WorldWideScience

Sample records for human glial tumors

  1. Cerebral glial tumors and human immunodeficiency virus-1 infection. More than a coincidental association.

    Science.gov (United States)

    Moulignier, A; Mikol, J; Pialoux, G; Eliaszewicz, M; Thurel, C; Thiebaut, J B

    1994-07-15

    The authors describe the clinical and morphologic patterns in four patients with acquired immune deficiency syndrome (AIDS) who developed intracranial glial tumors. This retrospective study reports 70 patients at various stages of human immunodeficiency virus-1 (HIV-1) infection who underwent stereotactic brain biopsy for an intracerebral space-occupying lesion. Of these patients, four had glial tumors: one astroblastoma, two astrocytomas, and one glioblastoma. Glial tumors probably arise from a complex interplay of factors; possibilities include the activation of a dominant oncogene or viral inactivation of a tumor suppressor gene by a viral promoter (like the tat protein), impairment of immune defenses (which facilitates the growth of astrocytomas in acute lymphoblastic leukemia), production of cellular growth factors, cytokines, possible infection of glial cells by HIV, and the potentiation of a coinfectious agent. These cases illustrate that glial tumors should be considered in the differential diagnosis of brain masses in HIV-1 infection, especially because specific treatment for these tumors is available. Moreover, the occurrence of glial tumors in AIDS patients is not only an important event from a clinical point of view, but may also have implications for the pathogenesis of tumors in AIDS.

  2. Clonal mutations in primary human glial tumors: evidence in support of the mutator hypothesis

    Directory of Open Access Journals (Sweden)

    Sarkar Chitra

    2007-10-01

    Full Text Available Abstract Background A verifiable consequence of the mutator hypothesis is that even low grade neoplasms would accumulate a large number of mutations that do not influence the tumor phenotype (clonal mutations. In this study, we have attempted to quantify the number of clonal mutations in primary human gliomas of astrocytic cell origin. These alterations were identified in tumor tissue, microscopically confirmed to have over 70% neoplastic cells. Methods Random Amplified Polymorphic DNA (RAPD analysis was performed using a set of fifteen 10-mer primers of arbitrary but definite sequences in 17 WHO grade II astrocytomas (low grade diffuse astrocytoma or DA and 16 WHO grade IV astrocytomas (Glioblastoma Multiforme or GBM. The RAPD profile of the tumor tissue was compared with that of the leucocyte DNA of the same patient and alteration(s scored. A quantitative estimate of the overall genomic changes in these tumors was obtained by 2 different modes of calculation. Results The overall change in the tumors was estimated to be 4.24% in DA and 2.29% in GBM by one method and 11.96% and 6.03% in DA and GBM respectively by the other. The difference between high and lower grade tumors was statistically significant by both methods. Conclusion This study demonstrates the presence of extensive clonal mutations in gliomas, more in lower grade. This is consistent with our earlier work demonstrating that technique like RAPD analysis, unbiased for locus, is able to demonstrate more intra-tumor genetic heterogeneity in lower grade gliomas compared to higher grade. The results support the mutator hypothesis proposed by Loeb.

  3. Gene Expression Analysis of an EGFR Indirectly Related Pathway Identified PTEN and MMP9 as Reliable Diagnostic Markers for Human Glial Tumor Specimens

    Directory of Open Access Journals (Sweden)

    Sergio Comincini

    2009-01-01

    Full Text Available In this study the mRNA levels of five EGFR indirectly related genes, EGFR, HB-EGF, ADAM17, PTEN, and MMP9, have been assessed by Real-time PCR in a panel of 37 glioblastoma multiforme specimens and in 5 normal brain samples; as a result, in glioblastoma, ADAM17 and PTEN expression was significantly lower than in normal brain samples, and, in particular, a statistically significant inverse correlation was found between PTEN and MMP9 mRNA levels. To verify if this correlation was conserved in gliomas, PTEN and MMP9 expression was further investigated in an additional panel of 16 anaplastic astrocytoma specimens and, in parallel, in different human normal and astrocytic tumor cell lines. In anaplastic astrocytomas PTEN expression was significantly higher than in glioblastoma multiforme, but no significant correlation was found between PTEN and MMP9 expression. PTEN and MMP9 mRNA levels were also employed to identify subgroups of specimens within the different glioma malignancy grades and to define a gene expression-based diagnostic classification scheme. In conclusion, this gene expression survey highlighted that the combined measurement of PTEN and MMP9 transcripts might represent a novel reliable tool for the differential diagnosis of high-grade gliomas, and it also suggested a functional link involving these genes in glial tumors.

  4. Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia

    DEFF Research Database (Denmark)

    Windrem, Martha S; Osipovitch, Mikhail; Liu, Zhengshan

    2017-01-01

    In this study, we investigated whether intrinsic glial dysfunction contributes to the pathogenesis of schizophrenia (SCZ). Our approach was to establish humanized glial chimeric mice using glial progenitor cells (GPCs) produced from induced pluripotent stem cells derived from patients with childh...

  5. Neocortical glial cell numbers in human brains

    DEFF Research Database (Denmark)

    Pelvig, D.P.; Pakkenberg, H.; Stark, A.K.

    2008-01-01

    Stereological cell counting was applied to post-mortem neocortices of human brains from 31 normal individuals, age 18-93 years, 18 females (average age 65 years, range 18-93) and 13 males (average age 57 years, range 19-87). The cells were differentiated in astrocytes, oligodendrocytes, microglia...... while the total astrocyte number is constant through life; finally males have a 28% higher number of neocortical glial cells and a 19% higher neocortical neuron number than females. The overall total number of neocortical neurons and glial cells was 49.3 billion in females and 65.2 billion in males......, a difference of 24% with a high biological variance. These numbers can serve as reference values in quantitative studies of the human neocortex. (C) 2007 Elsevier Inc. All rights reserved Udgivelsesdato: 2008/11...

  6. Radioiodinated benzodiazepines: agents for mapping glial tumors

    Energy Technology Data Exchange (ETDEWEB)

    Van Dort, M.E.; Ciliax, B.J.; Gildersleeve, D.L.; Sherman, P.S.; Rosenspire, K.C.; Young, A.B.; Junck, L.; Wieland, D.M.

    1988-11-01

    Two isomeric iodinated analogues of the peripheral benzodiazepine binding site (PBS) ligand Ro5-4864 have been synthesized and labeled in high specific activity with iodine-125. Competitive binding assays conducted with the unlabeled analogues indicate high affinity for PBS. Tissue biodistribution studies in rats with these /sup 125/I-labeled ligands indicate high uptake of radioactivity in the adrenals, heart, and kidney--tissues known to have high concentrations of PBS. Preadministration of the potent PBS antagonist PK 11195 blocked in vivo uptake in adrenal tissue by over 75%, but to a lesser degree in other normal tissues. In vivo binding autoradiography in brain conducted in C6 glioma bearing rats showed dense, PBS-mediated accumulation of radioactivity in the tumor. Ligand 6 labeled with /sup 123/I may have potential for scintigraphic localization of intracranial glioma.

  7. Modeling cognition and disease using human glial chimeric mice

    DEFF Research Database (Denmark)

    Goldman, Steven A.; Nedergaard, Maiken; Windrem, Martha S.

    2015-01-01

    As new methods for producing and isolating human glial progenitor cells (hGPCs) have been developed, the disorders of myelin have become especially compelling targets for cell-based therapy. Yet as animal modeling of glial progenitor cell-based therapies has progressed, it has become clear...... cognition and information processing. In addition, the cellular humanization of these brains permits their use in studying glial infectious and inflammatory disorders unique to humans, and the effects of those disorders on the glial contributions to cognition. Perhaps most intriguingly, by pairing our...... for studying the human-specific contributions of glia to psychopathology, as well as to higher cognition. As such, the assessment of human glial chimeric mice may provide us new insight into the species-specific contributions of glia to human cognitive evolution, as well as to the pathogenesis of human...

  8. Molecular genetic studies of glial tumors in children

    Directory of Open Access Journals (Sweden)

    P. S. Soltan

    2016-01-01

    Full Text Available Glioblastomas are the most frequent malignant neoplasm among primary brain tumors of childhood. Despite the advances in a multimodality treatment approach including neurosurgery, radiotherapy and chemotherapy, the overall survival of such patients remains poor and doesn’t exceed 14 months. The using of targeted agents such as gefitinib in unselected patient populations showed insufficient efficacy. Nowadays, the most perspective approach is a selection of patient populations potentially sensitive to targeted therapy based on predictive markers of response. We performed a comprehensive analysis of the mutational patterns in 30 glioblastomas of children. Data Analysis was based on the new method of mass spectrometry (OncoCarta v1.0, Sequenom that enabled us to estimate 298 mutations in 19 genes and to identify 10 mutations in 9 tumors (30 %. Mutations were found in BRAF, CDK, HRAS, EGFR, FGFR, MET and PI3K. The most mutated pathway was EGFR – in 20 % of the samples (6/30. The obtained results seem to be very promising in terms of possibilities of using new targeted agents including BRAF inhibitors for treatment of children with glial brain tumors.

  9. Quantitation of glial fibrillary acidic protein in human brain tumours

    DEFF Research Database (Denmark)

    Rasmussen, S; Bock, E; Warecka, K

    1980-01-01

    The glial fibrillary acidic protein (GFA) content of 58 human brain tumours was determined by quantitative immunoelectrophoresis, using monospecific antibody against GFA. Astrocytomas, glioblastomas, oligodendrogliomas, spongioblastomas, ependymomas and medulloblastomas contained relatively high...... amounts of GFA, up to 85 times the concentration in parietal grey substance of normal human brain. GFA was not found in neurinomas, meningiomas, adenomas of the hypophysis, or in a single case of metastasis of adenocarcinoma. Non-glial tumours of craniopharyngioma and haemangioblastoma were infiltrated...

  10. Early-postoperative magnetic resonance imaging in glial tumors: prediction of tumor regrowth and recurrence

    Energy Technology Data Exchange (ETDEWEB)

    Ekinci, Gazanfer; Akpinar, Ihsan N. E-mail: i.akpinar@mailcity.com; Baltacioglu, Feyyaz; Erzen, Canan; Kilic, Tuerker; Elmaci, Ilhan; Pamir, Necmettin

    2003-02-01

    Objective: This study investigated the value of early-postoperative magnetic resonance (EPMR) imaging in the detection of residual glial tumor and investigated the role of EPMR for the prediction of tumor regrowth and recurrence. Methods and materials: We retrospectively analyzed pre- and post-operative magnetic resonance imaging results from 50 adult patients who underwent surgical treatment for supratentorial glial tumor. There were glioblastoma multiforme in 25 patients, astrocytoma (grades II and III) in 11 patients, oligodendroglioma (grades II and III) in 9 patients, and oligoastrocytoma (grades II and III) in 5 patients. EPMR imaging was performed within 24 h after surgery. EPMR findings were compared with the neurosurgeon's intraoperative estimation of gross tumor removal. Patterns of contrast enhancement at the resection site, in residual and developing tumor tissue and blood at the resection site were evaluated on EPMR and in follow-up studies. 'Residual tumor' was defined as contrast enhancing mass at the operative site on EPMR. 'Regrowth' was defined as contrast enhancing mass detected on follow-up in the same location as the primary tumor. 'Recurrence' was defined as appearance of a mass lesion in the brain parenchyma distant from the resection bed during follow-up. Results: Nineteen patients showed no evidence of residual tumor, regrowth, or recurrence on EPMR or any of the later follow-up radiological examinations. EPMR identified 20 cases of residual tumor. Follow-up showed tumor regrowth in 10 patients, and tumor recurrence in 1 case. EPMR showed contrast enhancement of the resection bed in 45 of the 50 patients. Four of the 20 residual tumors showed a thick linear enhancement pattern, and the other 16 cases exhibited thick linear-nodular enhancement. No thin linear enhancement was observed in the residual tumor group. Nine of the 10-regrowth tumors showed a thick linear-nodular enhancement pattern, and one

  11. Neuronal and mixed neuronal glial tumors associated to epilepsy. A heterogeneous and related group of tumours.

    Science.gov (United States)

    Moreno, A; de Felipe, J; García Sola, R; Navarro, A; Ramón y Cajal, S

    2001-04-01

    The group of brain tumors with mature components encompasses several pathological entities including: the ganglioneuroma; the gangliocytoma; the ganglioglioma; the desmoplastic ganglioglioma; the neurocitoma and a group of glioneuronal hamartomatous tumorous lesions, such as meningoangiomatosis. The dysembryoplastic neuroepithelial tumor is characterized by the presence of multiple cortical nodules made up of small, oligo-like cells and a myxoid pattern rich in mucopolysaccharides. Mature neuronal cells are frequently detected throughout the tumor. Most of them are associated with microhamartias in the adjacent brain and pharmacoresistant epilepsy. The excellent prognosis of the majority of these tumors and the potential for malignant transformation of the glial component in the ganglioglioma are the two most remarkable findings. Histological signs of anaplasia and greater mitotic and proliferative activities are associated with local recurrences. Atypical neurocytomas occur only exceptionally. Treatment choices are surgical resectioning and, in those cases presenting greater proliferative activity and cytological atypia, postoperative radiotherapy may be recommended. This paper reviews this heterogeneous group of neoplasms and hamartomatous lesions, pointing out presumable transitions among the different types of mixed neuronal and glial brain tumors. A single term of "mixed neuronal-glial tumors" is defended, distinguishing different subgroups of tumors, depending on the predominant cellular component.

  12. Cytotoxic Effects of Environmental Toxins on Human Glial Cells.

    Science.gov (United States)

    D'Mello, Fiona; Braidy, Nady; Marçal, Helder; Guillemin, Gilles; Rossi, Fanny; Chinian, Mirielle; Laurent, Dominique; Teo, Charles; Neilan, Brett A

    2017-02-01

    Toxins produced by cyanobacteria and dinoflagellates have increasingly become a public health concern due to their degenerative effects on mammalian tissue and cells. In particular, emerging evidence has called attention to the neurodegenerative effects of the cyanobacterial toxin β-N-methylamino-L-alanine (BMAA). Other toxins such as the neurotoxins saxitoxin and ciguatoxin, as well as the hepatotoxic microcystin, have been previously shown to have a range of effects upon the nervous system. However, the capacity of these toxins to cause neurodegeneration in human cells has not, to our knowledge, been previously investigated. This study aimed to examine the cytotoxic effects of BMAA, microcystin-LR (MC-LR), saxitoxin (STX) and ciguatoxin (CTX-1B) on primary adult human astrocytes. We also demonstrated that α-lipoate attenuated MC-LR toxicity in primary astrocytes and characterised changes in gene expression which could potentially be caused by these toxins in primary astrocytes. Herein, we are the first to show that all of these toxins are capable of causing physiological changes consistent with neurodegeneration in glial cells, via oxidative stress and excitotoxicity, leading to a reduction in cell proliferation culminating in cell death. In addition, MC-LR toxicity was reduced significantly in astrocytes-treated α-lipoic acid. While there were no significant changes in gene expression, many of the probes that were altered were associated with neurodegenerative disease pathogenesis. Overall, this is important in advancing our current understanding of the mechanism of toxicity of MC-LR on human brain function in vitro, particularly in the context of neurodegeneration.

  13. DIAGNOSTIC VALUE OF THE DEJA VU PHENOMENON IN THE CLINICAL PICTURE OF GLIAL BRAIN TUMORS

    Directory of Open Access Journals (Sweden)

    Pavel Nikolaevich Vlasov

    2009-01-01

    This investigation was undertaken to study the implication of the DV phenomenon in the clinical picture of glial brain tumors (GBT. One hundred and sixty-one subjects (mean age 29,2±6,4 years; males 47%, including 129 healthy individuals and 32 patients with GBT, were examined. In the clinical picture of GBT with seizures, DV is a common symptom that is encountered in the involvement of predominantly the right temporal lobe and accompanied by generalized convulsive attacks and olfactory hallucinations. DV in GBT occurs more than once daily; its duration is a few (as many as 5 minutes; DV is characterized by a negative emotional tinge and attended by fear

  14. Molecular signatures of cell cycle transcripts in the pathogenesis of Glial tumors

    Directory of Open Access Journals (Sweden)

    Bhattacharya Rabindra

    2004-01-01

    Full Text Available Abstract Background Astrocytic brain tumors are among the most lethal and morbid tumors of adults, often occurring during the prime of life. These tumors form an interesting group of cancer to understand the molecular mechanism of pathogenesis. Histological grading of Astrocytoma based on WHO classification does not provide complete information on the proliferation potential and biological behavior of the tumors. It is known that cancer results from the disruption of the orderly regulated cycle of replication and division. In the present study, we made an attempt to identify the cell cycle signatures and their involvement in the clinical aggressiveness of gliomas. Methods The variation in expression of various cell cycle genes was studied in different stages of glial tumor progression (low and high grades, and the results were compared with their corresponding expression levels in the normal brain tissue. Macroarray analysis was used for the purpose. Results Macroarray analysis of 114 cell cycle genes in different grades of glioma indicated differential expression pattern in 34% of the gene transcripts, when compared to the normal tissue. Majority of the transcripts belong to the intracellular kinase networks, cell cycle regulating kinases, transcription factors and transcription activators. Conclusion Based on the observation in the expression pattern in low grade and high grade gliomas, it can be suggested that the upregulation of cell cycle activators are seen as an early event in glioma; however, in malignancy it is not the cell cycle activators alone, which are involved in tumorigenesis. Understanding the molecular details of cell cycle regulation and checkpoint abnormalities in cancer could offer an insight into potential therapeutic strategies.

  15. Assesment of perfusion in glial tumors with arterial spin labeling; comparison with dynamic susceptibility contrast method

    Energy Technology Data Exchange (ETDEWEB)

    Cebeci, H, E-mail: hcebeci16@gmail.com [Department of Radiology, Uludag University Medical School, Bursa (Turkey); Aydin, O [Department of Radiology, Uludag University Medical School, Bursa (Turkey); Ozturk-Isik, E; Gumus, C [Department of Biomedical Engineering, Yeditepe University, Istanbul (Turkey); Inecikli, F [Department of Radiology, Kanuni Sultan Suleyman Educational and Research Hospital, Istanbul (Turkey); Bekar, A; Kocaeli, H [Department of Neurosurgery, Uludag University Medical School, Bursa (Turkey); Hakyemez, B [Department of Radiology, Uludag University Medical School, Bursa (Turkey)

    2014-10-15

    Highlights: • We compared the perfusion parameters obtained with both DSC and ASL perfusion imaging methods. • In ASL perfusion imaging, we also created quantitative CBF maps. • All patients included in the study had histopathological diagnose. • All MR examinations are done with 3T MR imaging system. - Abstract: Purpose: Arterial spin labeling perfusion imaging (ASL-PI) is a non-invasive perfusion imaging method that can be used for evaluation and quantification of cerebral blood flow (CBF). Aim of our study was to evaluating the efficiency of ASL in histopathological grade estimation of glial tumors and comparing findings with dynamic susceptibility contrast perfusion imaging (DSC-PI) method. Methods: This study involved 33 patients (20 high-grade and 13 low-grade gliomas). Multiphase multislice pulsed ASL MRI sequence and a first-passage gadopentetate dimeglumine T2*-weighted gradient-echo single-shot echo-planar sequence were acquired for all the patients. For each patient, perfusion relative signal intensity (rSI), CBF and relative CBF (rCBF) on ASL-PI and relative cerebral blood volume (rCBV) and relative cerebral blood flow (rCBF) values on DSC-PI were determined. The relative signal intensity of each tumor was determined as the maximal SI within the tumor divided by SI within symetric region in the contralateral hemisphere on ASL-PI. rCBV and rCBF were calculated by deconvolution of an arterial input function. Relative values of the lesions were obtained by dividing the values to the normal appearing symmetric region on the contralateral hemisphere. For statistical analysis, Mann–Whitney ranksum test was carried out. Receiver operating characteristic curve (ROC) analysis was performed to assess the relationship between the rCBF-ASL, rSI-ASL, rCBV and rCBF ratios and grade of gliomas. Their cut-off values permitting best discrimination was calculated. The correlation between rCBV, rCBF, rSI-ASL and rCBF-ASL and glioma grade was assessed using

  16. Susceptibility Imaging in Glial Tumor Grading; Using 3 Tesla Magnetic Resonance (MR) System and 32 Channel Head Coil.

    Science.gov (United States)

    Aydin, Omer; Buyukkaya, Ramazan; Hakyemez, Bahattin

    2017-01-01

    Susceptibility weighted imaging (SWI) is a velocity compensated, high-resolution three-dimensional (3D) spoiled gradient-echo sequence that uses magnitude and filtered-phase data. SWI seems to be a valuable tool for non-invasive evaluation of central nervous system gliomas. Relative cerebral blood volume (rCBV) ratio is one of the best noninvasive methods for glioma grading. Degree of intratumoral susceptibility signal (ITSS) on SWI correlates with rCBV ratio and histopathological grade. This study investigated the effectiveness of ITSS grading and rCBV ratio in preoperative assessment. Thirty-one patients (17 males and 14 females) with histopathogical diagnosis of glial tumor undergoing routine cranial MRI, SWI, and perfusion MRI examinations between October 2011 and July 2013 were retrospectively enrolled. All examinations were performed using 3T apparatus with 32-channel head coil. We used ITSS number for SWI grading. Correlations between SWI grade, rCBV ratio, and pathological grading were evaluated. ROC analysis was performed to determine the optimal rCBV ratio to distinguish between high-grade and low-grade glial tumors. There was a strong positive correlation between both pathological and SWI grading. We determined the optimal rCBV ratio to discriminate between high-grade and low-grade tumors to be 2.21. In conclusion, perfusion MRI and SWI using 3T MR and 32-channel head coil may provide useful information for preoperative glial tumor grading. SWI can be used as an accessory to perfusion MR technique in preoperative tumor grading.

  17. Axl Mediates ZIKA Virus Entry in Human Glial Cells and Modulates Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Laurent Meertens

    2017-01-01

    Full Text Available ZIKA virus (ZIKV is an emerging pathogen responsible for neurological disorders and congenital microcephaly. However, the molecular basis for ZIKV neurotropism remains poorly understood. Here, we show that Axl is expressed in human microglia and astrocytes in the developing brain and that it mediates ZIKV infection of glial cells. Axl-mediated ZIKV entry requires the Axl ligand Gas6, which bridges ZIKV particles to glial cells. Following binding, ZIKV is internalized through clathrin-mediated endocytosis and traffics to Rab5+ endosomes to establish productive infection. During entry, the ZIKV/Gas6 complex activates Axl kinase activity, which downmodulates interferon signaling and facilitates infection. ZIKV infection of human glial cells is inhibited by MYD1, an engineered Axl decoy receptor, and by the Axl kinase inhibitor R428. Our results highlight the dual role of Axl during ZIKV infection of glial cells: promoting viral entry and modulating innate immune responses. Therefore, inhibiting Axl function may represent a potential target for future antiviral therapies.

  18. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia

    DEFF Research Database (Denmark)

    Windrem, Martha S; Schanz, Steven J; Morrow, Carolyn

    2014-01-01

    Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiat...

  19. Tumor angiogenic factor and human skin tumors.

    Science.gov (United States)

    Wolf, J E; Hubler, W R

    1975-03-01

    A transparent acrylic hamster cheek-pouch chamber was used to investigate the elaboration of a tumor angiogenic factor (TAF) by human cutaneous neoplasms; direct tumor implantations, transfilter diffusion, and soluble tumor extracts were used in the study. A diffusible and filterable TAF was extracted from cutaneous tumors and produced distinctive patterns of sequential vasodilatation, tortuosity, and neovascular proliferation in the cheek-pouch membrane. Malignant human neoplasms (eg, melanoma, basal cell epithelioma, squamous cell carcinoma, lymphoma) produced striking neovascularization; vascular tumors (eg, Kaposi sarcoma, pyogenic granuloma, vascular histiocytoma) stimulated dramatic hyperemia and ectasia. Angiogenesis was conspicuously absent after implantation of control materials and nevoid or normal cutaneous components (with the exception of epidermis). Tumor angiogenic factor appears to induce direct stimulation of endothelial cell mitosis and may be essential for survival of nutritionally ravenous neoplastic tissues. The interference with TAF has therapeutic implications.

  20. Métodos diagnósticos en los tumores gliales de tipo astrocíticos

    Directory of Open Access Journals (Sweden)

    Letyer Pérez Ortiz

    2004-03-01

    Full Text Available Los tumores cerebrales constituyen un problema realmente complejo para la mayoría de los profesionales dedicados a su diagnóstico y tratamiento. El paciente con un tumor cerebral constituye un desafío científico, ético y hasta emocional para el radiólogo y el neurocirujano. Desde el descubrimiento de los rayos X en 1895 la radiología, y posteriormente la neurorradiología como disciplina, han sido de indudable utilidad en la detección de estas lesiones. En las últimas décadas el desarrollo alcanzado por las técnicas de neuroimagen ha permitido realizar un diagnóstico certero, lo que ha permitido definir la localización precisa del tumor, los detalles estructurales perilesionales, la evidencia de daño de la barrera hematoencefálica, el edema cerebral y el grado de malignidad tumoral a través de los estudios imagenológicos funcionales. Con este trabajo se pretende realizar un bosquejo general sobre los métodos diagnósticos más utilizados en la detección de los tumores gliales, paso previo e imprescindible para proceder a su tratamiento y predecir pronósticoThe brain tumors are a real complex problem for most of the professionals devoted to their diagnosis and treatment. The patient with a brain tumor is a scientific, ethical and emotional challenge for the radiologist and the neurosurgeon. Since the discovery of the X-rays in 1895, radiology and later neuroradiology, as a discipline, have been unquestionably useful in the detection of injuries. During the last decades, the development attained by the neuroimaging techniques has allowed to make an accurate diagnosis and to determine the exact location of the tumor, the structural perilesional details, the evidence of damage of the hematoencephalic barrier, the brain edema, and the degree of tumoral malignity through the functional imaging studies. In this paper, we pretend to make a general review on the most used diagnostic methods in the detection of glial tumors, an

  1. A competitive advantage by neonatally engrafted human glial progenitors yields mice whose brains are chimeric for human glia.

    Science.gov (United States)

    Windrem, Martha S; Schanz, Steven J; Morrow, Carolyn; Munir, Jared; Chandler-Militello, Devin; Wang, Su; Goldman, Steven A

    2014-11-26

    Neonatally transplanted human glial progenitor cells (hGPCs) densely engraft and myelinate the hypomyelinated shiverer mouse. We found that, in hGPC-xenografted mice, the human donor cells continue to expand throughout the forebrain, systematically replacing the host murine glia. The differentiation of the donor cells is influenced by the host environment, such that more donor cells differentiated as oligodendrocytes in the hypomyelinated shiverer brain than in myelin wild-types, in which hGPCs were more likely to remain as progenitors. Yet in each recipient, both the number and relative proportion of mouse GPCs fell as a function of time, concomitant with the mitotic expansion and spread of donor hGPCs. By a year after neonatal xenograft, the forebrain GPC populations of implanted mice were largely, and often entirely, of human origin. Thus, neonatally implanted hGPCs outcompeted and ultimately replaced the host population of mouse GPCs, ultimately generating mice with a humanized glial progenitor population. These human glial chimeric mice should permit us to define the specific contributions of glia to a broad variety of neurological disorders, using human cells in vivo. Copyright © 2014 the authors 0270-6474/14/3416153-09$15.00/0.

  2. Specification of neuronal and glial subtypes from human pluripotent stem cells

    Science.gov (United States)

    Liu, Huisheng; Zhang, Su-Chun

    2011-01-01

    Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide a dynamic tool for revealing early embryonic development, modeling pathological processes, and developing therapeutics through drug discovery and potential cell replacement. The first step toward the utilities of human PSCs is directed differentiation to functionally specialized cell tissue types. Following developmental principles, human ESCs, and lately iPSCs, have been effectively differentiated to region-and/or transmitter-specific neuronal and glial types, including cerebral glutamatergic, striatal γ-aminobutyric acid (GABA)-ergic, forebrain cholinergic, midbrain dopaminergic, and spinal motor neurons, as well as astrocytes and oligodendrocytes. These studies also reveal unique aspects of human cell biology, including intrinsically programmed developmental course, differential uses of transcription factors for neuroectoderm specification, and distinct responses to extracellular signals in regulating cell fate. Such information will be instrumental for translating biological findings to therapeutic development. PMID:21786144

  3. Social Behavior in Medulloblastoma: Functional Analysis of Tumor-Supporting Glial Cells

    Science.gov (United States)

    2015-10-01

    tumor-derived astrocytes form a niche that can co- evolve with the expanding tumor mass and provide optimal support for the intrinsic robustness of...1994; Hatten, 1985): Transfer cell suspension to a 15 mL polystyrene conical tube. Underlay cell suspension with 35% Percoll solution (For 10 mL: 4

  4. Imaging Genetic Heterogeneity in Glioblastoma and Other Glial Tumors: Review of Current Methods and Future Directions.

    Science.gov (United States)

    Chow, Daniel; Chang, Peter; Weinberg, Brent D; Bota, Daniela A; Grinband, Jack; Filippi, Christopher

    2017-10-05

    The purpose of this review is to summarize advances in the molecular analysis of gliomas, the role genetics plays in MRI features, and how machine-learning approaches can be used to survey the tumoral environment. The genetic profile of gliomas influences the course of treatment and clinical outcomes. Though biopsy is the reference standard for determining tumor genetics, it can suffer diagnostic delays due to surgical planning and pathologic assessment. Radiogenomics may allow rapid, low-risk characterization of genetic heterogeneity.

  5. Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model.

    Directory of Open Access Journals (Sweden)

    Weili Jiang

    Full Text Available Currently, effective and specific diagnostic imaging of brain glioma is a major challenge. Nanomedicine plays an essential role by delivering the contrast agent in a targeted manner to specific tumor cells, leading to improvement in accurate diagnosis by good visualization and specific demonstration of tumor cells. This study investigated the preparation and characterization of a targeted MR contrast agent, transferrin-conjugated superparamagnetic iron oxide nanoparticles (Tf-SPIONs, for brain glioma detection. MR imaging showed the obvious contrast change of brain glioma before and after administration of Tf-SPIONs in C6 glioma rat model in vivo on T2 weighted imaging. Significant contrast enhancement of brain glioma could still be clearly seen even 48 h post injection, due to the retention of Tf-SPIONs in cytoplasm of tumor cells which was proved by Prussian blue staining. Thus, these results suggest that Tf-SPIONs could be a potential targeting MR contrast agent for the brain glioma.

  6. Regulation of human neurotropic JC virus replication by alternative splicing factor SF2/ASF in glial cells.

    Science.gov (United States)

    Sariyer, Ilker Kudret; Khalili, Kamel

    2011-01-31

    The human neurotropic virus, JC virus (JCV), is the etiologic agent of the fatal demyelinating disease of the central nervous system, Progressive Multifocal Leukoencephalopathy (PML) that is seen primarily in immunodeficient individuals. Productive infection of JCV occurs only in glial cells, and this restriction is, to a great extent, due to the activation of the viral promoter that has cell type-specific characteristics. Earlier studies led to the hypothesis that glial-specific activation of the JCV promoter is mediated through positive and negative transcription factors that control reactivation of the JCV genome under normal physiological conditions and suppress its activation in non-glial cells. Using a variety of virological and molecular biological approaches, we demonstrate that the alternative splicing factor SF2/ASF has the capacity to exert a negative effect on transcription of the JCV promoter in glial cells through direct association with a specific DNA sequence within the viral enhancer/promoter region. Our results show that down-regulation of SF2/ASF in fetal and adult glial cells increases the level of JCV gene expression and its replication indicating that negative regulation of the JCV promoter by SF2/ASF may control reactivation of JCV replication in brain. Our results establish a new regulatory role for SF2/ASF in controlling gene expression at the transcriptional level.

  7. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging.

    Science.gov (United States)

    Soreq, Lilach; Rose, Jamie; Soreq, Eyal; Hardy, John; Trabzuni, Daniah; Cookson, Mark R; Smith, Colin; Ryten, Mina; Patani, Rickie; Ule, Jernej

    2017-01-10

    Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Peripheral administration of the selective inhibitor of soluble tumor necrosis factor (TNF) XPro®1595 attenuates nigral cell loss and glial activation in 6-OHDA hemiparkinsonian rats.

    Science.gov (United States)

    Barnum, Christopher J; Chen, Xi; Chung, Jaegwon; Chang, Jianjun; Williams, Martha; Grigoryan, Nelly; Tesi, Raymond J; Tansey, Malú G

    2014-01-01

    Parkinson's disease (PD) is a complex multi-system age-related neurodegenerative disorder. Targeting the ongoing neuroinflammation in PD patients is one strategy postulated to slow down or halt disease progression. Proof-of-concept studies from our group demonstrated that selective inhibition of soluble Tumor Necrosis Factor (solTNF) by intranigral delivery of dominant negative TNF (DN-TNF) inhibitors reduced neuroinflammation and nigral dopamine (DA) neuron loss in endotoxin and neurotoxin rat models of nigral degeneration. As a next step toward human clinical trials, we aimed to determine the extent to which peripherally administered DN-TNF inhibitor XPro®1595 could: i) cross the blood-brain-barrier in therapeutically relevant concentrations, ii) attenuate neuroinflammation (microglia and astrocyte), and iii) mitigate loss of nigral DA neurons in rats receiving a unilateral 6-hydroxydopamine (6-OHDA) striatal lesion. Rats received unilateral 6-OHDA (20 μg into the right striatum). Three or 14 days after lesion, rats were dosed with XPro®1595 (10 mg/kg in saline, subcutaneous) every third day for 35 days. Forelimb asymmetry was used to assess motor deficits after the lesion; brains were harvested 35 days after the lesion for analysis of XPro®1595 levels, glial activation and nigral DA neuron number. Peripheral subcutaneous dosing of XPro®1595 achieved plasma levels of 1-8 microgram/mL and CSF levels of 1-6 ng/mL depending on the time the rats were killed after final XPro®1595 injection. Irrespective of start date, XPro®1595 significantly reduced microglia and astrocyte number in SNpc whereas loss of nigral DA neurons was attenuated when drug was started 3, but not 14 days after the 6-OHDA lesion. Our data suggest that systemically administered XPro®1595 may have disease-modifying potential in PD patients where inflammation is part of their pathology.

  9. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting.

    Science.gov (United States)

    von Bartheld, Christopher S; Bahney, Jami; Herculano-Houzel, Suzana

    2016-12-15

    For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40-130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. J. Comp. Neurol. 524:3865-3895, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. The Search for True Numbers of Neurons and Glial Cells in the Human Brain: A Review of 150 Years of Cell Counting

    Science.gov (United States)

    von Bartheld, Christopher S.; Bahney, Jami; Herculano-Houzel, Suzana

    2016-01-01

    For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40–130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. PMID:27187682

  11. Isolation and culture of adult human microglia within mixed glial cultures for functional experimentation and high-content analysis.

    Science.gov (United States)

    Smith, Amy M; Gibbons, Hannah M; Lill, Claire; Faull, Richard L M; Dragunow, Mike

    2013-01-01

    Microglia are thought to be involved in diseases of the adult human brain as well as normal aging processes. While neonatal and rodent microglia are often used in studies investigating microglial function, there are important differences between rodent microglia and their adult human counterparts. Human brain tissue provides a unique and valuable tool for microglial cell and molecular biology. Routine protocols can now enable use of this culture method in many laboratories. Detailed protocols and advice for culture of human brain microglia are provided here. We demonstrate the protocol for culturing human adult microglia within a mixed glial culture and use a phagocytosis assay as an example of the functional studies possible with these cells as well as a high-content analysis method of quantification.

  12. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex.

    Science.gov (United States)

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3) and mean cell numbers (x10(6)) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.

  13. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex.

    Directory of Open Access Journals (Sweden)

    María García-Amado

    Full Text Available Cell number alterations in the amygdaloid complex (AC might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL, corticomedial and central groups, 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3 and mean cell numbers (x10(6 were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.

  14. A preliminary investigation into the impact of a pesticide combination on human neuronal and glial cell lines in vitro.

    Directory of Open Access Journals (Sweden)

    Michael D Coleman

    Full Text Available Many pesticides are used increasingly in combinations during crop protection and their stability ensures the presence of such combinations in foodstuffs. The effects of three fungicides, pyrimethanil, cyprodinil and fludioxonil, were investigated together and separately on U251 and SH-SY5Y cells, which can be representative of human CNS glial and neuronal cells respectively. Over 48h, all three agents showed significant reductions in cellular ATP, at concentrations that were more than tenfold lower than those which significantly impaired cellular viability. The effects on energy metabolism were reflected in their marked toxic effects on mitochondrial membrane potential. In addition, evidence of oxidative stress was seen in terms of a fall in cellular thiols coupled with increases in the expression of enzymes associated with reactive species formation, such as GSH peroxidase and superoxide dismutase. The glial cell line showed significant responsiveness to the toxin challenge in terms of changes in antioxidant gene expression, although the neuronal SH-SY5Y line exhibited greater vulnerability to toxicity, which was reflected in significant increases in caspase-3 expression, which is indicative of the initiation of apoptosis. Cyprodinil was the most toxic agent individually, although oxidative stress-related enzyme gene expression increases appeared to demonstrate some degree of synergy in the presence of the combination of agents. This report suggests that the impact of some pesticides, both individually and in combinations, merits further study in terms of their impact on human cellular health.

  15. Expression of Hyaluronan in human tumor progression

    Directory of Open Access Journals (Sweden)

    Boregowda Rajeev K

    2006-01-01

    Full Text Available Abstract Background The development and progression of human tumors is accompanied by various cellular, biochemical and genetic alterations. These events include tumor cells interaction with extracellular matrix molecules including hyaluronan (HA. Hyaluronan is a large polysaccharide associated with pericellular matrix of proliferating, migrating cells. Its implication in malignant transformation, tumor progression and with the degree of differentiation in various invasive tumors has well accepted. It has been well known the role HA receptors in tumor growth and metastasis in various cancer tissues. Previously we have observed the unified over expression of Hyaluronic Acid Binding Protein (HABP, H11B2C2 antigen by the tumor cells in various types progressing tumor tissues with different grades. However, the poor understanding of relation between HA and HA-binding protein expression on tumor cells during tumor progression as well as the asymmetric observations of the role of HA expression in tumor progression prompted us to examine the degree of HA expression on tumor cells vs. stroma in various types of human tumors with different grades. Methods In the present study clinically diagnosed tumor tissue samples of different grades were used to screen the histopathological expression of hyaluronan by using b-PG (biotinylated proteoglycan as a probe and we compared the relative HA expression on tumor cells vs. stroma in well differentiated and poorly differentiated tumors. Specificity of the reaction was confirmed either by pre-digesting the tissue sections with hyaluronidase enzyme or by staining the sections with pre-absorbed complex of the probe and HA-oligomers. Results We show here the down regulation of HA expression in tumor cells is associated with progression of tumor from well differentiated through poorly differentiated stage, despite the constant HA expression in the tumor associated stroma. Conclusion The present finding enlighten the

  16. Synchronization of stochastic systems: from paddlefish electroreceptors to human epileptic glial cell cultures

    Science.gov (United States)

    Neiman, Alexander

    2000-03-01

    Synchronization is one of the fundamental nonlinear phenomena observed in nature. We have studied stochastic synchronization in the electrosensitive system of the paddlefish, Polyodon spathula and have also applied synchronization analysis to networks of glial cells cultured from brain tissue of patients with severe epilepsy. We also present theoretical and numerical models for stochastic synchronization. The electrosensitive system of the paddlefish consists of tens of thousands of electroreceptors located mainly on the "rostrum", which serves as an antenna to locate plankton. Each electroreceptor is a noisy oscillator with natural frequencies in the range of 30-90 Hz. We study synchronization in vivo due to 3-20 Hz external periodic electric fields, which correspond to natural signals produced by Daphnia, the usual prey of paddlefish. We find that for signals whose strengths are in the range that paddlefish customarily encounter in the wild, synchronization coding offers a plausible alternative to the more usual rate coding. We also have studied mutual synchronization between different electroreceptors. Although the spontaneous firing of distant electroreceptors is not synchronized, synchronization is observed when external periodic or even noisy electric fields are applied. We have applied the same analysis techniques to examine synchronization between groups of glial cells. In contrast to cultures of healthy astrocytes, which demonstrate calcium waves, the networks from epileptic tissue are characterized by spatially disordered hyper activity. Nevertheless, we have found that, in many cases, synchronized activity is a rather typical for tissue taken from the uncus region of the brain.

  17. Comparison of the PET with fluoro-ethyl-tyrosine to perfusion MRI and T1 injected in the exploration of glial tumors: a pilot study; Comparaison de la TEP a la fluoro-ethyl-tyrosine a l'IRM de perfusion et T1 injectee dans l'exploration des tumeurs gliales: une etude pilote

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, V.; Payoux, P.; Esquerre' , J.P.; Wagner, T.; Julian, A. [CHU Toulouse-Purpan, Service de medecine nucleaire, 31 (France); Benouaich, A. [CHU Toulouse-Purpan, Service de neurologie, 31 (France); Catalaa, I. [CHU Rangueil, service de neuroradiologie, 31 - Toulouse (France); Alonso, M. [CHU Purpan, service de radiopharmacie, 31 - Toulouse (France)

    2010-07-01

    Molecular imaging could be used in complement of MRI injected in the initial result of cerebral tumors. This study has for aim to compare the performances of the positron computed tomography with fluoro-ethyl-tyrosine (F.E.T.) with the T1 sequences with gadolinium injection and perfusion MRI in the staging of glial tumors. In spite of the low strength of the series, the cerebral PET shows a good performance in the staging of glial tumors, without being superior to MRI. however, the results seem interesting in view of possible merging to allow targeting at the best, the biopsies, especially for the injuries classified high grade for MRI without contrast after gadolinium injection. (N.C.)

  18. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  19. Human neutrophils facilitate tumor cell transendothelial migration.

    Science.gov (United States)

    Wu, Q D; Wang, J H; Condron, C; Bouchier-Hayes, D; Redmond, H P

    2001-04-01

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  20. Glutathione Levels in Human Tumors

    Science.gov (United States)

    Gamcsik, Michael P.; Kasibhatla, Mohit S.; Teeter, Stephanie D.; Colvin, O. Michael

    2013-01-01

    This review summarizes clinical studies in which glutathione was measured in tumor tissue from patients with brain, breast, gastrointestinal, gynecological, head and neck and lung cancer. Glutathione tends to be elevated in breast, ovarian, head and neck and lung cancer and lower in brain and liver tumors compared to disease-free tissue. Cervical, colorectal, gastric and esophageal cancers show both higher and lower levels of tumor glutathione. Some studies show an inverse relationship between patient survival and tumor glutathione. Based on this survey, we recommend approaches that may improve the clinical value of glutathione as a biomarker. PMID:22900535

  1. The ING tumor suppressor genes: status in human tumors.

    Science.gov (United States)

    Guérillon, Claire; Bigot, Nicolas; Pedeux, Rémy

    2014-04-01

    ING genes (ING1-5) were identified has tumor suppressor genes. ING proteins are characterized as Type II TSGs since they are involved in the control of cell proliferation, apoptosis and senescence. They may also function as Type I TSGs since they are also involved in DNA replication and repair. Most studies have reported that they are frequently lost in human tumors and epigenetic mechanisms or misregulation of their transcription may be involved. Recently, studies have described that this loss may be caused by microRNA inhibition. Here, we summarize the current knowledge on ING functions, their involvement in tumor suppression and, in order to give a full assessment of the current knowledge, we review all the studies that have examined ING status in human cancers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression

    NARCIS (Netherlands)

    Zhu, Changbin; Mustafa, Dana; Zheng, Ping-Pin; van der Weiden, Marcel; Sacchetti, Andrea; Brandt, Maarten; Chrifi, Ihsan; Tempel, D.|info:eu-repo/dai/nl/413983471; Leenen, Pieter J M; Duncker, Dirk Jan; Cheng, Caroline|info:eu-repo/dai/nl/29115106X; Kros, Johan M

    2017-01-01

    Background.: The majority of glioma-associated microglia/macrophages have been identified as M2-type macrophages with immune suppressive and tumor supportive action. Recently, the extracellular adenosine deaminase protein Cat Eye Syndrome Critical Region Protein 1 (CECR1) was shown to regulate

  3. Nogo-A expression in glial CNS tumors - A tool to differentiate between oligodendrogliomas and other gliomas?

    NARCIS (Netherlands)

    Kuhlmann, Tanja; Gutenberg, Angelika; Schulten, Hans-Juergen; Paulus, Werner; Rohde, Veit; Bruck, Wolfgang

    2008-01-01

    Gliomas are the most frequent primary brain tumors. In a minority of cases, the differentiation between astrocytomas and oligodendrogliomas based on morphologic characteristics alone can be difficult; though it is important, as patients with ohgodendrogliomas follow a more favorable clinical course.

  4. Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Hiroomi; Lashgari, M.; Amini, S.; Khalili, K. (Thomas Jefferson Univ., Philadelphia, PA (USA)); Rappaport, J.; Wong-Staal, F. (National Institutes of Health, Bethesda, MD (USA))

    1990-05-01

    Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system caused by the JC virus (JCV), a human papovavirus. PML is a relatively rare disease seen predominantly in immunocompromised individuals and is a frequent complication observed in AIDS patients. The significantly higher incidence of PML in AIDS patients than in other immunosuppressive disorders has suggested that the presence of human immunodeficiency virus type 1 (HIV-1) in the brain may directly or indirectly contribute to the pathogenesis of this disease. In the present study the authors have examined the expression of the JCV genome in both glial and non-glial cells in the presence of HIV-1 regulatory proteins. They find that the HIV-1-encoded trans-regulatory protein tat increases the basal activity of the JCV late promoter, JCV{sub L}, in glial cells. They conclude that the presence of the HIV-1-encoded tat protein may positively affect the JCV lytic cycle in glial cells by stimulating JCV gene expression. The results suggest a mechanism for the relatively high incidence of PML in AIDS patients than in other immunosuppressive disorders. Furthermore, the findings indicate that the HIV-1 regulatory protein tat may stimulate other viral and perhaps cellular promoters, in addition to its own.

  5. S100B protein, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in human milk.

    Science.gov (United States)

    Li, Ruisong; Xia, Wei; Zhang, Zhihong; Wu, Kun

    2011-01-01

    Human milk contains a wide variety of nutrients that contribute to the fulfillment of its functions, which include the regulation of newborn development. However, few studies have investigated the concentrations of S100B protein, brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) in human milk. The associations of the concentrations of S100B protein, BDNF, and GDNF with maternal factors are not well explored. To investigate the concentrations of S100B protein, BDNF, and GDNF in human milk and characterize the maternal factors associated with their levels in human milk, human milk samples were collected at days 3, 10, 30, and 90 after parturition. Levels of S100B protein, BDNF, and GDNF, and their mRNAs in the samples were detected. Then, these concentrations were compared with lactation and other maternal factors. S100B protein levels in human milk samples collected at 3, 10, 30, and 90 d after parturition were 1249.79±398.10, 1345.05±539.16, 1481.83±573.30, and 1414.39±621.31 ng/L, respectively. On the other hand, the BDNF concentrations in human milk samples were 10.99±4.55, 13.01±5.88, 13.35±6.43, and 2.83±5.47 µg/L, while those of GDNF were 10.90±1.65, 11.38±1., 11.29±3.10, and 11.40±2.21 g/L for the same time periods. Maternal post-pregnancy body mass index was positively associated with S100B levels in human milk (r = 0.335, P = 0.030milk. S100B protein, BDNF, and GDNF are present in all samples of human milk, and they may be responsible for the long term effects of breast feeding.

  6. Biochemical Signatures of Doppel Protein in Human Astrocytomas to Support Prediction in Tumor Malignancy

    Directory of Open Access Journals (Sweden)

    Paola Rognoni

    2010-01-01

    Full Text Available Doppel (Dpl is a membrane-bound glycoprotein mainly expressed in the testis of adult healthy people. It is generally absent in the central nervous system, but its coding gene sequence is ectopically expressed in astrocytoma specimens and in derived cell lines. In this paper, we investigated the expression and the biochemical features of Dpl in a panel of 49 astrocytoma specimens of different WHO malignancy grades. As a result, Dpl was expressed in the majority of the investigated specimens (86%, also including low grade samples. Importantly, Dpl exhibited different cellular localizations and altered glycan moieties composition, depending on the tumor grade. Most low-grade astrocytomas (83% showed a membrane-bound Dpl, like human healthy testis tissue, whereas the majority of high-grade astrocytomas (75% displayed a cytosolic Dpl. Deglycosylation studies with N-glycosidase F and/or neuraminidase highlighted defective glycan moieties and an unexpected loss of sialic acid. To find associations between glial tumor progression and Dpl biochemical features, predictive bioinformatics approaches were produced. In particular, Decision tree and Nomogram analysis showed well-defined Dpl-based criteria that separately clustered low-and high-grade astrocytomas. Taken together, these findings show that in astrocytomas, Dpl undergoes different molecular processes that might constitute additional helpful tools to characterize the glial tumor progression.

  7. Microcoil-based MR phase imaging and manganese enhanced microscopy of glial tumor neurospheres with direct optical correlation.

    Science.gov (United States)

    Baxan, Nicoleta; Kahlert, Ulf; Maciaczyk, Jaroslaw; Nikkhah, Guido; Hennig, Jürgen; von Elverfeldt, Dominik

    2012-07-01

    Susceptibility differences among tissues were recently used for highlighting complementary contrast in MRI different from the conventional T(1), T(2), or spin density contrasts. This method, based on the signal phase, previously showed improved image contrast of human or rodent neuroarchitecture in vivo, although direct MR phase imaging of cellular architecture was not available until recently. In this study, we present for the first time the ability of microcoil-based phase MRI to resolve the structure of human glioma neurospheres at significantly improved resolutions (10 × 10 μm(2)) with direct optical image correlation. The manganese chloride property to function as a T(1) contrast agent enabled a closer examination of cell physiology with MRI. Specifically the temporal changes of manganese chloride uptake, retention and release time within and from individual clusters were assessed. The optimal manganese chloride concentration for improved MR signal enhancement was determined while keeping the cellular viability unaffected. The presented results demonstrate the possibilities to reveal structural and functional observation of living glioblastoma human-derived cells. This was achieved through the combination of highly sensitive microcoils, high magnetic field, and methods designed to maximize contrast to noise ratio. The presented approach may provide a powerful multimodal tool that merges structural and functional information of submilimeter biological samples. Copyright © 2011 Wiley Periodicals, Inc.

  8. Human glial chimeric mice reveal astrocytic dependence of JC virus infection

    DEFF Research Database (Denmark)

    Kondo, Yoichi; Windrem, Martha S; Zou, Lisa

    2014-01-01

    that was chimeric for human astrocytes and GPCs. JCV effectively propagated in these mice, which indicates that astroglial infection is sufficient for JCV spread. Sequencing revealed progressive mutation of the JCV capsid protein VP1 after infection, suggesting that PML may evolve with active infection....... These results indicate that the principal CNS targets for JCV infection are astrocytes and GPCs and that infection is associated with progressive mutation, while demyelination is a secondary occurrence, following T antigen-triggered oligodendroglial apoptosis. More broadly, this study provides a model by which...... to further assess the biology and treatment of human-specific gliotropic viruses....

  9. Patterning human neuronal networks on photolithographically engineered silicon dioxide substrates functionalized with glial analogues.

    Science.gov (United States)

    Hughes, Mark A; Brennan, Paul M; Bunting, Andrew S; Cameron, Katherine; Murray, Alan F; Shipston, Mike J

    2014-05-01

    Interfacing neurons with silicon semiconductors is a challenge being tackled through various bioengineering approaches. Such constructs inform our understanding of neuronal coding and learning and ultimately guide us toward creating intelligent neuroprostheses. A fundamental prerequisite is to dictate the spatial organization of neuronal cells. We sought to pattern neurons using photolithographically defined arrays of polymer parylene-C, activated with fetal calf serum. We used a purified human neuronal cell line [Lund human mesencephalic (LUHMES)] to establish whether neurons remain viable when isolated on-chip or whether they require a supporting cell substrate. When cultured in isolation, LUHMES neurons failed to pattern and did not show any morphological signs of differentiation. We therefore sought a cell type with which to prepattern parylene regions, hypothesizing that this cellular template would enable secondary neuronal adhesion and network formation. From a range of cell lines tested, human embryonal kidney (HEK) 293 cells patterned with highest accuracy. LUHMES neurons adhered to pre-established HEK 293 cell clusters and this coculture environment promoted morphological differentiation of neurons. Neurites extended between islands of adherent cell somata, creating an orthogonally arranged neuronal network. HEK 293 cells appear to fulfill a role analogous to glia, dictating cell adhesion, and generating an environment conducive to neuronal survival. We next replaced HEK 293 cells with slower growing glioma-derived precursors. These primary human cells patterned accurately on parylene and provided a similarly effective scaffold for neuronal adhesion. These findings advance the use of this microfabrication-compatible platform for neuronal patterning. Copyright © 2013 Wiley Periodicals, Inc.

  10. Sexual dimorphism in the human olfactory bulb: females have more neurons and glial cells than males.

    Directory of Open Access Journals (Sweden)

    Ana V Oliveira-Pinto

    Full Text Available Sex differences in the human olfactory function reportedly exist for olfactory sensitivity, odorant identification and memory, and tasks in which odors are rated based on psychological features such as familiarity, intensity, pleasantness, and others. Which might be the neural bases for these behavioral differences? The number of cells in olfactory regions, and especially the number of neurons, may represent a more accurate indicator of the neural machinery than volume or weight, but besides gross volume measures of the human olfactory bulb, no systematic study of sex differences in the absolute number of cells has yet been undertaken. In this work, we investigate a possible sexual dimorphism in the olfactory bulb, by quantifying postmortem material from 7 men and 11 women (ages 55-94 years with the isotropic fractionator, an unbiased and accurate method to estimate absolute cell numbers in brain regions. Female bulbs weighed 0.132 g in average, while male bulbs weighed 0.137 g, a non-significant difference; however, the total number of cells was 16.2 million in females, and 9.2 million in males, a significant difference of 43.2%. The number of neurons in females reached 6.9 million, being no more than 3.5 million in males, a difference of 49.3%. The number of non-neuronal cells also proved higher in women than in men: 9.3 million and 5.7 million, respectively, a significant difference of 38.7%. The same differences remained when corrected for mass. Results demonstrate a sex-related difference in the absolute number of total, neuronal and non-neuronal cells, favoring women by 40-50%. It is conceivable that these differences in quantitative cellularity may have functional impact, albeit difficult to infer how exactly this would be, without knowing the specific circuits cells make. However, the reported advantage of women as compared to men may stimulate future work on sex dimorphism of synaptic microcircuitry in the olfactory bulb.

  11. Value of minimum apparent diffusion coefficient on magnetic resonance imaging as a biomarker for predicting progression of disease following surgery and radiotherapy in glial tumors from a tertiary care center in Northern India

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Gupta

    2017-01-01

    Full Text Available Purpose: Studies have shown that cellularity of glial tumors are inversely correlated to minimum apparent diffusion coefficient (ADC values derived on diffusion-weighted imaging (DWI. The purpose of this prospective exploratory study was to evaluate whether temporal change in “minimum ADC” values during follow-up predict progressive disease in glial tumors post radiotherapy and surgery. Materials and Methods: Adult patients of glial tumors, subjected to surgery followed by Radiotherapy (RT, were included in the study. Serial conventional magnetic resonance imaging with DWI at the following time points – presurgery, pre-RT, post-RT imaging at 3, 7, and 15 months were done. For “minimum ADC” values, multiple regions of interest (ROI were identified on ADC maps derived from DWI. A mean of 5 minimum ADC values was chosen as “minimum ADC” value. The correlation was drawn between histology and minimum ADC values and time trends were studied. Results: Fourteen patients were included in this study. Histologies were low-grade glioma (LGG - 5, anaplastic oligodendroglioma (ODG -5, and glioblastoma multiforme (GBM - 4. Minimum ADC values were significantly higher in LGG and GBM than ODG. Presurgery, the values were 0.812, 0.633, and 0.787 × 10−3 mm2/s for LGG, ODG, and GBM, respectively. DWI done at the time of RT planning showed values of 0.786, 0.636, 0.869 × 10−3 mm2/s, respectively. During follow-up, the increasing trend of minimum ADC was observed in LGG (P = 0.02. All these patients were clinically and radiologically stable. Anaplastic ODGs, however, showed an initial increase followed by the fall of minimum ADC in all the 5 cases (P = 0.00. Four of the five cases developed progressive disease subsequently. In all the 4 GBM cases, a consistent fall of minimum ADC values was observed (P = 0.00, and they all progressed in spite of RT. Conclusions: The DWI-derived minimum ADC values are an important yet simple quantitative tool to

  12. Human Tumor Antigens Yesterday, Today, and Tomorrow.

    Science.gov (United States)

    Finn, Olivera J

    2017-05-01

    The question of whether human tumors express antigens that can be recognized by the immune system has been answered with a resounding YES. Most were identified through spontaneous antitumor humoral and cellular immune responses found in cancer patients and include peptides, glycopeptides, phosphopeptides, viral peptides, and peptides resulting from common mutations in oncogenes and tumor-suppressor genes, or common gene fusion events. Many have been extensively tested as candidates for anticancer vaccines. More recently, attention has been focused on the potentially large number of unique tumor antigens, mutated neoantigens, that are the predicted products of the numerous mutations revealed by exome sequencing of primary tumors. Only a few have been confirmed as targets of spontaneous immunity and immunosurveillance, and even fewer have been tested in preclinical and clinical settings. The field has been divided for a long time on the relative importance of shared versus mutated antigens in tumor surveillance and as candidates for vaccines. This question will eventually need to be answered in a head to head comparison in well-designed clinical trials. One advantage that shared antigens have over mutated antigens is their potential to be used in vaccines for primary cancer prevention. Cancer Immunol Res; 5(5); 347-54. ©2017 AACR. ©2017 American Association for Cancer Research.

  13. Healthy human CSF promotes glial differentiation of hESC-derived neural cells while retaining spontaneous activity in existing neuronal networks

    Directory of Open Access Journals (Sweden)

    Heikki Kiiski

    2013-05-01

    The possibilities of human pluripotent stem cell-derived neural cells from the basic research tool to a treatment option in regenerative medicine have been well recognized. These cells also offer an interesting tool for in vitro models of neuronal networks to be used for drug screening and neurotoxicological studies and for patient/disease specific in vitro models. Here, as aiming to develop a reductionistic in vitro human neuronal network model, we tested whether human embryonic stem cell (hESC-derived neural cells could be cultured in human cerebrospinal fluid (CSF in order to better mimic the in vivo conditions. Our results showed that CSF altered the differentiation of hESC-derived neural cells towards glial cells at the expense of neuronal differentiation. The proliferation rate was reduced in CSF cultures. However, even though the use of CSF as the culture medium altered the glial vs. neuronal differentiation rate, the pre-existing spontaneous activity of the neuronal networks persisted throughout the study. These results suggest that it is possible to develop fully human cell and culture-based environments that can further be modified for various in vitro modeling purposes.

  14. Hippocampal pathology in the human neuronal ceroid-lipofuscinoses: distinct patterns of storage deposition, neurodegeneration and glial activation.

    Science.gov (United States)

    Tyynelä, Jaana; Cooper, Jonathan D; Khan, M Nadeem; Shemilts, Stephen J A; Haltia, Matti

    2004-10-01

    The neuronal ceroid-lipofuscinoses (NCLs) are recessively inherited lysosomal storage diseases, currently classified into 8 forms (CLN1-CLN8). Collectively, the NCLs constitute the most common group of progressive encephalopathies of childhood, and present with visual impairment, psychomotor deterioration and severe seizures. Despite recent identification of the underlying disease genes, the mechanisms leading to neurodegeneration and epilepsy in the NCLs remain poorly understood. To investigate these events, we examined the patterns of storage deposition, neurodegeneration, and glial activation in the hippocampus of patients with CLN1, CLN2, CLN3, CLN5 and CLN8 using histochemistry and immunohistochemistry. These different forms of NCL shared distinct patterns of neuronal degeneration in the hippocampus, with heavy involvement of sectors CA2-CA4 but relative sparing of CA1. This selective pattern of degeneration was also observed in immunohistochemically identified interneurons, which exhibited a graded severity of loss according to phenotype, with calretinin-positive interneurons relatively spared. Furthermore, glial activation was also regionally specific, with microglial activation most pronounced in areas of greatest neuronal loss, and astrocyte activation prominent in areas where neuronal loss was less evident. In conclusion, the NCLs share a common pattern of selective hippocampal pathology, distinct from that seen in the majority of temporal lobe epilepsies.

  15. In Vitro Efficient Expansion of Tumor Cells Deriving from Different Types of Human Tumor Samples

    Directory of Open Access Journals (Sweden)

    Ilaria Turin

    2014-03-01

    Full Text Available Obtaining human tumor cell lines from fresh tumors is essential to advance our understanding of antitumor immune surveillance mechanisms and to develop new ex vivo strategies to generate an efficient anti-tumor response. The present study delineates a simple and rapid method for efficiently establishing primary cultures starting from tumor samples of different types, while maintaining the immuno-histochemical characteristics of the original tumor. We compared two different strategies to disaggregate tumor specimens. After short or long term in vitro expansion, cells analyzed for the presence of malignant cells demonstrated their neoplastic origin. Considering that tumor cells may be isolated in a closed system with high efficiency, we propose this methodology for the ex vivo expansion of tumor cells to be used to evaluate suitable new drugs or to generate tumor-specific cytotoxic T lymphocytes or vaccines.

  16. Repercussion of mitochondria deformity induced by anti-Hsp90 drug 17AAG in human tumor cells

    KAUST Repository

    Vishal, Chaturvedi

    2011-06-07

    Inhibiting Hsp90 chaperone roles using 17AAG induces cytostasis or apoptosis in tumor cells through destabilization of several mutated cancer promoting proteins. Although mitochondria are central in deciding the fate of cells, 17AAG induced effects on tumor cell mitochondria were largely unknown. Here, we show that Hsp90 inhibition with 17AAG first affects mitochondrial integrity in different human tumor cells, neuroblastoma, cervical cancer and glial cells. Using human neuroblastoma tumor cells, we found the early effects associated with a change in mitochondrial membrane potential, elongation and engorgement of mitochondria because of an increased matrix vacuolization. These effects are specific to Hsp90 inhibition as other chemotherapeutic drugs did not induce similar mitochondrial deformity. Further, the effects are independent of oxidative damage and cytoarchitecture destabilization since cytoskeletal disruptors and mitochondrial metabolic inhibitors also do not induce similar deformity induced by 17AAG. The 1D PAGE LC MS/ MS mitochondrial proteome analysis of 17AAG treated human neuroblastoma cells showed a loss of 61% proteins from membrane, metabolic, chaperone and ribonucleoprotein families. About 31 unmapped protein IDs were identified from proteolytic processing map using Swiss-Prot accession number, and converted to the matching gene name searching the ExPASy proteomics server. Our studies display that Hsp90 inhibition effects at first embark on mitochondria of tumor cells and compromise mitochondrial integrity. the author(s), publisher and licensee Libertas Academica Ltd.

  17. Tumor

    Science.gov (United States)

    ... peanut plants (aflatoxins) Excessive sunlight exposure Genetic problems Obesity Radiation exposure Viruses Types of tumors known to be caused by or linked with viruses are: Cervical cancer (human papillomavirus) Most anal cancers (human papillomavirus) Some ...

  18. From reverse transcription to human brain tumors

    Directory of Open Access Journals (Sweden)

    Dmitrenko V. V.

    2013-05-01

    Full Text Available Reverse transcriptase from avian myeloblastosis virus (AMV was the subject of the study, from which the investi- gations of the Department of biosynthesis of nucleic acids were started. Production of AMV in grams quantities and isolation of AMV reverse transcriptase were established in the laboratory during the seventies of the past cen- tury and this initiated research on the cDNA synthesis, cloning and investigation of the structure and functions of the eukaryotic genes. Structures of salmon insulin and insulin-like growth factor (IGF family genes and their transcripts were determined during long-term investigations. Results of two modern techniques, microarray-ba- sed hybridization and SAGE, were used for the identification of the genes differentially expressed in astrocytic gliomas and human normal brain. Comparison of SAGE results on the genes overexpressed in glioblastoma with the results of microarray analysis revealed a limited number of common genes. 105 differentially expressed genes, common to both methods, can be included in the list of candidates for the molecular typing of glioblastoma. The first experiments on the classification of glioblastomas based on the data of the 20 genes expression were conducted by using of artificial neural network analysis. The results of these experiments showed that the expression profiles of these genes in 224 glioblastoma samples and 74 normal brain samples could be according to the Koho- nen’s maps. The CHI3L1 and CHI3L2 genes of chitinase-like cartilage protein were revealed among the most overexpressed genes in glioblastoma, which could have prognostic and diagnostic potential. Results of in vitro experiments demonstrated that both proteins, CHI3L1 and CHI3L2, may initiate the phosphorylation of ERK1/ ERK2 and AKT kinases leading to the activation of MAPK/ERK1/2 and PI3K/AKT signaling cascades in human embryonic kidney 293 cells, human glioblastoma U87MG, and U373 cells. The new human cell line

  19. Cyclophosphamide Enhances Human Tumor Growth in Nude Rat Xenografted Tumor Models

    Directory of Open Access Journals (Sweden)

    Yingjen Jeffrey Wu

    2009-02-01

    Full Text Available The effect of the immunomodulatory chemotherapeutic agent cyclophosphamide (CTX on tumor growth was investigated in primary and metastatic intracerebral and subcutaneous rat xenograft models. Nude rats were treated with CTX (100 mg/kg, intraperitoneally 24 hours before human ovarian carcinoma (SKOV3, small cell lung carcinoma (LX-1 SCLC, and glioma (UW28, U87MG, and U251 tumor cells were inoculated subcutaneously, intraperitoneally, or in the right cerebral hemisphere or were infused into the right internal carotid artery. Tumor development was monitored and recorded. Potential mechanisms were further investigated. Only animals that received both CTX and Matrigel showed consistent growth of subcutaneous tumors. Cyclophosphamide pretreatment increased the percentage (83.3% vs 0% of animals showing intraperitoneal tumors. In intracerebral implantation tumor models, CTX pretreatment increased the tumor volume and the percentage of animals showing tumors. Cyclophosphamide increased lung carcinoma bone and facial metastases after intra-arterial injection, and 20% of animals showed brain metastases. Cyclophosphamide transiently decreased nude rat white blood cell counts and glutathione concentration, whereas serum vascular endothelial growth factor was significantly elevated. Cyclophosphamide also increased CD31 reactivity, a marker of vascular endothelium, and macrophage (CD68-positive infiltration into glioma cell-inoculated rat brains. Cyclophosphamide may enhance primary and metastatic tumor growth through multiple mechanisms, including immune modulation, decreased response to oxidative stress, increased tumor vascularization, and increased macrophage infiltration. These findings may be clinically relevant because chemotherapy may predispose human cancer subjects to tumor growth in the brain or other tissues.

  20. Identification and manipulation of tumor associated macrophages in human cancers

    Directory of Open Access Journals (Sweden)

    Heusinkveld Moniek

    2011-12-01

    Full Text Available Abstract Evading immune destruction and tumor promoting inflammation are important hallmarks in the development of cancer. Macrophages are present in most human tumors and are often associated with bad prognosis. Tumor associated macrophages come in many functional flavors ranging from what is known as classically activated macrophages (M1 associated with acute inflammation and T-cell immunity to immune suppressive macrophages (M2 associated with the promotion of tumor growth. The role of these functionally different myeloid cells is extensively studied in mice tumor models but dissimilarities in markers and receptors make the direct translation to human cancer difficult. This review focuses on recent reports discriminating the type of infiltrating macrophages in human tumors and the environmental cues present that steer their differentiation. Finally, immunotherapeutic approaches to interfere in this process are discussed.

  1. Serum-free culture success of glial tumors is related to specific molecular profiles and expression of extracellular matrix-associated gene modules.

    Science.gov (United States)

    Balvers, Rutger K; Kleijn, Anne; Kloezeman, Jenneke J; French, Pim J; Kremer, Andreas; van den Bent, Martin J; Dirven, Clemens M F; Leenstra, Sieger; Lamfers, Martine L M

    2013-12-01

    Recent molecular characterization studies have identified clinically relevant molecular subtypes to coexist within the same histological entities of glioma. Comparative studies between serum-supplemented and serum-free (SF) culture conditions have demonstrated that SF conditions select for glioma stem-like cells, which superiorly conserve genomic alterations. However, neither the representation of molecular subtypes within SF culture assays nor the molecular distinctions between successful and nonsuccessful attempts have been elucidated. A cohort of 261 glioma samples from varying histological grades was documented for SF culture success and clinical outcome. Gene expression and single nucleotide polymorphism arrays were interrogated on a panel of tumors for comparative analysis of SF+ (successful cultures) and SF- (unsuccessful cultures). SF culture outcome was correlated with tumor grade, while no relation was found between SF+ and patient overall survival. Copy number-based hierarchical clustering revealed an absolute separation between SF+ and SF- parental tumors. All SF+ cultures are derived from tumors that are isocitrate dehydrogenase 1 (IDH1) wild type, chromosome 7 amplified, and chromosome 10q deleted. SF- cultures derived from IDH1 mutant tumors demonstrated a fade-out of mutated cells during the first passages. SF+ tumors were enriched for The Cancer Genome Atlas Classical subtype and intrinsic glioma subtype-18. Comparative gene ontology analysis between SF+ and SF- tumors demonstrated enrichment for modules associated with extracellular matrix composition, Hox-gene signaling, and inflammation. SF cultures are derived from a subset of parental tumors with a shared molecular background including enrichment for extracellular matrix-associated gene modules. These results provide leads to develop enhanced culture protocols for glioma samples not propagatable under current SF conditions.

  2. Recombinant human erythropoietin alpha improves the efficacy of radiotherapy of a human tumor xenograft, affecting tumor cells and microvessels

    Energy Technology Data Exchange (ETDEWEB)

    Loevey, J. [Dept. of Radiotherapy, National Inst. of Oncology, Budapest (Hungary); Bereczky, B.; Gilly, R.; Kenessey, I.; Raso, E.; Simon, E.; Timar, J. [Dept. of Tumor Progression, National Inst. of Oncology, Budapest (Hungary); Dobos, J. [Dept. of Tumor Progression, National Inst. of Oncology, Budapest (Hungary); National Koranyi Inst. of TBC and Pulmonology, Budapest (Hungary); Vago, A. [Central Lab., National Inst. of Oncology, Budapest (Hungary); Kasler, M. [Head and Neck Surgery, National Inst. of Oncology, Budapest (Hungary); Doeme, B. [National Koranyi Inst. of TBC and Pulmonology, Budapest (Hungary); Tovari, J. [National Koranyi Inst. of TBC and Pulmonology, Budapest (Hungary); 1. Inst. of Pathology and Experimental Cancer Research, Semmelweis Univ., Budapest (Hungary)

    2008-01-15

    Background and purpose: tumor-induced anemia often occurs in cancer patients, and is corrected by recombinant human erythropoietins (rHuEPOs). Recent studies indicated that, besides erythroid progenitor cells, tumor and endothelial cells express erythropoietin receptor (EPOR) as well; therefore, rHuEPO may affect their functions. Here, the effect of rHuEPO{alpha} on irradiation in EPOR-positive human squamous cell carcinoma xenograft was tested. Material and methods: A431 tumor-bearing SCID mice were treated from the tumor implantation with rHuEPO{alpha} at human-equivalent dose. Xenografts were irradiated (5 Gy) on day 14, and the final tumor mass was measured on day 22. The systemic effects of rHuEPO{alpha} on the hemoglobin level, on tumor-associated blood vessels and on hypoxia-inducible factor-(HIF-)1{alpha} expression of the tumor xenografts were monitored. The proliferation, apoptosis and clonogenic capacity of A431 cancer cells treated with rHuEPO{alpha} and irradiation were also tested in vitro. Results: in vitro, rHuEPO{alpha} treatment alone did not modify the proliferation of EPOR-positive A431 tumor cells but enhanced the effect of irradiation on proliferation, apoptosis and clonogenic capacity. In vivo, rHuEPO{alpha} administration compensated the tumor-induced anemia in SCID mice and decreased tumoral HIF-1{alpha} expression but had no effect on tumor growth. At the same time rHuEPO{alpha} treatment significantly increased the efficacy of radiotherapy in vivo (tumor weight of 23.9 {+-} 4.7 mg and 34.9 {+-} 4.6 mg, respectively), mediated by increased tumoral blood vessel destruction. Conclusion: rHuEPO{alpha} treatment may modulate the efficacy of cancer radiotherapy not only by reducing systemic hypoxia and tumoral HIF-1{alpha} expression, but also by destroying tumoral vessels. (orig.)

  3. Gastrin Induces Nuclear Export and Proteasome Degradation of Menin in Enteric Glial Cells.

    Science.gov (United States)

    Sundaresan, Sinju; Meininger, Cameron A; Kang, Anthony J; Photenhauer, Amanda L; Hayes, Michael M; Sahoo, Nirakar; Grembecka, Jolanta; Cierpicki, Tomasz; Ding, Lin; Giordano, Thomas J; Else, Tobias; Madrigal, David J; Low, Malcolm J; Campbell, Fiona; Baker, Ann-Marie; Xu, Haoxing; Wright, Nicholas A; Merchant, Juanita L

    2017-12-01

    The multiple endocrine neoplasia, type 1 (MEN1) locus encodes the nuclear protein and tumor suppressor menin. MEN1 mutations frequently cause neuroendocrine tumors such as gastrinomas, characterized by their predominant duodenal location and local metastasis at time of diagnosis. Diffuse gastrin cell hyperplasia precedes the appearance of MEN1 gastrinomas, which develop within submucosal Brunner's glands. We investigated how menin regulates expression of the gastrin gene and induces generation of submucosal gastrin-expressing cell hyperplasia. Primary enteric glial cultures were generated from the VillinCre:Men1FL/FL:Sst-/- mice or C57BL/6 mice (controls), with or without inhibition of gastric acid by omeprazole. Primary enteric glial cells from C57BL/6 mice were incubated with gastrin and separated into nuclear and cytoplasmic fractions. Cells were incubated with forskolin and H89 to activate or inhibit protein kinase A (a family of enzymes whose activity depends on cellular levels of cyclic AMP). Gastrin was measured in blood, tissue, and cell cultures using an ELISA. Immunoprecipitation with menin or ubiquitin was used to demonstrate post-translational modification of menin. Primary glial cells were incubated with leptomycin b and MG132 to block nuclear export and proteasome activity, respectively. We obtained human duodenal, lymph node, and pancreatic gastrinoma samples, collected from patients who underwent surgery from 1996 through 2007 in the United States or the United Kingdom. Enteric glial cells that stained positive for glial fibrillary acidic protein (GFAP+) expressed gastrin de novo through a mechanism that required PKA. Gastrin-induced nuclear export of menin via cholecystokinin B receptor (CCKBR)-mediated activation of PKA. Once exported from the nucleus, menin was ubiquitinated and degraded by the proteasome. GFAP and other markers of enteric glial cells (eg, p75 and S100B), colocalized with gastrin in human duodenal gastrinomas. MEN1-associated

  4. Identification of human SEP1 as a glial cell line-derived neurotrophic factor-inducible protein and its expression in the nervous system.

    Science.gov (United States)

    Shimoyama, Y; Morikawa, Y; Ichihara, M; Kodama, Y; Fukuda, N; Hayashi, H; Morinaga, T; Iwashita, T; Murakumo, Y; Takahashi, M

    2003-01-01

    Glial cell line-derived neurotrophic factor (GDNF) signals through multisubunit receptor complex consisting of RET tyrosine kinase and a glycosylphosphatidylinositol-anchored coreceptor called GDNF family receptor alpha1 (GFRalpha1). In the current study, we cloned a human SEP1 gene as a GDNF-inducible gene using human neuroblastoma cells that express RET and GFRalpha1. The induction of the SEP1 gene showed two peaks at 0.5-2 h and 24-48 h after GDNF stimulation by Northern blotting and quantitative real-time reverse transcriptase polymerase chain reaction. The late induction was also confirmed at protein levels by Western blotting with anti-SEP1 antibody. Immunostaining revealed that the expression of the SEP1 protein was detected in cell body, elongated neurites and growth cone-like structure of neuroblastoma cells treated with GDNF. In addition, we found a high level of SEP1 expression in neurons of the dorsal root and superior cervical ganglia and motor neurons of the spinal cord of mice in which RET is also expressed. SEP1 was co-immunoprecipitated with alpha- and beta-tubulins from the lysate of mouse brain. These results thus suggested that SEP1 is a GDNF-inducible and microtubule-associated protein that may play a role in the nervous system.

  5. Metallothioneins in human tumors and potential roles in carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cherian, M. George; Jayasurya, A.; Bay, Boon-Huat

    2003-12-10

    Metallothioneins (MT) are a group of low-molecular weight, cysteine rich intracellular proteins, which are encoded by a family of genes containing at least 10 functional isoforms in human. The expression and induction of these proteins have been associated with protection against DNA damage, oxidative stress and apoptosis. Moreover, MT may potentially activate certain transcriptional factors by donating zinc. Although MT is a cytosolic protein in resting cells, it can be translocated transiently to the cell nucleus during cell proliferation and differentiation. A number of studies have shown an increased expression of MT in various human tumors of the breast, colon, kidney, liver, lung, nasopharynx, ovary, prostate, salivary gland, testes, thyroid and urinary bladder. However, MT is down-regulated in certain tumors such as hepatocellular carcinoma and liver adenocarcinoma. Hence, the expression of MT is not universal to all human tumors, but may depend on the differentiation status and proliferative index of tumors, along with other tissue factors and gene mutations. In certain tumors such as germ cell carcinoma, the expression of MT is closely related to the tumor grade and proliferative activity. Increased expression of MT has also been observed in less differentiated tumors. Thus, expression of MT may be a potential prognostic marker for certain tumors. There are few reports on the expression of the different isoforms of MT which have been analyzed by specific gene probes. They reveal that certain isoforms are expressed in specific cell types. The factors which can influence MT induction in human tumors are not yet understood. Down-regulation of MT synthesis in hepatic tumors may be related to hypermethylation of the MT-promoter or mutation of other genes such as the p53 tumor suppressor gene. In vitro studies using human cancer cells suggest a possible role for p53 and the estrogen-receptor on the expression and induction of MT in epithelial neoplastic cells

  6. Developing a xenograft human tumor model in immunocompetent mice.

    Science.gov (United States)

    Basel, Matthew T; Narayanan, Sanjeev; Ganta, Chanran; Shreshta, Tej B; Marquez, Alejandro; Pyle, Marla; Hill, Jennifer; Bossmann, Stefan H; Troyer, Deryl L

    2018-01-01

    Animal models are essential to cancer research, but current xenograft models are limited in their utility especially due to the lack of an immune system. Here we demonstrate that a xenograft tumor model can be developed in immunocompetent mice by tolerizing murine fetuses to human tumor cells. A375 human melanoma cells were injected into day E14 fetuses and after birth mice were challenged with A375 cells to determine their ability to develop tumors. Intravenous injections of cells resulted in metastatic-like lung tumors, which were verified to be human in origin by immunohistochemistry and PCR. These results were replicated with several other human tumor types: BxPC3 (human pancreatic adenocarcinoma), MDA-MB-231 (human breast adenocarcinoma), M21 (human melanoma), and HeLa (human cervical adenocarcinoma). Development of an immunocompetent xenograft tumor model would allow the further elucidation of the interaction of the immune system with therapy in both preclinical research and patient derived xenografts. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Tumor endothelial inflammation predicts clinical outcome in diverse human cancers.

    Directory of Open Access Journals (Sweden)

    Sean P Pitroda

    Full Text Available Vascular endothelial cells contribute to the pathogenesis of numerous human diseases by actively regulating the stromal inflammatory response; however, little is known regarding the role of endothelial inflammation in the growth of human tumors and its influence on the prognosis of human cancers.Using an experimental model of tumor necrosis factor-alpha (TNF-α-mediated inflammation, we characterized inflammatory gene expression in immunopurified tumor-associated endothelial cells. These genes formed the basis of a multivariate molecular predictor of overall survival that was trained and validated in four types of human cancer.We report that expression of experimentally derived tumor endothelial genes distinguished pathologic tissue specimens from normal controls in several human diseases associated with chronic inflammation. We trained these genes in human cancer datasets and defined a six-gene inflammatory signature that predicted significantly reduced overall survival in breast cancer, colon cancer, lung cancer, and glioma. This endothelial-derived signature predicted outcome independently of, but cooperatively with, standard clinical and pathological prognostic factors. Consistent with these findings, conditioned culture media from human endothelial cells stimulated by pro-inflammatory cytokines accelerated the growth of human colon and breast tumors in immunodeficient mice as compared with conditioned media from untreated endothelial cells.This study provides the first prognostic cancer gene signature derived from an experimental model of tumor-associated endothelial inflammation. These findings support the notion that activation of inflammatory pathways in non-malignant tumor-infiltrating endothelial cells contributes to tumor growth and progression in multiple human cancers. Importantly, these results identify endothelial-derived factors that could serve as potential targets for therapy in diverse human cancers.

  8. Fetal microchimerism in human brain tumors.

    Science.gov (United States)

    Broestl, Lauren; Rubin, Joshua B; Dahiya, Sonika

    2017-09-18

    Sex differences in cancer incidence and survival, including central nervous system tumors, are well documented. Multiple mechanisms contribute to sex differences in health and disease. Recently, the presence of fetal-in-maternal microchimeric cells has been shown to have prognostic significance in breast and colorectal cancers. The frequency and potential role of these cells has not been investigated in brain tumors. We therefore selected two common primary adult brain tumors for this purpose: meningioma, which is sex hormone responsive and has a higher incidence in women, and glioblastoma, which is sex hormone independent and occurs more commonly in men. Quantitative PCR was used to detect the presence of male DNA in tumor samples from women with a positive history of male pregnancy and a diagnosis of either glioblastoma or meningioma. Fluorescence in situ hybridization for the X and Y chromosomes was used to verify the existence of intact male cells within tumor tissue. Fetal microchimerism was found in approximately 80% of glioblastoma cases and 50% of meningioma cases. No correlations were identified between the presence of microchimerism and commonly used clinical or molecular diagnostic features of disease. The impact of fetal microchimeric cells should be evaluated prospectively. © 2017 International Society of Neuropathology.

  9. Photodynamic damage of glial cells in crayfish ventral nerve cord

    Science.gov (United States)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  10. The aging human cochlear nucleus: Changes in the glial fibrillary acidic protein, intracellular calcium regulatory proteins, GABA neurotransmitter and cholinergic receptor.

    Science.gov (United States)

    Sharma, Saroj; Nag, Tapas C; Thakar, Alok; Bhardwaj, Daya N; Roy, Tara Sankar

    2014-03-01

    The human auditory system is highly susceptible to environmental and metabolic insults which further affect the biochemical and physiological milieu of the cells that may contribute to progressive, hearing loss with aging. The cochlear nucleus (CN) is populated by morphologically diverse types of neurons with discrete physiological and neurochemical properties. Between the dorsal and the ventral cochlear nucleus (DCN and VCN), the VCN is further sub-divided into the rostral (rVCN) and caudal (cVCN) sub-divisions. Although, information is available on the age related neurochemical changes in the mammalian CN similar reports on human CN is still sparse. The morphometry and semiquantitative analysis of intensity of expression of glial fibrillary acidic protein (GFAP), calcium binding proteins (calbindin, calretinin and parvalbumin), gamma amino butyric acid (GABA) and nicotinic acetyl choline receptor (nAchR) beta 2 immunostaining were carried out in all three sub-divisions of the human CN from birth to 90 years. There was increased GFAP immunoreactivity in decades 2 and 3 in comparison to decade 1 in the CN. But no change was observed in rVCN from decade 4 onwards, whereas intense staining was also observed in decades 5 and 6 in cVCN and DCN. All three calcium binding proteins were highly expressed in early to middle ages, whereas a significant reduction was found in later decades in the VCN. GABA and nAchR beta 2 expressions were unchanged throughout in all the decades. The middle age may represent a critical period of onset and progression of aging changes in the CN and these alterations may add to the deterioration of hearing responses in the old age. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro.

    Science.gov (United States)

    Rao, Quan; Zuo, Bingfeng; Lu, Zhen; Gao, Xianjun; You, Abin; Wu, Chenxuan; Du, Zhi; Yin, HaiFang

    2016-08-01

    Hepatocellular carcinoma (HCC) remains a global challenge due to high morbidity and mortality rates and poor response to treatment. Immunotherapy, based on introduction of dendritic cells (DCs) activated by tumor cell lysates as antigens ex vivo, shows limited response rates in HCC patients. Here, we demonstrate that tumor cell-derived exosomes (TEXs), displaying an array of HCC antigens, can elicit a stronger immune response than cell lysates in vitro and in vivo. Significant tumor growth inhibition was achieved in ectopic and orthotopic HCC mice treated with TEX-pulsed DCs. Importantly, the tumor immune microenvironment was significantly improved in orthotopic HCC mice treated by TEX-pulsed DCs, demonstrated by increased numbers of T lymphocytes, elevated levels of interferon-γ, and decreased levels of interleukin-10 and tumor growth factor-β in tumor sites. As expected, T cells played an essential role in the TEX-pulsed DC-mediated immune response. Notably, exosomes from HCC cells not only promoted HCC-specific cytolysis but also provided cross-protective effects against pancreatic cancer cells. Moreover, HCC-specific cytolysis, elicited by DCs pulsed with human HepG2 cell-derived exosomes, was observed across different human HCC cells irrespective of human leukocyte antigen types. HCC TEXs can potently carry HCC antigens, trigger a strong DC-mediated immune response, and improve the HCC tumor microenvironment. (Hepatology 2016;64:456-472). © 2016 by the American Association for the Study of Liver Diseases.

  12. Infrared Spectra of Human Breast Tumor Tissue and Experimental Animal Tumors

    Science.gov (United States)

    Tolstorozhev, G. B.; Belkov, M. V.; Skornyakov, I. V.; Pekhnyo, V. I.; Kozachkova, A. N.; Tsarik, H. V.; Kutsenko, I. P.; Sharykina, N. I.; Butra, V. A.

    2015-01-01

    We have used Fourier transform IR spectroscopy methods to conduct comparative studies of human breast tumors and sarcoma 180 tumor grafted into mice. The IR spectral parameters used to identify tumor tissue in mice with the sarcoma 180 strain proved to be identical to the parameters for human breast tissue in cancer. In the presence of a malignant tumor in humans, the most intense C=O vibrational bands in the protein molecules are observed in the interval 1710-1680 cm-1. For a benign tumor, in the IR spectra of breast tissue the intense bands are located in the interval 1670-1650 cm-1. We spectroscopically monitored the diagnosis and the chemotherapy process using the model of sarcoma 180 in mice. As the therapeutic drugs, we used synthesized coordination compounds based on palladium complexes with diphosphonic acid derivatives. We demonstrate the promising potential of palladium complexes with zoledronic acid as an effective cytostatic. In therapy using a palladium complex with zoledronic acid, the effect of tumor growth inhibition is accompanied by a change in its spectral characteristics. The parameters of the IR spectra for tumor tissue after treatment are close to those of the IR spectra for healthy tissue.

  13. Relation between Irofulven (MGI-114) systemic exposure and tumor response in human solid tumor xenografts.

    Science.gov (United States)

    Leggas, Markos; Stewart, Clinton F; Woo, Michael H; Fouladi, Maryam; Cheshire, Pamela J; Peterson, Jennifer K; Friedman, Henry S; Billups, Catherine; Houghton, Peter J

    2002-09-01

    Irofulven is a novel, small molecular weight semisynthetic compound, derived from a family of mushroom toxins known as illudins. This DNA alkylating agent has a chemical structure unlike any other chemotherapeutic agent in clinical use. The molecule is currently being studied in several Phase I, II, and III trials. The objectives of this study were to evaluate the antitumor activity of Irofulven in a panel of 20 pediatric solid tumor xenografts and to relate the Irofulven systemic exposure, defined as area under the concentration time curve, to the antitumor dose associated with tumor regression in the tumor models. Irofulven was administered i.v. daily for 5 days with courses repeated every 21 days for a total of three cycles. The minimum effective dose of Irofulven causing objective regression (> or =50% volume regression) of advanced tumors was determined for each of 19 of 20 independently derived tumor models (12 brain tumors, 4 neuroblastomas, and 4 rhabdomyosarcomas). At the maximum tolerated dose for three cycles of treatment (4.6 mg/kg/day) objective regressions were determined in 14 of 18 tumor lines (78%). However, the dose-response relationship was acute. At 2 mg/kg only 3 of 15 tumors tested demonstrated objective regressions, and in 3 additional tumors volume regressions were not achieved at a higher dose level (3 mg/kg), hence were not additionally tested. After administering the maximum tolerated dose (tolerated for one or two cycles of treatment) of Irofulven, 7 mg/kg, to mice bearing sensitive and resistant human tumors plasma concentration-time profiles were determined. Tumors were highly sensitive to Irofulven, but the systemic exposure required for a significant rate of objective response in this panel of tumors is in excess of that achievable in patients at tolerable doses, using this schedule of drug administration.

  14. [Increase in cell metabolism in normal, diploid human glial cells in stationary cell cultures induced by meclofenoxate].

    Science.gov (United States)

    Ludwig-Festl, M; Gräter, B; Bayreuther, K

    1983-01-01

    Quantitative biochemical studies were undertaken in order to examine the influence of the accumulation of lipofuscin in secondary lysosomes on cell metabolic activities of normal diploid human glia cells in a stationary cell culture system. Glia cells accumulate lipofuscin as a function of the duration of the stationary cultivation in vitro. The accumulation of lipofuscin can be decreased by the long-term treatment with the pharmacon meclofenoxate (centrophenoxine, Helfergin). Concomitant with the reduction of the accumulated lipofuscin, meclofenoxate-treated glia cells show enhanced rates of RNA synthesis, protein synthesis and glucose uptake. Most likely, in meclofenoxate-treated normal diploid human glia cells in vitro, the utilisation of glucose is shifted from glycolysis to the pentose phosphate pathway. The data suggest that the meclofenoxate-induced reduction of lipofuscin accumulation has a positive effect on cell metabolic functions and causes a delay of the cellular aging of the human glia cells in vitro.

  15. Integración en la rutina diagnóstica de la clasificación molecular de los tumores gliales

    OpenAIRE

    Daoud, Lina

    2017-01-01

    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Medicina, Departamento de Anatomía Patológica. Fecha de lectura: 9-03-2017 Los gliomas difusos son la neoplasia primaria cerebral más frecuente, representan el 32% de todos los tumores cerebrales y del sistema nervioso central el 80% de los gliomas malignos primarios, más de la mitad son glioblastomas cuya supervivencia global a los 5 años no supera el 5%. Este trabajo se ha desarrollado con el fin de estudia...

  16. Spatial distribution of human neocortical neurons and glial cells according to sex and age measured by the saucer method

    DEFF Research Database (Denmark)

    Stark, Anette Kirstine; Petersen, A O; Gardi, Jonathan Eyal

    2007-01-01

    primary neurons in the human neocortex (divided into frontal-, temporal-, parietal- and occipital cortex) of young and old subjects free of neurological or psychological disease to test if age and gender has any influence on the cell distribution in human neocortex. Plots of the spatial distribution...... of the densities of all cell types did not show any difference between women and men and no difference between brains of young and old subjects. Thus it is concluded that in this small study the spatial distribution of the densities of the different types of cells in brains from individuals free of neurological...... disorders was independent of age and gender....

  17. Targeted Radionuclide Therapy of Human Tumors

    Directory of Open Access Journals (Sweden)

    Sergey V. Gudkov

    2015-12-01

    Full Text Available Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed.

  18. Enteroglial-derived S100B protein integrates bacteria-induced Toll-like receptor signalling in human enteric glial cells.

    Science.gov (United States)

    Turco, Fabio; Sarnelli, Giovanni; Cirillo, Carla; Palumbo, Ilaria; De Giorgi, Francesco; D'Alessandro, Alessandra; Cammarota, Marcella; Giuliano, Mariateresa; Cuomo, Rosario

    2014-01-01

    Enteric glial cells (EGC) have been suggested to participate in host-bacteria cross-talk, playing a protective role within the gut. The way EGC interact with microorganisms is still poorly understood. We aimed to evaluate whether: EGC participate in host-bacteria interaction; S100B and Toll-like receptor (TLR) signalling converge in a common pathway leading to nitric oxide (NO) production. Primary cultures of human EGC were exposed to pathogenic (enteroinvasive Escherichia coli; EIEC) and probiotic (Lactobacillus paracasei F19) bacteria. Cell activation was assessed by evaluating the expression of cFos and major histocompatibility complex (MHC) class II molecules. TLR expression in EGC was evaluated at both baseline and after exposure to bacteria by real-time PCR, fluorescence microscopy and western blot analysis. S100B expression and NO release from EGC, following exposure to bacteria, were measured in the presence or absence of specific TLR and S100B pathway inhibitors. EIEC activated EGC by inducing the expression of cFos and MHC II. EGC expressed TLR at baseline. Pathogens and probiotics differentially modulated TLR expression in EGC. Pathogens, but not probiotics, significantly induced S100B protein overexpression and NO release from EGC. Pretreatment with specific inhibitors of TLR and S100B pathways abolished bacterial-induced NO release from EGC. Human EGC interact with bacteria and discriminate between pathogens and probiotics via a different TLR expression and NO production. In EGC, NO release is impaired in the presence of specific inhibitors of the TLR and S100B pathways, suggesting the presence of a novel common pathway involving both TLR stimulation and S100B protein upregulation.

  19. A Big Bang model of human colorectal tumor growth.

    Science.gov (United States)

    Sottoriva, Andrea; Kang, Haeyoun; Ma, Zhicheng; Graham, Trevor A; Salomon, Matthew P; Zhao, Junsong; Marjoram, Paul; Siegmund, Kimberly; Press, Michael F; Shibata, Darryl; Curtis, Christina

    2015-03-01

    What happens in early, still undetectable human malignancies is unknown because direct observations are impractical. Here we present and validate a 'Big Bang' model, whereby tumors grow predominantly as a single expansion producing numerous intermixed subclones that are not subject to stringent selection and where both public (clonal) and most detectable private (subclonal) alterations arise early during growth. Genomic profiling of 349 individual glands from 15 colorectal tumors showed an absence of selective sweeps, uniformly high intratumoral heterogeneity (ITH) and subclone mixing in distant regions, as postulated by our model. We also verified the prediction that most detectable ITH originates from early private alterations and not from later clonal expansions, thus exposing the profile of the primordial tumor. Moreover, some tumors appear 'born to be bad', with subclone mixing indicative of early malignant potential. This new model provides a quantitative framework to interpret tumor growth dynamics and the origins of ITH, with important clinical implications.

  20. Phosphorylethanolamine content of human brain tumors.

    Science.gov (United States)

    Kinoshita, Y; Yokota, A; Koga, Y

    1994-12-01

    Phosphorylethanolamine (PEA) is the major component of the phosphomonoester peak detected by phosphorus-31 magnetic resonance spectroscopy, but the absolute concentration has not been determined. This study measured the PEA concentration in biopsy specimens of brain tumors and lobectomized cerebral cortex using high-performance liquid chromatography. The concentration of PEA was 118.5 +/- 10.0 mumol/100 g wet wt in cortex, and was significantly higher in malignant gliomas, metastatic pulmonary adenocarcinoma, and neurinoma. The concentration of PEA was especially high in pituitary adenoma, malignant lymphoma, and medulloblastoma.

  1. SKI knockdown inhibits human melanoma tumor growth in vivo.

    Science.gov (United States)

    Chen, Dahu; Lin, Qiushi; Box, Neil; Roop, Dennis; Ishii, Shunsuke; Matsuzaki, Koichi; Fan, Tao; Hornyak, Thomas J; Reed, Jon A; Stavnezer, Ed; Timchenko, Nikolai A; Medrano, Estela E

    2009-12-01

    The SKI protein represses the TGF-beta tumor suppressor pathway by associating with the Smad transcription factors. SKI is upregulated in human malignant melanoma tumors in a disease-progression manner and its overexpression promotes proliferation and migration of melanoma cells in vitro. The mechanisms by which SKI antagonizes TGF-beta signaling in vivo have not been fully elucidated. Here we show that human melanoma cells in which endogenous SKI expression was knocked down by RNAi produced minimal orthotopic tumor xenograft nodules that displayed low mitotic rate and prominent apoptosis. These minute tumors exhibited critical signatures of active TGF-beta signaling including high levels of nuclear Smad3 and p21(Waf-1), which are not found in the parental melanomas. To understand how SKI promotes tumor growth we used gain- and loss-of-function approaches and found that simultaneously to blocking the TGF-beta-growth inhibitory pathway, SKI promotes the switch of Smad3 from tumor suppression to oncogenesis by favoring phosphorylations of the Smad3 linker region in melanoma cells but not in normal human melanocytes. In this context, SKI is required for preventing TGF-beta-mediated downregulation of the oncogenic protein c-MYC, and for inducing the plasminogen activator inhibitor-1, a mediator of tumor growth and angiogenesis. Together, the results indicate that SKI exploits multiple regulatory levels of the TGF-beta pathway and its deficiency restores TGF-beta tumor suppressor and apoptotic activities in spite of the likely presence of oncogenic mutations in melanoma tumors.

  2. MUC-1 Tumor Antigen Agonist Epitopes for Enhancing T-cell Responses to Human Tumors | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Scientists at NIH have identified 7 new agonist epitopes of the MUC-1 tumor associated antigen. Compared to their native epitope counterparts, peptides reflecting these agonist epitopes have been shown to enhance the generation of human tumor cells, which in turn have a greater ability to kill human tumor cells endogenously expressing the native MUC-1 epitope.

  3. A Positive Feedback Loop between Glial Cells Missing 1 and Human Chorionic Gonadotropin (hCG) Regulates Placental hCGβ Expression and Cell Differentiation

    Science.gov (United States)

    Cheong, Mei-Leng; Wang, Liang-Jie; Chuang, Pei-Yun; Chang, Ching-Wen; Lee, Yun-Shien; Lo, Hsiao-Fan; Tsai, Ming-Song

    2015-01-01

    Human chorionic gonadotropin (hCG) is composed of a common α subunit and a placenta-specific β subunit. Importantly, hCG is highly expressed in the differentiated and multinucleated syncytiotrophoblast, which is formed via trophoblast cell fusion and stimulated by cyclic AMP (cAMP). Although the ubiquitous activating protein 2 (AP2) transcription factors TFAP2A and TFAP2C may regulate hCGβ expression, it remains unclear how cAMP stimulates placenta-specific hCGβ gene expression and trophoblastic differentiation. Here we demonstrated that the placental transcription factor glial cells missing 1 (GCM1) binds to a highly conserved promoter region in all six hCGβ paralogues by chromatin immunoprecipitation-on-chip (ChIP-chip) analyses. We further showed that cAMP stimulates GCM1 and the CBP coactivator to activate the hCGβ promoter through a GCM1-binding site (GBS1), which also constitutes a previously identified AP2 site. Given that TFAP2C may compete with GCM1 for GBS1, cAMP enhances the association between the hCGβ promoter and GCM1 but not TFAP2C. Indeed, the hCG-cAMP-protein kinase A (PKA) signaling pathway also stimulates Ser269 and Ser275 phosphorylation of GCM1, which recruits CBP to mediate GCM1 acetylation and stabilization. Consequently, hCG stimulates the expression of GCM1 target genes, including the fusogenic protein syncytin-1, to promote placental cell fusion. Our study reveals a positive feedback loop between GCM1 and hCG regulating placental hCGβ expression and cell differentiation. PMID:26503785

  4. In vitro non-viral lipofectamine delivery of the gene for glial cell line-derived neurotrophic factor to human umbilical cord blood CD34+ cells.

    Science.gov (United States)

    Yu, Guolong; Borlongan, Cesar V; Ou, Yali; Stahl, Christine E; Yu, SeongJin; Bae, EungKyung; Kaneko, Yuji; Yang, Tianlun; Yuan, Chunjun; Fang, Li

    2010-04-14

    Using a lipofection technique, we explored a non-viral delivery of plasmid DNA encoding a rat pGDNF (glial cell line-derived neurotrophic factor) to CD34+ cells derived from human umbilical cord blood (HUCB) cells in order to obtain cells stably expressing the GDNF gene. The target gene GDNF was amplified from cortex cells of newborn Sprague-Dawley rats by reverse transcriptase polymerase chain reaction (RT-PCR) and inserted into vector pEGFP-N1 to construct the eukaryotic expression vector pEGFP/GDNF. The positive clones were identified by sequencing and endonuclease digestion. The expression of pEGFP/GDNF-transfected HUCB cells CD34+ was examined by ELISA. Single fragment of 640 bp was obtained after the rat GDNF cDNA was amplified by RT-PCR. Two fragments of about 4.3 kb and 640 pb were obtained after digestion of recombinant plasmid pEGFP/GDNF with XhoI/KpnI. The nucleic acid fragment of 640 bp was confirmed to agree well with the sequence of GDNF gene published by GenBank. The expression of GDNF mRNA and the level of GDNF from pEGFP/GDNF-transfected CD34+ cells were increased substantially, compared with pEGFP control plasmid transfected CD34+ cells (P<0.05). Moreover, co-culture of primary rat cells with the pEGFP/GDNF-transfected CD34+ cells promoted enhanced neuroprotection against oxygen-glucose deprivation induced cell dysfunctions. The present results support the use of the non-viral plasmid liposome for therapeutic gene expression for stem cell therapy. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Induction of tumor necrosis factor expression and resistance in a human breast tumor cell line.

    OpenAIRE

    Spriggs, D; Imamura, K; Rodriguez, C; Horiguchi, J; Kufe, D W

    1987-01-01

    Tumor necrosis factor (TNF) is a polypeptide cytokine that is cytotoxic to some but not all tumor cells. The basis for resistance to the cytotoxic effects of this agent remains unclear. We have studied the development of TNF resistance in human ZR-75-1 breast carcinoma cells. ZR-75-1 cells have undetectable levels of TNF RNA and protein. However, TNF transcripts are transiently induced in these cells by exposure to recombinant human TNF. This induction of TNF RNA is associated with production...

  6. Tim-3 expression defines regulatory T cells in human tumors.

    Directory of Open Access Journals (Sweden)

    Jing Yan

    Full Text Available Tim-3, a member of the novel Tim (T cell immunoglobulin and mucin domain family, has been reported to negatively regulate the immune responses against viral infection and had implications for autoimmune disease. However, the nature and role of Tim-3(+ CD4 T cells in human tumors remain largely unknown. In the present study, we characterized Tim-3(+ CD4 T cells in 100 specimens from human hepatocellular, cervical, colorectal and ovarian carcinoma patients. Compared with peripheral blood and nontumor-infiltrating lymphocytes, the lymphocytes isolated from the corresponding tumor tissues of hepatocellular, cervical, colorectal and ovarian carcinoma patients contained significantly greater proportion of Tim-3(+ CD4 T cells. The majority of tumor-derived Tim-3(+ CD4 T cells exhibited an impaired capacity to produce IFN-γ and IL-2, but expressed higher levels of CD25, Foxp3, CTLA-4 and GITR than their Tim-3(- CD4 T cell counterparts. In contrast, most Tim-3(+ CD4 T cells isolated from the paired nontumor tissues and peripheral blood did not express these molecules. Moreover, tumor-derived Tim-3(+ CD4 T cells, but not tumor-derived Tim-3(- CD4 T cells, significantly suppressed the proliferation of autologous CD8(+ T cells in vitro. Notably, multi-color immunofluorescence and confocal microscopy demonstrated that Tim-3(+Foxp3(+CD4(+ cells were preferentially distributed in the tumor nest rather than the peritumoral stroma of hepatocellular carcinoma. Together, our data indicate that Tim-3-expressing CD4 T cells in human tumors could represent the functional regulatory T cells which contribute to the formation of the immune-suppressive tumor micromilieu.

  7. Sensitive detection of viral transcripts in human tumor transcriptomes.

    Directory of Open Access Journals (Sweden)

    Sven-Eric Schelhorn

    Full Text Available In excess of 12% of human cancer incidents have a viral cofactor. Epidemiological studies of idiopathic human cancers indicate that additional tumor viruses remain to be discovered. Recent advances in sequencing technology have enabled systematic screenings of human tumor transcriptomes for viral transcripts. However, technical problems such as low abundances of viral transcripts in large volumes of sequencing data, viral sequence divergence, and homology between viral and human factors significantly confound identification of tumor viruses. We have developed a novel computational approach for detecting viral transcripts in human cancers that takes the aforementioned confounding factors into account and is applicable to a wide variety of viruses and tumors. We apply the approach to conducting the first systematic search for viruses in neuroblastoma, the most common cancer in infancy. The diverse clinical progression of this disease as well as related epidemiological and virological findings are highly suggestive of a pathogenic cofactor. However, a viral etiology of neuroblastoma is currently contested. We mapped 14 transcriptomes of neuroblastoma as well as positive and negative controls to the human and all known viral genomes in order to detect both known and unknown viruses. Analysis of controls, comparisons with related methods, and statistical estimates demonstrate the high sensitivity of our approach. Detailed investigation of putative viral transcripts within neuroblastoma samples did not provide evidence for the existence of any known human viruses. Likewise, de-novo assembly and analysis of chimeric transcripts did not result in expression signatures associated with novel human pathogens. While confounding factors such as sample dilution or viral clearance in progressed tumors may mask viral cofactors in the data, in principle, this is rendered less likely by the high sensitivity of our approach and the number of biological replicates

  8. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  9. Isolevuglandins as a gauge of lipid peroxidation in human tumors.

    Science.gov (United States)

    Yan, H P; Roberts, L J; Davies, S S; Pohlmann, P; Parl, F F; Estes, S; Maeng, J; Parker, B; Mernaugh, R

    2017-05-01

    The cellular production of free radicals or reactive oxygen species (ROS) can lead to protein, lipid or DNA modifications and tumor formation. The cellular lipids undergo structural changes through the actions of enzymes (e.g. cyclooxygenases) or free radicals to form a class of compounds called Isolevuglandins (IsoLGs). The recruitment and continued exposure of tissue to ROS and IsoLGs causes increased cell proliferation, mutagenesis, loss of normal cell function and angiogenesis. The elevated concentration of ROS in cancerous tissues suggests that these mediators play an important role in cancer development. We hypothesized that tumors with elevated ROS levels would similarly possess an increased concentration of IsoLGs when compared with normal tissue. Using D11, an ScFv recombinant antibody specific for IsoLGs, we utilized immunohistochemistry to visualize the presence of IsoLG in human tumors compared to normal adjacent tissue (NAT) to the same tumor. We found that IsoLG concentrations were elevated in human breast, colon, kidney, liver, lung, pancreatic and tongue tumor cells when compared to NAT and believe that IsoLGs can be used as a gauge indicative of lipid peroxidation in tumors. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Tumor Associated Neutrophils in Human Lung Cancer

    Science.gov (United States)

    2016-10-01

    isolated from the samepatientwithNSCLC.Tcellproliferation in responsetoCD3/CD28wasperformedasdescribed inMaterials andMethods. Cell proliferationwas...PMNswere isolated as described inMaterials andMethods and then added to allogeneic MLR in the presence of neutralizing mouse anti-human LOX-1 antibody (10 mg

  11. Prospective clinical trial of a human tumor cloning system.

    Science.gov (United States)

    Von Hoff, D D; Clark, G M; Stogdill, B J; Sarosdy, M F; O'Brien, M T; Casper, J T; Mattox, D E; Page, C P; Cruz, A B; Sandbach, J F

    1983-04-01

    A prospective clinical trial was performed to evaluate the usefulness of a human tumor cloning system for selecting single-agent chemotherapy for patients with advanced cancers. Six hundred four single-agent trials were performed in the 470 patients whose tumors were submitted for drug sensitivity testing. Only 246 of these 604 trials (41%) could be directed by the cloning system results because of inadequate tumor growth and other difficulties. In these 246 prospective trials, there was a 60% true positive and an 85% true negative rate for predicting for response or lack of response of an individual patient's tumor to the single agent. There was also a relationship between the percentage of decrease in survival of tumor colony-forming units and the probability of a clinical response of the patient's tumor to the same drug used in vivo. Despite these encouraging findings, work to improve tumor growth and additional prospective clinical trials of the system are needed before the system can be recommended for routine clinical use.

  12. Comparative expression pathway analysis of human and canine mammary tumors

    Directory of Open Access Journals (Sweden)

    Marconato Laura

    2009-03-01

    Full Text Available Abstract Background Spontaneous tumors in dog have been demonstrated to share many features with their human counterparts, including relevant molecular targets, histological appearance, genetics, biological behavior and response to conventional treatments. Mammary tumors in dog therefore provide an attractive alternative to more classical mouse models, such as transgenics or xenografts, where the tumour is artificially induced. To assess the extent to which dog tumors represent clinically significant human phenotypes, we performed the first genome-wide comparative analysis of transcriptional changes occurring in mammary tumors of the two species, with particular focus on the molecular pathways involved. Results We analyzed human and dog gene expression data derived from both tumor and normal mammary samples. By analyzing the expression levels of about ten thousand dog/human orthologous genes we observed a significant overlap of genes deregulated in the mammary tumor samples, as compared to their normal counterparts. Pathway analysis of gene expression data revealed a great degree of similarity in the perturbation of many cancer-related pathways, including the 'PI3K/AKT', 'KRAS', 'PTEN', 'WNT-beta catenin' and 'MAPK cascade'. Moreover, we show that the transcriptional relationships between different gene signatures observed in human breast cancer are largely maintained in the canine model, suggesting a close interspecies similarity in the network of cancer signalling circuitries. Conclusion Our data confirm and further strengthen the value of the canine mammary cancer model and open up new perspectives for the evaluation of novel cancer therapeutics and the development of prognostic and diagnostic biomarkers to be used in clinical studies.

  13. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    Science.gov (United States)

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  14. Recombinant human endostatin normalizes tumor vasculature and enhances radiation response in xenografted human nasopharyngeal carcinoma models.

    Directory of Open Access Journals (Sweden)

    Fang Peng

    Full Text Available BACKGROUND: Hypoxic tumor cells can reduce the efficacy of radiation. Antiangiogenic therapy may transiently "normalize" the tumor vasculature to make it more efficient for oxygen delivery. The aim of this study is to investigate whether the recombinant human endostatin (endostar can create a "vascular normalization window" to alleviate hypoxia and enhance the inhibitory effects of radiation therapy in human nasopharyngeal carcinoma (NPC in mice. METHODOLOGY/PRINCIPAL FINDINGS: Transient changes in morphology of tumor vasculature and hypoxic tumor cell fraction in response to endostar were detected in mice bearing CNE-2 and 5-8F human NPC xenografts. Various treatment schedules were tested to assess the influence of endostar on the effect of radiation therapy. Several important factors relevant to the angiogenesis were identified through immunohistochemical staining. During endostar treatment, tumor vascularity decreased, while the basement membrane and pericyte coverage associated with endothelial cells increased, which supported the idea of vessel normalization. Hypoxic tumor cell fraction also decreased after the treatment. The transient modulation of tumor physiology caused by endostar improved the effect of radiation treatment compared with other treatment schedules. The expressions of vascular endothelial growth factor (VEGF, matrix metalloproteinase-2 (MMP-2, MMP-9, and MMP-14 decreased, while the level of pigment epithelium-derived factor (PEDF increased. CONCLUSIONS: Endostar normalized tumor vasculature, which alleviated hypoxia and significantly sensitized the function of radiation in anti-tumor in human NPC. The results provide an important experimental basis for combining endostar with radiation therapy in human NPC.

  15. Cytostatic and apoptotic effects of paclitaxel in human ovarian tumors.

    Science.gov (United States)

    Millenbaugh, N J; Gan, Y; Au, J L

    1998-01-01

    The present study evaluated the cytostatic and apoptotic effects of a 24-hr paclitaxel treatment in ovarian tumors. Three-dimensional histocultures of surgical specimens from patients (n = 17) were used. The cytostatic effect was measured by inhibition of 96-hr cumulative DNA precursor incorporation and induction of apoptosis was determined by morphological changes. Paclitaxel produced partial inhibition of DNA precursor incorporation in about 40% of tumors (maximum inhibition of approximately 30%) and induced apoptosis in about 90% of tumors (maximum apoptotic index of approximately 15%). In responsive tumors, maximum cytostatic and apoptotic effects were achieved at < or = 1 microM with no further enhancement by increasing the drug concentration to 10 microM. In individual tumors, the apoptotic effect inversely correlated with cytostatic effect (r2 = 0.27, p = 0.031), and the maximal apoptotic index correlated with the LI for the untreated controls (r2 = 0.38, p < 0.01). More than 95% of apoptotic cells after paclitaxel treatment were labeled with DNA precursor. The incomplete cytostatic and apoptotic effects of paclitaxel and the link between DNA synthesis and apoptosis in ovarian tumors are similar to our previous findings in other human solid tumors. These findings suggest that (a) apoptosis is the major paclitaxel effect in advanced ovarian tumors, (b) tumor sensitivity to drug-induced cytostatic effect is opposite to sensitivity to apoptotic effect, (c) paclitaxel-induced apoptosis increases with increased cell proliferation and is completed after DNA synthesis, and (d) further increasing the dose to elevate plasma concentration beyond 1 microM may not improve treatment outcome.

  16. [Nasal glial heterotopia: Clinical and morphological characteristics].

    Science.gov (United States)

    Bykova, V P; Bakhtin, A A; Polyakov, D P; Yunusov, A S; Daikhes, N A

    2017-01-01

    The paper describes a case of nasal glial heterotopia in a 10-month-old girl with a mixed (intranasal and subcutaneous) localization, which is accompanied by the divergence of the nasal bones. Histological examination supplemented by immunohistochemical reactions with antibodies to vimentin, S100 protein, neuron-specific enolase, as well as Ki-67 and smooth muscle actin confirmed the neural nature of the tumor. Fields of mature astrocytic glia including individual cells with neuronal differentiation were found among the fibrous and fibrovascular tissues. The paper provides a brief overview of the discussed pathology.

  17. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer.

    Directory of Open Access Journals (Sweden)

    Nina P Connolly

    Full Text Available Previously rodent preclinical research in gliomas frequently involved implantation of cell lines such as C6 and 9L into the rat brain. More recently, mouse models have taken over, the genetic manipulability of the mouse allowing the creation of genetically accurate models outweighed the disadvantage of its smaller brain size that limited time allowed for tumor progression. Here we illustrate a method that allows glioma formation in the rat using the replication competent avian-like sarcoma (RCAS virus / tumor virus receptor-A (tv-a transgenic system of post-natal cell type-specific gene transfer. The RCAS/tv-a model has emerged as a particularly versatile and accurate modeling technology by enabling spatial, temporal, and cell type-specific control of individual gene transformations and providing de novo formed glial tumors with distinct molecular subtypes mirroring human GBM. Nestin promoter-driven tv-a (Ntv-a transgenic Sprague-Dawley rat founder lines were created and RCAS PDGFA and p53 shRNA constructs were used to initiate intracranial brain tumor formation. Tumor formation and progression were confirmed and visualized by magnetic resonance imaging (MRI and spectroscopy. The tumors were analyzed using histopathological and immunofluorescent techniques. All experimental animals developed large, heterogeneous brain tumors that closely resembled human GBM. Median survival was 92 days from tumor initiation and 62 days from the first point of tumor visualization on MRI. Each tumor-bearing animal showed time dependent evidence of malignant progression to high-grade glioma by MRI and neurological examination. Post-mortem tumor analysis demonstrated the presence of several key characteristics of human GBM, including high levels of tumor cell proliferation, pseudopalisading necrosis, microvascular proliferation, invasion of tumor cells into surrounding tissues, peri-tumoral reactive astrogliosis, lymphocyte infiltration, presence of numerous tumor

  18. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer.

    Science.gov (United States)

    Connolly, Nina P; Stokum, Jesse A; Schneider, Craig S; Ozawa, Tatsuya; Xu, Su; Galisteo, Rebeca; Castellani, Rudolph J; Kim, Anthony J; Simard, J Marc; Winkles, Jeffrey A; Holland, Eric C; Woodworth, Graeme F

    2017-01-01

    Previously rodent preclinical research in gliomas frequently involved implantation of cell lines such as C6 and 9L into the rat brain. More recently, mouse models have taken over, the genetic manipulability of the mouse allowing the creation of genetically accurate models outweighed the disadvantage of its smaller brain size that limited time allowed for tumor progression. Here we illustrate a method that allows glioma formation in the rat using the replication competent avian-like sarcoma (RCAS) virus / tumor virus receptor-A (tv-a) transgenic system of post-natal cell type-specific gene transfer. The RCAS/tv-a model has emerged as a particularly versatile and accurate modeling technology by enabling spatial, temporal, and cell type-specific control of individual gene transformations and providing de novo formed glial tumors with distinct molecular subtypes mirroring human GBM. Nestin promoter-driven tv-a (Ntv-a) transgenic Sprague-Dawley rat founder lines were created and RCAS PDGFA and p53 shRNA constructs were used to initiate intracranial brain tumor formation. Tumor formation and progression were confirmed and visualized by magnetic resonance imaging (MRI) and spectroscopy. The tumors were analyzed using histopathological and immunofluorescent techniques. All experimental animals developed large, heterogeneous brain tumors that closely resembled human GBM. Median survival was 92 days from tumor initiation and 62 days from the first point of tumor visualization on MRI. Each tumor-bearing animal showed time dependent evidence of malignant progression to high-grade glioma by MRI and neurological examination. Post-mortem tumor analysis demonstrated the presence of several key characteristics of human GBM, including high levels of tumor cell proliferation, pseudopalisading necrosis, microvascular proliferation, invasion of tumor cells into surrounding tissues, peri-tumoral reactive astrogliosis, lymphocyte infiltration, presence of numerous tumor

  19. Humanized mouse xenograft models: narrowing the tumor-microenvironment gap

    OpenAIRE

    Morton, J. Jason; Bird, Gregory; Refaeli, Yosef; Jimeno, Antonio

    2016-01-01

    Cancer research has long been hampered by the limitations of the current model systems. Both cultured cells and mouse xenografts grow in an environment highly dissimilar to that of their originating tumor, frequently resulting in promising treatments that are ultimately clinically ineffective. The development of highly immunodeficient mouse strains into which human immune systems can be engrafted can help bridge this gap. Humanized mice (HM) allow researchers to examine xenograft growth in th...

  20. The production of glial cell line-derived neurotrophic factor by human sertoli cells is substantially reduced in sertoli cell-only testes.

    Science.gov (United States)

    Singh, D; Paduch, D A; Schlegel, P N; Orwig, K E; Mielnik, A; Bolyakov, A; Wright, W W

    2017-05-01

    Do human Sertoli cells in testes that exhibit the Sertoli cell-only (SCO) phenotype produce substantially less glial cell line-derived neurotrophic factor (GDNF) than Sertoli cells in normal testes? In human SCO testes, both the amounts of GDNF mRNA per testis and the concentration of GDNF protein per Sertoli cell are markedly reduced as compared to normal testes. In vivo, GDNF is required to sustain the numbers and function of mouse spermatogonial stem cells (SSCs) and their immediate progeny, transit-amplifying progenitor spermatogonia. GDNF is expressed in the human testis, and the ligand-binding domain of the GDNF receptor, GFRA1, has been detected on human SSCs. The numbers and/or function of these stem cells are markedly reduced in some infertile men, resulting in the SCO histological phenotype. We determined the numbers of human spermatogonia per mm2 of seminiferous tubule surface that express GFRA1 and/or UCHL1, another marker of human SSCs. We measured GFRA1 mRNA expression in order to document the reduced numbers and/or function of SSCs in SCO testes. We quantified GDNF mRNA in testes of humans and mice, a species with GDNF-dependent SSCs. We also compared GDNF mRNA expression in human testes with normal spermatogenesis to that in testes exhibiting the SCO phenotype. As controls, we also measured transcripts encoding two other Sertoli cell products, kit ligand (KITL) and clusterin (CLU). Finally, we compared the amounts of GDNF per Sertoli cell in normal and SCO testes. Normal human testes were obtained from beating heart organ donors. Biopsies of testes from men who were infertile due to maturation arrest or the SCO phenotype were obtained as part of standard care during micro-testicular surgical sperm extraction. Cells expressing GFRA1, UCHL1 or both on whole mounts of normal human seminiferous tubules were identified by immunohistochemistry and confocal microscopy and their numbers were determined by image analysis. Human GDNF mRNA and GFRA1 mRNA were

  1. Identification of novel tumor-associated cell surface sialoglycoproteins in human glioblastoma tumors using quantitative proteomics.

    Directory of Open Access Journals (Sweden)

    François Autelitano

    Full Text Available Glioblastoma multiform (GBM remains clinical indication with significant "unmet medical need". Innovative new therapy to eliminate residual tumor cells and prevent tumor recurrences is critically needed for this deadly disease. A major challenge of GBM research has been the identification of novel molecular therapeutic targets and accurate diagnostic/prognostic biomarkers. Many of the current clinical therapeutic targets of immunotoxins and ligand-directed toxins for high-grade glioma (HGG cells are surface sialylated glycoproteins. Therefore, methods that systematically and quantitatively analyze cell surface sialoglycoproteins in human clinical tumor samples would be useful for the identification of potential diagnostic markers and therapeutic targets for malignant gliomas. In this study, we used the bioorthogonal chemical reporter strategy (BOCR in combination with label-free quantitative mass spectrometry (LFQ-MS to characterize and accurately quantify the individual cell surface sialoproteome in human GBM tissues, in fetal, adult human astrocytes, and in human neural progenitor cells (NPCs. We identified and quantified a total of 843 proteins, including 801 glycoproteins. Among the 843 proteins, 606 (72% are known cell surface or secreted glycoproteins, including 156 CD-antigens, all major classes of cell surface receptor proteins, transporters, and adhesion proteins. Our findings identified several known as well as new cell surface antigens whose expression is predominantly restricted to human GBM tumors as confirmed by microarray transcription profiling, quantitative RT-PCR and immunohistochemical staining. This report presents the comprehensive identification of new biomarkers and therapeutic targets for the treatment of malignant gliomas using quantitative sialoglycoproteomics with clinically relevant, patient derived primary glioma cells.

  2. Humanized Mouse Xenograft Models: Narrowing the Tumor-Microenvironment Gap.

    Science.gov (United States)

    Morton, J Jason; Bird, Gregory; Refaeli, Yosef; Jimeno, Antonio

    2016-11-01

    Cancer research has long been hampered by the limitations of the current model systems. Both cultured cells and mouse xenografts grow in an environment highly dissimilar to that of their originating tumor, frequently resulting in promising treatments that are ultimately clinically ineffective. The development of highly immunodeficient mouse strains into which human immune systems can be engrafted can help bridge this gap. Humanized mice (HM) allow researchers to examine xenograft growth in the context of a human immune system and resultant tumor microenvironment, and recent studies have highlighted the increased similarities in attendant tumor structure, metastasis, and signaling to those features in cancer patients. This setting also facilitates the examination of investigational cancer therapies, including new immunotherapies. This review discusses recent advancements in the generation and application of HM models, their promise in cancer research, and their potential in generating clinically relevant treatments. This review also focuses on current efforts to improve HM models by engineering mouse strains expressing human cytokines or HLA proteins and implanting human bone, liver, and thymus tissue to facilitate immune cell maturation and trafficking. Finally, we discuss how these improvements may help direct future HM model cancer studies. Cancer Res; 76(21); 6153-8. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Decoding NADPH oxidase 4 expression in human tumors

    Directory of Open Access Journals (Sweden)

    Jennifer L. Meitzler

    2017-10-01

    Full Text Available NADPH oxidase 4 (NOX4 is a redox active, membrane-associated protein that contributes to genomic instability, redox signaling, and radiation sensitivity in human cancers based on its capacity to generate H2O2 constitutively. Most studies of NOX4 in malignancy have focused on the evaluation of a small number of tumor cell lines and not on human tumor specimens themselves; furthermore, these studies have often employed immunological tools that have not been well characterized. To determine the prevalence of NOX4 expression across a broad range of solid tumors, we developed a novel monoclonal antibody that recognizes a specific extracellular region of the human NOX4 protein, and that does not cross-react with any of the other six members of the NOX gene family. Evaluation of 20 sets of epithelial tumors revealed, for the first time, high levels of NOX4 expression in carcinomas of the head and neck (15/19 patients, esophagus (12/18 patients, bladder (10/19 patients, ovary (6/17 patients, and prostate (7/19 patients, as well as malignant melanoma (7/15 patients when these tumors were compared to histologically-uninvolved specimens from the same organs. Detection of NOX4 protein upregulation by low levels of TGF-β1 demonstrated the sensitivity of this new probe; and immunofluorescence experiments found that high levels of endogenous NOX4 expression in ovarian cancer cells were only demonstrable associated with perinuclear membranes. These studies suggest that NOX4 expression is upregulated, compared to normal tissues, in a well-defined, and specific group of human carcinomas, and that its expression is localized on intracellular membranes in a fashion that could modulate oxidative DNA damage.

  4. Nitric oxide mediates glial-induced neurodegeneration in Alexander disease.

    Science.gov (United States)

    Wang, Liqun; Hagemann, Tracy L; Kalwa, Hermann; Michel, Thomas; Messing, Albee; Feany, Mel B

    2015-11-26

    Glia play critical roles in maintaining the structure and function of the nervous system; however, the specific contribution that astroglia make to neurodegeneration in human disease states remains largely undefined. Here we use Alexander disease, a serious degenerative neurological disorder caused by astrocyte dysfunction, to identify glial-derived NO as a signalling molecule triggering astrocyte-mediated neuronal degeneration. We further find that NO acts through cGMP signalling in neurons to promote cell death. Glial cells themselves also degenerate, via the DNA damage response and p53. Our findings thus define a specific mechanism for glial-induced non-cell autonomous neuronal cell death, and identify a potential therapeutic target for reducing cellular toxicity in Alexander disease, and possibly other neurodegenerative disorders with glial dysfunction.

  5. Significance of rat mammary tumors for human risk assessment.

    Science.gov (United States)

    Russo, Jose

    2015-02-01

    We have previously indicated that the ideal animal tumor model should mimic the human disease. This means that the investigator should be able to ascertain the influence of host factors on the initiation of tumorigenesis, mimic the susceptibility of tumor response based on age and reproductive history, and determine the response of the tumors induced to chemotherapy. The utilization of experimental models of mammary carcinogenesis in risk assessment requires that the influence of ovarian, pituitary, and placental hormones, among others, as well as overall reproductive events are taken into consideration, since they are important modifiers of the susceptibility of the organ to neoplastic development. Several species, such as rodents, dogs, cats, and monkeys, have been evaluated for these purposes; however, none of them fulfills all the criteria specified previously. Rodents, however, are the most widely used models; therefore, this work will concentrate on discussing the rat rodent model of mammary carcinogenesis. © 2014 by The Author(s).

  6. Absence of human cytomegalovirus infection in childhood brain tumors.

    Science.gov (United States)

    Sardi, Iacopo; Lucchesi, Maurizio; Becciani, Sabrina; Facchini, Ludovica; Guidi, Milena; Buccoliero, Anna Maria; Moriondo, Maria; Baroni, Gianna; Stival, Alessia; Farina, Silvia; Genitori, Lorenzo; de Martino, Maurizio

    2015-01-01

    Human cytomegalovirus (HCMV) is a common human pathogen which induces different clinical manifestations related to the age and the immune conditions of the host. HCMV infection seems to be involved in the pathogenesis of adult glioblastomas. The aim of our study was to detect the presence of HCMV in high grade gliomas and other pediatric brain tumors. This hypothesis might have important therapeutic implications, offering a new target for adjuvant therapies. Among 106 pediatric patients affected by CNS tumors we selected 27 patients with a positive HCMV serology. The serological analysis revealed 7 patients with positive HCMV IGG (≥14 U/mL), whom had also a high HCMV IgG avidity, suggesting a more than 6 months-dated infection. Furthermore, HCMV IGM were positive (≥22 U/mL) in 20 patients. Molecular and immunohistochemical analyses were performed in all the 27 samples. Despite a positive HCMV serology, confirmed by ELISA, no viral DNA was shown at the PCR analysis in the patients' neoplastic cells. At immunohistochemistry, no expression of HCMV antigens was observed in tumoral cells. Our results are in agreement with recent results in adults which did not evidence the presence of HCMV genome in glioblastoma lesions. We did not find any correlation between HCMV infection and pediatric CNS tumors.

  7. Ex Vivo Behaviour of Human Bone Tumor Endothelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Infante, Teresa [SDN-Foundation, Institute of Diagnostic and Nuclear Development, IRCCS, 80143 Naples (Italy); Cesario, Elena [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy); Gallo, Michele; Fazioli, Flavio [Division of Skeletal Muscles Oncology Surgery, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); De Chiara, Annarosaria [Anatomic Pathology Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Tutucci, Cristina; Apice, Gaetano [Medical Oncology of Bone and Soft Sarcoma tissues Unit, National Cancer Institute, Pascale Foundation, 80131 Naples (Italy); Nigris, Filomena de, E-mail: filomena.denigris@unina2.it [Department of Biochemistry and Biophysics, Second University of Naples, 80138 Naples (Italy)

    2013-04-11

    Cooperation between endothelial cells and bone in bone remodelling is well established. In contrast, bone microvasculature supporting the growth of primary tumors and metastasis is poorly understood. Several antiangiogenic agents have recently been undergoing trials, although an extensive body of clinical data and experimental research have proved that angiogenic pathways differ in each tumor type and stage. Here, for the first time, we characterize at the molecular and functional level tumor endothelial cells from human bone sarcomas at different stages of disease and with different histotypes. We selected a CD31{sup +} subpopulation from biopsies that displayed the capability to grow as adherent cell lines without vascular endothelial growth factor (VEGF). Our findings show the existence in human primary bone sarcomas of highly proliferative endothelial cells expressing CD31, CD44, CD105, CD146 and CD90 markers. These cells are committed to develop capillary-like structures and colony formation units, and to produce nitric oxide. We believe that a better understanding of tumor vasculature could be a valid tool for the design of an efficacious antiangiogenic therapy as adjuvant treatment of sarcomas.

  8. The involvement of NF-κB in PDT-induced death of crayfish glial and nerve cells

    Science.gov (United States)

    Berezhnaya, E. V.; Neginskaya, M. A.; Kovaleva, V. D.; Rudkovskii, M. V.; Uzdensky, A. B.

    2015-03-01

    Photodynamic therapy (PDT) is used for selective destruction of cells, in particular, for treatment of brain tumors. However, photodynamic treatment damages not only tumor cells, but also healthy neurons and glial cells. To study the possible role of NF-κB in photodynamic injury of neurons and glial cells, we investigated the combined effect of photodynamic treatment and NF-κB modulators: activator betulinic acid, or inhibitors parthenolide and CAPE on an isolated crayfish stretch receptor consisting of a single neuron surrounded by glial cells. A laser diode (670 nm, 0.4 W/cm2) was used as a light source. The inhibition of NF-κB during PDT increased the duration of neuron firing and glial necrosis and decreased neuron necrosis and glial apoptosis. The activation of NF-κB during PDT increased neuron necrosis and glial apoptosis and decreased glial necrosis. The difference between the effects of NF-κB modulators on photosensitized neurons and glial cells indicates the difference in NF-κB-mediated signaling pathways in these cell types. Thus, NF-κB is involved in PDT-induced shortening of neuron firing, neuronal and glial necrosis, and apoptosis of glial cells.

  9. Cat Mammary Tumors: Genetic Models for the Human Counterpart

    Directory of Open Access Journals (Sweden)

    Filomena Adega

    2016-08-01

    Full Text Available The records are not clear, but Man has been sheltering the cat inside his home for over 12,000 years. The close proximity of this companion animal, however, goes beyond sharing the same roof; it extends to the great similarity found at the cellular and molecular levels. Researchers have found a striking resemblance between subtypes of feline mammary tumors and their human counterparts that goes from the genes to the pathways involved in cancer initiation and progression. Spontaneous cat mammary pre-invasive intraepithelial lesions (hyperplasias and neoplasias and malignant lesions seem to share a wide repertoire of molecular features with their human counterparts. In the present review, we tried to compile all the genetics aspects published (i.e., chromosomal alterations, critical cancer genes and their expression regarding cat mammary tumors, which support the cat as a valuable alternative in vitro cell and animal model (i.e., cat mammary cell lines and the spontaneous tumors, respectively, but also to present a critical point of view of some of the issues that really need to be investigated in future research.

  10. Triparanol suppresses human tumor growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Xinyu [Department of Abdominal Surgical Oncology, Lab of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 (China); Han, Xingpeng [Department of Pathology, Tianjin Chest Hospital, Tianjin 300051 (China); Zhang, Fang [Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang (China); He, Miao [Life Sciences School, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Yi [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Zhi, Xiu-Yi, E-mail: xiuyizhi@yahoo.com.cn [Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Zhao, Hong, E-mail: zhaohong9@sina.com [Department of Abdominal Surgical Oncology, Lab of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021 (China)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Demonstrate Triparanol can block proliferation in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrate Triparanol can induce apoptosis in multiple cancer cells. Black-Right-Pointing-Pointer Proved Triparanol can inhibit Hedgehog signaling in multiple cancer cells. Black-Right-Pointing-Pointer Demonstrated Triparanol can impede tumor growth in vivo in mouse xenograft model. -- Abstract: Despite the improved contemporary multidisciplinary regimens treating cancer, majority of cancer patients still suffer from adverse effects and relapse, therefore posing a significant challenge to uncover more efficacious molecular therapeutics targeting signaling pathways central to tumorigenesis. Here, our study have demonstrated that Triparanol, a cholesterol synthesis inhibitor, can block proliferation and induce apoptosis in multiple human cancer cells including lung, breast, liver, pancreatic, prostate cancer and melanoma cells, and growth inhibition can be rescued by exogenous addition of cholesterol. Remarkably, we have proved Triparanol can significantly repress Hedgehog pathway signaling in these human cancer cells. Furthermore, study in a mouse xenograft model of human lung cancer has validated that Triparanol can impede tumor growth in vivo. We have therefore uncovered Triparanol as potential new cancer therapeutic in treating multiple types of human cancers with deregulated Hedgehog signaling.

  11. The saucor, a new stereological tool for analysing the spatial distributions of cells, exemplified by human neocortical neurons and glial cells

    DEFF Research Database (Denmark)

    Stark, Anette K.; Gundersen, Hans Jørgen Gottlieb; Gardi, Jonathan Eyal

    . Subsequently, smaller counting windows are drawn with random orientation around every primary particle, and the positions of all secondary particles within the windows are recorded. The shape of the counting windows is designed such that a large portion of the volume close to the primary particle is examined......The three dimensional spatial arrangement of particles or cells, for example glial cells, with respect to other particles or cells, for example neurons, can be characterized by the radial number density function, which expresses the number density of so called “secondary” particles as a function...... of their distance to a “primary” particle. The present paper introduces a new stereological method, the saucor, for estimating the radial number density from thick isotropic uniform random (IUR) or vertical uniform random (VUR) sections. In the first estimation step, primary particles are registered in a disector...

  12. The saucor, a new stereological tool for analysing the spatial distributions of cells, exemplified by human neocortical neurons and glial cells

    DEFF Research Database (Denmark)

    Stark, Anette K; Gundersen, Hans Jørgen Gottlieb; Gardi, Jonathan Eyal

    2011-01-01

    counting windows are drawn with random orientation around every primary particle, and the positions of all secondary particles within the windows are recorded. The shape of the counting windows is designed such that a large portion of the volume close to the primary particle is examined and a smaller......The 3D spatial arrangement of particles or cells, for example glial cells, with respect to other particles or cells, for example neurons, can be characterized by the radial number density function, which expresses the number density of so-called ‘secondary’ particles as a function of their distance...... to a ‘primary’ particle. The present paper introduces a new stereological method, the saucor, for estimating the radial number density using thick isotropic uniform random or vertical uniform random sections. In the first estimation step, primary particles are registered in a disector. Subsequently, smaller...

  13. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates.

    Science.gov (United States)

    Malaga, Karlo A; Schroeder, Karen E; Patel, Paras R; Irwin, Zachary T; Thompson, David E; Nicole Bentley, J; Lempka, Scott F; Chestek, Cynthia A; Patil, Parag G

    2016-02-01

    We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 μV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the recording site-tissue interface rather than

  14. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates

    Science.gov (United States)

    Malaga, Karlo A.; Schroeder, Karen E.; Patel, Paras R.; Irwin, Zachary T.; Thompson, David E.; Bentley, J. Nicole; Lempka, Scott F.; Chestek, Cynthia A.; Patil, Parag G.

    2016-02-01

    Objective. We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. Approach. A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. Main results. From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 μV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. Significance. This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the

  15. Label-free electrochemical detection of human methyltransferase from tumors.

    Science.gov (United States)

    Furst, Ariel L; Muren, Natalie B; Hill, Michael G; Barton, Jacqueline K

    2014-10-21

    The role of abnormal DNA methyltransferase activity in the development and progression of cancer is an essential and rapidly growing area of research, both for improved diagnosis and treatment. However, current technologies for the assessment of methyltransferase activity, particularly from crude tumor samples, limit this work because they rely on radioactivity or fluorescence and require bulky instrumentation. Here, we report an electrochemical platform that overcomes these limitations for the label-free detection of human DNA(cytosine-5)-methyltransferase1 (DNMT1) methyltransferase activity, enabling measurements from crude cultured colorectal cancer cell lysates (HCT116) and biopsied tumor tissues. Our multiplexed detection system involving patterning and detection from a secondary electrode array combines low-density DNA monolayer patterning and electrocatalytically amplified DNA charge transport chemistry to measure selectively and sensitively DNMT1 activity within these complex and congested cellular samples. Based on differences in DNMT1 activity measured with this assay, we distinguish colorectal tumor tissue from healthy adjacent tissue, illustrating the effectiveness of this two-electrode platform for clinical applications.

  16. Adoptively transferred human lung tumor specific cytotoxic T cells can control autologous tumor growth and shape tumor phenotype in a SCID mouse xenograft model

    Directory of Open Access Journals (Sweden)

    Ferrone Soldano

    2007-06-01

    Full Text Available Abstract Background The anti-tumor efficacy of human immune effector cells, such as cytolytic T lymphocytes (CTLs, has been difficult to study in lung cancer patients in the clinical setting. Improved experimental models for the study of lung tumor-immune cell interaction as well as for evaluating the efficacy of adoptive transfer of immune effector cells are needed. Methods To address questions related to the in vivo interaction of human lung tumor cells and immune effector cells, we obtained an HLA class I + lung tumor cell line from a fresh surgical specimen, and using the infiltrating immune cells, isolated and characterized tumor antigen-specific, CD8+ CTLs. We then established a SCID mouse-human tumor xenograft model with the tumor cell line and used it to study the function of the autologous CTLs provided via adoptive transfer. Results The tumor antigen specific CTLs isolated from the tumor were found to have an activated memory phenotype and able to kill tumor cells in an antigen specific manner in vitro. Additionally, the tumor antigen-specific CTLs were fully capable of homing to and killing autologous tumors in vivo, and expressing IFN-γ, each in an antigen-dependent manner. A single injection of these CTLs was able to provide significant but temporary control of the growth of autologous tumors in vivo without the need for IL-2. The timing of injection of CTLs played an essential role in the outcome of tumor growth control. Moreover, immunohistochemical analysis of surviving tumor cells following CTL treatment indicated that the surviving tumor cells expressed reduced MHC class I antigens on their surface. Conclusion These studies confirm and extend previous studies and provide additional information regarding the characteristics of CTLs which can be found within a patient's tumor. Moreover, the in vivo model described here provides a unique window for observing events that may also occur in patients undergoing adoptive cellular

  17. Phase transitions in tumor growth: IV relationship between metabolic rate and fractal dimension of human tumor cells

    Science.gov (United States)

    Betancourt-Mar, J. A.; Llanos-Pérez, J. A.; Cocho, G.; Mansilla, R.; Martin, R. R.; Montero, S.; Nieto-Villar, J. M.

    2017-05-01

    By the use of thermodynamics formalism of irreversible processes, complex systems theory and systems biology, it is derived a relationship between the production of entropy per unit time, the fractal dimension and the tumor growth rate for human tumors cells. The thermodynamics framework developed demonstrates that, the dissipation function is a Landau potential and also the Lyapunov function of the dynamical behavior of tumor growth, which indicate the directional character, stability and robustness of the phenomenon. The entropy production rate may be used as a quantitative index of the metastatic potential of tumors. The current theoretical framework will hopefully provide a better understanding of cancer and contribute to improvements in cancer treatment.

  18. Telomere length modulation in human astroglial brain tumors.

    Directory of Open Access Journals (Sweden)

    Domenico La Torre

    Full Text Available BACKGROUND: Telomeres alteration during carcinogenesis and tumor progression has been described in several cancer types. Telomeres length is stabilized by telomerase (h-TERT and controlled by several proteins that protect telomere integrity, such as the Telomere Repeat-binding Factor (TRF 1 and 2 and the tankyrase-poli-ADP-ribose polymerase (TANKs-PARP complex. OBJECTIVE: To investigate telomere dysfunction in astroglial brain tumors we analyzed telomeres length, telomerase activity and the expression of a panel of genes controlling the length and structure of telomeres in tissue samples obtained in vivo from astroglial brain tumors with different grade of malignancy. MATERIALS AND METHODS: Eight Low Grade Astrocytomas (LGA, 11 Anaplastic Astrocytomas (AA and 11 Glioblastoma Multiforme (GBM samples were analyzed. Three samples of normal brain tissue (NBT were used as controls. Telomeres length was assessed through Southern Blotting. Telomerase activity was evaluated by a telomere repeat amplification protocol (TRAP assay. The expression levels of TRF1, TRF2, h-TERT and TANKs-PARP complex were determined through Immunoblotting and RT-PCR. RESULTS: LGA were featured by an up-regulation of TRF1 and 2 and by shorter telomeres. Conversely, AA and GBM were featured by a down-regulation of TRF1 and 2 and an up-regulation of both telomerase and TANKs-PARP complex. CONCLUSIONS: In human astroglial brain tumours, up-regulation of TRF1 and TRF2 occurs in the early stages of carcinogenesis determining telomeres shortening and genomic instability. In a later stage, up-regulation of PARP-TANKs and telomerase activation may occur together with an ADP-ribosylation of TRF1, causing a reduced ability to bind telomeric DNA, telomeres elongation and tumor malignant progression.

  19. Tumor environmental factors glucose deprivation and lactic acidosis induce mitotic chromosomal instability--an implication in aneuploid human tumors.

    Directory of Open Access Journals (Sweden)

    Chunyan Dai

    Full Text Available Mitotic chromosomal instability (CIN plays important roles in tumor progression, but what causes CIN is incompletely understood. In general, tumor CIN arises from abnormal mitosis, which is caused by either intrinsic or extrinsic factors. While intrinsic factors such as mitotic checkpoint genes have been intensively studied, the impact of tumor microenvironmental factors on tumor CIN is largely unknown. We investigate if glucose deprivation and lactic acidosis--two tumor microenvironmental factors--could induce cancer cell CIN. We show that glucose deprivation with lactic acidosis significantly increases CIN in 4T1, MCF-7 and HCT116 scored by micronuclei, or aneuploidy, or abnormal mitosis, potentially via damaging DNA, up-regulating mitotic checkpoint genes, and/or amplifying centrosome. Of note, the feature of CIN induced by glucose deprivation with lactic acidosis is similar to that of aneuploid human tumors. We conclude that tumor environmental factors glucose deprivation and lactic acidosis can induce tumor CIN and propose that they are potentially responsible for human tumor aneuploidy.

  20. Tumor Environmental Factors Glucose Deprivation and Lactic Acidosis Induce Mitotic Chromosomal Instability – An Implication in Aneuploid Human Tumors

    Science.gov (United States)

    Zhu, Chunpeng; Hu, Xun

    2013-01-01

    Mitotic chromosomal instability (CIN) plays important roles in tumor progression, but what causes CIN is incompletely understood. In general, tumor CIN arises from abnormal mitosis, which is caused by either intrinsic or extrinsic factors. While intrinsic factors such as mitotic checkpoint genes have been intensively studied, the impact of tumor microenvironmental factors on tumor CIN is largely unknown. We investigate if glucose deprivation and lactic acidosis – two tumor microenvironmental factors – could induce cancer cell CIN. We show that glucose deprivation with lactic acidosis significantly increases CIN in 4T1, MCF-7 and HCT116 scored by micronuclei, or aneuploidy, or abnormal mitosis, potentially via damaging DNA, up-regulating mitotic checkpoint genes, and/or amplifying centrosome. Of note, the feature of CIN induced by glucose deprivation with lactic acidosis is similar to that of aneuploid human tumors. We conclude that tumor environmental factors glucose deprivation and lactic acidosis can induce tumor CIN and propose that they are potentially responsible for human tumor aneuploidy. PMID:23675453

  1. Immunohistochemical demonstration of glial markers in retinoblastomas

    DEFF Research Database (Denmark)

    Schrøder, H D

    1987-01-01

    Twenty retinoblastomas were studied immunohistochemically in order to visualize glial cells. In the retina, the glial cells in the ganglion cell layer and the Müller cells were GFAP positive, while only the glial cells of the ganglion cell layer expressed S-100 reactivity. In the tumours S-100/GF...... cells reactive for both S-100 and GFAP were demonstrated. The latter findings may represent differentiation in a glial direction in the more mature parts of retinoblastoma....

  2. The humanized anti-human AMHRII mAb 3C23K exerts an anti-tumor activity against human ovarian cancer through tumor-associated macrophages.

    Science.gov (United States)

    Bougherara, Houcine; Némati, Fariba; Nicolas, André; Massonnet, Gérald; Pugnière, Martine; Ngô, Charlotte; Le Frère-Belda, Marie-Aude; Leary, Alexandra; Alexandre, Jérôme; Meseure, Didier; Barret, Jean-Marc; Navarro-Teulon, Isabelle; Pèlegrin, André; Roman-Roman, Sergio; Prost, Jean-François; Donnadieu, Emmanuel; Decaudin, Didier

    2017-11-21

    Müllerian inhibiting substance, also called anti-Müllerian hormone (AMH), inhibits proliferation and induces apoptosis of AMH type II receptor-positive tumor cells, such as human ovarian cancers (OCs). On this basis, a humanized glyco-engineered monoclonal antibody (3C23K) has been developed. The aim of this study was therefore to experimentally confirm the therapeutic potential of 3C23K in human OCs. We first determined by immunofluorescence, immunohistochemistry and cytofluorometry analyses the expression of AMHRII in patient's tumors and found that a majority (60 to 80% depending on the detection technique) of OCs were positive for this marker. We then provided evidence that the tumor stroma of OC is enriched in tumor-associated macrophages and that these cells are responsible for 3C23K-induced killing of tumor cells through ADCP and ADCC mechanisms. In addition, we showed that 3C23K reduced macrophages induced-T cells immunosuppression. Finally, we evaluated the therapeutic efficacy of 3C23K alone and in combination with a carboplatin-paclitaxel chemotherapy in a panel of OC Patient-Derived Xenografts. In those experiments, we showed that 3C23K significantly increased the proportion and the quality of chemotherapy-based in vivo responses. Altogether, our data support the potential interest of AMHRII targeting in human ovarian cancers and the evaluation of 3C23K in further clinical trials.

  3. Pretargeted 177Lu radioimmunotherapy of carcinoembryonic antigen-expressing human colonic tumors in mice

    National Research Council Canada - National Science Library

    Schoffelen, R; Graaf, W.T.A. van der; Franssen, G.M; Sharkey, R.M; Goldenberg, D.M; McBride, W.J; Rossi, E.A; Eek, A; Oyen, W.J.G; Boerman, O.C

    2010-01-01

    ... (CEA)-expressing human tumors. METHODS: To obtain the optimal therapeutic efficacy, several strategies were evaluated to increase the total amount of radioactivity targeted to subcutaneous LS174T colon cancer tumors in BALB/c nude mice...

  4. Functional expression of TWEAK and the receptor Fn14 in human malignant ovarian tumors: possible implication for ovarian tumor intervention.

    Directory of Open Access Journals (Sweden)

    Liying Gu

    Full Text Available The aim of this current study was to investigate the expression of the tumor necrosis factor (TNF-like weak inducer of apoptosis (TWEAK and its receptor fibroblast growth factor-inducible 14 (Fn14 in human malignant ovarian tumors, and test TWEAK's potential role on tumor progression in cell models in-vitro. Using immunohistochemistry (IHC, we found that TWEAK and its receptor Fn14 were expressed in human malignant ovarian tumors, but not in normal ovarian tissues or in borderline/benign epithelial ovarian tumors. High levels of TWEAK expression was detected in the majority of malignant tumors (36 out of 41, 87.80%. Similarly, 35 out of 41 (85.37% malignant ovarian tumors were Fn14 positive. In these malignant ovarian tumors, however, TWEAK/Fn14 expression was not corrected with patients' clinical subtype/stages or pathological features. In vitro, we demonstrated that TWEAK only inhibited ovarian cancer HO-8910PM cell proliferation in combination with tumor necrosis factor-α (TNF-α, whereas either TWEAK or TNF-α alone didn't affect HO-8910PM cell growth. TWEAK promoted TNF-α production in cultured THP-1 macrophages. Meanwhile, conditioned media from TWEAK-activated macrophages inhibited cultured HO-8910PM cell proliferation and invasion. Further, TWEAK increased monocyte chemoattractant protein-1 (MCP-1 production in cultured HO-8910PM cells to possibly recruit macrophages. Our results suggest that TWEAK/Fn14, by activating macrophages, could be ovarian tumor suppressors. The unique expression of TWEAK/Fn14 in malignant tumors indicates that it might be detected as a malignant ovarian tumor marker.

  5. Protein misfolding and oxidative stress promote glial-mediated neurodegeneration in an Alexander disease model.

    Science.gov (United States)

    Wang, Liqun; Colodner, Kenneth J; Feany, Mel B

    2011-02-23

    Although alterations in glial structure and function commonly accompany death of neurons in neurodegenerative diseases, the role glia play in modulating neuronal loss is poorly understood. We have created a model of Alexander disease in Drosophila by expressing disease-linked mutant versions of glial fibrillary acidic protein (GFAP) in fly glia. We find aggregation of mutant human GFAP into inclusions bearing the hallmarks of authentic Rosenthal fibers. We also observe significant toxicity of mutant human GFAP to glia, which is mediated by protein aggregation and oxidative stress. Both protein aggregation and oxidative stress contribute to activation of a robust autophagic response in glia. Toxicity of mutant GFAP to glial cells induces a non-cell-autonomous stress response and subsequent apoptosis in neurons, which is dependent on glial glutamate transport. Our findings thus establish a simple genetic model of Alexander disease and further identify cellular pathways critical for glial-induced neurodegeneration.

  6. Humanized mouse model of ovarian cancer recapitulates patient solid tumor progression, ascites formation, and metastasis.

    Directory of Open Access Journals (Sweden)

    Richard B Bankert

    Full Text Available Ovarian cancer is the most common cause of death from gynecological cancer. Understanding the biology of this disease, particularly how tumor-associated lymphocytes and fibroblasts contribute to the progression and metastasis of the tumor, has been impeded by the lack of a suitable tumor xenograft model. We report a simple and reproducible system in which the tumor and tumor stroma are successfully engrafted into NOD-scid IL2Rγ(null (NSG mice. This is achieved by injecting tumor cell aggregates derived from fresh ovarian tumor biopsy tissues (including tumor cells, and tumor-associated lymphocytes and fibroblasts i.p. into NSG mice. Tumor progression in these mice closely parallels many of the events that are observed in ovarian cancer patients. Tumors establish in the omentum, ovaries, liver, spleen, uterus, and pancreas. Tumor growth is initially very slow and progressive within the peritoneal cavity with an ultimate development of tumor ascites, spontaneous metastasis to the lung, increasing serum and ascites levels of CA125, and the retention of tumor-associated human fibroblasts and lymphocytes that remain functional and responsive to cytokines for prolonged periods. With this model one will be able to determine how fibroblasts and lymphocytes within the tumor microenvironment may contribute to tumor growth and metastasis, and will make it possible to evaluate the efficacy of therapies that are designed to target these cells in the tumor stroma.

  7. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice.

    Science.gov (United States)

    Hu, Zheng; Xia, Jinxing; Fan, Wei; Wargo, Jennifer; Yang, Yong-Guang

    2016-02-09

    A major factor hindering the exploration of adoptive immunotherapy in preclinical settings is the limited availability of tumor-reactive human T cells. Here we developed a humanized mouse model that permits large-scale production of human T cells expressing the engineered melanoma antigen MART-1-specific TCR. Humanized mice, made by transplantation of human fetal thymic tissue and CD34+ cells virally-transduced with HLA class I-restricted melanoma antigen (MART-1)-specific TCR gene, showed efficient development of MART-1-TCR+ human T cells with predominantly CD8+ cells. Importantly, MART-1-TCR+CD8+ T cells developing in these mice were capable of mounting antigen-specific responses in vivo, as evidenced by their proliferation, phenotypic conversion and IFN-γ production following MART-1 peptide immunization. Moreover, these MART-1-TCR+CD8+ T cells mediated efficient killing of melanoma cells in an HLA/antigen-dependent manner. Adoptive transfer of in vitro expanded MART-1-TCR+CD8+ T cells induced potent antitumor responses that were further enhanced by IL-15 treatment in melanoma-bearing recipients. Finally, a short incubation of MART-1-specific T cells with rapamycin acted synergistically with IL-15, leading to significantly improved tumor-free survival in recipients with metastatic melanoma. These data demonstrate the practicality of using humanized mice to produce potentially unlimited source of tumor-specific human T cells for experimental and preclinical exploration of cancer immunotherapy. This study also suggests that pretreatment of tumor-reactive T cells with rapamycin in combination with IL-15 administration may be a novel strategy to improve the efficacy of adoptive T cell therapy.

  8. Glial Tissue Mechanics and Mechanosensing by Glial Cells

    Directory of Open Access Journals (Sweden)

    Katarzyna Pogoda

    2018-02-01

    Full Text Available Understanding the mechanical behavior of human brain is critical to interpret the role of physical stimuli in both normal and pathological processes that occur in CNS tissue, such as development, inflammation, neurodegeneration, aging, and most common brain tumors. Despite clear evidence that mechanical cues influence both normal and transformed brain tissue activity as well as normal and transformed brain cell behavior, little is known about the links between mechanical signals and their biochemical and medical consequences. A multi-level approach from whole organ rheology to single cell mechanics is needed to understand the physical aspects of human brain function and its pathologies. This review summarizes the latest achievements in the field.

  9. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft

    NARCIS (Netherlands)

    Nagengast, Wouter B.; Hospers, Geke A.; Mulder, Nanno H.; de Jong, Johan R.; Hollema, Harry; Brouwers, Adrienne H.; van Dongen, Guns A.; Perk, Lars R.; Lub-de Hooge, Marjolijn N.

    Vascular endothelial growth factor (VEGF), released by tumor cells, is an important growth factor in tumor angiogenesis. The humanized monoclonal antibody bevacizumab blocks VEGF-induced tumor angiogenesis by binding, thereby neutralizing VEGF. Our aim was to develop radiolabeled bevacizumab for

  10. Increased in vitro glial fibrillary acidic protein expression, telomerase activity, and telomere length after productive human immunodeficiency virus-1 infection in murine astrocytes.

    Science.gov (United States)

    Ojeda, Diego; López-Costa, Juan José; Sede, Mariano; López, Ester María; Berria, María Isabel; Quarleri, Jorge

    2014-02-01

    Although HIV-associated neurocognitive disorders (HAND) result from injury and loss of neurons, productive infection routinely takes place in cells of macrophage lineage. In such a complex context, astrocytosis induced by local chemokines/cytokines is one of the hallmarks of HIV neuropathology. Whether this sustained astrocyte activation is able to alter telomere-aging process is unknown. We hypothesized that interaction of HIV with astrocytes may impact astrocyte telomerase activity (TA) and telomere length in a scenario of astrocytic activation measured by expression of glial fibrillary acidic protein (GFAP). To test this hypothesis, cultured murine astrocytes were challenged with pseudotyped HIV/vesicular stomatitis virus (HIV/VSV) to circumvent the absence of viral receptors; and GFAP, telomerase activity, and telomere length were quantified. As an early and transient event after HIV infection, both TA activity and telomere length were significantly augmented (P < 0.001). Later, a strong negative correlation (-0.8616, P < 0.0001) between virus production and telomerase activity was demonstrated. Once HIV production had reached a peak (7 dpi), the TA decreased, showing levels similar to those of noninfected cells. In contrast, the astrocyte became activated, exhibiting significantly increased levels of GFAP expression directly related to the level of HIV/VSV replication (P < 0.0001). Our results suggest that HIV-infected astrocytes exhibit early disturbance in their cellular functions, such as telomerase activity and telomere length, that may attenuate cell proliferation and enhance the astrocyte dysregulation, contributing to HIV neuropathogenesis. Understanding the mechanisms involved in HIV-mediated persistence by altering the telomere-related aging processes could aid in the development of therapeutic modalities for neurological complications of HIV infection. Copyright © 2013 Wiley Periodicals, Inc.

  11. Glial cells and energy balance.

    Science.gov (United States)

    Argente-Arizón, Pilar; Guerra-Cantera, Santiago; Garcia-Segura, Luis Miguel; Argente, Jesús; Chowen, Julie A

    2017-01-01

    The search for new strategies and drugs to abate the current obesity epidemic has led to the intensification of research aimed at understanding the neuroendocrine control of appetite and energy expenditure. This intensified investigation of metabolic control has also included the study of how glial cells participate in this process. Glia, the most abundant cell type in the central nervous system, perform a wide spectrum of functions and are vital for the correct functioning of neurons and neuronal circuits. Current evidence indicates that hypothalamic glia, in particular astrocytes, tanycytes and microglia, are involved in both physiological and pathophysiological mechanisms of appetite and metabolic control, at least in part by regulating the signals reaching metabolic neuronal circuits. Glia transport nutrients, hormones and neurotransmitters; they secrete growth factors, hormones, cytokines and gliotransmitters and are a source of neuroprogenitor cells. These functions are regulated, as glia also respond to numerous hormones and nutrients, with the lack of specific hormonal signaling in hypothalamic astrocytes disrupting metabolic homeostasis. Here, we review some of the more recent advances in the role of glial cells in metabolic control, with a special emphasis on the differences between glial cell responses in males and females. © 2017 Society for Endocrinology.

  12. Modification of the hypoxic fraction of a xenografted human colon tumor by differentiation-inducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Leith, J.T.

    1988-05-18

    Xenografted tumors were produced in nude mice by injection of HCT-15 human colon tumor cells. The hypoxic fractions of control tumors as determined from x-ray survival curves were approximately 18%. Other tumors were treated (every day X 9) with daily injections of N-methylformamide (150 mg/kg) or sodium butyrate (2,000 mg/kg). For both agents, it was found that the hypoxic fractions were less than 0.05% and less than 1.7%, respectively. These data indicate that selected differentiation-inducing agents could be of value for treatment of human solid tumors that contain hypoxic cells.

  13. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    Science.gov (United States)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  14. Mouse x human heterohybridomas as fusion partners with human B cell tumors.

    Science.gov (United States)

    Carroll, W L; Thielemans, K; Dilley, J; Levy, R

    1986-05-01

    Surface idiotype (Id) of B cell malignancies is an excellent tumor-specific marker. We have, however, recently described heterogeneity of tumor Id in some cases. We therefore sought a way to isolate, reliably and efficiently, different species of idiotype from a potentially heterogeneous population. In this report we demonstrate our success using a series of mouse X human heterohybridomas as fusion partners with human B cell tumors. Three lines (K6H6/B5, K6H9/G12, SBC/H20) demonstrated excellent fusion efficiency with 75%-85% of wells plated containing hybrids. Two cell lines, K6H9/G12 and SBC/H20 had a tendency to secrete a single Ig chain (heavy or light chain), whereas the K6H6/B5 cell line secreted whole immunoglobulin (Ig) in greater than 80% of the hybrids. This line secreted significant amounts of Ig (2.73 micrograms/ml/10(6) cells) and was relatively stable in culture. Since this line has such a high fusion efficiency the products of normal B cells admixed with tumor may be recovered, allowing the opportunity of isolating host anti-tumor antibodies. In order to prove that hybrids were derived from the tumor, Southern blot analysis of rearranged DNA was performed in selected cases. Fusions with this line provide the potential for recovering many different species of idiotype in a mixed population. This will facilitate the production of mouse monoclonal anti-idiotype antibodies against many variants and against different idiotopes.

  15. WISP-2 expression in human salivary gland tumors.

    Science.gov (United States)

    Kouzu, Yukinao; Uzawa, Katsuhiro; Kato, Masaki; Higo, Morihiro; Nimura, Yoshinori; Harada, Koji; Numata, Tsutomu; Seki, Naohiko; Sato, Mitsunobu; Tanzawa, Hideki

    2006-04-01

    This study was designed to disclose detailed genetic mechanisms in salivary gland tumors (SGTs) for development of novel independent marker. We constructed an in-house cDNA microarray carrying 2,201 cDNA clones derived from SGT and oral squamous cell carcinoma cDNA libraries. Four cell lines that originated from the SGT-derived cell lines were analyzed using this microarray system. The genes identified by our microarray system were further analyzed at the mRNA or protein expression level in other types of human cancer cell lines and clinical samples (ten normal salivary glands [NSGs], eleven pleomorphic adenomas, ten adenoid cystic carcinomas and three adenocarcinomas). Two up-regulated genes and six down-regulated genes were identified in common when compared with the control RNA. Of the up-regulated genes, WISP-2, which plays an important role in breast carcinogenesis, was selected for further analyses. We found a higher expression of the WISP-2 gene in the SGT-derived cell lines compared with other types of human cancer cell lines. Furthermore, WISP-2 mRNA and protein expression levels in NSGs were significantly higher than those in SGTs. These results suggest that WISP-2 could be a reliable independent marker and that down-regulation or loss of the WISP-2 gene may be associated with the development of SGTs.

  16. Glial Processes at the Drosophila Larval Neuromuscular Junction Match Synaptic Growth

    Science.gov (United States)

    Brink, Deidre L.; Gilbert, Mary; Xie, Xiaojun; Petley-Ragan, Lindsay; Auld, Vanessa J.

    2012-01-01

    Glia are integral participants in synaptic physiology, remodeling and maturation from blowflies to humans, yet how glial structure is coordinated with synaptic growth is unknown. To investigate the dynamics of glial development at the Drosophila larval neuromuscular junction (NMJ), we developed a live imaging system to establish the relationship between glia, neuronal boutons, and the muscle subsynaptic reticulum. Using this system we observed processes from two classes of peripheral glia present at the NMJ. Processes from the subperineurial glia formed a blood-nerve barrier around the axon proximal to the first bouton. Processes from the perineurial glial extended beyond the end of the blood-nerve barrier into the NMJ where they contacted synapses and extended across non-synaptic muscle. Growth of the glial processes was coordinated with NMJ growth and synaptic activity. Increasing synaptic size through elevated temperature or the highwire mutation increased the extent of glial processes at the NMJ and conversely blocking synaptic activity and size decreased the presence and size of glial processes. We found that elevated temperature was required during embryogenesis in order to increase glial expansion at the nmj. Therefore, in our live imaging system, glial processes at the NMJ are likely indirectly regulated by synaptic changes to ensure the coordinated growth of all components of the tripartite larval NMJ. PMID:22666403

  17. Glial processes at the Drosophila larval neuromuscular junction match synaptic growth.

    Directory of Open Access Journals (Sweden)

    Deidre L Brink

    Full Text Available Glia are integral participants in synaptic physiology, remodeling and maturation from blowflies to humans, yet how glial structure is coordinated with synaptic growth is unknown. To investigate the dynamics of glial development at the Drosophila larval neuromuscular junction (NMJ, we developed a live imaging system to establish the relationship between glia, neuronal boutons, and the muscle subsynaptic reticulum. Using this system we observed processes from two classes of peripheral glia present at the NMJ. Processes from the subperineurial glia formed a blood-nerve barrier around the axon proximal to the first bouton. Processes from the perineurial glial extended beyond the end of the blood-nerve barrier into the NMJ where they contacted synapses and extended across non-synaptic muscle. Growth of the glial processes was coordinated with NMJ growth and synaptic activity. Increasing synaptic size through elevated temperature or the highwire mutation increased the extent of glial processes at the NMJ and conversely blocking synaptic activity and size decreased the presence and size of glial processes. We found that elevated temperature was required during embryogenesis in order to increase glial expansion at the nmj. Therefore, in our live imaging system, glial processes at the NMJ are likely indirectly regulated by synaptic changes to ensure the coordinated growth of all components of the tripartite larval NMJ.

  18. Tropomyosin-1, A Putative Tumor-Suppressor and a Biomarker of Human Breast Cancer

    Science.gov (United States)

    2004-10-01

    cDNA. Lobular carcinoma - 2 A polyclonal pan-TM antibody that recognizes multiple TM Phyllodes tumor - 1 Not determined from the initial pathology...AD Award Number: DAMD17-98-1-8162 TITLE: Tropomyosin-1, A Putative Tumor -Suppressor and a Biomarker of Human Breast Cancer PRINCIPAL INVESTIGATOR...4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Tropomyosin-l, A Putative Tumor -Suppressor and a Biomarker DAMD17-98-1-8162 of Human Breast Cancer 6. A UTHOR

  19. Human breast adipose tissue: characterization of factors that change during tumor progression in human breast cancer.

    Science.gov (United States)

    Fletcher, Sabrina Johanna; Sacca, Paula Alejandra; Pistone-Creydt, Mercedes; Coló, Federico Andrés; Serra, María Florencia; Santino, Flavia Eliana; Sasso, Corina Verónica; Lopez-Fontana, Constanza Matilde; Carón, Rubén Walter; Calvo, Juan Carlos; Pistone-Creydt, Virginia

    2017-02-07

    Adipose microenvironment is involved in signaling pathways that influence breast cancer. We aim to characterize factors that are modified: 1) in tumor and non tumor human breast epithelial cell lines when incubated with conditioned media (CMs) from human breast cancer adipose tissue explants (hATT) or normal breast adipose tissue explants (hATN); 2) in hATN-CMs vs hATT-CMs; 3) in the tumor associated adipocytes vs. non tumor associated adipocytes. We used hATN or hATT- CMs on tumor and non-tumor breast cancer cell lines. We evaluated changes in versican, CD44, ADAMTS1 and Adipo R1 expression on cell lines or in the different CMs. In addition we evaluated changes in the morphology and expression of these factors in slices of the different adipose tissues. The statistical significance between different experimental conditions was evaluated by one-way ANOVA. Tukey's post-hoc tests were performed within each individual treatment. hATT-CMs increase versican, CD44, ADAMTS1 and Adipo R1 expression in breast cancer epithelial cells. Furthermore, hATT-CMs present higher levels of versican expression compared to hATN-CMs. In addition, we observed a loss of effect in cellular migration when we pre-incubated hATT-CMs with chondroitinase ABC, which cleaves GAGs chains bound to the versican core protein, thus losing the ability to bind to CD44. Adipocytes associated with the invasive front are reduced in size compared to adipocytes that are farther away. Also, hATT adipocytes express significantly higher amounts of versican, CD44 and Adipo R1, and significantly lower amounts of adiponectin and perilipin, unlike hATN adipocytes. We conclude that hATT secrete a different set of proteins compared to hATN. Furthermore, versican, a proteoglycan that is overexpressed in hATT-CMs compared to hATN-CMs, might be involved in the tumorogenic behavior observed in both cell lines employed. In addition, we may conclude that adipocytes from the tumor microenvironment show a less differentiated

  20. Expression of CD44 splice variants in human primary brain tumors

    NARCIS (Netherlands)

    Kaaijk, P.; Troost, D.; Morsink, F.; Keehnen, R. M.; Leenstra, S.; Bosch, D. A.; Pals, S. T.

    1995-01-01

    Expression of CD44, particularly of certain splice variants, has been linked to tumor progression and metastatic potential in a number of different animal and human cancers. Although differential expression of CD44 standard epitopes (CD44s) in human brain tumors has been reported, the expression of

  1. Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines

    NARCIS (Netherlands)

    van Bree, Chris; Castro Kreder, Natasja; Loves, Willem J. P.; Franken, Nicolaas A. P.; Peters, Godefridus J.; Haveman, Jaap

    2002-01-01

    Purpose: To determine cross-resistance to anti-tumor treatments in 2',2'difluorodeoxycytidine (dFdC, gemcitabine)-resistant human tumor cells. Methods and Materials: Human lung carcinoma cells SW-1573 (SWp) were made resistant to dFdC (SWg). Sensitivity to cisplatin (cDDP), paclitaxel,

  2. Salinomycin efficiency assessment in non-tumor (HB4a) and tumor (MCF-7) human breast cells.

    Science.gov (United States)

    Niwa, Andressa Megumi; D Epiro, Gláucia Fernanda Rocha; Marques, Lilian Areal; Semprebon, Simone Cristine; Sartori, Daniele; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2016-06-01

    The search for anticancer drugs has led researchers to study salinomycin, an ionophore antibiotic that selectively destroys cancer stem cells. In this study, salinomycin was assessed in two human cell lines, a breast adenocarcinoma (MCF-7) and a non-tumor breast cell line (HB4a), to verify its selective action against tumor cells. Real-time assessment of cell proliferation showed that HB4a cells are more resistant to salinomycin than MCF-7 tumor cell line, and these data were confirmed in a cytotoxicity assay. The half maximal inhibitory concentration (IC50) values show the increased sensitivity of MCF-7 cells to salinomycin. In the comet assay, only MCF-7 cells showed the induction of DNA damage. Flow cytometric analysis showed that cell death by apoptosis/necrosis was only induced in the MCF-7 cells. The increased expression of GADD45A and CDKN1A genes was observed in all cell lines. Decreased expression of CCNA2 and CCNB1 genes occurred only in tumor cells, suggesting G2/M cell cycle arrest. Consequently, cell death was activated in tumor cells through strong inhibition of the antiapoptotic genes BCL-2, BCL-XL, and BIRC5 genes in MCF-7 cells. These data demonstrate the selectivity of salinomycin in killing human mammary tumor cells. The cell death observed only in MCF-7 tumor cells was confirmed by gene expression analysis, where there was downregulation of antiapoptotic genes. These data contribute to clarifying the mechanism of action of salinomycin as a promising antitumor drug and, for the first time, we observed the higher resistance of HB4a non-tumor breast cells to salinomycin.

  3. Aerobic Glycolysis as a Marker of Tumor Aggressiveness: Preliminary Data in High Grade Human Brain Tumors

    Directory of Open Access Journals (Sweden)

    Andrei G. Vlassenko

    2015-01-01

    Full Text Available Objectives. Glucose metabolism outside of oxidative phosphorylation, or aerobic glycolysis (AG, is a hallmark of active cancer cells that is not directly measured with standard 18F-fluorodeoxyglucose (FDG positron emission tomography (PET. In this study, we characterized tumor regions with elevated AG defined based on PET measurements of glucose and oxygen metabolism. Methods. Fourteen individuals with high-grade brain tumors underwent structural MR scans and PET measurements of cerebral blood flow (CBF, oxygen (CMRO2 and glucose (CMRGlu metabolism, and AG, using 15O-labeled CO, O2 and H2O, and FDG, and were compared to a normative cohort of 20 age-matched individuals. Results. Elevated AG was observed in most high-grade brain tumors and it was associated with decreased CMRO2 and CBF, but not with significant changes in CMRGlu. Elevated AG was a dramatic and early sign of tumor growth associated with decreased survival. AG changes associated with tumor growth were differentiated from the effects of nonneoplastic processes such as epileptic seizures. Conclusions. Our findings demonstrate that high-grade brain tumors exhibit elevated AG as a marker of tumor growth and aggressiveness. AG may detect areas of active tumor growth that are not evident on conventional FDG PET.

  4. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  5. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging.

    Directory of Open Access Journals (Sweden)

    David Fecher

    Full Text Available Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and -testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future.

  6. Constitutive phosphorylation of Shc proteins in human tumors

    DEFF Research Database (Denmark)

    Pelicci, G; Lanfrancone, L; Salcini, A E

    1995-01-01

    cells. In tumor cells with known TK gene alterations Shc proteins were constitutively phosphorylated and complexed with the activated TK. No constitutive Shc phosphorylation was found in primary cell cultures and normal tissues. In 14 of 27 tumor cell lines with no reported TK alterations, Shc proteins...... activated TKs and that the analysis of Shc phosphorylation allow the identification of tumors with constitutive TK activation....

  7. Study of Arachidonic Acid Pathway in Human Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Masahide Matsuyama

    2009-12-01

    Full Text Available Recent epidemiological studies and animal experiments have demonstrated that nonsteroidal anti-inflammatory drugs (NSAIDs reduce the incidence of colorectal carcinoma. Cyclooxygenase (COX is the principal target of NSAIDs. COX is the first oxidase in the process of prostaglandin production from arachidonic acid. COX enzyme may be involved in the initiation and/or the promotion of tumorigenesis due to NSAIDs inhibition of COX. Lipoxygenase (LOX is also an initial enzyme in the pathway for producing leukotrienes from arachidonic acid. Similar to COX, LOX enzyme may also be involved in the initiation and/or promotion of tumorigenesis. Peroxisome proliferator activator-receptor (PPAR-γ is a ligand-activated transcriptional factor belonging to the steroid receptor superfamily. PPAR-γ plays a role in both adipocyte differentiation and tumorigenesis. PPAR-γ is one target for cell growth modulation of NSAIDs. In this review, we report the expression of COX-2, LOX and PPAR-γ in human bladder tumor tissues as well as the effects of COX-2 and LOX inhibitors and PPAR-γ ligand.

  8. Study of Arachidonic Acid Pathway in Human Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Masahide Matsuyama

    2009-01-01

    Full Text Available Recent epidemiological studies and animal experiments have demonstrated that nonsteroidal anti-inflammatory drugs (NSAIDs reduce the incidence of colorectal carcinoma. Cyclooxygenase (COX is the principal target of NSAIDs. COX is the first oxidase in the process of prostaglandin production from arachidonic acid. COX enzyme may be involved in the initiation and/or the promotion of tumorigenesis due to NSAIDs inhibition of COX. Lipoxygenase (LOX is also an initial enzyme in the pathway for producing leukotrienes from arachidonic acid. Similar to COX, LOX enzyme may also be involved in the initiation and/or promotion of tumorigenesis. Peroxisome proliferator activator-receptor (PPAR-γ is a ligand-activated transcriptional factor belonging to the steroid receptor superfamily. PPAR-γ plays a role in both adipocyte differentiation and tumorigenesis. PPAR-γ is one target for cell growth modulation of NSAIDs. In this review, we report the expression of COX-2, LOX and PPAR-γ in human bladder tumor tissues as well as the effects of COX-2 and LOX inhibitors and PPAR-γ ligand.

  9. The expression of Egfl7 in human normal tissues and epithelial tumors.

    Science.gov (United States)

    Fan, Chun; Yang, Lian-Yue; Wu, Fan; Tao, Yi-Ming; Liu, Lin-Sen; Zhang, Jin-Fan; He, Ya-Ning; Tang, Li-Li; Chen, Guo-Dong; Guo, Lei

    2013-04-23

    To investigate the expression of Egfl7 in normal adult human tissues and human epithelial tumors.
 RT-PCR and Western blot were employed to detect Egfl7 expression in normal adult human tissues and 10 human epithelial tumors including hepatocellular carcinoma (HCC), lung cancer, breast cancer, prostate cancer, colorectal cancer, gastric cancer, esophageal cancer, malignant glioma, ovarian cancer and renal cancer. Immunohistochemistry and cytoimmunofluorescence were subsequently used to determine the localization of Egfl7 in human epithelial tumor tissues and cell lines. ELISA was also carried out to examine the serum Egfl7 levels in cancer patients. In addition, correlations between Egfl7 expression and clinicopathological features as well as prognosis of HCC and breast cancer were also analyzed on the basis of immunohistochemistry results.
 Egfl7 was differentially expressed in 19 adult human normal tissues and was overexpressed in all 10 human epithelial tumor tissues. The serum Egfl7 level was also significantly elevated in cancer patients. The increased Egfl7 expression in HCC correlated with vein invasion, absence of capsule formation, multiple tumor nodes and poor prognosis. Similarly, upregulation of Egfl7 in breast cancer correlated strongly with TNM stage, lymphatic metastasis, estrogen receptor positivity, Her2 positivity and poor prognosis. 
 Egfl7 is significantly upregulated in human epithelial tumor tissues, suggesting Egfl7 to be a potential biomarker for human epithelial tumors, especially HCC and breast cancer.

  10. INTERNALIZATION OF ANTIMICROBIAL PEPTIDE ACIPENSIN 1 INTO HUMAN TUMOR CELLS

    Directory of Open Access Journals (Sweden)

    E. S. Umnyakova

    2016-01-01

    Full Text Available Search for new compounds providing delivery of drugs into infected or neoplastic cells, is an important direction of biomedical research. Cell-penetrating peptides are among those compounds, due to their ability to translocate through membranes of eukaryotic cells, serving as potential carriers of various therapeutic agents to the target cells. The aim of present work was to investigate the ability of acipensin 1, an antimicrobial peptide of innate immune system, for in vitro penetration into human tumor cells. Acipensin 1 is a cationic peptide that we have previously isolated from leukocytes of the Russian sturgeon, Acipenser gueldenstaedtii. Capability of acipensin 1 to enter the human erytroleukemia K-562 cells has been investigated for the first time. A biotechnological procedure for producing a recombinant acipensin 1 peptide has been developed. The obtained peptide was conjugated with a fluorescent probe BODIPY FL. By means of confocal microscopy, we have shown that the tagged acipensin 1 rapidly enters into K-562 cells and can be detected in the intracellular space within 5 min after its addition to the cell culture. Using flow cytometry technique, penetration kinetics of the labeled peptide into K-562 cells (at nontoxic micromolar concentrations has been studied. We have observed a rapid internalization of the peptide to the target cells, thus confirming the results of microscopic analysis, i.e, the labeled acipensin was detectable in K-562 cells as soon as wihin 2-3 seconds after its addition to the incubation medium. The maximum of fluorescence was reached within a period of approx. 45 seconds, with further “plateau” at the terms of >100 seconds following cell stimulation with the test compound. These data support the concept, that the antimicrobial peptides of innate immunity system possess the features of cell-penetrating peptides, and allow us to consider the studied sturgeon peptide a promising template for development of new

  11. Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages

    NARCIS (Netherlands)

    Klimp, AH; Hollema, H; Kempinga, C; van der Zee, AGJ; de Vries, EGE; Daemen, T

    2001-01-01

    This study investigates whether and to what extent cyclooxygenase type-2 (COX-2) and inducible nitric oxide-synthase (iNOS), both known to have an immunosuppressive effect, are expressed in human ovarian tumors. Because COX-2 and iNOS can be expressed by activated macrophages, the presence of

  12. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy.

    Science.gov (United States)

    Ji, Minbiao; Lewis, Spencer; Camelo-Piragua, Sandra; Ramkissoon, Shakti H; Snuderl, Matija; Venneti, Sriram; Fisher-Hubbard, Amanda; Garrard, Mia; Fu, Dan; Wang, Anthony C; Heth, Jason A; Maher, Cormac O; Sanai, Nader; Johnson, Timothy D; Freudiger, Christian W; Sagher, Oren; Xie, Xiaoliang Sunney; Orringer, Daniel A

    2015-10-14

    Differentiating tumor from normal brain is a major barrier to achieving optimal outcome in brain tumor surgery. New imaging techniques for visualizing tumor margins during surgery are needed to improve surgical results. We recently demonstrated the ability of stimulated Raman scattering (SRS) microscopy, a nondestructive, label-free optical method, to reveal glioma infiltration in animal models. We show that SRS reveals human brain tumor infiltration in fresh, unprocessed surgical specimens from 22 neurosurgical patients. SRS detects tumor infiltration in near-perfect agreement with standard hematoxylin and eosin light microscopy (κ = 0.86). The unique chemical contrast specific to SRS microscopy enables tumor detection by revealing quantifiable alterations in tissue cellularity, axonal density, and protein/lipid ratio in tumor-infiltrated tissues. To ensure that SRS microscopic data can be easily used in brain tumor surgery, without the need for expert interpretation, we created a classifier based on cellularity, axonal density, and protein/lipid ratio in SRS images capable of detecting tumor infiltration with 97.5% sensitivity and 98.5% specificity. Quantitative SRS microscopy detects the spread of tumor cells, even in brain tissue surrounding a tumor that appears grossly normal. By accurately revealing tumor infiltration, quantitative SRS microscopy holds potential for improving the accuracy of brain tumor surgery. Copyright © 2015, American Association for the Advancement of Science.

  13. Plasmin Activation of Glial Cells through Protease-Activated Receptor 1

    Directory of Open Access Journals (Sweden)

    André R. Greenidge

    2013-01-01

    Full Text Available The objective of this study was to determine whether plasmin could induce morphological changes in human glial cells via PAR1. Human glioblastoma A172 cells were cultured in the presence of plasmin or the PAR1 specific activating hexapeptide, SFLLRN. Cells were monitored by flow cytometry to detect proteolytic activation of PAR1 receptor. Morphological changes were recorded by photomicroscopy and apoptosis was measured by annexinV staining. Plasmin cleaved the PAR1 receptor on glial cells at 5 minutes (P=0.02. After 30 minutes, cellular processes had begun to retract from the basal substratum and by 4 hours glial cells had become detached. Similar results were obtained by generating plasmin de novo from plasminogen. Morphological transformation was blocked by plasmin inhibitors aprotinin or epsilon-aminocaproic acid (P=0.03. Cell viability was unimpaired during early morphological changes, but by 24 hours following plasmin treatment 22% of glial cells were apoptotic. PAR1 activating peptide SFLLRN (but not inactive isomer FSLLRN promoted analogous glial cell detachment (P=0.03, proving the role for PAR1 in this process. This study has identified a plasmin/PAR1 axis of glial cell activation, linked to changes in glial cell morophology. This adds to our understanding of pathophysiological disease mechanisms of plasmin and the plasminogen system in neuroinjury.

  14. Specific tools for targeting and expression in Müller glial cells

    Directory of Open Access Journals (Sweden)

    Lucie P Pellissier

    2014-01-01

    Full Text Available Despite their physiological roles, Müller glial cells are involved directly or indirectly in retinal disease pathogenesis and are an interesting target for therapeutic approaches for retinal diseases and regeneration such as CRB1 inherited retinal dystrophies. In this study, we characterized the efficiency of adeno-associated virus (AAV capsid variants and different promoters to drive protein expression in Müller glial cells. ShH10Y and AAV9 were the most powerful capsids to infect mouse Müller glial cells. Retinaldehyde-binding protein 1 (RLBP1 promoter was the most powerful promoter to transduce Müller glial cells. ShH10Y capsids and RLBP1 promoter targeted human Müller glial cells in vitro. We also developed and tested smaller promoters to express the large CRB1 gene via AAV vectors. Minimal cytomegalovirus (CMV promoter allowed expression of full-length CRB1 protein in Müller glial cells. In summary, ShH10Y and AAV9 capsids, and RLBP1 or minimal CMV promoters are of interest as specific tools to target and express in mouse or human Müller glial cells.

  15. Somatostatin receptors in human adrenal gland tumors--immunohistochemical study.

    OpenAIRE

    Tomasz Stepień; Hanna Pisarek; Robert Kubiak; Marek Pawlikowski

    2008-01-01

    Somatostatin receptors subtypes (SSTR 1-5) were demonstrated in surgically obtained adrenal gland tumors by means of immunohistochemistry (IHC). Results of the present study demonstrate that somatostatin receptors are expressed in adrenal tumors in a varied manner which is specific in each case. It provides different diagnostic and therapeutic possibilities.

  16. Somatostatin receptors in human adrenal gland tumors--immunohistochemical study.

    Directory of Open Access Journals (Sweden)

    Tomasz Stepień

    2008-12-01

    Full Text Available Somatostatin receptors subtypes (SSTR 1-5 were demonstrated in surgically obtained adrenal gland tumors by means of immunohistochemistry (IHC. Results of the present study demonstrate that somatostatin receptors are expressed in adrenal tumors in a varied manner which is specific in each case. It provides different diagnostic and therapeutic possibilities.

  17. P53 MUTATIONS IN HUMAN LUNG-TUMORS

    NARCIS (Netherlands)

    MILLER, CW; ASLO, A; KOK, K; YOKOTA, J; BUYS, CHCM; TERADA, M; KOEFFLER, HP; Simon, K.

    1992-01-01

    Mutation of one p53 allele and loss of the normal p53 allele [loss of heterozygosity (LOH)] occur in many tumors including lung cancers. These alterations apparently contribute to development of cancer by interfering with the tumor suppressor activity of p53. We directly sequenced amplified DNA in

  18. Assessment of Glial Scar, Tissue Sparing, Behavioral Recovery and Axonal Regeneration following Acute Transplantation of Genetically Modified Human Umbilical Cord Blood Cells in a Rat Model of Spinal Cord Contusion.

    Science.gov (United States)

    Mukhamedshina, Yana O; Garanina, Ekaterina E; Masgutova, Galina A; Galieva, Luisa R; Sanatova, Elvira R; Chelyshev, Yurii A; Rizvanov, Albert A

    2016-01-01

    This study investigated the potential for protective effects of human umbilical cord blood mononuclear cells (UCB-MCs) genetically modified with the VEGF and GNDF genes on contusion spinal cord injury (SCI) in rats. An adenoviral vector was constructed for targeted delivery of VEGF and GDNF to UCB-MCs. Using a rat contusion SCI model we examined the efficacy of the construct on tissue sparing, glial scar severity, the extent of axonal regeneration, recovery of motor function, and analyzed the expression of the recombinant genes VEGF and GNDF in vitro and in vivo. Transplantation of UCB-MCs transduced with adenoviral vectors expressing VEGF and GDNF at the site of SCI induced tissue sparing, behavioral recovery and axonal regeneration comparing to the other constructs tested. The adenovirus encoding VEGF and GDNF for transduction of UCB-MCs was shown to be an effective and stable vehicle for these cells in vivo following the transplantation into the contused spinal cord. Our results show that a gene delivery using UCB-MCs-expressing VEGF and GNDF genes improved both structural and functional parameters after SCI. Further histological and behavioral studies, especially at later time points, in animals with SCI after transplantation of genetically modified UCB-MCs (overexpressing VEGF and GDNF genes) will provide additional insight into therapeutic potential of such cells.

  19. Steroid Tumor Environment in Male and Female Mice Model of Canine and Human Inflammatory Breast Cancer

    Directory of Open Access Journals (Sweden)

    Sara Caceres

    2016-01-01

    Full Text Available Canine inflammatory mammary cancer (IMC shares clinical and histopathological characteristics with human inflammatory breast cancer (IBC and has been proposed as a good model for studying the human disease. The aim of this study was to evaluate the capacity of female and male mice to reproduce IMC and IBC tumors and identify the hormonal tumor environment. To perform the study sixty 6–8-week-old male and female mice were inoculated subcutaneously with a suspension of 106 IPC-366 and SUM149 cells. Tumors and serum were collected and used for hormonal analysis. Results revealed that IPC-366 reproduced tumors in 90% of males inoculated after 2 weeks compared with 100% of females that reproduced tumor at the same time. SUM149 reproduced tumors in 40% of males instead of 80% of females that reproduced tumors after 4 weeks. Both cell lines produce distant metastasis in lungs being higher than the metastatic rates in females. EIA analysis revealed that male tumors had higher T and SO4E1 concentrations compared to female tumors. Serum steroid levels were lower than those found in tumors. In conclusion, IBC and IMC male mouse model is useful as a tool for IBC research and those circulating estrogens and intratumoral hormonal levels are crucial in the development and progression of tumors.

  20. Human xenografts are not rejected in a naturally occurring immunodeficient porcine line: a human tumor model in pigs.

    Science.gov (United States)

    Basel, Matthew T; Balivada, Sivasai; Beck, Amanda P; Kerrigan, Maureen A; Pyle, Marla M; Dekkers, Jack C M; Wyatt, Carol R; Rowland, Robert R R; Anderson, David E; Bossmann, Stefan H; Troyer, Deryl L

    2012-04-01

    Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments; however, therapies tested in such models often fail to translate into clinical settings. Therefore, a better preclinical model for cancer treatment testing is needed. Here we demonstrate that an immunodeficient line of pigs can host and support the growth of xenografted human tumors and has the potential to be an effective animal model for cancer therapy. Wild-type and immunodeficient pigs were injected subcutaneously in the left ear with human melanoma cells (A375SM cells) and in the right ear with human pancreatic carcinoma cells (PANC-1). All immunodeficient pigs developed tumors that were verified by histology and immunohistochemistry. Nonaffected littermates did not develop tumors. Immunodeficient pigs, which do not reject xenografted human tumors, have the potential to become an extremely useful animal model for cancer therapy because of their similarity in size, anatomy, and physiology to humans.

  1. Salmon and Human Thrombin Differentially Regulate Radicular Pain, Glial-Induced Inflammation and Spinal Neuronal Excitability through Protease-Activated Receptor-1

    Science.gov (United States)

    Smith, Jenell R.; Syre, Peter P.; Oake, Shaina A.; Nicholson, Kristen J.; Weisshaar, Christine L.; Cruz, Katrina; Bucki, Robert; Baumann, Bethany C.; Janmey, Paul A.; Winkelstein, Beth A.

    2013-01-01

    Chronic neck pain is a major problem with common causes including disc herniation and spondylosis that compress the spinal nerve roots. Cervical nerve root compression in the rat produces sustained behavioral hypersensitivity, due in part to the early upregulation of pro-inflammatory cytokines, the sustained hyperexcitability of neurons in the spinal cord and degeneration in the injured nerve root. Through its activation of the protease-activated receptor-1 (PAR1), mammalian thrombin can enhance pain and inflammation; yet at lower concentrations it is also capable of transiently attenuating pain which suggests that PAR1 activation rate may affect pain maintenance. Interestingly, salmon-derived fibrin, which contains salmon thrombin, attenuates nerve root-induced pain and inflammation, but the mechanisms of action leading to its analgesia are unknown. This study evaluates the effects of salmon thrombin on nerve root-mediated pain, axonal degeneration in the root, spinal neuronal hyperexcitability and inflammation compared to its human counterpart in the context of their enzymatic capabilities towards coagulation substrates and PAR1. Salmon thrombin significantly reduces behavioral sensitivity, preserves neuronal myelination, reduces macrophage infiltration in the injured nerve root and significantly decreases spinal neuronal hyperexcitability after painful root compression in the rat; whereas human thrombin has no effect. Unlike salmon thrombin, human thrombin upregulates the transcription of IL-1β and TNF-α and the secretion of IL-6 by cortical cultures. Salmon and human thrombins cleave human fibrinogen-derived peptides and form clots with fibrinogen with similar enzymatic activities, but salmon thrombin retains a higher enzymatic activity towards coagulation substrates in the presence of antithrombin III and hirudin compared to human thrombin. Conversely, salmon thrombin activates a PAR1-derived peptide more weakly than human thrombin. These results are the

  2. Antitumor activity of irofulven against human ovarian cancer cell lines, human tumor colony-forming units, and xenografts.

    Science.gov (United States)

    van Laar, E S; Izbicka, E; Weitman, S; Medina-Gundrum, L; Macdonald, J R; Waters, S J

    2004-01-01

    The objective of this study was to investigate the cytotoxic activity of irofulven (HMAF, MGI 114), a unique chemotherapeutic agent currently under clinical investigation, in various preclinical models of ovarian cancer. Antiproliferative effects of irofulven in ovarian cancer cell lines and ovarian tumor specimens were characterized in vitro using sulforhodamine B and human tumor colony-forming assays, respectively. Irofulven demonstrated marked activity against a panel of ovarian tumor cell lines, including IGROV1, OVCAR-3, OVCAR-4, OVCAR-5, OVCAR-8, and SK-OV-3, all of which exhibit various drug resistance mechanisms. In human tumor cloning assays, irofulven inhibited colony formation in surgically derived ovarian tumors at concentrations as low as 0.001 micro g /ml and indicated superior activity in comparison with paclitaxel when tested against the same tumor specimens. The antitumor activity of irofulven compared to that of paclitaxel was also examined using the SK-OV-3 xenograft model. In mice bearing subcutaneously implanted SK-OV-3 tumors, treatment with paclitaxel failed to inhibit tumor growth; whereas mice treated with maximum tolerated doses of irofulven had a 25% partial shrinkage rate, and the remaining animals had a mean tumor growth inhibition of 82%. The potent activity of irofulven against ovarian tumors in vitro and in vivo supports the evaluation of its clinical activity in ovarian cancer.

  3. Antibody directed against human YKL-40 increases tumor volume in a human melanoma xenograft model in scid mice

    DEFF Research Database (Denmark)

    Salamon, Johannes; Hoffmann, Tatjana; Elies, Eva

    2014-01-01

    Induced overexpression of the secretory protein YKL-40 promotes tumor growth in xenograft experiments. We investigated if targeting YKL-40 with a monoclonal antibody could inhibit tumor growth. YKL-40 expressing human melanoma cells (LOX) were injected subcutenously in Balb/c scid mice. Animals...

  4. Phenotypic characterization of drug resistance and tumor initiating cancer stem cells from human bone tumor osteosarcoma cell line OS-77

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2014-08-01

    Full Text Available The cancer stem cell theory suggest that presence of small subpopulation of cancer stem cells are the major implication in the cancer treatment and also responsible for tumor recurrence. Based on Hoechst 33342 dye exclusion technique, we have identified about 3.3% of cancer stem like side population (SP cells from human osteosarcoma OS-77 cell line whose prevalence is significantly reduced to 0.3% after treatment with verapamil. The sphere formation assay revealed that osteosarcoma SP cells are highly capable to form tumor spheres (sarcospheres. Further by immunocytochemistry and RT-PCR, we show that OS-77 SP cells have enhanced expression of stem cell surface markers such as CD44, Nanog and ATP-binding cassette (ABC transporter gene (ABCG2 which contributes to self-renewal and drug resistance, respectively. Our findings help to designing a novel therapeutic drug which could effectively target the cancer stem cells and prevent the tumor relapse.

  5. HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.

    Science.gov (United States)

    Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina

    2009-03-01

    HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

  6. Radial glial cells play a key role in echinoderm neural regeneration

    Science.gov (United States)

    2013-01-01

    Background Unlike the mammalian central nervous system (CNS), the CNS of echinoderms is capable of fast and efficient regeneration following injury and constitutes one of the most promising model systems that can provide important insights into evolution of the cellular and molecular events involved in neural repair in deuterostomes. So far, the cellular mechanisms of neural regeneration in echinoderm remained obscure. In this study we show that radial glial cells are the main source of new cells in the regenerating radial nerve cord in these animals. Results We demonstrate that radial glial cells of the sea cucumber Holothuria glaberrima react to injury by dedifferentiation. Both glia and neurons undergo programmed cell death in the lesioned CNS, but it is the dedifferentiated glial subpopulation in the vicinity of the injury that accounts for the vast majority of cell divisions. Glial outgrowth leads to formation of a tubular scaffold at the growing tip, which is later populated by neural elements. Most importantly, radial glial cells themselves give rise to new neurons. At least some of the newly produced neurons survive for more than 4 months and express neuronal markers typical of the mature echinoderm CNS. Conclusions A hypothesis is formulated that CNS regeneration via activation of radial glial cells may represent a common capacity of the Deuterostomia, which is not invoked spontaneously in higher vertebrates, whose adult CNS does not retain radial glial cells. Potential implications for biomedical research aimed at finding the cure for human CNS injuries are discussed. PMID:23597108

  7. Engagement of the Mannose Receptor by Tumoral Mucins Activates an Immune Suppressive Phenotype in Human Tumor-Associated Macrophages

    Science.gov (United States)

    Allavena, P.; Chieppa, M.; Bianchi, G.; Solinas, G.; Fabbri, M.; Laskarin, G.; Mantovani, A.

    2010-01-01

    Tumor-Associated Macrophages (TAMs) are abundantly present in the stroma of solid tumors and modulate several important biological processes, such as neoangiogenesis, cancer cell proliferation and invasion, and suppression of adaptive immune responses. Myeloid C-type lectin receptors (CLRs) constitute a large family of transmembrane carbohydrate-binding receptors that recognize pathogens as well as endogenous glycoproteins. Several lines of evidence demonstrate that some CLRs can inhibit the immune response. In this study we investigated TAM-associated molecules potentially involved in their immune suppressive activity. We found that TAMs isolated from human ovarian carcinoma samples predominantly express the CLRs Dectin-1, MDL-1, MGL, DCIR, and most abundantly the Mannose Receptor (MR). Components of carcinomatous ascites and purified tumoral mucins (CA125 and TAG-72) bound the MR and induced its internalization. MR engagement by tumoral mucins and by an agonist anti-MR antibody modulated cytokine production by TAM toward an immune-suppressive profile: increase of IL-10, absence of IL-12, and decrease of the Th1-attracting chemokine CCL3. This study highlights that tumoral mucin-mediated ligation of the MR on infiltrating TAM may contribute to their immune suppressive phenotype. PMID:21331365

  8. Absence of tumor growth stimulation in a panel of 16 human tumor cell lines by mistletoe extracts in vitro.

    Science.gov (United States)

    Maier, Gerhard; Fiebig, Heinz-Herbert

    2002-04-01

    Extracts of Viscum album (mistletoe) are widely used as complementary cancer therapies in Europe. The mistletoe lectins have been identified as the main active principle of mistletoe extracts. They have been shown to exhibit cytotoxic effects as well as immunomodulatory activities. The latter is exemplified by induction of cytokine secretion and increased activity of natural killer cells. Recent reports, however, indicated possible tumor growth stimulation by mistletoe extracts. Therefore, the three aqueous mistletoe extracts (Iscador M special, Iscador Qu special and Iscador P) were evaluated for antiproliferative and/or stimulatory effects in a panel of 16 human tumor cell lines in vitro using a cellular proliferation assay. The results show no evidence of stimulation of tumor growth by any of the three Iscador preparations, comprising central nervous system, gastric, non-small cell lung, mammary, prostate, renal and uterine cancer cell lines, as well as cell lines from hematological malignancies and melanomas. On the contrary, Iscador preparations containing a high lectin concentration (Iscador M special and Iscador Qu special) showed antitumor activity in the mammary cancer cell line MAXF 401NL at the 15 microg/ml dose level with a more than 70% growth inhibition compared to untreated control cells. In addition, a slight antitumor activity (growth inhibition 30-70%) was found in three tumor cell lines for Iscador M special and in seven tumor cell lines for Iscador Qu special, respectively. Iscador P, which contains no mistletoe lectin I, showed no antiproliferative activity.

  9. GT198 Expression Defines Mutant Tumor Stroma in Human Breast Cancer.

    Science.gov (United States)

    Yang, Zheqiong; Peng, Min; Cheng, Liang; Jones, Kimya; Maihle, Nita J; Mivechi, Nahid F; Ko, Lan

    2016-05-01

    Human breast cancer precursor cells remain to be elucidated. Using breast cancer gene product GT198 (PSMC3IP; alias TBPIP or Hop2) as a unique marker, we revealed the cellular identities of GT198 mutant cells in human breast tumor stroma. GT198 is a steroid hormone receptor coactivator and a crucial factor in DNA repair. Germline mutations in GT198 are present in breast and ovarian cancer families. Somatic mutations in GT198 are present in ovarian tumor stromal cells. Herein, we show that human breast tumor stromal cells carry GT198 somatic mutations and express cytoplasmic GT198 protein. GT198(+) stromal cells share vascular smooth muscle cell origin, including myoepithelial cells, adipocytes, capillary pericytes, and stromal fibroblasts. Frequent GT198 mutations are associated with GT198(+) tumor stroma but not with GT198(-) tumor cells. GT198(+) progenitor cells are mostly capillary pericytes. When tested in cultured cells, mutant GT198 induces vascular endothelial growth factor promoter, and potentially promotes angiogenesis and adipogenesis. Our results suggest that multiple lineages of breast tumor stromal cells are mutated in GT198. These findings imply the presence of mutant progenitors, whereas their descendants, carrying the same GT198 mutations, are collectively responsible for forming breast tumor microenvironment. GT198 expression is, therefore, a specific marker of mutant breast tumor stroma and has the potential to facilitate diagnosis and targeted treatment of human breast cancer. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Cholesterol masks membrane glycosphingolipid tumor-associated antigens to reduce their immunodetection in human cancer biopsies.

    Science.gov (United States)

    Novak, Anton; Binnington, Beth; Ngan, Bo; Chadwick, Karen; Fleshner, Neil; Lingwood, Clifford A

    2013-11-01

    Glycosphingolipids (GSLs) are neoplastic and normal/cancer stem cell markers and GSL/cholesterol-containing membrane rafts are increased in cancer cell plasma membranes. We define a novel means by which cancer cells can restrict tumor-associated GSL immunoreactivity. The GSL-cholesterol complex reorients GSL carbohydrate to a membrane parallel, rather than perpendicular conformation, largely unavailable for antibody recognition. Methyl-β-cyclodextrin cholesterol extraction of all primary human tumor frozen sections tested (ovarian, testicular, neuroblastoma, prostate, breast, colon, pheochromocytoma and ganglioneuroma), unmasked previously "invisible" membrane GSLs for immunodetection. In ovarian carcinoma, globotriaosyl ceramide (Gb3), the GSL receptor for the antineoplastic Escherichia coli-derived verotoxin, was increased throughout the tumor. In colon carcinoma, Gb3 detection was vastly increased within the neovasculature and perivascular stroma. In tumors considered Gb3 negative (neuroblastoma, Leydig testicular tumor and pheochromocytoma), neovascular Gb3 was unmasked. Tumor-associated GSL stage-specific embryonic antigen (SSEA)-1, SSEA-3, SSEA-4 and globoH were unmasked according to tumor: SSEA-1 in prostate/colon; SSEA-3 in prostate; SSEA-4 in pheochromocytoma/some colon tumors; globoH in prostate/some colon tumors. In colon, anti-SSEA-1 was tumor cell specific. Within the GSL-cholesterol complex, filipin-cholesterol binding was also reduced. These results may relate to the ill-defined benefit of statins on cancer prognosis, for example, prostate carcinoma. We found novel anti-tumor GSL antibodies circulating in 3/5 statin-treated, but not untreated, prostate cancer patients. Lowering tumor membrane cholesterol may permit immune recognition of otherwise unavailable tumor-associated GSL carbohydrate, for more effective immunosurveillance and active/passive immunotherapy. Our results show standard immunodetection of tumor GSLs significantly under assesses

  11. Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors

    NARCIS (Netherlands)

    Pedroza-Gonzalez, A.; Zhou, G.; Vargas-Mendez, E.; Boor, P.P.; Mancham, S.; Verhoef, C.; Polak, W.G.; Grunhagen, D.; Pan, Q.; Janssen, H.; Garcia-Romo, G.S.; Biermann, K.; Tjwa, E.T.; Ijzermans, J.N.M.; Kwekkeboom, J.; Sprengers, D.

    2015-01-01

    CD4+ type 1 T regulatory (Tr1) cells have a crucial role in inducing tolerance. Immune regulation by these cells is mainly mediated through the secretion of high amounts of IL-10. Several studies have suggested that this regulatory population may be involved in tumor-mediated immune-suppression.

  12. Characterization of acylfulvene histiospecific toxicity in human tumor cell lines.

    Science.gov (United States)

    Kelner, M J; McMorris, T C; Montoya, M A; Estes, L; Uglik, S F; Rutherford, M; Samson, K M; Bagnell, R D; Taetle, R

    1998-01-01

    Acylfulvene derivatives demonstrate marked efficacy in xenograft carcinoma models as compared with the parent illudin compounds. To elucidate the increased therapeutic efficacy of acylfulvene analogs, we compared them with the illudin compounds in terms of their in vitro cytotoxicity, cellular accumulation and DNA incorporation. The cytotoxicity of various acylfulvene analogs was tested in vitro against a variety of tumor cell lines. Radiolabelled acylfulvene analog was prepared and used for cellular accumulation and DNA incorporation studies. The prototype acylfulvene analog retained selective histiospecific toxicity towards myeloid leukemia and various carcinoma cell lines. In vitro killing of tumor cells by acylfulvene required up to a 30-fold increase in molecules per cell, as compared with illudin S, indicating that acylfulvene was less toxic on a cellular level. At equitoxic concentrations, acylfulvene incorporation into genomic tumor cell DNA was equivalent to illudin S suggesting that cellular metabolism has a role in acylfulvene cytotoxicity. Analysis of cellular accumulation of acylfulvene into tumor cells revealed a markedly higher Vmax for tumor cells, and a lower Vd for diffusion accumulation into other cells. The combination of higher Vmax and lower Vd may explain the increased in vivo efficacy of acylfulvene.

  13. Effects of charged particles on human tumor cells

    Directory of Open Access Journals (Sweden)

    Kathryn D Held

    2016-02-01

    Full Text Available The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of Relative Biological Effectiveness (RBE for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions and importance of fractionation, including use of hypofractionation, with charged particles.

  14. Roles of F-box proteins in human digestive system tumors (Review).

    Science.gov (United States)

    Gong, Jian; Lv, Liang; Huo, Jirong

    2014-12-01

    F-box proteins (FBPs), the substrate-recognition subunit of E3 ubiquitin (Ub) ligase, are the important components of Ub proteasome system (UPS). FBPs are involved in multiple cellular processes through ubiquitylation and subsequent degradation of their target proteins. Many studies have described the roles of FBPs in human cancers. Digestive system tumors account for a large proportion of all the tumors, and their mortality is very high. This review summarizes for the first time the roles of FBPs in digestive system tumorige-nesis and tumor progression, aiming at finding new routes for the rational design of targeted anticancer therapies in digestive system tumors.

  15. A Role for T-Lymphocytes in Human Breast Cancer and in Canine Mammary Tumors

    Directory of Open Access Journals (Sweden)

    Maria Isabel Carvalho

    2014-01-01

    Full Text Available Chronic inflammation in the tumor microenvironment has a prominent role in carcinogenesis and benefits the proliferation and survival of malignant cells, promoting angiogenesis and metastasis. Mammary tumors are frequently infiltrated by a heterogeneous population of immune cells where T-lymphocytes have a great importance. Interestingly, similar inflammatory cell infiltrates, cytokine and chemokine expression in humans and canine mammary tumors were recently described. However, in both species, despite all the scientific evidences that appoint for a significant role of T-lymphocytes, a definitive conclusion concerning the effectiveness of T-cell dependent immune mechanisms has not been achieved yet. In the present review, we describe similarities between human breast cancer and canine mammary tumors regarding tumor T-lymphocyte infiltration, such as relationship of TILs and mammary tumors malignancy, association of ratio CD4+/ CD8+ T-cells with low survival rates, promotion of tumor progression by Th2 cells actions, and association of great amounts of Treg cells with poor prognostic factors. This apparent parallelism together with the fact that dogs develop spontaneous tumors in the context of a natural immune system highlight the dog as a possible useful biological model for studies in human breast cancer immunology.

  16. Comprehensive allelotype and genetic anaysis of 466 human nervous system tumors

    DEFF Research Database (Denmark)

    von Deimling, A; Fimmers, R; Schmidt, M C

    2000-01-01

    Brain tumors pose a particular challenge to molecular oncology. Many different tumor entities develop in the nervous system and some of them appear to follow distinct pathogenic routes. Molecular genetic alterations have increasingly been reported in nervous system neoplasms. However, a considera...... may provide a valuable framework for future studies to delineate molecular pathways in many types of human central nervous system tumors.......Brain tumors pose a particular challenge to molecular oncology. Many different tumor entities develop in the nervous system and some of them appear to follow distinct pathogenic routes. Molecular genetic alterations have increasingly been reported in nervous system neoplasms. However......, a considerable number of affected genes remain to be identified. We present here a comprehensive allelotype analysis of 466 nervous system tumors based on loss of heterozygosity (LOH) studies with 129 microsatellite markers that span the genome. Specific alterations of the EGFR, CDK4, CDKN2A, TP53, DMBT1, NF2...

  17. Oncolytic Virotherapy Synergism with Signaling Inhibitors: Rapamycin Increases Myxoma Virus Tropism for Human Tumor Cells▿

    OpenAIRE

    Stanford, Marianne M.; Barrett, John W.; Nazarian, Steven H.; Werden, Steven; McFadden, Grant

    2006-01-01

    Myxoma virus is a rabbit-specific poxvirus pathogen that also exhibits a unique tropism for human tumor cells and is dramatically oncolytic for human cancer xenografts. Most tumor cell lines tested are permissive for myxoma infection in a fashion intimately tied to the activation state of Akt kinase. A host range factor of myxoma virus, M-T5, directly interacts with Akt and mediates myxoma virus tumor cell tropism. mTOR is a regulator of cell growth and metabolism downstream of Akt and is spe...

  18. Human saliva as route of inter-human infection for mouse mammary tumor virus.

    Science.gov (United States)

    Mazzanti, Chiara Maria; Lessi, Francesca; Armogida, Ivana; Zavaglia, Katia; Franceschi, Sara; Al Hamad, Mohammad; Roncella, Manuela; Ghilli, Matteo; Boldrini, Antonio; Aretini, Paolo; Fanelli, Giovanni; Marchetti, Ivo; Scatena, Cristian; Hochman, Jacob; Naccarato, Antonio Giuseppe; Bevilacqua, Generoso

    2015-07-30

    Etiology of human breast cancer is unknown, whereas the Mouse Mammary Tumor Virus (MMTV) is recognized as the etiologic agent of mouse mammary carcinoma. Moreover, this experimental model contributed substantially to our understanding of many biological aspects of the human disease. Several data strongly suggest a causative role of MMTV in humans, such as the presence of viral sequences in a high percentage of infiltrating breast carcinoma and in its preinvasive lesions, the production of viral particles in primary cultures of breast cancer, the ability of the virus to infect cells in culture. This paper demonstrates that MMTV is present in human saliva and salivary glands. MMTV presence was investigated by fluorescent PCR, RT-PCR, FISH, immunohistochemistry, and whole transcriptome analysis. Saliva was obtained from newborns, children, adults, and breast cancer patients. The saliva of newborns is MMTV-free, whereas MMTV is present in saliva of children (26.66%), healthy adults (10.60%), and breast cancer patients (57.14% as DNA and 33.9% as RNA). MMTV is also present in 8.10% of salivary glands. RNA-seq analysis performed on saliva of a breast cancer patient demonstrates a high expression of MMTV RNA in comparison to negative controls. The possibility of a contamination by murine DNA was excluded by murine mtDNA and IAP LTR PCR. These findings confirm the presence of MMTV in humans, strongly suggest saliva as route in inter-human infection, and support the hypothesis of a viral origin for human breast carcinoma.

  19. Criteria to define HLA haplotype loss in human solid tumors

    NARCIS (Netherlands)

    Ramal, LM; van der Zwan, AW; Collado, A; Lopez-Nevot, MA; Tilanus, M; Garrido, F

    Short tandem repeat (STR) markers are currently used to define loss of heterozygosity (LOH) of genes and chromosomes in tumors. Chromosome 6 and chromosome 15 STR markers are applied to define loss of HLA and related genes (e.g. TAP and beta(2)m) The number of STR identified in the HLA region is

  20. Analysis of molecular changes during human melanocytic tumor progression

    NARCIS (Netherlands)

    Wit, Nicole Johanna Wilhelmina de

    2005-01-01

    Melanoma is one of the most aggressive types of cancer, due to its potency to disseminate early in tumor progression. The incidence is still rising, even though the rate of change has leveled off in the last decade. As melanoma cells are relatively insensitive to classical systemic therapies, like

  1. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish.

    Science.gov (United States)

    Mokalled, Mayssa H; Patra, Chinmoy; Dickson, Amy L; Endo, Toyokazu; Stainier, Didier Y R; Poss, Kenneth D

    2016-11-04

    Unlike mammals, zebrafish efficiently regenerate functional nervous system tissue after major spinal cord injury. Whereas glial scarring presents a roadblock for mammalian spinal cord repair, glial cells in zebrafish form a bridge across severed spinal cord tissue and facilitate regeneration. We performed a genome-wide profiling screen for secreted factors that are up-regulated during zebrafish spinal cord regeneration. We found that connective tissue growth factor a (ctgfa) is induced in and around glial cells that participate in initial bridging events. Mutations in ctgfa disrupted spinal cord repair, and transgenic ctgfa overexpression or local delivery of human CTGF recombinant protein accelerated bridging and functional regeneration. Our study reveals that CTGF is necessary and sufficient to stimulate glial bridging and natural spinal cord regeneration. Copyright © 2016, American Association for the Advancement of Science.

  2. Over-expression of HOX-8, the human homologue of the mouse Hox-8 homeobox gene, in human tumors.

    Science.gov (United States)

    Suzuki, M; Tanaka, M; Iwase, T; Naito, Y; Sugimura, H; Kino, I

    1993-07-15

    A human ovarian yolk sac tumor cDNA library was screened for homeobox genes with an oligonucleotide probe under low stringent condition. Three homeobox genes were isolated, two of which were identified as HHO.c1 and HB24. The third was highly homologous with the mouse Hox-8 gene and was designated as HOX-8. Studies on RNAs from 25 human tumor tissues and cell lines showed that the profile of HOX-8 expression was different from those of HHO.c1 and HB24. The expression of HOX-8 was not detected in hematopoietic tumor cells, in which HHO.c1 and HB24 were highly expressed. HOX-8 was expressed at higher levels in a variety of tumors of epithelial origin than in their corresponding normal tissues more frequently than HHO.c1 and HB24. All three homeobox genes were highly expressed in a yolk sac tumor, an immature tumor of gonadal origin. These results suggest that HOX-8 plays a more important role in human tumors of epithelial origin than those of hematopoietic origin.

  3. Targeting Homologous Recombination in Notch-Driven C. elegans Stem Cell and Human Tumors.

    Directory of Open Access Journals (Sweden)

    Xinzhu Deng

    Full Text Available Mammalian NOTCH1-4 receptors are all associated with human malignancy, although exact roles remain enigmatic. Here we employ glp-1(ar202, a temperature-sensitive gain-of-function C. elegans NOTCH mutant, to delineate NOTCH-driven tumor responses to radiotherapy. At ≤20°C, glp-1(ar202 is wild-type, whereas at 25°C it forms a germline stem cell⁄progenitor cell tumor reminiscent of human cancer. We identify a NOTCH tumor phenotype in which all tumor cells traffic rapidly to G2⁄M post-irradiation, attempt to repair DNA strand breaks exclusively via homology-driven repair, and when this fails die by mitotic death. Homology-driven repair inactivation is dramatically radiosensitizing. We show that these concepts translate directly to human cancer models.

  4. Cysteine-rich domain of human ADAM 12 (meltrin alpha) supports tumor cell adhesion

    DEFF Research Database (Denmark)

    Iba, K; Albrechtsen, R; Gilpin, B J

    1999-01-01

    The ADAMs (A disintegrin and metalloprotease) comprise a family of membrane-anchored cell surface proteins with a putative role in cell-cell and/or cell-matrix interactions. By immunostaining, ADAM 12 (meltrin alpha) was up-regulated in several human carcinomas and could be detected along the tumor...... cell membranes. Because of this intriguing staining pattern, we investigated whether human ADAM 12 supports tumor cell adhesion. Using an in vitro assay using recombinant polypeptides expressed in Escherichia coli, we examined the ability of individual domains of human ADAM 12 and ADAM 15 to support...... tumor cell adhesion. We found that the disintegrin-like domain of human ADAM 15 supported adhesion of alphavbeta3-expressing A375 melanoma cells. In the case of human ADAM 12, however, recombinant polypeptides of the cysteine-rich domain but not the disintegrin-like domain supported cell adhesion...

  5. Suppressive effects of tumor cell-derived 5'-deoxy-5'-methylthioadenosine on human T cells.

    Science.gov (United States)

    Henrich, Frederik C; Singer, Katrin; Poller, Kerstin; Bernhardt, Luise; Strobl, Carolin D; Limm, Katharina; Ritter, Axel P; Gottfried, Eva; Völkl, Simon; Jacobs, Benedikt; Peter, Katrin; Mougiakakos, Dimitrios; Dettmer, Katja; Oefner, Peter J; Bosserhoff, Anja-Katrin; Kreutz, Marina P; Aigner, Michael; Mackensen, Andreas

    2016-08-01

    The immunosuppressive tumor microenvironment represents one of the main obstacles for immunotherapy of cancer. The tumor milieu is among others shaped by tumor metabolites such as 5'-deoxy-5'-methylthioadenosine (MTA). Increased intratumoral MTA levels result from a lack of the MTA-catabolizing enzyme methylthioadenosine phosphorylase (MTAP) in tumor cells and are found in various tumor entities. Here, we demonstrate that MTA suppresses proliferation, activation, differentiation, and effector function of antigen-specific T cells without eliciting cell death. Conversely, if MTA is added to highly activated T cells, MTA exerts cytotoxic effects on T cells. We identified the Akt pathway, a critical signal pathway for T cell activation, as a target of MTA, while, for example, p38 remained unaffected. Next, we provide evidence that MTA exerts its immunosuppressive effects by interfering with protein methylation in T cells. To confirm the relevance of the suppressive effects of exogenously added MTA on human T cells, we used an MTAP-deficient tumor cell-line that was stably transfected with the MTAP-coding sequence. We observed that T cells stimulated with MTAP-transfected tumor cells revealed a higher proliferative capacity compared to T cells stimulated with Mock-transfected cells. In conclusion, our findings reveal a novel immune evasion strategy of human tumor cells that could be of interest for therapeutic targeting.

  6. Human T cell crosstalk is induced by tumor membrane transfer.

    Directory of Open Access Journals (Sweden)

    Ronny Uzana

    Full Text Available Trogocytosis is a contact-dependent unidirectional transfer of membrane fragments between immune effector cells and their targets, initially detected in T cells following interaction with professional antigen presenting cells (APC. Previously, we have demonstrated that trogocytosis also takes place between melanoma-specific cytotoxic T lymphocytes (CTLs and their cognate tumors. In the present study, we took this finding a step further, focusing on the ability of melanoma membrane-imprinted CD8+ T cells to act as APCs (CD8+ T-APCs. We demonstrate that, following trogocytosis, CD8+ T-APCs directly present a variety of melanoma derived peptides to fraternal T cells with the same TCR specificity or to T cells with different TCRs. The resulting T cell-T cell immune synapse leads to (1 Activation of effector CTLs, as determined by proliferation, cytokine secretion and degranulation; (2 Fratricide (killing of CD8+ T-APCs by the activated CTLs. Thus, trogocytosis enables cross-reactivity among CD8+ T cells with interchanging roles of effectors and APCs. This dual function of tumor-reactive CTLs may hint at their ability to amplify or restrict reactivity against the tumor and participate in modulation of the anti-cancer immune response.

  7. Macrophage-mediated inflammation and glial response in the skeletal muscle of a rat model of familial amyotrophic lateral sclerosis (ALS).

    Science.gov (United States)

    Van Dyke, Jonathan M; Smit-Oistad, Ivy M; Macrander, Corey; Krakora, Dan; Meyer, Michael G; Suzuki, Masatoshi

    2016-03-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor dysfunction and loss of large motor neurons in the spinal cord and brain stem. While much research has focused on mechanisms of motor neuron cell death in the spinal cord, degenerative processes in skeletal muscle and neuromuscular junctions (NMJs) are also observed early in disease development. Although recent studies support the potential therapeutic benefits of targeting the skeletal muscle in ALS, relatively little is known about inflammation and glial responses in skeletal muscle and near NMJs, or how these responses contribute to motor neuron survival, neuromuscular innervation, or motor dysfunction in ALS. We recently showed that human mesenchymal stem cells modified to release glial cell line-derived neurotrophic factor (hMSC-GDNF) extend survival and protect NMJs and motor neurons in SOD1(G93A) rats when delivered to limb muscles. In this study, we evaluate inflammatory and glial responses near NMJs in the limb muscle collected from a rat model of familial ALS (SOD1(G93A) transgenic rats) during disease progression and following hMSC-GDNF transplantation. Muscle samples were collected from pre-symptomatic, symptomatic, and end-stage animals. A significant increase in the expression of microglial inflammatory markers (CD11b and CD68) occurred in the skeletal muscle of symptomatic and end-stage SOD1(G93A) rats. Inflammation was confirmed by ELISA for inflammatory cytokines interleukin-1 β (IL-1β) and tumor necrosis factor-α (TNF-α) in muscle homogenates of SOD1(G93A) rats. Next, we observed active glial responses in the muscle of SOD1(G93A) rats, specifically near intramuscular axons and NMJs. Interestingly, strong expression of activated glial markers, glial fibrillary acidic protein (GFAP) and nestin, was observed in the areas adjacent to NMJs. Finally, we determined whether ex vivo trophic factor delivery influences inflammation and terminal

  8. Oncolytic virotherapy synergism with signaling inhibitors: Rapamycin increases myxoma virus tropism for human tumor cells.

    Science.gov (United States)

    Stanford, Marianne M; Barrett, John W; Nazarian, Steven H; Werden, Steven; McFadden, Grant

    2007-02-01

    Myxoma virus is a rabbit-specific poxvirus pathogen that also exhibits a unique tropism for human tumor cells and is dramatically oncolytic for human cancer xenografts. Most tumor cell lines tested are permissive for myxoma infection in a fashion intimately tied to the activation state of Akt kinase. A host range factor of myxoma virus, M-T5, directly interacts with Akt and mediates myxoma virus tumor cell tropism. mTOR is a regulator of cell growth and metabolism downstream of Akt and is specifically inhibited by rapamycin. We report that treatment of nonpermissive human tumor cell lines, which normally restrict myxoma virus replication, with rapamycin dramatically increased virus tropism and spread in vitro. This increased myxoma replication is concomitant with global effects on mTOR signaling, specifically, an increase in Akt kinase. In contrast to the effects on human cancer cells, rapamycin does not increase myxoma virus replication in rabbit cell lines or permissive human tumor cell lines with constitutively active Akt. This indicates that rapamycin increases the oncolytic capacity of myxoma virus for human cancer cells by reconfiguring the internal cell signaling environment to one that is optimal for productive virus replication and suggests the possibility of a potentially therapeutic synergism between kinase signaling inhibitors and oncolytic poxviruses for cancer treatment.

  9. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors

    National Research Council Canada - National Science Library

    Salmon, Hélène; Franciszkiewicz, Katarzyna; Damotte, Diane; Dieu-Nosjean, Marie-Caroline; Validire, Pierre; Trautmann, Alain; Mami-Chouaib, Fathia; Donnadieu, Emmanuel

    2012-01-01

    .... Studies using fixed tumor samples from human patients have shown that T cells accumulate more efficiently in the stroma than in tumor islets, but the mechanisms by which this occurs are unknown...

  10. Steady-state properties of sodium channels from healthy and tumorous human brain

    NARCIS (Netherlands)

    Frenkel, C.; Wartenberg, H. C.; Duch, D. S.; Urban, B. W.

    1998-01-01

    This extensive bilayer study of unpurified human brain channels from non-diseased and tumorous human brain involves more than 300 lipid bilayer experiments. Single channel conductances and subconductances, single channel fractional open times, the voltage-dependence of tetrodotoxin (TTX) block and

  11. Expression of metastasis-associated protein 3 in human brain glioma related to tumor prognosis.

    Science.gov (United States)

    Shan, Shouqin; Hui, Guangyan; Hou, Fanggao; Shi, Hua; Zhou, Guoqing; Yan, Han; Wang, Lu; Liu, Jinfeng

    2015-10-01

    Glioma represents a disparate group of tumors characterized by high invasion ability, and therefore it is of clinical significance to identify molecular markers and therapeutic targets for better clinical management. Previously, metastasis-associated protein family (MTA) is considered to promote tumor cell invasion and metastasis of human malignancies. Recently, the newly identified MTA3 has been shown to play conflicting roles in human malignancies, while the expression pattern and potential clinical significance of MTA3 in human glioma have not been addressed yet. In the present study, we investigated the protein expression of MTA3 by immunohistochemistry assay and analyzed its association with glioma prognosis in 186 cases of patients. Results showed that MTA3 expression was decreased in glioma compared with that in normal brain (P human glioma and negatively associated with prognosis of patients, suggesting that MTA3 may play a tumor suppressor role in glioma.

  12. Alvocidib (Flavopiridol) suppresses tumor growth in SCID mice with human esophageal cancer xenografts without inducing apoptosis.

    Science.gov (United States)

    Sato, Shinsuke; Kajiyama, Yoshiaki; Sugano, Masahiko; Iwanuma, Yoshimi; Sonoue, Hiroshi; Matsumoto, Toshiharu; Tsurumaru, Masahiko

    2006-08-01

    Alvocidib (Flavopiridol, HMR1275) is a potent inhibitor of multiple cyclin-dependent kinases and has been identified recently as an antitumor agent in several cancers. Previous studies have shown that alvocidib could potentially treat esophageal cancer in vitro. This study evaluates alvocidib for its ability to suppress tumor growth in severe combined immunodeficiency (SCID) mice bearing TE8 human esophageal squamous cell carcinoma (SCC) xenografts. Alvocidib treatment of 10mg/kg body weight reduced tumor volume significantly. Immunohistochemistry analysis of alvocidib-treated tumor sections showed significant reductions in cyclin D1, VEGF, and Rb levels. Alvocidib treatment did not cause a marked increase in apoptotic tumor cells by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) analysis, yet hematoxylin and eosin staining revealed tumor necrosis. In vivo investigation of alvocidib treatment confirmed antitumor activity in TE8 esophageal xenografts. These findings suggest that alvocidib could be a useful anti-cancer agent for esophageal cancer.

  13. Growth curves of three human malignant tumors transplanted to nude mice

    DEFF Research Database (Denmark)

    Spang-Thomsen, M; Nielsen, A; Visfeldt, J

    1980-01-01

    Experimental growth data for three human malignant tumors transplanted to nude mice of BALB/c origin are analyzed statistically in order to investigate whether they can be described according to the Gompertz function. The aim is to set up unequivocal standards for planned therapeutic experiments...... and to develop an essential part of the determination of proliferation parameters for the tumors. The results indicate that the course of tumor growth can be described with good approximation by the Gompertz function. A transformation of this function depicts the growth rectilinearly and appears to be suitable...... as a standard, e.g. in therapeutic experiments. The course of tumor growth is independent of the size of the transplant, and whether tumors are transplanted in the right or left or both flanks of the recipient mice. Furthermore, the growth does not vary in a systematic way with the number of passages in nude...

  14. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  15. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.

    Science.gov (United States)

    Stewart, Daniel C; Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.

  16. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms.

    Directory of Open Access Journals (Sweden)

    Daniel C Stewart

    Full Text Available While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.

  17. Mechanical characterization of human brain tumors from patients and comparison to potential surgical phantoms

    Science.gov (United States)

    Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S.

    2017-01-01

    While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17–16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models. PMID:28582392

  18. A drosophila model for EGFR-Ras and PI3K-dependent human glioma.

    Directory of Open Access Journals (Sweden)

    Renee D Read

    2009-02-01

    Full Text Available Gliomas, the most common malignant tumors of the nervous system, frequently harbor mutations that activate the epidermal growth factor receptor (EGFR and phosphatidylinositol-3 kinase (PI3K signaling pathways. To investigate the genetic basis of this disease, we developed a glioma model in Drosophila. We found that constitutive coactivation of EGFR-Ras and PI3K pathways in Drosophila glia and glial precursors gives rise to neoplastic, invasive glial cells that create transplantable tumor-like growths, mimicking human glioma. Our model represents a robust organotypic and cell-type-specific Drosophila cancer model in which malignant cells are created by mutations in signature genes and pathways thought to be driving forces in a homologous human cancer. Genetic analyses demonstrated that EGFR and PI3K initiate malignant neoplastic transformation via a combinatorial genetic network composed primarily of other pathways commonly mutated or activated in human glioma, including the Tor, Myc, G1 Cyclins-Cdks, and Rb-E2F pathways. This network acts synergistically to coordinately stimulate cell cycle entry and progression, protein translation, and inappropriate cellular growth and migration. In particular, we found that the fly orthologs of CyclinE, Cdc25, and Myc are key rate-limiting genes required for glial neoplasia. Moreover, orthologs of Sin1, Rictor, and Cdk4 are genes required only for abnormal neoplastic glial proliferation but not for glial development. These and other genes within this network may represent important therapeutic targets in human glioma.

  19. Bioinformatics Analysis of the Human Surfaceome Reveals New Targets for a Variety of Tumor Types

    Directory of Open Access Journals (Sweden)

    André L. Fonseca

    2016-01-01

    Full Text Available It is estimated that 10 to 20% of all genes in the human genome encode cell surface proteins and due to their subcellular localization these proteins represent excellent targets for cancer diagnosis and therapeutics. Therefore, a precise characterization of the surfaceome set in different types of tumor is needed. Using TCGA data from 15 different tumor types and a new method to identify cancer genes, the S-score, we identified several potential therapeutic targets within the surfaceome set. This allowed us to expand a previous analysis from us and provided a clear characterization of the human surfaceome in the tumor landscape. Moreover, we present evidence that a three-gene set—WNT5A, CNGA2, and IGSF9B—can be used as a signature associated with shorter survival in breast cancer patients. The data made available here will help the community to develop more efficient diagnostic and therapeutic tools for a variety of tumor types.

  20. Expression profiles of SnoN in normal and cancerous human tissues support its tumor suppressor role in human cancer.

    Directory of Open Access Journals (Sweden)

    Nadine S Jahchan

    Full Text Available SnoN is a negative regulator of TGF-β signaling and also an activator of the tumor suppressor p53 in response to cellular stress. Its role in human cancer is complex and controversial with both pro-oncogenic and anti-oncogenic activities reported. To clarify its role in human cancer and provide clinical relevance to its signaling activities, we examined SnoN expression in normal and cancerous human esophageal, ovarian, pancreatic and breast tissues. In normal tissues, SnoN is expressed in both the epithelium and the surrounding stroma at a moderate level and is predominantly cytoplasmic. SnoN levels in all tumor epithelia examined are lower than or similar to that in the matched normal samples, consistent with its anti-tumorigenic activity in epithelial cells. In contrast, SnoN expression in the stroma is highly upregulated in the infiltrating inflammatory cells in high-grade esophageal and ovarian tumor samples, suggesting that SnoN may potentially promote malignant progression through modulating the tumor microenvironment in these tumor types. The overall levels of SnoN expression in these cancer tissues do not correlate with the p53 status. However, in human cancer cell lines with amplification of the snoN gene, a strong correlation between increased SnoN copy number and inactivation of p53 was detected, suggesting that the tumor suppressor SnoN-p53 pathway must be inactivated, either through downregulation of SnoN or inactivation of p53, in order to allow cancer cell to proliferate and survive. These data strongly suggest that SnoN can function as a tumor suppressor at early stages of tumorigenesis in human cancer tissues.

  1. Primitive neuroectodermal tumor of the midbrain in a murine model of retinoblastoma.

    Science.gov (United States)

    Marcus, D M; Carpenter, J L; O'Brien, J M; Kivela, T; Brauner, E; Tarkkanen, A; Virtanen, I; Albert, D M

    1991-02-01

    The first heritable model of retinoblastoma was established by retina-specific expression of simian virus 40 T-antigen (SV40 T-ag) in transgenic mice. Bilateral, multifocal ocular tumors were observed in 100% of transgene-bearing mice. Central nervous system neoplasms occurred at a lower rate (27%) and represented the murine counterpart of human trilateral retinoblastoma. The authors characterized the transgenic brain tumors and found them to be primitive neuroectodermal tumors (PNET) of the midbrain. Murine brain tumors do not involve the pineal gland and most closely resemble undifferentiated suprasellar or parasellar tumors occasionally observed in human trilateral retinoblastoma. The murine malignancies arose from the subependymal cells of the cerebral aqueduct. Immunohistochemical and ultrastructural examination revealed that the transgenic brain tumors were undifferentiated and lacked all antigens associated with normal murine neuronal, glial, and ependymal cells.

  2. A Neonatal Case of Glial Choristoma of the Tongue Causing Airway Obstruction

    Directory of Open Access Journals (Sweden)

    Hajime Machi

    2017-01-01

    Full Text Available Glial choristoma is considered to be a type of brain heterotopia consisting of ectopic central nervous tissue. We herein report a neonate with glial choristoma of the tongue who developed respiratory distress due to airway obstruction. A male neonate presented with respiratory distress due to a soft mass on the midline region of the dorsal tongue base at birth. He was intubated using a flexible fiberoptic nasopharyngoscope. MRI showed a well-circumscribed mass measuring 25 × 23 × 27 mm in size in the same region. A histologic examination confirmed a pathological diagnosis of glial choristoma. He underwent tracheotomy at 22 days of age, and a subtotal resection of the tumor was performed at five months of age. The clinical behavior of oral glial choristoma varies depending on the age at onset as well as the location and size of the mass. The small size of the organ and the narrow operating field hamper the surgical approach in neonates. The optimal therapeutic strategy for neonatal cases of glial choristoma should thus be determined based on the condition of each individual patient.

  3. PCR Expression Analysis Of the Estrogeninducible Gene Bcei in Gastrointestinal and Other Human Tumors

    Directory of Open Access Journals (Sweden)

    Iris Wundrack

    1994-01-01

    Full Text Available A polymerase chain reaction (PCR assay was developed to test for tumor cell specific expression of the BCEI gene. This new marker gene, reported at first for human breast cancer, was found specifically active in various gastrointestinal carcinomas by previously applying immunohistochemistry and RNA (Northern blot analysis. Presently, by using reverse transcription -PCR analysis, a series of primary tumor tissues and established tumor cell lines were testcd for BCEI transcription. This approach was compared to immunostaining achieved by an antibody directed against the BCEI gene’s product. The result demonstrate the superior sensitivity of PCR by indicating the gene’ s expression in cases where immunohistochemical testing remained negative.

  4. Circadian clocks and tumor biology: what is to learn from human skin biopsies?

    Science.gov (United States)

    Lengyel, Zsuzsanna; Battyáni, Zita; Szekeres, György; Csernus, Valér; Nagy, András D

    2013-07-01

    Some of the components of the circadian molecular clock have been shown to link directly to tumor suppression. Most studies on human tumorous biopsies with consistently down-regulated clock gene expression suggested a protective role for these genes against cancer formation. To highlight some limitations of this hypothesis we review these data in light of recent evidences from animal research, epidemiologic studies, and clinical data on skin tumors. We emphasize the role of circadian rhythmic orchestration in cellular metabolism with a potential in cancer development. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Human tumor-associated viruses and new insights into the molecular mechanisms of cancer.

    Science.gov (United States)

    Martin, D; Gutkind, J S

    2008-12-01

    The study of acute-transforming retroviruses and their oncogenes and of the multiple mechanisms deployed by DNA viruses to circumvent the growth-suppressive and proapoptotic function of tumor suppressor genes has provided the foundation of our current understanding of cancer biology. Unlike acute-transforming animal viruses, however, human tumor-associated viruses lead to malignancies with a prolonged latency and in conjunction with other environmental and host-related cooperating events. The relevance of viral infection to human cancer development has often been debated. We now know that at least six human viruses, Epstein-Barr virus (EBV), hepatitis B virus (HBV), hepatitis C virus (HCV), human papilloma virus (HPV), human T-cell lymphotropic virus (HTLV-1) and Kaposi's associated sarcoma virus (KSHV) contribute to 10-15% of the cancers worldwide. Hence, the opportunity exists to fight cancer at the global scale by preventing the spread of these viruses, by the development and distribution of effective and safe antiviral vaccines, and by identifying their oncogenic mechanism. Here, we discuss the molecular events underlying the neoplastic potential of the human tumor-associated viruses, with emphasis on the enigmatic KSHV and its numerous virally hijacked proangiogenic, immune-evasive and tumor-promoting genes. The emerging information may facilitate the development of new molecular-targeted approaches to prevent and treat virally associated human malignancies.

  6. Strategies for Human Tumor Virus Discoveries: From Microscopic Observation to Digital Transcriptome Subtraction.

    Science.gov (United States)

    Mirvish, Ezra D; Shuda, Masahiro

    2016-01-01

    Over 20% of human cancers worldwide are associated with infectious agents, including viruses, bacteria, and parasites. Various methods have been used to identify human tumor viruses, including electron microscopic observations of viral particles, immunologic screening, cDNA library screening, nucleic acid hybridization, consensus PCR, viral DNA array chip, and representational difference analysis. With the Human Genome Project, a large amount of genetic information from humans and other organisms has accumulated over the last decade. Utilizing the available genetic databases, Feng et al. (2007) developed digital transcriptome subtraction (DTS), an in silico method to sequentially subtract human sequences from tissue or cellular transcriptome, and discovered Merkel cell polyomavirus (MCV) from Merkel cell carcinoma. Here, we review the background and methods underlying the human tumor virus discoveries and explain how DTS was developed and used for the discovery of MCV.

  7. Human pancreatic tumors grown in mice release tissue factor-positive microvesicles that increase venous clot size.

    Science.gov (United States)

    Hisada, Y; Ay, C; Auriemma, A C; Cooley, B C; Mackman, N

    2017-11-01

    Essentials Tumor-bearing mice have larger venous clots than controls. Human tissue factor is present in clots in tumor-bearing mice. Inhibition of human tissue factor reduces clot size in tumor-bearing mice. This new mouse model may be useful to study mechanisms of cancer-associated thrombosis. Background Pancreatic cancer patients have a high rate of venous thromboembolism. Human pancreatic tumors and cell lines express high levels of tissue factor (TF), and release TF-positive microvesicles (TF+ MVs). In pancreatic cancer patients, tumor-derived TF+ MVs are present in the blood, and increased levels are associated with venous thromboembolism and decreased survival. Previous studies have shown that mice with orthotopic human or murine pancreatic tumors have circulating tumor-derived TF+ MVs, an activated clotting system, and increased incidence and mean clot weight in an inferior vena cava stenosis model. These results suggest that TF+ MVs contribute to thrombosis. However, the specific role of tumor-derived TF+ MVs in venous thrombosis in mice has not been determined. Objectives To test the hypothesis that tumor-derived TF+ MVs enhance thrombosis in mice. Methods We determined the contribution of TF+ MVs derived from human pancreatic tumors grown orthotopically in nude mice to venous clot formation by using an anti-human TF mAb. We used an inferior vena cava stasis model of venous thrombosis. Results Tumor-bearing mice had significantly larger clots than control mice. Clots from tumor-bearing mice contained human TF, suggesting the incorporation of tumor-derived MVs. Importantly, administration of an anti-human TF mAb reduced clot size in tumor-bearing mice but did not affect clot size in control mice. Conclusions Our results indicate that TF+ MVs released from orthotopic pancreatic tumors increase venous thrombosis in mice. This new model may be useful for evaluating the roles of different factors in cancer-associated thrombosis. © 2017 International Society on

  8. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Suhail Mahmoud M

    2011-12-01

    Full Text Available Abstract Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp. are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231 and an immortalized normal human breast cell line (MCF10-2A. Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil

  9. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Science.gov (United States)

    2011-01-01

    Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra

  10. Cancer Associated Fibroblasts express pro-inflammatory factors in human breast and ovarian tumors

    Energy Technology Data Exchange (ETDEWEB)

    Erez, Neta, E-mail: netaerez@post.tau.ac.il [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Glanz, Sarah [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Raz, Yael [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Obstetrics and Gynecology, LIS Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Avivi, Camilla [Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel); Barshack, Iris [Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel-Aviv 69978 (Israel); Department of Pathology, Sheba Medical Center, Tel Hashomer, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv (Israel)

    2013-08-02

    Highlights: •CAFs in human breast and ovarian tumors express pro-inflammatory factors. •Expression of pro-inflammatory factors correlates with tumor invasiveness. •Expression of pro-inflammatory factors is associated with NF-κb activation in CAFs. -- Abstract: Inflammation has been established in recent years as a hallmark of cancer. Cancer Associated Fibroblasts (CAFs) support tumorigenesis by stimulating angiogenesis, cancer cell proliferation and invasion. We previously demonstrated that CAFs also mediate tumor-enhancing inflammation in a mouse model of skin carcinoma. Breast and ovarian carcinomas are amongst the leading causes of cancer-related mortality in women and cancer-related inflammation is linked with both these tumor types. However, the role of CAFs in mediating inflammation in these malignancies remains obscure. Here we show that CAFs in human breast and ovarian tumors express high levels of the pro-inflammatory factors IL-6, COX-2 and CXCL1, previously identified to be part of a CAF pro-inflammatory gene signature. Moreover, we show that both pro-inflammatory signaling by CAFs and leukocyte infiltration of tumors are enhanced in invasive ductal carcinoma as compared with ductal carcinoma in situ. The pro-inflammatory genes expressed by CAFs are known NF-κB targets and we show that NF-κB is up-regulated in breast and ovarian CAFs. Our data imply that CAFs mediate tumor-promoting inflammation in human breast and ovarian tumors and thus may be an attractive target for stromal-directed therapeutics.

  11. Evaluation of Antiproliferative Potential of Cerium Oxide Nanoparticles on HeLa Human Cervical Tumor Cell

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-05-01

    Full Text Available Cerium oxide nanoparticles (CeO2 nanoparticles as nanomaterials have promising biomedical applications. In this paper, the cytotoxicity induced by CONPs human cervical tumor cells was investigated. Cerium oxide nanoparticles were synthesized using the precipitation method. The nanoparticles were found to inhibit the proliferation of HeLa human cervical tumor cells in a dose dependent manner but did not showed to be cytotoxic as analyzed by MTT assay. The administrated treatment decreased the HeLa cell viability cells from 100% to 65% at the dose of 100 μg/mL.

  12. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models

    Science.gov (United States)

    Liu, Huiping; Patel, Manishkumar R.; Prescher, Jennifer A.; Patsialou, Antonia; Qian, Dalong; Lin, Jiahui; Wen, Susanna; Chang, Ya-Fang; Bachmann, Michael H.; Shimono, Yohei; Dalerba, Piero; Adorno, Maddalena; Lobo, Neethan; Bueno, Janet; Dirbas, Frederick M.; Goswami, Sumanta; Somlo, George; Condeelis, John; Contag, Christopher H.; Gambhir, Sanjiv Sam; Clarke, Michael F.

    2010-01-01

    To examine the role of breast cancer stem cells (BCSCs) in metastasis, we generated human-in-mouse breast cancer orthotopic models using patient tumor specimens, labeled with optical reporter fusion genes. These models recapitulate human cancer features not captured with previous models, including spontaneous metastasis in particular, and provide a useful platform for studies of breast tumor initiation and progression. With noninvasive imaging approaches, as few as 10 cells of stably labeled BCSCs could be tracked in vivo, enabling studies of early tumor growth and spontaneous metastasis. These advances in BCSC imaging revealed that CD44+ cells from both primary tumors and lung metastases are highly enriched for tumor-initiating cells. Our metastatic cancer models, combined with noninvasive imaging techniques, constitute an integrated approach that could be applied to dissect the molecular mechanisms underlying the dissemination of metastatic CSCs (MCSCs) and to explore therapeutic strategies targeting MCSCs in general or to evaluate individual patient tumor cells and predict response to therapy. PMID:20921380

  13. High hydrostatic pressure induces immunogenic cell death in human tumor cells.

    Science.gov (United States)

    Fucikova, Jitka; Moserova, Irena; Truxova, Iva; Hermanova, Ivana; Vancurova, Irena; Partlova, Simona; Fialova, Anna; Sojka, Ludek; Cartron, Pierre-Francois; Houska, Milan; Rob, Lukas; Bartunkova, Jirina; Spisek, Radek

    2014-09-01

    Recent studies have identified molecular events characteristic of immunogenic cell death (ICD), including surface exposure of calreticulin (CRT), the heat shock proteins HSP70 and HSP90, the release of high-mobility group box protein 1 (HMGB1) and the release of ATP from dying cells. We investigated the potential of high hydrostatic pressure (HHP) to induce ICD in human tumor cells. HHP induced the rapid expression of HSP70, HSP90 and CRT on the cell surface. HHP also induced the release of HMGB1 and ATP. The interaction of dendritic cells (DCs) with HHP-treated tumor cells led to a more rapid rate of DC phagocytosis, upregulation of CD83, CD86 and HLA-DR and the release of interleukin IL-6, IL-12p70 and TNF-α. DCs pulsed with tumor cells killed by HHP induced high numbers of tumor-specific T cells. DCs pulsed with HHP-treated tumor cells also induced the lowest number of regulatory T cells. In addition, we found that the key features of the endoplasmic reticulum stress-mediated apoptotic pathway, such as reactive oxygen species production, phosphorylation of the translation initiation factor eIF2α and activation of caspase-8, were activated by HHP treatment. Therefore, HHP acts as a reliable and potent inducer of ICD in human tumor cells. © 2014 UICC.

  14. Rapid spread of mouse mammary tumor virus in cultured human breast cells

    Directory of Open Access Journals (Sweden)

    Günzburg Walter H

    2007-10-01

    Full Text Available Abstract Background The role of mouse mammary tumor virus (MMTV as a causative agent in human breast carcinogenesis has recently been the subject of renewed interest. The proposed model is based on the detection of MMTV sequences in human breast cancer but not in healthy breast tissue. One of the main drawbacks to this model, however, was that until now human cells had not been demonstrated to sustain productive MMTV infection. Results Here, we show for the first time the rapid spread of mouse mammary tumor virus, MMTV(GR, in cultured human mammary cells (Hs578T, ultimately leading to the infection of every cell in culture. The replication of the virus was monitored by quantitative PCR, quantitative RT-PCR and immunofluorescence imaging. The infected human cells expressed, upon cultivation with dexamethasone, MMTV structural proteins and released spiked B-type virions, the infectivity of which could be neutralized by anti-MMTV antibody. Replication of the virus was efficiently blocked by an inhibitor of reverse transcription, 3'-azido-3'-deoxythymidine. The human origin of the infected cells was confirmed by determining a number of integration sites hosting the provirus, which were unequivocally identified as human sequences. Conclusion Taken together, our results show that human cells can support replication of mouse mammary tumor virus.

  15. Hersintuzumab: A novel humanized anti-HER2 monoclonal antibody induces potent tumor growth inhibition.

    Science.gov (United States)

    Amiri, Mohammad Mehdi; Golsaz-Shirazi, Forough; Soltantoyeh, Tahereh; Hosseini-Ghatar, Reza; Bahadori, Tannaz; Khoshnoodi, Jalal; Navabi, Shadi Sadat; Farid, Samira; Karimi-Jafari, Mohammad Hossein; Jeddi-Tehrani, Mahmood; Shokri, Fazel

    2017-10-06

    Humanized monoclonal antibodies (mAbs) against HER2 including trastuzumab and pertuzumab are widely used to treat HER2 overexpressing metastatic breast cancers. These two mAbs recognize distinct epitopes on HER2 and their combination induces a more potent blockade of HER2 signaling than trastuzumab alone. Recently, we have reported characterization of a new chimeric mAb (c-1T0) which binds to an epitope different from that recognized by trastuzumab and significantly inhibits proliferation of HER2 overexpressing tumor cells. Here, we describe humanization of this mAb by grafting all six complementarity determining regions (CDRs) onto human variable germline genes. Humanized VH and VL sequences were synthesized and ligated to human γ1 and κ constant region genes using splice overlap extension (SOE) PCR. Subsequently, the humanized antibody designated hersintuzumab was expressed and characterized by ELISA, Western blot and flow cytometry. The purified humanized mAb binds to recombinant HER2 and HER2-overexpressing tumor cells with an affinity comparable with the chimeric and parental mouse mAbs. It recognizes an epitope distinct from those recognized by trastuzumab and pertuzumab. Binding of hersintuzumab to HER2 overexpressing tumor cells induces G1 cell cycle arrest, inhibition of ERK and AKT signaling pathways and growth inhibition. Moreover, hersintuzumab could induce antibody-dependent cell cytotoxicity (ADCC) on BT-474 cells. This new humanized mAb is a potentially valuable tool for single or combination breast cancer therapy.

  16. Spatial distribution of mast cells and macrophages around tumor glands in human breast ductal carcinoma.

    Science.gov (United States)

    Tamma, Roberto; Guidolin, Diego; Annese, Tiziana; Tortorella, Cinzia; Ruggieri, Simona; Rega, Serena; Zito, Francesco A; Nico, Beatrice; Ribatti, Domenico

    2017-10-01

    Macrophages and mast cells are usually present in the tumor microenvironment and play an important role as regulators of inflammation, immunological response and angiogenesis in the tumor microenvironment. In this study, we have evaluated macrophage, mast cell, and microvessel density in a selected group of different grade of invasive breast carcinoma tumor specimens. Furthermore, we have investigated the pattern of distribution of CD68-positive macrophages and tryptase-positive mast cells around tumor glands. Results have shown that: A) Macrophages are more numerous in G2 and G3 breast cancer stages respect to controls, the per cent of macrophages in G1 samples was comparable to the controls, and the spatial relationship between macrophages and glands (as indicated by the mean cell-to-gland distance) correlated with CD31-positive vessels. B) Mast cells in G2 and G3 tumor specimens show a significant increase in their number as compared to control samples, and their spatial distribution around the glands did not show any significant difference among groups. Overall, the results of this study confirm the important role of macrophages and mast cells in tumor progression and angiogenesis in human ductal breast cancer, and pointed out the spatial relationship between tumor macrophages and glands, and its correlation with microvascular density. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effects of reactive oxygen species on metabolism monitored by longitudinal {sup 1}H single voxel MRS follow-up in patients with mitochondrial disease or cerebral tumors

    Energy Technology Data Exchange (ETDEWEB)

    Constans, J M; Collet, S; Hossu, G; Courtheoux, P [MRI Unit, Caen University Hospital, Caen, Normandy (France); Guillamo, J S; Lechapt-Zalcman, E; Valable, S [CERVOxy Group, CI-NAPS, UMR 6232 CI-NAPS, Cyceron, Caen, Normandy (France); Lacombe, S; Houee Levin, C [Paris-Sud 11 University-CNRS, Orsay (France); Gauduel, Y A [LOA, Ecole Polytechnique - ENSTA ParisTech, Palaiseau (France); Dou, W [Tsinghua University, Beijing (China); Ruan, S [CReSTIC EA 3804, IUT Troyes, Troyes (France); Barre, L [GDMTEP, Group CI-NAPS, UMR 6232 CI-NAPS, Cyceron, Caen (France); Rioult, F [CNRS UMR 6072, GREYC, Caen, Normandy (France); Derlon, J M [Neurosurgery and Neurology, Caen University Hospital, Caen, Normandy (France); Chapon, F [Pathology, Caen University Hospital, Caen, Normandy (France); Fong, V [Caen University (France); Kauffmann, F, E-mail: constans-jm@chu-caen.fr [Mathematics LMNO CNRS UMR 6139, Caen University, Caen, Normandy (France)

    2011-01-01

    Free radicals, or Reactive Oxygen Species (ROS), have an effect on energy and glycolytic metabolism, mitochondrial function, lipid metabolism, necrosis and apoptosis, cell proliferation, and infiltration. These changes could be monitored longitudinally (every 4 months over 6 years) in humans with glial brain tumors (low and high grade) after therapy, using conventional magnetic resonance imaging (MRI) and spectroscopy (MRS) and MR perfusion. Some examples of early clinical data from longitudinal follow-up monitoring in humans of energy and glycolytic metabolism, lipid metabolism, necrosis, proliferation, and infiltration measured by conventional MRI, MRS and perfusion, and positron emission tomography (PET) are shown in glial brain tumors after therapy. Despite the difficulty, the variability and unknown factors, these repeated measurements give us a better insight into the nature of the different processes, tumor progression and therapeutic response.

  18. Effects of reactive oxygen species on metabolism monitored by longitudinal 1H single voxel MRS follow-up in patients with mitochondrial disease or cerebral tumors

    Science.gov (United States)

    Constans, J. M.; Collet, S.; Guillamo, J. S.; Hossu, G.; Lacombe, S.; Gauduel, Y. A.; Houée Levin, C.; Dou, W.; Ruan, S.; Barré, L.; Rioult, F.; Derlon, J. M.; Lechapt-Zalcman, E.; Valable, S.; Chapon, F.; Courtheoux, P.; Fong, V.; Kauffmann, F.

    2011-01-01

    Free radicals, or Reactive Oxygen Species (ROS), have an effect on energy and glycolytic metabolism, mitochondrial function, lipid metabolism, necrosis and apoptosis, cell proliferation, and infiltration. These changes could be monitored longitudinally (every 4 months over 6 years) in humans with glial brain tumors (low and high grade) after therapy, using conventional magnetic resonance imaging (MRI) and spectroscopy (MRS) and MR perfusion. Some examples of early clinical data from longitudinal follow-up monitoring in humans of energy and glycolytic metabolism, lipid metabolism, necrosis, proliferation, and infiltration measured by conventional MRI, MRS and perfusion, and positron emission tomography (PET) are shown in glial brain tumors after therapy. Despite the difficulty, the variability and unknown factors, these repeated measurements give us a better insight into the nature of the different processes, tumor progression and therapeutic response.

  19. Brain Tumor Tropism of Transplanted Human Neural Stem Cells Is Induced by Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    Nils Ole Schmidt

    2005-06-01

    Full Text Available The transplantation of neural stem cells (NSCs offers a new potential therapeutic approach as a cell-based delivery system for gene therapy in brain tumors. This is based on the unique capacity of NSCs to migrate throughout the brain and to target invading tumor cells. However, the signals controlling the targeted migration of transplanted NSCs are poorly defined. We analyzed the in vitro and in vivo effects of angiogenic growth factors and protein extracts from surgical specimens of brain tumor patients on NSC migration. Here, we demonstrate that vascular endothelial growth factor (VEGF is able to induce a long-range attraction of transplanted human NSCs from distant sites in the adult brain. Our results indicate that tumorupregulated VEGF and angiogenic-activated microvasculature are relevant guidance signals for NSC tropism toward brain tumors.

  20. Comprehensive allelotype and genetic anaysis of 466 human nervous system tumors

    DEFF Research Database (Denmark)

    von Deimling, A; Fimmers, R; Schmidt, M C

    2000-01-01

    Brain tumors pose a particular challenge to molecular oncology. Many different tumor entities develop in the nervous system and some of them appear to follow distinct pathogenic routes. Molecular genetic alterations have increasingly been reported in nervous system neoplasms. However......, a considerable number of affected genes remain to be identified. We present here a comprehensive allelotype analysis of 466 nervous system tumors based on loss of heterozygosity (LOH) studies with 129 microsatellite markers that span the genome. Specific alterations of the EGFR, CDK4, CDKN2A, TP53, DMBT1, NF2...... may provide a valuable framework for future studies to delineate molecular pathways in many types of human central nervous system tumors....

  1. Prevention of human papillomavirus (HPV)-related tumors in people living with human immunodeficiency virus (HIV).

    Science.gov (United States)

    Poljak, Mario; Šterbenc, Anja; Lunar, Maja M

    2017-10-20

    In comparison to their HIV-negative counterparts, people living with HIV (PLWH) have a higher prevalence of human papillomavirus (HPV) infection in various anatomical sites coupled with increased HPV persistence, higher risk of HPV-related tumors, and faster disease progression. Areas covered: Gender-neutral prevention strategies for HPV-related cancers in PLWH discussed: ABC approach, HPV vaccination, antiretroviral treatment (ART), anal cancer screening, and smoking cessation. Gender specific strategies: cervical cancer screening reduces the incidence and mortality of cervical cancer and circumcision might reduce the risk of HPV infections in men. Expert commentary: HPV-related cancer incidence has not declined (e.g. cervical cancer) and has even increased (e.g. anal cancer) in the ART era, demanding an effective HPV prevention strategy. HPV vaccination should be introduced into national prevention programs worldwide immediately because current prophylactic vaccines are safe, tolerable, and immunogenic in PLWH. HPV vaccine efficacy trials in PLWH are essential to determine the most appropriate immunization schedule. The population most at risk of anal cancer is HIV-positive men who have sex with men, who are not protected by herd immunity if only the female population is vaccinated. Unvaccinated PLWH need enhanced surveillance for early detection of HPV-related cancers and their precursors.

  2. The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration

    Science.gov (United States)

    Hesse, Robert G; Kouklis, Gayle K; Ahituv, Nadav; Pomerantz, Jason H

    2015-01-01

    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species’ regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF –p53 axis activation. DOI: http://dx.doi.org/10.7554/eLife.07702.001 PMID:26575287

  3. Glial progenitor cell-based treatment of the childhood leukodystrophies

    DEFF Research Database (Denmark)

    Osório, M. Joana; Goldman, Steven A.

    2016-01-01

    stem cell-derived human neural or glial progenitor cells may comprise a promising strategy for both structural remyelination and metabolic rescue. A broad variety of pediatric white matter disorders, including the primary hypomyelinating disorders, the lysosomal storage disorders, and the broader group...... has ensued; understanding the natural history of the targeted disease; defining the optimal cell phenotype for each disorder; achieving safe and scalable cellular compositions; designing age-appropriate controlled clinical trials; and for autologous therapy of genetic disorders, achieving the safe...

  4. Ultrastructural changes of mitochondria in human retinoblastoma: correlation with tumor differentiation and invasiveness.

    Science.gov (United States)

    Singh, Lata; Nag, Tapas C; Kashyap, Seema

    2016-05-01

    Retinoblastoma still represents a challenge for pediatric tumors. Mitochondria have been implicated in tumor progression, cell differentiation, and apoptotic pathways. Electron microscopy allows the study of mitochondrial morphology and it is still debated in human retinoblastoma. Demographic, clinical, and histopathological parameters were recorded in 17 enucleated retinoblastoma specimens. Hematoxylin and eosin staining was performed to study tumor characteristics and the extent of invasion in ocular structures. The aim of this study was to describe and analyze the mitochondrial morphology in human retinoblastoma by transmission electron microscopy (TEM). There was a male preponderance in our study. Ages ranged from 2 to 78 months. Histopathological analysis revealed that 15 (88.2 %) tumors were poorly differentiated retinoblastomas. Massive choroidal invasion was the most frequent histopathological high-risk factor among the others. Histopathological high-risk factors were found in 7/17 (41.1 %) cases. Tumor samples of all patients were examined by means of TEM. All cases showed tumor cells with high nucleocytoplasmic ratio. Poorly differentiated retinoblastoma cases showed fewer mitochondria, scant cytoplasm, disorganized organelles (mitochondria), and necrosis, whereas well-differentiated retinoblastomas had larger number of mitochondria and more organized organelles. However, there was no significant difference in mitochondrial changes between invasive and noninvasive tumors. Our study observed that cristolysis and swollen mitochondria were more frequent in retinoblastoma tumors. Understanding the structural and functional characteristics of mitochondria in retinoblastoma might be essential for the design of future therapeutic strategies. The authors have no proprietary or commercial interest in any materials discussed in this article.

  5. Inactivation of NF1 in CNS causes increased glial progenitor proliferation and optic glioma formation

    Science.gov (United States)

    Zhu, Yuan; Harada, Takayuki; Liu, Li; Lush, Mark E.; Guignard, Frantz; Harada, Chikako; Burns, Dennis K.; Bajenaru, M. Livia; Gutmann, David H.; Parada, Luis F.

    2009-01-01

    Summary The gene responsible for neurofibromatosis type 1 (NF1) encodes a tumor suppressor that functions as a negative regulator of the Ras proto-oncogene. Individuals with germline mutations in NF1 are predisposed to the development of benign and malignant tumors of the peripheral and central nervous system (CNS). Children with this disease suffer a high incidence of optic gliomas, a benign but potentially debilitating tumor of the optic nerve; and an increased incidence of malignant astrocytoma, reactive astrogliosis and intellectual deficits. In the present study, we have sought insight into the molecular and cellular basis of NF1-associated CNS pathologies. We show that mice genetically engineered to lack NF1 in CNS exhibit a variety of defects in glial cells. Primary among these is a developmental defect resulting in global reactive astrogliosis in the adult brain and increased proliferation of glial progenitor cells leading to enlarged optic nerves. As a consequence, all of the mutant optic nerves develop hyperplastic lesions, some of which progress to optic pathway gliomas. These data point to hyperproliferative glial progenitors as the source of the optic tumors and provide a genetic model for NF1-associated astrogliosis and optic glioma. PMID:16314489

  6. MUC1 positive, Kras and Pten driven mouse gynecologic tumors replicate human tumors and vary in survival and nuclear grade based on anatomical location.

    Directory of Open Access Journals (Sweden)

    Tejas S Tirodkar

    Full Text Available Activating mutations of Kras oncogene and deletions of Pten tumor suppressor gene play important roles in cancers of the female genital tract. We developed here new preclinical models for gynecologic cancers, using conditional (Cre-loxP mice with floxed genetic alterations in Kras and Pten. The triple transgenic mice, briefly called MUC1KrasPten, express human MUC1 antigen as self and carry a silent oncogenic KrasG12D and Pten deletion mutation. Injection of Cre-encoding adenovirus (AdCre in the ovarian bursa, oviduct or uterus activates the floxed mutations and initiates ovarian, oviductal, and endometrial cancer, respectively. Anatomical site-specific Cre-loxP recombination throughout the genital tract of MUC1KrasPten mice leads to MUC1 positive genital tract tumors, and the development of these tumors is influenced by the anatomical environment. Endometrioid histology was consistently displayed in all tumors of the murine genital tract (ovaries, oviducts, and uterus. Tumors showed increased expression of MUC1 glycoprotein and triggered de novo antibodies in tumor bearing hosts, mimicking the immunobiology seen in patients. In contrast to the ovarian and endometrial tumors, oviductal tumors showed higher nuclear grade. Survival for oviduct tumors was significantly lower than for endometrial tumors (p = 0.0015, yet similar to survival for ovarian cancer. Oviducts seem to favor the development of high grade tumors, providing preclinical evidence in support of the postulated role of fallopian tubes as the originating site for high grade human ovarian tumors.

  7. Establishment of a spontaneous metastasis tumor model for human ErbB-2 vaccine.

    Science.gov (United States)

    Dai, Xin; He, Yu; Yao, Wenbing; Gao, Xiangdong

    2017-04-01

    Human ErbB-2 (Her-2) is a critical target for cancer immunotherapy, and its over-expression can promote cancer migration and invasion. Compared with passive antibody therapy, vaccination treatment is more effective in the prevention of cancer recurrence. BALB-neuT mouse is a spontaneous metastasis tumor model used for testing the anti-tumor metastatic effect of rat ErbB-2 (neu) vaccine. However, no spontaneous metastasis tumor model used for evaluating Her-2 vaccine has been developed. In the current study, we attempted to use murine melanoma cell lines to establish a stable spontaneous metastasis tumor model for Her-2 vaccines. We developed Her-2-positive B16F10 and B16BL6 cell lines expressing similar Her-2 levels as the typical human tumor cell line SKBR-3. Results showed that Her-2-positive B16BL6, rather than B16F10, cell line could effectively and spontaneously transfer to the lungs approximately 28days after the removal of primary tumors because it has stronger adhesion and invasion capacities. A stable spontaneous metastasis model was developed through in vivo screening of Her-2-positvie B16BL6 cells twice. This model was successfully applied in the analysis of the anti-metastatic efficacy of a tumor vaccine based on heat shock protein. Thus, we first established a spontaneous metastasis model that stably expresses Her-2 at similar levels as human cancers. This model can be used to evaluate the anti-metastatic efficacy of Her-2 vaccine. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. A human colon adenocarcinoma xenograft--radiation response, cellular composition, and tumor disaggregation.

    Science.gov (United States)

    West, C M; Keng, P C; Siemann, D W; Sutherland, R M

    1987-02-01

    The human colon adenocarcinoma cell line WiDr was xenografted and the tumor characterized. When athymic mice (NCR-nu) were inoculated with 10(6) cells, tumors appeared after 7-14 days with a 93-100% take rate and grew with an initial volume-doubling time of around 6 days. For optimizing the tumor disaggregation method, a comparison was made of two dissociation procedures and of different dissociation times. An enzyme cocktail (collagenase, DNase, pronase) resulted in total viable cell yields of 1-3 X 10(7) cells/g tumor tissue. Cell yield decreased with increasing tumor weight. Disaggregation with trypsin gave lower cell yields; and so, although the plating efficiencies (PEs) were higher, the enzyme cocktail was chosen for tumor disaggregation. On the basis of morphologic identification, cell suspensions prepared from WiDr tumors, by use of the enzyme cocktail for 2 hours, contained 49% malignant cells as well as a significant fraction of nonneoplastic cells. The major nonneoplastic host cell component was macrophage (33%); lymphocytes (13%) and granulocytes (5%) also were present. Host cells could be separated from neoplastic cells by centrifugal elutriation. By mixing various proportions of host and tumor cells, it was subsequently shown that the presence of host cells did not influence the malignant cell PE unless the cell suspensions contained greater than 90% host cells. Single-cell suspensions prepared from WiDr tumors, with use of the enzyme cocktail for 2 hours, were irradiated and then plated for survival (D0 = 1.5 Gy; n = 5) (D0, the 37% dose slope). A comparison was made of the sensitivity to radiation, after the different dissociation methods. The radiation sensitivities after 1.5-hour trypsinization and 2- and 6-hour enzyme cocktail administrations were similar, but after 0.5 hour of trypsin, the cells were more sensitive to radiation.

  9. cis-4-[{sup 18}F]-Fluoro-L-proline fails to detect peripheral tumors in humans

    Energy Technology Data Exchange (ETDEWEB)

    Stoffels, Gabriele; Pauleit, Dirk [Institute of Neuroscience and Biophysics-Medicine, Research Centre Juelich, D-52425 Juelich, FRG (Germany); Haas, Rainer; Kobbe, Guido [Department of Oncology, Hematology, and Clinical Immunology, Heinrich-Heine-University Duesseldorf, FRG (Germany); Salber, Dagmar [C. and O. Vogt Institute of Brain Research, Heinrich-Heine-University Duesseldorf, FRG (Germany); Hamacher, Kurt; Coenen, Heinz H. [Institute of Neuroscience and Biophysics - Nuclear Chemistry, Research Centre Juelich, Juelich, FRG (Germany); Langen, Karl-Josef [Institute of Neuroscience and Biophysics-Medicine, Research Centre Juelich, D-52425 Juelich, FRG (Germany)], E-mail: k.j.langen@fz-juelich.de

    2008-11-15

    System A amino acid transport is increased in transformed and malignant cells. The amino acid 4-cis[{sup 18}F]fluoro-L-proline (cis-[{sup 18}F]FPro) has been shown to be a substrate of the System A amino acid carrier. In this pilot study, we investigated the diagnostic potential of cis-[{sup 18}F]FPro in patients with various tumors in comparison with [{sup 18}F]fluorodeoxyglucose-positron emission tomography (FDG-PET). Methods: Eight patients (seven females, one male, age range 43-77 years) with large primary, recurrent or metastatic tumors of different histologies were included in this study. One patient had a recurrent non-Hodgkin lymphoma; two patients, metastatic colon or rectal cancer; one, a metastatic endometrial cancer; one, a multiple myeloma; one, an Ewing sarcoma; one, a metastatic breast cancer and one, a gastrointestinal stromal tumor. PET scans of the trunk were acquired at 1 h after intravenous injection of 400 MBq cis-[{sup 18}F]FPro and compared to PET scans with [{sup 18}F]FDG. Results: None of the tumors or metastatic lesions in this series of patients demonstrated relevant uptake of cis-[{sup 18}F]FPro. In contrast, all tumors with exception of the multiple myeloma showed an intensive uptake of [{sup 18}F]FDG. The mean standardized uptake value of cis-[{sup 18}F]FPro in the tumor or metastases was significantly lower than that of [{sup 18}F]FDG uptake (1.7{+-}0.6 vs. 5.7{+-}3.0; n=8; P<.01). Conclusion: Although other System A-specific tracers have shown relevant tumor uptake, cis-[{sup 18}F]FPro fails to detect most types of human tumors. Based on these results, we cannot recommend a further evaluation of this tracer as a tumor-seeking agent.

  10. cis-4-[(18)F]-Fluoro-l-proline fails to detect peripheral tumors in humans.

    Science.gov (United States)

    Stoffels, Gabriele; Pauleit, Dirk; Haas, Rainer; Kobbe, Guido; Salber, Dagmar; Hamacher, Kurt; Coenen, Heinz H; Langen, Karl-Josef

    2008-11-01

    System A amino acid transport is increased in transformed and malignant cells. The amino acid 4-cis[(18)F]fluoro-l-proline (cis-[(18)F]FPro) has been shown to be a substrate of the System A amino acid carrier. In this pilot study, we investigated the diagnostic potential of cis-[(18)F]FPro in patients with various tumors in comparison with [(18)F]fluorodeoxyglucose-positron emission tomography (FDG-PET). Eight patients (seven females, one male, age range 43-77 years) with large primary, recurrent or metastatic tumors of different histologies were included in this study. One patient had a recurrent non-Hodgkin lymphoma; two patients, metastatic colon or rectal cancer; one, a metastatic endometrial cancer; one, a multiple myeloma; one, an Ewing sarcoma; one, a metastatic breast cancer and one, a gastrointestinal stromal tumor. PET scans of the trunk were acquired at 1 h after intravenous injection of 400 MBq cis-[(18)F]FPro and compared to PET scans with [(18)F]FDG. None of the tumors or metastatic lesions in this series of patients demonstrated relevant uptake of cis-[(18)F]FPro. In contrast, all tumors with exception of the multiple myeloma showed an intensive uptake of [(18)F]FDG. The mean standardized uptake value of cis-[(18)F]FPro in the tumor or metastases was significantly lower than that of [(18)F]FDG uptake (1.7+/-0.6 vs. 5.7+/-3.0; n=8; P<.01). Although other System A-specific tracers have shown relevant tumor uptake, cis-[(18)F]FPro fails to detect most types of human tumors. Based on these results, we cannot recommend a further evaluation of this tracer as a tumor-seeking agent.

  11. Role of Tumor Associated Fibroblasts in Human Liver Regeneration, Cirrhosis, and Cancer

    Directory of Open Access Journals (Sweden)

    Daniela Cesselli

    2011-01-01

    Full Text Available Tumor associated fibroblasts (TAFs are considered a microenvironmental element critical for tumor growth and progression. Experimental studies suggest that their origin could be from mesenchymal stem cells (MSCs derived from the bone marrow. However, the role played by TAFs in cirrhosis, hepatocellular carcinoma development, and progression is largely unknown, and in vitro human models are missing. This paper for the first time demonstrates that (1 human neoplastic livers possess a population of multipotent adult stem cells (MASCs with properties of TAFs; (2 a population of MASC-derived TAFs is already present in cirrhotic, not yet neoplastic, livers; (3 MASCs isolated from nonneoplastic and noncirrhotic liver scan acquire a TAF phenotype when grown in a medium conditioned by tumor cell lines, supporting the notion that TAF could originate from resident primitive cells (MASCs, possibly through a paracrine mechanism.

  12. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors

    Science.gov (United States)

    Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.

    2014-01-01

    Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744

  13. Restricted 12p amplification and RAS mutation in human germ cell tumors of the adult testis

    NARCIS (Netherlands)

    H. Roelofs; J.W. Oosterhuis (Wolter); L.H.J. Looijenga (Leendert); C. Bokemeyer; M.C. Mostert (Marijke); K. Pompe; G. Zafarana (Gaetano); M. van Oorschot; R.J.H.L.M. van Gurp (Ruud); A.J.M. Gillis (Ad); J.A. Stoop (Hans); H.B. Beverloo (Berna)

    2000-01-01

    textabstractHuman testicular germ-cell tumors of young adults (TGCTs), both seminomas and nonseminomas, are characterized by 12p overrepresentation, mostly as isochromosomes, of which the biological and clinical significance is still unclear. A limited number of TGCTs has been

  14. H-1 chemical shift imaging characterization of human brain tumor and edema

    NARCIS (Netherlands)

    Sijens, PE; Oudkerk, M

    Longitudinal (T1) and transverse (T2) relaxation times of metabolites in human brain tumor, peritumoral edema, and unaffected brain tissue were assessed from point resolved spectroscopy (PRESS) H-1 chemical shift imaging results at different repetition times (TR = 1500 and 5000 ms; T1: n = 19) and

  15. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain.

    Science.gov (United States)

    Deng, Bo; Jia, Liqun; Pan, Lin; Song, Aiping; Wang, Yuanyuan; Tan, Huangying; Xiang, Qing; Yu, Lili; Ke, Dandan

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats.

  16. Peripheral Tumor Necrosis Factor-Alpha (TNF-α) Modulates Amyloid Pathology by Regulating Blood-Derived Immune Cells and Glial Response in the Brain of AD/TNF Transgenic Mice.

    Science.gov (United States)

    Paouri, Evi; Tzara, Ourania; Kartalou, Georgia-Ioanna; Zenelak, Sofia; Georgopoulos, Spiros

    2017-05-17

    Increasing evidence has suggested that systemic inflammation along with local brain inflammation can play a significant role in Alzheimer's disease (AD) pathogenesis. Identifying key molecules that regulate the crosstalk between the immune and the CNS can provide potential therapeutic targets. TNF-α is a proinflammatory cytokine implicated in the pathogenesis of systemic inflammatory and neurodegenerative diseases, such as rheumatoid arthritis (RA) and AD. Recent studies have reported that anti-TNF-α therapy or RA itself can modulate AD pathology, although the underlying mechanism is unclear. To investigate the role of peripheral TNF-α as a mediator of RA in the pathogenesis of AD, we generated double-transgenic 5XFAD/Tg197 AD/TNF mice that develop amyloid deposits and inflammatory arthritis induced by human TNF-α (huTNF-α) expression. We found that 5XFAD/Tg197 mice display decreased amyloid deposition, compromised neuronal integrity, and robust brain inflammation characterized by extensive gliosis and elevated blood-derived immune cell populations, including phagocytic macrophages and microglia. To evaluate the contribution of peripheral huTNF-α in the observed brain phenotype, we treated 5XFAD/Tg197 mice systemically with infliximab, an anti-huTNF-α antibody that does not penetrate the blood-brain barrier and prevents arthritis. Peripheral inhibition of huTNF-α increases amyloid deposition, rescues neuronal impairment, and suppresses gliosis and recruitment of blood-derived immune cells, without affecting brain huTNF-α levels. Our data report, for the first time, a distinctive role for peripheral TNF-α in the modulation of the amyloid phenotype in mice by regulating blood-derived and local brain inflammatory cell populations involved in β-amyloid clearance. SIGNIFICANCE STATEMENT Mounting evidence supports the active involvement of systemic inflammation, in addition to local brain inflammation, in Alzheimer's disease (AD) progression. TNF-α is a

  17. Telomerase inhibition improves tumor response to radiotherapy in a murine orthotopic model of human glioblastoma.

    Science.gov (United States)

    Ferrandon, Sylvain; Malleval, Céline; El Hamdani, Badia; Battiston-Montagne, Priscillia; Bolbos, Radu; Langlois, Jean-Baptiste; Manas, Patrick; Gryaznov, Sergei M; Alphonse, Gersende; Honnorat, Jérôme; Rodriguez-Lafrasse, Claire; Poncet, Delphine

    2015-07-17

    Glioblastoma (GBM) is the most frequent and aggressive type of adult brain tumor. Most GBMs express telomerase; a high level of intra-tumoral telomerase activity (TA) is predictive of poor prognosis. Thus, telomerase inhibitors are promising options to treat GBM. These inhibitors increase the response to radiotherapy (RT), in vitro as well as in vivo. Since typical treatments for GBM include RT, our objective was to evaluate the efficiency of Imetelstat (TA inhibitor) combined with RT. We used a murine orthotopic model of human GBM (N = 8 to11 mice per group) and μMRI imaging to evaluate the efficacy of Imetelstat (delivered by intra-peritoneal injection) alone and combined with RT. Using a clinically established protocol, we demonstrated that Imetelstat significantly: (i) inhibited the TA in the very center of the tumor, (ii) reduced tumor volume as a proportion of TA inhibition, and (iii) increased the response to RT, in terms of tumor volume regression and survival increase. Imetelstat is currently evaluated in refractory brain tumors in young patients (without RT). Our results support its clinical evaluation combined with RT to treat GBM.

  18. Combined treatment of syngeneic murine tumors and xenotransplanted human lung cancer by immunotherapy and radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Terashima, H.; Yasumoto, K.; Yanagawa, E.; Takayama, K. (Kyushu Cancer Center, Fukuoka (Japan)); Nomoto, K.

    1981-06-01

    The synergistic effect of nonspecific immunotherapy with cell-wall skeleton of BCG on radiotherapy against two syngeneic murine tumors, a methylcho-lanthrene-induced tumor (MCA) and a spontaneous well-differentiated mammary adenocarcinoma (Br-1), was studied in (+/+) BALB/c mice and (nu/nu) mice of BALB/c background. Single irradiation of tumors with a dose of 2000 rad induced complete shrinkage in about 18% of MCA and Br-1 tumors in (+/+) mice. Single irradiation did not induce complete shrinkage of tumors in (nu/nu) mice. When immunotherapy was combined with radiotherapy, the rates of complete shrinkage of MCA and Br-1 tumors increased to 82 and 61%, respectively. In contrast, such a strong synergistic effect was not observed in (nu/nu) mice. Moreover, human lung cancers (two squamous cell carcinomas and two small cell carcinomas) xenotransplanted to nude mice were treated with the combined therapy. The effect was stronger on squamous cell carcinomas than on small cell carcinomas.

  19. A Tumor-stroma Targeted Oncolytic Adenovirus Replicated in Human Ovary Cancer Samples and Inhibited Growth of Disseminated Solid Tumors in Mice

    Science.gov (United States)

    Lopez, M Veronica; Rivera, Angel A; Viale, Diego L; Benedetti, Lorena; Cuneo, Nicasio; Kimball, Kristopher J; Wang, Minghui; Douglas, Joanne T; Zhu, Zeng B; Bravo, Alicia I; Gidekel, Manuel; Alvarez, Ronald D; Curiel, David T; Podhajcer, Osvaldo L

    2012-01-01

    Targeting the tumor stroma in addition to the malignant cell compartment is of paramount importance to achieve complete tumor regression. In this work, we modified a previously designed tumor stroma-targeted conditionally replicative adenovirus (CRAd) based on the SPARC promoter by introducing a mutated E1A unable to bind pRB and pseudotyped with a chimeric Ad5/3 fiber (Ad F512v1), and assessed its replication/lytic capacity in ovary cancer in vitro and in vivo. AdF512v1 was able to replicate in fresh samples obtained from patients: (i) with primary human ovary cancer; (ii) that underwent neoadjuvant treatment; (iii) with metastatic disease. In addition, we show that four intraperitoneal (i.p.) injections of 5 × 1010 v.p. eliminated 50% of xenografted human ovary tumors disseminated in nude mice. Moreover, AdF512v1 replication in tumor models was enhanced 15–40-fold when the tumor contained a mix of malignant and SPARC-expressing stromal cells (fibroblasts and endothelial cells). Contrary to the wild-type virus, AdF512v1 was unable to replicate in normal human ovary samples while the wild-type virus can replicate. This study provides evidence on the lytic capacity of this CRAd and highlights the importance of targeting the stromal tissue in addition to the malignant cell compartment to achieve tumor regression. PMID:22948673

  20. Cytostasis of tumor cell lines by granulocytes from cancer patients and normal human donors.

    Science.gov (United States)

    Korec, S; Herberman, R B; Cannon, G B; Reid, J; Braatz, J A

    1981-08-15

    Granulocytes of normal human donors were previously shown to have cytostatic activity in vitro against a variety of tumor cell lines. In the present study, we have compared the levels of granulocyte-mediated cytostatic activity in cancer patients and normal donors. In an initial study of 25 tumor-bearing patients and 21 individuals with benign or no disease, decreased cytostatic activity was observed in 84% of the cancer patients. Nine cancer patients with no evidence of disease had reactivity in the normal range. Granulocytes separated by a one-step method on a double Ficoll-Percoll gradient showed decreased reactivity. This procedure eliminated the differences previously detected between tumor-bearing patients and controls. Addition of either pooled normal AB human serum or autologous serum to the assay restored the reactivity. Only with autologous serum and not with allogeneic serum, were the differences between tumor-bearing patients and controls again seen. Therefore, in a subsequent study, we examined the effect of serum on cytostasis by normal granulocytes that were isolated on double gradients. We observed lowered serum restorative activity (SRA) in 41 of the 46 (89%) tumor-bearing patients tested. Fractionation of sera by Sephadex G-200 chromatography indicated that SRA of both cancer patients and normal donors was in the 100,000 molecular weight region.

  1. Monitoring the Bystander Killing Effect of Human Multipotent Stem Cells for Treatment of Malignant Brain Tumors

    Directory of Open Access Journals (Sweden)

    Cindy Leten

    2016-01-01

    Full Text Available Tumor infiltrating stem cells have been suggested as a vehicle for the delivery of a suicide gene towards otherwise difficult to treat tumors like glioma. We have used herpes simplex virus thymidine kinase expressing human multipotent adult progenitor cells in two brain tumor models (hU87 and Hs683 in immune-compromised mice. In order to determine the best time point for the administration of the codrug ganciclovir, the stem cell distribution and viability were monitored in vivo using bioluminescence (BLI and magnetic resonance imaging (MRI. Treatment was assessed by in vivo BLI and MRI of the tumors. We were able to show that suicide gene therapy using HSV-tk expressing stem cells can be followed in vivo by MRI and BLI. This has the advantage that (1 outliers can be detected earlier, (2 GCV treatment can be initiated based on stem cell distribution rather than on empirical time points, and (3 a more thorough follow-up can be provided prior to and after treatment of these animals. In contrast to rodent stem cell and tumor models, treatment success was limited in our model using human cell lines. This was most likely due to the lack of immune components in the immune-compromised rodents.

  2. Clotrimazole disrupts glycolysis in human breast cancer without affecting non-tumoral tissues.

    Science.gov (United States)

    Coelho, Raquel Guimarães; Calaça, Isadora de Castro; Celestrini, Deborah de Moura; Correia, Ana Helena; Costa, Mauricio Augusto Silva Magalhães; Sola-Penna, Mauro

    2011-08-01

    Human breast cancer tissues, as well as normal tissues from the same patients, were treated with clotrimazole (CTZ) and have their capacities for glucose consumption and lactate production evaluated. This treatment strongly decreased the lactate production rate by tumor tissues (85% inhibition) without affecting the other measurements made, i.e. lactate production by control tissues or glucose consumption by both, control and tumor tissues. This result directly correlates with the inhibition promoted by CTZ on the activity of the major regulatory glycolytic enzyme 6-phosphofructo-1-kinase (PFK) that was observed in tumor tissues (84% inhibition) but not in control tissues. Fractionation of the tissues revealed that this inhibition does not occur in the soluble fraction of the enzyme, but is exclusive of a particulate fraction. It has been previously shown that the particulate fraction of PFK activity in tumors is associated to actin filaments (f-actin). Thus, we investigated whether CTZ would affect the association between PFK and f-actin and we found that the drug directly induces the dissociation of the two proteins in the same extent that it inhibits lactate production, total PFK activity and the particulate PFK activity. We concluded that CTZ disrupts glycolysis on human breast tumor tissues, inhibiting PFK activity by dissociating the enzyme from f-actin. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Evaluation of cloned cells, animal model, and ATRA sensitivity of human testicular yolk sac tumor

    Directory of Open Access Journals (Sweden)

    Zhao Junfeng

    2012-03-01

    Full Text Available Abstract The testicular yolk sac tumor (TYST is the most common neoplasm originated from germ cells differentiated abnormally, a major part of pediatric malignant testicular tumors. The present study aimed at developing and validating the in vitro and vivo models of TYST and evaluating the sensitivity of TYST to treatments, by cloning human TYST cells and investigating the histology, ultra-structure, growth kinetics and expression of specific proteins of cloned cells. We found biological characteristics of cloned TYST cells were similar to the yolk sac tumor and differentiated from the columnar to glandular-like or goblet cells-like cells. Chromosomes for tumor identification in each passage met nature of the primary tumor. TYST cells were more sensitive to all-trans-retinoic acid which had significantly inhibitory effects on cell proliferation. Cisplatin induced apoptosis of TYST cells through the activation of p53 expression and down-regulation of Bcl- expression. Thus, we believe that cloned TYST cells and the animal model developed here are useful to understand the molecular mechanism of TYST cells and develop potential therapies for human TYST.

  4. 40 CFR 79.67 - Glial fibrillary acidic protein assay.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Glial fibrillary acidic protein assay... Glial fibrillary acidic protein assay. (a) Purpose. Chemical-induced injury of the nervous system, i.e... paragraph (e)(3) in this section). Assays of glial fibrillary acidic protein (GFAP), the major intermediate...

  5. Adenoviral Transduction of Human Acid Sphingomyelinase into Neo-Angiogenic Endothelium Radiosensitizes Tumor Cure

    Science.gov (United States)

    Fuller, John D.; Rotolo, Jimmy A.; García-Barros, Mónica; Feldman, Regina; Rao, Shyam; Weichselbaum, Ralph R.; Harats, Dror; Haimovitz-Friedman, Adriana; Fuks, Zvi; Sadelain, Michel; Kolesnick, Richard

    2013-01-01

    These studies define a new mechanism-based approach to radiosensitize tumor cure by single dose radiotherapy (SDRT). Published evidence indicates that SDRT induces acute microvascular endothelial apoptosis initiated via acid sphingomyelinase (ASMase) translocation to the external plasma membrane. Ensuing microvascular damage regulates radiation lethality of tumor stem cell clonogens to effect tumor cure. Based on this biology, we engineered an ASMase-producing vector consisting of a modified pre-proendothelin-1 promoter, PPE1(3x), and a hypoxia-inducible dual-binding HIF-2α-Ets-1 enhancer element upstream of the asmase gene, inserted into a replication-deficient adenovirus yielding the vector Ad5H2E-PPE1(3x)-ASMase. This vector confers ASMase over-expression in cycling angiogenic endothelium in vitro and within tumors in vivo, with no detectable enhancement in endothelium of normal tissues that exhibit a minute fraction of cycling cells or in non-endothelial tumor or normal tissue cells. Intravenous pretreatment with Ad5H2E-PPE1(3x)-ASMase markedly increases SDRT cure of inherently radiosensitive MCA/129 fibrosarcomas, and converts radiation-incurable B16 melanomas into biopsy-proven tumor cures. In contrast, Ad5H2E-PPE1(3x)-ASMase treatment did not impact radiation damage to small intestinal crypts as non-dividing small intestinal microvessels did not overexpress ASMase and were not radiosensitized. We posit that combination of genetic up-regulation of tumor microvascular ASMase and SDRT provides therapeutic options for currently radiation-incurable human tumors. PMID:23936314

  6. Adenoviral transduction of human acid sphingomyelinase into neo-angiogenic endothelium radiosensitizes tumor cure.

    Directory of Open Access Journals (Sweden)

    Branka Stancevic

    Full Text Available These studies define a new mechanism-based approach to radiosensitize tumor cure by single dose radiotherapy (SDRT. Published evidence indicates that SDRT induces acute microvascular endothelial apoptosis initiated via acid sphingomyelinase (ASMase translocation to the external plasma membrane. Ensuing microvascular damage regulates radiation lethality of tumor stem cell clonogens to effect tumor cure. Based on this biology, we engineered an ASMase-producing vector consisting of a modified pre-proendothelin-1 promoter, PPE1(3x, and a hypoxia-inducible dual-binding HIF-2α-Ets-1 enhancer element upstream of the asmase gene, inserted into a replication-deficient adenovirus yielding the vector Ad5H2E-PPE1(3x-ASMase. This vector confers ASMase over-expression in cycling angiogenic endothelium in vitro and within tumors in vivo, with no detectable enhancement in endothelium of normal tissues that exhibit a minute fraction of cycling cells or in non-endothelial tumor or normal tissue cells. Intravenous pretreatment with Ad5H2E-PPE1(3x-ASMase markedly increases SDRT cure of inherently radiosensitive MCA/129 fibrosarcomas, and converts radiation-incurable B16 melanomas into biopsy-proven tumor cures. In contrast, Ad5H2E-PPE1(3x-ASMase treatment did not impact radiation damage to small intestinal crypts as non-dividing small intestinal microvessels did not overexpress ASMase and were not radiosensitized. We posit that combination of genetic up-regulation of tumor microvascular ASMase and SDRT provides therapeutic options for currently radiation-incurable human tumors.

  7. Human adipose tissue from normal and tumoral breast regulates the behavior of mammary epithelial cells.

    Science.gov (United States)

    Pistone Creydt, Virginia; Fletcher, Sabrina Johanna; Giudice, Jimena; Bruzzone, Ariana; Chasseing, Norma Alejandra; Gonzalez, Eduardo Gustavo; Sacca, Paula Alejandra; Calvo, Juan Carlos

    2013-02-01

    Stromal-epithelial interactions mediate both breast development and breast cancer progression. In the present work, we evaluated the effects of conditioned media (CMs) of human adipose tissue explants from normal (hATN) and tumor (hATT) breast on proliferation, adhesion, migration and metalloproteases activity on tumor (MCF-7 and IBH-7) and non-tumor (MCF-10A) human breast epithelial cell lines. Human adipose tissues were obtained from patients and the conditioned medium from hATN and hATT collected after 24 h of incubation. MCF-10A, MCF-7 and IBH-7 cells were grown and incubated with CMs and proliferation and adhesion, as well as migration ability and metalloprotease activity, of epithelial cells after exposing cell cultures to hATN- or hATT-CMs were quantified. The statistical significance between different experimental conditions was evaluated by one-way ANOVA. Tukey's post hoc tests were performed. Tumor and non-tumor breast epithelial cells significantly increased their proliferation activity after 24 h of treatment with hATT-CMs compared to control-CMs. Furthermore, cellular adhesion of these two tumor cell lines was significantly lower with hATT-CMs than with hATN-CMs. Therefore, hATT-CMs seem to induce significantly lower expression or less activity of the components involved in cellular adhesion than hATN-CMs. In addition, hATT-CMs induced pro-MMP-9 and MMP-9 activity and increased the migration of MCF-7 and IBH-7 cells compared to hATN-CMs. We conclude that the microenvironment of the tumor interacts in a dynamic way with the mutated epithelium. This evidence leads to the possibility to modify the tumor behavior/phenotype through the regulation or modification of its microenvironment. We developed a model in which we obtained CMs from adipose tissue explants completely, either from normal or tumor breast. In this way, we studied the contribution of soluble factors independently of the possible effects of direct cell contact.

  8. CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo.

    Science.gov (United States)

    Wennerberg, Erik; Kremer, Veronika; Childs, Richard; Lundqvist, Andreas

    2015-02-01

    Adoptive infusion of natural killer (NK) cells is being increasingly explored as a therapy in patients with cancer, although clinical responses are thus far limited to patients with hematological malignancies. Inadequate homing of infused NK cells to the tumor site represents a key factor that may explain the poor anti-tumor effect of NK cell therapy against solid tumors. One of the major players in the regulation of lymphocyte chemotaxis is the chemokine receptor chemokine (C-X-C motif) receptor 3 (CXCR3) which is expressed on activated NK cells and induces NK cell migration toward gradients of the chemokine (C-X-C motif) ligand (CXCL9, 10 and 11). Here, we show that ex vivo expansion of human NK cells results in a tenfold increased expression of the CXCR3 receptor compared with resting NK cells (p = 0.04). Consequently, these NK cells displayed an improved migratory capacity toward solid tumors, which was dependent on tumor-derived CXCL10. In xenograft models, adoptively transferred NK cells showed increased migration toward CXCL10-transfected melanoma tumors compared with CXCL10-negative wild-type tumors, resulting in significantly reduced tumor burden and increased survival (median survival 41 vs. 32 days, p = 0.03). Furthermore, administration of interferon-gamma locally in the tumor stimulated the production of CXCL10 in subcutaneous melanoma tumors resulting in increased infiltration of adoptively transferred CXCR3-positive expanded NK cells. Our findings demonstrate the importance of CXCL10-induced chemoattraction in the anti-tumor response of adoptively transferred expanded NK cells against solid melanoma tumors.

  9. Inhibition of activated Ras suppresses multiple oncogenic Hub genes in human epithelial tumors.

    Science.gov (United States)

    Cao, Lei; Wang, Ping; Luo, Hui; Wang, Xi-Rui; Wang, Xie-Feng; Zhang, Jun-Xia; Wang, Ying-Yi; Yao, Lei; Liu, Ning; You, Yong-Ping

    2014-10-01

    Cancer cells may involve diverse mutations, but they often rely on continued expression of a single oncoprotein for survival, as a response to targeting this protein. Generally, Ras is overexpressed in human epithelial tumors and cancellation of activated Ras inhibits carcinoma cell proliferation and differentiation ability, and induces apoptotosis of tumor cells. However, the mechanisms of inhibition of activated Ras that suppress the malignancy activity of human epithelial tumors remain to be illuminated. We utilized text-mining of MEDLINE abstracts with natural language processing to establish the Ras biologic association network, and identified several interactions of this network with the Ras pathway. Our investigation not only examined the expression of Ras and Hub genes (PIK3CA, MDM2, CCND1, EGFR, JUN, MYC, VEGFA, ERK1 and ERK2) but also confirmed inhibition of activated Ras reduced expression of multiple oncogene in vitro studies. Our studies provide strong support for the conclusion that cancellation of activated Ras specifically regulates defective Ras pathways in human tumor cells.

  10. Induction of Anti-Tumor Immune Responses by Peptide Receptor Radionuclide Therapy with 177Lu-DOTATATE in a Murine Model of a Human Neuroendocrine Tumor

    Directory of Open Access Journals (Sweden)

    Michael Bzorek

    2013-10-01

    Full Text Available Peptide receptor radionuclide therapy (PRRT is a relatively new mode of internally targeted radiotherapy currently in clinical trials. In PRRT, ionizing radioisotopes conjugated to somatostatin analogues are targeted to neuroendocrine tumors (NETs via somatostatin receptors. Despite promising clinical results, very little is known about the mechanism of tumor control. By using NCI-H727 cells in an in vivo murine xenograft model of human NETs, we showed that 177Lu-DOTATATE PRRT led to increased infiltration of CD86+ antigen presenting cells into tumor tissue. We also found that following treatment with PRRT, there was significantly increased tumor infiltration by CD49b+/FasL+ NK cells potentially capable of tumor killing. Further investigation into the immunomodulatory effects of PRRT will be essential in improving treatment efficacy.

  11. Induction of Anti-Tumor Immune Responses by Peptide Receptor Radionuclide Therapy with (177)Lu-DOTATATE in a Murine Model of a Human Neuroendocrine Tumor

    DEFF Research Database (Denmark)

    Wu, Yin; Pfeifer, Andreas Klaus; Myschetzky, Rebecca

    2013-01-01

    Peptide receptor radionuclide therapy (PRRT) is a relatively new mode of internally targeted radiotherapy currently in clinical trials. In PRRT, ionizing radioisotopes conjugated to somatostatin analogues are targeted to neuroendocrine tumors (NETs) via somatostatin receptors. Despite promising...... clinical results, very little is known about the mechanism of tumor control. By using NCI-H727 cells in an in vivo murine xenograft model of human NETs, we showed that 177Lu-DOTATATE PRRT led to increased infiltration of CD86+ antigen presenting cells into tumor tissue. We also found that following...... treatment with PRRT, there was significantly increased tumor infiltration by CD49b+/FasL+ NK cells potentially capable of tumor killing. Further investigation into the immunomodulatory effects of PRRT will be essential in improving treatment efficacy....

  12. Impact of tumor position, conductivity distribution and tissue homogeneity on the distribution of tumor treating fields in a human brain

    DEFF Research Database (Denmark)

    Korshoej, Anders Rosendal; Hansen, Frederik Lundgaard; Thielscher, Axel

    2017-01-01

    and in deep tumors embedded in white matter. The field strength was not higher for tumors close to the active electrode. Left/right field directions were generally superior to anterior/posterior directions. Central necrosis focally enhanced the field near tumor boundaries perpendicular to the applied field...

  13. Dendritic Cells in the Context of Human Tumors: Biology and Experimental Tools.

    Science.gov (United States)

    Volovitz, Ilan; Melzer, Susanne; Amar, Sarah; Bocsi, József; Bloch, Merav; Efroni, Sol; Ram, Zvi; Tárnok, Attila

    2016-01-01

    Dendritic cells (DC) are the most potent and versatile antigen-presenting cells (APC) in the immune system. DC have an exceptional ability to comprehend the immune context of a captured antigen based on molecular signals identified from its vicinity. The analyzed information is then conveyed to other immune effector cells. Such capability enables DC to play a pivotal role in mediating either an immunogenic response or immune tolerance towards an acquired antigen. This review summarizes current knowledge on DC in the context of human tumors. It covers the basics of human DC biology, elaborating on the different markers, morphology and function of the different subsets of human DC. Human blood-borne DC are comprised of at least three subsets consisting of one plasmacytoid DC (pDC) and two to three myeloid DC (mDC) subsets. Some tissues have unique DC. Each subset has a different phenotype and function and may induce pro-tumoral or anti-tumoral effects. The review also discusses two methods fundamental to the research of DC on the single-cell level: multicolor flow cytometry (FCM) and image-based cytometry (IC). These methods, along with new genomics and proteomics tools, can provide high-resolution information on specific DC subsets and on immune and tumor cells with which they interact. The different layers of collected biological data may then be integrated using Immune-Cytomics modeling approaches. Such novel integrated approaches may help unravel the complex network of cellular interactions that DC carry out within tumors, and may help harness this complex immunological information into the development of more effective treatments for cancer.

  14. Subretinal Glial Membranes in Eyes With Geographic Atrophy.

    Science.gov (United States)

    Edwards, Malia M; McLeod, D Scott; Bhutto, Imran A; Grebe, Rhonda; Duffy, Maeve; Lutty, Gerard A

    2017-03-01

    Müller cells create the external limiting membrane (ELM) by forming junctions with photoreceptor cells. This study evaluated the relationship between focal photoreceptors and RPE loss in geographic atrophy (GA) and Müller cell extension into the subretinal space. Human donor eyes with no retinal disease or geographic atrophy (GA) were fixed and the eye cups imaged. The retinal posterior pole was stained for glial fibrillary acidic protein (GFAP; astrocytes and activated Müller cells) and vimentin (Müller cells) while the submacular choroids were labeled with Ulex Europaeus Agglutinin lectin (blood vessels). Choroids and retinas were imaged using a Zeiss 710 confocal microscope. Additional eyes were cryopreserved or processed for transmission electron microscopy (TEM) to better visualize the Müller cells. Vimentin staining of aged control retinas (n = 4) revealed a panretinal cobblestone-like ELM. While this pattern was also observed in the GA retinas (n = 7), each also had a distinct area in which vimentin+ and vimentin+/GFAP+ processes created a subretinal membrane. Subretinal glial membranes closely matched areas of RPE atrophy in the gross photos. Choroidal vascular loss was also evident in these atrophic areas. Smaller glial projections were noted, which correlated with drusen in gross photos. The presence of glia in the subretinal space was confirmed by TEM and cross cross-section immunohistochemistry. In eyes with GA, subretinal Müller cell membranes present in areas of RPE atrophy may be a Müller cell attempt to replace the ELM. These membranes could interfere with treatments such as stem cell therapy.

  15. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  16. Screening of urocanic acid isomers in human basal and squamous cell carcinoma tumors compared with tumor periphery and healthy skin.

    Science.gov (United States)

    Decara, Juan Manuel; Aguilera, José; Abdala, Roberto; Sánchez, Purificación; Figueroa, Félix L; Herrera, Enrique

    2008-10-01

    Trans-urocanic acid is a major chromophore for ultraviolet (UV) radiation in human epidermis. The UV induces photoisomerization of trans-urocanic acid (tUCA) form to cis-urocanic acid (cUCA) and has been reported as an important mediator in the immunosuppression induced by UV. This immunomodulation has been recognized as an important factor related to skin cancer development. This is the first time that UCA isomers have been measured in epidermis of skin biopsies from patients with squamous cell carcinoma (SCC) and with basal cell carcinoma (BCC) and compared with the tumor periphery and biopsies of healthy photoexposed and non-photoexposed skin as controls. The UCA isomers were separated and quantified by high performance liquid chromatography. Analysis of UCA in healthy skin showed significant increase in total UCA content in non-photoexposed body sites compared with highly exposed skins. In contrast, the percentage of cUCA was higher in photoexposed body sites. Maximal levels of cUCA were found in cheek, forehead and forearm and lower levels in abdomen and thigh. No differences were found in total UCA concentration between the tumor samples and healthy photoexposed skin. However, differences were found in relation between isomers. Higher levels of cUCA were detected in SCC biopsies (44% of total UCA) compared with samples of BCC and that of healthy photoexposed skin (30%). These results suggest that the UV radiation exposure, a main factor in development of SCC can be mediated, apart from direct effect to cells (DNA damage), by immunosuppression pathways mediated by high production of cUCA.

  17. Number of Polyploid Giant Cancer Cells and Expression of EZH2 Are Associated with VM Formation and Tumor Grade in Human Ovarian Tumor

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2014-01-01

    Full Text Available To investigate the associations among the number of polyploid giant cancer cells (PGCCs and vasculogenic mimicry (VM, EZH2 expression, and serous ovarian tumor grade, a total of 80 paraffin-embedded serous ovarian tumor samples including 21 cases of primary carcinoma and their metastatic tumors, 26 cases of primary carcinoma without metastasis, and 12 cases of serous borderline cystadenoma were analyzed. PGCCs and VM were detected in human serous ovarian tumor. The metastatic foci of ovarian carcinoma had the highest number of PGCCs and VM. The number of PGCCs and VM increased with the grade of ovarian carcinomas. PGCCs generated erythrocytes via budding and together they formed VM. Tumor cells and cancer-associated fibroblasts were positive for EZH2 immunohistochemical staining. The tumor cells and cancer associated fibroblasts in the metastatic foci had the highest staining index of EZH2 staining. Both tumor cells and cancer-associated fibroblasts express EZH2 which then contributes to the malignant grade of serous ovarian tumor.

  18. Glial-glial and glial-neuronal interfaces in radiation-induced, glia-depleted spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, S.A.; Sims, T.J. [Arkansas Univ., Little Rock, AR (United States). Medical Center

    1997-01-01

    This review summarises some of the major findings derived from studies using the model of a glia-depleted environment developed and characterised in this laboratory. Glial depletion is achieved by exposure of the immature rodent spinal cord to x-radiation which markedly reduces both astrocyte and oligodendrocyte populations and severely impairs myelination. This glia-depleted, hypomylinated state presents a unique opportunity to examine aspects of spinal cord maturation in the absence of a normal glial population. An associated sequela within 2-3 wk following irradiation is the appearance of Schwann cells in the dorsal portion of the spinal cord. Characteristics of these intraspinal Schwann cells, their patterns of myelination or ensheathment, and their interrelations with the few remaining central glia have been examined. A later sequela is the development of Schwann cells in the ventral aspect of the spinal cord where they occur predominantly in the grey matter. (author).

  19. No evidence for active human papillomavirus (HPV) in fields surrounding HPV-positive oropharyngeal tumors.

    Science.gov (United States)

    Rietbergen, Michelle M; Braakhuis, Boudewijn J M; Moukhtari, Nadia; Bloemena, Elisabeth; Brink, Arjen; Sie, Daoud; Ylstra, Bauke; Baatenburg de Jong, Robert J; Snijders, Peter J F; Brakenhoff, Ruud H; Leemans, C René

    2014-02-01

    Patients with human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinomas (OPSCCs) have a better prognosis than patients with HPV-negative OPSCCs. Important factors contributing to this better prognosis are relatively low numbers of local/regional recurrences (LRRs) and second primary tumors (SPTs) in patients with HPV-positive OPSCC. These low numbers may be explained in addition by the absence of a 'field cancerization' effect, which is a cause of LRRs and SPTs in patients with HPV-negative OPSCC. We aimed to detect a possible 'field effect' in patients with HPV-positive OPSCC. As HPV is involved in the early stage of carcinogenesis in OPSCCs, its presence is considered a reliable marker for the detection of such a field effect. Therefore, the presence of transcriptionally active HPV was analyzed in the mucosa surrounding HPV-positive OPSCCs. We included 20 patients who were surgically treated for an HPV-positive OPSCC in the period 2000-2006. Of each patient, the formalin-fixed paraffin-embedded tumor sample and all available resection margins were collected. In total, 97 resection margins were investigated with an average of five resection margins per tumor. All samples were analyzed for the presence of tumor and the presence of transcriptionally active HPV by HPV16-E6-mRNA detection. All tumors were HPV16-E6-mRNA positive. HPV16-E6-mRNA could be detected in the resection margins that contained tumor (n = 6). All tumor-negative resection margins (n = 91) scored negative for HPV16-E6-mRNA. In conclusion, transcriptional active HPV could not be detected in the mucosa surrounding an HPV-positive OPSCC, which suggests the absence of field effect. This observation may explain the lower number of LRRs and SPTs in HPV-positive patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Experimental radioimmunotherapy of a xenografted human colonic tumor (GW-39) producing carcinoembryonic antigen

    Energy Technology Data Exchange (ETDEWEB)

    Goldenberg, D.M.; Gaffar, S.A.; Bennett, S.J.; Beach, J.L.

    1981-11-01

    Experiments were undertaken to evaluate the antitumor effects of 131I-labeled goat antibody immunoglobulin G prepared against carcinoembryonic antigen in hamsters bearing the carcinoembryonic antigen-producing GW-39 human colonic carcinoma. At a single injection of 1 mCi 131I and higher, a marked growth inhibition of GW-39 tumors, as well as a considerable increase in the survival time of the tumor-bearing hamsters, could be achieved. At a dose of 1 mCi, the radioactive affinity-purified antibody appeared to be superior to radioactive normal goat immunoglobulin G in influencing tumor growth and survival time, but no significant difference could be seen at the higher dose of 2 mCi given. Radiobiological calculations indicated that the tumors received, at up to 20 days after therapy, 1325 rads for the specific antibody and only 411 rads for the normal immunoglobulin G preparation. These findings encourage the further evaluation of antibodies to tumor markers for isotopic cancer therapy.

  1. Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis.

    Science.gov (United States)

    Bhandari, A; Bansal, A; Singh, A; Sinha, N

    2017-07-05

    Cancer is one of the leading causes of death all over the world. Among the strategies that are used for cancer treatment, the effectiveness of chemotherapy is often hindered by factors such as irregular and non-uniform uptake of drugs inside tumor. Thus, accurate prediction of drug transport and deposition inside tumor is crucial for increasing the effectiveness of chemotherapeutic treatment. In this study, a computational model of human brain tumor is developed that incorporates dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) data into a voxelized porous media model. The model takes into account realistic transport and perfusion kinetics parameters together with realistic heterogeneous tumor vasculature and accurate arterial input function (AIF), which makes it patient specific. The computational results for interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and tracer concentration show good agreement with the experimental results. The computational model can be extended further for predicting the deposition of chemotherapeutic drugs in tumor environment as well as selection of the best chemotherapeutic drug for a specific patient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. CD200-expressing human basal cell carcinoma cells initiate tumor growth.

    Science.gov (United States)

    Colmont, Chantal S; Benketah, Antisar; Reed, Simon H; Hawk, Nga V; Telford, William G; Ohyama, Manabu; Udey, Mark C; Yee, Carole L; Vogel, Jonathan C; Patel, Girish K

    2013-01-22

    Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.

  3. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds.

    Directory of Open Access Journals (Sweden)

    Howard Y Chang

    2004-02-01

    Full Text Available Cancer invasion and metastasis have been likened to wound healing gone awry. Despite parallels in cellular behavior between cancer progression and wound healing, the molecular relationships between these two processes and their prognostic implications are unclear. In this study, based on gene expression profiles of fibroblasts from ten anatomic sites, we identify a stereotyped gene expression program in response to serum exposure that appears to reflect the multifaceted role of fibroblasts in wound healing. The genes comprising this fibroblast common serum response are coordinately regulated in many human tumors, allowing us to identify tumors with gene expression signatures suggestive of active wounds. Genes induced in the fibroblast serum-response program are expressed in tumors by the tumor cells themselves, by tumor-associated fibroblasts, or both. The molecular features that define this wound-like phenotype are evident at an early clinical stage, persist during treatment, and predict increased risk of metastasis and death in breast, lung, and gastric carcinomas. Thus, the transcriptional signature of the response of fibroblasts to serum provides a possible link between cancer progression and wound healing, as well as a powerful predictor of the clinical course in several common carcinomas.

  4. The cytogenetic theory of the pathogenesis of human adult male germ cell tumors. Review article.

    Science.gov (United States)

    Chaganti, R S; Houldsworth, J

    1998-01-01

    Human male germ cell tumors (GCTs) represent a biological paradox because, in order to develop into a pluripotential tumor, a germ cell destined to a path of limited or no proliferation must acquire the potential for unlimited proliferation. In addition, it must acquire the ability to elicit embryonal differentiation patterns without the reciprocal inputs from fertilization and the imprinting-associated genomic changes which are a part of normal embryonal development. Although much speculated about, the genetic mechanisms underlying these properties of male GCTs remain enigmatic. Recent cytogenetic and molecular genetic analyses of these tumors are providing new insights and new testable hypotheses. Based on our recent work, we propose two such hypotheses. One relates to the mechanism of germ cell transformation and germ cell tumor development. We suggest that the invariable 12p amplification noted as early as in carcinoma in situ/intratubular germ cell neoplasia (CIS/ITGCN) lesions leads to deregulated overexpression of cyclin D2, a cell cycle G1/S checkpoint regulator with oncogeneic potential. Such overexpression reinitiates the cell cycle. We visualize this happening during the pachytene stage of meiosis through aberrant recombinational events which lead to 12p amplification. The other hypothesis relates to the origin of primary extragonadal GCTs. By comparing cytogenetic changes in primary mediastinal versus gonadal lesions, we propose that, in contrast to long-standing speculation that primary extra-gonadal tumors arise from embryonally misplaced primordial germ cells, these lesions arise from migration of transformed gonadal germ cells.

  5. Nano-Pulse Stimulation induces immunogenic cell death in human papillomavirus-transformed tumors and initiates an adaptive immune response.

    Directory of Open Access Journals (Sweden)

    Joseph G Skeate

    Full Text Available Nano-Pulse Stimulation (NPS is a non-thermal pulsed electric field modality that has been shown to have cancer therapeutic effects. Here we applied NPS treatment to the human papillomavirus type 16 (HPV 16-transformed C3.43 mouse tumor cell model and showed that it is effective at eliminating primary tumors through the induction of immunogenic cell death while subsequently increasing the number of tumor-infiltrating lymphocytes within the tumor microenvironment. In vitro NPS treatment of C3.43 cells resulted in a doubling of activated caspase 3/7 along with the translocation of phosphatidylserine (PS to the outer leaflet of the plasma membrane, indicating programmed cell death activity. Tumor-bearing mice receiving standard NPS treatment showed an initial decrease in tumor volume followed by clearing of tumors in most mice, and a significant increase in overall survival. Intra-tumor analysis of mice that were unable to clear tumors showed an inverse correlation between the number of tumor infiltrating lymphocytes and the size of the tumor. Approximately half of the mice that cleared established tumors were protected against tumor re-challenge on the opposite flank. Selective depletion of CD8+ T cells eliminated this protection, suggesting that NPS treatment induces an adaptive immune response generating CD8+ T cells that recognize tumor antigen(s associated with the C3.43 tumor model. This method may be utilized in the future to not only ablate primary tumors, but also to induce an anti-tumor response driven by effector CD8+ T cells capable of protecting individuals from disease recurrence.

  6. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma.

    Science.gov (United States)

    Son, Myung Jin; Woolard, Kevin; Nam, Do-Hyun; Lee, Jeongwu; Fine, Howard A

    2009-05-08

    CD133+ populations of human glioblastoma multiforme (GBM) cells are reportedly enriched for tumor stem cells (TSCs) or tumor-initiating cells (TICs). Approximately 40% of freshly isolated GBM specimens, however, do not contain CD133+ tumor cells, raising the possibility that CD133 may not be a universal enrichment marker for GBM TSCs/TICs. Here we demonstrate that stage-specific embryonic antigen 1(SSEA-1/LeX)+ GBM cells fulfill the functional criteria for TSC/TIC, since (1) SSEA-1+ cells are highly tumorigenic in vivo, unlike SSEA-1- cells; (2) SSEA-1+ cells can give rise to both SSEA-1+ and SSEA-1- cells, thereby establishing a cellular hierarchy; and (3) SSEA-1+ cells have self-renewal and multilineage differentiation potentials. A distinct subpopulation of SSEA-1+ cells was present in all but one of the primary GBMs examined (n = 24), and most CD133+ tumor cells were also SSEA-1+, suggesting that SSEA-1 may be a general TSC/TIC enrichment marker in human GBMs.

  7. [Vitamin D metabolism and signaling in human hepatocellular carcinoma and surrounding non-tumorous liver].

    Science.gov (United States)

    Horváth, Evelin; Balla, Bernadett; Kósa, János; Lakatos, Péter András; Lazáry, Áron; Németh, Dániel; Jozilan, Hasan; Somorácz, Áron; Korompay, Anna; Gyöngyösi, Benedek; Borka, Katalin; Kiss, András; Kupcsulik, Péter; Schaff, Zsuzsa; Szalay, Ferenc

    2016-11-01

    1,25-Dihydroxy vitamin D 3 mediates antitumor effects in hepatocellular carcinoma. We examined mRNA and protein expression differences in 1,25-Dihydroxy vitamin D 3 -inactivating CYP24A1, mRNA of activating CYP27B1 enzymes, and that of VDR between human hepatocellular carcinoma and surrounding non-tumorous liver. Snap-frozen tissues from 13 patients were studied for mRNA and protein expression of CYP24A1. Paraffin-embedded tissues from 36 patients were used to study mRNA of VDR and CYP27B1. mRNA expression was measured by RT-PCR, CYP24A1 protein was detected by immunohistochemistry. Expression of VDR and CYP27B1 was significantly lower in hepatocellular carcinoma compared with non-tumorous liver (pexpressed CYP24A1 mRNA, but neither of the non-tumorous liver. The gene activation was followed by CYP24A1 protein synthesis. The presence of CYP24A1 mRNA and the reduced expression of VDR and CYP27B1 mRNA in human hepatocellular carcinoma samples indicate decreased bioavailability of 1,25-Dihydroxy vitamin D 3 , providing an escape mechanism from the anti-tumor effect. Orv. Hetil., 2016, 157(48), 1910-1918.

  8. Differences in Redox Regulatory Systems in Human Lung and Liver Tumors Suggest Different Avenues for Therapy

    Directory of Open Access Journals (Sweden)

    Ryuta Tobe

    2015-11-01

    Full Text Available A common characteristic of many cancer cells is that they suffer from oxidative stress. They, therefore, require effective redox regulatory systems to combat the higher levels of reactive oxygen species that accompany accelerated growth compared to the normal cells of origin. An elevated dependence on these systems in cancers suggests that targeting these systems may provide an avenue for retarding the malignancy process. Herein, we examined the redox regulatory systems in human liver and lung cancers by comparing human lung adenocarcinoma and liver carcinoma to their respective surrounding normal tissues. Significant differences were found in the two major redox systems, the thioredoxin and glutathione systems. Thioredoxin reductase 1 levels were elevated in both malignancies, but thioredoxin was highly upregulated in lung tumor and only slightly upregulated in liver tumor, while peroxiredoxin 1 was highly elevated in lung tumor, but downregulated in liver tumor. There were also major differences within the glutathione system between the malignancies and their normal tissues. The data suggest a greater dependence of liver on either the thioredoxin or glutathione system to drive the malignancy, while lung cancer appeared to depend primarily on the thioredoxin system.

  9. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors.

    Science.gov (United States)

    Willingham, Stephen B; Volkmer, Jens-Peter; Gentles, Andrew J; Sahoo, Debashis; Dalerba, Piero; Mitra, Siddhartha S; Wang, Jian; Contreras-Trujillo, Humberto; Martin, Robin; Cohen, Justin D; Lovelace, Patricia; Scheeren, Ferenc A; Chao, Mark P; Weiskopf, Kipp; Tang, Chad; Volkmer, Anne Kathrin; Naik, Tejaswitha J; Storm, Theresa A; Mosley, Adriane R; Edris, Badreddin; Schmid, Seraina M; Sun, Chris K; Chua, Mei-Sze; Murillo, Oihana; Rajendran, Pradeep; Cha, Adriel C; Chin, Robert K; Kim, Dongkyoon; Adorno, Maddalena; Raveh, Tal; Tseng, Diane; Jaiswal, Siddhartha; Enger, Per Øyvind; Steinberg, Gary K; Li, Gordon; So, Samuel K; Majeti, Ravindra; Harsh, Griffith R; van de Rijn, Matt; Teng, Nelson N H; Sunwoo, John B; Alizadeh, Ash A; Clarke, Michael F; Weissman, Irving L

    2012-04-24

    CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.

  10. A mouse mammary tumor virus-like long terminal repeat superantigen in human breast cancer.

    Science.gov (United States)

    Wang, Yue; Jiang, Jian-Dong; Xu, Dongping; Li, Yan; Qu, Chunfeng; Holland, James F; Pogo, Beatriz G-T

    2004-06-15

    We previously reported a 660-bp mouse mammary tumor virus (MMTV)-like env gene sequence in approximately 38% of human breast cancer DNA, but not in normal breasts or other tumors. This MMTV-like env gene sequence was expressed in 66% of the env gene-positive human breast cancers. An entire proviral structure was identified in human breast cancer DNA with high homology to MMTV and low homology to known human endogenous retrovirus. MMTV-like long terminal repeat (LTR) sequences were also detected in 41.5% of human breast cancers. They contain hormone-responsive elements, TEF-1 family elements, and the open reading frame for the superantigen (SAg). We have now amplified and sequenced MMTV-like sag sequences from 10 human breast cancers, and we found that they are highly homologous to those of MMTV. However, deletions and insertions at the COOH-terminal of sag were observed. The immune function of the human MMTV-like LTR SAg was also investigated. The sag gene was cloned and expressed in a human B-cell line (Ramos). T-cell proliferation and cytokine releasing assays were performed after cocultivation of T cells with irradiated Ramos SAg-expressing cells. The results indicate that expression of the human SAg stimulates T-cell activation in vitro, as the mouse SAg does. Because the T-cell responses in vitro are considered similar to those in vivo, these results suggest that the human LTR SAg might also play a role in human breast carcinogenesis.

  11. Expression of protein tyrosine phosphatase alpha (RPTPalpha) in human breast cancer correlates with low tumor grade, and inhibits tumor cell growth in vitro and in vivo

    DEFF Research Database (Denmark)

    Ardini, E; Agresti, R; Tagliabue, E

    2000-01-01

    of Src family kinases, and regulation of integrin signaling, cell adhesion, and growth factor responsiveness. To explore its potential contribution to human neoplasia, we surveyed RPTPalpha protein levels in primary human breast cancer. We found RPTPalpha levels to vary widely among tumors, with 29......% of cases manifesting significant overexpression. High RPTPalpha protein levels correlated significantly with low tumor grade and positive estrogen receptor status. Expression of RPTPalpha in breast carcinoma cells led to growth inhibition, associated with increased accumulation in G0 and G1, and delayed...... tumor growth and metastasis. To our knowledge, this is the first example of a study correlating expression level of a specific bona fide PTP with neoplastic disease status in humans....

  12. Prospective evaluation of serum glial fibrillary acidic protein (GFAP) as a diagnostic marker for glioblastoma.

    Science.gov (United States)

    Tichy, Julia; Spechtmeyer, Sabrina; Mittelbronn, Michel; Hattingen, Elke; Rieger, Johannes; Senft, Christian; Foerch, Christian

    2016-01-01

    Glioblastoma (GBM) is the most common malignant primary brain tumor. Although clinical presentation and brain imaging might be suggestive, histopathological evaluation by means of a brain biopsy is routinely performed to establish the diagnosis. A serum marker indicative of GBM may simplify the diagnostic work-up of patients suspected to having a brain tumor. We prospectively examined 113 patients with newly diagnosed single supratentorial or infratentorial space-occupying brain lesions. Glial fibrillary acidic protein (GFAP) levels were determined from venous blood samples via a prototype ELISA assay prior to any invasive procedures. Serum levels of GFAP were correlated with histopathological findings and MRI parameters. GFAP values were significantly higher in GBM patients (n = 33) compared to all other tumors (p diagnostic accuracy. Serum GFAP levels in GBM patients were positively correlated with tumor volume and histopathological tumor characteristics.

  13. The Impact of Epithelial-Stromal Interactions on Human Breast Tumor Heterogeneity

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0357 TITLE: The Impact of Epithelial-Stromal Interactions on Human Breast Tumor Heterogeneity PRINCIPAL... Heterogeneity 5b. GRANT NUMBER W81XWH-13-1-0357 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Crista Thompson 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail... Heterogeneity is a key factor underlying the variability in patient response to treatment, especially in Triple-Negative (TN) breast cancer cases. In

  14. Cytotoxicity of Tumor Antigen Specific Human T Cells Is Unimpaired by Arginine Depletion

    Science.gov (United States)

    Knies, Diana; Medenhoff, Sergej; Wabnitz, Guido; Luckner-Minden, Claudia; Feldmeyer, Nadja; Voss, Ralf-Holger; Kropf, Pascale; Müller, Ingrid; Conradi, Roland; Samstag, Yvonne; Theobald, Matthias; Ho, Anthony D.; Goldschmidt, Hartmut; Hundemer, Michael

    2013-01-01

    Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i) CD8+ T cells with specificity against the MART-1aa26–35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii) clonal CMV pp65aa495–503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495–503 specific T cell receptor were analyzed. Our data demonstrate that human CD8+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency. PMID:23717444

  15. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion.

    Directory of Open Access Journals (Sweden)

    Markus Munder

    Full Text Available Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8(+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i CD8(+ T cells with specificity against the MART-1aa26-35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii clonal CMV pp65aa495-503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495-503 specific T cell receptor were analyzed. Our data demonstrate that human CD8(+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency.

  16. Progesterone receptor membrane component 1 deficiency attenuates growth while promoting chemosensitivity of human endometrial xenograft tumors.

    Science.gov (United States)

    Friel, Anne M; Zhang, Ling; Pru, Cindy A; Clark, Nicole C; McCallum, Melissa L; Blok, Leen J; Shioda, Toshi; Peluso, John J; Rueda, Bo R; Pru, James K

    2015-01-28

    during chemotherapeutic stress. In sum, these in vitro and in vivo findings demonstrate that PGRMC1 plays a prominent role in the growth and chemoresistance of human endometrial tumors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. White Matter Glial Pathology in Autism

    Science.gov (United States)

    2015-11-01

    AWARD NUMBER: W81XWH-12-1-0302 TITLE: White Matter Glial Pathology in Autism PRINCIPAL INVESTIGATOR: Gregory A. Ordway, Ph.D. CONTRACTING... Pathology in Autism 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0302 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Gregory A. Ordway, Ph.D...imaging in living patients and pathology studies using postmortem brain tissues from deceased autism spectrum disorder (ASD) donors. These methods

  18. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues

    Directory of Open Access Journals (Sweden)

    Emara Marwan

    2010-09-01

    Full Text Available Abstract Background Cytoglobin (Cygb and neuroglobin (Ngb are recently identified globin molecules that are expressed in vertebrate tissues. Upregulation of Cygb and Ngb under hypoxic and/or ischemic conditions in vitro and in vivo increases cell survival, suggesting possible protective roles through prevention of oxidative damage. We have previously shown that Ngb is expressed in human glioblastoma multiforme (GBM cell lines, and that expression of its transcript and protein can be significantly increased after exposure to physiologically relevant levels of hypoxia. In this study, we extended this work to determine whether Cygb is also expressed in GBM cells, and whether its expression is enhanced under hypoxic conditions. We also compared Cygb and Ngb expression in human primary tumor specimens, including brain tumors, as well as in human normal tissues. Immunoreactivity of carbonic anhydrase IX (CA IX, a hypoxia-inducible metalloenzyme that catalyzes the hydration of CO2 to bicarbonate, was used as an endogenous marker of hypoxia. Results Cygb transcript and protein were expressed in human GBM cells, and this expression was significantly increased in most cells following 48 h incubation under hypoxia. We also showed that Cygb and Ngb are expressed in both normal tissues and human primary cancers, including GBM. Among normal tissues, Cygb and Ngb expression was restricted to distinct cell types and was especially prominent in ductal cells. Additionally, certain normal organs (e.g. stomach fundus, small bowel showed distinct regional co-localization of Ngb, Cygb and CA IX. In most tumors, Ngb immunoreactivity was significantly greater than that of Cygb. In keeping with previous in vitro results, tumor regions that were positively stained for CA IX were also positive for Ngb and Cygb, suggesting that hypoxic upregulation of Ngb and Cygb also occurs in vivo. Conclusions Our finding of hypoxic up-regulation of Cygb/Ngb in GBM cell lines and human

  19. Glial cell contributions to auditory brainstem development

    Directory of Open Access Journals (Sweden)

    Karina S Cramer

    2016-10-01

    Full Text Available Glial cells, previously thought to have generally supporting roles in the central nervous system, are emerging as essential contributors to multiple aspects of neuronal circuit function and development. This review focuses on the contributions of glial cells to the development of specialized auditory pathways in the brainstem. These pathways display specialized synapses and an unusually high degree of precision in circuitry that enables sound source localization. The development of these pathways thus requires highly coordinated molecular and cellular mechanisms. Several classes of glial cells, including astrocytes, oligodendrocytes, and microglia, have now been explored in these circuits in both avian and mammalian brainstems. Distinct populations of astrocytes are found over the course of auditory brainstem maturation. Early appearing astrocytes are associated with spatial compartments in the avian auditory brainstem. Factors from late appearing astrocytes promote synaptogenesis and dendritic maturation, and astrocytes remain integral parts of specialized auditory synapses. Oligodendrocytes play a unique role in both birds and mammals in highly regulated myelination essential for proper timing to decipher interaural cues. Microglia arise early in brainstem development and may contribute to maturation of auditory pathways. Together these studies demonstrate the importance of non-neuronal cells in the assembly of specialized auditory brainstem circuits.

  20. Nek8, a NIMA family kinase member, is overexpressed in primary human breast tumors.

    Science.gov (United States)

    Bowers, Alex J; Boylan, John F

    2004-03-17

    The family of human Nek (NIMA Related Kinase) kinases currently contains 11 members. We have identified Nek8 as a new member of the Nek kinase family. For many of the Nek family members, primary tumor expression data and function have been limited. However, all of the Nek family proteins share considerable homology with the Never In Mitosis, gene A (NIMA) kinase from the filamentous fungus Aspergillus nidulans. NIMA, as well as its most closely related human ortholog, Nek2, are required for G(2)/M progression and promote centrosome maturation during mitosis. We isolated Nek8 from a primary human colon cDNA library, and found it to be highly homologous to murine Nek8. Recently, a previously named Nek8 sequence was renamed Nek9/Nercc1 in Genbank due to its lack of homology to murine Nek8 and its high homology to murine Nek9. Interestingly, in our study, phylogenetic analysis suggests that human Nek8 and Nek9 form a subfamily within the Nek family. Nek8 has high homology to the Nek family kinase domain as well as to a regulator of chromosome condensation domain (RCC1), which is also present in Nek9. The open reading frame of human Nek8 encodes a 692 amino-acid protein with a calculated molecular weight of 75 kDa. Nek8 is differently expressed between normal human breast tissue and breast tumors. Overexpression of a mutated kinase domain Nek8 in U2-0S cells led to a decrease in actin protein, and a small increase in the level of cdk1/cyclinB1. Our data demonstrate for the first time that Nek8 is a novel tumor associated gene, and shares considerable sequence homology with the Nek family of protein kinases and may be involved in G(2)/M progression.

  1. Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 cells.

    Directory of Open Access Journals (Sweden)

    Sadia Beloribi

    Full Text Available Exosomes are of increasing interest as alternative mode of cell-to-cell communication. We previously reported that exosomes secreted by human SOJ-6 pancreatic tumor cells induce (glycoprotein ligand-independent cell death and inhibit Notch-1 pathway, this latter being particularly active during carcinogenesis and in cancer stem cells. Therefore, we asked whether exosomal lipids were key-elements for cell death and hypothesized that cholesterol-rich membrane microdomains were privileged sites of exosome interactions with tumor cells. To address these questions and based on the lipid composition of exosomes from SOJ-6 cells (Ristorcelli et al. (2008 FASEB J. 22; 3358-3369 enriched in cholesterol and sphingomyelin (lipids forming liquid-ordered phase, Lo and depleted in phospholipids (lipids forming liquid-disordered phase, Ld, we designed Synthetic Exosome-Like Nanoparticles (SELN with ratios Lo/Ld from 3.0 to 6.0 framing that of SOJ-6 cell exosomes. SELN decreased tumor cell survival, the higher the Lo/Ld ratio, the lower the cell survival. This decreased survival was due to activation of cell death with inhibition of Notch pathway. FRET analyses indicated fusions/exchanges of SELN with cell membranes. Fluorescent SELN co-localized with the ganglioside GM1 then with Rab5A, markers of lipid microdomains and of early endosomes, respectively. These interactions occurred at lipid microdomains of plasma and/or endosome membranes where the Notch-1 pathway matures. We thus demonstrated a major role for lipids in interactions between SELN and tumor cells, and in the ensued cell death. To our knowledge this is the first report on such effects of lipidic nanoparticles on tumor cell behavior. This may have implications in tumor progression.

  2. Expression Profile of Genes Related to Drug Metabolism in Human Brain Tumors.

    Directory of Open Access Journals (Sweden)

    Pantelis Stavrinou

    Full Text Available Endogenous and exogenous compounds as well as carcinogens are metabolized and detoxified by phase I and II enzymes, the activity of which could be crucial to the inactivation and hence susceptibility to carcinogenic factors. The expression of these enzymes in human brain tumor tissue has not been investigated sufficiently. We studied the association between tumor pathology and the expression profile of seven phase I and II drug metabolizing genes (CYP1A1, CYP1B1, ALDH3A1, AOX1, GSTP1, GSTT1 and GSTM3 and some of their proteins.Using qRT-PCR and western blotting analysis the gene and protein expression in a cohort of 77 tumors were investigated. The major tumor subtypes were meningioma, astrocytoma and brain metastases, -the later all adenocarcinomas from a lung primary.Meningeal tumors showed higher expression levels for AOX1, CYP1B1, GSTM3 and GSTP1. For AOX1, GSTM and GSTP1 this could be verified on a protein level as well. A negative correlation between the WHO degree of malignancy and the strength of expression was identified on both transcriptional and translational level for AOX1, GSTM3 and GSTP1, although the results could have been biased by the prevalence of meningiomas and glioblastomas in the inevitably bipolar distribution of the WHO grades. A correlation between the gene expression and the protein product was observed for AOX1, GSTP1 and GSTM3 in astrocytomas.The various CNS tumors show different patterns of drug metabolizing gene expression. Our results suggest that the most important factor governing the expression of these enzymes is the histological subtype and to a far lesser extent the degree of malignancy itself.

  3. Mutational analysis of the extracellular Ca{sup 2+}-sensing receptor gene in human parathyroid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Yoshitaka; Arnold, A. [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Pollak, M.R.; Brown, E.M. [Brigham and Women`s Hospital, Boston, MA (United States)

    1995-10-01

    Despite recent progress, such as the identification of PRAD1/cyclin D1 as a parathyroid oncogene, it is likely that many genes involved in the molecular pathogenesis of parathyroid tumors remain unknown. Individuals heterozygous for inherited mutations in the extracellular Ca{sup 2+}-sensing receptor gene that reduce its biological activity exhibit a disorder termed familial hypocalciuric hypercalcemia or familial benign hypercalcemia, which is characterized by reduced responsiveness of parathyroid and kidney to calcium and by PTH-dependent hypercalcemia. Those who are homozygous for such mutations present with neonatal severe hyperparathyroidism and have marked parathroid hypercellularity. Thus, the Ca{sup 2+}-sensing receptor gene is a candidate parathyroid tumor suppressor gene, with inactivating mutations plausibly explaining set-point abnormalities in the regulation of both parathyroid cellular proliferation and PTH secretion by extracellular Ca{sup 2+} similar to those seen in hyperparathyroidism. Using a ribonuclease A protection assay that has detected multiple mutations in the Ca{sup 2+}-sensing receptor gene in familial hypocalciuric hypercalcemia and covers more than 90% of its coding region, we sought somatic mutations in this gene in a total of 44 human parathyroid tumors (23 adenomas, 4 carcinomas, 5 primary hyperplasias, and 12 secondary hyperplasias). No such mutations were detected in these 44 tumors. Thus, our studies suggest that somatic mutation of the Ca{sup 2+}-sensing receptor gene does not commonly contribute to the pathogenesis of sporadic parathyroid tumors. As such, PTH set-point dysfunction in parathroid tumors may well be secondary to other clonal proliferative defects and/or mutations in other components of the extracellular Ca{sup 2+}-sensing pathway. 29 refs., 2 figs.

  4. What are the implications of human papillomavirus status in oropharyngeal tumors for clinical practice?

    Science.gov (United States)

    Klozar, Jan; Tachezy, Ruth

    2014-04-01

    Human papillomavirus (HPV) status itself is an important and very probably the strongest prognostic factor in head and neck cancer. Because of the prognostic advantage of patients with HPV-positive cancers, the issue of the quality of life of survivors has become increasingly important. The possibility of treatment de-escalation in patients with virally induced tumors is being considered. Many challenges have to be addressed in order to integrate HPV status in the routine decision-making in patients with oropharyngeal cancer. The present review discusses the standardization of detection methods suitable for clinical use and the differences in predictive parameters between patients with HPV-positive and HPV-negative tumors. The gold standard for the identification of patients with oropharyngeal tumors etiologically linked to HPV infection is undoubtedly the detection of HPV 16 E6/E7 mRNA. The detection of a surrogate marker of active viral infection, p16ink4a, has a low sensitivity when used alone and must therefore be combined with the detection of HPV DNA or HPV-specific antibodies. The detailed knowledge of the importance of specific prognostic parameters is crucial in the choice of treatment. Nodal staging is probably much less important in HPV-positive cancers. It is of great importance to implement standardized testing for the identification of patients with HPV-induced oropharyngeal tumors. The treatment decision models in HPV-positive tumors have to take into account the probably different prognostic value of nodal parameters. Before introducing treatment de-escalation in patients with virally induced tumors into clinical practice, more research and clinical studies are needed.

  5. Presence of kisspeptin-like immunoreactivity in human adrenal glands and adrenal tumors.

    Science.gov (United States)

    Takahashi, Kazuhiro; Shoji, Itaru; Shibasaki, Akiko; Kato, Ichiro; Hiraishi, Keisuke; Yamamoto, Hajime; Kaneko, Kiriko; Murakami, Osamu; Morimoto, Ryo; Satoh, Fumitoshi; Ito, Sadayoshi; Totsune, Kazuhito

    2010-05-01

    Kisspeptins are neuropeptides which activate the hypothalamo-pituitary gonadal axis and are considered to play important physiological roles in the reproduction. Kisspeptins have also been reported to stimulate the aldosterone secretion from the adrenal cortex. However, the expression of kisspeptins in human adrenal glands and adrenal tumors has not been clarified yet. We, therefore, studied the presence of kisspeptin-like immunoreactivity (LI) in human adrenal glands and adrenal tumors (adrenocortical adenomas, adrenocortical carcinomas, and pheochromocytomas) by radioimmunoassay and immunocytochemistry. Kisspeptin-LI was detected in all the tissues examined; normal portions of adrenal glands (3.0 +/- 2.3 pmol/g wet weight, n = 21, mean +/- SD), aldosterone-producing adenomas (4.6 +/- 3.3 pmol/g wet weight, n = 10), cortisol-producing adenomas (2.7 +/- 1.4 pmol/g wet weight, n = 14), adrenocortical carcinomas (1.7 +/- 0.2 pmol/g wet weight, n = 4), and pheochromocytomas (1.8 +/- 0.8 pmol/g wet weight, n = 6). There was no significant difference in kisspeptin-LI levels among them. Immunocytochemistry showed positive kisspeptin-immunostaining in normal adrenal glands, with stronger immunostaining found in the medulla. Furthermore, positive kisspeptin-immunostaining was found in all types of adrenal tumors examined; adrenocortical adenomas, adrenocortical carcinomas, and pheochromocytomas. The intensity of kisspeptin-immunostaining in these adrenal tumors was, however, not so strong as that in normal adrenal medulla. The present study has shown for the first time the presence of kisspeptin-LI in adrenal glands and adrenal tumors.

  6. Quality of clinical brain tumor MR spectra judged by humans and machine learning tools.

    Science.gov (United States)

    Kyathanahally, Sreenath P; Mocioiu, Victor; Pedrosa de Barros, Nuno; Slotboom, Johannes; Wright, Alan J; Julià-Sapé, Margarida; Arús, Carles; Kreis, Roland

    2017-10-10

    To investigate and compare human judgment and machine learning tools for quality assessment of clinical MR spectra of brain tumors. A very large set of 2574 single voxel spectra with short and long echo time from the eTUMOUR and INTERPRET databases were used for this analysis. Original human quality ratings from these studies as well as new human guidelines were used to train different machine learning algorithms for automatic quality control (AQC) based on various feature extraction methods and classification tools. The performance was compared with variance in human judgment. AQC built using the RUSBoost classifier that combats imbalanced training data performed best. When furnished with a large range of spectral and derived features where the most crucial ones had been selected by the TreeBagger algorithm it showed better specificity (98%) in judging spectra from an independent test-set than previously published methods. Optimal performance was reached with a virtual three-class ranking system. Our results suggest that feature space should be relatively large for the case of MR tumor spectra and that three-class labels may be beneficial for AQC. The best AQC algorithm showed a performance in rejecting spectra that was comparable to that of a panel of human expert spectroscopists. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. CXCL1-Mediated Interaction of Cancer Cells with Tumor-Associated Macrophages and Cancer-Associated Fibroblasts Promotes Tumor Progression in Human Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Makito Miyake

    2016-10-01

    Full Text Available Tumor-associated macrophages (TAMs and cancer-associated fibroblasts (CAFs are reported to be associated with poor prognosis, depending on their pro-tumoral roles. Current knowledge of TAMs and CAFs in the tumor microenvironment of urothelial cancer of the bladder (UCB is limited. Therefore, we investigated the paracrine effect induced by TAMs and CAFs in the tumor microenvironment of human UCB. For this, we first carried out immunohistochemical analysis for CXCL1, CD204 (TAM marker, αSMA (CAF marker, E-cadherin, and MMP2 using 155 UBC tissue samples. Next, CXCL1-overexpressing clones of THP-1-derived TAMs and NIH3T3-derived CAFs were developed by lentiviral vector infection. The immunohistochemical study showed high CXCL1 levels in UCB cells to be associated with enhanced recruitment of TAMs/CAFs, higher metastatic potential, and poor prognosis. Three-dimensional (3D co-culture of UCB cells and TAMs/CAFs suggested that CXCL1 production in TAMs/CAFs play an important role in cell-to-cell adhesion and interaction among cancer cells and these stromal cells. CXCL1-expressing TAMs/CAFs enhanced tumor growth of subcutaneous UCB tumors in nude mice when injected together. In addition, an experiment using the orthotopic bladder cancer model revealed that CXCL1 production in TAMs/CAFs supported tumor implantation into the murine bladder wall and UCB growth when injected together, which was confirmed by clinical data of patients with bladder cancer. Thus, CXCL1 signaling in the tumor microenvironment is highly responsible for repeated intravesical recurrence, disease progression, and drug resistance through enhanced invasion ability. In conclusion, disrupting CXCL1 signaling to dysregulate this chemokine is a promising therapeutic approach for human UCB.

  8. On involvement of transcription factors nuclear factor kappa-light-chain-enhancer of activated B cells, activator protein-1 and signal transducer and activator of transcription-3 in photodynamic therapy-induced death of crayfish neurons and satellite glial cells

    Science.gov (United States)

    Berezhnaya, Elena; Neginskaya, Marya; Kovaleva, Vera; Sharifulina, Svetlana; Ischenko, Irina; Komandirov, Maxim; Rudkovskii, Mikhail; Uzdensky, Anatoly B.

    2015-07-01

    Photodynamic therapy (PDT) is currently used in the treatment of brain tumors. However, not only malignant cells but also neighboring normal neurons and glial cells are damaged during PDT. In order to study the potential role of transcription factors-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP-1), and signal transducer and activator of transcription-3 (STAT-3)-in photodynamic injury of normal neurons and glia, we photosensitized the isolated crayfish mechanoreceptor consisting of a single sensory neuron enveloped by glial cells. Application of different inhibitors and activators showed that transcription factors NF-κB (inhibitors caffeic acid phenethyl ester and parthenolide, activator betulinic acid), AP-1 (inhibitor SR11302), and STAT-3 (inhibitors stattic and cucurbitacine) influenced PDT-induced death and survival of neurons and glial cells in different ways. These experiments indicated involvement of NF-κB in PDT-induced necrosis of neurons and apoptosis of glial cells. However, in glial cells, it played the antinecrotic role. AP-1 was not involved in PDT-induced necrosis of neurons and glia, but mediated glial apoptosis. STAT-3 was involved in PDT-induced apoptosis of glial cells and necrosis of neurons and glia. Therefore, signaling pathways that regulate cell death and survival in neurons and glial cells are different. Using various inhibitors or activators of transcription factors, one can differently influence the sensitivity and resistance of neurons and glial cells to PDT.

  9. Tumor-released Galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack.

    Science.gov (United States)

    Wang, Wei; Guo, Huaijian; Geng, Jianlin; Zheng, Xiaodong; Wei, Haiming; Sun, Rui; Tian, Zhigang

    2014-11-28

    Human Galectin-3 (Gal-3), a β-galactoside-binding protein expressed by tumor cells, has been reported to act as an immune regulator in antitumor T cells. However, its effect on natural killer (NK) cells is elusive. Using a recombinant human NK cell-activating receptor, NKp30 fusion protein (NKp30-Fc), we found that soluble NKp30-Fc could immunoprecipitate Galectin-3. The direct interaction between NKp30 and Galectin-3 was further confirmed using surface plasmon resonance experiments. Because Galectin-3 was mainly released from tumor cells in a soluble form in our study, the binding assay was performed to show that soluble Galectin-3 specifically bound to NK cells and NKp30 on the surface of the NK cells. Functionally, when soluble Galectin-3 was added to the NK-tumor cell coculture system, the NKp30-mediated, but not NKG2D-mediated, cytolysis and CD107a expression in the NK cells were inhibited, and these phenotypes could be restored by preincubation of soluble Galectin-3 with NKp30-Fc fusion protein or the addition of anti-Gal-3 antibody alone. Moreover, genetic down-regulation of Galectin-3 (shGal-3) resulted in tumor cells being more sensitive to NK cell lysis, and, reversely, Galectin-3-overexpressing HeLa cells (exGal-3) became less sensitive to NK cell killing. The results of these in vitro experiments were supported by studies in shGal-3-HeLa or exGal-3-HeLa xenograft non-obese diabetic/severe combined immunodeficiency mice after NK cell adoptive immunotherapy, indicating that Galectin-3 strongly antagonizes human NK cell attack against tumors in vivo. These findings indicate that Galectin-3 may function as an immune regulator to inhibit NK cell function against tumors, therefore providing a new therapeutic target for tumor treatment. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Investigations on contribution of glial inwardly-rectifying K+ current to membrane potential and ion flux: An experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    Sheng-Nan Wu

    2015-01-01

    Full Text Available The inwardly rectifying K+ current [IK(IR] allows large inward K+ currents at potentials negative to K+ equilibrium potential (EK and it becomes small outward K+ currents at those positive to EK. How changes of such currents enriched in glial cells can influence the functions of glial cell, neurons, or both is not clearly defined, although mutations of Kir4.1 channels have been demonstrated to cause serious neurological disorders. In this study, we identified the presence of IK(IR in human glioma cells (U373 and U87 cells. The amplitude of IK(IR in U373 cells was subject to inhibition by amitriptyline, arecoline, or BaCl2. The activity of inwardly rectifying K+ channels was also clearly detected, and single-channel conductance of these channels was calculated to be around 23 pS. Moreover, based on a simulation model derived from neuron–glial interaction mediated by ion flux, we further found out that incorporation of glial IK(IR conductance into the model can significantly contribute to regulation of extracellular K+ concentrations and glial resting potential, particularly during high-frequency stimulation. Glial cells and neurons can mutually modulate their expression of ion channels through K+ ions released into the extracellular space. It is thus anticipated that glial IK(IR may be a potential target utilized to influence the activity of neuronal and glial cells as well as their interaction.

  11. POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors

    NARCIS (Netherlands)

    L.H.J. Looijenga (Leendert); C.A. de Gouveia Brazao; J. Kononen; A.J.M. Gillis (Ad); K.E. van Roozendaal (Kees); E.J.J. van Zoelen (Everardus); D.T. Schneider (Dominik); J.W. Oosterhuis (Wolter); R.F.A. Weber (Robert); K.P. Wolffenbuttel (Katja); E.J. Perlman; H. van Dekken (Herman); C. Bokemeyer; G. Sauter; J.A. Stoop (Hans); H.P. de Leeuw; F.U. Honecker (Friedemann)

    2003-01-01

    textabstractHuman germ cell tumors (GCTs) may have variable histology and clinical behavior, depending on factors such as sex of the patient, age at clinical diagnosis, and anatomical site of the tumor. Some types of GCT, i.e., the seminomas/germinomas/dysgerminomas and

  12. Expression of iron-related genes in human brain and brain tumors

    Directory of Open Access Journals (Sweden)

    Britton Robert S

    2009-04-01

    Full Text Available Abstract Background Defective iron homeostasis may be involved in the development of some diseases within the central nervous system. Although the expression of genes involved in normal iron balance has been intensively studied in other tissues, little is known about their expression in the brain. We investigated the mRNA levels of hepcidin (HAMP, HFE, neogenin (NEO1, transferrin receptor 1 (TFRC, transferrin receptor 2 (TFR2, and hemojuvelin (HFE2 in normal human brain, brain tumors, and astrocytoma cell lines. The specimens included 5 normal brain tissue samples, 4 meningiomas, one medulloblastoma, 3 oligodendrocytic gliomas, 2 oligoastrocytic gliomas, 8 astrocytic gliomas, and 3 astrocytoma cell lines. Results Except for hemojuvelin, all genes studied had detectable levels of mRNA. In most tumor types, the pattern of gene expression was diverse. Notable findings include high expression of transferrin receptor 1 in the hippocampus and medulla oblongata compared to other brain regions, low expression of HFE in normal brain with elevated HFE expression in meningiomas, and absence of hepcidin mRNA in astrocytoma cell lines despite expression in normal brain and tumor specimens. Conclusion These results indicate that several iron-related genes are expressed in normal brain, and that their expression may be dysregulated in brain tumors.

  13. Drug screening of cancer cell lines and human primary tumors using droplet microfluidics.

    Science.gov (United States)

    Wong, Ada Hang-Heng; Li, Haoran; Jia, Yanwei; Mak, Pui-In; Martins, Rui Paulo da Silva; Liu, Yan; Vong, Chi Man; Wong, Hang Cheong; Wong, Pak Kin; Wang, Haitao; Sun, Heng; Deng, Chu-Xia

    2017-08-22

    Precision Medicine in Oncology requires tailoring of therapeutic strategies to individual cancer patients. Due to the limited quantity of tumor samples, this proves to be difficult, especially for early stage cancer patients whose tumors are small. In this study, we exploited a 2.4 × 2.4 centimeters polydimethylsiloxane (PDMS) based microfluidic chip which employed droplet microfluidics to conduct drug screens against suspended and adherent cancer cell lines, as well as cells dissociated from primary tumor of human patients. Single cells were dispersed in aqueous droplets and imaged within 24 hours of drug treatment to assess cell viability by ethidium homodimer 1 staining. Our results showed that 5 conditions could be screened for every 80,000 cells in one channel on our chip under current circumstances. Additionally, screening conditions have been adapted to both suspended and adherent cancer cells, giving versatility to potentially all types of cancers. Hence, this study provides a powerful tool for rapid, low-input drug screening of primary cancers within 24 hours after tumor resection from cancer patients. This paves the way for further technological advancement to cutting down sample size and increasing drug screening throughput in advent to personalized cancer therapy.

  14. Epo receptors are not detectable in primary human tumor tissue samples.

    Directory of Open Access Journals (Sweden)

    Steve Elliott

    Full Text Available Erythropoietin (Epo is a cytokine that binds and activates an Epo receptor (EpoR expressed on the surface of erythroid progenitor cells to promote erythropoiesis. While early studies suggested EpoR transcripts were expressed exclusively in the erythroid compartment, low-level EpoR transcripts were detected in nonhematopoietic tissues and tumor cell lines using sensitive RT-PCR methods. However due to the widespread use of nonspecific anti-EpoR antibodies there are conflicting data on EpoR protein expression. In tumor cell lines and normal human tissues examined with a specific and sensitive monoclonal antibody to human EpoR (A82, little/no EpoR protein was detected and it was not functional. In contrast, EpoR protein was reportedly detectable in a breast tumor cell line (MCF-7 and breast cancer tissues with an anti-EpoR polyclonal antibody (M-20, and functional responses to rHuEpo were reported with MCF-7 cells. In another study, a functional response was reported with the lung tumor cell line (NCI-H838 at physiological levels of rHuEpo. However, the specificity of M-20 is in question and the absence of appropriate negative controls raise questions about possible false-positive effects. Here we show that with A82, no EpoR protein was detectable in normal human and matching cancer tissues from breast, lung, colon, ovary and skin with little/no EpoR in MCF-7 and most other breast and lung tumor cell lines. We show further that M-20 provides false positive staining with tissues and it binds to a non-EpoR protein that migrates at the same size as EpoR with MCF-7 lysates. EpoR protein was detectable with NCI-H838 cells, but no rHuEpo-induced phosphorylation of AKT, STAT3, pS6RP or STAT5 was observed suggesting the EpoR was not functional. Taken together these results raise questions about the hypothesis that most tumors express high levels of functional EpoR protein.

  15. The hen model of human ovarian cancer develops anti-mesothelin autoantibodies in response to mesothelin expressing tumors

    Directory of Open Access Journals (Sweden)

    Yu Yi

    2011-07-01

    Full Text Available Abstract Objective Study of the hen immune system led to seminal contributions to basic immunological principles. Recent studies of spontaneous ovarian cancer in the laying hen show strikingly similar tumor types and antigen expression compared to human ovarian cancer, suggesting hens would be valuable for studies of tumor immunology and pre-clinical vaccine development. Circulating mesothelin is a relatively specific marker for human ovarian cancer and autoantibodies to mesothelin were reported. We hypothesized that hen tumors express mesothelin and that circulating anti-mesothelin antibodies occur in response to tumors. Methods Mesothelin mRNA expression was analyzed by RT-PCR in hen ovarian tumors and normal ovaries. Mesothelin protein expression was evaluated by immunohistochemistry (IHC and two-dimensional SDS-PAGE Western blots. Anti-mesothelin antibodies were assessed by immunoassay of sera from hens with normal ovaries and with ovarian tumors. Results Significant mesothelin mRNA expression was observed in 57% (12/21 of hen ovarian tumors but not in normal ovaries and was found predominantly in serous tumors as in humans. Mesothelin protein was detected in tumors with mesothelin mRNA by IHC and 2D Western blots, but not in normal ovaries or tumors without mesothelin mRNA. Circulating anti-mesothelin antibodies occurred in 44% (n = 4/9 of hens with ovarian tumors which express mesothelin mRNA and were not found in hens with tumors that did not express mesothelin (n = 0/5 or normal ovaries (n = 0/5. Conclusion The results support the utility of the hen as a novel model for preclinical studies of mesothelin as a biomarker and a target for immunotherapy.

  16. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    Science.gov (United States)

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Glial-specific cAMP response of the glial fibrillary acidic protein gene cell lines.

    OpenAIRE

    Kaneko, R; Hagiwara, N; Leader, K; Sueoka, N

    1994-01-01

    Expression of the rat glial fibrillary acidic protein (GFAP) gene is responsive to the intracellular level of cAMP. We have examined the sequence 5'-upstream of the transcription start site of the rat GFAP-encoding gene to determine the elements responsible for regulating the cAMP response. The RT4 cell lines consist of a neural stem-cell type RT4-AC and its three derivative cell types, one glial-cell type, RT4-D, and two neuronal-cell types, RT4-B and RT4-E. GFAP is expressed in the stem-cel...

  18. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    Science.gov (United States)

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR. ©2017 American Association for Cancer Research.

  19. Early T cell signalling is reversibly altered in PD-1+ T lymphocytes infiltrating human tumors.

    Directory of Open Access Journals (Sweden)

    Shu-Fang Wang

    Full Text Available To improve cancer immunotherapy, a better understanding of the weak efficiency of tumor-infiltrating T lymphocytes (TIL is necessary. We have analyzed the functional state of human TIL immediately after resection of three types of tumors (NSCLC, melanoma and RCC. Several signalling pathways (calcium, phosphorylation of ERK and Akt and cytokine secretion are affected to different extents in TIL, and show a partial spontaneous recovery within a few hours in culture. The global result is an anergy that is quite distinct from clonal anergy induced in vitro, and closer to adaptive tolerance in mice. PD-1 (programmed death -1 is systematically expressed by TIL and may contribute to their anergy by its mere expression, and not only when it interacts with its ligands PD-L1 or PD-L2, which are not expressed by every tumor. Indeed, the TCR-induced calcium and ERK responses were reduced in peripheral blood T cells transfected with PD-1. Inhibition by sodium stibogluconate of the SHP-1 and SHP-2 phosphatases that associate with several inhibitory receptors including PD-1, relieves part of the anergy apparent in TIL or in PD-1-transfected T cells. This work highlights some of the molecular modifications contributing to functional defects of human TIL.

  20. Viscum album neutralizes tumor-induced immunosuppression in a human in vitro cell model.

    Science.gov (United States)

    Steinborn, Carmen; Klemd, Amy Marisa; Sanchez-Campillo, Ann-Sophie; Rieger, Sophie; Scheffen, Marieke; Sauer, Barbara; Garcia-Käufer, Manuel; Urech, Konrad; Follo, Marie; Ücker, Annekathrin; Kienle, Gunver Sophia; Huber, Roman; Gründemann, Carsten

    2017-01-01

    Tumor cells have the capacity to secrete immunosuppressive substances in order to diminish dendritic cell (DC) activity and thereby escape from immune responses. The impact of mistletoe (Viscum album) extracts (VAE), which are frequently used as an additive anti-cancer therapy to stimulate the immune response, is still unknown. Using a human cellular system, the impact of two different VAE (VAEA + VAEI) on the maturation of human dendritic cells and on T cell function has been investigated using flow cytometry, automated fluorescence microscopy and cytokine bead array assays. Furthermore, we examined whether VAEI was able to counteract tumor-induced immunosuppression within this cellular system using a renal cancer cell model. The role of mistletoe lectin (ML) was analyzed using ML-specific antibodies and ML-depleted VAEI. VAEI and VAEA augmented the maturation of dendritic cells. VAEI abrogated tumor-induced immunosuppression of dendritic cells and both processes were partially mediated by ML since ML-depleted VAEI and ML-specific antibodies almost neutralized the rehabilitative effects of VAEI on DC maturation. Using these settings, co-culture experiments with purified CD4+ T cells had no influence on T cell proliferation and activation but did have an impact on IFN-γ secretion. The study provides a potential mode-of-action of VAE as an additive cancer therapy based on immunomodulatory effects. However, the impact on the in vivo situation has to be evaluated in further studies.

  1. Viscum album neutralizes tumor-induced immunosuppression in a human in vitro cell model.

    Directory of Open Access Journals (Sweden)

    Carmen Steinborn

    Full Text Available Tumor cells have the capacity to secrete immunosuppressive substances in order to diminish dendritic cell (DC activity and thereby escape from immune responses. The impact of mistletoe (Viscum album extracts (VAE, which are frequently used as an additive anti-cancer therapy to stimulate the immune response, is still unknown. Using a human cellular system, the impact of two different VAE (VAEA + VAEI on the maturation of human dendritic cells and on T cell function has been investigated using flow cytometry, automated fluorescence microscopy and cytokine bead array assays. Furthermore, we examined whether VAEI was able to counteract tumor-induced immunosuppression within this cellular system using a renal cancer cell model. The role of mistletoe lectin (ML was analyzed using ML-specific antibodies and ML-depleted VAEI. VAEI and VAEA augmented the maturation of dendritic cells. VAEI abrogated tumor-induced immunosuppression of dendritic cells and both processes were partially mediated by ML since ML-depleted VAEI and ML-specific antibodies almost neutralized the rehabilitative effects of VAEI on DC maturation. Using these settings, co-culture experiments with purified CD4+ T cells had no influence on T cell proliferation and activation but did have an impact on IFN-γ secretion. The study provides a potential mode-of-action of VAE as an additive cancer therapy based on immunomodulatory effects. However, the impact on the in vivo situation has to be evaluated in further studies.

  2. PRMT1 regulates tumor growth and metastasis of human melanoma via targeting ALCAM.

    Science.gov (United States)

    Li, Lei; Zhang, Zhengwen; Ma, Tengxiao; Huo, Ran

    2016-07-01

    Overexpression of protein arginine methyltransferases (PRMTs) is associated with various types of cancer. The present study aimed to determine the expression level of PRMT1 in human melanoma and investigate its biological function. The clinical significance of PRMT1 was determined by screening the Oncomine database, and the increased expression of PRMT in melanoma was confirmed by western blot analysis. Furthermore, the current study demonstrated that PRMT1 was overexpressed in melanoma cell lines compared with human immortalized keratinocytes and PIG1 immortalized human melanocytes. Silencing PRMT1 in A375 and Hs294T cells significantly suppressed tumor growth and metastatic ability of the melanoma cell line compared with the negative control. These changes were in accordance with the upregulation of the cadherin 1 level and downregulation of several metastatic‑associated genes determined by a quantitative polymerase chain reaction array. Liquid chromatography‑mass spectrometry demonstrated that activated leukocyte cell adhesion molecule (ALCAM) may be a direct target of PRMT1, and the interaction was confirmed by co‑immunoprecipitation. Compared with negative controls, the protein level of ALCAM was decreased following the silencing of PRMT1, and re‑expression of ALCAM in A375/shPRMT1 or Hs294T/shPRMT1 cells using an expression vector restored the colony formation and metastatic ability of the cells. In conclusion, the current results indicated that PRMT1 is overexpressed in human melanoma, and may regulate tumor growth and metastasis via targeting ALCAM.

  3. Inhibitory effects of cinnamon-water extract on human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Nazila Ariaee-Nasab

    2014-09-01

    Full Text Available Objective: To question the inhibitory effect of cinnamon-water extract (CWE on four human tumor cell lines (AGs, HeLa, MCF-7 and MDA-MB234. Naturally, compounds are an important source for clinical proposes. Cinnamon, a plant-derived spice, is widely used as a food additive and has been attracted many researches in recent years to find its pharmaceutical benefits. Methods: In order to find the answer to this subject, the water extract of cinnamon was prepared and cell proliferation was evaluated using MTT assay. The effect of apoptosis was investigated by DNA fragmentation analysis. Results: The inhibitory effect of CWE on the growth of the cells was significant. DNA fragmentation was found in cultured AGs and MCF-7 cell lines treated by CWE. Conclusions: This study showed the anti-neoplastic activity of CWE on tumor cell lines.

  4. Tumor growth effects of rapamycin on human biliary tract cancer cells

    Directory of Open Access Journals (Sweden)

    Heuer Matthias

    2012-06-01

    Full Text Available Abstract Background Liver transplantation is an important treatment option for patients with liver-originated tumors including biliary tract carcinomas (BTCs. Post-transplant tumor recurrence remains a limiting factor for long-term survival. The mammalian target of rapamycin-targeting immunosuppressive drug rapamycin could be helpful in lowering BTC recurrence rates. Therein, we investigated the antiproliferative effect of rapamycin on BTC cells and compared it with standard immunosuppressants. Methods We investigated two human BTC cell lines. We performed cell cycle and proliferation analyses after treatment with different doses of rapamycin and the standard immunosuppressants, cyclosporine A and tacrolimus. Results Rapamycin inhibited the growth of two BTC cell lines in vitro. By contrast, an increase in cell growth was observed among the cells treated with the standard immunosuppressants. Conclusions These results support the hypothesis that rapamycin inhibits BTC cell proliferation and thus might be the preferred immunosuppressant for patients after a liver transplantation because of BTC.

  5. Imaging beta-galactosidase activity in human tumor xenografts and transgenic mice using a chemiluminescent substrate.

    Directory of Open Access Journals (Sweden)

    Li Liu

    Full Text Available BACKGROUND: Detection of enzyme activity or transgene expression offers potential insight into developmental biology, disease progression, and potentially personalized medicine. Historically, the lacZ gene encoding the enzyme beta-galactosidase has been the most common reporter gene and many chromogenic and fluorogenic substrates are well established, but limited to histology or in vitro assays. We now present a novel approach for in vivo detection of beta-galactosidase using optical imaging to detect light emission following administration of the chemiluminescent 1,2-dioxetane substrate Galacto-Light PlusTM. METHODOLOGY AND PRINCIPAL FINDINGS: B-gal activity was visualized in stably transfected human MCF7-lacZ tumors growing in mice. LacZ tumors were identified versus contralateral wild type tumors as controls, based on two- to tenfold greater light emission following direct intra tumoral or intravenous administration of reporter substrate. The 1,2-dioxetane substrate is commercially available as a kit for microplate-based assays for beta-gal detection, and we have adapted it for in vivo application. Typically, 100 microl substrate mixture was administered intravenously and light emission was detected from the lacZ tumor immediately with gradual decrease over the next 20 mins. Imaging was also undertaken in transgenic ROSA26 mice following subcutaneous or intravenous injection of substrate mixture. CONCLUSION AND SIGNIFICANCE: Light emission was detectable using standard instrumentation designed for more traditional bioluminescent imaging. Use of 1,2-dioxetane substrates to detect enzyme activity offers a new paradigm for non-invasive biochemistry in vivo.

  6. Human Adipose Tissue-Derived Mesenchymal Stem Cells Target Brain Tumor-Initiating Cells.

    Science.gov (United States)

    Choi, Seung Ah; Lee, Ji Yeoun; Kwon, Sung Eun; Wang, Kyu-Chang; Phi, Ji Hoon; Choi, Jung Won; Jin, Xiong; Lim, Ja Yun; Kim, Hyunggee; Kim, Seung-Ki

    2015-01-01

    In neuro-oncology, the biology of neural stem cells (NSCs) has been pursued in two ways: as tumor-initiating cells (TICs) and as a potential cell-based vehicle for gene therapy. NSCs as well as mesenchymal stem cells (MSCs) have been reported to possess tumor tropism capacities. However, there is little data on the migratory capacity of MSCs toward brain tumor-initiating cells (BTICs). This study focuses on the ability of human adipose tissue derived MSCs (hAT-MSCs) to target BTICs and their crosstalk in the microenvironment. BTICs were isolated from three different types of brain tumors. The migration capacities of hAT-MSCs toward BTICs were examined using an in vitro migration assay and in vivo bioluminescence imaging analysis. To investigate the crosstalk between hAT-MSCs and BTICs, we analyzed the mRNA expression patterns of cyto-chemokine receptors by RT-qPCR and the protein level of their ligands in co-cultured medium. The candidate cyto-chemokine receptors were selectively inhibited using siRNAs. Both in vitro and in vivo experiments showed that hAT-MSCs possess migratory abilities to target BTICs isolated from medulloblastoma, atypical teratoid/rhabdoid tumors (AT/RT) and glioblastoma. Different types of cyto-chemokines are involved in the crosstalk between hAT-MSCs and BTICs (medulloblastoma and AT/RT: CXCR4/SDF-1, CCR5/RANTES, IL6R/IL-6 and IL8R/IL8; glioblastoma: CXCR4/SDF-1, IL6R/IL-6, IL8R/IL-8 and IGF1R/IGF-1). Our findings demonstrated the migratory ability of hAT-MSCs for BTICs, implying the potential use of MSCs as a delivery vehicle for gene therapy. This study also confirmed the expression of hAT-MSCs cytokine receptors and the BTIC ligands that play roles in their crosstalk.

  7. Serum human chorionic gonadotropin is associated with angiogenesis in germ cell testicular tumors

    Directory of Open Access Journals (Sweden)

    Avilés-Salas Alejandro

    2009-08-01

    Full Text Available Abstract Background Germ cell testicular tumors have survival rate that diminishes with high tumor marker levels, such as human chorionic gonadotropin (hCG. hCG may regulate vascular neoformation through vascular endothelial growth factor (VEGF. Our purpose was to determine the relationship between hCG serum levels, angiogenesis, and VEGF expression in germ cell testicular tumors. Methods We conducted a retrospective study of 101 patients. Serum levels of hCG, alpha-fetoprotein (AFP, and lactate dehydrogenase were measured prior to surgery. Vascular density (VD and VEGF tissue expression were determined by immunohistochemistry and underwent double-blind analysis. Results Histologically, 46% were seminomas and 54%, non-seminomas. Median follow-up was 43 ± 27 months. Relapse was present in 7.5% and mortality in 11.5%. Factors associated with high VD included non-seminoma type (p = 0.016, AFP ≥ 14.7 ng/mL (p = 0.0001, and hCG ≥ 25 mIU/mL (p = 0.0001. In multivariate analysis, the only significant VD-associated factor was hCG level (p = 0.04. When hCG levels were stratified, concentrations ≥ 25 mIU/mL were related with increased neovascularization (p Conclusion This is the first study that relates increased serum hCG levels with vascularization in testicular germ cell tumors. Hence, its expression might play a role in tumor angiogenesis, independent of VEGF expression, and may explain its association with poor prognosis. hCG might represent a molecular target for therapy.

  8. Quantification of retinoid concentrations in human serum and brain tumor tissues.

    Science.gov (United States)

    Ali, Ramadan; Campos, Benito; Dyckhoff, Gerhard; Haefeli, Walter E; Herold-Mende, Christel; Burhenne, Jürgen

    2012-05-06

    Retinoic acid signaling is essential for central nervous system (CNS) differentiation and appears to be impaired in tumors. Thus far, there are no established methods to quantify relevant retinoids (all-trans-retinoic acid, 9-cis-retinoic acid, 13-cis retinoic acid, and retinol) in human brain tumors. We developed a single step extraction and quantification procedure for polar and apolar retinoids in normal tissue, lipid-rich brain tumor tissues, and serum. This quantification procedure is based on high performance liquid chromatography (HPLC) with diode-array detection (DAD) using all-trans-acitretin as an internal standard and extraction by liquid-liquid partition with ethyl acetate and borate buffer at pH 9. Recovery with this extraction procedure was higher than earlier (two-step) liquid-liquid extraction procedures based on hexane, NaOH, and HCl. The overall quantification procedure was validated according to Food and Drug Administration (FDA) guidelines and fulfilled all criteria of accuracy, precision, selectivity, recovery, and stability. The overall method accuracy varied between -5.6% and +5.4% for serum and -3.8% and +6.2% for tissues, and overall precision ranged from 3.1% to 6.9% for serum and 2.1% to 8.3% for tissues (%CV batch-to-batch). The lower limit of quantification for all compounds in tumor tissue (and serum) was 3.9 ng g(-1) (ng mL(-1)). Using this assay, photodegradation of the retinoids was evaluated and endogenous polar and apolar retinoids were quantified in sera and brain tumor tissues of patients and compared with serum and tonsil tissue concentrations of controls. It may thus serve as a suitable method for the characterization of retinoid uptake and metabolism in the respective compartments. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Bacoside A Induces Tumor Cell Death in Human Glioblastoma Cell Lines through Catastrophic Macropinocytosis

    Directory of Open Access Journals (Sweden)

    Sebastian John

    2017-06-01

    Full Text Available Glioblastoma multiforme (GBM is a highly aggressive type of brain tumor with an extremely poor prognosis. Recent evidences have shown that the “biomechanical imbalances” induced in GBM patient-derived glioblastoma cells (GC and in vivo via the administration of synthetic small molecules, may effectively inhibit disease progression and prolong survival of GBM animal models. This novel concept associated with de novo anti-GBM drug development has however suffered obstacles in adequate clinical utility due to the appearance of unrelated toxicity in the prolonged therapeutic windows. Here, we took a “drug repurposing approach” to trigger similar physico-chemical disturbances in the GBM tumor cells, wherein, the candidate therapeutic agent has been previously well established for its neuro-protective roles, safety, efficacy, prolonged tolerance and excellent brain bioavailability in human subjects and mouse models. In this study, we show that the extracts of an Indian traditional medicinal plant Bacopa monnieri (BM and its bioactive component Bacoside A can generate dosage associated tumor specific disturbances in the hydrostatic pressure balance of the cell via a mechanism involving excessive phosphorylation of calcium/calmodulin-dependent protein kinase IIA (CaMKIIA/CaMK2A enzyme that is further involved in the release of calcium from the smooth endoplasmic reticular networks. High intracellular calcium stimulated massive macropinocytotic extracellular fluid intake causing cell hypertrophy in the initial stages, excessive macropinosome enlargement and fluid accumulation associated organellar congestion, cell swelling, cell rounding and membrane rupture of glioblastoma cells; with all these events culminating into a non-apoptotic, physical non-homeostasis associated glioblastoma tumor cell death. These results identify glioblastoma tumor cells to be a specific target of the tested herbal medicine and therefore can be exploited as a safe anti

  10. Bacoside A Induces Tumor Cell Death in Human Glioblastoma Cell Lines through Catastrophic Macropinocytosis.

    Science.gov (United States)

    John, Sebastian; Sivakumar, K C; Mishra, Rashmi

    2017-01-01

    Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumor with an extremely poor prognosis. Recent evidences have shown that the "biomechanical imbalances" induced in GBM patient-derived glioblastoma cells (GC) and in vivo via the administration of synthetic small molecules, may effectively inhibit disease progression and prolong survival of GBM animal models. This novel concept associated with de novo anti-GBM drug development has however suffered obstacles in adequate clinical utility due to the appearance of unrelated toxicity in the prolonged therapeutic windows. Here, we took a "drug repurposing approach" to trigger similar physico-chemical disturbances in the GBM tumor cells, wherein, the candidate therapeutic agent has been previously well established for its neuro-protective roles, safety, efficacy, prolonged tolerance and excellent brain bioavailability in human subjects and mouse models. In this study, we show that the extracts of an Indian traditional medicinal plant Bacopa monnieri (BM) and its bioactive component Bacoside A can generate dosage associated tumor specific disturbances in the hydrostatic pressure balance of the cell via a mechanism involving excessive phosphorylation of calcium/calmodulin-dependent protein kinase IIA (CaMKIIA/CaMK2A) enzyme that is further involved in the release of calcium from the smooth endoplasmic reticular networks. High intracellular calcium stimulated massive macropinocytotic extracellular fluid intake causing cell hypertrophy in the initial stages, excessive macropinosome enlargement and fluid accumulation associated organellar congestion, cell swelling, cell rounding and membrane rupture of glioblastoma cells; with all these events culminating into a non-apoptotic, physical non-homeostasis associated glioblastoma tumor cell death. These results identify glioblastoma tumor cells to be a specific target of the tested herbal medicine and therefore can be exploited as a safe anti-GBM therapeutic.

  11. Increased Immunostaining of Fibulin-1, an Estrogen-Regulated Protein in the Stroma of Human Ovarian Epithelial Tumors

    OpenAIRE

    Roger, Pascal; Pujol, Pascal; Lucas, Annick; Baldet, Pierre; Rochefort, Henri

    1998-01-01

    Fibulin-1, an extracellular matrix protein, is secreted by human ovarian metastatic cancer cell lines under estrogen stimulation. Fibulin-1 expression was quantified by immunohistochemistry and computer-aided image analysis in 44 human ovarian epithelial tumors and 14 normal ovaries. The fibulin-1 staining intensity in proximal stroma, close to the surface of epithelial cells and tumor cells, progressively increased from normal ovaries to serous carcinomas. In all lesions, excluding cystadeno...

  12. Usp9x Promotes Survival in Human Pancreatic Cancer and Its Inhibition Suppresses Pancreatic Ductal Adenocarcinoma In Vivo Tumor Growth

    Directory of Open Access Journals (Sweden)

    Anupama Pal

    2018-02-01

    Full Text Available Usp9x has emerged as a potential therapeutic target in some hematologic malignancies and a broad range of solid tumors including brain, breast, and prostate. To examine Usp9x tumorigenicity and consequence of Usp9x inhibition in human pancreatic tumor models, we carried out gain- and loss-of-function studies using established human pancreatic tumor cell lines (PANC1 and MIAPACA2 and four spontaneously immortalized human pancreatic patient-derived tumor (PDX cell lines. The effect of Usp9x activity inhibition by small molecule deubiquitinase inhibitor G9 was assessed in 2D and 3D culture, and its efficacy was tested in human tumor xenografts. Overexpression of Usp9x increased 3D growth and invasion in PANC1 cells and up-regulated the expression of known Usp9x substrates Mcl-1 and ITCH. Usp9x inhibition by shRNA-knockdown or by G9 treatment reduced 3D colony formation in PANC1 and PDX cell lines, induced rapid apoptosis in MIAPACA2 cells, and associated with reduced Mcl-1 and ITCH protein levels. Although G9 treatment reduced human MIAPACA2 tumor burden in vivo, in mouse pancreatic cancer cell lines established from constitutive (8041 and doxycycline-inducible (4668 KrasG12D/Tp53R172H mouse pancreatic tumors, Usp9x inhibition increased and sustained the 3D colony growth and showed no significant effect on tumor growth in 8041-xenografts. Thus, Usp9x inhibition may be therapeutically active in human PDAC, but this activity was not predicted from studies of genetically engineered mouse pancreatic tumor models.

  13. F3-targeted cisplatin-hydrogel nanoparticles as an effective therapeutic that targets both murine and human ovarian tumor endothelial cells in vivo.

    Science.gov (United States)

    Winer, Ira; Wang, Shouyan; Lee, Yong-Eun Koo; Lee, Youg-Eun Koo; Fan, Wenzhe; Gong, Yusong; Burgos-Ojeda, Daniela; Spahlinger, Greg; Kopelman, R; Buckanovich, Ronald J

    2010-11-01

    Recent studies indicate that ovarian cancer may be highly responsive to antivascular therapeutics. We have developed an antivascular tumor therapeutic using the F3 peptide to target cisplatin-loaded nanoparticles (F3-Cis-Np) to tumor vessels. We show that although F3-Cis-Np bind with high specificity to both human ovarian tumor cells and tumor endothelial cells in vitro, they only show cytotoxic activity against the tumor endothelial cells. In vivo these nanoparticles bind primarily to tumor endothelial cells. Therapeutic studies in both flank and orthotopic i.p. murine ovarian tumor models, as well as human tumor xenograft models, show rapid tumor regression with treatment. Treatment was associated with significant vascular necrosis consistent with an antivascular effect. Furthermore, treatment was active in both platinum-sensitive and platinum-resistant cell lines. Importantly, we show that F3-Cis-Np bind to human tumor endothelial cells in vitro and to human tumor vessels in vivo. Therapy targeting human vasculature in vivo with F3-Cis-Np led to near complete loss of all human tumor vessels in a murine model of human tumor vasculature. Our studies indicate that F3-targeted vascular therapeutics may be an effective treatment modality in human ovarian cancer. ©2010 AACR.

  14. A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth

    Science.gov (United States)

    Lebron, Maria B; Brennan, Laura; Damoci, Christopher B; Prewett, Marie C; O’Mahony, Marguerita; Duignan, Inga J; Credille, Kelly M; DeLigio, James T; Starodubtseva, Marina; Amatulli, Michael; Zhang, Yiwei; Schwartz, Kaben D; Burtrum, Douglas; Balderes, Paul; Persaud, Kris; Surguladze, David; Loizos, Nick; Paz, Keren; Kotanides, Helen

    2014-01-01

    Stem cell factor receptor (c-Kit) exerts multiple biological effects on target cells upon binding its ligand stem cell factor (SCF). Aberrant activation of c-Kit results in dysregulated signaling and is implicated in the pathogenesis of numerous cancers. The development of more specific and effective c-Kit therapies is warranted given its essential role in tumorigenesis. In this study, we describe the biological properties of CK6, a fully human IgG1 monoclonal antibody against the extracellular region of human c-Kit. CK6 specifically binds c-Kit receptor with high affinity (EC50 = 0.06 nM) and strongly blocks its interaction with SCF (IC50 = 0.41 nM) in solid phase assays. Flow cytometry shows CK6 binding to c-Kit on the cell surface of human small cell lung carcinoma (SCLC), melanoma, and leukemia tumor cell lines. Furthermore, exposure to CK6 inhibits SCF stimulation of c-Kit tyrosine kinase activity and downstream signaling pathways such as mitogen-activated protein kinase (MAPK) and protein kinase B (AKT), in addition to reducing tumor cell line growth in vitro. CK6 treatment significantly decreases human xenograft tumor growth in NCI-H526 SCLC (T/C% = 57) and Malme-3M melanoma (T/C% = 58) models in vivo. The combination of CK6 with standard of care chemotherapy agents, cisplatin and etoposide for SCLC or dacarbazine for melanoma, more potently reduces tumor growth (SCLC T/C% = 24, melanoma T/C% = 38) compared with CK6 or chemotherapy alone. In summary, our results demonstrate that CK6 is a c-Kit antagonist antibody with tumor growth neutralizing properties and are highly suggestive of potential therapeutic application in treating human malignancies harboring c-Kit receptor. PMID:24921944

  15. The Target of 5-Lipoxygenase is a Novel Strategy over Human Urological Tumors than the Target of Cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Masahide Matsuyama

    2008-01-01

    Full Text Available The metabolism of arachidonic acid by either the cyclooxygenase (COX or lipoxygenase (LOX pathway generates eicosanoids, which have been implicated in the pathogenesis of a variety of human diseases, including cancer. It is now considered that they play important roles in tumor promotion, progression, and metastasis, also, the involvement of COX and LOX expression and function in tumor growth and metastasis has been reported in human tumor cell lines. In this study, we examined the expression of COX and LOX in human urological tumors (renal cell carcinoma, bladder tumor, prostate cancer, testicular cancer by immunohistochemistry and RT-PCR, and we also examined the effects of COX and LOX (5- and 12-LOX inhibitors in those cells by MTT assay, hoechest staining, and flow cytometry. COX-2, 5-LOX and 12-LOX expressions were significantly more extensive and intense in malignant tissues than in normal tissues. Furthermore, 5-LOX inhibitor induced the reduction of malignant cell viability through early apoptosis. These results demonstrated COX-2 and LOX were induced in urological tumors, and 5-LOX inhibitor may mediate potent antiproliferative effects against urological tumors cells. Thus, 5-LOX may become a new target in the treatment of urological tumors.

  16. The Target of 5-Lipoxygenase is a Novel Strategy over Human Urological Tumors than the Target of Cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Masahide Matsuyama

    2008-06-01

    Full Text Available The metabolism of arachidonic acid by either the cyclooxygenase (COX or lipoxygenase (LOX pathway generates eicosanoids, which have been implicated in the pathogenesis of a variety of human diseases, including cancer. It is now considered that they play important roles in tumor promotion, progression, and metastasis, also, the involvement of COX and LOX expression and function in tumor growth and metastasis has been reported in human tumor cell lines. In this study, we examined the expression of COX and LOX in human urological tumors (renal cell carcinoma, bladder tumor, prostate cancer, testicular cancer by immunohistochemistry and RT-PCR, and we also examined the effects of COX and LOX (5- and 12-LOX inhibitors in those cells by MTT assay, hoechest staining, and flow cytometry. COX-2, 5-LOX and 12-LOX expressions were significantly more extensive and intense in malignant tissues than in normal tissues. Furthermore, 5-LOX inhibitor induced the reduction of malignant cell viability through early apoptosis. These results demonstrated COX-2 and LOX were induced in urological tumors, and 5-LOX inhibitor may mediate potent antiproliferative effects against urological tumors cells. Thus, 5-LOX may become a new target in the treatment of urological tumors.

  17. AAV-mediated human PEDF inhibits tumor growth and metastasis in murine colorectal peritoneal carcinomatosis model

    Directory of Open Access Journals (Sweden)

    Wu Qin Jie

    2012-03-01

    Full Text Available Abstract Background Angiogenesis plays an important role in tumor growth and metastasis, therefore antiangiogenic therapy was widely investigated as a promising approach for cancer therapy. Recently, pigment epithelium-derived factor (PEDF has been shown to be the most potent inhibitor of angiogenesis. Adeno-associated virus (AAV vectors have been intensively studied due to their wide tropisms, nonpathogenicity, and long-term transgene expression in vivo. The objective of this work was to evaluate the ability of AAV-mediated human PEDF (hPEDF as a potent tumor suppressor and a potential candidate for cancer gene therapy. Methods Recombinant AAV2 encoding hPEDF (rAAV2-hPEDF was constructed and produced, and then was assigned for in vitro and in vivo experiments. Conditioned medium from cells infected with rAAV2-hPEDF was used for cell proliferation and tube formation tests of human umbilical vein endothelial cells (HUVECs. Subsequently, colorectal peritoneal carcinomatosis (CRPC mouse model was established and treated with rAAV2-hPEDF. Therapeutic efficacy of rAAV2-hPEDF were investigated, including tumor growth and metastasis, survival time, microvessel density (MVD and apoptosis index of tumor tissues, and hPEDF levels in serum and ascites. Results rAAV2-hPEDF was successfully constructed, and transmission electron microscope (TEM showed that rAAV2-hPEDF particles were non-enveloped icosahedral shape with a diameter of approximately 20 nm. rAAV2-hPEDF-infected cells expressed hPEDF protein, and the conditioned medium from infected cells inhibited proliferation and tube-formation of HUVECs in vitro. Furthermore, in CRPC mouse model, rAAV2-hPEDF significantly suppressed tumor growth and metastasis, and prolonged survival time of treated mice. Immunofluorescence studies indicated that rAAV2-hPEDF could inhibit angiogenesis and induce apoptosis in tumor tissues. Besides, hPEDF levels in serum and ascites of rAAV2-hPEDF-treated mice were significant

  18. Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells

    Directory of Open Access Journals (Sweden)

    Li Fan

    2010-04-01

    Full Text Available Abstract Background In spite of recent advances in diagnostic and therapeutic measures, the prognosis of hepatocellular carcinoma (HCC patients remains poor. Therefore, it is crucial to understand what factors are involved in promoting development of HCC. Evidence is accumulating that members of the chemokine receptor family are viewed as promising therapeutic targets in the fight against cancer. More recent studies have revealed that chemokine receptor CXCR7 plays an important role in cancer development. However, little is known about the effect of CXCR7 on the process of HCC cell invasion and angiogenesis. The aim of this study is to investigate the expression of CXCR7 in hepatocellular carcinoma tissues and cell lines and to evaluate the role of CXCR7 in tumor growth, angiogenesis and invasion of HCC cells. Methods We constructed CXCR7 expressing shRNA, and CXCR7shRNA was subsequently stably transfected into human HCC cells. We evaluated the effect of CXCR7 inhibition on cell invasion, adhesion, VEGF secretion, tube formation and tumor growth. Immunohistochemistry was done to assess the expression of CXCR7 in human hepatocellular carcinoma tissues and CD31 in tumor of mice. We also evaluated the effect of VEGF stimulation on expression of CXCR7. Results CXCR7 was overexpressed in hepatocellular carcinoma tissues. We showed that high invasive potential HCC cell lines express high levels of CXCR7. In vitro, CXCL12 was found to induce invasion, adhesion, tube formation, and VEGF secretion in SMMC-7721 cells. These biological effects were inhibited by silencing of CXCR7 in SMMC-7721 cells. In addition, we also found that VEGF stimulation can up-regulate CXCR7 expression in SMMC-7721 cells and HUVECs. More importantly, enhanced expression of CXCR7 by VEGF was founctional. In vivo, tumor growth and angiogenesis were suppressed by knockdown of CXCR7 in SMMC-7721 cells. However, silencing of CXCR7 did not affect metastasis of tumor in vivo

  19. Characterization of MGI 114 (HMAF) histiospecific toxicity in human tumor cell lines.

    Science.gov (United States)

    Kelner, M J; McMorris, T C; Montoya, M A; Estes, L; Uglik, S F; Rutherford, M; Samson, K M; Bagnell, R D; Taetle, R

    1999-01-01

    The acylfulvenes are a class of antitumor agents derived from the fungal toxin illudin S. One acylfulvene derivative, MGI 114 (HMAF), demonstrates marked efficacy in xenograft carcinoma models when compared to the parent acylfulvene or related illudin compounds. The maximum tolerated dose (MTD) of the two analogs in animals, however, is similar. To help elucidate the basis of the increased therapeutic efficacy of MGI 114, we determined the in vitro cytotoxicity, cellular accumulation and DNA incorporation of this drug and compared the results with those from the parent acylfulvene analog. The cytotoxicity of acylfulvene analogs was tested in vitro against a variety of tumor cell lines. Radiolabeled MGI 114 was used for cellular accumulation and DNA incorporation studies. MGI 114 retained relative histiospecific toxicity towards myeloid leukemia and various carcinoma cell lines previously noted with the parent acylfulvene compound. Markedly fewer intracellular molecules of MGI 114 were required to kill human tumor cells in vitro as compared to the parent acylfulvene, indicating that MGI 114 was markedly more toxic on a cellular level. At equitoxic concentrations, however, the incorporation of MGI 114 into genomic tumor cell DNA was equivalent to that of acylfulvene. Analysis of cellular accumulation of MGI 114 into tumor cells revealed a lower Vmax for tumor cells, and a markedly lower Vd for diffusion accumulation as compared to acylfulvene. The addition of a single methylhydroxyl group to acylfulvene to produce MGI 114 results in a marked increase in cytotoxicity in vitro towards tumor cells as demonstrated by the reduction in IC50 values. There was a corresponding decrease in the number of intracellular molecules of MGI 114 required to kill tumor cells, but no quantitative alteration in covalent binding of the drugs to DNA at equitoxic concentrations. This indicates that cellular metabolism plays a role in the in vitro cytotoxicity of MGI 114. The equivalent

  20. Flotillin-1 protein is upregulated in human endometrial cancer and localization shifts from epithelial to stromal with increasing tumor grade.

    Science.gov (United States)

    Winship, Amy Louise; Rainczuk, Kate; Dimitriadis, Evdokia

    2016-01-01

    Endometrial cancer is the most common invasive gynecological malignancy. Flotillin-1 is an integral membrane protein and estrogen responsive gene. Flotillin-1 expression and localization in human endometrial cancers grades 1-3 was investigated using real-time RT-PCR and immunohistochemistry. Flotillin-1 mRNA levels were unchanged in endometrial cancer versus benign endometrium. Flotillin-1 protein was significantly reduced in the epithelial compartment with increasing tumor grade, although levels increased in the tumor stroma across grades. We have identified a novel factor in human endometrial cancer and observed a shift in epithelial to stromal localization with increasing tumor grade in women.

  1. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    Directory of Open Access Journals (Sweden)

    Kanakubo Emi

    2005-09-01

    Full Text Available Abstract Background The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. Methods We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7, a powerful, heparin-binding growth factor for breast epithelial cells. Results Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Conclusion Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors.

  2. Computational analysis of expression of human embryonic stem cell-associated signatures in tumors

    Directory of Open Access Journals (Sweden)

    Wang Xiaosheng

    2011-10-01

    Full Text Available Abstract Background The cancer stem cell model has been proposed based on the linkage between human embryonic stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be collected. In this study, we extensively examined the expression of human embryonic stem cell-associated signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the computational biology approach. Results We used the class comparison analysis and survival analysis algorithms to identify differentially expressed genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We found that most of the human embryonic stem cell- associated signatures were frequently identified in the analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells. Conclusions The present study revealed the close linkage between the human embryonic stem cell associated gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support for the cancer stem cell theory. However, many interest issues remain to be addressed further.

  3. Extinction of Tumor Antigen Expression by SF2/ASF in JCV-Transformed Cells.

    Science.gov (United States)

    Uleri, Elena; Beltrami, Sarah; Gordon, Jennifer; Dolei, Antonina; Sariyer, Ilker Kudret

    2011-07-01

    The human neurotropic polyomavirus JC (JCV) induces a broad range of neural-origin tumors in experimental animals and has been repeatedly detected in several human cancers, most notably neural crest-origin tumors including medulloblastomas and glioblastomas. The oncogenic activity of JCV is attributed to the viral early gene products, large T and small t antigens, as evident by results from in vitro cell culture and in vivo animal studies. Recently, we have shown that alternative splicing factor, SF2/ASF, has the capacity to exert a negative effect on transcription and splicing of JCV genes in glial cells through direct association with a specific DNA motif within the viral promoter region. Here, we demonstrate that SF2/ASF suppresses large T antigen expression in JCV-transformed tumor cell lines, and the expression of SF2/ASF in such tumor cells thereby inhibits the transforming capacity of the viral tumor antigens. Moreover, down-regulation of SF2/ASF in viral-transformed tumor cell lines induces growth and proliferation of the tumor cells. Mapping analysis of the minimal peptide domain of SF2/ASF responsible for JCV promoter silencing and tumor suppressor activity suggests that amino acid residues 76 to 100 of SF2/ASF are functionally sufficient to suppress the growth of the tumor cells. These observations demonstrate a role for SF2/ASF in JCV-mediated cellular transformation and provide a new avenue of research to pathogenic mechanisms of JCV-induced tumors.

  4. Impairment of radial glial scaffold-dependent neuronal migration and formation of double cortex by genetic ablation of afadin.

    Science.gov (United States)

    Yamamoto, Hideaki; Mandai, Kenji; Konno, Daijiro; Maruo, Tomohiko; Matsuzaki, Fumio; Takai, Yoshimi

    2015-09-16

    Studies of human brain malformations, such as lissencephaly and double cortex, have revealed the importance of neuronal migration during cortical development. Afadin, a membrane scaffolding protein, regulates the formation of adherens junctions (AJs) and cell migration to form and maintain tissue structures. Here, we report that mice with dorsal telencephalon-specific ablation of afadin gene exhibited defects similar to human double cortex, in which the heterotopic cortex was located underneath the normotopic cortex. The normotopic cortex of the mutant mice was arranged in the pattern similar to the cortex of the control mice, while the heterotopic cortex was disorganized. As seen in human patients, double cortex in the mutant mice was formed by impaired neuronal migration during cortical development. Genetic ablation of afadin in the embryonic cerebral cortex disrupted AJs of radial glial cells, likely resulting in the retraction of the apical endfeet from the ventricular surface and the dispersion of radial glial cells from the ventricular zone to the subventricular and intermediate zones. These results indicate that afadin is required for the maintenance of AJs of radial glial cells and that the disruption of AJs might cause an abnormal radial scaffold for neuronal migration. In contrast, the proliferation or differentiation of radial glial cells was not significantly affected. Taken together, these findings indicate that afadin is required for the maintenance of the radial glial scaffold for neuronal migration and that the genetic ablation of afadin leads to the formation of double cortex. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    Science.gov (United States)

    Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina

    2004-03-15

    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.

  6. Functional Regeneration Beyond the Glial Scar

    Science.gov (United States)

    Cregg, Jared M.; DePaul, Marc A.; Filous, Angela R.; Lang, Brad T.; Tran, Amanda; Silver, Jerry

    2014-01-01

    Astrocytes react to CNS injury by building a dense wall of filamentous processes around the lesion. Stromal cells quickly take up residence in the lesion core and synthesize connective tissue elements that contribute to fibrosis. Oligodendrocyte precursor cells proliferate within the lesion and help to entrap dystrophic axon tips. Here we review evidence that this aggregate scar acts as the major barrier to regeneration of axons after injury. We also consider several exciting new interventions that allow axons to regenerate beyond the glial scar, and discuss the implications of this work for the future of regeneration biology. PMID:24424280

  7. Assisted morphogenesis: glial control of dendrite shapes.

    Science.gov (United States)

    Procko, Carl; Shaham, Shai

    2010-10-01

    Neurons display a myriad of dendritic architectures, reflecting their diverse roles in information processing and transduction in the nervous system. Recent findings suggest that neuronal signals may not account for all aspects of dendrite morphogenesis. Observations from C. elegans and other organisms suggest that glial cells can affect dendrite length and guidance, as well as localization and shapes of dendritic receptive structures, such as dendritic spines and sensory cilia. Thus, besides direct roles in controlling neuronal activity, glia contribute to neuron function by ensuring that neurons attain their proper shapes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Thrombospondin-1 (TSP-1) up-regulates tissue inhibitor of metalloproteinase-1 (TIMP-1) production in human tumor cells: exploring the functional significance in tumor cell invasion.

    Science.gov (United States)

    John, Anitha S; Hu, Xioulong; Rothman, Vicki L; Tuszynski, George P

    2009-12-01

    Thrombospondin-1 (TSP-1), a matrix-bound adhesive glycoprotein, has been shown to modulate tumor progression. We previously demonstrated that TSP-1 up-regulates matrix metalloproteinases MMP-2 and MMP-9. Our studies suggested that the balance between MMPs and tissue inhibitors of metalloproteinases (TIMPs) is a key determinant in tumor cell invasion. We now report that TSP-1 up-regulates TIMP-1 expression in both human breast and prostate cancer cell lines. The effect of TSP-1 on TIMP-1 expression was examined in human breast adenocarcinoma cell lines (MDA-MB-231) and human prostate cancer cell lines (PC3-NI and PC3-ML) treated with exogenous TSP-1. TIMP-1 expression was also examined in TSP-1 stably transfected breast cancer cell line (MDA-MB-435). Northern and western blot analysis revealed TIMP-1 mRNA and TIMP-1 protein expression increased with increasing concentrations of TSP-1. This effect was inhibited by antibodies against the type I repeat domain of TSP-1 further suggesting that TSP-1 mediates TIMP-1 secretion. Inhibition of TSP-1 induced TIMP-1 levels increased tumor cell invasion. We conclude that TSP-1 is involved in influencing the critical balance between MMPs and their inhibitors, maintaining the controlled degradation of the extracellular matrix needed to support metastasis and our results may provide an explanation for the divergent activities reported for TSP-1 in tumor progression.

  9. Neurotransmitters involved in fast excitatory neurotransmission directly activate enteric glial cells.

    Science.gov (United States)

    Boesmans, W; Cirillo, C; Van den Abbeel, V; Van den Haute, C; Depoortere, I; Tack, J; Vanden Berghe, P

    2013-02-01

    The intimate association between glial cells and neurons within the enteric nervous system has confounded careful examination of the direct responsiveness of enteric glia to different neuroligands. Therefore, we aimed to investigate whether neurotransmitters known to elicit fast excitatory potentials in enteric nerves also activate enteric glia directly. We studied the effect of acetylcholine (ACh), serotonin (5-HT), and adenosine triphosphate (ATP) on intracellular Ca(2+) signaling using aequorin-expressing and Fluo-4 AM-loaded CRL-2690 rat and human enteric glial cell cultures devoid of neurons. The influence of these neurotransmitters on the proliferation of glia was measured and their effect on the expression of c-Fos as well as glial fibrillary acidic protein (GFAP), Sox10, and S100 was examined by immunohistochemistry and quantitative RT-PCR. Apart from ATP, also ACh and 5-HT induced a dose-dependent increase in intracellular Ca(2+) concentration in CRL-2690 cells. Similarly, these neurotransmitters also evoked Ca(2+) transients in human primary enteric glial cells obtained from mucosal biopsies. In contrast with ATP, stimulation with ACh and 5-HT induced early gene expression in CRL-2690 cells. The proliferation of enteric glia and their expression of GFAP, Sox10, and S100 were not affected following stimulation with these neurotransmitters. We provide evidence that enteric glial cells respond to fast excitatory neurotransmitters by changes in intracellular Ca(2+). On the basis of our experimental in vitro setting, we show that enteric glia are not only directly responsive to purinergic but also to serotonergic and cholinergic signaling mechanisms. © 2012 Blackwell Publishing Ltd.

  10. Circadian expression of clock- and tumor suppressor genes in human oral mucosa.

    Science.gov (United States)

    Zieker, Derek; Jenne, Isabel; Koenigsrainer, Ingmar; Zdichavsky, Marty; Nieselt, Kay; Buck, Katharina; Zieker, Judith; Beckert, Stefan; Glatzle, Joerg; Spanagel, Rainer; Koenigsrainer, Alfred; Northoff, Hinnak; Loeffler, Markus

    2010-01-01

    Circadian rhythms are daily oscillations of multiple biological processes driven by endogenous clocks. Imbalance of these rhythms has been associated with cancerogenesis in humans. To further elucidate the role circadian clocks have in cellular growth control, tumor suppression and cancer treatment, it is revealing to know how clock genes and clock-controlled genes are regulated in healthy humans. Therefore comparative microarray analyses were conducted investigating the relative mRNA expression of clock genes throughout a 24-hour period in cell samples obtained from oral mucosa of eight healthy diurnally active male study participants. Differentially expressed selected genes of interest were additionally evaluated using qRT-PCR. Microarray analysis revealed 33 significant differentially regulated clock genes and clock- controlled genes, throughout a one day period (6.00h, 12.00h, 18.00h, 24.00h). Hereof were 16 clock genes and 17 clock- controlled genes including tumor suppressor- and oncogenes. qRT-PCR of selected genes of interest, such as hPER2, hCRY1, hBMAL1, hCCRN4L and hSMAD5 revealed significant circadian regulations. Our study revealed a proper circadian regulation profile of several clock- and tumor suppressor genes at defined points in time in the participants studied. These findings could provide important information regarding genes displaying the same expression profile in the gastrointestinal tract amounting to a physiological expression profile of healthy humans. In the future asynchronous regulations of those genes might be an additional assistant method to detect derivations distinguishing normal from malignant tissue or assessing risk factors for cancer. Copyright 2010 S. Karger AG, Basel.

  11. Differential expression of human homeodomain TGIFLX in brain tumor cell lines.

    Directory of Open Access Journals (Sweden)

    Reza Raoofian

    2013-12-01

    Full Text Available Glioblastoma is the most common and the most lethal primary brain cancer. This malignancy is highly locally invasive, rarely metastatic and resistant to current therapies. Little is known about the distinct molecular biology of glioblastoma multiforme (GBM in terms of initiation and progression. So far, several molecular mechanisms have been suggested to implicate in GBM development. Homeodomain (HD transcription factors play central roles in the expression of genomic information in all known eukaryotes. The TGIFX homeobox gene was originally discovered in human adult testes. Our previous study showed implications of TGIFLX in prostate cancer and azoospermia, although the molecular mechanism by which TGIFLX acts is unknown. Moreover, studies reported that HD proteins are involved in normal and abnormal brain developments. We examined the expression pattern of TGIFLX in different human brain tumor cell lines including U87MG, A172, Daoy and 1321N1. Interestingly, real time RT-PCR and western blot analysis revealed a high level of TGIFLX expression in A172 cells but not in the other cell lines. We subsequently cloned the entire coding sequence of TGIFLX gene into the pEGFP-N1 vector, eukaryotic expression vector encoding eGFP, and transfected into the U-87 MG cell line. The TGIFLX-GFP expression was confirmed by real time RT-PCR and UV-microscopic analysis. Upon transfection into U87 cells, fusion protein TGIFLX-GFP was found to locate mainly in the nucleus. This is the first report to determine the nuclear localization of TGIFLX and evaluation of its expression level between different brain tumor cell lines. Our data also suggest that TGIFLX gene dysregulation could be involved in the pathogenesis of some human brain tumors.

  12. HIV-1 Tat C-mediated regulation of tumor necrosis factor receptor-associated factor-3 by microRNA 32 in human microglia

    Science.gov (United States)

    2012-01-01

    Background HIV-1 Tat protein is known to be associated with neuroinflammation, a condition that develops in almost half of patients infected with HIV-1. HIV-1 Tat can alter glial neuroprotective functions, leading to neurotoxicity within the CNS. HIV-1 Tat is known to be secreted from productively infected cells and can affect neighboring uninfected cells by modulating cellular gene expression in a bystander fashion. Methods We were interested to study whether exogenous exposure to HIV-1 Tat-C protein perturbs the microRNA (miRNA) expression profile of human microglial cells, leading to altered protein expression. We used protein expression and purification, miRNA overexpression, miRNA knockdown, transfection, site-directed mutagenesis, real-time PCR, luciferase assay and western blotting techniques to perform our study. Results HIV-1 Tat-C treatment of human microglial cells resulted in a dose-dependent increase in miR-32 expression. We found that tumor necrosis factor-receptor–associated factor 3 TRAF3) is a direct target for miR-32, and overexpression of miR-32 in CHME3 cells decreased TRAF3 both at the mRNA and the protein level. Recovery of TRAF3 protein expression after transfection of anti-miR-32 and the results of the luciferase reporter assay provided direct evidence of TRAF3 regulation by miR-32. We found that the regulation of interferon regulatory factor 3 (IRF3) and IRF7 is controlled by cellular levels of TRAF3 protein in microglial cells, as after overexpression of miR-32 and application of anti-miR-32, expression levels of IRF3 and IRF7 were inversely regulated by expression levels of TRAF3. Thus, our results suggest a novel miRNA mediated mechanism for regulation of TRAF3 in human microglial cells exposed to HIV-1 Tat C protein. These results may help to elucidate the detrimental neuroinflammatory consequences of HIV-1 Tat C protein in bystander fashion. Conclusion HIV-1 Tat protein can modulate TRAF3 expression through miRNA mediated pathway and

  13. HIV-1 Tat C-mediated regulation of tumor necrosis factor receptor-associated factor-3 by microRNA 32 in human microglia

    Directory of Open Access Journals (Sweden)

    Mishra Ritu

    2012-06-01

    Full Text Available Abstract Background HIV-1 Tat protein is known to be associated with neuroinflammation, a condition that develops in almost half of patients infected with HIV-1. HIV-1 Tat can alter glial neuroprotective functions, leading to neurotoxicity within the CNS. HIV-1 Tat is known to be secreted from productively infected cells and can affect neighboring uninfected cells by modulating cellular gene expression in a bystander fashion. Methods We were interested to study whether exogenous exposure to HIV-1 Tat-C protein perturbs the microRNA (miRNA expression profile of human microglial cells, leading to altered protein expression. We used protein expression and purification, miRNA overexpression, miRNA knockdown, transfection, site-directed mutagenesis, real-time PCR, luciferase assay and western blotting techniques to perform our study. Results HIV-1 Tat-C treatment of human microglial cells resulted in a dose-dependent increase in miR-32 expression. We found that tumor necrosis factor-receptor–associated factor 3 TRAF3 is a direct target for miR-32, and overexpression of miR-32 in CHME3 cells decreased TRAF3 both at the mRNA and the protein level. Recovery of TRAF3 protein expression after transfection of anti-miR-32 and the results of the luciferase reporter assay provided direct evidence of TRAF3 regulation by miR-32. We found that the regulation of interferon regulatory factor 3 (IRF3 and IRF7 is controlled by cellular levels of TRAF3 protein in microglial cells, as after overexpression of miR-32 and application of anti-miR-32, expression levels of IRF3 and IRF7 were inversely regulated by expression levels of TRAF3. Thus, our results suggest a novel miRNA mediated mechanism for regulation of TRAF3 in human microglial cells exposed to HIV-1 Tat C protein. These results may help to elucidate the detrimental neuroinflammatory consequences of HIV-1 Tat C protein in bystander fashion. Conclusion HIV-1 Tat protein can modulate TRAF3 expression through

  14. Oncolytic viruses sensitize human tumor cells for NY-ESO-1 tumor antigen recognition by CD4+ effector T cells.

    Science.gov (United States)

    Delaunay, Tiphaine; Violland, Mathilde; Boisgerault, Nicolas; Dutoit, Soizic; Vignard, Virginie; Münz, Christian; Gannage, Monique; Dréno, Brigitte; Vaivode, Kristine; Pjanova, Dace; Labarrière, Nathalie; Wang, Yaohe; Chiocca, E Antonio; Boeuf, Fabrice Le; Bell, John C; Erbs, Philippe; Tangy, Frédéric; Grégoire, Marc; Fonteneau, Jean-François

    2018-01-01

    Oncolytic immunotherapy using oncolytic viruses (OV) has been shown to stimulate the antitumor immune response by inducing the release of tumor-associated antigens (TAA) and danger signals from the dying infected tumor cells. In this study, we sought to determine if the lysis of tumor cells induced by different OV: measles virus, vaccinia virus, vesicular stomatitis virus, herpes simplex type I virus, adenovirus or enterovirus, has consequences on the capacity of tumor cells to present TAA, such as NY-ESO-1. We show that the co-culture of NY-ESO-1 neg /HLA-DP4 pos melanoma cells with NY-ESO-1 pos /HLA-DP4 neg melanoma cells infected and killed by different OV induces an intercellular transfer of NY-ESO-1 that allows the recognition of NY-ESO-1 neg /HLA-DP4 pos tumor cells by an HLA-DP4/NY-ESO-1 (157-170) -specific CD4+ cytotoxic T cell clone, NY67. We then confirmed this result in a second model with an HLA-DP4+ melanoma cell line that expresses a low amount of NY-ESO-1. Recognition of this cell line by the NY67 clone is largely increased in the presence of OV productive infection. Altogether, our results show for the first time another mechanism of stimulation of the anti-tumor immune response by OV, via the loading of tumor cells with TAA that sensitizes them for direct recognition by specific effector CD4+ T cells, supporting the use of OV for cancer immunotherapy.

  15. [Death of neurons and glial cells, induced by a photodynamic injury: signaling processes and neurone-glial interactions].

    Science.gov (United States)

    Uzdenskiĭ, A B; Kolosov, M S; Lobanov, A V

    2007-01-01

    The mechanisms of photodynamic (PD) injury of neurons and glial cells are reviewed. Neuron responses: firing stimulation at high photosensitizer concentrations and inhibition at low concentrations (neuron enhanced PD-induced apoptosis of glial cells, thus indicating that neuron maintained the survival of glia. Inter- and intracellular signaling mediated photodamage of these cells. Using inhibitors or activators of signaling proteins, the involvement of Ca(2+)-, adenylate cyclase- and tyrosine kinase-mediated signaling pathways in responses of neurons and glial cells to photosensitization was shown. Their pharmacological modulation can change selectivity of PD injury of neuronal and glial cells and efficiency of PD therapy.

  16. TLR4 activates NF-{kappa}B in human ovarian granulosa tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Dori C., E-mail: dwoods2@partners.org [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); White, Yvonne A.R. [Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114 (United States); Dau, Caroline [University of California, San Francisco, School of Dentistry, San Francisco, CA 94143 (United States); Johnson, A.L. [Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802 (United States)

    2011-06-17

    Highlights: {yields} TLR4 is expressed in human ovarian granulosa tumor cells. {yields} Acting through TLR4, LPS and HSP60 induce a NF{kappa}B signaling cascade in human ovarian granulosa tumor cells. {yields} NF{kappa}B activation or inhibition did not alter chemosensitivity to TRAIL or cisplatin. -- Abstract: Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-{kappa}B) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to I{kappa}B degradation and activation of NF-{kappa}B. NF-{kappa}B activation was confirmed by nuclear localization of NF-{kappa}B p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-{kappa}B signaling attenuated LPS-induced TNF{alpha} plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-{kappa}B signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-{kappa}B does not sensitize GCTs to TRAIL or cisplatin.

  17. Calcifying epithelial odontogenic (Pindborg) tumor-associated amyloid consists of a novel human protein.

    Science.gov (United States)

    Solomon, Alan; Murphy, Charles L; Weaver, Kristal; Weiss, Deborah T; Hrncic, Rudi; Eulitz, Manfred; Donnell, Robert L; Sletten, Knut; Westermark, Gunilla; Westermark, Per

    2003-11-01

    Calcifying epithelial odontogenic tumors (CEOTs), also known as Pindborg tumors, are characterized by the presence of squamous-cell proliferation, calcification, and, notably, amyloid deposits. On the basis of immunohistochemical analyses, the amyloidogenic component had heretofore been deemed to consist of cytokeratin-related or other molecules; however, its chemical composition had never been elucidated. We have used our microanalytic techniques to characterize the protein nature of CEOT-associated amyloid isolated from specimens obtained from 3 patients. As evidenced by the results of amino-acid sequencing and mass spectrometry, the fibrils were found to be composed of a polypeptide of approximately 46 mer. This component was identical in sequence to the N-terminal portion of a hypothetical 153-residue protein encoded by the FLJ20513 gene cloned from the human KATO III cell line. That the amyloid protein was derived from this larger molecule was demonstrated by reverse transcription-polymerase chain reaction amplification of tumor-cell RNA where a full-length FLJ20513 transcript was found. Furthermore, immunohistochemical analyses revealed that the amyloid within the CEOTs immunostained with antibodies prepared against a synthetic FLJ20513-related dodecapeptide. Our studies provide unequivocal evidence that CEOT-associated amyloid consists of a unique and previously undescribed protein that we provisionally designate APin.

  18. Immunoexpression of integrins in ameloblastoma, adenomatoid odontogenic tumor, and human tooth germs.

    Science.gov (United States)

    de Souza Andrade, Emanuel Sávio; Miguel, Márcia Cristina da Costa; de Almeida Freitas, Roseana; Pereira Pinto, Leão; Batista de Souza, Lélia

    2008-07-01

    The expression of integrins alpha2beta1, alpha3beta1, and alpha5beta1 in 30 ameloblastomas (20 solid and 10 unicystic tumors), 12 adenomatoid odontogenic tumors (AOTs), and 5 human tooth germs in different stages of odontogenesis was analyzed. The distribution, location, pattern, and intensity of immunohistochemical expression were evaluated. Intensity was analyzed using scores (0 = absence, 1 = weak staining, and 2 = strong staining). No difference in the immunoexpression of the integrins was observed between solid and unicystic ameloblastomas. When these two ameloblastoma types were pooled into a single group, the following significant differences were found: immunoexpression of integrin alpha2beta1 was stronger in ameloblastomas than in AOTs and tooth germs, and the expression of integrin alpha5beta1 was stronger in ameloblastomas than in AOTs. The lack of detection of integrin alpha3beta1 in tooth germs and its detection in the odontogenic tumors studied suggest that this integrin might be used as a marker of neoplastic transformation in odontogenic tissues.

  19. Pit-1 inhibits BRCA1 and sensitizes human breast tumors to cisplatin and vitamin D treatment.

    Science.gov (United States)

    Seoane, Samuel; Arias, Efigenia; Sigueiro, Rita; Sendon-Lago, Juan; Martinez-Ordoñez, Anxo; Castelao, Esteban; Eiró, Noemí; Garcia-Caballero, Tomás; Macia, Manuel; Lopez-Lopez, Rafael; Maestro, Miguel; Vizoso, Francisco; Mouriño, Antonio; Perez-Fernandez, Roman

    2015-06-10

    The POU class 1 homeobox 1 (POU1F1, also known as Pit-1), pertaining to the Pit-Oct-Unc (POU) family of transcription factors, has been related to tumor growth and metastasis in breast. However, its role in response to breast cancer therapy is unknown. We found that Pit-1 down-regulated DNA-damage and repair genes, and specifically inhibited BRCA1 gene expression, sensitizing breast cancer cells to DNA-damage agents. Administration of 1α, 25-dihydroxy-3-epi-vitamin D3 (3-Epi, an endogenous low calcemic vitamin D metabolite) reduced Pit-1 expression, and synergized with cisplatin, thus, decreasing cell proliferation and apoptosis in vitro, and reducing tumor growth in vivo. In addition, fifteen primary cultures of human breast tumors showed significantly decreased proliferation when treated with 3-Epi+cisplatin, compared to cisplatin alone. This response positively correlated with Pit-1 levels. Our findings demonstrate that high levels of Pit-1 and reduced BRCA1 levels increase breast cancer cell susceptibility to 3-Epi+cisplatin therapy.

  20. FBXW7 Acts as an Independent Prognostic Marker and Inhibits Tumor Growth in Human Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Zhanchun Li

    2015-01-01

    Full Text Available F-box and WD repeat domain-containing 7 (FBXW7 is a potent tumor suppressor in human cancers including breast cancer, colorectal cancer, gastric cancer and hepatocellular carcinoma. In this study, we found that the expressions of FBXW7 protein and mRNA levels in osteosarcoma (OS cases were significantly lower than those in normal bone tissues. Clinical analysis indicated that FBXW7 was expressed at lower levels in OS patients with advanced clinical stage, high T classification and poor histological differentiation. Furthermore, we demonstrated that high expression of FBXW7 was correlated with a better 5-year survival of OS patients. Multivariate Cox regression analysis indicated that FBXW7 was an independent prognostic marker in OS. Our in vitro studies showed that FBXW7 overexpression inhibited cell cycle transition and cell proliferation, and promoted apoptosis in both U2OS and MG-63 cells. In a nude mouse xenograft model, FBXW7 overexpression slowed down tumor growth by inducing apoptosis and growth arrest. Mechanistically, FBXW7 inversely regulated oncoprotein c-Myc and cyclin E levels in both U2OS and MG-63 cells. Together these findings suggest that FBXW7 may serve as a prognostic biomarker and inhibit tumor progression by inducing apoptosis and growth arrest in OS.

  1. Clinical implications of chemotherapy-induced tumor gene expression in human breast cancers.

    Science.gov (United States)

    Tan, Sing-Huang; Lee, Soo-Chin

    2010-03-01

    There has been much interest in generating gene signatures to predict treatment response in breast cancer. There are at least 15 published studies that describe baseline tumor gene signatures predicting chemotherapy sensitivity. As an extension of these baseline studies, there have been at least 8 published studies evaluating chemotherapy-induced tumor genomic changes over time in human breast cancers. Studies on chemotherapy-induced gene expression changes were reviewed in detail. Drug-induced biological changes within the tumor shed light on mechanisms of drug resistance and provided valuable insights regarding genes and pathways that were regulated by different drugs, including therapeutic targets that could be exploited to overcome resistance. One study also suggested post-chemotherapy gene signatures to be more predictive of response and survival than the unchallenged baseline signatures. Studies on chemotherapy-induced changes, although informative, are logistically demanding to execute, often with significant attrition of collected samples resulting in small datasets. They are further limited by heterogeneity of study population, chemotherapy regimens used, timing of the post-therapy sample and definition of response endpoint, making cross-comparisons of studies and data interpretation difficult. Future studies should address these limitations, and should involve larger sample sets and prospective studies for validation.

  2. Detection of human brain tumor infiltration with multimodal multiscale optical analysis

    Science.gov (United States)

    Poulon, Fanny; Metais, Camille; Jamme, Frederic; Zanello, Marc; Varlet, Pascale; Devaux, Bertrand; Refregiers, Matthieu; Abi Haidar, Darine

    2017-02-01

    Brain tumor surgeries are facing major challenges to improve patients' quality of life. The extent of resection while preserving surrounding eloquent brain areas is necessary to equilibrate the onco-functional. A tool able to increase the accuracy of tissue analysis and to deliver an immediate diagnostic on tumor, could drastically improve actual surgeries and patient survival rates. To achieve such performances a complete optical study, ranging from ultraviolet to infrared, of biopsies has been started by our group. Four different contrasts were used: 1) spectral analysis covering the DUV to IR range, 2) two photon fluorescence lifetime imaging and one photon time domain measurement, 3) second harmonic generation imaging and 4) fluorescence imaging using DUV to IR, one and two photon excitation. All these measurements were done on the endogenous fluorescence of tissues to avoid any bias and further clinical complication due to the introduction of external markers. The different modalities are then crossed to build a matrix of criteria to discriminate tumorous tissues. The results of multimodal optical analysis on human biopsies were compared to the gold standard histopathology.

  3. Characterization of Mild Whole-Body Hyperthermia Protocols Using Human Breast, Ovarian, and Colon Tumors Grown in Severe Combined Immunodeficient Mice

    Directory of Open Access Journals (Sweden)

    E. A. Repasky

    1999-01-01

    Full Text Available Objective: We have shown that one treatment of fever-like whole body hyperthermia (WBH on mice bearing human breast tumors results in a tumor growth delay. Our goal was to repeat this study in mice bearing human ovarian or colon tumors. We further evaluated this WBH protocol by performing multiple and interrupted WBH treatments.

  4. Higher Numbers of T-Bet+ Tumor-Infiltrating Lymphocytes Associate with Better Survival in Human Epithelial Ovarian Cancer.

    Science.gov (United States)

    Xu, Yun; Chen, Lujun; Xu, Bin; Xiong, Yuqi; Yang, Min; Rui, Xiaohui; Shi, Liangrong; Wu, Changping; Jiang, Jingting; Lu, Binfeng

    2017-01-01

    T-bet, a member of the T-box family of transcription factors, is a key marker of type I immune response within the tumor microenvironment, and has been previously reported by us to serve as an important prognostic indicator for human gastric cancer patients and a potential biomarker for immunotherapy. In the present study, we aimed to assess the clinical significance and prognostic value of T-bet+ tumor-infiltrating lymphocytes in human epithelial ovarian cancer. The immunohistochemistry was used to analyze the infiltration density of T-bet+ lymphoid cells in human epithelial ovarian cancer tissues, and the flow cytometry analysis was used to further analyze the presence of T-bet+ tumor-infiltrating lymphocytes subgroups in cancer tissues. Our immunohistochemistry analysis showed increased number of T-bet+ lymphoid cells in the human epithelial ovarian cancer tissues, and the flow cytometry analysis further demonstrated the presence of T-bet+ tumor-infiltrating lymphocytes subgroups including CD4+ , CD8+ T cells and NK cells. In addition, we also observed a significant association of T-bet+ tumor-infiltrating lymphocytes density in the tumor nest of cancer with not only serum CA125 levels but also with distant metastasis. However no association was observed with other characteristics like patients' age, pathological type, FIGO stage, tumor site and tumor size. Furthermore, the survival analysis showed that higher density of T-bet+ tumor-infiltrating lymphocytes both in tumor nest and tumor stroma of cancer tissues was significantly associated with better patient survival. In addition, the density of T-bet+ tumor-infiltrating lymphocytes in tumor nest appeared to be an independent risk factor for predicting patients' postoperative prognoses. Our data indicated that the key transcription factor T-bet might play an important role in the type I immune cells mediated antitumor response, and the density of T-bet+ lymphocytes in human epithelial ovarian cancer tissues

  5. Higher Numbers of T-Bet+ Tumor-Infiltrating Lymphocytes Associate with Better Survival in Human Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Yun Xu

    2017-01-01

    Full Text Available Background/Aims: T-bet, a member of the T-box family of transcription factors, is a key marker of type I immune response within the tumor microenvironment, and has been previously reported by us to serve as an important prognostic indicator for human gastric cancer patients and a potential biomarker for immunotherapy. In the present study, we aimed to assess the clinical significance and prognostic value of T-bet+ tumor-infiltrating lymphocytes in human epithelial ovarian cancer. Methods: The immunohistochemistry was used to analyze the infiltration density of T-bet+ lymphoid cells in human epithelial ovarian cancer tissues, and the flow cytometry analysis was used to further analyze the presence of T-bet+ tumor-infiltrating lymphocytes subgroups in cancer tissues. Results: Our immunohistochemistry analysis showed increased number of T-bet+ lymphoid cells in the human epithelial ovarian cancer tissues, and the flow cytometry analysis further demonstrated the presence of T-bet+ tumor-infiltrating lymphocytes subgroups including CD4+ , CD8+ T cells and NK cells. In addition, we also observed a significant association of T-bet+ tumor-infiltrating lymphocytes density in the tumor nest of cancer with not only serum CA125 levels but also with distant metastasis. However no association was observed with other characteristics like patients' age, pathological type, FIGO stage, tumor site and tumor size. Furthermore, the survival analysis showed that higher density of T-bet+ tumor-infiltrating lymphocytes both in tumor nest and tumor stroma of cancer tissues was significantly associated with better patient survival. In addition, the density of T-bet+ tumor-infiltrating lymphocytes in tumor nest appeared to be an independent risk factor for predicting patients’ postoperative prognoses. Conclusions: Our data indicated that the key transcription factor T-bet might play an important role in the type I immune cells mediated antitumor response, and the

  6. Expression of somatostatin receptor subtypes in human thyroid tumors: the immunohistochemical and molecular biology (RT-PCR investigation

    Directory of Open Access Journals (Sweden)

    Pisarek Hanna

    2009-01-01

    Full Text Available Abstract Human endocrine tumors often express the somatostatin receptors SSTR 1–5 with different intensity. It has been widely investigated their distribution in pituitary adenomas, brain tumors, adrenal tumors and neuroendocrine tumors in gastrointestinal tract (NET. Some of studies also concern the expression of SSTRs in thyroid tumors but they are mainly limited to parafollicular C cells – derived medullary thyroid carcinomas (MTC. Results of SSTR 1–5 detection in other thyroid pathologies like follicular adenomas and papillary cancers are still scarce and often controversial, depending of investigation method used. The aim of this study was to report the presence of all the 5 subtypes of SSTR (including 2A and 2B SSTR isoforms in some surgically treated human thyroid tumors by means of immunohistochemistry and real-time PCR method and to correlate the results obtained with both techniques. SSTR 1 protein was expressed in 88.8% of investigated cases, SSTR 2A and 2B both in 44.4%, SSTR 3 in 55.5%, SSTR 4 in 11.2% and SSTR 5 in 33.3%. SSTR 1 is the dominant form in the thyroid gland tumor and hyperplasia. We found positive confirmation of both methods in 88.8% for SSTR 1, 2A, 3 subtypes, in 22.2% for SSTR 4 and in 100% for SSTR 5. It suggests that somatostatin multiligand analogs or selective SSTR 1 agonists may be used in thyroid tumors treatment.

  7. Suppressive effects of tumor cell-derived 5′-deoxy-5′-methylthioadenosine on human T cells

    Science.gov (United States)

    Henrich, Frederik C.; Singer, Katrin; Poller, Kerstin; Bernhardt, Luise; Strobl, Carolin D.; Limm, Katharina; Ritter, Axel P.; Gottfried, Eva; Völkl, Simon; Jacobs, Benedikt; Peter, Katrin; Mougiakakos, Dimitrios; Dettmer, Katja; Oefner, Peter J.; Bosserhoff, Anja-Katrin; Kreutz, Marina P.; Aigner, Michael; Mackensen, Andreas

    2016-01-01

    ABSTRACT The immunosuppressive tumor microenvironment represents one of the main obstacles for immunotherapy of cancer. The tumor milieu is among others shaped by tumor metabolites such as 5′-deoxy-5′-methylthioadenosine (MTA). Increased intratumoral MTA levels result from a lack of the MTA-catabolizing enzyme methylthioadenosine phosphorylase (MTAP) in tumor cells and are found in various tumor entities. Here, we demonstrate that MTA suppresses proliferation, activation, differentiation, and effector function of antigen-specific T cells without eliciting cell death. Conversely, if MTA is added to highly activated T cells, MTA exerts cytotoxic effects on T cells. We identified the Akt pathway, a critical signal pathway for T cell activation, as a target of MTA, while, for example, p38 remained unaffected. Next, we provide evidence that MTA exerts its immunosuppressive effects by interfering with protein methylation in T cells. To confirm the relevance of the suppressive effects of exogenously added MTA on human T cells, we used an MTAP-deficient tumor cell-line that was stably transfected with the MTAP-coding sequence. We observed that T cells stimulated with MTAP-transfected tumor cells revealed a higher proliferative capacity compared to T cells stimulated with Mock-transfected cells. In conclusion, our findings reveal a novel immune evasion strategy of human tumor cells that could be of interest for therapeutic targeting. PMID:27622058

  8. A rapid and quantitative method to detect human circulating tumor cells in a preclinical animal model.

    Science.gov (United States)

    Tu, Shih-Hsin; Hsieh, Yi-Chen; Huang, Li-Chi; Lin, Chun-Yu; Hsu, Kai-Wen; Hsieh, Wen-Shyang; Chi, Wei-Ming; Lee, Chia-Hwa

    2017-06-23

    As cancer metastasis is the deadliest aspect of cancer, causing 90% of human deaths, evaluating the molecular mechanisms underlying this process is the major interest to those in the drug development field. Both therapeutic target identification and proof-of-concept experimentation in anti-cancer drug development require appropriate animal models, such as xenograft tumor transplantation in transgenic and knockout mice. In the progression of cancer metastasis, circulating tumor cells (CTCs) are the most critical factor in determining the prognosis of cancer patients. Several studies have demonstrated that measuring CTC-specific markers in a clinical setting (e.g., flow cytometry) can provide a current status of cancer development in patients. However, this useful technique has rarely been applied in the real-time monitoring of CTCs in preclinical animal models. In this study, we designed a rapid and reliable detection method by combining a bioluminescent in vivo imaging system (IVIS) and quantitative polymerase chain reaction (QPCR)-based analysis to measure CTCs in animal blood. Using the IVIS Spectrum CT System with 3D-imaging on orthotropic-developed breast-tumor-bearing mice. In this manuscript, we established a quick and reliable method for measuring CTCs in a preclinical animal mode. The key to this technique is the use of specific human and mouse GUS primers on DNA/RNA of mouse peripheral blood under an absolute qPCR system. First, the high sensitivity of cancer cell detection on IVIS was presented by measuring the luciferase carried MDA-MB-231 cells from 5 to 5x10(11) cell numbers with great correlation (R(2) = 0.999). Next, the MDA-MB-231 cell numbers injected by tail vein and their IVIS radiance signals were strongly corrected with qPCR-calculated copy numbers (R(2) > 0.99). Furthermore, by applying an orthotropic implantation animal model, we successfully distinguished xenograft tumor-bearing mice and control mice with a significant difference (p < 0

  9. The PTPN14 Tumor Suppressor Is a Degradation Target of Human Papillomavirus E7.

    Science.gov (United States)

    Szalmás, Anita; Tomaić, Vjekoslav; Basukala, Om; Massimi, Paola; Mittal, Suruchi; Kónya, József; Banks, Lawrence

    2017-04-01

    Activation of signaling pathways ensuring cell growth is essential for the proliferative competence of human papillomavirus (HPV)-infected cells. Tyrosine kinases and phosphatases are key regulators of cellular growth control pathways. A recently identified potential cellular target of HPV E7 is the cytoplasmic protein tyrosine phosphatase PTPN14, which is a potential tumor suppressor and is linked to the control of the Hippo and Wnt/beta-catenin signaling pathways. In this study, we show that the E7 proteins of both high-risk and low-risk mucosal HPV types can interact with PTPN14. This interaction is independent of retinoblastoma protein (pRb) and involves residues in the carboxy-terminal region of E7. We also show that high-risk E7 induces proteasome-mediated degradation of PTPN14 in cells derived from cervical tumors. This degradation appears to be independent of cullin-1 or cullin-2 but most likely involves the UBR4/p600 ubiquitin ligase. The degree to which E7 downregulates PTPN14 would suggest that this interaction is important for the viral life cycle and potentially also for the development of malignancy. In support of this we find that overexpression of PTPN14 decreases the ability of HPV-16 E7 to cooperate with activated EJ-ras in primary cell transformation assays.IMPORTANCE This study links HPV E7 to the deregulation of protein tyrosine phosphatase signaling pathways. PTPN14 is classified as a potential tumor suppressor protein, and here we show that it is very susceptible to HPV E7-induced proteasome-mediated degradation. Intriguingly, this appears to use a mechanism that is different from that employed by E7 to target pRb. Therefore, this study has important implications for our understanding of the molecular basis for E7 function and also sheds important light on the potential role of PTPN14 as a tumor suppressor. Copyright © 2017 American Society for Microbiology.

  10. Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues

    Directory of Open Access Journals (Sweden)

    Mouchiroud Dominique

    2006-04-01

    Full Text Available Abstract Background Owing to the explosion of information generated by human genomics, analysis of publicly available databases can help identify potential candidate genes relevant to the cancerous phenotype. The aim of this study was to scan for such genes by whole-genome in silico subtraction using Expressed Sequence Tag (EST data. Methods Genes differentially expressed in normal versus tumor tissues were identified using a computer-based differential display strategy. Bcl-xL, an anti-apoptotic member of the Bcl-2 family, was selected for confirmation by western blot analysis. Results Our genome-wide expression analysis identified a set of genes whose differential expression may be attributed to the genetic alterations associated with tumor formation and malignant growth. We propose complete lists of genes that may serve as targets for projects seeking novel candidates for cancer diagnosis and therapy. Our validation result showed increased protein levels of Bcl-xL in two different liver cancer specimens compared to normal liver. Notably, our EST-based data mining procedure indicated that most of the changes in gene expression observed in cancer cells corresponded to gene inactivation patterns. Chromosomes and chromosomal regions most frequently associated with aberrant expression changes in cancer libraries were also determined. Conclusion Through the description of several candidates (including genes encoding extracellular matrix and ribosomal components, cytoskeletal proteins, apoptotic regulators, and novel tissue-specific biomarkers, our study illustrates the utility of in silico transcriptomics to identify tumor cell signatures, tumor-related genes and chromosomal regions frequently associated with aberrant expression in cancer.

  11. [Study of skin retraction applied to the treatment of skin tumors. Mapping of the human body].

    Science.gov (United States)

    Dumas, P; Benatar, M; Cardot-Leccia, N; Lebreton, E; Chignon-Sicard, B

    2012-04-01

    Skin, the main organ of the human body, is equipped with own biomechanical characteristics, highly variable depending on intra-individual factors (location, weight status, dermatological diseases…) and interindividual (age, sex…). Despite some recent cutometric studies, our review of the literature shows that there is no currently reliable analytical model representing the biomechanical behavior of the skin. Yet, this is a central issue in dermatology surgery, especially in the treatment of skin tumors, for the proper observance of surgical margins. We studied prospectively on 75 resection specimens (about 71 patient(s)), for the treatment of skin lesions tumor suspicious or known malignant or benign. Room dimensions were measured before and 5 minutes after excision, leading us to calculate a ratio of retraction of the skin surface. This retraction was correlated with age, gender, tumor type, and anatomic location of the site of excision. The power of retraction of the skin varies significantly by region of the body. It is maximum in the upper limb (hand excluded) and in the cervical region. At the cephalic region, skin of the ear and periorbital skin have capacities of important early retraction. Unlike the lower limb (foot excluded), the back skin of the nose and face appear to be a minimum of shrinkage. Age also seems to change on that capacity shrinkage, sex would have no influence. Our study confirms the variations in the ability of skin retraction based on a number of factors. In dermato-oncology, that power retraction could cause significant differences between clinical surgical margins and final pathologist margins. We believe it must be taken into account by the couple surgeon-pathologist, especially in the context of invasive and/or recurrent tumors. Copyright © 2012. Published by Elsevier SAS.

  12. Human Leukocyte Antigen E Contributes to Protect Tumor Cells from Lysis by Natural Killer Cells12

    Science.gov (United States)

    Monaco, Elisa Lo; Tremante, Elisa; Cerboni, Cristina; Melucci, Elisa; Sibilio, Leonardo; Zingoni, Alessandra; Nicotra, Maria Rita; Natali, Pier Giorgio; Giacomini, Patrizio

    2011-01-01

    The nonclassic class I human leukocyte antigen E (HLA-E) molecule engages the inhibitory NKG2A receptor on several cytotoxic effectors, including natural killer (NK) cells. Its tissue distribution was claimed to be wider in normal than in neoplastic tissues, and surface HLA-E was undetectable in most tumor cell lines. Herein, these issues were reinvestigated taking advantage of HLA-E-specific antibodies, immunohistochemistry, and biochemical methods detecting intracellular and surface HLA-E regardless of conformation. Contrary to published evidence, HLA-E was detected in a few normal epithelia and in a large fraction (approximately 1/3) of solid tumors, including those derived from HLA-E-negative/low-normal counterparts. Remarkably, HLA-E was detected in 30 of 30 tumor cell lines representative of major lymphoid and nonlymphoid lineages, and in 11 of 11, it was surface-expressed, although in a conformation poorly reactive with commonly used antibodies. Coexpression of HLA-E and HLA class I ligand donors was not required for surface expression but was associated with NKG2A-mediated protection from lysis by the cytotoxic cell line NKL and polyclonal NK cells from healthy donors, as demonstrated by antibody-mediated relief of protection in 10% to 20% of the tested target-effector combinations. NKG2A-mediated protection of additional targets became evident on NK effector blocking with antibodies to activating receptors (DNAM-1, natural cytotoxicity receptors, and NKG2D). Thus, initial evidence that the long-elusive HLA-E molecule is enhanced by malignant transformation and is functional in tumor cells is presented here, although its importance and precise functional role remain to be addressed in the context of a general understanding of the NK ligand-receptor network. PMID:21969815

  13. Human leukocyte antigen E contributes to protect tumor cells from lysis by natural killer cells.

    Science.gov (United States)

    Lo Monaco, Elisa; Tremante, Elisa; Cerboni, Cristina; Melucci, Elisa; Sibilio, Leonardo; Zingoni, Alessandra; Nicotra, Maria Rita; Natali, Pier Giorgio; Giacomini, Patrizio

    2011-09-01

    The nonclassic class I human leukocyte antigen E (HLA-E) molecule engages the inhibitory NKG2A receptor on several cytotoxic effectors, including natural killer (NK) cells. Its tissue distribution was claimed to be wider in normal than in neoplastic tissues, and surface HLA-E was undetectable in most tumor cell lines. Herein, these issues were reinvestigated taking advantage of HLA-E-specific antibodies, immunohistochemistry, and biochemical methods detecting intracellular and surface HLA-E regardless of conformation. Contrary to published evidence, HLA-E was detected in a few normal epithelia and in a large fraction (approximately 1/3) of solid tumors, including those derived from HLA-E-negative/low-normal counterparts. Remarkably, HLA-E was detected in 30 of 30 tumor cell lines representative of major lymphoid and nonlymphoid lineages, and in 11 of 11, it was surface-expressed, although in a conformation poorly reactive with commonly used antibodies. Coexpression of HLA-E and HLA class I ligand donors was not required for surface expression but was associated with NKG2A-mediated protection from lysis by the cytotoxic cell line NKL and polyclonal NK cells from healthy donors, as demonstrated by antibody-mediated relief of protection in 10% to 20% of the tested target-effector combinations. NKG2A-mediated protection of additional targets became evident on NK effector blocking with antibodies to activating receptors (DNAM-1, natural cytotoxicity receptors, and NKG2D). Thus, initial evidence that the long-elusive HLA-E molecule is enhanced by malignant transformation and is functional in tumor cells is presented here, although its importance and precise functional role remain to be addressed in the context of a general understanding of the NK ligand-receptor network.

  14. Human Leukocyte Antigen E Contributes to Protect Tumor Cells from Lysis by Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Elisa Lo Monaco

    2011-09-01

    Full Text Available The nonclassic class I human leukocyte antigen E (HLA-E molecule engages the inhibitory NKG2A receptor on several cytotoxic effectors, including natural killer (NK cells. Its tissue distribution was claimed to be wider in normal than in neoplastic tissues, and surface HLA-E was undetectable in most tumor cell lines. Herein, these issues were reinvestigated taking advantage of HLA-E-specific antibodies, immunohistochemistry, and biochemical methods detecting intracellular and surface HLA-E regardless of conformation. Contrary to published evidence, HLA-E was detected in a few normal epithelia and in a large fraction (approximately 1/3 of solid tumors, including those derived from HLA-E-negative/low-normal counterparts. Remarkably, HLA-E was detected in 30 of 30 tumor cell lines representative of major lymphoid and nonlymphoid lineages, and in 11 of 11, it was surface-expressed, although in a conformation poorly reactive with commonly used antibodies. Coexpression of HLA-E and HLA class I ligand donors was not required for surface expression but was associated with NKG2A-mediated protection from lysis by the cytotoxic cell line NKL and polyclonal NK cells from healthy donors, as demonstrated by antibody-mediated relief of protection in 10% to 20% of the tested target-effector combinations. NKG2A-mediated protection of additional targets became evident on NK effector blocking with antibodies to activating receptors (DNAM-1, natural cytotoxicity receptors, and NKG2D. Thus, initial evidence that the long-elusive HLA-E molecule is enhanced by malignant transformation and is functional in tumor cells is presented here, although its importance and precise functional role remain to be addressed in the context of a general understanding of the NK ligand-receptor network.

  15. Potent anti-cancer effects of citrus peel flavonoids in human prostate xenograft tumors.

    Science.gov (United States)

    Lai, Ching-Shu; Li, Shiming; Miyauchi, Yutaka; Suzawa, Michiko; Ho, Chi-Tang; Pan, Min-Hsiung

    2013-06-01

    Prostate cancer is one of the most prevalent malignancies and is the second leading cause of cancer-related deaths in men. Fruit and vegetable consumption is a novel, non-toxic therapeutic approach that can be used to prevent and treat prostate cancer. Citrus peels and their extracts have been reported to have potent pharmacological activities and health benefits due to the abundance of flavonoids in citrus fruits, particularly in the peels. Our previous studies demonstrated that oral administration of Gold Lotion (GL), an extract of multiple varieties of citrus peels containing abundant flavonoids, including a large percentage of polymethoxyflavones (PMFs), effectively suppressed azoxymethane (AOM)-induced colonic tumorigenesis. However, the efficacy of GL against prostate cancer has not yet been investigated. Here, we explored the anti-tumor effects of GL using a human prostate tumor xenograft mouse model. Our data demonstrated that treatment with GL by both intraperitoneal (i.p.) injection and oral administration dramatically reduced both the weights (57%-100% inhibition) and volumes (78%-94% inhibition) of the tumors without any observed toxicity. These inhibitory effects were accompanied by mechanistic down-regulation of the protein levels of inflammatory enzymes (inducible nitric oxide synthase, iNOS and cyclooxygenase-2, COX-2), metastasis (matrix metallopeptidase-2, MMP-2 and MMP-9), angiogenesis (vascular endothelial growth factor, VEGF), and proliferative molecules, as well as by the induction of apoptosis in prostate tumors. Our findings suggest that GL is an effective anti-cancer agent that may potentially serve as a novel therapeutic option for prostate cancer treatment.

  16. The continuum model of selection in human tumors: general paradigm or niche product?

    Science.gov (United States)

    Leedham, Simon; Tomlinson, Ian

    2012-07-01

    Berger and colleagues recently proposed a continuum model of how somatic mutations cause tumors to grow, thus supplementing the established binary models, such as oncogene activation and "two hits" at tumor suppressor loci. In the basic continuum model, decreases or increases in gene function, short of full inactivation or activation, impact linearly on cancer development. An extension, called the fail-safe model, envisaged an optimum level of gene derangement for tumor growth, but proposed that the cell gained protection from tumorigenesis because additional mutations caused excessive derangement. Most of the evidence in support of the continuum model came from Pten mutant mice rather than humans. In this article, we assess the validity and applicability of the continuum and fail-safe models. We suggest that the latter is of limited use: In part, it restates the existing "just right" of optimum intermediate gene derangement in tumorigenesis, and in part it is inherently implausible that a cell should avoid becoming cancerous only when it is some way down the road to that state. In contrast, the basic continuum model is a very useful addition to the other genetic models of tumorigenesis, especially in certain scenarios. Fittingly for a quantitative model, we propose that the continuum model is most likely to apply where multiple, cancer-promoting mutations have relatively small, additive effects, either through the well-established case of additive germline predisposition alleles or in a largely hypothetical situation where cancers may have acquired several somatic "mini-driver" mutations, each with weaker effects than classical tumor suppressors or fully activated oncogenes. ©2012 AACR.

  17. Picropodophyllin inhibits tumor growth of human nasopharyngeal carcinoma in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Shu-Cheng [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Otolaryngology – Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Tao, Ze-Zhang, E-mail: zezhangtao@gmail.com [Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060 (China)

    2013-09-13

    Highlights: •We identified that PPP inhibits IGF-1R/Akt pathway in NPC cells. •PPP dose-dependently inhibits NPC cell proliferation in vitro. •PPP suppresses tumor growth of NPC in nude mice. •PPP have little effect on microtubule assembly. -- Abstract: Insulin-like growth factor-1 receptor (IGF-1R) is a cell membrane receptor with tyrosine kinase activity and plays important roles in cell transformation, tumor growth, tumor invasion, and metastasis. Picropodophyllin (PPP) is a selective IGF-1R inhibitor and shows promising antitumor effects for several human cancers. However, its antitumor effects in nasopharyngeal carcinoma (NPC) remain unclear. The purpose of this study is to investigate the antitumor activity of PPP in NPC using in vitro cell culture and in vivo animal model. We found that PPP dose-dependently decreased the IGF-induced phosphorylation and activity of IGF-1R and consequently reduced the phosphorylation of Akt, one downstream target of IGF-1R. In addition, PPP inhibited NPC cell proliferation in vitro. The half maximal inhibitory concentration (IC50) of PPP for NPC cell line CNE-2 was ⩽1 μM at 24 h after treatment and ⩽0.5 μM at 48 h after treatment, respectively. Moreover, administration of PPP by intraperitoneal injection significantly suppressed the tumor growth of xenografted NPC in nude mice. Taken together, these results suggest targeting IGF-1R by PPP may represent a new strategy for treatment of NPCs with positive IGF-1R expression.

  18. Structure-activity relationships of diverse xanthones against multidrug resistant human tumor cells.

    Science.gov (United States)

    Wang, Qiwen; Ma, Chenyao; Ma, Yun; Li, Xiang; Chen, Yong; Chen, Jianwei

    2017-02-01

    Thirteen xanthones were isolated naturally from the stem of Securidaca inappendiculata Hassk, and structure-activity relationships (SARs) of these compounds were comparatively predicted for their cytotoxic activity against three human multidrug resistant (MDR) cell lines MCF-7/ADR, SMMC-7721/Taxol, and A549/Taxol cells. The results showed that the selected xanthones exhibited different potent cytotoxic activity against the growth of different human tumor cell lines, and most of the xanthones exhibited selective cytotoxicity against SMMC-7721/Taxol cells. Furthermore, some tested xanthones showed stronger cytotoxicity than Cisplatin, which has been used in clinical application extensively. The SARs analysis revealed that the cytotoxic activities of diverse xanthones were affected mostly by the number and position of methoxyl and hydroxyl groups. Xanthones with more free hydroxyl and methoxyl groups increased the cytotoxic activity significantly, especially for those with the presence of C-3 hydroxyl and C-4 methoxyl groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Solutions for the Cell Cycle in Cell Lines Derived from Human Tumors

    Directory of Open Access Journals (Sweden)

    B. Zubik-Kowal

    2006-01-01

    Full Text Available The goal of the paper is to compute efficiently solutions for model equations that have the potential to describe the growth of human tumor cells and their responses to radiotherapy or chemotherapy. The mathematical model involves four unknown functions of two independent variables: the time variable t and dimensionless relative DNA content x. The unknown functions can be thought of as the number density of cells and are solutions of a system of four partial differential equations. We construct solutions of the system, which allow us to observe the number density of cells for different t and x values. We present results of our experiments which simulate population kinetics of human cancer cells in vitro. Our results show a correspondence between predicted and experimental data.

  20. A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection.

    Directory of Open Access Journals (Sweden)

    Olivia C Demurtas

    Full Text Available BACKGROUND: The E7 protein of the Human Papillomavirus (HPV type 16, being involved in malignant cellular transformation, represents a key antigen for developing therapeutic vaccines against HPV-related lesions and cancers. Recombinant production of this vaccine antigen in an active form and in compliance with good manufacturing practices (GMP plays a crucial role for developing effective vaccines. E7-based therapeutic vaccines produced in plants have been shown to be active in tumor regression and protection in pre-clinical models. However, some drawbacks of in whole-plant vaccine production encouraged us to explore the production of the E7-based therapeutic vaccine in Chlamydomonas reinhardtii, an organism easy to grow and transform and fully amenable to GMP guidelines. METHODOLOGY/PRINCIPAL FINDINGS: An expression cassette encoding E7GGG, a mutated, attenuated form of the E7 oncoprotein, alone or as a fusion with affinity tags (His6 or FLAG, under the control of the C. reinhardtii chloroplast psbD 5' UTR and the psbA 3' UTR, was introduced into the C. reinhardtii chloroplast genome by homologous recombination. The protein was mostly soluble and reached 0.12% of total soluble proteins. Affinity purification was optimized and performed for both tagged forms. Induction of specific anti-E7 IgGs and E7-specific T-cell proliferation were detected in C57BL/6 mice vaccinated with total Chlamydomonas extract and with affinity-purified protein. High levels of tumor protection were achieved after challenge with a tumor cell line expressing the E7 protein. CONCLUSIONS: The C. reinhardtii chloroplast is a suitable expression system for the production of the E7GGG protein, in a soluble, immunogenic form. The production in contained and sterile conditions highlights the potential of microalgae as alternative platforms for the production of vaccines for human uses.

  1. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    series of articles that aims to update students on what is known about glia today. It provides an overview of the various types of glia and their origins. The following .... The advancement in glial cell biology in the recent years has been immense. In the following four articles some aspects of each of the glial cell types will be ...

  2. Glial Cells: The Other Cells of the Nervous System

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Glial Cells: The Other Cells of the Nervous System - An Introduction to Glial Cells. Medha S Rajadhyaksha Yasmin Khan. Series Article Volume 7 Issue 1 January 2002 pp 4-10 ...

  3. Systems biology of human epilepsy applied to patients with brain tumors.

    Science.gov (United States)

    Mittal, Sandeep; Shah, Aashit K; Barkmeier, Daniel T; Loeb, Jeffrey A

    2013-12-01

    Epilepsy is a disease of recurrent seizures that can be associated with a wide variety of acquired and developmental brain lesions. Current medications for patients with epilepsy can suppress seizures; they do not cure or modify the underlying disease process. On the other hand, surgical removal of focal brain regions that produce seizures can be curative. This surgical procedure can be more precise with the placement of intracranial recording electrodes to identify brain regions that generate seizure activity as well as those that are critical for normal brain function. The detail that goes into these surgeries includes extensive neuroimaging, electrophysiology, and clinical data. Combined with precisely localized tissues removed, these data provide an unparalleled opportunity to learn about the interrelationships of many "systems" in the human brain not possible in just about any other human brain disorder. Herein, we describe a systems biology approach developed to study patients who undergo brain surgery for epilepsy and how we have begun to apply these methods to patients whose seizures are associated with brain tumors. A central goal of this clinical and translational research program is to improve our understanding of epilepsy and brain tumors and to improve diagnosis and treatment outcomes of both. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  4. The Relationship Between Spontaneous Telomere Loss and Chromosome Instability in a Human Tumor Cell Line

    Directory of Open Access Journals (Sweden)

    Bijan Fouladi

    2000-01-01

    Full Text Available Chromosome instability plays an important role in cancer by promoting the alterations in the genome required for tumor cell progression. The loss of telomeres that protect the ends of chromosomes and prevent chromosome fusion has been proposed as one mechanism for chromosome instability in cancer cells, however, there is little direct evidence to support this hypothesis. To investigate the relationship between spontaneous telomere loss and chromosome instability in human cancer cells, clones of the EJ-30 tumor cell line were isolated in which a herpes simplex virus thymidine kinase (HSV-tk gene was integrated immediately adjacent to a telomere. Selection for HSV-tkdeficient cells with ganciclovir demonstrated a high rate of loss of the end these "marked" chromosomes (10-4 events/cell per generation. DNA sequence and cytogenetic analysis suggests that the loss of function of the HSV-tk gene most often involves telomere loss, sister chromatid fusion, and prolonged periods of chromosome instability. In some HSV-tk-deficient cells, telomeric repeat sequences were added on to the end of the truncated HSV-tk gene at a new location, whereas in others, no telomere was detected on the end of the marked chromosome. These results suggest that spontaneous telomere loss is a mechanism for chromosome instability in human cancer cells.

  5. Expected resolution and detectability of adenocarcinoma tumors within human breast in time-resolved images

    Science.gov (United States)

    Gandjbakhche, Amir H.; Nossal, Ralph J.; Dadmarz, Roya; Schwartzentruber, Douglas; Bonner, Robert F.

    1995-04-01

    The prospects for time-resolved optical mammography rests on the ability to detect adenocarcinoma within the breast with sufficient resolution and specificity to compete with X-ray mammography. We characterized the optical properties of an unusually large (6 cm diameter) fresh adenocarcinoma and normal breast tissue (determined by histology to be predominantly adipose tissue) obtained from a patient undergoing mastectomy. Large specimens (5 mm thick and 3 cm wide) allowed the determination of absorption and scattering coefficients and their spatial heterogeneity as probed with a 1 mm diameter laser beam at 633 nm and 800 nm utilizing total reflectance and transmittance measure with integrating spheres. The difference between scattering coefficients of the malignant tumor and those of normal (principally adipose) breast tissue at 633 nm was much greater than the heterogeneity within each sample. This scattering difference is the principal source of contrast, particularly in time-resolved images. However, the high scattering coefficient of normal breast tissue at 633 nm limits the practicality of time-resolved mammography of a human breast compressed to 5 cm. Although the scattering coefficient of the normal breast tissue decreases at 800 nm, the differences between the optical properties of normal and abnormal breast tissue also are reduced. We used these empirical results in theoretical expressions obtained from random walk theory to quantify the expected resolution, contrast, and the detected intensity of 3, 6, and 9 mm tumors within otherwise homogeneous human breasts as a function of the gating-time of time-resolved optical mammography.

  6. DADS Suppresses Human Esophageal Xenograft Tumors through RAF/MEK/ERK and Mitochondria-Dependent Pathways

    Directory of Open Access Journals (Sweden)

    Xiaoran Yin

    2014-07-01

    Full Text Available Diallyl disulfide (DADS is a natural organosulfur compound isolated from garlic. DADS has various biological properties, including anticancer, antiangiogenic, and antioxidant effects. However, the anticancer mechanisms of DADS in human esophageal carcinoma have not been elucidated, especially in vivo. In this study, MTT assay showed that DADS significantly reduced cell viability in human esophageal carcinoma ECA109 cells, but was relatively less toxic in normal liver cells. The pro–apoptotic effect of DADS on ECA109 cells was detected by Annexin V-FITC/propidium iodide (PI staining. Flow cytometry analysis showed that DADS promoted apoptosis in a dose-dependent manner and the apoptosis rate could be decreased by caspase-3 inhibitor Ac-DEVD-CHO. Xenograft study in nude mice showed that DADS treatment inhibited the growth of ECA109 tumor in both 20 and 40 mg/kg DADS groups without obvious side effects. DADS inhibited ECA109 tumor proliferation by down-regulating proliferation cell nuclear antigen (PCNA. DADS induced apoptosis by activating a mitochondria-dependent pathway with the executor of caspase-3, increasing p53 level and Bax/Bcl-2 ratio, and downregulating the RAF/MEK/ERK pathway in ECA109 xenograft tumosr. Based on studies in cell culture and animal models, the findings here indicate that DADS is an effective and safe anti-cancer agent for esophageal carcinoma.

  7. Increasing epidermal growth factor receptor expression in human melanocytic tumor progression.

    Science.gov (United States)

    de Wit, P E; Moretti, S; Koenders, P G; Weterman, M A; van Muijen, G N; Gianotti, B; Ruiter, D J

    1992-08-01

    Different results have been reported on the expression of epidermal growth factor receptor (EGFR) in human melanocytic lesions, which may be due to different methodologic approaches. Therefore, we compared EGFR expression in six human melanoma cell lines by utilizing the monoclonal antibodies 2E9, 425, and 225, applying four immunocytochemical staining procedures. The results were compared with those obtained by a multiple point ligand binding assay. In addition, Northern blot analysis was performed. A three-step immunoperoxidase method using the monoclonal antibody 2E9 proved most sensitive. Staining intensities, estimated semiquantitatively, correlated well with the quantitative data obtained by the ligand-binding assay. Expression on the mRNA level was also in agreement with these results. Immunohistochemical staining of a large series of human cutaneous melanocytic lesions using the method selected showed differential EGFR expression in various stages of melanocytic tumor progression: 19% of common nevocellular nevi; 61% of dysplastic nevi, 89% of primary cutaneous melanomas, and 91% of melanoma metastases showed staining of the melanocytic cells. Intralesional heterogeneity of EGFR expression was present. Although the mean percentage of positive melanocytic cells in positive lesions did not increase with progression, mean staining intensity was stronger in malignant lesions compared to benign lesions. Ligand binding assays showed that EGFR expression in the highly metastasizing cell lines MV3 and BLM was at least 40 times higher than in the cell lines IF6, 530, M14, and Mel57, which do not or only sporadically metastasize after subcutaneous inoculation in nude mice. Although the differences between the various stages of progression are not absolute, we provide further evidence that EGFR expression increases in human melanocytic tumor progression.

  8. Probing the enigma: unraveling glial cell biology in invertebrates.

    Science.gov (United States)

    Coutinho-Budd, Jaeda; Freeman, Marc R

    2013-12-01

    Despite their predominance in the nervous system, the precise ways in which glial cells develop and contribute to overall neural function remain poorly defined in any organism. Investigations in simple model organisms have identified remarkable morphological, molecular, and functional similarities between invertebrate and vertebrate glial subtypes. Invertebrates like Drosophila and Caenorhabditis elegans offer an abundance of tools for in vivo genetic manipulation of single cells or whole populations of glia, ease of access to neural tissues throughout development, and the opportunity for forward genetic analysis of fundamental aspects of glial cell biology. These features suggest that invertebrate model systems have high potential for vastly improving the understanding of glial biology. This review highlights recent work in Drosophila and other invertebrates that reveal new insights into basic mechanisms involved in glial development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Glial heterotopia of the lip: A rare presentation

    Directory of Open Access Journals (Sweden)

    Mehmet Dadaci

    2016-01-01

    Full Text Available Glial heterotopia represents collections of normal glial tissue in an abnormal location distant to the central nervous system or spinal canal with no intracranial connectivity. Nasal gliomas are non-neoplastic midline tumours, with limited growth potential and no similarity to the central nervous system gliomas. The nose and the nasopharynx are the most common sites of location. Existence of glial heterotopia in the lip region is a rare developmental disorder. We report a case of large glial heterotopia in the upper lip region in a full-term female newborn which had intracranial extension with a fibrotic band. After the surgery, there was no recurrence in the follow-up period of 3 years. When glial heterotopia, which is a rare midline anomaly, is suspected, possible intracranial connection and properties of the mass should be evaluated by magnetic resonance imaging. By this way, lower complication rate and better aesthetic results can be achieved with early diagnosis and proper surgery.

  10. A rare neuronal tumor of the cerebellum with myoid features ...

    African Journals Online (AJOL)

    We report an extremely rare tumor presenting with myoid features in the left cerebellar hemisphere in a 62-year-old man. This tumor consisted of medium to large round cells with focal lipomatous and myoid differentiation. Immunohistochemically, the tumor cells expressed synaptophysin, GFAP (glial fibrillary acidic protein) ...

  11. A rare neuronal tumor of the cerebellum with myloid features ...

    African Journals Online (AJOL)

    We report an extremely rare tumor presenting with myoid features in the left cerebellar hemisphere in a 62- year-old man. This tumor consisted of medium to large round cells with focal lipomatous and myoid differentiation. Immunohistochemically, the tumor cells expressed synaptophysin, GFAP (glial fibrillary acidic protein) ...

  12. Monitoring of tumor growth and metastasis potential in MDA-MB-435s/tk-luc human breast cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.-F. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China); Lin, Y.-Y. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China); Wang, H.-E. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China); Liu, R.-S. [Department of Nuclear Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Nuclear Medicine Department, Veterans General Hospital, Taipei, Taiwan (China); Pang Fei [Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); Hwang, J.-J. [Department of Radiological Sciences, National Yang-Ming University, 155, Sec. 2, Li-Nong Street, Pei-tou 112, Taipei, Taiwan (China)]. E-mail: jjhwang@ym.edu.tw

    2007-02-01

    Molecular imaging of reporter gene expression provides a rapid, sensitive and non-invasive monitoring of tumor behaviors. In this study, we reported the establishment of a novel animal model for longitudinal examination of tumor growth kinetics and metastatic spreading in vivo. The highly metastatic human breast carcinoma MDA-MB-435s cell line was engineered to stably express herpes simplex virus type 1 thymidine kinase (HSV-1-tk) and luciferase (luc). Both {sup 131}I-FIAU and D-luciferin were used as reporter probes. For orthotopic tumor formation, MDA-MB-435s/tk-luc cells were implanted into the first nipple of 6-week-old female NOD/SCID mice. For metastatic study, cells were injected via the lateral tail vein. Mice-bearing MDA-MB-435s/tk-luc tumors were scanned for tumor growth and metastatsis using Xenogen IVIS50 system. Gamma scintigraphy and whole-body autoradiography were also applied to confirm the tumor localization. The results of bioluminescence imaging as well as histopathological finding showed that tumors could be detected in femur, spine, ovary, lungs, kidney, adrenal gland, lymph nodes and muscle at 16 weeks post i.v. injection, and correlated photons could be quantified. This MDA-MB-435s/tk-luc human breast carcinoma-bearing mouse model combined with multimodalities of molecular imaging may facilitate studies on the molecular mechanisms of cancer invasion and metastasis.

  13. Monitoring of tumor growth and metastasis potential in MDA-MB-435s/ tk-luc human breast cancer xenografts

    Science.gov (United States)

    Chang, Ya-Fang; Lin, Yi-Yu; Wang, Hsin-Ell; Liu, Ren-Shen; Pang, Fei; Hwang, Jeng-Jong

    2007-02-01

    Molecular imaging of reporter gene expression provides a rapid, sensitive and non-invasive monitoring of tumor behaviors. In this study, we reported the establishment of a novel animal model for longitudinal examination of tumor growth kinetics and metastatic spreading in vivo. The highly metastatic human breast carcinoma MDA-MB-435s cell line was engineered to stably express herpes simplex virus type 1 thymidine kinase (HSV-1- tk) and luciferase ( luc). Both 131I-FIAU and D-luciferin were used as reporter probes. For orthotopic tumor formation, MDA-MB-435s/ tk-luc cells were implanted into the first nipple of 6-week-old female NOD/SCID mice. For metastatic study, cells were injected via the lateral tail vein. Mice-bearing MDA-MB-435s/ tk-luc tumors were scanned for tumor growth and metastatsis using Xenogen IVIS50 system. Gamma scintigraphy and whole-body autoradiography were also applied to confirm the tumor localization. The results of bioluminescence imaging as well as histopathological finding showed that tumors could be detected in femur, spine, ovary, lungs, kidney, adrenal gland, lymph nodes and muscle at 16 weeks post i.v. injection, and correlated photons could be quantified. This MDA-MB-435s/ tk-luc human breast carcinoma-bearing mouse model combined with multimodalities of molecular imaging may facilitate studies on the molecular mechanisms of cancer invasion and metastasis.

  14. Hepatitis B surface antigen fusions delivered by DNA vaccination elicit CTL responses to human papillomavirus oncoproteins associated with tumor protection.

    Science.gov (United States)

    Haigh, O; Kattenbelt, J; Cochrane, M; Thomson, S; Gould, A; Tindle, R

    2010-10-01

    We describe the construction and evaluation of a recombinant hepatitis B surface antigen (HBsAg)-vectored DNA vaccine encoding the E7 and E6 tumor-associated oncoproteins of human papillomavirus (HPV) type 16. We show the induction of effector and memory cytotoxic T lymphocyte responses to E7 and E6 class I-restricted epitopes after a single immunization, which were associated with tumor prevention and therapy. The findings vindicate the use of a HBsAg-based DNA vaccine as a vehicle to elicit responses to co-encoded tumor antigens, and have specific implications for the development of a therapeutic vaccine for HPV-associated squamous carcinomas.

  15. Significance of radioimmunoassay of human chorionic gonadotropin and alpha fetoprotein in nonseminomatous germ cell tumors of the testis

    Energy Technology Data Exchange (ETDEWEB)

    Kausitz, J.; Hupka, S. (Institute for Postgradual Training of Physicians and Pharmaceutists, Bratislava (Czechoslovakia)); Cerny, V.; Bohunicky, L.; Korec, S. (Ustav Klinickej Onkologie, Bratislava (Czechoslovakia))

    1980-01-01

    Radioimmunoassays human chorionic gonadotropin (HCG) and alpha fetoprotein (AFP) made in 49 patients with nonseminomatous testicular tumors showed that these investigations make the diagnosis more precise, permit to follow up the dynamics of the course of the disease and the effectiveness of treatment and may help to reveal the presence of otherwise undetectable tumorous metastases. The significance of these assays is enhanced if the two tumorous proteins are investigated in parallel. The results proved positive in 43 (87.8%) and false negative in 6 (12.2%) of the patients. The absence of HCG and AFP production in some patients with active disorder has not as yet been elucidated.

  16. The Effects of Vandetanib on Paclitaxel Tumor Distribution and Antitumor Activity in a Xenograft Model of Human Ovarian Carcinoma

    Directory of Open Access Journals (Sweden)

    Marta Cesca

    2009-11-01

    Full Text Available This study was designed to determine the effects of vandetanib, a small-molecule receptor tyrosine kinase inhibitor of vascular endothelial growth factor and epidermal growth factor receptor, on paclitaxel (PTX tumor distribution and antitumor activity in xenograft models of human ovarian carcinoma. Nude mice bearing A2780-1A9 xenografts received daily (5, 10, or 15 days doses of vandetanib (50 mg/kg per os, combined with PTX (20 mg/kg intravenously. Morphologic and functional modifications associated with the tumor vasculature (CD31 and α-smooth muscle actin staining and Hoechst 33342 perfusion and PTX concentrations in plasma and tumor tissues were analyzed. Activity was evaluated as inhibition of tumor growth subcutaneously and spreading into the peritoneal cavity. Vandetanib treatment produced no significant change in tumor vessel density, although a reduced number of large vessels, an increased percentage of mature vessels, and diminished tumor perfusion were evident. Pretreatment with vandetanib led to decreased tumor PTX levels within 1 hour of PTX injection, although 24 hours later, tumor PTX levels were comparable with controls. In efficacy studies, the combination of vandetanib plus PTX improved antitumor activity compared with vandetanib or PTX alone, with greater effects being obtained when PTX was administered before vandetanib. The combination of PTX plus vandetanib reduced tumor burden in the peritoneal cavity of mice and significantly increased their survival. Analysis of vascular changes and PTX tumor uptake in vandetanib-treated tumors may help to guide the scheduling of vandetanib plus PTX combinations and may have implications for the design of clinical trials with these drugs.

  17. 5′-AMP-activated Protein Kinase (AMPK) Supports the Growth of Aggressive Experimental Human Breast Cancer Tumors*

    Science.gov (United States)

    Laderoute, Keith R.; Calaoagan, Joy M.; Chao, Wan-ru; Dinh, Dominc; Denko, Nicholas; Duellman, Sarah; Kalra, Jessica; Liu, Xiaohe; Papandreou, Ioanna; Sambucetti, Lidia; Boros, Laszlo G.

    2014-01-01

    Rapid tumor growth can establish metabolically stressed microenvironments that activate 5′-AMP-activated protein kinase (AMPK), a ubiquitous regulator of ATP homeostasis. Previously, we investigated the importance of AMPK for the growth of experimental tumors prepared from HRAS-transformed mouse embryo fibroblasts and for primary brain tumor development in a rat model of neurocarcinogenesis. Here, we used triple-negative human breast cancer cells in which AMPK activity had been knocked down to investigate the contribution of AMPK to experimental tumor growth and core glucose metabolism. We found that AMPK supports the growth of fast-growing orthotopic tumors prepared from MDA-MB-231 and DU4475 breast cancer cells but had no effect on the proliferation or survival of these cells in culture. We used in vitro and in vivo metabolic profiling with [13C]glucose tracers to investigate the contribution of AMPK to core glucose metabolism in MDA-MB-231 cells, which have a Warburg metabolic phenotype; these experiments indicated that AMPK supports tumor glucose metabolism in part through positive regulation of glycolysis and the nonoxidative pentose phosphate cycle. We also found that AMPK activity in the MDA-MB-231 tumors could systemically perturb glucose homeostasis in sensitive normal tissues (liver and pancreas). Overall, our findings suggest that the contribution of AMPK to the growth of aggressive experimental tumors has a critical microenvironmental component that involves specific regulation of core glucose metabolism. PMID:24993821

  18. 5'-AMP-activated protein kinase (AMPK) supports the growth of aggressive experimental human breast cancer tumors.

    Science.gov (United States)

    Laderoute, Keith R; Calaoagan, Joy M; Chao, Wan-ru; Dinh, Dominc; Denko, Nicholas; Duellman, Sarah; Kalra, Jessica; Liu, Xiaohe; Papandreou, Ioanna; Sambucetti, Lidia; Boros, Laszlo G

    2014-08-15

    Rapid tumor growth can establish metabolically stressed microenvironments that activate 5'-AMP-activated protein kinase (AMPK), a ubiquitous regulator of ATP homeostasis. Previously, we investigated the importance of AMPK for the growth of experimental tumors prepared from HRAS-transformed mouse embryo fibroblasts and for primary brain tumor development in a rat model of neurocarcinogenesis. Here, we used triple-negative human breast cancer cells in which AMPK activity had been knocked down to investigate the contribution of AMPK to experimental tumor growth and core glucose metabolism. We found that AMPK supports the growth of fast-growing orthotopic tumors prepared from MDA-MB-231 and DU4475 breast cancer cells but had no effect on the proliferation or survival of these cells in culture. We used in vitro and in vivo metabolic profiling with [(13)C]glucose tracers to investigate the contribution of AMPK to core glucose metabolism in MDA-MB-231 cells, which have a Warburg metabolic phenotype; these experiments indicated that AMPK supports tumor glucose metabolism in part through positive regulation of glycolysis and the nonoxidative pentose phosphate cycle. We also found that AMPK activity in the MDA-MB-231 tumors could systemically perturb glucose homeostasis in sensitive normal tissues (liver and pancreas). Overall, our findings suggest that the contribution of AMPK to the growth of aggressive experimental tumors has a critical microenvironmental component that involves specific regulation of core glucose metabolism. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Purification of the NF2 tumor suppressor protein from human erythrocytes.

    Science.gov (United States)

    Jindal, Hitesh K; Yoshinaga, Kazumi; Seo, Pil-Soo; Lutchman, Mohini; Dion, Patrick A; Rouleau, Guy A; Hanada, Toshihiko; Chishti, Athar H

    2006-11-01

    Neurofibromatosis type 2 (NF2) is an autosomal dominant disease predisposing individuals to the risk of developing tumors of cranial and spinal nerves. The NF2 tumor suppressor protein, known as Merlin/Schwanomin, is a member of the protein 4.1 superfamily that function as links between the cytoskeleton and the plasma membrane. Upon selective extraction of membrane-associated proteins from erythrocyte plasma membrane (ghosts) using low ionic strength solution, the bulk of NF2 protein remains associated with the spectrin-actin depleted inside-out-vesicles. Western blot analysis showed a approximately 70 kDa polypeptide in the erythrocyte plasma membrane. Furthermore, quantitative removal of NF2 protein from the inside-out-vesicles was achieved using 1.0 M potassium iodide, a treatment known to remove tightly-bound peripheral membrane proteins. These results suggest a novel mode of NF2 protein association with the erythrocyte membrane that is distinct from the known membrane interactions of protein 4.1. Based on these biochemical properties, several purification strategies were devised to isolate native NF2 protein from human erythrocyte ghosts. Using purified and recombinant NF2 protein as internal standards, we quantified approximately 41-65,000 molecules of NF2 protein per erythrocyte. We provide evidence for the presence of NF2 protein in the human erythrocyte membrane. The identification of NF2 protein in the human erythrocyte membrane will make it feasible to discover novel interactions of NF2 protein utilizing powerful techniques of erythrocyte biochemistry and genetics in mammalian cells.

  20. Hypoxia upregulates Bcl-2 expression and suppresses interferon-gamma induced antiangiogenic activity in human tumor derived endothelial cells.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    BACKGROUND: Hypoxia in solid tumors potentially stimulates angiogenesis by promoting vascular endothelial growth factor (VEGF) production and upregulating VEGF receptor expression. However, it is unknown whether hypoxia can modulate the effect of anti-angiogenic treatment on tumor-derived endothelium. METHODS: Human tumor-derived endothelial cells (HTDEC) were freshly isolated from surgically removed human colorectal tumors by collagenase\\/DNase digestion and Percol gradient sedimentation. Cell proliferation was assessed by measuring BrdU incorporation, and capillary tube formation was measured using Matrigel. Cell apoptosis was assessed by flow cytometry and ELISA, and Bcl-2 expression was detected by Western blot analysis. RESULTS: Under aerobic culture conditions (5% CO2 plus 21% O2) HTDEC expressed less Bcl-2 and were more susceptible to IFN-gamma-induced apoptosis with significant reductions in both cell proliferation and capillary tube formation, when compared with normal human macrovascular and microvascular EC. Following exposure of HTDEC to hypoxia (5% CO2 plus 2% O2), IFN-gamma-induced cell apoptosis, and antiangiogenic activity (i.e. an inhibition in cell proliferation and capillary tube formation) in HTDEC were markedly attenuated. This finding correlated with hypoxia-induced upregulation of Bcl-2 expression in HTDEC. CONCLUSIONS: These results indicate that hypoxia can protect HTDEC against IFN-gamma-mediated cell death and antiangiogenic activity, and suggest that improvement of tumor oxygenation may potentiate the efficacy of anti-cancer therapies specifically targeting the inhibition of tumor angiogenesis.

  1. Growth of peripheral and central nervous system tumors is supported by cytoplasmic c-Fos in humans and mice.

    Directory of Open Access Journals (Sweden)

    David C Silvestre

    Full Text Available BACKGROUND: We have previously shown that the transcription factor c-Fos is also capable of associating to endoplasmic reticulum membranes (ER and activating phospholipid synthesis. Herein we examined phospholipid synthesis status in brain tumors from human patients and from NPcis mice, an animal model of the human disease Neurofibromatosis Type 1 (NF1. PRINCIPAL FINDINGS: In human samples, c-Fos expression was at the limit of detection in non-pathological specimens, but was abundantly expressed associated to ER membranes in tumor cells. This was also observed in CNS of adult tumor-bearing NPcis mice but not in NPcis fos(-/- KO mice. A glioblastoma multiforme and a malignant PNS tumor from a NF1 patient (MPNST showed a 2- and 4- fold c-Fos-dependent phospholipid synthesis activation, respectively. MPNST samples also showed increased cell proliferation rates and abundant c-Fos expression. CONCLUSIONS: Results highlight a role of cytoplasmic c-Fos as an activator of phospholipid synthesis in events demanding high rates of membrane biogenesis as occurs for the exacerbated growth of tumors cells. They also disclose this protein as a potential target for controlling tumor growth in the nervous system.

  2. Go and stop signals for glial regeneration.

    Science.gov (United States)

    Hidalgo, Alicia; Logan, Ann

    2017-12-01

    The regenerative response of ensheating glia to central nervous system (CNS) injury involves proliferation and differentiation, axonal re-enwrapment and some recovery of behaviour. Understanding this limited response could enable the enhancement of it. In Drosophila, the glial progenitor state is maintained by Notch, an activator of cell division and Prospero (Pros), a repressor. Injury provokes the activation of NFκB and up-regulation of Kon-tiki (Kon), driving cell proliferation. Homeostatic switch-off comes about as two negative feedback loops involving Pros terminate the response. Importantly, the functions of the kon and pros homologues NG2 and prox1, respectively, are conserved in mammalian NG2 glia. Controlling these genes is key for therapeutic manipulation of progenitors and stem cells to promote regeneration of the damaged CNS. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Glial biology in learning and cognition.

    Science.gov (United States)

    Fields, R Douglas; Araque, Alfonso; Johansen-Berg, Heidi; Lim, Soo-Siang; Lynch, Gary; Nave, Klaus-Armin; Nedergaard, Maiken; Perez, Ray; Sejnowski, Terrence; Wake, Hiroaki

    2014-10-01

    Neurons are exquisitely specialized for rapid electrical transmission of signals, but some properties of glial cells, which do not communicate with electrical impulses, are well suited for participating in complex cognitive functions requiring broad spatial integration and long-term temporal regulation. Astrocytes, microglia, and oligodendrocytes all have biological properties that could influence learning and cognition. Myelination by oligodendrocytes increases conduction velocity, affecting spike timing and oscillations in neuronal activity. Astrocytes can modulate synaptic transmission and may couple multiple neurons and synapses into functional assemblies. Microglia can remove synapses in an activity-dependent manner altering neural networks. Incorporating glia into a bicellular mechanism of nervous system function may help answer long-standing questions concerning the cellular mechanisms of learning and cognition. © The Author(s) 2013.

  4. Characterization of ABT-806, a Humanized Tumor-Specific Anti-EGFR Monoclonal Antibody.

    Science.gov (United States)

    Reilly, Edward B; Phillips, Andrew C; Buchanan, Fritz G; Kingsbury, Gillian; Zhang, Yumin; Meulbroek, Jonathan A; Cole, Todd B; DeVries, Peter J; Falls, Hugh D; Beam, Christine; Gu, Jinming; Digiammarino, Enrico L; Palma, Joann P; Donawho, Cherrie K; Goodwin, Neal C; Scott, Andrew M

    2015-05-01

    Despite clinical efficacy, current approved agents targeting EGFR are associated with on-target toxicities as a consequence of disrupting normal EGFR function. MAb 806 is a novel EGFR antibody that selectively targets a tumor-selective epitope suggesting that a mAb 806-based therapeutic would retain antitumor activity without the on-target toxicities associated with EGFR inhibition. To enable clinical development, a humanized variant of mAb 806 designated ABT-806 was generated and is currently in phase 1 trials. We describe the characterization of binding and functional properties of ABT-806 compared with the clinically validated anti-EGFR antibody cetuximab. ABT-806 binds the mutant EGFRvIII with high affinity and, relative to cetuximab, exhibits increased potency against glioblastoma multiforme cell line and patient-derived xenografts expressing this form of the receptor. ABT-806 also inhibits the growth of squamous cell carcinoma xenograft models expressing high levels of wild-type EGFR, associated with inhibition of EGFR signaling, although higher doses of ABT-806 than cetuximab are required for similar activity. ABT-806 enhances in vivo potency of standard-of-care therapies used to treat glioblastoma multiforme and head and neck squamous cell carcinoma. An indium-labeled version of ABT-806, [(111)In]-ABT-806, used to investigate the relationship between dose and receptor occupancy, revealed greater receptor occupancy at lowers doses in an EGFRvIII-expressing model and significant uptake in an orthotopic model. Collectively, these results suggest that ABT-806 may have antitumor activity superior to cetuximab in EGFRvIII-expressing tumors, and similar activity to cetuximab in tumors highly overexpressing wild-type EGFR with reduced toxicity. ©2015 American Association for Cancer Research.

  5. Light dosimetry in vivo in interstitial photodynamic therapy of human tumors

    Science.gov (United States)

    Reynes, Anne M.; Diebold, Simon; Lignon, Dominique; Granjon, Yves; Guillemin, Francois H.

    1991-11-01

    Photodynamic therapy, developed since 1961 with Lipson''s studies, is now limited in its clinical applications by the lack of knowledge about light comportment and the action of hematoporphyrin in tissues. Using human tumor models in mice, the intratumoral light flux was measured during an interstitial illumination (cylindrical diffusor 5 mm of length) by an argon dye laser emitting continuously at 630 nm (Spectra-Physics 375 B). The flux measured was captured by a plane-cut fiber (400 micrometers ) linked with an optical power meter (Newport 815). The light decrease in tissue had an exponential shape, and k, the global attenuation coefficient, was easily calculated as well as the depth penetration (1/k). Control measurements were performed in beef muscle, and the k value was very consistent with published data. In small tumors (3), the results presented a good reproducibility for the same histology (ksarcoma equals 0.48 +/- 0.08 mm-1, kcholangiocarcinoma equals 0.67 +/- 0.01 mm-1). The intraperitoneal injection of hematoporphyrin derivative (HpD at 10 mg/kg) did not seem to significantly influence the light evolution in tissues compared with control measurements without HpD. The simplicity and the reproducibility of this technique raises hopes of a coming clinical application and a possible comparison between different studies with measurable references.

  6. Field Effect Transistor Biosensor Using Antigen Binding Fragment for Detecting Tumor Marker in Human Serum

    Science.gov (United States)

    Cheng, Shanshan; Hotani, Kaori; Hideshima, Sho; Kuroiwa, Shigeki; Nakanishi, Takuya; Hashimoto, Masahiro; Mori, Yasuro; Osaka, Tetsuya

    2014-01-01

    Detection of tumor markers is important for cancer diagnosis. Field-effect transistors (FETs) are a promising method for the label-free detection of trace amounts of biomolecules. However, detection of electrically charged proteins using antibody-immobilized FETs is limited by ionic screening by the large probe molecules adsorbed to the transistor gate surface, reducing sensor responsiveness. Here, we investigated the effect of probe molecule size on the detection of a tumor marker, α-fetoprotein (AFP) using a FET biosensor. We demonstrated that the small receptor antigen binding fragment (Fab), immobilized on a sensing surface as small as 2–3 nm, offers a higher degree of sensitivity and a wider concentration range (100 pg/mL–1 μg/mL) for the FET detection of AFP in buffer solution, compared to the whole antibody. Therefore, the use of a small Fab probe molecule instead of a whole antibody is shown to be effective for improving the sensitivity of AFP detection in FET biosensors. Furthermore, we also demonstrated that a Fab-immobilized FET subjected to a blocking treatment, to avoid non-specific interactions, could sensitively and selectively detect AFP in human serum. PMID:28788579

  7. Mode of action and human relevance of THF-induced mouse liver tumors.

    Science.gov (United States)

    Choi, Christopher J; Rushton, Erik K; Vardy, Audrey; Higgins, Larry; Augello, Andrea; Parod, Ralph J

    2017-07-05

    In a National Toxicology Program (NTP) bioassay, inhalation of tetrahydrofuran (THF) induced liver tumors in female B6C3F1 mice but not in male mice or rats of either sex. Since THF is not genotoxic, the NTP concluded this carcinogenic activity was likely mediated via non-genotoxic modes of action (MOA). Based on evidence that THF and phenobarbital share a similar MOA, female Car/Pxr knock-out mice were orally exposed to THF to evaluate the potential role of CAR activation in the MOA for THF-induced liver tumors. Because data from this oral study with Car/Pxr knock-out mice (C57Bl/6) and the inhalation studies with wild type mice (B6C3F1) reported by NTP and others were derived from different strains, oral studies with wild type B6C3F1 and C57Bl/6 mice were conducted to ensure THF responses in both strains were comparable. As seen in inhalation studies with THF, oral exposure of wild type female mice to a maximum tolerated dose of THF increased total P450 content, CAR-related P450 activities, and hepatocyte proliferation; these effects were not observed in Car/Pxr knock-out female mice. This finding supports the hypothesis THF-induced carcinogenicity is likely mediated via CAR activation that has limited, if any, relevance to humans. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Human telomerase reverse transcriptase (hTERT) expression in borderline ovarian tumors: an immunohistochemical study.

    Science.gov (United States)

    Tantbirojn, Patou; Triratanachat, Surang; Trivijitsilp, Prasert; Niruthisard, Somchai

    2009-03-01

    To investigate the expression of human telomerase reverse transcriptase (hTERT) in epithelial borderline ovarian tumor (BOT) by immunohistochemistry with correlation to clinicopathologic variables. Paraffin-embedded tissue sections of 62 borderline ovarian tumors (47 mucinous, 14 serous, and 1 clear cell) and 12 epthelial ovarian carcinomas were immunostained with antibodies to hTERT. The intensity and quantity of the immunostaining was determined and analyzed with clinicopathological characteristics. hTERT expression was detected in 48.4% of BOT and all cases of epithelial ovarian carcinoma. In immunoreactive BOT 50% of cases were scored as high expression. Serous BOT had the highest rate of hTERT expression. There was no significant statistical difference of hTERT immunoreactivity between histologic types of BOT. No hTERT immunoreactivity was observed in the benign parts of the same slides of each immunoreactive case. hTERT immunoreactivity was positively correlated with FIGO stage (p = 0.04), but not with other variables. The mean follow-up time of BOT cases was 81.63 months and no recurrence or death was noted. hTERT expression was found in half of BOT and all of epithelial ovarian carcinoma. High hTERT expression was associated with FIGO stage.

  9. Human cytomegalovirus-encoded US28 may act as a tumor promoter in colorectal cancer.

    Science.gov (United States)

    Cai, Zhen-Zhai; Xu, Jian-Gang; Zhou, Yu-Hui; Zheng, Ji-Hang; Lin, Ke-Zhi; Zheng, Shu-Zhi; Ye, Meng-Si; He, Yun; Liu, Chang-Bao; Xue, Zhan-Xiong

    2016-03-07

    To assess human cytomegalovirus-encoded US28 gene function in colorectal cancer (CRC) pathogenesis. Immunohistochemical analysis was performed to determine US28 expression in 103 CRC patient samples and 98 corresponding adjacent noncancerous samples. Patient data were compared by age, sex, tumor location, histological grade, Dukes' stage, and overall mean survival time. In addition, the US28 gene was transiently transfected into the CRC LOVO cell line, and cell proliferation was assessed using a cell counting kit-8 assay. Cell cycle analysis by flow cytometry and a cell invasion transwell assay were also carried out. US28 levels were clearly higher in CRC tissues (38.8%) than in adjacent noncancerous samples (7.1%) (P = 0.000). Interestingly, elevated US28 amounts in CRC tissues were significantly associated with histological grade, metastasis, Dukes' stage, and overall survival (all P < 0.05); meanwhile, US28 expression was not significantly correlated with age, sex or tumor location. In addition, multivariate Cox regression data revealed US28 level as an independent CRC prognostic marker (P = 0.000). LOVO cells successfully transfected with the US28 gene exhibited higher viability, greater chemotherapy resistance, accelerated cell cycle progression, and increased invasion ability. US28 expression is predictive of poor prognosis and may promote CRC.

  10. Surface modification of microparticles causes differential uptake responses in normal and tumoral human breast epithelial cells

    Science.gov (United States)

    Patiño, Tania; Soriano, Jorge; Barrios, Lleonard; Ibáñez, Elena; Nogués, Carme

    2015-01-01

    The use of micro- and nanodevices as multifunctional systems for biomedical applications has experienced an exponential growth during the past decades. Although a large number of studies have focused on the design and fabrication of new micro- and nanosystems capable of developing multiple functions, a deeper understanding of their interaction with cells is required. In the present study, we evaluated the effect of different microparticle surfaces on their interaction with normal and tumoral human breast epithelial cell lines. For this, AlexaFluor488 IgG functionalized polystyrene microparticles (3 μm) were coated with Polyethyleneimine (PEI) at two different molecular weights, 25 and 750 kDa. The effect of microparticle surface properties on cytotoxicity, cellular uptake and endocytic pathways were assessed for both normal and tumoral cell lines. Results showed a differential response between the two cell lines regarding uptake efficiency and mechanisms of endocytosis, highlighting the potential role of microparticle surface tunning for specific cell targeting. PMID:26068810

  11. Field Effect Transistor Biosensor Using Antigen Binding Fragment for Detecting Tumor Marker in Human Serum

    Directory of Open Access Journals (Sweden)

    Shanshan Cheng

    2014-03-01

    Full Text Available Detection of tumor markers is important for cancer diagnosis. Field-effect transistors (FETs are a promising method for the label-free detection of trace amounts of biomolecules. However, detection of electrically charged proteins using antibody-immobilized FETs is limited by ionic screening by the large probe molecules adsorbed to the transistor gate surface, reducing sensor responsiveness. Here, we investigated the effect of probe molecule size on the detection of a tumor marker, α-fetoprotein (AFP using a FET biosensor. We demonstrated that the small receptor antigen binding fragment (Fab, immobilized on a sensing surface as small as 2–3 nm, offers a higher degree of sensitivity and a wider concentration range (100 pg/mL–1 μg/mL for the FET detection of AFP in buffer solution, compared to the whole antibody. Therefore, the use of a small Fab probe molecule instead of a whole antibody is shown to be effective for improving the sensitivity of AFP detection in FET biosensors. Furthermore, we also demonstrated that a Fab-immobilized FET subjected to a blocking treatment, to avoid non-specific interactions, could sensitively and selectively detect AFP in human serum.

  12. Curcumin Inhibits Tumor Growth and Angiogenesis in an Orthotopic Mouse Model of Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2013-01-01

    Full Text Available Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. The best chemotherapeutic agent used to treat pancreatic cancer is the gemcitabine. However, gemcitabine treatment is associated with many side effects. Thus novel strategies involving less toxic agents for treatment of pancreatic cancer are necessary. Curcumin is one such agent that inhibits the proliferation and angiogenesis of a wide variety of tumor cells, through the modulation of many cell signalling pathways. In this study, we investigated whether curcumin plays antitumor effects in MIA PaCa-2 cells. In vitro studies showed that curcumin inhibits the proliferation and enhances apoptosis of MIA PaCa-2 cells. To test whether the antitumor activity of curcumin is also observed in vivo, we generated an orthotopic mouse model of pancreatic cancer by injection of MIA PaCa-2 cells in nude mice. We placed mice on diet containing curcumin at 0.6% for 6 weeks. In these treated mice tumors were smaller with respect to controls and showed a downregulation of the transcription nuclear factor NF-κB and NF-κB-regulated gene products. Overall, our data indicate that curcumin has a great potential in treatment of human pancreatic cancer through the modulation of NF-κB pathway.

  13. Development of a Fully Human Anti-PDGFRβ Antibody That Suppresses Growth of Human Tumor Xenografts and Enhances Antitumor Activity of an Anti-VEGFR2 Antibody

    Directory of Open Access Journals (Sweden)

    Juqun Shen

    2009-06-01

    Full Text Available Platelet-derived growth factor receptor β (PDGFRβ is upregulated in most of solid tumors. It is expressed by pericytes/smooth muscle cells, fibroblast, macrophage, and certain tumor cells. Several PDGF receptor-related antagonists are being developed as potential antitumor agents and have demonstrated promising antitumor activity in both preclinical and clinical settings. Here, we produced a fully human neutralizing antibody, IMC-2C5, directed against PDGFRβ from an antibody phage display library. IMC-2C5 binds to both human and mouse PDGFRβ and blocks PDGF-B from binding to the receptor. IMC-2C5 also blocks ligand-stimulated activation of PDGFRβ and downstream signaling molecules in tumor cells. In animal studies, IMC-2C5 significantly delayed the growth of OVCAR-8 and NCI-H460 human tumor xenografts in nude mice but failed to show antitumor activities in OVCAR-5 and Caki-1 xenografts. Our results indicate that the antitumor efficacy of IMC-2C5 is primarily due to its effects on tumor stroma, rather than on tumor cells directly. Combination of IMC-2C5 and DC101, an anti-mouse vascular endothelial growth factor receptor 2 antibody, resulted in significantly enhanced antitumor activity in BxPC-3, NCI-H460, and HCT-116 xenografts, compared with DC101 alone, and the trend of additive effects to DC101 treatment in several other tumor models. ELISA analysis of NCI-H460 tumor homogenates showed that IMC-2C5 attenuated protein level of vascular endothelial growth factor and basic fibroblast growth factor elevated by DC101 treatment. Finally, IMC-2C5 showed a trend of additive effects when combined with DC101/chemotherapy in MIA-PaCa-2 and NCI-H460 models. Taken together, these results lend great support to the use of PDGFRβ antagonists in combination with other antiangiogenic agents in the treatment of a broad range of human cancers.

  14. Distinctive responses of brain tumor cells to TLR2 ligands.

    Science.gov (United States)

    Yoon, Hee Jung; Jeon, Sae-Bom; Koh, Han Seok; Song, Jae-Young; Kim, Sang Soo; Kim, In-Hoo; Park, Eun Jung

    2015-05-01

    Malignant brain tumor mass contains significant numbers of infiltrating glial cells that may intimately interact with tumor cells and influence cancer treatments. Understanding of characteristic discrepancies between normal GLIA and tumor cells would, therefore, be valuable for improving anticancer therapeutics. Here, we report distinct differences in toll-like receptors (TLR)-2-mediated responses between normal glia and primary brain tumor cell lines. We found that tyrosine phosphorylation of STAT1 by TLR2 ligands and its downstream events did not occur in mouse, rat, or human brain tumor cell lines, but were markedly induced in normal primary microglia and astrocytes. Using TLR2-deficient, interferon (IFN)-γ-deficient, and IFNγ-receptor-1-deficient mice, we revealed that the impaired phosphorylation of STAT1 might be linked with defective TLR2 system in tumor cells, and that a TLR2-dependent pathway, not IFNγ-receptor machinery, might be critical for tyrosine STAT1 phosphorylation by TLR2 ligands. We also found that TLR2 and its heterodimeric partners, TLR1 and 6, on brain tumor cells failed to properly respond to TLR2 ligands, and representative TLR2-dependent cellular events, such as inflammatory responses and cell death, were not detected in brain tumor cells. Similar results were obtained in in vitro and in vivo experiments using orthotopic mouse and rat brain tumor models. Collectively, these results suggest that primary brain tumor cells may exhibit a distinctive dysfunction of TLR2-associated responses, resulting in abnormal signaling and cellular events. Careful targeting of this distinctive property could serve as the basis for effective therapeutic approaches against primary brain tumors. © 2015 Wiley Periodicals, Inc.

  15. An integrated genomic approach identifies persistent tumor suppressive effects of transforming growth factor-β in human breast cancer.

    Science.gov (United States)

    Sato, Misako; Kadota, Mitsutaka; Tang, Binwu; Yang, Howard H; Yang, Yu-an; Shan, Mengge; Weng, Jia; Welsh, Michael A; Flanders, Kathleen C; Nagano, Yoshiko; Michalowski, Aleksandra M; Clifford, Robert J; Lee, Maxwell P; Wakefield, Lalage M

    2014-06-02

    Transforming growth factor-βs (TGF-βs) play a dual role in breast cancer, with context-dependent tumor-suppressive or pro-oncogenic effects. TGF-β antagonists are showing promise in early-phase clinical oncology trials to neutralize the pro-oncogenic effects. However, there is currently no way to determine whether the tumor-suppressive effects of TGF-β are still active in human breast tumors at the time of surgery and treatment, a situation that could lead to adverse therapeutic responses. Using a breast cancer progression model that exemplifies the dual role of TGF-β, promoter-wide chromatin immunoprecipitation and transcriptomic approaches were applied to identify a core set of TGF-β-regulated genes that specifically reflect only the tumor-suppressor arm of the pathway. The clinical significance of this signature and the underlying biology were investigated using bioinformatic analyses in clinical breast cancer datasets, and knockdown validation approaches in tumor xenografts. TGF-β-driven tumor suppression was highly dependent on Smad3, and Smad3 target genes that were specifically enriched for involvement in tumor suppression were identified. Patterns of Smad3 binding reflected the preexisting active chromatin landscape, and target genes were frequently regulated in opposite directions in vitro and in vivo, highlighting the strong contextuality of TGF-β action. An in vivo-weighted TGF-β/Smad3 tumor-suppressor signature was associated with good outcome in estrogen receptor-positive breast cancer cohorts. TGF-β/Smad3 effects on cell proliferation, differentiation and ephrin signaling contributed to the observed tumor suppression. Tumor-suppressive effects of TGF-β persist in some breast cancer patients at the time of surgery and affect clinical outcome. Carefully tailored in vitro/in vivo genomic approaches can identify such patients for exclusion from treatment with TGF-β antagonists.

  16. Replication Study: The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors.

    Science.gov (United States)

    Horrigan, Stephen K

    2017-01-19

    In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Chroscinski et al., 2015) that described how we intended to replicate selected experiments from the paper "The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors "(Willingham et al., 2012). Here we report the results of those experiments. We found that treatment of immune competent mice bearing orthotopic breast tumors with anti-mouse CD47 antibodies resulted in short-term anemia compared to controls, consistent with the previously described function of CD47 in normal phagocytosis of aging red blood cells and results reported in the original study (Table S4; Willingham et al., 2012). The weight of tumors after 30 days administration of anti-CD47 antibodies or IgG isotype control were not found to be statistically different, whereas the original study reported inhibition of tumor growth with anti-CD47 treatment (Figure 6A,B; Willingham et al., 2012). However, our efforts to replicate this experiment were confounded because spontaneous regression of tumors occurred in several of the mice. Additionally, the excised tumors were scored for inflammatory cell infiltrates. We found IgG and anti-CD47 treated tumors resulted in minimal to moderate lymphocytic infiltrate, while the original study observed sparse lymphocytic infiltrate in IgG-treated tumors and increased inflammatory cell infiltrates in anti-CD47 treated tumors (Figure 6C; Willingham et al., 2012). Furthermore, we observed neutrophilic infiltration was slightly increased in anti-CD47 treated tumors compared to IgG control. Finally, we report a meta-analysis of the result.

  17. XeCl excimer laser-induced autofluorescence spectroscopy for human cerebral tumor diagnosis: preliminary study

    Science.gov (United States)

    Avrillier, Sigrid; Hor, Frederic; Desgeorges, Michel; Ettori, Dominique; Sitbon, Jean R.

    1993-09-01

    Three-hundred-eight nm laser-induced autofluorescence spectra of the normal human brain, astrocytoma grade IV and glioblastoma grade IV specimens, have been recorded in vitro two hours after surgical resection. Typical fluorescence spectra for normal (N) and malignant (M) tissue show 4 maxima at about 352, 362, 383, and 460 nm. These spectra are analyzed in detail. Subtle differences in normalized spectra of N and M tissues appear to be large enough for diagnosis. Several criteria such as maxima and minima absolute intensity and intensity ratios at typical wavelengths are computed and used to classify the tissue. This preliminary study shows that fluorescence spectroscopy with 308 nm UV excitation could be a valid technique for discriminating tumor types. However, it should be noted that these measurements are made in vitro. Living tissues may have different spectral characteristics, therefore future in vivo investigations must be performed.

  18. 18F-FDG and 18F-FLT-PET imaging for monitoring everolimus effect on tumor-growth in neuroendocrine tumors: studies in human tumor xenografts in mice.

    Directory of Open Access Journals (Sweden)

    Camilla Bardram Johnbeck

    Full Text Available The mTOR inhibitor everolimus has shown promising results in some but not all neuroendocrine tumors. Therefore, early assessment of treatment response would be beneficial. In this study, we investigated the in vivo and in vitro treatment effect of everolimus in neuroendocrine tumors and evaluated the performance of 18F-FDG and the proliferation tracer 18F-FLT for treatment response assessment by PET imaging.The effect of everolimus on the human carcinoid cell line H727 was examined in vitro with the MTT assay and in vivo on H727 xenograft tumors. The mice were scanned at baseline with 18F-FDG or 18F-FLT and then treated with either placebo or everolimus (5 mg/kg daily for 10 days. PET/CT scans were repeated at day 1,3 and 10.Everolimus showed significant inhibition of H727 cell proliferation in vitro at concentrations above 1 nM. In vivo tumor volumes measured relative to baseline were significantly lower in the everolimus group compared to the control group at day 3 (126±6% vs. 152±6%; p = 0.016, day 7 (164±7% vs. 226±13%; p<0.001 and at day 10 (194±10% vs. 281±18%; p<0.001. Uptake of 18F-FDG and 18F-FLT showed little differences between control and treatment groups, but individual mean uptake of 18F-FDG at day 3 correlated with tumor growth day 10 (r2 = 0.45; P = 0.034, 18F-FLT mean uptake at day 1 correlated with tumor growth day 7 (r2 = 0.63; P = 0.019 and at day 3 18F-FLT correlated with tumor growth day 7 (r2 = 0.87; P<0.001 and day 10 (r2 = 0.58; P = 0.027.Everolimus was effective in vitro and in vivo in human xenografts lung carcinoid NETs and especially early 18F-FLT uptake predicted subsequent tumor growth. We suggest that 18F-FLT PET can be used for tailoring therapy for neuroendocrine tumor patients through early identification of responders and non-responders.

  19. Homogeneous expansion of human T-regulatory cells via tumor necrosis factor receptor 2.

    Science.gov (United States)

    Okubo, Yoshiaki; Mera, Toshiyuki; Wang, Limei; Faustman, Denise L

    2013-11-06

    T-regulatory cells (T(regs)) are a rare lymphocyte subtype that shows promise for treating infectious disease, allergy, graft-versus-host disease, autoimmunity, and asthma. Clinical applications of T(regs) have not been fully realized because standard methods of expansion ex vivo produce heterogeneous progeny consisting of mixed populations of CD4 + T cells. Heterogeneous progeny are risky for human clinical trials and face significant regulatory hurdles. With the goal of producing homogeneous T(regs), we developed a novel expansion protocol targeting tumor necrosis factor receptors (TNFR) on T(regs). In in vitro studies, a TNFR2 agonist was found superior to standard methods in proliferating human T(regs) into a phenotypically homogeneous population consisting of 14 cell surface markers. The TNFR2 agonist-expanded T(regs) also were functionally superior in suppressing a key T(reg) target cell, cytotoxic T-lymphocytes. Targeting the TNFR2 receptor during ex vivo expansion is a new means for producing homogeneous and potent human T(regs) for clinical opportunities.

  20. Compositional features are potentially involved in the regulation of gene expression of tumor suppressor genes in human tissues.

    Science.gov (United States)

    Hajjari, Mohammadreza; Khoshnevisan, Atefeh; Behmanesh, Mehrdad

    2014-12-15

    Different mechanisms regulate the expression level of tissue specific genes in human. Here we report some compositional features such as codon usage bias, amino acid usage bias, codon frequency, and base composition which may be potentially related to mRNA amount of tissue specific tumor suppressor genes. Our findings support the possibility that structural elements in gene and protein may play an important role in the regulation of tumor suppressor genes, development, and tumorigenesis. The data presented here can open broad vistas in the understanding and treatment of a variety of human malignancies. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Sensitivity of endometrial cancer cells from primary human tumor samples to new potential anticancer peptide lactaptin.

    Science.gov (United States)

    Koval, Olga A; Sakaeva, Galiya R; Fomin, Alexander S; Nushtaeva, Anna A; Semenov, Dmitry V; Kuligina, Elena V; Gulyaeva, Ludmila F; Gerasimov, Alexey V; Richter, Vladimir A

    2015-01-01

    Endometrial carcinoma is the most common gynecologic malignancy which is associated with a poor prognosis when diagnosed at an advanced stage; therefore, the discovery of efficacious new drugs is required to reinforce conventional chemotherapy. Short-term cultures of primary cells from endometrial tumors could be used for testing new anticancer therapeutics as well as for the development of personalized cancer therapy strategy. Here, the antitumor effect of a recombinant analogue of lactaptin (RL2), a new potential anticancer molecule, was examined against primary human endometrial cancer cells. Primary cell cultures of malignant and normal human endometrium were performed by enzymatic digestion of endometrial tissue from biopsy material. Real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the messenger ribonucleic acid (mRNA) state of estrogen (ERs) and progesterone (PRs) hormone receptors and aromatase (Cyp 19) in cell cultures. Dynamic monitoring of cell adhesion and proliferation was made using the iCELLigence system (ASEA Biosciences). The sensitivity of cell cultures to conventional anticancer drugs and the lactaptin analog was estimated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, flow cytometry, and the iCELLligence system. Established short-term primary cultures of endometrial cancer cells were ERα/ERβ/PR-positive and sensitive for RL2. The IC 50 values of doxorubicin and cisplatin were determined for all of the primary cultures designed. KE normal cells displaying low Cyp19 mRNA levels and high ERβ and PR mRNA levels were more resistant to RL2 treatment as well as to cisplatin and doxorubicin. Our results indicate that the recombinant analog of lactaptin, RL2, exerts cytotoxic effects against primary hormone-dependent endometrial tumor cells in vitro with features of apoptosis.

  2. Human Ovarian Cancer Stroma Contains Luteinized Theca Cells Harboring Tumor Suppressor Gene GT198 Mutations*

    Science.gov (United States)

    Peng, Min; Zhang, Hao; Jaafar, Lahcen; Risinger, John I.; Huang, Shuang; Mivechi, Nahid F.; Ko, Lan

    2013-01-01

    Ovarian cancer is a highly lethal gynecological cancer, and its causes remain to be understood. Using a recently identified tumor suppressor gene, GT198 (PSMC3IP), as a unique marker, we searched for the identity of GT198 mutant cells in ovarian cancer. GT198 has germ line mutations in familial and early onset breast and ovarian cancers and recurrent somatic mutations in sporadic fallopian tube cancers. GT198 protein has been shown as a steroid hormone receptor coregulator and also as a crucial factor in DNA repair. In this study, using GT198 as a marker for microdissection, we find that ovarian tumor stromal cells harboring GT198 mutations are present in various types of ovarian cancer including high and low grade serous, endometrioid, mucinous, clear cell, and granulosa cell carcinomas and in precursor lesions such as inclusion cysts. The mutant stromal cells consist of a luteinized theca cell lineage at various differentiation stages including CD133+, CD44+, and CD34+ cells, although the vast majority of them are differentiated overexpressing steroidogenic enzyme CYP17, a theca cell-specific marker. In addition, wild type GT198 suppresses whereas mutant GT198 protein stimulates CYP17 expression. The chromatin-bound GT198 on the human CYP17 promoter is decreased by overexpressing mutant GT198 protein, implicating the loss of wild type suppression in mutant cells. Together, our results suggest that GT198 mutant luteinized theca cells overexpressing CYP17 are common in ovarian cancer stroma. Because first hit cancer gene mutations would specifically mark cancer-inducing cells, the identification of mutant luteinized theca cells may add crucial evidence in understanding the cause of human ovarian cancer. PMID:24097974

  3. Human ovarian cancer stroma contains luteinized theca cells harboring tumor suppressor gene GT198 mutations.

    Science.gov (United States)

    Peng, Min; Zhang, Hao; Jaafar, Lahcen; Risinger, John I; Huang, Shuang; Mivechi, Nahid F; Ko, Lan

    2013-11-15

    Ovarian cancer is a highly lethal gynecological cancer, and its causes remain to be understood. Using a recently identified tumor suppressor gene, GT198 (PSMC3IP), as a unique marker, we searched for the identity of GT198 mutant cells in ovarian cancer. GT198 has germ line mutations in familial and early onset breast and ovarian cancers and recurrent somatic mutations in sporadic fallopian tube cancers. GT198 protein has been shown as a steroid hormone receptor coregulator and also as a crucial factor in DNA repair. In this study, using GT198 as a marker for microdissection, we find that ovarian tumor stromal cells harboring GT198 mutations are present in various types of ovarian cancer including high and low grade serous, endometrioid, mucinous, clear cell, and granulosa cell carcinomas and in precursor lesions such as inclusion cysts. The mutant stromal cells consist of a luteinized theca cell lineage at various differentiation stages including CD133(+), CD44(+), and CD34(+) cells, although the vast majority of them are differentiated overexpressing steroidogenic enzyme CYP17, a theca cell-specific marker. In addition, wild type GT198 suppresses whereas mutant GT198 protein stimulates CYP17 expression. The chromatin-bound GT198 on the human CYP17 promoter is decreased by overexpressing mutant GT198 protein, implicating the loss of wild type suppression in mutant cells. Together, our results suggest that GT198 mutant luteinized theca cells overexpressing CYP17 are common in ovarian cancer stroma. Because first hit cancer gene mutations would specifically mark cancer-inducing cells, the identification of mutant luteinized theca cells may add crucial evidence in understanding the cause of human ovarian cancer.

  4. Tumor Accumulation of NIR Fluorescent PEG-PLA Nanoparticles: Impact of Particle Size and Human Xenograft Tumor Model

    DEFF Research Database (Denmark)

    Schädlich, Andreas; Caysa, Henrike; Mueller, Thomas

    2011-01-01

    parameter for the nanoparticle accumulation in tumor tissues. In the present study the influence of the size of biodegradable nanoparticles was investigated in detail, combining in vivo and ex vivo analysis with comprehensive particle size characterizations. Polyethylene glycol-polyesters poly......(lactide) block polymers were synthesized and used for the production of three defined, stable, and nontoxic near-infrared (NIR) dye-loaded nanoparticle batches. Size analysis based on asymmetrical field flow field fractionation coupled with multiangle laser light scattering and photon correlation spectroscopy...

  5. A novel ATX-S10(Na) photodynamic therapy for human skin tumors and benign hyperproliferative skin.

    Science.gov (United States)

    Takahashi, Hidetoshi; Itoh, Yasuhiro; Nakajima, Susumu; Sakata, Isao; Iizuka, Hajime

    2004-10-01

    Photodynamic therapy (PDT) is a promising treatment for various skin tumors and other skin diseases. We investigated the potential therapeutic effects of PDT using ATX-S10(Na) ointment and a diode laser in mouse skin models of experimental skin tumors as well as transplanted human samples of superficial skin tumors and lesional psoriatic skin. ATX-S10(Na) ointment (1% w/v) was introduced into tape-stripped mouse skin, transplanted squamous cell carcinoma (SCC) samples and human skin diseases after topical application, then PDT was performed. ATX-S10(Na) ointment (1% w/v) was introduced effectively into tape-stripped mouse skin and transplanted SCC samples after topical application, but was not detected after 48 h, as assessed by fluorescence microscopy. PDT, using 1% ATX-S10(Na) ointment and diode laser (50 J/cm(2)), was found to decrease epidermal thickness in 12-0-tetradecanoylphorbol-13-acetate (TPA)-treated mouse skin by 6 days. PDT with 1% ATX-S10(Na) ointment and diode laser (150 J/cm(2)) was also effective for transplanted SCC, and tumors were eliminated by 6 weeks. PDT against Bowen disease, basal-cell carcinoma, and psoriasis xenografts onto SCID mice also showed marked suppression of tumor growth and cell proliferation, respectively. Our results indicate that ATX-S10(Na)-PDT is an effective treatment for various skin tumors and psoriasis in experimental mouse models.

  6. Binding of the Fap2 Protein of Fusobacterium nucleatum to Human Inhibitory Receptor TIGIT Protects Tumors from Immune Cell Attack

    Science.gov (United States)

    Gur, Chamutal; Ibrahim, Yara; Isaacson, Batya; Yamin, Rachel; Abed, Jawad; Gamliel, Moriya; Enk, Jonatan; Bar-On, Yotam; Stanietsky-Kaynan, Noah; Coppenhagen-Glazer, Shunit; Shussman, Noam; Almogy, Gideon; Cuapio, Angelica; Hofer, Erhard; Mevorach, Dror; Tabib, Adi; Ortenberg, Rona; Markel, Gal; Miklić, Karmela; Jonjic, Stipan; Brennan, Caitlin A.; Garrett, Wendy S.; Bachrach, Gilad; Mandelboim, Ofer

    2015-01-01

    SUMMARY Bacteria, such as Fusobacterium nucleatum, are present in the tumor microenvironment. However, the immunological consequences of intra-tumoral bacteria remain unclear. Here, we have shown that natural killer (NK) cell killing of various tumors is inhibited in the presence of various F. nucleatum strains. Our data support that this F. nucleatum-mediated inhibition is mediated by human, but not by mouse TIGIT, an inhibitory receptor present on all human NK cells and on various T cells. Using a library of F. nucleatum mutants, we found that the Fap2 protein of F. nucleatum directly interacted with TIGIT, leading to the inhibition of NK cell cytotoxicity. We have further demonstrated that tumor-infiltrating lymphocytes expressed TIGIT and that T cell activities were also inhibited by F. nucleatum via Fap2. Our results identify a bacterium-dependent, tumor-immune evasion mechanism in which tumors exploit the Fap2 protein of F. nucleatum to inhibit immune cell activity via TIGIT. PMID:25680274

  7. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer.

    Science.gov (United States)

    Julien, Sylvia; Merino-Trigo, Ana; Lacroix, Ludovic; Pocard, Marc; Goéré, Diane; Mariani, Pascale; Landron, Sophie; Bigot, Ludovic; Nemati, Fariba; Dartigues, Peggy; Weiswald, Louis-Bastien; Lantuas, Denis; Morgand, Loïc; Pham, Emmanuel; Gonin, Patrick; Dangles-Marie, Virginie; Job, Bastien; Dessen, Philippe; Bruno, Alain; Pierré, Alain; De Thé, Hugues; Soliman, Hany; Nunes, Manoel; Lardier, Guillaume; Calvet, Loreley; Demers, Brigitte; Prévost, Grégoire; Vrignaud, Patricia; Roman-Roman, Sergio; Duchamp, Olivier; Berthet, Cyril

    2012-10-01

    Patient-derived xenograft models are considered to represent the heterogeneity of human cancers and advanced preclinical models. Our consortium joins efforts to extensively develop and characterize a new collection of patient-derived colorectal cancer (CRC) models. From the 85 unsupervised surgical colorectal samples collection, 54 tumors were successfully xenografted in immunodeficient mice and rats, representing 35 primary tumors, 5 peritoneal carcinoses and 14 metastases. Histologic and molecular characterization of patient tumors, first and late passages on mice includes the sequence of key genes involved in CRC (i.e., APC, KRAS, TP53), aCGH, and transcriptomic analysis. This comprehensive characterization shows that our collection recapitulates the clinical situation about the histopathology and molecular diversity of CRC. Moreover, patient tumors and corresponding models are clustering together allowing comparison studies between clinical and preclinical data. Hence, we conducted pharmacologic monotherapy studies with standard of care for CRC (5-fluorouracil, oxaliplatin, irinotecan, and cetuximab). Through this extensive in vivo analysis, we have shown the loss of human stroma cells after engraftment, observed a metastatic phenotype in some models, and finally compared the molecular profile with the drug sensitivity of each tumor model. Through an experimental cetuximab phase II trial, we confirmed the key role of KRAS mutation in cetuximab resistance. This new collection could bring benefit to evaluate novel targeted therapeutic strategies and to better understand the basis for sensitivity or resistance of tumors from individual patients.

  8. Prognostic significance of STAT3 and phosphorylated STAT3 in human soft tissue tumors - a clinicopathological analysis

    Directory of Open Access Journals (Sweden)

    Nair Asha S

    2011-05-01

    Full Text Available Abstract Background Signal transducer and activator of transcription 3 (STAT3 is a key signaling molecule and a central cytoplasmic transcription factor, implicated in the regulation of growth. Its aberrant activation has been demonstrated to correlate with many types of human malignancy. However, whether constitutive STAT3 signaling plays a key role in the survival and growth of soft-tissue tumors is still unclear and hence needs to be elucidated further. In our study we examined the expression levels of STAT3 and pSTAT3 in different grades of soft tissue tumors and correlated with its clinicopathological characteristics. Methods Expression levels of STAT3 and pSTAT3 in soft tissue tumors were studied using Immunohistochemistry, Western blotting and Reverse transcriptase- PCR and correlated with its clinicopathological characteristics using Chi squared or Fisher's exact test and by logistic regression analysis. Statistical analysis was done using Intercooled Stata software (Intercooled Stata 8.2 version. Results Of the 82 soft tissue tumor samples, fifty four (65.8% showed immunoreactivity for STAT3 and twenty eight (34.1% for pSTAT3. Expression of STAT3 and pSTAT3 was significantly associated with tumor grade (P Conclusion These findings suggest that constitutive activation of STAT3 is an important factor related to carcinogenesis of human soft tissue tumors and is significantly associated with its clinicopathological parameters which may possibly have potential diagnostic implications.

  9. Murine and human pancreatic tumor exosome recovery in mouse serum: Diagnostic and prognostic potential and target cell delivery.

    Science.gov (United States)

    Erb, Ulrike; Zhao, Kun; Wang, Zhe; Xiao, Li; Zöller, Margot

    2017-09-10

    Exosomes (Exo), powerful intercellular communicators, are recovered in all body fluids, suggesting suitability for diagnosis and prognosis. Easy in vitro manipulation recommends Exo as drug vehicles. Aiming to consolidate diagnostic and therapeutic potential of Exo, we evaluated recovery and fate of tumor (TEX) and exogenous Exo in syngeneic and xenogeneic mice bearing a murine or a human pancreatic adenocarcinoma. A significant increase in serum (S)-TEX was observed 2 weeks after tumor cell application. Instead, S-TEX declined within 3-6 days after tumor excision. Intravenously injected dye-labeled TEX were rapidly cleared from the serum. Partly being degraded in the liver, the majority is taken-up by PBL, liver, bone marrow and lung cells. In the tumor-bearing host TEX persisted longer becoming enriched in tumor cells and metastatic organs. Accordingly, an antibody blockade of a TEX marker hampered disseminated tumor cell settlement in selected organs. In brief, a tumor marker panel appears suited for S-TEX recovery. In murine models, S-TEX are qualified for therapy control and follow-up studies. Despite rapid clearance from the serum, Exo uptake by host cells is most promising for tailored Exo as drug transporter. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Bortezomib sensitizes primary human astrocytoma cells of WHO grades I to IV for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis

    NARCIS (Netherlands)

    Koschny, Ronald; Holland, Heidrun; Sykora, Jaromir; Haas, Tobias L.; Sprick, Martin R.; Ganten, Tom M.; Krupp, Wolfgang; Bauer, Manfred; Ahnert, Peter; Meixensberger, Jürgen; Walczak, Henning

    2007-01-01

    Malignant gliomas are the most aggressive human brain tumors without any curative treatment. The antitumor effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in gliomas has thus far only been thoroughly established in tumor cell lines. In the present study, we investigated the

  11. Immunohistochemical analysis of retinoblastoma cell phenotype using neuronal and glial cell markers

    Directory of Open Access Journals (Sweden)

    María Eugenia Orellana

    Full Text Available ABSTRACT Purpose: The cellular origin of retinoblastoma is uncertain as constituent tumor cells heterogeneously express markers of both immature and mature retinal cells. An immunohistochemical analysis of cellular origin may yield valuable insights into disease progression and treatment options. This study aimed to determine the cellular origin of retinoblastoma in a large case series and correlate these findings with histopathological prognostic factors. Methods: Thirty-nine retinoblastoma cases were histopathologically diagnosed and analyzed by immunohistochemistry using monoclonal antibodies against the immature neural cell marker SRY-box containing gene 2 (SOX-2, the mature neuronal cell marker microtubule-associated protein 2 (MAP2, and the mature glial cell marker glial fibrillary acidic protein (GFAP. Histopathological features were also evaluated, including patterns of growth, differentiation, vitreous seeding, and choroidal/scleral, optic nerve, and anterior chamber invasion. Two retinoblastoma cell lines, WERI-1 and Y79, were studied by immunocytochemistry using the same antibodies. Results: Expression of SOX-2 was strong in 97.4% of retinoblastoma cases, while MAP-2 was expressed in 59% of cases. Immunostaining for GFAP was positive only in reactive stromal astrocytes interspersed amongst tumor cells and in peritumoral tissue. There was no correlation between histopathological prognostic factors and immunohistochemical markers. Retinoblastoma cell lines showed strong positivity for SOX2 (90% of WERI-1 cells and 70% of Y79 cells and MAP2 (90% of cells in both lines. GFAP was completely negative in both cell lines. Conclusion: The majority of retinoblastomas and both RB cell lines expressed an immature neural and/or a mature neuronal cell marker, but not a glial marker. These results indicate a typical neuroblast or neuronal origin and eliminate astrocyte differentiation from neural stem cells as the source of retinoblastoma.

  12. Targeting CXCR4 by a selective peptide antagonist modulates tumor microenvironment and microglia reactivity in a human glioblastoma model.

    Science.gov (United States)

    Mercurio, Laura; Ajmone-Cat, Maria Antonietta; Cecchetti, Serena; Ricci, Alessandro; Bozzuto, Giuseppina; Molinari, Agnese; Manni, Isabella; Pollo, Bianca; Scala, Stefania; Carpinelli, Giulia; Minghetti, Luisa

    2016-03-25

    The CXCL12/CXCR4 pathway regulates tumor cell proliferation, metastasis, angiogenesis and the tumor-microenvironment cross-talk in several solid tumors, including glioblastoma (GBM), the most common and fatal brain cancer. In the present study, we evaluated the effects of peptide R, a new specific CXCR4 antagonist that we recently developed by a ligand-based approach, in an in vitro and in vivo model of GBM. The well-characterized CXCR4 antagonist Plerixafor was also included in the study. The effects of peptide R on CXCR4 expression, cell survival and migration were assessed on the human glioblastoma cell line U87MG exposed to CXCL12, by immunofluorescence and western blotting, MTT assay, flow cytometry and transwell chamber migration assay. Peptide R was then tested in vivo, by using U87MG intracranial xenografts in CD1 nude mice. Peptide R was administered for 23 days since cell implantation and tumor volume was assessed by magnetic resonance imaging (MRI) at 4.7 T. Glioma associated microglia/macrophage (GAMs) polarization (anti-tumor M1 versus pro-tumor M2 phenotypes) and expressions of vascular endothelial growth factor (VEGF) and CD31 were assessed by immunohistochemistry and immunofluorescence. We found that peptide R impairs the metabolic activity and cell proliferation of human U87MG cells and stably reduces CXCR4 expression and cell migration in response to CXCL12 in vitro. In the orthotopic U87MG model, peptide R reduced tumor cellularity, promoted M1 features of GAMs and astrogliosis, and hindered intra-tumor vasculature. Our findings suggest that targeting CXCR4 by peptide R might represent a novel therapeutic approach against GBM, and contribute to the rationale to further explore in more complex pre-clinical settings the therapeutic potential of peptide R, alone or in combination with standard therapies of GBM.

  13. HET is a Novel Tumor Suppressor Gene in Human Breast Cancer

    National Research Council Canada - National Science Library

    Oesterreich, Steffi

    1999-01-01

    .... In the first specific aim we will directly answer whether HET is the tumor suppressor gene by performing additional LOB analysis and mutational analysis of BET in breast cancer cell lines as well as in tumors...

  14. Pasteurella Pneumotropica causa la regresión de tumores humanos trasplantados en ratones inmunodeficientes Pasteurella pneumotropica produces regression of human tumors transplanted in immunodeficiency mice

    Directory of Open Access Journals (Sweden)

    Martín Carriquiriborde

    2006-06-01

    Full Text Available La técnica de trasplante de tumores humanos en ratones inmunodeficientes es muy utilizada como modelo en investigaciones sobre el cáncer. De acuerdo con las recomendaciones internacionales, los animales de experimentación deben estar libres de los micoorganismos que interfieren en los resultados finales de las investigaciones, dentro de los cuales se encuentra Pasteurella pneumotropica. En el presente trabajo se evaluó la interferencia que produceesta bacteria en el crecimiento de la línea celular A549 de adenocarcinoma humano trasplantada en ratones de la cepa nude N:NIH (S-nu. Se utilizaron 40 ratones divididos en 4 grupos de 10 animales cada uno. Grupo 1: inoculados con la línea celular; grupo 2, con la bacteria; grupo 3, con la línea celular y la bacteria y grupo 4, el control sin inoculaciones. Se observaron diferencias significativas en el crecimiento tumoral entre los animales de los grupos 1 y 3. Si bien este microorganismo es un patógeno oportunista no letal, los ratones trasplantados con la línea celular A549 e infectados con P. pneumotropica no son aptos para utilizarse como modelo animal en estudios sobre el cáncer debido a que esta bacteria interfiere en el desarrollo de la línea tumoral, con la consecuente interpretación errónea de los resultados. Pero el hecho que la bacteria haya causado la regresión de un tumor en pleno crecimiento es inesperado y el mecanismo de acción será objeto de futuros experimentos.The technique of human tumor cell line transplantation in immunodeficient mice is used worldwide as a model for cancer research. In accordance with international recommendations, animals used in biomedical research should be free of microorganisms which can interfere in experimental results; including Pasteurella pneumotropica. The object of this study was to evaluate the interference produced by P. pneumotropica in the human adenocarcinoma cell line A549 transplanted in N:NIH(S-nu mice. A total of 40 mice

  15. Tenascin-W is a better cancer biomarker than tenascin-C for most human solid tumors

    Directory of Open Access Journals (Sweden)

    Brellier Florence

    2012-09-01

    Full Text Available Abstract Background Tenascins are large glycoproteins found in the extracellular matrix of many embryonic and adult tissues. Tenascin-C is a well-studied biomarker known for its high overexpression in the stroma of most solid cancers. Tenascin-W, the least studied member of the family, is highly expressed in the stroma of colon and breast tumors and in gliomas, but not in the corresponding normal tissues. Other solid tumors have not been analyzed. The present study was undertaken to determine whether tenascin-W could serve as a cancer-specific extracellular matrix protein in a broad range of solid tumors. Methods We analyzed the expression of tenascin-W and tenascin-C by immunoblotting and by immunohistochemistry on multiple frozen tissue microarrays of carcinomas of the pancreas, kidney and lung as well as melanomas and compared them to healthy tissues. Results From all healthy adult organs tested, only liver and spleen showed detectable levels of tenascin-W, suggesting that tenascin-W is absent from most human adult organs under normal, non-pathological conditions. In contrast, tenascin-W was detectable in the majority of melanomas and their metastases, as well as in pancreas, kidney, and lung carcinomas. Comparing lung tumor samples and matching control tissues for each patient revealed a clear overexpression of tenascin-W in tumor tissues. Although the number of samples examined is too small to draw statistically significant conclusions, there seems to be a tendency for increased tenascin-W expression in higher grade tumors. Interestingly, in most tumor types, tenascin-W is also expressed in close proximity to blood vessels, as shown by CD31 co-staining of the samples. Conclusions The present study extends the tumor biomarker potential of tenascin-W to a broad range of solid tumors and shows its accessibility from the blood stream for potential therapeutic strategies.

  16. Glial Draper Rescues Aβ Toxicity in a Drosophila Model of Alzheimer's Disease.

    Science.gov (United States)

    Ray, Arpita; Speese, Sean D; Logan, Mary A

    2017-12-06

    Pathological hallmarks of Alzheimer's disease (AD) include amyloid-β (Aβ) plaques, neurofibrillary tangles, and reactive gliosis. Glial cells offer protection against AD by engulfing extracellular Aβ peptides, but the repertoire of molecules required for glial recognition and destruction of Aβ are still unclear. Here, we show that the highly conserved glial engulfment receptor Draper/MEGF10 provides neuroprotection in an AD model of Drosophila (both sexes). Neuronal expression of human Aβ42arc in adult flies results in robust Aβ accumulation, neurodegeneration, locomotor dysfunction, and reduced lifespan. Notably, all of these phenotypes are more severe in draper mutant animals, whereas enhanced expression of glial Draper reverses Aβ accumulation, as well as behavioral phenotypes. We also show that the signal transducer and activator of transcription (Stat92E), c-Jun N-terminal kinase (JNK)/AP-1 signaling, and expression of matrix metalloproteinase-1 (Mmp1) are activated downstream of Draper in glia in response to Aβ42arc exposure. Furthermore, Aβ42-induced upregulation of the phagolysosomal markers Atg8 and p62 was notably reduced in draper mutant flies. Based on our findings, we propose that glia clear neurotoxic Aβ peptides in the AD model Drosophila brain through a Draper/STAT92E/JNK cascade that may be coupled to protein degradation pathways such as autophagy or more traditional phagolysosomal destruction methods.SIGNIFICANCE STATEMENT Alzheimer's disease (AD) and similar dementias are common incurable neurodegenerative disorders in the aging population. As the primary immune responders in the brain, glial cells are implicated as key players in the onset and progression of AD and related disorders. Here we show that the glial engulfment receptor Draper is protective in a Drosophila model of AD, reducing levels of amyloid β (Aβ) peptides, reversing locomotor defects, and extending lifespan. We further show that protein degradation pathways are

  17. Anti-inflammatory polymer electrodes for glial scar treatment

    National Research Council Canada - National Science Library

    Maria eAsplund; Christian eBoehler; Thomas eStieglitz

    2014-01-01

    .... A micron thick coating, deposited on the surface of a regular metallic electrode, can elute anti-inflammatory drugs for the treatment of glial scarring as well as growth factors for the support of surrounding neurons...

  18. Glial cell biology in the Great Lakes region.

    Science.gov (United States)

    Feinstein, Douglas L; Skoff, Robert P

    2016-03-31

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  19. The function of human epidermal growth factor receptor-3 and its role in tumors (Review).

    Science.gov (United States)

    Li, Qin; Yuan, Zhenyan; Cao, Bangwei

    2013-12-01

    Human epidermal growth factor receptor-3 (HER-3) is the third member of the HER family. It was previously considered not to contain tyrosine kinase activity and catalytic activity and the intracellular region of HER-3 could not bind ATP and be auto-phosphorylated. Thus, the clinical value of HER-3 was ignored. Currently, biochemical analysis has confirmed that the kinase domain of HER-3 is a specific allosteric activator; it acts as a functional activator to activate the recipient kinase (HER-1, HER-2, HER-4). With the in-depth knowledge of its structure and function, studies on the relationship of HER-3 and human tumors are rapidly increasing. HER-3 is closely related to tumorigenesis, progression and metastasis. HER-3 is involved in resistance to targeted therapy, and may serve as a new therapeutic target. The expression of HER-3 helps to predict prognosis and treatment efficacy. HER-3 has become a focus of concern in the HER family and has gained significant attention in the search for cancer treatment.

  20. EZH2 upregulation correlates with tumor invasiveness, proliferation, and angiogenesis in human pituitary adenomas.

    Science.gov (United States)

    Liu, Bin; Pang, Bo; Wang, Qirui; Yang, Shengji; Gao, Taihong; Ding, Qian; Liu, Huajie; Yang, Yihang; Fan, Haitao; Zhang, Rui; Xin, Tao; Xu, Guangming; Pang, Qi

    2017-08-01

    Enhancer of zeste homolog 2 (EZH2) is a critical component of the polycomb repressive complex 2, which epigenetically represses genes involved in tumorigenesis and is highly expressed in tumors. However, no studies have investigated EZH2 expression and its clinical significance in human pituitary adenomas (PAs). Therefore, we examined the expression pattern of EZH2 in PAs and studied the correlations between protein expression and invasiveness, proliferation, angiogenesis, hormone functioning, and some other factors. We measured EZH2 and MMP-14 protein and EZH2 mRNA expression in 62 samples of PAs by immunohistochemistry staining and quantitative real-time polymerase chain reaction and correlated protein expression relative to clinicopathologic features. The immunopositive rate of EZH2 was 88.7% (55/62). The extent of expression was associated with invasiveness, microvessel density, and proliferation (Ki-67 index). Moreover, EZH2 expression correlated with MMP-14 expression. We did not find any correlation between EZH2 overexpression and hormone-secreting function or patient age or sex. The quantitative real-time polymerase chain reaction analysis revealed that the amount of EZH2 mRNA was significantly higher in invasive than in noninvasive adenomas. This is the first report to describe EZH2 overexpression in human PAs, especially invasive adenomas. Thus, EZH2 is a potentially useful diagnostic marker and pharmacotherapeutic target for invasive PAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  2. Neuroimaging findings of the post-treatment effects of radiation and chemotherapy of malignant primary glial neoplasms.

    Science.gov (United States)

    Mamlouk, M D; Handwerker, J; Ospina, J; Hasso, A N

    2013-08-01

    Post-treatment radiation and chemotherapy of malignant primary glial neoplasms present a wide spectrum of tumor appearances and treatment-related entities. Radiologic findings of these post-treatment effects overlap, making it difficult to distinguish treatment response and failure. The purposes of this article are to illustrate and contrast the imaging appearances of recurrent tumor from necrosis and to discuss other radiologic effects of cancer treatments. It is critical for radiologists to recognize these treatment-related effects to help direct clinical management.

  3. Enhancement by N-methylformamide of the effect of ionizing radiation on a human colon tumor xenografted in nude mice

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, D.L.; Lee, E.S.; Bliven, S.F.; Glicksman, A.S.; Leith, J.T.

    1984-11-01

    Polar solvents, which induce differentiation in murine and human tumor cells, enhance the effect of ionizing radiation on cultured mouse mammary and human colon cancer cells. To determine whether this enhancement occurs in vivo, DLD-2 human colon carcinoma xenografts in nude mice were treated with combinations of 6 MV photon irradiation, the polar solvent N-methylformamide (NMF), or combinations of the two agents. Nude mice bearing 300-mg s.c. implants of DLD-2 tumors were treated i.p. with 150 mg NMF/kg daily for 19 days. Local tumor irradiations were administered as graded single doses or as fractionated doses, daily for 4 days, following the third NMF injection. The growth-inhibiting effect of the radiation treatment for both single dose and fractionation protocols was enhanced by the polar solvent. NMF alone increased the time required for a doubling of initial tumor volume by 1.7 days, compared to control tumors. Initial tumor volume doubling times compared to untreated controls were increased by 3.6 and 7.6 days by photon doses of 10.0 and 13.75 Gy, respectively, whereas NMF plus 10.0 or 13.75 Gy increased the DLD-2 regrowth delay time by 7.5 or 12.9 days. NMF caused essentially equivalent enhancements, whether split-dose schedules of 2.5 Gy daily for 4 days, and 3.44 Gy daily for 4 days, or single doses of 10.0 and 13.75 Gy were used; therefore, radiation enhancement was not due to effects on sublethal damage repair. The results support the use of NMF, currently in Phase 1-Phase 2 clinical trials, with radiation in the therapy of selected human neoplasms.

  4. Probing the enigma: Unraveling glial cell biology in invertebrates

    OpenAIRE

    Coutinho-Budd, Jaeda; Freeman, Marc R.

    2013-01-01

    Despite their predominance in the nervous system, the precise ways in which glial cells develop and contribute to overall neural function remain poorly defined in any organism. Investigations in simple model organisms have identified remarkable morphological, molecular, and functional similarities between invertebrate and vertebrate glial subtypes. Invertebrates like Drosophila and C. elegans offer an abundance of tools for in vivo genetic manipulation of single cells or whole populations of ...

  5. Regulation of growth of LNCaP human prostate tumor cells by growth factors and steroid hormones

    NARCIS (Netherlands)

    A.L.G. Schuurmans (Alex); J. Bolt (Joan); J. Veldscholte (Jos); E. Mulder (Eppo)

    1991-01-01

    markdownabstract__Abstract__ The mitogenic activity of several growth factors on androgen responsive LNCaP human prostate tumor cells was studied. A two-fold stimulation of cell proliferation was observed after a culture period of 6 days in 1 ng EGF/ml, 10 ng TGF-α/ml or 20 ng basic FGF/ml. TGF-β

  6. Tumor necrosis factor related apoptosis inducing ligand triggers apoptosis in dividing but not in differentiating human epidermal keratinocytes

    NARCIS (Netherlands)

    Jansen, Bastiaan J. H.; van Ruissen, Fred; Cerneus, Stefanie; Cloin, Wendy; Bergers, Mieke; van Erp, Piet E. J.; Schalkwijk, Joost

    2003-01-01

    Using serial analysis of gene expression we have previously identified the expression of several pro-apoptotic and anti-apoptotic genes in cultured human primary epidermal keratinocytes, including tumor necrosis factor related apoptosis inducing ligand (TRAIL). TRAIL is a potent inducer of apoptosis

  7. Expression of adrenomedullin in human ovaries, ovarian sex cord-stromal tumors and cultured granulosa-luteal cells.

    Science.gov (United States)

    Liu, Jianqi; Bützow, Ralf; Hydén-Granskog, Christel; Voutilainen, Raimo

    2009-02-01

    The aim of the present study was to characterise the expression pattern of the multifunctional vasoactive peptide adrenomedullin (ADM) in human ovarian tumors, and to find hormonal regulators of ADM expression in human ovaries. The expression of ADM messenger RNA (mRNA) was higher in granulosa cell tumors than in fibrothecomas and normal ovaries, as analysed by Northern blots. In normal ovaries, ADM immunoreactivity was localised in both granulosa and thecal cells. Eight of the 90 granulosa cell tumors (9%) showed moderate and 53 (59%) weak ADM immunoreactivity, whereas 27% (11/41) of the fibrothecomas displayed weak ADM staining. FSH, protein kinase A activator (Bu)(2)cAMP, prostaglandin E(2) (PGE(2)), activin A and the broad protein kinase regulator staurosporine decreased ADM mRNA accumulation in cultured granulosa-luteal cells time- and dose-dependently. FSH, (Bu)(2)cAMP and PGE(2) increased progesterone secretion and the accumulation of the steroidogenic acute regulatory protein mRNA in these cells. In conclusion, ADM is expressed in normal human ovaries and sex cord-stromal tumors, particularly in those of granulosa cell origin. FSH, PGE(2,) (Bu)(2)cAMP and activin A suppress ADM gene expression in granulosa-luteal cells. Expression of ADM in human ovaries and its hormonal regulation in granulosa cells suggests a paracrine role for ADM in ovarian function.

  8. YBX1 regulates tumor growth via CDC25a pathway in human lung adenocarcinoma

    Science.gov (United States)

    Yu, Wendan; Li, Jinxiu; Tang, Zhipeng; Yu, Zhenlong; Zhao, Lei; Zhang, Yixiang; Wang, Ziyi; Wang, Peng; Li, Yechi; Li, Fengzhou; Sun, Zhe; Xuan, Yang; Tang, Ranran; Deng, Wu-guo; Guo, Wei; Gu, Chundong

    2016-01-01

    Y-box binding protein 1 (YBX1) is involved in the multi-tumor occurrence and development. However, the regulation of YBX1 in lung tumorigenesis and the underlying mechanisms, especially its relationship with CDC25a, was remains unclear. In this study, we analyzed the expression and clinical significance of YBX1 and CDC25a in lung adenocarcinoma and identified their roles in the regulation of lung cancer growth. The retrospective analysis of 116 patients with lung adenocarcinoma indicated that YBX1 was positively correlated with CDC25a expression. The Cox-regression analysis showed only high-ranking TNM stage and low CDC25a expression were an independent risk factor of prognosis in enrolled patients. High expression of YBX1 or CDC25a protein was also observed in lung adenocarcinoma cells compared with HLF cells. ChIP assay demonstrated the binding of endogenous YBX1 to the CDC25a promoter region. Overexpression of exogenous YBX1 up-regulated the expression of the CDC25a promoter-driven luciferase. By contrast, inhibition of YBX1 by siRNA markedly decreased the capability of YBX1 binding to CDC25a promoter in A549 and H322 cells. Inhibition of YBX1 expression also blocked cell cycle progression, suppressed cell proliferation and induced apoptosis via the CDC25a pathway in vitro. Moreover, inhibition of YBX1 by siRNA suppressed tumorigenesis in a xenograft mouse model and down-regulated the expression of YBX1, CDC25a, Ki67 and cleaved caspase 3 in the tumor tissues of mice. Collectively, these results demonstrate inhibition of YBX1 suppressed lung cancer growth partly via the CDC25a pathway and high expression of YBX1/CDC25a predicts poor prognosis in human lung adenocarcinoma. PMID:27384875

  9. The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors

    DEFF Research Database (Denmark)

    Seminatore, Christine; Polentes, Jerome; Ellman, Ditte

    2010-01-01

    Risk of tumorigenesis is a major obstacle to human embryonic and induced pluripotent stem cell therapy. Likely linked to the stage of differentiation of the cells at the time of implantation, formation of teratoma/tumors can also be influenced by factors released by the host tissue. We have...... analyzed the relative effects of the stage of differentiation and the postischemic environment on the formation of adverse structures by transplanted human embryonic stem cell-derived neural progenitors....

  10. Specialized Cortex Glial Cells Accumulate Lipid Droplets in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Viktor Kis

    Full Text Available Lipid droplets (LDs are common organelles of the majority of eukaryotic cell types. Their biological significance has been extensively studied in mammalian liver cells and white adipose tissue. Although the central nervous system contains the highest relative amount and the largest number of different lipid species, neither the spatial nor the temporal distribution of LDs has been described. In this study, we used the brain of the fruitfly, Drosophila melanogaster, to investigate the neuroanatomy of LDs. We demonstrated that LDs are exclusively localised in glial cells but not in neurons in the larval nervous system. We showed that the brain's LD pool, rather than being constant, changes dynamically during development and reaches its highest value at the beginning of metamorphosis. LDs are particularly enriched in cortex glial cells located close to the brain surface. These specialized superficial cortex glial cells contain the highest amount of LDs among glial cell types and encapsulate neuroblasts and their daughter cells. Superficial cortex glial cells, combined with subperineurial glial cells, express the Drosophila fatty acid binding protein (Dfabp, as we have demonstrated through light- and electron microscopic immunocytochemistry. To the best of our best knowledge this is the first study that describes LD neuroanatomy in the Drosophila larval brain.

  11. Bladder cancers respond to intravesical instillation of HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Mossberg, Ann-Kristin; Wullt, Björn; Gustafsson, Lotta; Månsson, Wiking; Ljunggren, Eva; Svanborg, Catharina

    2007-09-15

    We studied if bladder cancers respond to HAMLET (human alpha-lactalbumin made lethal to tumor cells) to establish if intravesical HAMLET application might be used to selectively remove cancer cells in vivo. Patients with nonmuscle invasive transitional cell carcinomas were included. Nine patients received 5 daily intravesical instillations of HAMLET (25 mg/ml) during the week before scheduled surgery. HAMLET stimulated a rapid increase in the shedding of tumor cells into the urine, daily, during the 5 days of instillation. The effect was specific for HAMLET, as intravesical instillation of NaCl, PBS or native alpha-lactalbumin did not increase cell shedding. Most of the shed cells were dead and an apoptotic response was detected in 6 of 9 patients, using the TUNEL assay. At surgery, morphological changes in the exophytic tumors were documented by endoscopic photography and a reduction in tumor size or change in tumor character was detected in 8 of 9 patients. TUNEL staining was positive in biopsies from the remaining tumor in 4 patients but adjacent healthy tissue showed no evidence of apoptosis and no toxic response. The results suggest that HAMLET exerts a direct and selective effect on bladder cancer tissue in vivo and that local HAMLET administration might be of value in the future treatment of bladder cancers. (c) 2007 Wiley-Liss, Inc.

  12. BJ-TSA-9, a novel human tumor-specific gene, has potential as a biomarker of lung cancer.

    Science.gov (United States)

    Li, Yunyan; Dong, Xueyuan; Yin, Yanhui; Su, Yanrong; Xu, Qingwen; Zhang, Yuxia; Pang, Xuewen; Zhang, Yu; Chen, Weifeng

    2005-12-01

    Using bioinformatics, we have identified a novel tumor-specific gene BJ-TSA-9, which has been validated by Northern blot analysis and reverse transcription-polymerase chain reaction (RT-PCR). BJ-TSA-9 mRNA was expressed in 52.5% (21 of 40) of human lung cancer tissues and was especially higher in lung adenocarcinoma (68.8%). To explore the potential application of BJ-TSA-9 for the detection of circulating cancer cells in lung cancer patients, nested RT-PCR was performed. The overall positive detection rate was 34.3% (24 of 70) in peripheral blood mononuclear cells (PBMCs) of patients with various types of lung cancers and was 53.6% (15 of 28) in PBMCs of lung adenocarcinoma patients. In combination with the detection of two known marker genes SCC and LUNX, the detection rate was increased to 81.4%. A follow-up study was performed in 37 patients after surgical removal of tumor mass. Among nine patients with persistent detection of two to three tumor marker transcripts in PBMCs, six patients had recurrence/metastasis. In contrast, 28 patients with transient detection of one tumor marker or without detection of any tumor marker were all in remission. Thus, BJ-TSA-9 may serve as a marker for lung cancer diagnosis and as a marker, in combination with two other tumor markers, for the prediction of the recurrence and prognosis of lung cancer patients.

  13. Histological advantages of the tumor graft: a murine model involving transplantation of human pancreatic cancer tissue fragments.

    Science.gov (United States)

    Akashi, Yoshimasa; Oda, Tatsuya; Ohara, Yusuke; Miyamoto, Ryoichi; Hashimoto, Shinji; Enomoto, Tsuyoshi; Yamada, Keiichi; Kobayashi, Akihiko; Fukunaga, Kiyoshi; Ohkochi, Nobuhiro

    2013-11-01

    Experimental data based on cell line-derived xenograft models (cell xenograft) seldom reproduce the clinical situation, and therefore we demonstrated here the superiority of a murine model involving transplantation of human pancreatic cancer tissue fragments (tumor graft), focusing on the histological features and drug delivery characteristics. Tumor pieces from 10 pancreatic cancer patients were transplanted into SCID (severe combined immunodeficient) mice. Histological characteristics of tumor grafts, including morphology, desmoplastic reaction, and vascularization, were compared with those of cell xenografts. Drug delivery was evaluated by quantifying the concentrations of injected drug, and the results were compared with its histological features. Eight of the 10 transplanted tumors successfully engrafted. Histological comparisons between tumor grafts and cell xenografts revealed the following: the amount of stroma was more (22.9% ± 11.8% vs 10.8% ± 5.4%; P cancer cell distance was longer (35.3 ± 39.0 vs 3.9 ± 3.1 μm; P Pancreatic tumor grafts better reproduce the histological nature of clinical cancer and thus provide a more realistic model that is applicable for pharmacokinetic studies.

  14. Down-regulation of HSP40 gene family following OCT4B1 suppression in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mirzaei

    2016-02-01

    Full Text Available Objective(s: The OCT4B1, as one of OCT4 variants, is expressed in cancer cell lines and tissues more than other variants and plays an important role in apoptosis and stress (heat shock protein pathways. The present study was designed to determine the effects of OCT4B1 silencing on expressional profile of HSP40 gene family expression in three different human tumor cell lines. Materials and Methods: The OCT4B1 expression was suppressed by specific siRNA transfection in AGS (gastric adenocarcinoma, 5637 (bladder tumor and U-87MG (brain tumor cell lines employing Lipofectamine reagent. Real-time PCR array technique was employed for RNA qualification. The fold changes were calculated using RT2 Profiler PCR array data analysis software version 3.5. Results: Our results indicated that fifteen genes (from 36 studied genes were down-regulated and two genes (DNAJC11 and DNAJC5B were up-regulated in all three studied tumor cell lines by approximately more than two folds. The result of other studied genes (19 genes showed different expressional pattern (up or down-expression based on tumor cell lines. Conclusion: According to the findings of the present study, we may suggest that there is a direct correlation between OCT4B1 expression in tumor cell lines (and tissues and HSP40 family gene expressions to escape from apoptosis and cancer expansion.

  15. Potential contribution of tumor-associated slan(+) cells as anti-CSF-1R targets in human carcinoma.

    Science.gov (United States)

    Lonardi, Silvia; Licini, Sara; Micheletti, Alessandra; Finotti, Giulia; Vermi, William; Cassatella, Marco A

    2017-09-26

    The precise identification of the types and respective roles of the tumor-associated myeloid cells, which include tumor-associated Mϕs (TAMs), neutrophils, dendritic cells, and myeloid-derived suppressor cells, is under intensive investigation. Although tumor-associated myeloid cells may contribute to tumor cell eradication by virtue of their effector functions, they are retained to fulfill predominantly protumorigenic roles. It follows that depletion of tumor-associated myeloid cells represents one of the currently pursued therapeutic options in advanced malignancies. In that regard, RG7155/emactuzumab, a specific anti-CSF-1R humanized Ab, has been reported recently to deplete CSF-1R(+) TAMs, in association with objective clinical responses in patients with advanced cancer. Because RG7155/emactuzumab has also been shown to deplete blood non-classic CD14(dim/-)CD16(++) monocytes, which in large part include the CD16(++)slan(+) monocytes, we asked whether RG7155/emactuzumab could target tumor-associated slan(+) cells. In this study, we confirmed that slan(+) cells localize only to metastatic tumor-draining lymph nodes, not to primary tumors or distant metastases in patients with different types of carcinoma. Notably, by cell scoring on serial sections, we found that slan(+) cells represent a minor fraction of the total CSF-1R(+) cell pool, suggesting that slan(+) cells potentially represent minor targets of anti-CSF-1R therapy. Therefore, a protumorigenic role for slan(+) cells, such as that of CSF-1R(+)TAMs, based on our current data, remains questionable. © Society for Leukocyte Biology.

  16. Detection of Hypoxia in Human Brain Tumor Xenografts Using a Modified Comet Assay

    Directory of Open Access Journals (Sweden)

    Jingli Wang

    2003-07-01

    Full Text Available We used the standard comet assay successfully to generate in vitro dose-response curves under oxic and hypoxic conditions. We then made mixtures of cells that had been irradiated with 3 and 9 Gy of X-rays to simulate two subpopulations in a tumor, but efforts to accurately detect and quantify the subpopulations using the standard comet assay were unsuccessful. Therefore, we investigated a modified comet assay to determine whether it could be used for measuring hypoxia in our model systems. U251 MG cells were grown as subcutaneous tumors in athymic mice; U251 MG and U87 MG cells were grown as intracerebral (i.c. tumors in athymic rats. Animals were injected with RSU 1069, irradiated, and euthanized. Tumors and normal brains were removed, and the cells were analyzed using a modified comet assay. Differences in comet tail moment distributions between tumor and contralateral normal brain, using tail moments at either the 25th or 50th percentile in each distribution, were taken as measures of the degree of tumor hypoxia. For U251 MG tumors, there was a positive relationship between tumor size and the degree of hypoxia, whereas preliminary data from U87 MG i.c. tumors showed less hypoxia and no apparent relationship between tumor size and hypoxia.

  17. Expression of estrogen receptors-alpha and -beta in bladder cancer cell lines and human bladder tumor tissue.

    Science.gov (United States)

    Shen, Steven S; Smith, Carolyn L; Hsieh, Jer-Tsong; Yu, Jiang; Kim, Isaac Y; Jian, Weiguo; Sonpavde, Guru; Ayala, Gustavo E; Younes, Mamoun; Lerner, Seth P

    2006-06-15

    Estrogen receptors (ERs) are known to mediate important physiologic responses as well as the growth of some tumors in response to estradiol stimulation. In a previous study the selective ER modulator raloxifene was shown to induce apoptosis in an ERbeta-positive bladder cancer cell line. However, the expression of ERbeta in human bladder cancer has not been thoroughly investigated. ERalpha and ERbeta expression in 224 bladder tumor samples was evaluated using tissue microarray and immunohistochemistry. Levels of ERalpha and ERbeta protein and mRNA expression were determined in several bladder cancer cell lines using quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. The effect of estradiol and antiestrogen treatments on RT4 bladder cancer cell growth was determined by cell proliferation assays. Analyses revealed that only 2 human bladder cancers weakly expressed ERalpha. In contrast, the expression of ERbeta was detected in 141 tumors (63%). ERbeta was expressed in 58% of WHO Grade 1 and 2 tumors, whereas 70% of Grade 3 tumors demonstrated expression (P = .085). Importantly, although only 53% and 55% of Ta and T1 tumors demonstrated ERbeta expression, 80% of T2, 81% of T3, and 75% of T4 tumors showed ERbeta expression. The differences in ERbeta expression between Ta/T1 and T2/T3/T4 tumors were found to be highly significant (P cell carcinomas had ERbeta expression (80%) comparable to that of muscle invasive bladder cancers. Western blot analysis detected ERbeta protein expression in each of the 5 bladder cancer cell lines tested, whereas no or very low levels of ERalpha were found. Quantitative RT-PCR revealed that higher levels of ERbeta than ERalpha mRNA were present in 5637, T-24, TSU-Pr1, and TCC-Sup bladder cancer cells, whereas ER-alpha mRNA levels were greater than ERbeta in RT4 cells. Treatment with 17beta-estradiol modestly increased RT4 cell growth, whereas the antiestrogens, 4-hydroxtamoxifen, raloxifene, or

  18. Sleep disturbances and severe stress as glial activators: key targets for treating central sensitization in chronic pain patients?

    Science.gov (United States)

    Nijs, Jo; Loggia, Marco L; Polli, Andrea; Moens, Maarten; Huysmans, Eva; Goudman, Lisa; Meeus, Mira; Vanderweeën, Luc; Ickmans, Kelly; Clauw, Daniel

    2017-08-01

    The mechanism of sensitization of the central nervous system partly explains the chronic pain experience in many patients, but the etiological mechanisms of this central nervous system dysfunction are poorly understood. Recently, an increasing number of studies suggest that aberrant glial activation takes part in the establishment and/or maintenance of central sensitization. Areas covered: This review focused on preclinical work and mostly on the neurobiochemistry studied in animals, with limited human studies available. Glial overactivation results in a low-grade neuroinflammatory state, characterized by high levels of BDNF, IL-1β, TNF-α, which in turn increases the excitability of the central nervous system neurons through mechanisms like long-term potentiation and increased synaptic efficiency. Aberrant glial activity in chronic pain might have been triggered by severe stress exposure, and/or sleeping disturbances, each of which are established initiating factors for chronic pain development. Expert opinion: Potential treatment avenues include several pharmacological options for diminishing glial activity, as well as conservative interventions like sleep management, stress management and exercise therapy. Pharmacological options include propentofylline, minocycline, β -adrenergic receptor antagonists, and cannabidiol. Before translating these findings from basic science to clinical settings, more human studies exploring the outlined mechanisms in chronic pain patients are needed.

  19. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells.

    Science.gov (United States)

    Zhang, Xiao-Fei; Weng, De-Sheng; Pan, Ke; Zhou, Zi-Qi; Pan, Qiu-Zhong; Zhao, Jing-Jing; Tang, Yan; Jiang, Shan-Shan; Chen, Chang-Long; Li, Yong-Qiang; Zhang, Hong-Xia; Chang, Alfred E; Wicha, Max S; Zeng, Yi-Xin; Li, Qiao; Xia, Jian-Chuan

    2017-11-01

    Cancer stem cells (CSCs) are responsible for tumor initiation, progression, and resistance to therapeutic agents; they are usually less sensitive to conventional cancer therapies, and could cause tumor relapse. An ideal therapeutic strategy would therefore be to selectively target and destroy CSCs, thereby preventing tumor relapse. The aim of the present study was to evaluate the effectiveness of dendritic cells (DCs) pulsed with antigen derived from CD105+ human renal cell carcinoma (RCC) CSCs against renal cancer cells in vitro and in vivo. We identified "stem-like" characteristics of CD105+ cells in two human RCC cell lines: A498 and SK-RC-39. Loading with cell lysates did not change the characteristics of the DCs. However, DCs loaded with lysates derived from CD105+ CSCs induced more functionally specific active T cells and specific antibodies against CSCs, and clearly depressed the tumor growth in mice. Our results could form the basis for a novel strategy to improve the efficacy of DC-based immunotherapy for human RCC. © 2017 Wiley Periodicals, Inc.

  20. A novel peptide derived from human apolipoprotein E is an inhibitor of tumor growth and ocular angiogenesis.

    Directory of Open Access Journals (Sweden)

    Partha S Bhattacharjee

    2011-01-01

    Full Text Available Angiogenesis is a hallmark of tumor development and metastasis and now a validated target for cancer treatment. We previously reported that a novel dimer peptide (apoEdp derived from the receptor binding region of human apolipoprotein E (apoE inhibits virus-induced angiogenesis. However, its role in tumor anti-angiogenesis is unknown. This study demonstrates that apoEdp has anti-angiogenic property in vivo through reduction of tumor growth in a mouse model and ocular angiogenesis in a rabbit eye model. Our in vitro studies show that apoEdp inhibits human umbilical vein endothelial cell proliferation, migration, invasion and capillary tube formation. We document that apoEdp inhibits vascular endothelial growth factor-induced Flk-1 activation as well as downstream signaling pathways that involve c-Src, Akt, eNOS, FAK, and ERK1/2. These in vitro data suggest potential sites of the apoE dipeptide inhibition that could occur in vivo.This is the first evidence that a synthetic dimer peptide mimicking human apoE has anti-angiogenesis functions and could be an anti-tumor drug candidate.

  1. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells.

    Science.gov (United States)

    Gober, Hans-Jürgen; Kistowska, Magdalena; Angman, Lena; Jenö, Paul; Mori, Lucia; De Libero, Gennaro

    2003-01-20

    T lymphocytes expressing the T cell receptor (TCR)-gammadelta recognize unknown antigens on tumor cells. Here we identify metabolites of the mevalonate pathway as the tumor ligands that activate TCR-gammadelta cells. In tumor cells, blockade of hydroxy-methylglutaryl-CoA reductase (HMGR), the rate limiting enzyme of the mevalonate pathway, prevents both accumulation of mevalonate metabolites and recognition by TCR-gammadelta cells. When metabolite accumulation is induced by overexpressing HMGR or by treatment with nitrogen-containing bisphosphonate drugs, tumor cells derived from many tissues acquire the capacity to stimulate the same TCR-gammadelta population. Accumulation of mevalonate metabolites in tumor cells is a powerful danger signal that activates the immune response and may represent a novel target of tumor immunotherapy.

  2. Identification of soluble CD14 as an endogenous agonist for toll-like receptor 2 on human astrocytes by genome-scale functional screening of glial cell derived proteins

    NARCIS (Netherlands)

    Bsibsi, M.; Bajramovic, J.J.; Duijvenvoorden, E. van; Persoon, C.; Ravid, R.; Noort, J.M. van; Vogt, M.H.J.

    2007-01-01

    Human astrocytes express a limited repertoire of Toll-like receptor (TLR) family members including TLR1-4, which are expressed on the cell surface. Also, TLR3 but not TLR4 activation on astrocytes induces expression of several factors involved in neuroprotection and down-regulation of inflammation

  3. Long-Term Engraftment and Expansion of Tumor-Derived Memory T Cells Following the Implantation of Non-Disrupted Pieces of Human Lung Tumor into NOD-scid IL2R{gamma}null Mice

    National Research Council Canada - National Science Library

    Simpson-Abelson, Michelle R; Sonnenberg, Gregory F; Takita, Hiroshi; Yokota, Sandra J; Conway, Thomas F., Jr; Kelleher, Raymond J., Jr; Shultz, Leonard D; Barcos, Maurice; Bankert, Richard B

    2008-01-01

    ...; and ¶ Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263 Non-disrupted pieces of primary human lung tumor implanted into NOD-scid IL2R null mice consistently result in successful...

  4. Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes.

    Directory of Open Access Journals (Sweden)

    Naomi Ohta

    Full Text Available Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP and follistatin (FST, that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.

  5. Serial Killing of Tumor Cells by Human Natural Killer Cells – Enhancement by Therapeutic Antibodies

    Science.gov (United States)

    Bhat, Rauf; Watzl, Carsten

    2007-01-01

    Background Natural killer cells are an important component of the innate immune system. Anti-cancer therapies utilizing monoclonal antibodies also rely on the cytotoxicity of NK cells for their effectiveness. Here, we study the dynamics of NK cell cytotoxicity. Methodology/Principal Findings We observe that IL-2 activated human NK cells can serially hit multiple targets. Using functional assays, we demonstrate that on an average, a single IL-2 activated NK cell can kill four target cells. Data using live video microscopy suggest that an individual NK cell can make serial contacts with multiple targets and majority of contacts lead to lysis of target cells. Serial killing is associated with a loss of Perforin and Granzyme B content. A large majority of NK cells survive serial killing, and IL-2 can replenish their granular stock and restore the diminished cytotoxicity of ‘exhausted’ NK cells. IL-2 and IL-15 are equally effective in enhancing the killing frequency of resting NK cells. Significantly, Rituximab, a therapeutic monoclonal antibody increases the killing frequency of both resting and IL-2 activated NK cells. Conclusion/Significance Our data suggest that NK cell-based therapies for overcoming tumors rely on their serial killing ability. Therefore, strategies augmenting the killing ability of NK cells can boost the immune system and enhance the effectiveness of monoclonal antibody-based therapies. PMID:17389917

  6. Serial killing of tumor cells by human natural killer cells--enhancement by therapeutic antibodies.

    Science.gov (United States)

    Bhat, Rauf; Watzl, Carsten

    2007-03-28

    Natural killer cells are an important component of the innate immune system. Anti-cancer therapies utilizing monoclonal antibodies also rely on the cytotoxicity of NK cells for their effectiveness. Here, we study the dynamics of NK cell cytotoxicity. We observe that IL-2 activated human NK cells can serially hit multiple targets. Using functional assays, we demonstrate that on an average, a single IL-2 activated NK cell can kill four target cells. Data using live video microscopy suggest that an individual NK cell can make serial contacts with multiple targets and majority of contacts lead to lysis of target cells. Serial killing is associated with a loss of Perforin and Granzyme B content. A large majority of NK cells survive serial killing, and IL-2 can replenish their granular stock and restore the diminished cytotoxicity of 'exhausted' NK cells. IL-2 and IL-15 are equally effective in enhancing the killing frequency of resting NK cells. Significantly, Rituximab, a therapeutic monoclonal antibody increases the killing frequency of both resting and IL-2 activated NK cells. Our data suggest that NK cell-based therapies for overcoming tumors rely on their serial killing ability. Therefore, strategies augmenting the killing ability of NK cells can boost the immune system and enhance the effectiveness of monoclonal antibody-based therapies.

  7. Serial killing of tumor cells by human natural killer cells--enhancement by therapeutic antibodies.

    Directory of Open Access Journals (Sweden)

    Rauf Bhat

    Full Text Available BACKGROUND: Natural killer cells are an important component of the innate immune system. Anti-cancer therapies utilizing monoclonal antibodies also rely on the cytotoxicity of NK cells for their effectiveness. Here, we study the dynamics of NK cell cytotoxicity. METHODOLOGY/PRINCIPAL FINDINGS: We observe that IL-2 activated human NK cells can serially hit multiple targets. Using functional assays, we demonstrate that on an average, a single IL-2 activated NK cell can kill four target cells. Data using live video microscopy suggest that an individual NK cell can make serial contacts with multiple targets and majority of contacts lead to lysis of target cells. Serial killing is associated with a loss of Perforin and Granzyme B content. A large majority of NK cells survive serial killing, and IL-2 can replenish their granular stock and restore the diminished cytotoxicity of 'exhausted' NK cells. IL-2 and IL-15 are equally effective in enhancing the killing frequency of resting NK cells. Significantly, Rituximab, a therapeutic monoclonal antibody increases the killing frequency of both resting and IL-2 activated NK cells. CONCLUSION/SIGNIFICANCE: Our data suggest that NK cell-based therapies for overcoming tumors rely on their serial killing ability. Therefore, strategies augmenting the killing ability of NK cells can boost the immune system and enhance the effectiveness of monoclonal antibody-based therapies.

  8. [Endothelin-1 receptors of the normal adrenal gland and adrenal tumors in human].

    Science.gov (United States)

    Tang, X; Zeng, Z; Zhang, R

    1996-07-01

    Endothelin-1 (ET-1) receptors of normal adrenal gland (ADR, 6 cases), aldosterone-producing adenoma (APA, 5 cases), idiopathic hyperaldosteronism (IHA, 4 cases) and pheochromocytoma (PHE, 6 cases) in human were measured by radioligand binding assay (RBA) of receptors. Binding studies using 125I-ET-1 as a radio ligand showed the presence of a single class of high-affinity binding sites for ET-1 in all of the above tissues. The values of dissociation constant (Kd) of ET-1 for its receptor were similar in ADR, APA and IHA (28.3 +/- 2.5, 27.9 +/- 6.1, 27.7 +/- 1.9 pmol/L, respectively), but the maximal binding capacity (Bmax) of ET receptor tended to be lower in APA tissue (107.2 +/- 13.2 fmol/mg protein) in comparison with ADR (P role of ET-1 in the paracrine-autocrine regulation of aldosterone and catecholamine secretion in the adrenal and adrenal tumors.

  9. Lipids as Tumoricidal Components of Human α-Lactalbumin Made Lethal to Tumor Cells (HAMLET)

    Science.gov (United States)

    Ho, James C. S.; Storm, Petter; Rydström, Anna; Bowen, Ben; Alsin, Fredrik; Sullivan, Louise; Ambite, Inès; Mok, K. H.; Northen, Trent; Svanborg, Catharina

    2013-01-01

    Long-chain fatty acids are internalized by receptor-mediated mechanisms or receptor-independent diffusion across cytoplasmic membranes and are utilized as nutrients, building blocks, and signaling intermediates. Here we describe how the association of long-chain fatty acids to a partially unfolded, extracellular protein can alter the presentation to target cells and cellular effects. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin and oleic acid (OA). As OA lacks independent tumoricidal activity at concentrations equimolar to HAMLET, the contribution of the lipid has been debated. We show by natural abundance 13C NMR that the lipid in HAMLET is deprotonated and by chromatography that oleate rather than oleic acid is the relevant HAMLET constituent. Compared with HAMLET, oleate (175 μm) showed weak effects on ion fluxes and gene expression. Unlike HAMLET, which causes metabolic paralysis, fatty acid metabolites were less strongly altered. The functional overlap increased with higher oleate concentrations (500 μm). Cellular responses to OA were weak or absent, suggesting that deprotonation favors cellular interactions of fatty acids. Fatty acids may thus exert some of their essential effects on host cells when in the deprotonated state and when presented in the context of a partially unfolded protein. PMID:23629662

  10. In vitro antiproliferative effect of six Salvia species on human tumor cell lines.

    Science.gov (United States)

    Fiore, Giovina; Nencini, Cristina; Cavallo, Federica; Capasso, Anna; Bader, Ammar; Giorgi, Giorgio; Micheli, Lucia

    2006-08-01

    This study was designed to examine the in vitro antiproliferative activity of the methanol crude extracts of six Salvia species: Salvia dominica L. leaves, Salvia lanigera Desf. aerial parts, Salvia menthaefolia Ten. roots, Salvia palaestina Benth. aerial parts, Salvia sclarea L. roots and Salvia spinosa L. aerial parts. Extracts were