spain); Centro de Investigacion en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain); Hospital Duran i Reynals, IDI Centre Bellvitge, Barcelona (Spain); Cos, Monica; Castaner, Sara [IDI Centre Bellvitge, HU de Bellvitge, Department of Radiology, Barcelona (Spain); Gil, Miguel [ICO l' Hospitalet, HU de Bellvitge, Department of Medical Onclogy, Barcelona (Spain); Plans, Gerard [HU de Bellvitge, Department of Neurosurgery, Barcelona (Spain); Lucas, Anna [ICO l' Hospitalet, HU de Bellvitge, Department of Radiotherapy Oncology, Barcelona (Spain); Bruna, Jordi [HU de Bellvitge, Department of Neurology, Barcelona (Spain); Aguilera, Carles [IDI Centre Bellvitge, HU de Bellvitge, Department of Radiology, Barcelona (Spain); Centro de Investigacion en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona (Spain)

    2016-04-15

    To evaluate early post-operative magnetic resonance (EPMR) as a prognostic tool after resection of glioblastoma. Sixty EPMR examinations were evaluated for perioperative infarct, tumour growth between diagnosis and EPMR, contrast enhancement pattern, and extent of resection (EOR). The EOR was approached with the subjective evaluation of radiologists and by quantifying volumes. These parameters were tested as predictors of survival using the Kaplan-Meier method. Contrast enhancement was found in 59 patients (59/60; 98 %). Showing a thin-linear pattern of enhancement was the most favourable finding. Patients with this pattern survived longer than patients with thick-linear (median overall survival (OS) thin-linear=609 days; thick-linear=432 days; P =.023) or nodular (median OS = 318 days; P =.001) enhancements. The subjective evaluation of the EOR performed better than its quantification. Patients survived longer when resection was total (median OS total resection=609 days; subtotal=371 days; P =.001). When resection was subtotal, patients survived longer if it was superior to 95 % (median OS resection superior to 95 %=559 days; inferior to 95 %=256 days; P =.034). EPMR provides valuable prognostic information after surgical resection of glioblastomas. A thin-linear pattern of contrast enhancement is the most favourable finding. Further prognostic stratification may be obtained by assessing the EOR. (orig.)

  10. Association Analysis between g.18873C>T and g.27522G>A Genetic Polymorphisms of OPG and Bone Mineral Density in Chinese Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-01-01

    Full Text Available Several studies report that the OPG is an important candidate gene in the pathogenesis of osteoporosis. This study aimed to detect the potential association of OPG gene polymorphisms with osteoporosis in postmenopausal women. We recruited 928 subjects containing 463 with primary postmenopausal osteoporosis and 465 healthy volunteers as controls. The BMD of neck hip, lumbar spine (L2–4, and total hip were assessed by dual-energy X-ray absorptiometry (DEXA. Through the created restriction site-polymerase chain reaction (CRS-PCR, PCR-restriction fragment length polymorphism (PCR-RFLP, and DNA sequencing methods, the g.18873C>T and g.27522G>A have been investigated. As for g.18873C>T, our data indicated that subjects with CC genotype have significantly higher BMD value than those of CT and TT genotypes (all P values A, the BMD values of subjects with GG genotype were significantly higher than those of GA and AA genotypes (all P values T and g.27522G>A genetic polymorphisms are associated with the decreased risk for osteoporosis in Chinese postmenopausal women.

  11. Towards precision medicine-based therapies for glioblastoma: interrogating human disease genomics and mouse phenotypes.

    Science.gov (United States)

    Chen, Yang; Gao, Zhen; Wang, Bingcheng; Xu, Rong

    2016-08-22

    Glioblastoma (GBM) is the most common and aggressive brain tumors. It has poor prognosis even with optimal radio- and chemo-therapies. Since GBM is highly heterogeneous, drugs that target on specific molecular profiles of individual tumors may achieve maximized efficacy. Currently, the Cancer Genome Atlas (TCGA) projects have identified hundreds of GBM-associated genes. We develop a drug repositioning approach combining disease genomics and mouse phenotype data towards predicting targeted therapies for GBM. We first identified disease specific mouse phenotypes using the most recently discovered GBM genes. Then we systematically searched all FDA-approved drugs for candidates that share similar mouse phenotype profiles with GBM. We evaluated the ranks for approved and novel GBM drugs, and compared with an existing approach, which also use the mouse phenotype data but not the disease genomics data. We achieved significantly higher ranks for the approved and novel GBM drugs than the earlier approach. For all positive examples of GBM drugs, we achieved a median rank of 9.2 45.6 of the top predictions have been demonstrated effective in inhibiting the growth of human GBM cells. We developed a computational drug repositioning approach based on both genomic and phenotypic data. Our approach prioritized existing GBM drugs and outperformed a recent approach. Overall, our approach shows potential in discovering new targeted therapies for GBM.

  12. Structural Properties of G,T-Parallel Duplexes

    Directory of Open Access Journals (Sweden)

    Anna Aviñó

    2010-01-01

    Full Text Available The structure of G,T-parallel-stranded duplexes of DNA carrying similar amounts of adenine and guanine residues is studied by means of molecular dynamics (MD simulations and UV- and CD spectroscopies. In addition the impact of the substitution of adenine by 8-aminoadenine and guanine by 8-aminoguanine is analyzed. The presence of 8-aminoadenine and 8-aminoguanine stabilizes the parallel duplex structure. Binding of these oligonucleotides to their target polypyrimidine sequences to form the corresponding G,T-parallel triplex was not observed. Instead, when unmodified parallel-stranded duplexes were mixed with their polypyrimidine target, an interstrand Watson-Crick duplex was formed. As predicted by theoretical calculations parallel-stranded duplexes carrying 8-aminopurines did not bind to their target. The preference for the parallel-duplex over the Watson-Crick antiparallel duplex is attributed to the strong stabilization of the parallel duplex produced by the 8-aminopurines. Theoretical studies show that the isomorphism of the triads is crucial for the stability of the parallel triplex.

  13. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma.

    Science.gov (United States)

    Young, Jonathan D; Cai, Chunhui; Lu, Xinghua

    2017-10-03

    One approach to improving the personalized treatment of cancer is to understand the cellular signaling transduction pathways that cause cancer at the level of the individual patient. In this study, we used unsupervised deep learning to learn the hierarchical structure within cancer gene expression data. Deep learning is a group of machine learning algorithms that use multiple layers of hidden units to capture hierarchically related, alternative representations of the input data. We hypothesize that this hierarchical structure learned by deep learning will be related to the cellular signaling system. Robust deep learning model selection identified a network architecture that is biologically plausible. Our model selection results indicated that the 1st hidden layer of our deep learning model should contain about 1300 hidden units to most effectively capture the covariance structure of the input data. This agrees with the estimated number of human transcription factors, which is approximately 1400. This result lends support to our hypothesis that the 1st hidden layer of a deep learning model trained on gene expression data may represent signals related to transcription factor activation. Using the 3rd hidden layer representation of each tumor as learned by our unsupervised deep learning model, we performed consensus clustering on all tumor samples-leading to the discovery of clusters of glioblastoma multiforme with differential survival. One of these clusters contained all of the glioblastoma samples with G-CIMP, a known methylation phenotype driven by the IDH1 mutation and associated with favorable prognosis, suggesting that the hidden units in the 3rd hidden layer representations captured a methylation signal without explicitly using methylation data as input. We also found differentially expressed genes and well-known mutations (NF1, IDH1, EGFR) that were uniquely correlated with each of these clusters. Exploring these unique genes and mutations will allow us to

  14. Evaluation of Gd and Gd159 as new approaches for cancer treatment

    International Nuclear Information System (INIS)

    Galvao, I.; Neves, M.J.

    2011-01-01

    Metal compounds have shown many biological activities and have been successfully used as anticancer agents such cisplatin. Actually gadolinium (Gd) complexed with a porphyrin Motexafin (MGd) has been investigated as redox-active compound for treatment of cancer. 1 59G d decays by beta emission with an energy of 970 keV and half-life of 18.59 hours. The de-excitation can be via gamma ray and internal conversion electron emission followed by auger electrons and x rays. Considering all of this 1 59G d could be a interesting radionuclide to be as a radio therapeutical agent. The aims of this works were to evaluate the cytotoxicity of Gd and 1 59G d on malignant brain tumors such as glioblastoma multiform, the most frequent brain tumors which has a very poor prognosis. For this purpose, it was used human glioblastoma cell lines T98 (mutant p53) and U87 (wild-type p53) to investigate the cytotoxicity of gadolinium on cell metabolism by MTT assay and also morphological changes, chromatin condensation by DAPI assay and ROS generation. Gadolinium was able to decrease cell viability, the cells presented morphological changes like round shapes and blebs formation after cell treatment with 5x10 -6 M of Gd. Nuclear changing and ROS generation occurred in a dose dependent way indicating the cytotoxic effect of Gd. Treatment with 1 59G d increased all of changes observed with treatment with Gd. These results state for an additive effect of metal toxicity and radioactivity inducing ROS generation as the main mechanism of anti tumoral action of 1 59G d. The results obtained indicated that the radioactive analogues of Gd have increased cytotoxic effects and gadolinium can be a metal of choice for development of new drugs for cancer treatment. (author)

  15. Evaluation of Gd and Gd{sup 159} as new approaches for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, I.; Neves, M.J., E-mail: nevesmj@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Grupo de Desenvolvimento de Radiofarmacos; Santos, R.G., E-mail: santosr@cdtn.br [Instituto Nacional de Ciencia e Tecnologia em Medicina Molecular (INCT-MM), Belo Horizonte, MG (Brazil)

    2011-07-01

    Metal compounds have shown many biological activities and have been successfully used as anticancer agents such cisplatin. Actually gadolinium (Gd) complexed with a porphyrin Motexafin (MGd) has been investigated as redox-active compound for treatment of cancer. 1{sup 59G}d decays by beta emission with an energy of 970 keV and half-life of 18.59 hours. The de-excitation can be via gamma ray and internal conversion electron emission followed by auger electrons and x rays. Considering all of this 1{sup 59G}d could be a interesting radionuclide to be as a radio therapeutical agent. The aims of this works were to evaluate the cytotoxicity of Gd and 1{sup 59G}d on malignant brain tumors such as glioblastoma multiform, the most frequent brain tumors which has a very poor prognosis. For this purpose, it was used human glioblastoma cell lines T98 (mutant p53) and U87 (wild-type p53) to investigate the cytotoxicity of gadolinium on cell metabolism by MTT assay and also morphological changes, chromatin condensation by DAPI assay and ROS generation. Gadolinium was able to decrease cell viability, the cells presented morphological changes like round shapes and blebs formation after cell treatment with 5x10{sup -6}M of Gd. Nuclear changing and ROS generation occurred in a dose dependent way indicating the cytotoxic effect of Gd. Treatment with 1{sup 59G}d increased all of changes observed with treatment with Gd. These results state for an additive effect of metal toxicity and radioactivity inducing ROS generation as the main mechanism of anti tumoral action of 1{sup 59G}d. The results obtained indicated that the radioactive analogues of Gd have increased cytotoxic effects and gadolinium can be a metal of choice for development of new drugs for cancer treatment. (author)

  16. Quantitative Analysis of Signaling Networks across Differentially Embedded Tumors Highlights Interpatient Heterogeneity in Human Glioblastoma

    Science.gov (United States)

    2015-01-01

    Glioblastoma multiforme (GBM) is the most aggressive malignant primary brain tumor, with a dismal mean survival even with the current standard of care. Although in vitro cell systems can provide mechanistic insight into the regulatory networks governing GBM cell proliferation and migration, clinical samples provide a more physiologically relevant view of oncogenic signaling networks. However, clinical samples are not widely available and may be embedded for histopathologic analysis. With the goal of accurately identifying activated signaling networks in GBM tumor samples, we investigated the impact of embedding in optimal cutting temperature (OCT) compound followed by flash freezing in LN2 vs immediate flash freezing (iFF) in LN2 on protein expression and phosphorylation-mediated signaling networks. Quantitative proteomic and phosphoproteomic analysis of 8 pairs of tumor specimens revealed minimal impact of the different sample processing strategies and highlighted the large interpatient heterogeneity present in these tumors. Correlation analyses of the differentially processed tumor sections identified activated signaling networks present in selected tumors and revealed the differential expression of transcription, translation, and degradation associated proteins. This study demonstrates the capability of quantitative mass spectrometry for identification of in vivo oncogenic signaling networks from human tumor specimens that were either OCT-embedded or immediately flash-frozen. PMID:24927040

  17. A case showing effective radiotherapy for a radiation-induced glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Kimiko; Inamura, Takanori; Nakamizo, Akira; Ikezaki, Kiyonobu; Inoha, Satoshi; Nakamura, Kazumasa; Matsuzaki, Akinobu; Fukui, Masashi [Kyushu Univ., Fukuoka (Japan). Graduate School of Medical Sciences

    2001-07-01

    Radiation-induced glioblastoma is usually resistant to all treatments. We report a case with radiation-induced glioblastoma, in which radiotherapy was remarkably effective. A 14-year-old female with a history of acute lymphoblastic leukemia, at the age of 7, underwent 15 Gy of radiotherapy to the whole brain. She was admitted to our department due to the development of headache and nausea. Magnetic resonance imaging showed an irregularly enhanced mass in the left frontal lobe. Partial removal of the mass was performed and histological examination showed it to be glioblastoma with a high MIB-1 index. The patient underwent 40 Gy of local radiotherapy and chemotherapy with ACNU and Interferon-{beta} for 2 years. The residual tumor disappeared after the radiotherapy, and her status is still ''complete remission'', 29 months after the onset. (author)

  18. Role of differentiation in glioblastoma invasion

    NARCIS (Netherlands)

    Vareecal Joseph, Justin

    2015-01-01

    Glioblastoma (GBM) is de meest agressieve hersentumor en diffuse infiltratie in het normale hersenweefsel is een van de hoofdoorzaken van een slechte prognose, aangezien volledige chirurgische verwijdering hierdoor vrijwel onmogelijk is. Het belangrijkste doel van het in dit proefschrift beschreven

  19. Prognosis prediction of non-enhancing T2 high signal intensity lesions in glioblastoma patients after standard treatment: application of dynamic contrast-enhanced MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Rihyeon; Yun, Tae Jin; Kim, Ji-Hoon; Sohn, Chul-Ho [Seoul National University Hospital, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Choi, Seung Hong [Seoul National University Hospital, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, 103 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Seoul National University, Center for Nanoparticle Research, Institute for Basic Science (IBS), Daehak-dong, Gwanak-gu, Seoul (Korea, Republic of); Seoul National University, School of Chemical and Biological Engineering, Daehak-dong, Gwanak-gu, Seoul (Korea, Republic of); Lee, Soon-Tae [Seoul National University Hospital, Department of Neurology, Seoul (Korea, Republic of); Park, Chul-Kee [Seoul National University Hospital, Department of Neurosurgery, Seoul (Korea, Republic of); Kim, Tae Min [Seoul National University Hospital, Department of Internal Medicine, Seoul (Korea, Republic of); Park, Sun-Won [Seoul National University College of Medicine, Department of Radiology, SMG-SNU Boramae Medical Center, Seoul (Korea, Republic of); Park, Sung-Hye [Seoul National University Hospital, Department of Pathology, Seoul (Korea, Republic of); Kim, Il Han [Seoul National University Hospital, Department of Radiation Oncology, Seoul (Korea, Republic of)

    2017-03-15

    To identify candidate imaging biomarkers for early disease progression in glioblastoma multiforme (GBM) patients by analysis of dynamic contrast-enhanced (DCE) MR parameters of non-enhancing T2 high signal intensity (SI) lesions. Forty-nine GBM patients who had undergone preoperative DCE MR imaging and received standard treatment were retrospectively included. According to the Response Assessment in Neuro-Oncology criteria, patients were classified into progression (n = 21) or non-progression (n = 28) groups. We analysed the pharmacokinetic parameters of Ktrans, Ve and Vp within non-enhancing T2 high SI lesions of each tumour. The best percentiles of each parameter from cumulative histograms were identified by the area under the receiver operating characteristic curve (AUC) and were compared using multivariate stepwise logistic regression. For the differentiation of early disease progression, the highest AUC values were found in the 99th percentile of Ktrans (AUC 0.954), the 97th percentile of Ve (AUC 0.815) and the 94th percentile of Vp (AUC 0.786) (all p < 0.05). The 99th percentile of Ktrans was the only significant independent variable from the multivariate stepwise logistic regression (p = 0.002). We found that the Ktrans of non-enhancing T2 high SI lesions in GBM patients holds potential as a candidate prognostic marker in future prospective studies. (orig.)

  20. Detection of toxoplasma-specific immunoglobulin G in human sera: performance comparison of in house Dot-ELISA with ECLIA and ELISA.

    Science.gov (United States)

    Teimouri, Aref; Modarressi, Mohammad Hossein; Shojaee, Saeedeh; Mohebali, Mehdi; Zouei, Nima; Rezaian, Mostafa; Keshavarz, Hossein

    2018-05-08

    In the current study, performance of electrochemiluminescence immunoassay (ECLIA) in detection of anti-toxoplasma IgG in human sera was compared with that of enzyme-linked immunosorbent assay (ELISA). Furthermore, performance of an in house Dot-ELISA in detection of anti-toxoplasma IgG was compared with that of ECLIA and ELISA. In total, 219 human sera were tested to detect anti-toxoplasma IgG using Dynex DS2® and Roche Cobas® e411 Automated Analyzers. Discordant results rechecked using immunofluorescence assay (IFA). Then, sera were used in an in house Dot-ELISA to assess toxoplasma-specific IgG. Of the 219 samples, two samples were found undetermined using ECLIA but reactive using ELISA. Using IFA, the two sera were reported unreactive. Furthermore, two samples were found reactive using ECLIA and unreactive using ELISA. These samples were reported reactive using IFA. The overall agreement for the two former methods was 98% (rZ0.98.1; P house Dot-ELISA included sensitivity of 79.5, specificity of 78.2, and accuracy of 78.9%, compared to ECLIA and ELISA. Positive and negative predictive values included 82.9 and 74.2%, respectively. A 100% sensitivity was found in in house Dot-ELISA for highly reactive sera in ECLIA and ELISA. ECLIA is appropriate for the first-line serological screening tests and can replace ELISA due to high speed, sensitivity, and specificity, particularly in large laboratories. Dot-ELISA is a rapid, sensitive, specific, cost-effective, user-friendly, and field-portable technique and hence can be used for screening toxoplasmosis, especially in rural fields or less equipped laboratories.

  1. Non-invasive assessment of intratumoral vascularity using arterial spin labeling: A comparison to susceptibility-weighted imaging for the differentiation of primary cerebral lymphoma and glioblastoma

    International Nuclear Information System (INIS)

    Furtner, J.; Schöpf, V.; Preusser, M.; Asenbaum, U.; Woitek, R.; Wöhrer, A.; Hainfellner, J.A.; Wolfsberger, S.; Prayer, D.

    2014-01-01

    Using conventional MRI methods, the differentiation of primary cerebral lymphomas (PCNSL) and other primary brain tumors, such as glioblastomas, is difficult due to overlapping imaging characteristics. This study was designed to discriminate tumor entities using normalized vascular intratumoral signal intensity values (nVITS) obtained from pulsed arterial spin labeling (PASL), combined with intratumoral susceptibility signals (ITSS) from susceptibility-weighted imaging (SWI). Thirty consecutive patients with glioblastoma (n = 22) and PCNSL (n = 8), histologically classified according to the WHO brain tumor classification, were included. MRIs were acquired on a 3 T scanner, and included PASL and SWI sequences. nVITS was defined by the signal intensity ratio between the tumor and the contralateral normal brain tissue, as obtained by PASL images. ITSS was determined as intratumoral low signal intensity structures detected on SWI sequences and were divided into four different grades. Potential differences in the nVITS and ITSS between glioblastomas and PCNSLs were revealed using statistical testing. To determine sensitivity, specificity, and diagnostic accuracy, as well as an optimum cut-off value for the differentiation of PCNSL and glioblastoma, a receiver operating characteristic analysis was used. We found that nVITS (p = 0.011) and ITSS (p = 0.001) values were significantly higher in glioblastoma than in PCNSL. The optimal cut-off value for nVITS was 1.41 and 1.5 for ITSS, with a sensitivity, specificity, and accuracy of more than 95%. These findings indicate that nVITS values have a comparable diagnostic accuracy to ITSS values in differentiating glioblastoma and PCNSL, offering a completely non-invasive and fast assessment of tumoral vascularity in a clinical setting

  2. Non-invasive assessment of intratumoral vascularity using arterial spin labeling: A comparison to susceptibility-weighted imaging for the differentiation of primary cerebral lymphoma and glioblastoma.

    Science.gov (United States)

    Furtner, J; Schöpf, V; Preusser, M; Asenbaum, U; Woitek, R; Wöhrer, A; Hainfellner, J A; Wolfsberger, S; Prayer, D

    2014-05-01

    Using conventional MRI methods, the differentiation of primary cerebral lymphomas (PCNSL) and other primary brain tumors, such as glioblastomas, is difficult due to overlapping imaging characteristics. This study was designed to discriminate tumor entities using normalized vascular intratumoral signal intensity values (nVITS) obtained from pulsed arterial spin labeling (PASL), combined with intratumoral susceptibility signals (ITSS) from susceptibility-weighted imaging (SWI). Thirty consecutive patients with glioblastoma (n=22) and PCNSL (n=8), histologically classified according to the WHO brain tumor classification, were included. MRIs were acquired on a 3T scanner, and included PASL and SWI sequences. nVITS was defined by the signal intensity ratio between the tumor and the contralateral normal brain tissue, as obtained by PASL images. ITSS was determined as intratumoral low signal intensity structures detected on SWI sequences and were divided into four different grades. Potential differences in the nVITS and ITSS between glioblastomas and PCNSLs were revealed using statistical testing. To determine sensitivity, specificity, and diagnostic accuracy, as well as an optimum cut-off value for the differentiation of PCNSL and glioblastoma, a receiver operating characteristic analysis was used. We found that nVITS (p=0.011) and ITSS (p=0.001) values were significantly higher in glioblastoma than in PCNSL. The optimal cut-off value for nVITS was 1.41 and 1.5 for ITSS, with a sensitivity, specificity, and accuracy of more than 95%. These findings indicate that nVITS values have a comparable diagnostic accuracy to ITSS values in differentiating glioblastoma and PCNSL, offering a completely non-invasive and fast assessment of tumoral vascularity in a clinical setting. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Non-invasive assessment of intratumoral vascularity using arterial spin labeling: A comparison to susceptibility-weighted imaging for the differentiation of primary cerebral lymphoma and glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Furtner, J., E-mail: julia.furtner@meduniwien.ac.at [Department of Biomedical Imaging und Image-guided Therapy, Medical University of Vienna (Austria); Comprehensive Cancer Center-Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna (Austria); Schöpf, V., E-mail: veronika.schoepf@meduniwien.ac.at [Department of Biomedical Imaging und Image-guided Therapy, Medical University of Vienna (Austria); Preusser, M., E-mail: matthias.preusser@meduniwien.ac.at [Department of Medicine I, Division of Oncology, Medical University of Vienna (Austria); Comprehensive Cancer Center-Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna (Austria); Asenbaum, U., E-mail: ulrika.asenbaum@meduniwien.ac.at [Department of Biomedical Imaging und Image-guided Therapy, Medical University of Vienna (Austria); Woitek, R., E-mail: ramona.woitek@meduniwien.ac.at [Department of Biomedical Imaging und Image-guided Therapy, Medical University of Vienna (Austria); Wöhrer, A., E-mail: adelheid.woehrer@meduniwien.ac.at [Institute of Neurology, Medical University of Vienna (Austria); Comprehensive Cancer Center-Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna (Austria); Hainfellner, J.A., E-mail: johannes.hainfellner@meduniwien.ac.at [Institute of Neurology, Medical University of Vienna (Austria); Comprehensive Cancer Center-Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna (Austria); Wolfsberger, S., E-mail: stefan.wolfsberger@meduniwien.ac.at [Department of Neurosurgery, Medical University of Vienna (Austria); Comprehensive Cancer Center-Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna (Austria); Prayer, D., E-mail: daniela.prayer@meduniwien.ac.at [Department of Biomedical Imaging und Image-guided Therapy, Medical University of Vienna (Austria); Comprehensive Cancer Center-Central Nervous System Tumors Unit (CCC-CNS), Medical University of Vienna (Austria)

    2014-05-15

    Using conventional MRI methods, the differentiation of primary cerebral lymphomas (PCNSL) and other primary brain tumors, such as glioblastomas, is difficult due to overlapping imaging characteristics. This study was designed to discriminate tumor entities using normalized vascular intratumoral signal intensity values (nVITS) obtained from pulsed arterial spin labeling (PASL), combined with intratumoral susceptibility signals (ITSS) from susceptibility-weighted imaging (SWI). Thirty consecutive patients with glioblastoma (n = 22) and PCNSL (n = 8), histologically classified according to the WHO brain tumor classification, were included. MRIs were acquired on a 3 T scanner, and included PASL and SWI sequences. nVITS was defined by the signal intensity ratio between the tumor and the contralateral normal brain tissue, as obtained by PASL images. ITSS was determined as intratumoral low signal intensity structures detected on SWI sequences and were divided into four different grades. Potential differences in the nVITS and ITSS between glioblastomas and PCNSLs were revealed using statistical testing. To determine sensitivity, specificity, and diagnostic accuracy, as well as an optimum cut-off value for the differentiation of PCNSL and glioblastoma, a receiver operating characteristic analysis was used. We found that nVITS (p = 0.011) and ITSS (p = 0.001) values were significantly higher in glioblastoma than in PCNSL. The optimal cut-off value for nVITS was 1.41 and 1.5 for ITSS, with a sensitivity, specificity, and accuracy of more than 95%. These findings indicate that nVITS values have a comparable diagnostic accuracy to ITSS values in differentiating glioblastoma and PCNSL, offering a completely non-invasive and fast assessment of tumoral vascularity in a clinical setting.

  4. Characterisation of a rare, reassortant human G10P[14] rotavirus strain detected in Honduras.

    Science.gov (United States)

    Quaye, Osbourne; Roy, Sunando; Rungsrisuriyachai, Kunchala; Esona, Mathew D; Xu, Ziqian; Tam, Ka Ian; Banegas, Dina J Castro; Rey-Benito, Gloria; Bowen, Michael D

    2018-01-01

    Although first detected in animals, the rare rotavirus strain G10P[14] has been sporadically detected in humans in Slovenia, Thailand, United Kingdom and Australia among other countries. Earlier studies suggest that the strains found in humans resulted from interspecies transmission and reassortment between human and bovine rotavirus strains. In this study, a G10P[14] rotavirus genotype detected in a human stool sample in Honduras during the 2010-2011 rotavirus season, from an unvaccinated 30-month old boy who reported at the hospital with severe diarrhea and vomiting, was characterised to determine the possible evolutionary origin of the rare strain. For the sample detected as G10P[14], 10% suspension was prepared and used for RNA extraction and sequence independent amplification. The amplicons were sequenced by next-generation sequencing using the Illumina MiSeq 150 paired end method. The sequence reads were analysed using CLC Genomics Workbench 6.0 and phylogenetic trees were constructed using PhyML version 3.0. The next generation sequencing and phylogenetic analyses of the 11-segmented genome of the G10P[14] strain allowed classification as G10-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. Six of the genes (VP1, VP2, VP3, VP6, NSP2 and NSP4) were DS-1-like. NSP1 and NSP5 were AU-1-like and NSP3 was T6, which suggests that multiple reassortment events occurred in the evolution of the strain. The phylogenetic analyses and genetic distance calculations showed that the VP7, VP4, VP6, VP1, VP3, NSP1, NSP3 and NSP4 genes clustered predominantly with bovine strains. NSP2 and VP2 genes were most closely related to simian and human strains, respectively, and NSP5 was most closely related to a rhesus strain. The genetic characterisation of the G10P[14] strain from Honduras suggests that its genome resulted from multiple reassortment events which were possibly mediated through interspecies transmissions.

  5. miR-98 and let-7g* protect the blood-brain barrier under neuroinflammatory conditions.

    Science.gov (United States)

    Rom, Slava; Dykstra, Holly; Zuluaga-Ramirez, Viviana; Reichenbach, Nancy L; Persidsky, Yuri

    2015-12-01

    Pathologic conditions in the central nervous system, regardless of the underlying injury mechanism, show a certain level of blood-brain barrier (BBB) impairment. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation due to stroke, atherosclerosis, trauma, or brain infections. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators. The relationship between neuroinflammation and miRNA expression in brain endothelium remains unexplored. Previously, we showed the BBB-protective and anti-inflammatory effects of glycogen synthase kinase (GSK) 3β inhibition in brain endothelium in in vitro and in vivo models of neuroinflammation. Using microarray screening, we identified miRNAs induced in primary human brain microvascular endothelial cells after exposure to the pro-inflammatory cytokine, tumor necrosis factor-α, with/out GSK3β inhibition. Among the highly modified miRNAs, let-7 and miR-98 were predicted to target the inflammatory molecules, CCL2 and CCL5. Overexpression of let-7 and miR-98 in vitro and in vivo resulted in reduced leukocyte adhesion to and migration across endothelium, diminished expression of pro-inflammatory cytokines, and increased BBB tightness, attenuating barrier 'leakiness' in neuroinflammation conditions. For the first time, we showed that miRNAs could be used as a therapeutic tool to prevent the BBB dysfunction in neuroinflammation.

  6. 99mTc human IgG radiolabelled by HYNIC. Biodistribution and scintigraphy of experimentally induced inflammatory lesions in animal model

    International Nuclear Information System (INIS)

    Karczmarczyk, U.; Markiewicz, A.; Mikolajczak, R.; Michalik, J.; Lisiak, E.; Bilski, M.; Pietrzykowski, J.

    2004-01-01

    Our goal was the efficient labelling of highly purified human gammaglobulin. This radioactive protein fraction can be used as a basic compound of radiopharmaceutical formulation for inflammation lesion diagnosis. This application was experimentally illustrated in animal models with artificially induced inflammatory lesions after turpentine oil injection into mouse leg muscle. Hydrazine nicotinamine derivative of human gammaglobulin (IgG-HYNIC) was synthesized according to Abrams method. The radionuclide: technetium 99mT c has been introduced into protein molecules by indirect method incorporation in phosphate buffer, pH 7.4, in the presence of stannous chloride as a reducing agent for sodium pertechnetate, and EDTA as a coligand. Radiochemical purity was estimated by thin layer chromatography. The stability of labelled IgG-HYNIC derivative in human serum in presence of copper, cobalt, iron and manganese salts was analyzed by HPLC method (BioSEP SEC 4000, eluent: 0.1mol/L phosphate). Inflammation lesions were induced in Balb/3 mice muscles by injection of 0.2 ml turpentine oil into the leg muscle. Five days later, inflammation lesions were visualized by hIgG-HYNIC- 99mT c injections. The tracer accumulation in tissue was evaluated by gamma camera at 1 to 24 hour intervals. Efficiency of technetium 99mT c human gammaglobulin labelling (pH 7.4, temp. 37 o C) was strictly dependant on ligand and coligand presence in the reaction mixture. Labelling of IgG molecules without any supplements resulted in very low efficiency, never exceeding the range of 5%. Presence of EDTA or hydrazine nicotinamide (HYNIC) conjugated with IgG increased radiolabelling efficiency to 50%. IgG-HYNIC derivative in EDTA presence enables us to reach value above 95% radiochemical purity. Stability of IgG-HYNIC derivative labelled with technetium 99mT c decreased rapidly in serum in time - up to 70% of initial value in 30 minutes and only 20% during further 4 hr incubation. This means that as much

  7. Automated Expansion of Primary Human T Cells in Scalable and Cell-Friendly Hydrogel Microtubes for Adoptive Immunotherapy.

    Science.gov (United States)

    Lin, Haishuang; Li, Qiang; Wang, Ou; Rauch, Jack; Harm, Braden; Viljoen, Hendrik J; Zhang, Chi; Van Wyk, Erika; Zhang, Chi; Lei, Yuguo

    2018-05-11

    Adoptive immunotherapy is a highly effective strategy for treating many human cancers, such as melanoma, cervical cancer, lymphoma, and leukemia. Here, a novel cell culture technology is reported for expanding primary human T cells for adoptive immunotherapy. T cells are suspended and cultured in microscale alginate hydrogel tubes (AlgTubes) that are suspended in the cell culture medium in a culture vessel. The hydrogel tubes protect cells from hydrodynamic stresses and confine the cell mass less than 400 µm (in radial diameter) to ensure efficient mass transport, creating a cell-friendly microenvironment for growing T cells. This system is simple, scalable, highly efficient, defined, cost-effective, and compatible with current good manufacturing practices. Under optimized culture conditions, the AlgTubes enable culturing T cells with high cell viability, low DNA damage, high growth rate (≈320-fold expansion over 14 days), high purity (≈98% CD3+), and high yield (≈3.2 × 10 8 cells mL -1 hydrogel). All offer considerable advantages compared to current T cell culturing approaches. This new culture technology can significantly reduce the culture volume, time, and cost, while increasing the production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Novel compound heterozygous mutations in the GPR98 (USH2C) gene identified by whole exome sequencing in a Moroccan deaf family.

    Science.gov (United States)

    Bousfiha, Amale; Bakhchane, Amina; Charoute, Hicham; Detsouli, Mustapha; Rouba, Hassan; Charif, Majida; Lenaers, Guy; Barakat, Abdelhamid

    2017-10-01

    In the present work, we identified two novel compound heterozygote mutations in the GPR98 (G protein-coupled receptor 98) gene causing Usher syndrome. Whole-exome sequencing was performed to study the genetic causes of Usher syndrome in a Moroccan family with three affected siblings. We identify two novel compound heterozygote mutations (c.1054C > A, c.16544delT) in the GPR98 gene in the three affected siblings carrying post-linguale bilateral moderate hearing loss with normal vestibular functions and before installing visual disturbances. This is the first time that mutations in the GPR98 gene are described in the Moroccan deaf patients.

  9. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins.

    Science.gov (United States)

    Sparwasser, T; Vabulas, R M; Villmow, B; Lipford, G B; Wagner, H

    2000-12-01

    Receptors for conserved molecular patterns associated with microbial pathogens induce synthesis of co-stimulatory molecules and cytokines in immature dendritic cells (DC), as do antigen-reactive CD4 T helper cells via CD40 signaling. Once activated, antigen-presenting DC may activate CD8 T cell responses in a T helper cell-independent fashion. Using immunostimulatory CpG-oligonucleotides (ODN) mimicking bacterial CpG-DNA, we tested whether CpG-DNA bypasses the need for T helper cells in CTL responses towards proteins by directly activating antigen-presenting DC to transit into professional APC. We describe that immature DC in situ constitutively process soluble proteins and generate CD8 T cell determinants yet CD8 T cell responses remain abortive. Induction of primary antigen-specific CD8 cytotoxic T lymphocyte (CTL)-mediated responses becomes initiated in wild-type as well as T helper cell-deficient mice, provided soluble protein and CpG-ODN are draining into the same lymph node. Specifically we show that CpG-ODN trigger antigen-presenting immature DC within the draining lymph node to acutely up-regulate co-stimulatory molecules and produce IL-12. These results provide new insights for generating in vivo efficient CTL responses to soluble proteins which may influence vaccination strategies.

  10. Prognostic value of plasma transforming growth factor-beta in patients with glioblastoma multiforme

    NARCIS (Netherlands)

    Hulshof, M. C.; Sminia, P.; Barten-van Rijbroek, A. D.; Gonzalez Gonzalez, D.

    2001-01-01

    We investigated whether the postoperative concentration of circulating transforming growth factor beta (TGF-beta) yields prognostic value in patients with glioblastoma multiforme (gbm). Blood was collected from 20 healthy volunteers and in 28 patients with mainly glioblastoma multiforme (gbm), both

  11. Identification of a novel antagonist of the ErbB1 receptor capable of inhibiting migration of human glioblastoma cells

    DEFF Research Database (Denmark)

    Staberg, Mikkel; Riemer, Christian; Xu, Ruodan

    2013-01-01

    B1 targeting peptide, termed Herfin-1, was designed based on a model of the tertiary structure of the EGF-EGFR ternary complex. The binding kinetics of this peptide were determined employing surface plasmon resonance analyses. ErbB1-4 expression and phosphorylation in human glioblastoma cell lines U...... processing. RESULTS: The present study shows that Herfin-1 functions as an ErbB1 antagonist. It binds to the extracellular domain of ErbB1 with a KD value of 361 nM. In U87 and U118 cells, both expressing high levels of ErbB1, Herfin-1 inhibits EGF-induced ErbB1 phosphorylation and cell migration....... Additionally, Herfin-1 was found to increase neurite outgrowth in cerebellar granule neurons, likely through the inhibition of a sustained weak ErbB1 activation. CONCLUSIONS: Targeting the ErbB1 receptor dimerization interface is a promising strategy to inhibit receptor activation in ErbB1-expressing glioma...

  12. The Somatic Genomic Landscape of Glioblastoma

    Science.gov (United States)

    Brennan, Cameron W.; Verhaak, Roel G.W.; McKenna, Aaron; Campos, Benito; Noushmehr, Houtan; Salama, Sofie R.; Zheng, Siyuan; Chakravarty, Debyani; Sanborn, J. Zachary; Berman, Samuel H.; Beroukhim, Rameen; Bernard, Brady; Wu, Chang-Jiun; Genovese, Giannicola; Shmulevich, Ilya; Barnholtz-Sloan, Jill; Zou, Lihua; Vegesna, Rahulsimham; Shukla, Sachet A.; Ciriello, Giovanni; Yung, WK; Zhang, Wei; Sougnez, Carrie; Mikkelsen, Tom; Aldape, Kenneth; Bigner, Darell D.; Van Meir, Erwin G.; Prados, Michael; Sloan, Andrew; Black, Keith L.; Eschbacher, Jennifer; Finocchiaro, Gaetano; Friedman, William; Andrews, David W.; Guha, Abhijit; Iacocca, Mary; O’Neill, Brian P.; Foltz, Greg; Myers, Jerome; Weisenberger, Daniel J.; Penny, Robert; Kucherlapati, Raju; Perou, Charles M.; Hayes, D. Neil; Gibbs, Richard; Marra, Marco; Mills, Gordon B.; Lander, Eric; Spellman, Paul; Wilson, Richard; Sander, Chris; Weinstein, John; Meyerson, Matthew; Gabriel, Stacey; Laird, Peter W.; Haussler, David; Getz, Gad; Chin, Lynda

    2013-01-01

    We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer. PMID:24120142

  13. Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells.

    Directory of Open Access Journals (Sweden)

    Beatriz Aldaz

    Full Text Available Glioblastoma multiforme (GBM-initiating cells (GICs represent a tumor subpopulation with neural stem cell-like properties that is responsible for the development, progression and therapeutic resistance of human GBM. We have recently shown that blockade of NFκB pathway promotes terminal differentiation and senescence of GICs both in vitro and in vivo, indicating that induction of differentiation may be a potential therapeutic strategy for GBM. MicroRNAs have been implicated in the pathogenesis of GBM, but a high-throughput analysis of their role in GIC differentiation has not been reported. We have established human GIC cell lines that can be efficiently differentiated into cells expressing astrocytic and neuronal lineage markers. Using this in vitro system, a microarray-based high-throughput analysis to determine global expression changes of microRNAs during differentiation of GICs was performed. A number of changes in the levels of microRNAs were detected in differentiating GICs, including over-expression of hsa-miR-21, hsa-miR-29a, hsa-miR-29b, hsa-miR-221 and hsa-miR-222, and down-regulation of hsa-miR-93 and hsa-miR-106a. Functional studies showed that miR-21 over-expression in GICs induced comparable cell differentiation features and targeted SPRY1 mRNA, which encodes for a negative regulator of neural stem-cell differentiation. In addition, miR-221 and miR-222 inhibition in differentiated cells restored the expression of stem cell markers while reducing differentiation markers. Finally, miR-29a and miR-29b targeted MCL1 mRNA in GICs and increased apoptosis. Our study uncovers the microRNA dynamic expression changes occurring during differentiation of GICs, and identifies miR-21 and miR-221/222 as key regulators of this process.

  14. Role of nitric oxide in targeted-subcellular organelles induced bystander effect

    International Nuclear Information System (INIS)

    Shao Chunlin; Folkard, M.; Prise, K.M.

    2007-01-01

    The work is to investigate the bystander effect and related signaling factor induced by targeted irradiation on tumor cells. Human glioblastoma T98G cells were irradiated with a precise number of helium microbeam ions, which targeted to either nuclear or cytoplasm. Chromosome damage and intracellular NO level were assayed. Influence of a NO free radical scavenger on these radiation responses was measured. Using DEANO, the cellular effect of NO was also studied. It was found that even only one cell with a population was targeted with one particle through either nuclear or cytoplasm, additional cellular damage was induced in other 10s cells through a signaling amplification pathway and related bystander response. Although cell damage induced directly by nuclear irradiation was greater than that induced by cytoplasmic irradiation, bystander responses induced by these two kinds of irradiation were similar. When a fraction of cells were individually irradiated by helium ions, the yield of micronuclei was obviously higher than that assuming no bystander effect. However, these targeted irradiation induced bystander response were inhibited by c-PTIO, a scavenger of nitric oxide (NO) free radical. Detected with a NO molecular probe DAF-AM, it was observed that when only 1% of cells were irradiated either through nuclear or cytoplasm, the percentage of NO-positive cells increased by about 30% so that the NO-related fluorescence intensity increased by 15%. Moreover, micronuclei were induced indeed in T98G cells treated with a NO donor. These indicate that NO is a bystander signaling factor for both nuclear irradiation and cytoplasmic irradiation. (authors)

  15. Ficus carica latex prevents invasion through induction of let-7d expression in GBM cell lines.

    Science.gov (United States)

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Yalcin, Murat; Sahin, Saliha; Budak, Ferah; Cecener, Gulsah; Egeli, Unal; Demir, Cevdet; Guvenc, Gokcen; Yilmaz, Gozde; Erkan, Leman Gizem; Malyer, Hulusi; Taskapilioglu, Mevlut Ozgur; Evrensel, Turkkan; Bilir, Ayhan

    2015-03-01

    Glioblastoma multiforme (GBM) is one of the deadliest human malignancies. A cure for GBM remains elusive, and the overall survival time is less than 1 year. Thus, the development of more efficient therapeutic approaches for the treatment of these patients is required. Induction of tumor cell death by certain phytochemicals derived from medicinal herbs and dietary plants has become a new frontier for cancer therapy research. Although the cancer suppressive effect of Ficus carica (fig) latex (FCL) has been determined in a few cancer types, the effect of this latex on GBM tumors has not been investigated. Therefore, in the current study, the anti-proliferative activity of FCL and the effect of the FCL-temozolomide (TMZ) combination were tested in the T98G, U-138 MG, and U-87 MG GBM cell lines using the WST-1 assay. The mechanism of cell death was analyzed using Annexin-V/FITC and TUNEL assays, and the effect of FCL on invasion was tested using the chick chorioallantoic membrane assay. To determine the effect of FCL on GBM progression, the expression levels of 40 GBM associated miRNAs were analyzed in T98G cells using RT-qPCR. According to the obtained data, FCL causes cell death in GBM cells with different responses to TMZ, and this effect is synergistically increased in combination with TMZ. In addition, the current study is the first to demonstrate the effect of FCL on modulation of let-7d expression, which may be an important underlying mechanism of the anti-invasive effect of this extract.

  16. Transcription arrest by a G quadruplex forming-trinucleotide repeat sequence from the human c-myb gene.

    Science.gov (United States)

    Broxson, Christopher; Beckett, Joshua; Tornaletti, Silvia

    2011-05-17

    Non canonical DNA structures correspond to genomic regions particularly susceptible to genetic instability. The transcription process facilitates formation of these structures and plays a major role in generating the instability associated with these genomic sites. However, little is known about how non canonical structures are processed when encountered by an elongating RNA polymerase. Here we have studied the behavior of T7 RNA polymerase (T7RNAP) when encountering a G quadruplex forming-(GGA)(4) repeat located in the human c-myb proto-oncogene. To make direct correlations between formation of the structure and effects on transcription, we have taken advantage of the ability of the T7 polymerase to transcribe single-stranded substrates and of G4 DNA to form in single-stranded G-rich sequences in the presence of potassium ions. Under physiological KCl concentrations, we found that T7 RNAP transcription was arrested at two sites that mapped to the c-myb (GGA)(4) repeat sequence. The extent of arrest did not change with time, indicating that the c-myb repeat represented an absolute block and not a transient pause to T7 RNAP. Consistent with G4 DNA formation, arrest was not observed in the absence of KCl or in the presence of LiCl. Furthermore, mutations in the c-myb (GGA)(4) repeat, expected to prevent transition to G4, also eliminated the transcription block. We show T7 RNAP arrest at the c-myb repeat in double-stranded DNA under conditions mimicking the cellular concentration of biomolecules and potassium ions, suggesting that the G4 structure formed in the c-myb repeat may represent a transcription roadblock in vivo. Our results support a mechanism of transcription-coupled DNA repair initiated by arrest of transcription at G4 structures.

  17. X-ray diffraction analysis of a human tRNAGly acceptor-stem microhelix isoacceptor at 1.18 Å resolution

    International Nuclear Information System (INIS)

    Eichert, André; Perbandt, Markus; Schreiber, Angela; Fürste, Jens P.; Betzel, Christian; Erdmann, Volker A.; Förster, Charlotte

    2008-01-01

    The tRNA Gly acceptor-stem microhelix isoacceptor from human cytoplasm was crystallized and X-ray diffraction analysis revealed diffraction to 1.18 Å resolution. The sequence of the microhelix was derived from the gene sequence with tRNA Database ID DG9990. Interest has been focused on comparative X-ray structure analyses of different tRNA Gly acceptor-stem helices. tRNA Gly /glycyl-tRNA synthetase belongs to the so-called class II system, in which the tRNA identity elements consist of simple and unique determinants that are located in the tRNA acceptor stem and the discriminator base. Comparative structure investigations of tRNA Gly microhelices provide insight into the role of tRNA identity elements. Predominant differences in the structures of glycyl-tRNA synthetases and in the tRNA identity elements between prokaryotes and eukaryotes point to divergence during the evolutionary process. Here, the crystallization and high-resolution X-ray diffraction analysis of a human tRNA Gly acceptor-stem microhelix with sequence 5′-G 1 C 2 A 3 U 4 U 5 G 6 G 7 -3′, 5′-C 66 C 67 A 68 A 69 U 70 G 71 C 72 -3′ is reported. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 37.32, b = 37.61, c = 30.47 Å, β = 112.60° and one molecule per asymmetric unit. A data set was collected using synchrotron radiation and data were processed within the resolution range 50.0–1.18 Å. The structure was solved by molecular replacement

  18. Additive Interaction of MTHFR C677T and MTRR A66G Polymorphisms with Being Overweight/Obesity on the Risk of Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Xueyuan Zhi

    2016-12-01

    Full Text Available Although both methylenetetrahydrofolate reductase (MTHFR C677T and methionine synthase reductase (MTRR A66G polymorphisms have been associated with type 2 diabetes (T2D, their interactions with being overweight/obesity on T2D risk remain unclear. To evaluate the associations of the two polymorphisms with T2D and their interactions with being overweight/obesity on T2D risk, a case-control study of 180 T2D patients and 350 healthy controls was conducted in northern China. Additive interaction was estimated using relative excess risk due to interaction (RERI, attributable proportion due to interaction (AP and synergy index (S. After adjustments for age and gender, borderline significant associations of the MTHFR C677T and MTRR A66G polymorphisms with T2D were observed under recessive (OR = 1.43, 95% CI: 0.98–2.10 and dominant (OR = 1.43, 95% CI: 1.00–2.06 models, respectively. There was a significant interaction between the MTHFR 677TT genotype and being overweight/obesity on T2D risk (AP = 0.404, 95% CI: 0.047–0.761, in addition to the MTRR 66AG/GG genotypes (RERI = 1.703, 95% CI: 0.401–3.004; AP = 0.528, 95% CI: 0.223–0.834. Our findings suggest that individuals with the MTHFR 677TT or MTRR 66AG/GG genotypes are more susceptible to the detrimental effect of being overweight/obesity on T2D. Further large-scale studies are still needed to confirm our findings.

  19. Transcriptional profiling of human glioblastoma vessels indicates a key role of VEGF-A and TGF beta 2 in vascular abnormalization

    NARCIS (Netherlands)

    Dieterich, Lothar C.; Mellberg, Sofie; Langenkamp, Elise; Zhang, Lei; Zieba, Agata; Salomaki, Henriikka; Teichert, Martin; Huang, Hua; Edqvist, Per-Henrik; Kraus, Theo; Augustin, Hellmut G.; Olofsson, Tommie; Larsson, Erik; Soderberg, Ola; Molema, Grietje; Ponten, Fredrik; Georgii-Hemming, Patrik; Alafuzoff, Irina; Dimberg, Anna

    2012-01-01

    Glioblastoma are aggressive astrocytic brain tumours characterized by microvascular proliferation and an abnormal vasculature, giving rise to brain oedema and increased patient morbidity. Here, we have characterized the transcriptome of tumour-associated blood vessels and describe a gene signature

  20. Sites of instability in the human TCF3 (E2A) gene adopt G-quadruplex DNA structures in vitro

    Science.gov (United States)

    Williams, Jonathan D.; Fleetwood, Sara; Berroyer, Alexandra; Kim, Nayun; Larson, Erik D.

    2015-01-01

    The formation of highly stable four-stranded DNA, called G-quadruplex (G4), promotes site-specific genome instability. G4 DNA structures fold from repetitive guanine sequences, and increasing experimental evidence connects G4 sequence motifs with specific gene rearrangements. The human transcription factor 3 (TCF3) gene (also termed E2A) is subject to genetic instability associated with severe disease, most notably a common translocation event t(1;19) associated with acute lymphoblastic leukemia. The sites of instability in TCF3 are not randomly distributed, but focused to certain sequences. We asked if G4 DNA formation could explain why TCF3 is prone to recombination and mutagenesis. Here we demonstrate that sequences surrounding the major t(1;19) break site and a region associated with copy number variations both contain G4 sequence motifs. The motifs identified readily adopt G4 DNA structures that are stable enough to interfere with DNA synthesis in physiological salt conditions in vitro. When introduced into the yeast genome, TCF3 G4 motifs promoted gross chromosomal rearrangements in a transcription-dependent manner. Our results provide a molecular rationale for the site-specific instability of human TCF3, suggesting that G4 DNA structures contribute to oncogenic DNA breaks and recombination. PMID:26029241

  1. Mucosal immunization in macaques upregulates the innate APOBEC 3G anti-viral factor in CD4(+) memory T cells.

    Science.gov (United States)

    Wang, Yufei; Bergmeier, Lesley A; Stebbings, Richard; Seidl, Thomas; Whittall, Trevor; Singh, Mahavir; Berry, Neil; Almond, Neil; Lehner, Thomas

    2009-02-05

    APOBEC3G is an innate intracellular anti-viral factor which deaminates retroviral cytidine to uridine. In vivo studies of APOBEC3G (A3G) were carried out in rhesus macaques, following mucosal immunization with SIV antigens and CCR5 peptides, linked to the 70kDa heat shock protein. A progressive increase in A3G mRNA was elicited in PBMC after each immunization (p<0.0002 to p< or =0.02), which was maintained for at least 17 weeks. Analysis of memory T cells showed a significant increase in A3G mRNA and protein in CD4(+)CCR5(+) memory T cells in circulating (p=0.0001), splenic (p=0.0001), iliac lymph nodes (p=0.002) and rectal (p=0.01) cells of the immunized compared with unimmunized macaques. Mucosal challenge with SIVmac 251 showed a significant increase in A3G mRNA in the CD4(+)CCR5(+) circulating cells (p<0.01) and the draining iliac lymph node cells (p<0.05) in the immunized uninfected macaques, consistent with a protective effect exerted by A3G. The results suggest that mucosal immunization in a non-human primate can induce features of a memory response to an innate anti-viral factor in CCR5(+)CD4(+) memory and CD4(+)CD95(+)CCR7(-) effector memory T cells.

  2. Downregulation of RND3/RhoE in glioblastoma patients promotes tumorigenesis through augmentation of notch transcriptional complex activity

    International Nuclear Information System (INIS)

    Liu, Baohui; Lin, Xi; Yang, Xiangsheng; Dong, Huimin; Yue, Xiaojing; Andrade, Kelsey C; Guo, Zhentao; Yang, Jian; Wu, Liquan; Zhu, Xiaonan; Zhang, Shenqi; Tian, Daofeng; Wang, Junmin; Cai, Qiang; Chen, Qizuan; Mao, Shanping; Chen, Qianxue; Chang, Jiang

    2015-01-01

    Activation of Notch signaling contributes to glioblastoma multiform (GBM) tumorigenesis. However, the molecular mechanism that promotes the Notch signaling augmentation during GBM genesis remains largely unknown. Identification of new factors that regulate Notch signaling is critical for tumor treatment. The expression levels of RND3 and its clinical implication were analyzed in GBM patients. Identification of RND3 as a novel factor in GBM genesis was demonstrated in vitro by cell experiments and in vivo by a GBM xenograft model. We found that RND3 expression was significantly decreased in human glioblastoma. The levels of RND3 expression were inversely correlated with Notch activity, tumor size, and tumor cell proliferation, and positively correlated with patient survival time. We demonstrated that RND3 functioned as an endogenous repressor of the Notch transcriptional complex. RND3 physically interacted with NICD, CSL, and MAML1, the Notch transcriptional complex factors, promoted NICD ubiquitination, and facilitated the degradation of these cofactor proteins. We further revealed that RND3 facilitated the binding of NICD to FBW7, a ubiquitin ligase, and consequently enhanced NICD protein degradation. Therefore, Notch transcriptional activity was inhibited. Forced expression of RND3 repressed Notch signaling, which led to the inhibition of glioblastoma cell proliferation in vitro and tumor growth in the xenograft mice in vivo. Downregulation of RND3, however, enhanced Notch signaling activity, and subsequently promoted glioma cell proliferation. Inhibition of Notch activity abolished RND3 deficiency-mediated GBM cell proliferation. We conclude that downregulation of RND3 is responsible for the enhancement of Notch activity that promotes glioblastoma genesis

  3. Detection of Human Ig G Using Photoluminescent Porous Silicon Interferometer.

    Science.gov (United States)

    Cho, Bomin; Kim, Seongwoong; Woo, Hee-Gweon; Kim, Sungsoo; Sohn, Honglae

    2015-02-01

    Photoluminescent porous silicon (PSi) interferometers having dual optical properties, both Fabry-Pérot fringe and photolumincence (PL), have been developed and used as biosensors for detection of Human Immunoglobin G (Ig G). PSi samples were prepared by electrochemical etching of p-type silicon under white light exposure. The surface of PSi was characterized using a cold field emission scanning electron microscope. The sensor system studied consisted of a single layer of porous silicon modified with Protein A. The system was probed with various fragments of aqueous human immunoglobin G (Ig G) analyte. Both reflectivity and PL were simultaneously measured under the exposure of human Ig G. An increase of optical thickness and decrease of PL were obtained under the exposure of human Ig G. Detection limit of 500 fM was observed for the human Ig G.

  4. Glioblastoma chemotherapy adjunct via potent serotonin receptor-7 inhibition using currently marketed high-affinity antipsychotic medicines

    Science.gov (United States)

    Kast, RE

    2010-01-01

    Glioblastoma treatment as now constituted offers increased survival measured in months over untreated patients. Because glioblastomas are active in synthesizing a bewildering variety of growth factors, a systematic approach to inhibiting these is being undertaken as treatment adjunct. The serotonin 7 receptor is commonly overexpressed in glioblastoma. Research documentation showing agonists at serotonin receptor 7 cause increased extracellular regulated kinase 1/2 activation, increased interleukin-6 synthesis, increased signal transducer and activator of transcription-3 activation, increased resistance to apoptosis and other growth enhancing changes in glioblastoma is reviewed in this paper. Because three drugs in wide use to treat thought disorders – paliperidone, pimozide and risperidone – are also potent and well-tolerated inhibitors at serotonin receptor 7, these drugs should be studied for growth factor deprivation in an adjunctive role in glioblastoma treatment. PMID:20880389

  5. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  6. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas

    Energy Technology Data Exchange (ETDEWEB)

    Korfiatis, Panagiotis; Kline, Timothy L.; Erickson, Bradley J., E-mail: bje@mayo.edu [Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905 (United States); Coufalova, Lucie [Department of Radiology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905 (United States); Department of Neurosurgery of First Faculty of Medicine, Charles University in Prague, Military University Hospital, Prague 128 21 (Czech Republic); International Clinical Research Center, St. Anne’s University Hospital Brno, Brno 656 91 (Czech Republic); Lachance, Daniel H. [Department of Neurology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905 (United States); Parney, Ian F. [Department of Neurologic Surgery, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905 (United States); Carter, Rickey E. [Department of Health Sciences Research, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905 (United States); Buckner, Jan C. [Department of Medical Oncology, Mayo Clinic, 200 1st Street SW, Rochester, Minnesota 55905 (United States)

    2016-06-15

    Purpose: Imaging biomarker research focuses on discovering relationships between radiological features and histological findings. In glioblastoma patients, methylation of the O{sup 6}-methylguanine methyltransferase (MGMT) gene promoter is positively correlated with an increased effectiveness of current standard of care. In this paper, the authors investigate texture features as potential imaging biomarkers for capturing the MGMT methylation status of glioblastoma multiforme (GBM) tumors when combined with supervised classification schemes. Methods: A retrospective study of 155 GBM patients with known MGMT methylation status was conducted. Co-occurrence and run length texture features were calculated, and both support vector machines (SVMs) and random forest classifiers were used to predict MGMT methylation status. Results: The best classification system (an SVM-based classifier) had a maximum area under the receiver-operating characteristic (ROC) curve of 0.85 (95% CI: 0.78–0.91) using four texture features (correlation, energy, entropy, and local intensity) originating from the T2-weighted images, yielding at the optimal threshold of the ROC curve, a sensitivity of 0.803 and a specificity of 0.813. Conclusions: Results show that supervised machine learning of MRI texture features can predict MGMT methylation status in preoperative GBM tumors, thus providing a new noninvasive imaging biomarker.

  7. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas

    International Nuclear Information System (INIS)

    Korfiatis, Panagiotis; Kline, Timothy L.; Erickson, Bradley J.; Coufalova, Lucie; Lachance, Daniel H.; Parney, Ian F.; Carter, Rickey E.; Buckner, Jan C.

    2016-01-01

    Purpose: Imaging biomarker research focuses on discovering relationships between radiological features and histological findings. In glioblastoma patients, methylation of the O 6 -methylguanine methyltransferase (MGMT) gene promoter is positively correlated with an increased effectiveness of current standard of care. In this paper, the authors investigate texture features as potential imaging biomarkers for capturing the MGMT methylation status of glioblastoma multiforme (GBM) tumors when combined with supervised classification schemes. Methods: A retrospective study of 155 GBM patients with known MGMT methylation status was conducted. Co-occurrence and run length texture features were calculated, and both support vector machines (SVMs) and random forest classifiers were used to predict MGMT methylation status. Results: The best classification system (an SVM-based classifier) had a maximum area under the receiver-operating characteristic (ROC) curve of 0.85 (95% CI: 0.78–0.91) using four texture features (correlation, energy, entropy, and local intensity) originating from the T2-weighted images, yielding at the optimal threshold of the ROC curve, a sensitivity of 0.803 and a specificity of 0.813. Conclusions: Results show that supervised machine learning of MRI texture features can predict MGMT methylation status in preoperative GBM tumors, thus providing a new noninvasive imaging biomarker.

  8. Antigenicity and diagnostic potential of vaccine candidates in human Chagas disease.

    Directory of Open Access Journals (Sweden)

    Shivali Gupta

    Full Text Available Chagas disease, caused by Trypanosoma cruzi, is endemic in Latin America and an emerging infectious disease in the US and Europe. We have shown TcG1, TcG2, and TcG4 antigens elicit protective immunity to T. cruzi in mice and dogs. Herein, we investigated antigenicity of the recombinant proteins in humans to determine their potential utility for the development of next generation diagnostics for screening of T. cruzi infection and Chagas disease.Sera samples from inhabitants of the endemic areas of Argentina-Bolivia and Mexico-Guatemala were analyzed in 1(st-phase for anti-T. cruzi antibody response by traditional serology tests; and in 2(nd-phase for antibody response to the recombinant antigens (individually or mixed by an ELISA. We noted similar antibody response to candidate antigens in sera samples from inhabitants of Argentina and Mexico (n=175. The IgG antibodies to TcG1, TcG2, and TcG4 (individually and TcG(mix were present in 62-71%, 65-78% and 72-82%, and 89-93% of the subjects, respectively, identified to be seropositive by traditional serology. Recombinant TcG1- (93.6%, TcG2- (96%, TcG4- (94.6% and TcG(mix- (98% based ELISA exhibited significantly higher specificity compared to that noted for T. cruzi trypomastigote-based ELISA (77.8% in diagnosing T. cruzi-infection and avoiding cross-reactivity to Leishmania spp. No significant correlation was noted in the sera levels of antibody response and clinical severity of Chagas disease in seropositive subjects.Three candidate antigens were recognized by antibody response in chagasic patients from two distinct study sites and expressed in diverse strains of the circulating parasites. A multiplex ELISA detecting antibody response to three antigens was highly sensitive and specific in diagnosing T. cruzi infection in humans, suggesting that a diagnostic kit based on TcG1, TcG2 and TcG4 recombinant proteins will be useful in diverse situations.

  9. GFAP promoter driven transgenic expression of PDGFB in the mouse brain leads to glioblastoma in a Trp53 null background

    NARCIS (Netherlands)

    Hede, Sanna-Maria; Hansson, Inga; Afink, Gijs B.; Eriksson, Anna; Nazarenko, Inga; Andrae, Johanna; Genove, Guillem; Westermark, Bengt; Nistér, Monica

    2009-01-01

    Glioblastomas are the most common and malignant astrocytic brain tumors in human adults. The tumor suppressor gene TP53 is commonly mutated and/or lost in astrocytic brain tumors and the TP53 alterations are often found in combination with excessive growth factor signaling via PDGF/PDGFRalpha. Here,

  10. Volumetric and MGMT parameters in glioblastoma patients: Survival analysis

    International Nuclear Information System (INIS)

    Iliadis, Georgios; Kotoula, Vassiliki; Chatzisotiriou, Athanasios; Televantou, Despina; Eleftheraki, Anastasia G; Lambaki, Sofia; Misailidou, Despina; Selviaridis, Panagiotis; Fountzilas, George

    2012-01-01

    In this study several tumor-related volumes were assessed by means of a computer-based application and a survival analysis was conducted to evaluate the prognostic significance of pre- and postoperative volumetric data in patients harboring glioblastomas. In addition, MGMT (O 6 -methylguanine methyltransferase) related parameters were compared with those of volumetry in order to observe possible relevance of this molecule in tumor development. We prospectively analyzed 65 patients suffering from glioblastoma (GBM) who underwent radiotherapy with concomitant adjuvant temozolomide. For the purpose of volumetry T1 and T2-weighted magnetic resonance (MR) sequences were used, acquired both pre- and postoperatively (pre-radiochemotherapy). The volumes measured on preoperative MR images were necrosis, enhancing tumor and edema (including the tumor) and on postoperative ones, net-enhancing tumor. Age, sex, performance status (PS) and type of operation were also included in the multivariate analysis. MGMT was assessed for promoter methylation with Multiplex Ligation-dependent Probe Amplification (MLPA), for RNA expression with real time PCR, and for protein expression with immunohistochemistry in a total of 44 cases with available histologic material. In the multivariate analysis a negative impact was shown for pre-radiochemotherapy net-enhancing tumor on the overall survival (OS) (p = 0.023) and for preoperative necrosis on progression-free survival (PFS) (p = 0.030). Furthermore, the multivariate analysis confirmed the importance of PS in PFS and OS of patients. MGMT promoter methylation was observed in 13/23 (43.5%) evaluable tumors; complete methylation was observed in 3/13 methylated tumors only. High rate of MGMT protein positivity (> 20% positive neoplastic nuclei) was inversely associated with pre-operative tumor necrosis (p = 0.021). Our findings implicate that volumetric parameters may have a significant role in the prognosis of GBM patients. Furthermore

  11. Impact of oligodendroglial component in glioblastoma (GBM-O): Is the outcome favourable than glioblastoma?

    Science.gov (United States)

    Goda, Jayant S; Lewis, Shirley; Agarwal, Aditi; Epari, Sridhar; Churi, Shraddha; Padmavati, A; Gupta, Tejpal; Shetty, Prakash; Moiyadi, Aliasgar; Jalali, Rakesh

    2015-08-01

    Prognosis of patients with glioblastoma with oligodendroglial component (GBM-O) is not well defined. We report our experience of patients of GBM-O treated at our center. Between January 2007 and August 2013, out of 817 consecutive patients with glioblastoma (GBM), 74 patients with GBM-O were identified in our prospectively maintained database. An experienced neuropathologist revaluated the histopathology of all these 74 patients and the diagnosis of GBM-O was eventually confirmed in 57 patients. Patients were uniformly treated with maximal safe resection followed by focal radiotherapy with concurrent and adjuvant temozolamide (TMZ). At a median follow up of 16 months, median overall survival (OS) and progression free survival (PFS) of the entire cohort was 23 months and 13 months respectively. Near total excision was performed in 30/57 (52.6%). On univariate analysis, age GBM-O patients with a similarly treated cohort of 105 GBM patients during the same period revealed significantly better median OS in favour of GBM-O (p = 0.01). Our experience suggests patients with GBM-O have a more favourable clinical outcome as compared to GBM. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Intracellular calcium mobilization in human lymphocytes in the presence of synthetic IgG Fc peptides

    International Nuclear Information System (INIS)

    Plummer, J.M.; Panahi, Y.P.; McClurg, M.R.; Hahn, G.S.; Naemura, J.R.

    1986-01-01

    Certain synthetic peptides derived from the Fc region of human IgG can suppress the mixed lymphocyte response. These peptides were tested for the ability to induce intracellular calcium mobilization in human lymphocytes using fura-2/calcium fluorescence. T cells were isolated by rosetting and were > 90% OKT3 positive. Lymphocytes were incubated with the acetoxymethyl ester of fura-2 (10 μM) for 60 minutes at 37 0 C. Fluorescence intensity changes at 505 nm were monitored at an excitation lambda of 340 nm. Fura-2 was not cytotoxic compared to quin-2 since fura-2 loaded mononuclear cells incorporated 3 H-thymidine when stimulated by PHA, succinyl Con A, PWM or LPS-STM whereas quin-2 loaded cells showed a dose dependent inhibition of proliferation. Those synthetic peptides (5 to 400 μg/ml) that suppressed the MLR induced a dose dependent increase in intracellular calcium in mononuclear cells, lymphocytes, non-T cells and T cells. The fura-2 calcium fluorescence time course response was similar for peptide, PHA and succinyl Con A. These results suggest that these immunoregulatory peptides suppress 3 H-thymidine incorporation at a point after intracellular calcium mobilization and that fura-2 has advantages over quin-2 in measuring intracellular calcium levels in lymphocytes

  13. Advances in Brain Tumor Surgery for Glioblastoma in Adults

    Directory of Open Access Journals (Sweden)

    Montserrat Lara-Velazquez

    2017-12-01

    Full Text Available Glioblastoma (GBM is the most common primary intracranial neoplasia, and is characterized by its extremely poor prognosis. Despite maximum surgery, chemotherapy, and radiation, the histological heterogeneity of GBM makes total eradication impossible, due to residual cancer cells invading the parenchyma, which is not otherwise seen in radiographic images. Even with gross total resection, the heterogeneity and the dormant nature of brain tumor initiating cells allow for therapeutic evasion, contributing to its recurrence and malignant progression, and severely impacting survival. Visual delimitation of the tumor’s margins with common surgical techniques is a challenge faced by many surgeons. In an attempt to achieve optimal safe resection, advances in approaches allowing intraoperative analysis of cancer and non-cancer tissue have been developed and applied in humans resulting in improved outcomes. In addition, functional paradigms based on stimulation techniques to map the brain’s electrical activity have optimized glioma resection in eloquent areas such as the Broca’s, Wernike’s and perirolandic areas. In this review, we will elaborate on the current standard therapy for newly diagnosed and recurrent glioblastoma with a focus on surgical approaches. We will describe current technologies used for glioma resection, such as awake craniotomy, fluorescence guided surgery, laser interstitial thermal therapy and intraoperative mass spectrometry. Additionally, we will describe a newly developed tool that has shown promising results in preclinical experiments for brain cancer: optical coherence tomography.

  14. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins

    NARCIS (Netherlands)

    Hira, Vashendriya V. V.; Wormer, Jill R.; Kakar, Hala; Breznik, Barbara; van der Swaan, Britt; Hulsbos, Renske; Tigchelaar, Wikky; Tonar, Zbynek; Khurshed, Mohammed; Molenaar, Remco J.; van Noorden, Cornelis J. F.

    2018-01-01

    In glioblastoma, a fraction of malignant cells consists of therapy-resistant glioblastoma stem cells (GSCs) residing in protective niches that recapitulate hematopoietic stem cell (HSC) niches in bone marrow. We have previously shown that HSC niche proteins stromal cell-derived factor-1α (SDF-1α),

  15. Identification and Functional Characterization of Human Cd4+Cd25+ T Cells with Regulatory Properties Isolated from Peripheral Blood

    OpenAIRE

    Jonuleit, Helmut; Schmitt, Edgar; Stassen, Michael; Tuettenberg, Andrea; Knop, Jurgen; Enk, Alexander H.

    2001-01-01

    A subpopulation of peripheral human CD4+CD25+ T cells that expresses CD45RO, histocompatibility leukocyte antigen DR, and intracellular cytotoxic T lymphocyte–associated antigen (CTLA) 4 does not expand after stimulation and markedly suppresses the expansion of conventional T cells in a contact-dependent manner. After activation, CD4+CD25+ T cells express CTLA-4 on the surface detectable for several weeks. These cells show a G1/G0 cell cycle arrest and no production of interleukin (IL)-2, IL-...

  16. Influence of different chemical agents (H2O2, t-BHP and MMS) on the activity of antioxidant enzymes in human HepG2 and hamster V79 cells; relationship to cytotoxicity and genotoxicity.

    Science.gov (United States)

    Slamenova, D; Kozics, K; Melusova, M; Horvathova, E

    2015-01-01

    We investigated activities of antioxidant enzymes (AEs), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) in human HepG2 and hamster V79 cells treated with a scale of concentrations of hydrogen peroxide (H2O2), tert-butyl hydroperoxide (t-BHP) and methyl methanesulfonate (MMS). Cytotoxicity and genotoxicity of these substances were evaluated simultaneously. We have found out that H2O2, t-BHP and MMS predictably induce significant concentration-dependent increase of DNA lesions in both cell lines. Cytotoxicity detected in V79 cells with help of PE test was in a good conformity with the level of DNA damage. MTT test has proved unsuitable, except for MMS-treated V79 cells. Compared with human cells HepG2, hamster cells V79 manifested approximately similar levels of SOD and CAT but ten times higher activity of GPx. Across all concentrations tested the most significant increase of activity of the enzyme CAT was found in H2O2- and t-BHP-treated HepG2 cells, of the enzyme SOD in t-BHP- and MMS-treated V79 cells, and of the enzyme GPx in H2O2-treated V79 cells. We suggest that stimulation of enzyme activity by the relevant chemical compounds may result from transcriptional or post-transcriptional regulation of the expression of the genes CAT, SOD and GPx. Several authors suggest that moderate levels of toxic reactants can induce increase of AEs activities, while very high levels of reactants can induce their decrease, as a consequence of damage of the molecular machinery required to induce AEs. Based on a great amount of experiments, which were done and described within this paper, we can say that the above mentioned principle does not apply in general. Only the reactions of t-BHP affected HepG2 cells were consistent with this idea.

  17. Postoperative extracranial metastasis from glioblastoma: a case report and review of the literature.

    Science.gov (United States)

    Wu, Wenjiao; Zhong, Dequan; Zhao, Zhan; Wang, Wentao; Li, Jun; Zhang, Wei

    2017-12-29

    Glioblastoma is the most common primary malignant brain tumor. Extraneural metastases are rarely reported in the literature. We report a case of a 38-year-old patient who was diagnosed with glioblastoma in 2015. Four months after surgery, local relapse was found and the patient received a second surgery. After another 4 months, we found a hard mass in the right posterior neck when she admitted to our department for fourth cycle of adjuvant chemotherapy. Immunohistochemical investigation supported the diagnosis of glioblastoma metastases to the neck after resection of the right neck mass. A few days later, spinal vertebral magnetic resonance imaging (MRI) confirmed multiple metastases in the thoracic, lumbar, sacral, and bilateral iliac bones. Glioblastoma is the most common primary malignant brain tumor. Whole tumor resection and early radiotherapy and chemotherapy can delay recurrence and prolong survival. Extracranial metastases are extremely rare. We report this case with the aim of bringing attention to extracranial metastasis of brain glioma.

  18. Glioblastomas vs. lymphomas. More diagnostic certainty by using susceptibility-weighted imaging (SWI)

    Energy Technology Data Exchange (ETDEWEB)

    Peters, S.; Knoess, N.; Wodarg, F.; Cnyrim, C.; Jansen, O. [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Inst. fuer Neuroradiologie

    2012-08-15

    Purpose: It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Material and Methods: Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Results: Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Conclusion: Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. (orig.)

  19. Glioblastomas vs. lymphomas: more diagnostic certainty by using susceptibility-weighted imaging (SWI).

    Science.gov (United States)

    Peters, S; Knöß, N; Wodarg, F; Cnyrim, C; Jansen, O

    2012-08-01

    It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Glioblastomas vs. lymphomas. More diagnostic certainty by using susceptibility-weighted imaging (SWI)

    International Nuclear Information System (INIS)

    Peters, S.; Knoess, N.; Wodarg, F.; Cnyrim, C.; Jansen, O.

    2012-01-01

    Purpose: It can be difficult to differentiate glioblastomas from lymphomas using only standard MR images. There are references suggesting that it might be possible to differentiate these tumors using susceptibility-weighted imaging (SWI). The purpose of this study is to prove the diagnostic benefit using susceptibility-weighted images. Material and Methods: Three neuroradiologists tried to differentiate 4 histologically verified lymphomas from 11 glioblastomas in retrospect. They first viewed the conventional MR images and declared a diagnosis with a grade of certainty. Afterwards they additionally reviewed the susceptibility-weighted images. Results: Glioblastomas have a clearly higher grade of susceptibility signals than lymphomas. By additionally using susceptibility-weighted images, the radiologists determined the correct diagnosis in 82.2 % of the cases. Without susceptibility-weighted images, the diagnosis was correct in 75.5 % of the cases. The subjective gain of certainty was 16.5 %. If there were no intratumoral susceptibility signals (ITSS) (grade 1), the sensitivity for diagnosing a lymphoma was 70 % and the specificity was 100 %. The sensitivity for diagnosing a glioblastoma was 90.5 % and the specificity was 100 % if there was a high rate of intratumoral susceptibility signals (grade 3). Conclusion: Susceptibility-weighted images are an additional tool in clinical practice for determining the correct diagnosis. The differentiation between glioblastomas and lymphomas and the certainty of the determined diagnosis are better. Therefore, we recommend adding susceptibility-weighted imaging to the clinical MR tumor protocol. (orig.)