WorldWideScience

Sample records for human gingival fibroblasts

  1. Effects of polyhexamethylene guanidine phosphate on human gingival fibroblasts.

    Science.gov (United States)

    Vitt, Anton; Slizen, Veronica; Boström, Elisabeth A; Yucel-Lindberg, Tülay; Kats, Anna; Sugars, Rachael V; Gustafsson, Anders; Buhlin, Kåre

    2017-10-01

    Polyhexamethylene guanidine phosphate (PHMG-P) was compared to chlorhexidine (CHX) in order to determine potential cytotoxic and immune-modulatory effects on human gingival fibroblasts. Cytotoxic effects of PHMG-P and CHX on human gingival fibroblasts were assessed using cell viability assay at various time points and concentrations. The effects of PHMG-P and CHX on the secretion of prostaglandin (PG) E 2 , interleukin (IL)-6, IL-8 and matrix metalloproteinase (MMP)-1 by non-stimulated or IL-1β stimulated fibroblasts were evaluated by enzyme-linked immunosorbent assays. PHMG-P concentration 0.00009% led to the total loss of fibroblast viability within 24 h, whereas inhibition of fibroblast viability by CHX occurred at significantly higher concentrations of 0.0009% (p PHMG-P led to loss of fibroblast viability after 5 min, whilst cells exposed to 0.005% CHX survived 30 min of treatment (p PHMG-P or CHX at concentrations of 0.000045 or 0.0.00009% resulted in significantly decreased PGE 2 , IL-6, IL-8 and MMP-1 levels. PHMG-P or CHX alone did not affect the baseline secretion of PGE 2 , IL-6, IL-8 or MMP-1 by gingival fibroblasts. Cytotoxic effects on gingival fibroblasts were triggered by both PHMG-P and CHX at concentrations below those used in clinical practice. The tested antiseptics did not cause inflammation and reduced IL-1β-induced secretion of inflammatory mediators and collagenase by gingival fibroblasts, which suggests anti-inflammatory properties.

  2. Leptin and Pro-Inflammatory Stimuli Synergistically Upregulate MMP-1 and MMP-3 Secretion in Human Gingival Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Rachel C Williams

    Full Text Available Gingival fibroblast-mediated extracellular matrix remodelling is implicated in the pathogenesis of periodontitis, yet the stimuli that regulate this response are not fully understood. The immunoregulatory adipokine leptin is detectable in the gingiva, human gingival fibroblasts express functional leptin receptor mRNA and leptin is known to regulate extracellular matrix remodelling responses in cardiac fibroblasts. We therefore hypothesised that leptin would enhance matrix metalloproteinase secretion in human gingival fibroblasts.We used in vitro cell culture to investigate leptin signalling and the effect of leptin on mRNA and protein expression in human gingival fibroblasts. We confirmed human gingival fibroblasts expressed cell surface leptin receptor, found leptin increased matrix metalloproteinase-1, -3, -8 and -14 expression in human gingival fibroblasts compared to unstimulated cells, and observed that leptin stimulation activated MAPK, STAT1/3 and Akt signalling in human gingival fibroblasts. Furthermore, leptin synergised with IL-1 or the TLR2 agonist pam2CSK4 to markedly enhance matrix metalloproteinase-1 and -3 production by human gingival fibroblasts. Signalling pathway inhibition demonstrated ERK was required for leptin-stimulated matrix metalloproteinase-1 expression in human gingival fibroblasts; whilst ERK, JNK, p38 and STAT3 were required for leptin+IL-1- and leptin+pam2CSK4-induced matrix metalloproteinase-1 expression. A genome-wide expression array and gene ontology analysis confirmed genes differentially expressed in leptin+IL-1-stimulated human gingival fibroblasts (compared to unstimulated cells were enriched for extracellular matrix organisation and disassembly, and revealed that matrix metalloproteinase-8 and -12 were also synergistically upregulated by leptin+IL-1 in human gingival fibroblasts.We conclude that leptin selectively enhances the expression and secretion of certain matrix metalloproteinases in human gingival

  3. Aggregatibacter actinomycetemcomitans lipopolysaccharide affects human gingival fibroblast cytoskeletal organization.

    Science.gov (United States)

    Gutiérrez-Venegas, Gloria; Contreras-Marmolejo, Luis Arturo; Román-Alvárez, Patricia; Barajas-Torres, Carolina

    2008-04-01

    The cytoskeleton is a dynamic structure that plays a key role in maintaining cell morphology and function. This study investigates the effect of bacterial wall lipopolysaccharide (LPS), a strong inflammatory agent, on the dynamics and organization of actin, tubulin, vimentin, and vinculin proteins in human gingival fibroblasts (HGF). A time-dependent study showed a noticeable change in actin architecture after 1.5 h of incubation with LPS (1 microg/ml) with the formation of orthogonal fibers and further accumulation of actin filament at the cell periphery by 24 h. When 0.01-10 microg/ml of LPS was added to human gingival fibroblast cultures, cells acquired a round, flat shape and gradually developed cytoplasmic ruffling. Lipopolysaccharides extracted from Aggregatibacter actinomycetemcomitans periodontopathogenic bacteria promoted alterations in F-actin stress fibres of human gingival cells. Normally, human gingival cells have F-actin fibres that are organized in linear distribution throughout the cells, extending along the cell's length. LPS-treated cells exhibited changes in cytoskeletal protein organization, and F-actin was reorganized by the formation of bundles underneath and parallel to the cell membrane. We also found the reorganization of the vimentin network into vimentin bundling after 1.5 h of treatment. HGF cells exhibited diffuse and granular gamma-tubulin stain. There was no change in LPS-treated HGF. However, vinculin plaques distributed in the cell body diminished after LPS treatment. We conclude that the dynamic and structured organization of cytoskeletal filaments and actin assembly in human gingival fibroblasts is altered by LPS treatment and is accompanied by a decrease in F-actin pools.

  4. Cytotoxicity of four denture adhesives on human gingival fibroblast cells.

    Science.gov (United States)

    Lee, Yoon; Ahn, Jin-Soo; Yi, Young-Ah; Chung, Shin-Hye; Yoo, Yeon-Jee; Ju, Sung-Won; Hwang, Ji-Yun; Seo, Deog-Gyu

    2015-02-01

    The purpose of this study was to compare the cytotoxicity of four denture adhesives on human gingival fibroblast cells. Immortalized human gingival fibroblasts were cultured with one of four different denture adhesives, Polident, Protefix, Staydent or Denfix-A, which was placed in insert dishes (10% w/v concentration) for 48 h. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and flow cytometric apoptosis assay were used to evaluate cell viability and apoptosis rates. The fibroblasts were also examined under a scanning electron microscope. The MTT assay showed that all denture adhesives resulted in a significantly lower cell viability compared to the control cells propagated in normal culture medium (p 0.05). Staydent showed the highest apoptosis rate. Scanning electron microscopy showed that the cells of the Staydent group underwent cytoplasmic membrane shrinkage, with cell free areas containing residual fragments of the membrane of dead cells. The four denture adhesives evaluated in this study imparted cytotoxic effects on human gingival fibroblast cells. Staydent showed the highest toxicity.

  5. Effects of titanium surface topography on morphology and in vitro activity of human gingival fibroblasts.

    Science.gov (United States)

    Ramaglia, L; Capece, G; Di Spigna, G; Bruno, M P; Buonocore, N; Postiglione, L

    2013-01-01

    The aim of the present study was to evaluate in vitro the biological behavior of human gingival fibroblasts cultured on two different titanium surfaces. Titanium test disks were prepared with a machined, relatively smooth (S) surface or a rough surface (O) obtained by a double acid etching procedure. Primary cultures of human gingival fibroblasts were plated on the experimental titanium disks and cultured up to 14 days. Titanium disk surfaces were analysed by scanning electron microscopy (SEM). Cell proliferation and a quantitative analysis by ELISA in situ of ECM components as CoI, FN and TN were performed. Results have shown different effects of titanium surface microtopography on cell expression and differentiation. At 96 hours of culture on experimental surfaces human gingival fibroblasts displayed a favourable cell attachment and proliferation on both surfaces although showing some differences. Both the relatively smooth and the etched surfaces interacted actively with in vitro cultures of human gingival fibroblasts, promoting cell proliferation and differentiation. Results suggested that the microtopography of a double acid-etched rough surface may induce a greater Co I and FN production, thus conditioning in vivo the biological behaviour of human gingival fibroblasts during the process of peri-implant soft tissue healing.

  6. Binding, uptake, and release of nicotine by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Hanes, P.J.; Schuster, G.S.; Lubas, S.

    1991-01-01

    Previous studies of the effects of nicotine on fibroblasts have reported an altered morphology and attachment of fibroblasts to substrates and disturbances in protein synthesis and secretion. This altered functional and attachment response may be associated with changes in the cell membrane resulting from binding of the nicotine, or to disturbances in cell metabolism as a result of high intracellular levels of nicotine. The purpose of the present study, therefore, was to (1) determine whether gingival fibroblasts bound nicotine and if any binding observed was specific or non-specific in nature; (2) determine whether gingival fibroblasts internalized nicotine, and if so, at what rate; (3) determine whether gingival fibroblasts also released nicotine back into the extracellular environment; and (4) if gingival fibroblasts release nicotine intact or as a metabolite. Cultures of gingival fibroblasts were prepared from gingival connective tissue biopsies. Binding was evaluated at 4 degree C using a mixture of 3 H-nicotine and unlabeled nicotine. Specific binding was calculated as the difference between 3 H-nicotine bound in the presence and absence of unlabeled nicotine. The cells bound 1.44 (+/- 0.42) pmols/10(6) cells in the presence of unlabeled nicotine and 1.66 (+/- 0.55) pmols/10(6) cells in the absence of unlabeled nicotine. The difference was not significant. Uptake of nicotine was measured at 37 degree C after treating cells with 3 H-nicotine for time periods up to 4 hours. Uptake in pmols/10(6) cells was 4.90 (+/- 0.34) at 15 minutes, 8.30 (+/- 0.75) at 30 minutes, 12.28 (+/- 2.62) at 1 hour and 26.31 (+/- 1.15) at 4 hours

  7. IL-34 Expression in Gingival Fibroblasts, Gingival Crevicular Fluid and Gingival Tissue

    OpenAIRE

    Kreidly, Mariam

    2014-01-01

    IL-34 is a protein associated with bone degenerative diseases but the role in periodontal disease is unknown. The aim of this study was to assess the expression of IL-34 in primary human gingival fibroblasts (GF) and investigate if the expression is regulated by the pro-inflammatory cytokines interleukin-1 (IL-1β) and tumor necrosis factor α(TNF-α). We also investigated if IL-34 is detectible in gingival crevicular fluid (GCF) in healthy, gingivitis and periodontitis sites. Furthermore, we e...

  8. Human gingival fibroblasts are critical in sustaining inflammation in periodontal disease.

    Science.gov (United States)

    Ara, Toshiaki; Kurata, Kazuyuki; Hirai, Kaname; Uchihashi, Takayuki; Uematsu, Takashi; Imamura, Yasuhiro; Furusawa, Kiyohumi; Kurihara, Saburo; Wang, Pao-Li

    2009-02-01

    A major factor in the pathogenesis of periodontal disease, which is one of the biofilm infectious diseases, is thought to be lipopolysaccharide (LPS), owing to its ability to cause inflammation and promote tissue destruction. Moreover, the elimination of pathogens and their component LPSs is essential for the successful treatment of periodontal disease. Lipopolysaccharide tolerance is a mechanism that prevents excessive and prolonged responses of monocytes and macrophages to LPS. Since persistence of inflammation is necessary for inflammatory cytokine production, cells other than monocytes and macrophages are thought to maintain the production of cytokines in the presence of LPS. In this study, we investigated whether human gingival fibroblasts (HGFs), the most abundant structural cell in periodontal tissue, might be able to maintain inflammatory cytokine production in the presence of LPS bynot displaying LPS tolerance. Human gingival fibroblasts were pretreated with LPS (from Porphyromonas gingivalis and Escherichia coli) and then treated with LPS, and the amounts of interleukin (IL)-6 and IL-8 in the cell culture supernatants were measured. The expression of negative regulators of LPS signalling (suppressor of cytokine signalling-1, interleukin-1 receptor-associated-kinase M and SH2 domain-containing inositol-5-phosphatase-1) was also examined in LPS-treated HGFs. Human gingival fibroblasts did not display LPS tolerance but maintained production of IL-6 and IL-8 when pretreated with LPS, followed by secondary LPS treatment. Lipopolysaccharide-treated HGFs did not express negative regulators. These results demonstrate that HGFs do not show LPS tolerance and suggest that this characteristic of HGFs sustains the inflammatory response in the presence of virulence factors.

  9. Antimicrobial peptide KSL-W promotes gingival fibroblast healing properties in vitro.

    Science.gov (United States)

    Park, Hyun-Jin; Salem, Mabrouka; Semlali, Abdelhabib; Leung, Kai P; Rouabhia, Mahmoud

    2017-07-01

    We investigated the effect of synthetic antimicrobial decapeptide KSL-W (KKVVFWVKFK) on normal human gingival fibroblast growth, migration, collagen gel contraction, and α-smooth muscle actin protein expression. Results show that in addition to promoting fibroblast adhesion by increasing F-actin production, peptide KSL-W promoted cell growth by increasing the S and G2/M cell cycle phases, and enhanced the secretion of metalloproteinase (MMP)-1 and MMP-2 by upregulating MMP inhibitors, such as tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in fibroblasts. An in vitro wound healing assay confirmed that peptide KSL-W promoted fibroblast migration and contraction of a collagen gel matrix. We also demonstrated a high expression of α-smooth muscle actin by gingival fibroblasts being exposed to KSL-W. This work shows that peptide KSL-W enhances gingival fibroblast growth, migration, and metalloproteinase secretion, and the expression of α-smooth muscle actin, thus promoting wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effects of platelet rich plasma (PRP) on human gingival fibroblast, osteoblast and periodontal ligament cell behaviour.

    Science.gov (United States)

    Kobayashi, Eizaburo; Fujioka-Kobayashi, Masako; Sculean, Anton; Chappuis, Vivianne; Buser, Daniel; Schaller, Benoit; Dőri, Ferenc; Miron, Richard J

    2017-06-02

    The use of platelet rich plasma (PRP, GLO) has been used as an adjunct to various regenerative dental procedures. The aim of the present study was to characterize the influence of PRP on human gingival fibroblasts, periodontal ligament (PDL) cells and osteoblast cell behavior in vitro. Human gingival fibroblasts, PDL cells and osteoblasts were cultured with conditioned media from PRP and investigated for cell migration, proliferation and collagen1 (COL1) immunostaining. Furthermore, gingival fibroblasts were tested for genes encoding TGF-β, PDGF and COL1a whereas PDL cells and osteoblasts were additionally tested for alkaline phosphatase (ALP) activity, alizarin red staining and mRNA levels of osteoblast differentiation markers including Runx2, COL1a2, ALP and osteocalcin (OCN). It was first found that PRP significantly increased cell migration of all cells up to 4 fold. Furthermore, PRP increased cell proliferation at 3 and 5 days of gingival fibroblasts, and at 3 days for PDL cells, whereas no effect was observed on osteoblasts. Gingival fibroblasts cultured with PRP increased TGF-β, PDGF-B and COL1 mRNA levels at 7 days and further increased over 3-fold COL1 staining at 14 days. PDL cells cultured with PRP increased Runx2 mRNA levels but significantly down-regulated OCN mRNA levels at 3 days. No differences in COL1 staining or ALP staining were observed in PDL cells. Furthermore, PRP decreased mineralization of PDL cells at 14 days post seeding as assessed by alizarin red staining. In osteoblasts, PRP increased COL1 staining at 14 days, increased COL1 and ALP at 3 days, as well as increased ALP staining at 14 days. No significant differences were observed for alizarin red staining of osteoblasts following culture with PRP. The results demonstrate that PRP promoted gingival fibroblast migration, proliferation and mRNA expression of pro-wound healing molecules. While PRP induced PDL cells and osteoblast migration and proliferation, it tended to have

  11. Effect of phenytoin and age on gingival fibroblast enzymes.

    Directory of Open Access Journals (Sweden)

    Surena Vahabi

    2014-06-01

    Full Text Available The alteration of cytokine balance is stated to exert greater influence on gingival overgrowth compared to the direct effect of the drug on the regulation of extracellular matrix metabolism. The current study evaluated the effect of phenytoin on the regulation of collagen, lysyl oxidase and elastin in gingival fibroblasts.Normal human gingival fibroblasts (HGFs were obtained from 4 healthy children and 4 adults. Samples were cultured with phenytoin. MTT test was used to evaluate the proliferation and ELISA was performed to determine the level of IL1β and PGE2 production by HGFs. Total RNA of gingival fibroblasts was extracted and RT-PCR was performed on samples. Mann-Whitney U test was used to analyze the data with an alpha error level less than 0.05.There was a significant difference in the expression of elastin between the controls and treated samples in both adult and pediatric groups and also in the lysyl oxidase expression of adult controls and treated adults. No significant difference was found between collagen expression in adults.The significant difference in elastin and lysyl oxidase expression between adult and pediatric samples indicates the significant effect of age on their production.

  12. Curcumin inhibits TGF-β1-induced connective tissue growth factor expression through the interruption of Smad2 signaling in human gingival fibroblasts.

    Science.gov (United States)

    Chen, Jung-Tsu; Wang, Chen-Ying; Chen, Min-Huey

    2018-01-13

    Many fibrotic processes are associated with an increased level of transforming growth factor-β1 (TGF-β1). TGF-β1 can increase synthesis of matrix proteins and enhance secretion of protease inhibitors, resulting in matrix accumulation. Connective tissue growth factor (CTGF) is a downstream profibrotic effector of TGF-β1 and is associated with the fibrosis in several human organs. Curcumin has been applied to reduce matrix accumulation in fibrotic diseases. This study was aimed to evaluate whether curcumin could suppress TGF-β1-induced CTGF expression and its related signaling pathway involving in this inhibitory action in primary human gingival fibroblasts. The differences in CTGF expression among three types of gingival overgrowth and normal gingival tissues were assessed by immunohistochemistry. Gingival fibroblast viability in cultured media with different concentrations of curcumin was studied by MTT assay. The effect of curcumin on TGF-β1-induced CTGF expression in primary human gingival fibroblasts was examined by immunoblotting. Moreover, the proteins involved in TGF-β1 signaling pathways including TGF-β1 receptors and Smad2 were also analyzed by immunoblotting. CTGF was highly expressed in fibroblasts, epithelial cells and some of endothelial cells, smooth muscle cells, and inflammatory cells in phenytoin-induced gingival overgrowth tissues rather than in those of hereditary and inflammatory gingival overgrowth tissues. Moreover, CTGF expression in the epithelial and connective tissue layers was higher in phenytoin-induced gingival overgrowth tissues than in normal gingival tissues. Curcumin was nontoxic and could reduce TGF-β1-induced CTGF expression by attenuating the phosphorylation and nuclear translocation of Smad2. Curcumin can suppress TGF-β1-induced CTGF expression through the interruption of Smad2 signaling. Copyright © 2018. Published by Elsevier B.V.

  13. Evaluation of the cytotoxicity of selected conventional glass ionomer cements on human gingival fibroblasts.

    Science.gov (United States)

    Marczuk-Kolada, Grażyna; Łuczaj-Cepowicz, Elżbieta; Pawińska, Małgorzata; Hołownia, Adam

    2017-10-01

    Dentistry materials are the most frequently used substitutes of human tissues. Therefore, an assessment of dental filling materials should cover not only their chemical, physical, and mechanical characteristics, but also their cytotoxicity. To compare the cytotoxic effects of 13 conventional glass ionomer cements on human gingival fibroblasts. The assessment was conducted using the MTT test. Six samples were prepared for each material. Culture plates with cells and inserts with the materials were incubated at 37°C, 5% CO2, and 95% humidity for 24 h. Then the inserts were removed, 1 mL of MTT was added in the amount of 0.5 mg/1 mL of the medium, and the samples were incubated in the described conditions without light for 2 h. The optical density was measured with an absorption spectrophotometer at a wavelength of 560 nm. The cytotoxic effects of the Argion Molar was significantly stronger than the Fuji Triage (p = 0.007), Chemfil Molar (p cements from the low cytotoxicity group were significantly more toxic vs materials whose presence resulted in fibroblast growth (p < 0.001). The research conducted indicates that, although the materials studied may belong to the same group, they are characterized by low, yet not uniform, cytotoxicity on human gingival fibroblasts. The toxic effects should not be assigned to a relevant group of materials, but each dentistry product should be evaluated individually.

  14. Cytotoxicity Evaluation of Two Bis-Acryl Composite Resins Using Human Gingival Fibroblasts.

    Science.gov (United States)

    Gonçalves, Fabiano Palmeira; Alves, Gutemberg; Guimarães, Vladi Oliveira; Gallito, Marco Antônio; Oliveira, Felipe; Scelza, Míriam Zaccaro

    2016-01-01

    Bis-acryl resins are used for temporary dental restorations and have shown advantages over other materials. The aim of this work was to evaluate the in vitro cytotoxicity of two bis-acryl composite resins (Protemp 4 and Luxatemp Star), obtained at 1, 7 and 40 days after mixing the resin components, using a standardized assay employing human primary cells closely related to oral tissues. Human gingival fibroblast cell cultures were exposed for 24 h to either bis-acryl composite resins, polystyrene beads (negative control) and latex (positive control) extracts obtained after incubation by the different periods, at 37 °C under 5% CO2. Cell viability was evaluated using a multiparametric procedure involving sequential assessment (using the same cells) of mitochondrial activity (XTT assay), membrane integrity (neutral red test) and total cell density (crystal violet dye exclusion test). The cells exposed to the resin extracts showed cell viability indexes exceeding 75% after 24 h. Even when cells were exposed to extracts prepared with longer conditioning times, the bis-acryl composite resins showed no significant cytotoxic effects (p>0.05), compared to the control group or in relation to the first 24 h of contact with the products. There were no differences among the results obtained for the bis-acryl composite resins evaluated 24 h, 7 days and 40 days after mixing. It may be concluded that the bis-acryl resins Protemp 4 and Luxatemp Star were cytocompatible with human gingival fibroblasts, suggesting that both materials are suitable for use in contact with human tissues.

  15. The anti-oxidant effects of melatonin derivatives on human gingival fibroblasts.

    Science.gov (United States)

    Phiphatwatcharaded, Chawapon; Puthongking, Ploenthip; Chaiyarit, Ponlatham; Johns, Nutjaree Pratheepawanit; Sakolchai, Sumon; Mahakunakorn, Pramote

    2017-07-01

    Aim of this in vitro study was to evaluate the anti-oxidant activity of indole ring modified melatonin derivatives as compared with melatonin in primary human gingival fibroblast (HGF) cells. Anti-oxidant activity of melatonin (MLT), acetyl-melatonin (AMLT) and benzoyl-melatonin (BMLT) was evaluated by5 standard methods as follows: 2, 2-diphenyl-1-picrylhydrazyl (DPPH); ferric ion reducing antioxidant power (FRAP); superoxide anion scavenging; nitric oxide (NO) scavenging; and thiobarbituric acid reactive substances (TBARs).Evaluation of cellular antioxidant activity (CAA) and protectivity against H 2 O 2 induced cellular damage was performed via MTT assay in HGF cells. According to the standard anti-oxidant assays, the antioxidant power of AMLT and BMLT were slightly less than MLT in FRAP and superoxide scavenging assays. In the NO scavenging and TBARs assays, BMLT and AMLT were more potent than MLT, whereas DPPH assays demonstrated that MLT was more potent than others. BMLT and AMLT had more potent anti-oxidant and protective activities against H 2 O 2 in HGF cells as compared with MLT. MLT derivatives demonstrated different anti-oxidant activities as compared with MLT, depending upon assays. These findings imply that N-indole substitution of MLT may help to improve hydrogen atom transfer to free radicals but electron transfer property is slightly decreased. Anti-oxidant and protective effects of melatonin derivatives (AMLT and BMLT) on human gingival fibroblasts imply the potential use of these molecules as alternative therapeutics for chronic inflammatory oral diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Antigen-presenting properties of gingival fibroblasts in chronic adult periodontitis

    NARCIS (Netherlands)

    Wassenaar, A.; Snijders, A.; Abraham-Inpijn, L.; Kapsenberg, M. L.; Kievits, F.

    1997-01-01

    Chronic periodontitis is characterized by dense infiltrations of T lymphocytes in the connective tissue, which consists mainly of gingival fibroblasts. It is becoming increasingly clear that T lymphocytes and gingival fibroblasts are capable of influencing each other. For example, the T cell

  17. Gingival and periodontal ligament fibroblasts differ in their inflammatory response to viable Porphyromonas gingivalis

    NARCIS (Netherlands)

    Scheres, N; Laine, M L; de Vries, T J; Everts, V; van Winkelhoff, A J

    BACKGROUND AND OBJECTIVE: Porphyromonas gingivalis is an oral pathogen strongly associated with destruction of the tooth-supporting tissues in human periodontitis. Gingival fibroblasts (GF) and periodontal ligament fibroblasts (PDLF) are functionally different cell types in the periodontium that can

  18. Effect of cannabidiol on human gingival fibroblast extracellular matrix metabolism: MMP production and activity, and production of fibronectin and transforming growth factor β.

    Science.gov (United States)

    Rawal, S Y; Dabbous, M Kh; Tipton, D A

    2012-06-01

    Marijuana (Cannabis sativa) use may be associated with gingival enlargement, resembling that caused by phenytoin. Cannabidiol (CBD), a nonpsychotropic Cannabis derivative, is structurally similar to phenytoin. While there are many reports on effects of phenytoin on human gingival fibroblasts, there is no information on effects of Cannabis components on these cells. The objective of this study was to determine effects of CBD on human gingival fibroblast fibrogenic and matrix-degrading activities. Fibroblasts were incubated with CBD in serum-free medium for 1-6 d. The effect of CBD on cell viability was determined by measuring activity of a mitochondrial enzyme. The fibrogenic molecule transforming growth factor β and the extracellular matrix molecule fibronectin were measured by ELISA. Pro-MMP-1 and total MMP-2 were measured by ELISA. Activity of MMP-2 was determined via a colorimetric assay in which a detection enzyme is activated by active MMP-2. Data were analysed using ANOVA and Scheffe's F procedure for post hoc comparisons. Cannabidiol had little or no significant effect on cell viability. Low CBD concentrations increased transforming growth factor β production by as much as 40% (p Cannabidiol increased fibronectin production by as much as approximately 100% (p < 0.001). Lower CBD concentrations increased MMP production, but the highest concentrations decreased production of both MMPs (p < 0.05) and decreased MMP-2 activity (p < 0.02). The data suggest that the CBD may promote fibrotic gingival enlargement by increasing gingival fibroblast production of transforming growth factor β and fibronectin, while decreasing MMP production and activity. © 2011 John Wiley & Sons A/S.

  19. Action of low-power laser irradiation on the proliferation of human gingival fibroblasts in vitro

    Science.gov (United States)

    Almeida-Lopes, Luciana; Jaeger, Marcia M. M.; Brugnera, Aldo, Jr.; Rigau, Josepa

    1998-04-01

    The low level power laser has been used in dental treatments aiming to improve tissue healing. An in vitro study was performed to analyze the laser influence on gingival fibroblast. A human gingival fibroblast culture (LMF) was produced in DME medium with 10% bovine fetal serum (BFS) cells (LMF) were allocated in Petri plates and cultured in different SFB concentrations (0%, 5% e 10%). After 48 hours the plates were divided in 9 groups: 3 control: 3 irradiated by 635 nm laser; and 3 irradiated by 780 nm laser. The cultured cells received 4 applications, in 12 hours intervals, with energy dosage of 2 joules for each plate, by means of a punctual technique. The growth curves showed that the growth levels were lower in low BFS concentrations. The irradiation with laser accelerated the growth rate in all groups. Additionally, the number of cells developed in low BFS concentration (5%) and irradiated was similar to the number of control cells developed in ideal conditions (10% BFS). There was no statistically significant differences between the effects of the two types of laser studied.

  20. The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts.

    Science.gov (United States)

    Massera, J; Kokkari, A; Närhi, T; Hupa, L

    2015-06-01

    In this paper, we investigate the effect of substituting SrO for CaO in silicate and phosphate bioactive glasses on the human gingival fibroblast activity. In both materials the presence of SrO led to the formation of a CaP layer with partial Sr substitution for Ca. The layer at the surface of the silicate glass consisted of HAP whereas at the phosphate glasses it was close to the DCPD composition. In silicate glasses, SrO gave a faster initial dissolution and a thinner reaction layer probably allowing for a continuous ion release into the solution. In phosphate glasses, SrO decreased the dissolution process and gave a more strongly bonded reaction layer. Overall, the SrO-containing silicate glass led to a slight enhancement in the activity of the gingival fibroblasts cells when compared to the SrO-free reference glass, S53P4. The cell activity decreased up to 3 days of culturing for all phosphate glasses containing SrO. Whereas culturing together with the SrO-free phosphate glass led to complete cell death at 7 days. The glasses containing SrO showed rapid cell proliferation and growth between 7 and 14 days, reaching similar activity than glass S53P4. The addition of SrO in both silicate and phosphate glasses was assumed beneficial for proliferation and growth of human gingival fibroblasts due to Sr incorporation in the reaction layer at the glass surface and released in the cell culture medium.

  1. Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels

    Directory of Open Access Journals (Sweden)

    Anna eWoloszyk

    2016-04-01

    Full Text Available Neovascularization is one of the most important processes during tissue repair and regeneration. Current healing approaches based on the use of biomaterials combined with stem cells in critical-size bone defects fail due to the insufficient implant vascularization and integration into the host tissues. Therefore, here we studied the attraction, ingrowth, and distribution of blood vessels from the chicken embryo chorioallantoic membrane into implanted silk fibroin scaffolds seeded with either human dental pulp stem cells or human gingival fibroblasts. Perfusion capacity was evaluated by non-invasive in vivo Magnetic Resonance Imaging while the number and density of blood vessels were measured by histomorphometry. Our results demonstrate that human dental pulp stem cells and gingival fibroblasts possess equal abilities in attracting vessels within silk fibroin scaffolds. Additionally, the prolonged in vitro pre-incubation period of these two cell populations favors the homogeneous distribution of vessels within silk fibroin scaffolds, which further improves implant survival and guarantees successful healing and regeneration.

  2. Effect of Lactobacillus reuteri on Cell Viability and PGE2 Production in Human Gingival Fibroblasts

    DEFF Research Database (Denmark)

    Castiblanco, Gina A.; Yucel-Lindberg, Tulay; Roos, Stefan

    2017-01-01

    Emerging evidence suggests that probiotic therapy can play a role in the prevention and management of oral inflammatory diseases through immunomodulation and down-regulation of the inflammatory cascade. The aim of this in vitro study was to investigate the viability of human gingival fibroblasts...... (HGF) and its production of prostaglandin E2 (PGE2), when exposed to supernatants of two mixed Lactobacillus reuteri strains (ATCC PTA 5289 and DSM 17938). The experiments were conducted in the presence and absence of the pro-inflammatory cytokine IL-1β. L. reuteri strains were grown and the bacterial...... immune assay kits. Our findings showed that none of the L. reuteri supernatants were cytotoxic or affected the viability of HGF. The most concentrated bacterial supernatant stimulated the production of PGE2 by the gingival cells in a significant way in the presence of IL-1β (p

  3. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  4. Concentration- and time-dependent response of human gingival fibroblasts to fibroblast growth factor 2 immobilized on titanium dental implants

    Directory of Open Access Journals (Sweden)

    Ma Q

    2012-04-01

    Full Text Available Qianli Ma1*, Wei Wang1*, Paul K Chu2, Shenglin Mei1,2, Kun Ji3, Lei Jin4, Yumei Zhang11Department of Prosthetic Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong, People's Republic of China; 3Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China; 4Stomatology Department, Jinling Hospital, School of Medicine, Southern Medical University, Nanjing, People's Republic of China*These authors contributed equally to this workBackground: Titanium (Ti implants are widely used clinically, but peri-implantitis remains one of the most common and serious complications. Healthy integration between gingival tissue and the implant surface is critical to long-term success in dental implant therapy. The objective of this study was to investigate how different concentrations of immobilized fibroblast growth factor 2 (FGF2 on the titania nanotubular surface influence the response of human gingival fibroblasts (HGFs.Methods: Pure Ti metal was anodized at 20 V to form a vertically organized titanium dioxide nanotube array on which three concentrations of FGF2 (250 ng/mL, 500 ng/mL, or 1000 ng/mL were immobilized by repeated lyophilization. Surface topography was observed and FGF2 elution was detected using enzyme-linked immunosorbent assay. The bioactivity changes of dissolvable immobilized FGF2 were measured by methyl-thiazolyl-tetrazolium assay. Behavior of HGFs was evaluated using adhesion and methyl-thiazolyl-tetrazolium bromide assays.Results: The FGF2 remained for several days on the modified surface on which HGFs were cultured. Over 90% of the dissolvable immobilized FGF2 had been eluted by Day 9, whereas the FGF2 activity was found to diminish gradually from Day 1 to Day 9. The titania nanotubular surface with an optimal preparing

  5. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Wang, Xiaoxuan [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Zheng, Ming, E-mail: zhengm@bjmu.edu.cn [Department of Physiology and Pathophysiology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Luan, Qing Xian, E-mail: kqluanqx@126.com [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2016-09-10

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  6. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    International Nuclear Information System (INIS)

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming; Luan, Qing Xian

    2016-01-01

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  7. The effect of nicotine on reproduction and attachment of human gingival fibroblasts in vitro.

    Science.gov (United States)

    Peacock, M E; Sutherland, D E; Schuster, G S; Brennan, W A; O'Neal, R B; Strong, S L; Van Dyke, T E

    1993-07-01

    The ability of fibroblasts to reproduce and attach to teeth is of paramount importance in re-establishing the lost connective tissue attachment after periodontal therapy. This study examined the effect of nicotine, a major component of the particulate phase of tobacco smoke, on human gingival fibroblast (HGF) reproduction and attachment to tissue culture surfaces. Pooled HGF cultures made from explants of gingival biopsies were utilized between passages 5 and 10 and plated in 96-well plates at 1.0 x 10(4) cells per well. Cell numbers were determined using 3-(4,5-dimethylthiazol-2-y)-2,5-diphenyl tetrazolium bromide (MTT), which is a reflection of mitochondrial dehydrogenase activity. The concentrations of nicotine used were 0.025, 0.05, 0.1, 0.2, and 0.4 microM, the average serum concentration for a smoker being approximately 0.1 microM. The effect of continuous nicotine exposure on HGF reproduction was determined by incubating cell cultures and media containing nicotine for up to 48 hours. Residual toxicity was determined by preincubating cells with nicotine for 1 or 6 hours. HGF suspensions and increasing concentrations of nicotine were added together to determine the effect on attachment. Results showed an enhanced effect of nicotine on HGF attachment, with increasing numbers of cells attaching with increasing nicotine concentrations, compared to the control. Low concentrations of nicotine had a stimulatory effect on cell replication, while higher concentrations of nicotine appear to have no significant effect on HGF reproduction. The responses of cells to some concentrations of nicotine may persist after its removal.

  8. Reversal of drug-induced gingival overgrowth by UV-mediated apoptosis of gingival fibroblasts - an in vitro study.

    Science.gov (United States)

    Ritchhart, Casey; Joy, Anita

    2018-05-01

    Gingival overgrowth (GO) is an undesirable result of certain drugs like Cyclosporine A (CsA). Histopathology of GO shows hyperplasia of gingival epithelium, expansion of connective tissue with increased collagen, or a combination. Factors such as age, gender, oral hygiene, duration, and dosage also influence onset and severity of GO. One of the mechanisms behind uncontrolled cell proliferation in drug-induced GO is inhibition of apoptotic pathways, with a consequent effect on normal cell turnover. Our objective was to determine if UV photo-treatment would activate apoptosis in the gingival fibroblast component. Human gingival fibroblast cells (HGF-1) were exposed to 200ng/ml or 400ng/ml CsA and maintained for 3, 6, and 9 days, followed by UV radiation for 2, 5, or 10min (N=6). Naïve (no CsA or UV), negative (UV, no CsA), and positive controls (CsA, no UV) were designated. Prior to UV treatment, growth media was replaced with 1M PBS to prevent absorption of UV radiation by serum proteins, and cells were incubated in growth media for 24h post-UV before processing for TUNEL assay, cell proliferation assays, or immunofluorescence. Data showed a temporal increase in proliferation of HGF-1 cells under the influence of CsA. The 200ng/ml dose was more effective in causing over-proliferation. UV treatment for 10min resulted in significant reduction in cell numbers, as evidenced by counts and proliferation assays. Our study is a first step to further evaluate UV-mediated apoptosis as a mechanism to control certain forms of GO. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Effect of Lactobacillus reuteri on Cell Viability and PGE2 Production in Human Gingival Fibroblasts.

    Science.gov (United States)

    A Castiblanco, Gina; Yucel-Lindberg, Tulay; Roos, Stefan; Twetman, Svante

    2017-09-01

    Emerging evidence suggests that probiotic therapy can play a role in the prevention and management of oral inflammatory diseases through immunomodulation and down-regulation of the inflammatory cascade. The aim of this in vitro study was to investigate the viability of human gingival fibroblasts (HGF) and its production of prostaglandin E 2 (PGE 2 ), when exposed to supernatants of two mixed Lactobacillus reuteri strains (ATCC PTA 5289 and DSM 17938). The experiments were conducted in the presence and absence of the pro-inflammatory cytokine IL-1β. L. reuteri strains were grown and the bacterial supernatant was collected. The cell-free supernatant was diluted to concentrations equivalent to the ones produced by 0.5 to 5.0 × 10 7  CFU/mL bacteria. Cell viability was assessed with the MTT colorimetric assay and the amount of PGE 2 in the cell culture medium was determined using the monoclonal enzyme immune assay kits. Our findings showed that none of the L. reuteri supernatants were cytotoxic or affected the viability of HGF. The most concentrated bacterial supernatant stimulated the production of PGE 2 by the gingival cells in a significant way in the presence of IL-1β (p reuteri might play a role in the resolution of inflammation in HGF. Thus, our findings justify further investigations on the influence of probiotic bacteria on gingival inflammatory reactions.

  10. Pharmacological and toxicological effects of co-exposure of human gingival fibroblasts to silver nanoparticles and sodium fluoride

    Directory of Open Access Journals (Sweden)

    Inkielewicz-Stepniak I

    2014-04-01

    Full Text Available Iwona Inkielewicz-Stepniak,1,* Maria Jose Santos-Martinez,2–4,* Carlos Medina,2,4 Marek W Radomski2,41Department of Medicinal Chemistry, Medical University Gdansk, Debinki, Poland; 2The School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 3School of Medicine, Trinity College Dublin, Dublin, Ireland; 4Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland*These authors contributed equally to this workBackground: Silver nanoparticles (AgNPs and fluoride (F are pharmacological agents widely used in oral medicine and dental practice due to their anti-microbial/anti-cavity properties. However, risks associated with the co-exposure of local cells and tissues to these xenobiotics are not clear. Therefore, we have evaluated the effects of AgNPs and F co-exposure on human gingival fibroblast cells.Methods: Human gingival fibroblast cells (CRL-2014 were exposed to AgNPs and/or F at different concentrations for up to 24 hours. Cellular uptake of AgNPs was examined by transmission electron microscopy. Downstream inflammatory effects and oxidative stress were measured by real-time quantitative polymerase chain reaction (PCR and reactive oxygen species (ROS generation. Cytotoxicity and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and real-time quantitative PCR and flow cytometry, respectively. Finally, the involvement of mitogen-activated protein kinases (MAPK was studied using Western blot.Results: We found that AgNPs penetrated the cell membrane and localized inside the mitochondria. Co-incubation experiments resulted in increased oxidative stress, inflammation, and apoptosis. In addition, we found that co-exposure to both xenobiotics phosphorylated MAPK, particularly p42/44 MAPK.Conclusion: A combined exposure of human fibroblasts to AgNPs and F results in increased cellular damage. Further studies are needed in order to evaluate

  11. In vitro invasion and survival of Porphyromonas gingivalis in gingival fibroblasts: role of the capsule

    NARCIS (Netherlands)

    Irshad, M.; van der Reijden, W.A.; Crielaard, W.; Laine, M.L.

    2012-01-01

    Porphyromonas gingivalis is a Gram-negative, anaerobic bacterium involved in periodontitis and peri-implantitis that can invade and survive inside host cells in vitro. P. gingivalis can invade human gingival fibroblasts (GF), but no data are available about the role of P. gingivalis’ capsule in GF

  12. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces

    International Nuclear Information System (INIS)

    Pae, Ahran; Kim, Hyeong-Seob; Woo, Yi-Hyung; Lee, Heesu; Kwon, Yong-Dae

    2009-01-01

    The attachment, growth behaviour and the genetic effect of human gingival fibroblasts (HGF) cultured on titanium and different zirconia surfaces were investigated. HGF cells were cultured on (1) titanium discs with a machined surface, (2) yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP) with a smooth surface and (3) Y-TZP with 100 μm grooves. The cell proliferation activity was evaluated through a MTT assay at 24 h and 48 h, and the cell morphology was examined by SEM. The mRNA expression of integrin-β1, type I and III collagen, laminin and fibronectin in HGF were evaluated by RT-PCR after 24 h. From the MTT assay, the mean optical density values for the titanium and grooved zirconia surfaces after 48 h of HGF adhesion were greater than the values obtained for the smooth zirconia surfaces. SEM images showed that more cells were attached to the grooves, and the cells appeared to follow the direction of the grooves. The results of RT-PCR suggest that all groups showed comparable fibroblast-specific gene expression. A zirconia ceramic surface with grooves showed biological responses that were comparable to those obtained with HGF on a titanium surface.

  13. Adherence of human oral keratinocytes and gingival fibroblasts to nano-structured titanium surfaces.

    Science.gov (United States)

    Dorkhan, Marjan; Yücel-Lindberg, Tülay; Hall, Jan; Svensäter, Gunnel; Davies, Julia R

    2014-06-21

    A key element for long-term success of dental implants is integration of the implant surface with the surrounding host tissues. Modification of titanium implant surfaces can enhance osteoblast activity but their effects on soft-tissue cells are unclear. Adherence of human keratinocytes and gingival fibroblasts to control commercially pure titanium (CpTi) and two surfaces prepared by anodic oxidation was therefore investigated. Since implant abutments are exposed to a bacteria-rich environment in vivo, the effect of oral bacteria on keratinocyte adhesion was also evaluated. The surfaces were characterized using scanning electron microscopy (SEM). The number of adhered cells and binding strength, as well as vitality of fibroblasts and keratinocytes were evaluated using confocal scanning laser microscopy after staining with Live/Dead Baclight. To evaluate the effect of bacteria on adherence and vitality, keratinocytes were co-cultured with a four-species streptococcal consortium. SEM analysis showed the two anodically oxidized surfaces to be nano-structured with differing degrees of pore-density. Over 24 hours, both fibroblasts and keratinocytes adhered well to the nano-structured surfaces, although to a somewhat lesser degree than to CpTi (range 42-89% of the levels on CpTi). The strength of keratinocyte adhesion was greater than that of the fibroblasts but no differences in adhesion strength could be observed between the two nano-structured surfaces and the CpTi. The consortium of commensal streptococci markedly reduced keratinocyte adherence on all the surfaces as well as compromising membrane integrity of the adhered cells. Both the vitality and level of adherence of soft-tissue cells to the nano-structured surfaces was similar to that on CpTi. Co-culture with streptococci reduced the number of keratinocytes on all the surfaces to approximately the same level and caused cell damage, suggesting that commensal bacteria could affect adherence of soft-tissue cells to

  14. Characterization and human gingival fibroblasts biocompatibility of hydroxyapatite/PMMA nanocomposites for provisional dental implant restoration

    Science.gov (United States)

    Zhang, Jingchao; Liao, Juan; Mo, Anchun; Li, Yubao; Li, Jidong; Wang, Xuejiang

    2008-11-01

    The aim of this study was to determine nHA/PMMA composites (H/P) in an optimal ratio with improved cytocompatibility as well as valid physical properties for provisional dental implant restoration. 20 wt.%, 30 wt.%, 40 wt.% and 50 wt.% H/P were developed and characterized using XPS, bending strength test and SEM. Human gingival fibroblasts cultured in extracts or directly on sample discs were investigated by fluorescent staining and MTT assay. Chemical integration in nHA/PMMA interface was indicated by XPS. Typical fusiform cells with adhesion spots were detected on H/P discs. MTT results also indicated higher cell viability in 30 wt.% and 40 wt.% H/P discs ( P provisional fixed crowns (PFC) is 0.4:1.

  15. Anti-inflammatory activity of fisetin in human gingival fibroblasts treated with lipopolysaccharide.

    Science.gov (United States)

    Gutiérrez-Venegas, Gloria; Contreras-Sánchez, Anabel; Ventura-Arroyo, Jairo Agustín

    2014-10-01

    Fisetin is an anti-inflammatory flavonoid; however, its anti-inflammatory mechanism is not yet understood. In this study, we evaluated the anti-inflammatory effect of fisetin and its association with mitogen-activated protein kinase (MAPK) and nuclear factor kappa-beta pathways in human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) obtained from Porphyromonas gingivalis. The cell signaling, cell viability, and cyclooxygenase-2 (COX-2) expression of HGFs treated with various concentrations (0, 1, 5, 10, and 15 μM) of fisetin were measured by cell viability assay (MTT), Western blotting, and reverse transcriptase polymerase chain reaction analysis on COX-2. We found that fisetin significantly reduced the synthesis and expression of prostaglandin E2 in HGFs treated with LPS. Activation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38 MAPK was suppressed consistently by fisetin in HGFs treated with LPS. The data indicate that fisetin inhibits MAPK activation and COX-2 expression without affecting cell viability. These findings may be valuable for understanding the mechanism of the effect of fisetin on periodontal disease.

  16. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    Science.gov (United States)

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  17. Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair.

    Science.gov (United States)

    Chiquet, Matthias; Katsaros, Christos; Kletsas, Dimitris

    2015-06-01

    Fibroblasts are cells of mesenchymal origin. They are responsible for the production of most extracellular matrix in connective tissues and are essential for wound healing and repair. In recent years, it has become clear that fibroblasts from different tissues have various distinct traits. Moreover, wounds in the oral cavity heal under very special environmental conditions compared with skin wounds. Here, we reviewed the current literature on the various interconnected functions of gingival and mucoperiosteal fibroblasts during the repair of oral wounds. The MEDLINE database was searched with the following terms: (gingival OR mucoperiosteal) AND fibroblast AND (wound healing OR repair). The data gathered were used to compare oral fibroblasts with fibroblasts from other tissues in terms of their regulation and function during wound healing. Specifically, we sought answers to the following questions: (i) what is the role of oral fibroblasts in the inflammatory response in acute wounds; (ii) how do growth factors control the function of oral fibroblasts during wound healing; (iii) how do oral fibroblasts produce, remodel and interact with extracellular matrix in healing wounds; (iv) how do oral fibroblasts respond to mechanical stress; and (v) how does aging affect the fetal-like responses and functions of oral fibroblasts? The current state of research indicates that oral fibroblasts possess unique characteristics and tightly controlled specific functions in wound healing and repair. This information is essential for developing new strategies to control the intraoral wound-healing processes of the individual patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Cigarette Smoke-Exposed Candida albicans Increased Chitin Production and Modulated Human Fibroblast Cell Responses

    Directory of Open Access Journals (Sweden)

    Humidah Alanazi

    2014-01-01

    Full Text Available The predisposition of cigarette smokers for development of respiratory and oral bacterial infections is well documented. Cigarette smoke can also contribute to yeast infection. The aim of this study was to investigate the effect of cigarette smoke condensate (CSC on C. albicans transition, chitin content, and response to environmental stress and to examine the interaction between CSC-pretreated C. albicans and normal human gingival fibroblasts. Following exposure to CSC, C. albicans transition from blastospore to hyphal form increased. CSC-pretreated yeast cells became significantly (P<0.01 sensitive to oxidation but significantly (P<0.01 resistant to both osmotic and heat stress. CSC-pretreated C. albicans expressed high levels of chitin, with 2- to 8-fold recorded under hyphal conditions. CSC-pretreated C. albicans adhered better to the gingival fibroblasts, proliferated almost three times more and adapted into hyphae, while the gingival fibroblasts recorded a significantly (P<0.01 slow growth rate but a significantly higher level of IL-1β when in contact with CSC-pretreated C. albicans. CSC was thus able to modulate both C. albicans transition through the cell wall chitin content and the interaction between C. albicans and normal human gingival fibroblasts. These findings may be relevant to fungal infections in the oral cavity in smokers.

  19. Growth inhibitory effects of endotoxins from Bacteroides gingivalis and intermedius on human gingival fibroblasts in vitro

    International Nuclear Information System (INIS)

    Layman, D.L.; Diedrich, D.L.

    1987-01-01

    Purified endotoxin or lipopolysaccharide from Bacteroides gingivalis and Bacteroides intermedius caused a similar dose-dependent inhibition of growth of cultured human gingival fibroblasts as determined by 3 H-thymidine incorporation and direct cell count. Approximately 200 micrograms/ml endotoxin caused a 50% reduction in 3 H-thymidine uptake of logarithmically growing cells. Inhibition of growth was similar in cultures of fibroblasts derived from either healthy or diseased human gingiva. When examining the change in cell number with time of exposure in culture, the rate of proliferation was significantly suppressed during the logarithmic phase of growth. However, the cells recovered so that the rate of proliferation, although reduced, was sufficient to produce a cell density similar to the control cells with prolonged culture. The endotoxins were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The profiles of the Bacteroides endotoxins were different. B. gingivalis endotoxin showed a wide range of distinct bands indicating a heterogeneous distribution of molecular species. Endotoxin from B. intermedius exhibited a few discrete low molecular weight bands, but the majority of the lipopolysaccharides electrophoresed as a diffuse band of high molecular weight material. The apparent heterogeneity of the two Bacteroides endotoxins and the similarity in growth inhibitory capacity suggest that growth inhibitory effects of these substances cannot be attributed to any polysaccharide species of endotoxin

  20. The capsule of Porphyromonas gingivalis reduces the immune response of human gingival fibroblasts

    Directory of Open Access Journals (Sweden)

    van Winkelhoff Arie J

    2010-01-01

    Full Text Available Abstract Background Periodontitis is a bacterial infection of the periodontal tissues. The Gram-negative anaerobic bacterium Porphyromonas gingivalis is considered a major causative agent. One of the virulence factors of P. gingivalis is capsular polysaccharide (CPS. Non-encapsulated strains have been shown to be less virulent in mouse models than encapsulated strains. Results To examine the role of the CPS in host-pathogen interactions we constructed an insertional isogenic P. gingivalis knockout in the epimerase-coding gene epsC that is located at the end of the CPS biosynthesis locus. This mutant was subsequently shown to be non-encapsulated. K1 capsule biosynthesis could be restored by in trans expression of an intact epsC gene. We used the epsC mutant, the W83 wild type strain and the complemented mutant to challenge human gingival fibroblasts to examine the immune response by quantification of IL-1β, IL-6 and IL-8 transcription levels. For each of the cytokines significantly higher expression levels were found when fibroblasts were challenged with the epsC mutant compared to those challenged with the W83 wild type, ranging from two times higher for IL-1β to five times higher for IL-8. Conclusions These experiments provide the first evidence that P. gingivalis CPS acts as an interface between the pathogen and the host that may reduce the host's pro-inflammatory immune response. The higher virulence of encapsulated strains may be caused by this phenomenon which enables the bacteria to evade the immune system.

  1. Temporal activation of anti- and pro-apoptotic factors in human gingival fibroblasts infected with the periodontal pathogen, Porphyromonas gingivalis: potential role of bacterial proteases in host signalling

    Directory of Open Access Journals (Sweden)

    Takehara Tadamichi

    2006-03-01

    Full Text Available Abstract Background Porphyromonas gingivalis is the foremost oral pathogen of adult periodontitis in humans. However, the mechanisms of bacterial invasion and the resultant destruction of the gingival tissue remain largely undefined. Results We report host-P. gingivalis interactions in primary human gingival fibroblast (HGF cells. Quantitative immunostaining revealed the need for a high multiplicity of infection for optimal infection. Early in infection (2–12 h, P. gingivalis activated the proinflammatory transcription factor NF-kappa B, partly via the PI3 kinase/AKT pathway. This was accompanied by the induction of cellular anti-apoptotic genes, including Bfl-1, Boo, Bcl-XL, Bcl2, Mcl-1, Bcl-w and Survivin. Late in infection (24–36 h the anti-apoptotic genes largely shut down and the pro-apoptotic genes, including Nip3, Hrk, Bak, Bik, Bok, Bax, Bad, Bim and Moap-1, were activated. Apoptosis was characterized by nuclear DNA degradation and activation of caspases-3, -6, -7 and -9 via the intrinsic mitochondrial pathway. Use of inhibitors revealed an anti-apoptotic function of NF-kappa B and PI3 kinase in P. gingivalis-infected HGF cells. Use of a triple protease mutant P. gingivalis lacking three major gingipains (rgpA rgpB kgp suggested a role of some or all these proteases in myriad aspects of bacteria-gingival interaction. Conclusion The pathology of the gingival fibroblast in P. gingivalis infection is affected by a temporal shift from cellular survival response to apoptosis, regulated by a number of anti- and pro-apoptotic molecules. The gingipain group of proteases affects bacteria-host interactions and may directly promote apoptosis by intracellular proteolytic activation of caspase-3.

  2. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    International Nuclear Information System (INIS)

    Jiang, Shao-Yun; Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan; Deng, Jia-Yin

    2012-01-01

    Highlights: ► High glucose significantly induced TLR2 expression in gingival fibroblasts. ► High glucose increased NF-κB p65 nuclear activity, IL-1β and TNF-α levels. ► PKC-α/δ-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-κB) p65 nuclear activity, tumor necrosis factor-α (TNF-α) and interleukin-lβ (IL-1β) levels. Protein kinase C (PKC)-α and δ knockdown with siRNA significantly decreased TLR2 and NF-κB p65 expression (p < 0.05), whereas inhibition of PKC-β had no effect on TLR2 and NF-κB p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-κB expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-α and IL-1β secretion via inducing TLR2 through PKC-α and PKC-δ in human gingival fibroblasts.

  3. High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China); Wei, Cong-Cong; Shang, Ting-Ting; Lian, Qi; Wu, Chen-Xuan [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China); Deng, Jia-Yin, E-mail: yazhou2991@126.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Heping District, Tianjin 300070 (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer High glucose significantly induced TLR2 expression in gingival fibroblasts. Black-Right-Pointing-Pointer High glucose increased NF-{kappa}B p65 nuclear activity, IL-1{beta} and TNF-{alpha} levels. Black-Right-Pointing-Pointer PKC-{alpha}/{delta}-TLR2 pathway is involved in periodontal inflammation under high glucose. -- Abstract: Toll-like receptors (TLRs) play a key role in innate immune response and inflammation, especially in periodontitis. Meanwhile, hyperglycemia can induce inflammation in diabetes complications. However, the activity of TLRs in periodontitis complicated with hyperglycemia is still unclear. In the present study, high glucose (25 mmol/l) significantly induced TLR2 expression in gingival fibroblasts (p < 0.05). Also, high glucose increased nuclear factor kappa B (NF-{kappa}B) p65 nuclear activity, tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-l{beta} (IL-1{beta}) levels. Protein kinase C (PKC)-{alpha} and {delta} knockdown with siRNA significantly decreased TLR2 and NF-{kappa}B p65 expression (p < 0.05), whereas inhibition of PKC-{beta} had no effect on TLR2 and NF-{kappa}B p65 under high glucose (p < 0.05). Additional studies revealed that TLR2 knockdown significantly abrogated high-glucose-induced NF-{kappa}B expression and inflammatory cytokine secretion. Collectively, these data suggest that high glucose stimulates TNF-{alpha} and IL-1{beta} secretion via inducing TLR2 through PKC-{alpha} and PKC-{delta} in human gingival fibroblasts.

  4. Gold Nanoparticle-Mediated Delivery of Molecules into Primary Human Gingival Fibroblasts Using ns-Laser Pulses: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Judith Krawinkel

    2016-05-01

    Full Text Available Interaction of gold nanoparticles (AuNPs in the vicinity of cells’ membrane with a pulsed laser (λ = 532 nm, τ = 1 ns leads to perforation of the cell membrane, thereby allowing extracellular molecules to diffuse into the cell. The objective of this study was to develop an experimental setting to deliver molecules into primary human gingival fibroblasts (pHFIB-G by using ns-laser pulses interacting with AuNPs (study group. To compare the parameters required for manipulation of pHFIB-G with those needed for cell lines, a canine pleomorphic adenoma cell line (ZMTH3 was used (control group. Non-laser-treated cells incubated with AuNPs and the delivery molecules served as negative control. Laser irradiation (up to 35 mJ/cm2 resulted in a significant proportion of manipulated fibroblasts (up to 85%, compared to non-irradiated cells: p < 0.05, while cell viability (97% was not reduced significantly. pHFIB-G were perforated as efficiently as ZMTH3. No significant decrease of metabolic cell activity was observed up to 72 h after laser treatment. The fibroblasts took up dextrans with molecular weights up to 500 kDa. Interaction of AuNPs and a pulsed laser beam yields a spatially selective technique for manipulation of even primary cells such as pHFIB-G in high throughput.

  5. Cultured fibroblasts from alveolar and gingival mucosae are biologically and biochemically different

    International Nuclear Information System (INIS)

    Lanz, J.; Banes, A.

    1986-01-01

    Tissues removed from the alveolar or gingival mucosa of 5 patients were separated into cell populations to assess the relative contributions each might make in wound healing intraorally. Growth curves and protein synthetic patterns of fibroblasts, free of epithelial cells, were obtained at pass 5. The morphologies of the two cell types were not grossly different. However, the AM cells (alveolar mucosa) had a generation time (gt) of 18.7 hrs. whereas the gt for KG cells (keratinized gingiva) was 49.6 hrs. Cells labeled in vitro with 35 S-methionine had distinct patterns of protein synthesis. The AM cells had more of the 275, 220, 92, 80, 50 and 46 kd bands on the autoradiogram of a 7.5% PAGE slab gel than did the KG cells. The KG cells contained more of the 165, 84, 68, 60, 54, 51, 43, 36, and 32a kd bands. In a wound healing situation, the AM cells may be the first fibroblasts to rapidly divide to fill a defect, whereas the KG cells may require a longer time period to divide. This is the first report of biochemical and biological differences in these two fibroblast populations from cultured, human tissues

  6. Defective Wound-healing in Aging Gingival Tissue.

    Science.gov (United States)

    Cáceres, M; Oyarzun, A; Smith, P C

    2014-07-01

    Aging may negatively affect gingival wound-healing. However, little is known about the mechanisms underlying this phenomenon. The present study examined the cellular responses associated with gingival wound-healing in aging. Primary cultures of human gingival fibroblasts were obtained from healthy young and aged donors for the analysis of cell proliferation, cell invasion, myofibroblastic differentiation, and collagen gel remodeling. Serum from young and old rats was used to stimulate cell migration. Gingival repair was evaluated in Sprague-Dawley rats of different ages. Data were analyzed by the Mann-Whitney and Kruskal-Wallis tests, with a p value of .05. Fibroblasts from aged donors showed a significant decrease in cell proliferation, migration, Rac activation, and collagen remodeling when compared with young fibroblasts. Serum from young rats induced higher cell migration when compared with serum from old rats. After TGF-beta1 stimulation, both young and old fibroblasts demonstrated increased levels of alpha-SMA. However, alpha-SMA was incorporated into actin stress fibers in young but not in old fibroblasts. After 7 days of repair, a significant delay in gingival wound-healing was observed in old rats. The present study suggests that cell migration, myofibroblastic differentiation, collagen gel remodeling, and proliferation are decreased in aged fibroblasts. In addition, altered cell migration in wound-healing may be attributable not only to cellular defects but also to changes in serum factors associated with the senescence process. © International & American Associations for Dental Research.

  7. SEM evaluation of human gingival fibroblasts growth onto CAD/CAM zirconia and veneering ceramic for zirconia

    Science.gov (United States)

    Zizzari, Vincenzo; Borelli, Bruna; De Colli, Marianna; Tumedei, Margherita; Di Iorio, Donato; Zara, Susi; Sorrentino, Roberto; Cataldi, Amelia; Gherlone, Enrico Felice; Zarone, Fernando; Tetè, Stefano

    2013-01-01

    Summary Aim To evaluate the growth of Human Gingival Fibroblasts (HGFs) cultured onto sample discs of CAD/CAM zirconia and veneering ceramic for zirconia by means of Scanning Electron Microscope (SEM) analysis at different experimental times. Methods A total of 26 experimental discs, divided into 2 groups, were used: Group A) CAD/CAM zirconia (3Y-TZP) discs (n=13); Group B) veneering ceramic for zirconia discs (n=13). HGFs were obtained from human gingival biopsies, isolated and placed in culture plates. Subsequently, cells were seeded on experimental discs at 7,5×103/cm2 concentration and cultured for a total of 7 days. Discs were processed for SEM observation at 3h, 24h, 72h and 7 days. Results In Group A, after 3h, HGFs were adherent to the surface and showed a flattened profile. The disc surface covered by HGFs resulted to be wider in Group A than in Group B samples. At SEM observation, after 24h and 72h, differences in cell attachment were slightly noticeable between the groups, with an evident flattening of HGFs on both surfaces. All differences between Group A and group B became less significant after 7 days of culture in vitro. Conclusions SEM analysis of HGFs showed differences in terms of cell adhesion and proliferation, especially in the early hours of culture. Results showed a better adhesion and cell growth in Group A than in Group B, especially up to 72h in vitro. Differences decreased after 7 days, probably because of the rougher surface of CAD/CAM zirconia, promoting better cell adhesion, compared to the smoother surface of veneering ceramic. PMID:24611089

  8. Inhibition of the differentiation of monocyte-derived dendritic cells by human gingival fibroblasts.

    Directory of Open Access Journals (Sweden)

    Sylvie Séguier

    Full Text Available We investigated whether gingival fibroblasts (GFs can modulate the differentiation and/or maturation of monocyte-derived dendritic cells (DCs and analyzed soluble factors that may be involved in this immune modulation. Experiments were performed using human monocytes in co-culture with human GFs in Transwell® chambers or using monocyte cultures treated with conditioned media (CM from GFs of four donors. The four CM and supernatants from cell culture were assayed by ELISA for cytokines involved in the differentiation of dendritic cells, such as IL-6, VEGF, TGFβ1, IL-13 and IL-10. The maturation of monocyte-derived DCs induced by LPS in presence of CM was also studied. Cell surface phenotype markers were analyzed by flow cytometry. In co-cultures, GFs inhibited the differentiation of monocyte-derived DCs and the strength of this blockade correlated with the GF/monocyte ratio. Conditioned media from GFs showed similar effects, suggesting the involvement of soluble factors produced by GFs. This inhibition was associated with a lower stimulatory activity in MLR of DCs generated with GFs or its CM. Neutralizing antibodies against IL-6 and VEGF significantly (P<0.05 inhibited the inhibitory effect of CM on the differentiation of monocytes-derived DCs and in a dose dependent manner. Our data suggest that IL-6 is the main factor responsible for the inhibition of DCs differentiation mediated by GFs but that VEGF is also involved and constitutes an additional mechanism.

  9. Proliferative and inductive effects of Cyclosporine a on gingival fibroblast of child and adult

    Directory of Open Access Journals (Sweden)

    Bahareh Nazemi Salman

    2013-01-01

    Conclusions: The mechanism of a CsA-induced fibroblast overgrowth may converge on the steps involving fibroblast proliferation and cytokine network including IL-6, IL-8, IL-1β, TGF-β1, and PGE 2 , in both adults and pediatrics. As the prevalence and intensity of drug-induced gingival overgrowth is more serious in the pediatrics. As group than in adults, we suggest that more studies be conducted on the pediatric group.

  10. Cytotoxicity and apoptosis induction by e-cigarette fluids in human gingival fibroblasts.

    Science.gov (United States)

    Sancilio, Silvia; Gallorini, Marialucia; Cataldi, Amelia; di Giacomo, Viviana

    2016-04-01

    Electronic cigarettes (e-cigarettes) are generally acknowledged as a safer alternative to the use of combusted tobacco products. Nevertheless, there are increasing conflicting claims concerning the effect of these novel industrial products on the health of e-cigarettes users. The aim of this work was to investigate the effects of the liquids of e-cigarettes on human gingival fibroblasts (HGFs) and to compare the effects of nicotine-containing fluid to the fluid itself. HGFs were treated with different concentrations (0-5 mg/mL) of fluids of e-cigarettes for different times (0-72 h) and cytotoxicity was analyzed by MTT assay. Fluids were administered also after being vaped (e.g., warmed into the cartomizer). Apoptosis occurrence and Bax expression were evaluated by flow cytometry; ROS production was analyzed by fluorescence optical microscopy. Both nicotine-containing and nicotine-free fluids induced an increased ROS production after 24 h, along with an increased Bax expression, followed by apoptosis occurrence after 48 h of exposure. The cytotoxicity exerted on HGFs by e-cigarettes fluids is not entirely ascribable to nicotine. Since the e-cigarettes are advertised as a safer alternative to traditional ones, especially for the possibility of "smoking" nicotine-free fluids, further studies are necessary to clarify the mechanism involved in the occurrence of cytotoxicity exerted by such compounds. Our results suggest a role for e-cigarette fluids in the pathogenesis of oral diseases, such as periodontitis.

  11. Graphene oxide improves the biocompatibility of collagen membranes in an in vitro model of human primary gingival fibroblasts.

    Science.gov (United States)

    De Marco, Patrizia; Zara, Susi; De Colli, Marianna; Radunovic, Milena; Lazović, Vladimir; Ettorre, Valeria; Di Crescenzo, Antonello; Piattelli, Adriano; Cataldi, Amelia; Fontana, Antonella

    2017-09-13

    Commercial collagen membranes are used in oral surgical procedures as scaffolds for bone deposition in guided bone regeneration. Here, we have enriched them with graphene oxide (GO) via a simple non-covalent functionalization, exploiting the capacity of oxygenated carbon functional moieties of GO to interact through hydrogen bonding with collagen. In the present paper, the GO-coated membranes have been characterized in terms of stability, nano-roughness, biocompatibility and induction of inflammatory response in human primary gingival fibroblast cells. The obtained coated membranes are demonstrated not to leak GO in the bulk solution, and to change some features of the membrane, such as stiffness and adhesion between the membrane and the atomic force microscopy (AFM) tip. Moreover, the presence of GO increases the roughness and the total surface exposed to the cells, as demonstrated by AFM analyses. The obtained material is biocompatible, and does not induce inflammation in the tested cells.

  12. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    International Nuclear Information System (INIS)

    Laranjeira, Marta S; Carvalho, Ângela; Ferraz, Maria Pia; Monteiro, Fernando Jorge; Pelaez-Vargas, Alejandro; Hansford, Derek; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena

    2014-01-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior. (paper)

  13. Stimulation of human gingival fibroblasts viability and growth by roots treated with high intensity lasers, photodynamic therapy and citric acid.

    Science.gov (United States)

    Karam, Paula Stephania Brandão Hage; Ferreira, Rafael; Oliveira, Rodrigo Cardoso; Greghi, Sebastião Luiz Aguiar; de Rezende, Maria Lúcia Rubo; Sant'Ana, Adriana Campos Passanezi; Zangrando, Mariana Schutzer Ragghianti; Damante, Carla Andreotti

    2017-09-01

    The aim of this study was to compare the effect of root biomodification by lasers, citric acid and antimicrobial photodynamic therapy (aPDT) on viability and proliferation of human gingival fibroblasts (FGH). Groups were divided in control (CC - only cells), and root fragments treated by: scaling and root planing (positice control - SC), Er:YAG (ER-60mJ,10pps,10Hz,10s,2940nm), Nd:YAG (ND-0.5W,15Hz,10s,1640nm), antimicrobial photodynamic therapy (PDT-InGaAIP,30mW,45J/cm 2 ,30s,660nm,toluidine blue O), citric acid plus tetracycline (CA). Fibroblasts (6th passage, 2×10 3 ) were cultivated in a 24-h conditioned medium by the treated root fragments. Cell viability was measured by MTT test at 24, 48, 72 and 96h. In a second experiment, FGH cells (10 4 ) were cultivated on root fragments which received the same treatments. After 24, 48, 72h the number of cells was counted in SEM pictures. In addition, chemical elements were analyzed by energy dispersive spectroscopy (EDS). Data was analyzed by two-way ANOVA (first experiment), repeated measures ANOVA (second experiment) and ANOVA (EDS experiment) tests complemented by Tukey's test (pplaning stimulated fibroblast viability while Er:YAG and Nd:YAG treated root surfaces presented higher number of cells. Copyright © 2017. Published by Elsevier Ltd.

  14. Proliferative and Anti-Inflammatory Effects of Resveratrol and Silymarin on Human Gingival Fibroblasts: A View to the Future

    Directory of Open Access Journals (Sweden)

    Minoo Shahidi

    2017-10-01

    Full Text Available Objectives: It has been demonstrated that polyphenol components such as silymarin and resveratrol have anti-inflammatory properties. Periodontitis is a chronic inflammatory disease that leads to the breakdown of dental supporting tissues and tooth loss. The purpose of this study was to investigate the anti-inflammatory effects of silymarin and resveratrol on lipopolysaccharide (LPS-induced inflammatory response in human gingival fibroblasts (HGFs.Materials and Methods: HGFs were treated with different concentrations of silymarin and/or resveratrol (25, 50, 100 and 200μg/ml. The effects of silymarin and resveratrol on cell viability and proliferation were assessed by MTT assay and cell cycle analysis, respectively. Also, HGFs were treated with silymarin and/or resveratrol and were stimulated with LPS. The levels of Interleukin-6 (IL-6 and IL-8 were assessed by enzyme-linked immunosorbent assay (ELISA.  Results: After treatment with silymarin, the viability of fibroblasts significantly increased, whereas treatment with resveratrol did not have any significant effect on cell viability. However, the combination of these flavonoids (50µg/ml silymarin and 100µg/ml resveratrol significantly increased the viability of fibroblasts. Resveratrol significantly inhibited LPS-induced IL-6 and IL-8 secretion by HGFs, but silymarin did not show such a significant effect.   Conclusions: The findings of the present study demonstrated the anti-inflammatory effects of resveratrol and its combination with silymarin. Therefore, the combination of silymarin and resveratrol may be useful as a therapeutic agent for treatment of periodontal diseases.

  15. Human gingival fibroblasts culture in an autologous scaffold and assessing its effect on augmentation of attached gingiva in a pilot clinical trial

    Directory of Open Access Journals (Sweden)

    Moien Aramoon

    2017-11-01

    Full Text Available BACKGROUND AND AIM: An important goal of periodontal plastic surgery is the creation of attached gingiva around the teeth. In this study, the aims were to culture gingival fibroblasts in a biodegradable scaffold and measure the width of attached gingiva after the clinical procedure. METHODS: This study was carried out on 4 patients (8 sites, with inadequate attached gingiva next to at least two teeth in contralateral quadrants of the same jaw. A biopsy of attached gingiva (epithelial + connective tissue was taken using a surgical blade. Following culture of gingival fibroblasts, 250 × 103 cells in 250 µl nutritional medium were mixed with platelet-rich in growth factor (PRGF. Periosteal fenestration technique was done on one side (control and tissue-engineered mucosal graft (test was carried out on the contralateral side in each patient. The width of keratinized tissue, probing depth (PD and width of attached gingiva were recorded at baseline and 3 months after the operation. RESULTS: An increased width of keratinized and attached tissue on all operated sites after 3 months was observed. These results showed the increased mean of the width of keratinized and attached gingiva to be 4.17 mm and 4.14 mm in test and 1.10 mm and 1.10 mm in control sites, respectively. The difference of keratinized and attached gingiva width between test and control sites was significant (P = 0.030, and P = 0.010 respectively. CONCLUSION: According to the results of this study, PRGF can be used as a scaffold to transfer gingival fibroblasts to recipient sites with significant clinical results.

  16. Periodontal Dressing-containing Green Tea Epigallocathechin gallate Increases Fibroblasts Number in Gingival Artifical Wound Model

    Directory of Open Access Journals (Sweden)

    Ardisa U. Pradita

    2014-04-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Green tea leaf (Camellia sinensis is one of herbal plants that is used for traditional medicine. Epigallocatechin gallate (EGCG in green tea is the most potential polyphenol component and has the strongest biological activity. It is known that EGCG has potential effect on wound healing. Objective: This study aimed to determine the effect of adding green tea EGCG into periodontal dressing on the number of fibroblasts after gingival artificial wound in animal model. Methods: Gingival artifical wound model was performed using 2mm punch biopsy on 24 rabbits (Oryctolagus cuniculus. The animals were divided into two groups. Periodontal dressing with EGCG and without EGCG was applied to the experimental and control group, respectively. Decapitation period was scheduled at day 3, 5, and 7 after treatment. Histological analysis to count the number of fibroblasts was performed. Results: Number of fibroblasts was significantly increased in time over the experimental group treated with EGCG periodontal dressing compared to control (p<0.05. Conclusion: EGCG periodontal dressing could increase the number of fibroblast, therefore having role in wound healing after periodontal surgery in animal model.DOI: 10.14693/jdi.v20i3.197

  17. Effects of Plasma Rich in Growth Factors and Platelet-Rich Fibrin on Proliferation and Viability of Human Gingival Fibroblasts

    Science.gov (United States)

    Vahabi, Surena; Vaziri, Shahram; Torshabi, Maryam

    2015-01-01

    Objectives: Platelet preparations are commonly used to enhance bone and soft tissue regeneration. Considering the existing controversies on the efficacy of platelet products for tissue regeneration, more in vitro studies are required. The aim of the present study was to compare the in vitro effects of plasma rich in growth factors (PRGF) and platelet-rich fibrin (PRF) on proliferation and viability of human gingival fibroblasts (HGFs). Materials and Methods: Anitua’s PRGF and Choukran’s PRF were prepared according to the standard protocols. After culture periods of 24, 48 and 72 hours, proliferation of HGFs was evaluated by the methyl thiazol tetrazolium assay. Statistical analysis was performed using one-way ANOVA followed by Tukey-Kramer’s multiple comparisons and P-valuesPRGF treatment induced statistically significant (PPRGF than in PRF group (PPRGF had a strong stimulatory effect on HGF cell viability and proliferation compared to PRF. PMID:26877740

  18. Anti-adhesive and pro-apoptotic effects of 2-hydroxyethyl methacrylate on human gingival fibroblasts co-cultured with Streptococcus mitis strains

    Science.gov (United States)

    Zara, S; Di Giulio, M; D’Ercole, S; Cellini, L; Cataldi, A

    2011-01-01

    Aim To evaluate and observe the cellular reactions that occur during the interaction/integration between 2-hydroxyethyl methacrylate/host tissue/microbial environment, in a co-culture of human gingival fibroblasts (HGF) and Streptococcus mitis strains. Methodology Streptococcus mitis were cultured with strains in the presence of 3 mmol L−1 HEMA for 48 h and 72 h. Cytotoxicity was evaluated by the trypan blue dye exclusion test. Apoptosis was evaluated by TUNEL analysis. Adhesion was evaluated by immunofluorescence and western blot analyses. Quantitative analyses of the results were acquired by Qwin Plus 3.5 and QuantityOne I-D analysis software, respectively. The statistical significance of the results was evaluated using t-tests and linear regression tests. Results The trypan blue dye test revealed 47.3% and 46.5% of dead fibroblasts after 48 and 72 h HEMA treatment, respectively, while bacterial viability was not influenced by the presence of HEMA and fibroblasts. The expression of pro-collagen I, involved in fibroblast adhesion, in untreated samples ranged from 12.49% to 6.91% of the positive area after 48 and 72 h, respectively, dropping to below 2% of the positive area in the other experimental conditions. Unlike the trypan blue test, co-cultured samples treated with HEMA showed 20% and 25% versus 17% and 21% (after 48 and 72 h, respectively) of apoptotic cells. Conclusions The evidence for HEMA toxicity and anti-adhesive effects against eukaryotic cells was reduced in the presence of bacteria, suggesting that dental resins should be well polymerized to avoid the spread of toxic monomers within the mouth. PMID:21902700

  19. Smoking and gingivitis: focus on inducible nitric oxide synthase, nitric oxide and basic fibroblast growth factor.

    Science.gov (United States)

    Özdemir, B; Özmeric, N; Elgün, S; Barış, E

    2016-10-01

    Periodontal disease pathogenesis has been associated with smoking. Gingivitis is a mild and reversible form of periodontal disease and it tends to progress to periodontitis only in susceptible individuals. In the present study, we aimed to examine the impact of smoking on host responses in gingivitis and to evaluate and compare the inducible nitric oxide synthase (iNOS) activity in gingival tissue and NO and basic fibroblast growth factor (bFGF) levels in the gingival crevicular fluid of patients with gingivitis and healthy individuals. Forty-one participants were assigned to the gingivitis-smoker (n = 13), gingivitis (n = 13), healthy-smoker (n = 7) and healthy groups (n = 8). Clinical indices were recorded; gingival biopsy and gingival crevicular fluid samples were obtained from papillary regions. iNOS expression was evaluated by immunohistochemical staining. The immunoreactive cells were semiquantitatively assessed. For the quantitative determination of nitrite and nitrate in gingival crevicular fluid, the NO assay kit was used. The amount of bFGF in gingival crevicular fluid was determined by enzyme-linked immunosorbent assay. The gingivitis-smoker group demonstrated a stronger iNOS expression than the non-smoker gingivitis group. iNOS expression intensity was lower in the non-smoker healthy group compared to that in healthy-smokers. No significant gingival crevicular fluid NO and bFGF level changes were observed between groups. Among patients with gingivitis, a positive correlation was detected between gingival crevicular fluid NO and bFGF levels (r = 0.806, p = 0.001). Our data suggest that smoking has significant effects on iNOS expression but not on gingival crevicular fluid NO or bFGF levels in healthy and patients with gingivitis. However, our results suggest that bFGF might be involved in the regulation of NO production via iNOS. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Supernatants from oral epithelial cells and gingival fibroblasts modulate human immunodeficiency virus type 1 promoter activation induced by periodontopathogens in monocytes/macrophages.

    Science.gov (United States)

    González, O A; Ebersole, J L; Huang, C B

    2010-04-01

    Bacterial and host cell products during coinfections of Human Immunodeficiency Virus type 1-positive (HIV-1(+)) patients regulate HIV-1 recrudescence in latently infected cells (e.g. T cells, monocytes/macrophages), impacting highly active antiretroviral therapy (HAART) failure and progression of acquired immunodeficiency syndrome. A high frequency of oral opportunistic infections (e.g. periodontitis) in HIV-1(+) patients has been demonstrated; however, their potential to impact HIV-1 exacerbation is unclear. We sought to determine the ability of supernatants derived from oral epithelial cells (OKF4) and human gingival fibroblasts (Gin-4) challenged with periodontal pathogens, to modulate the HIV-1 promoter activation in monocytes/macrophages. BF24 monocytes/macrophages transfected with the HIV-1 promoter driving the expression of chloramphenicol acetyltransferase (CAT) were stimulated with Porphyromonas gingivalis, Fusobacterium nucleatum, or Treponema denticola in the presence of supernatants from OKF4 or Gin4 cells either unstimulated or previously pulsed with bacteria. CAT levels were determined by enzyme-linked immunosorbent assay and cytokine production was evaluated by Luminex beadlyte assays. OKF4 and Gin4 supernatants enhanced HIV-1 promoter activation particularly related to F. nucleatum challenge. An additive effect was observed in HIV-1 promoter activation when monocytes/macrophages were simultaneously stimulated with gingival cell supernatants and bacterial extracts. OKF4 cells produced higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukins -6 and -8 in response to F. nucleatum and P. gingivalis. Preincubation of OKF4 supernatants with anti-GM-CSF reduced the additive effect in periodontopathogen-induced HIV-1 promoter activation. These results suggest that soluble mediators produced by gingival resident cells in response to periodontopathogens could contribute to HIV-1 promoter activation in monocytes

  1. A clinical and histologic evaluation of gingival fibroblasts seeding on a chitosan-based scaffold and its effect on the width of keratinized gingiva in dogs.

    Science.gov (United States)

    Lotfi, Ghogha; Shokrgozar, Mohammad Ali; Mofid, Rasoul; Abbas, Fatemeh Mashhadi; Ghanavati, Farzin; Bagheban, Alireza Akbarzadeh; Shariati, Ramin Pajoum

    2011-09-01

    Finding biocompatible matrix materials capable of enhancing the procedures of gingival augmentation is a major concern in periodontal research. This has prompted the investigation of a safe grafting technique by means of synthetic or natural polymers. The objective of this study is to examine the effect of a gingival fibroblast cultured on a naturally derived (i.e., chitosan-based) scaffold on the width of keratinized gingiva in dogs. Gingival fibroblasts were cultured from a small portion of hard palates of five dogs. A bilayered chitosan scaffold was seeded with the gingival fibroblasts and transferred to dogs. Surgery was performed bilaterally, and the regions were randomly divided into two groups: chitosan only (control site) and chitosan + fibroblast (test site). Periodontal parameters, including probing depth and width of keratinized and attached gingiva, were measured at baseline and 3 months after surgery. A histologic evaluation was also performed on the healed grafted sites. Comparison of width of keratinized and attached gingiva in control and test sites showed that the mean width of keratinized and attached gingiva increased in each group after surgery. However, the difference between control and test groups was not statistically significant. Concerning the existence of the keratinized epithelium, exocytosis, and epithelium thickness, no significant difference was observed in test and control sites. The difference was significant in relation to rete ridge formation. The tissue-engineered graft consisting of chitosan + fibroblast was applied to gingival augmentation procedures and generated keratinized tissue without any complications usually associated with donor-site surgery.

  2. Immobilization of Ag nanoparticles/FGF-2 on a modified titanium implant surface and improved human gingival fibroblasts behavior.

    Science.gov (United States)

    Ma, Qianli; Mei, Shenglin; Ji, Kun; Zhang, Yumei; Chu, Paul K

    2011-08-01

    The objective of this study was to form a rapid and firm soft tissue sealing around dental implants that resists bacterial invasion. We present a novel approach to modify Ti surface by immobilizing Ag nanoparticles/FGF-2 compound bioactive factors onto a titania nanotubular surface. The titanium samples were anodized to form vertically organized TiO(2) nanotube arrays and Ag nanoparticles were electrodeposited onto the nanotubular surface, on which FGF-2 was immobilized with repeated lyophilization. A uniform distribution of Ag nanoparticles/FGF-2 was observed on the TiO(2) nanotubular surface. The L929 cell line was used for cytotoxicity assessment. Human gingival fibroblasts (HGFs) were cultured on the modified surface for cytocompatibility determination. The Ag/FGF-2 immobilized samples displayed excellent cytocompatibility, negligible cytotoxicity, and enhanced HGF functions such as cell attachment, proliferation, and ECM-related gene expression. The Ag nanoparticles also exhibit some bioactivity. In conclusion, this modified TiO(2) nanotubular surface has a large potential for use in dental implant abutment. Copyright © 2011 Wiley Periodicals, Inc.

  3. Cleavage of host cytokeratin-6 by lysine-specific gingipain induces gingival inflammation in periodontitis patients.

    Directory of Open Access Journals (Sweden)

    Salunya Tancharoen

    Full Text Available Lysine-specific gingipain (Kgp is a virulence factor secreted from Porphyromonas gingivalis (P. gingivalis, a major etiological bacterium of periodontal disease. Keratin intermediate filaments maintain the structural integrity of gingival epithelial cells, but are targeted by Kgp to produce a novel cytokeratin 6 fragment (K6F. We investigated the release of K6F and its induction of cytokine secretion.K6F present in the gingival crevicular fluid of periodontal disease patients and in gingipain-treated rat gingival epithelial cell culture supernatants was measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer-based rapid quantitative peptide analysis using BLOTCHIP. K6F in gingival tissues was immunostained, and cytokeratin 6 protein was analyzed by immunofluorescence staining and flow cytometry. Activation of MAPK in gingival epithelial cells was evaluated by immunoblotting. ELISA was used to measure K6F and the cytokines release induced by K6F. Human gingival fibroblast migration was assessed using a Matrigel invasion chamber assay.We identified K6F, corresponding to the C-terminus region of human cytokeratin 6 (amino acids 359-378, in the gingival crevicular fluid of periodontal disease patients and in the supernatant from gingival epithelial cells cultured with Kgp. K6F antigen was distributed from the basal to the spinous epithelial layers in gingivae from periodontal disease patients. Cytokeratin 6 on gingival epithelial cells was degraded by Kgp, but not by Arg-gingipain, P. gingivalis lipopolysaccharide or Actinobacillus actinomycetemcomitans lipopolysaccharide. K6F, but not a scrambled K6F peptide, induced human gingival fibroblast migration and secretion of interleukin (IL-6, IL-8 and monocyte chemoattractant protein-1. These effects of K6F were mediated by activation of p38 MAPK and Jun N-terminal kinase, but not p42/44 MAPK or p-Akt.Kgp degrades gingival epithelial cell cytokeratin 6 to K6F that, on

  4. Irradiation effect on the apoptosis induction in the human cancer cell lines and the gingival fibroblast

    International Nuclear Information System (INIS)

    Park, Mu Soon; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; You, Dong Soo

    1998-01-01

    The radiation-induced apoptosis was studied for two human cancer cell lines (KB cells, RPMI 2650 cells) and the human gingival fibroblast cell line (HGF-1 cells). The single irradiation of 2, 10, 20 Gy was done with 241.5 cGy/min dose rate using the 137 Cs MK cell irradiator. The cell were stained with propidium iodide and examined under the fluoro-microscope and assayed with the flow cytometry a day after irradiation. Also, the LDH assay was done to determine the amount of necrotic cells. The obtained results were as follows : 1. On the fluoro-microscope, many fragmented nuclei were detected in the KB, RPMI 2650, and HGF-1 cells after irradiation. 2. On the DNA content histogram obtained from the flow cytometry, the percentages of the pre-G1 peak of the control and 2, 10 and 20 Gy irradiation group were 4.5, 55.0, 52.3, and 66.6% on KB cells, 2.7, 3.3, 31.8, and 32.6% on RPMI 2650 cells and 2.8, 21.8, 30.4, and 40.2% on HGF-1 cells respectively. 3. The number of G1-stage cells was abruptly decreased after 2 Gy irradiation on KB cells and 10 Gy irradiation on RPMI 2650 cells, But there was a slight decrease without regard to irradiation dose on HGF-1 cells. 4. There was no significantly different absorbance in extracellular LDH assay along the experimental cell lines

  5. Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials with Human Gingival Fibroblasts (HGFs).

    Science.gov (United States)

    Grenade, Charlotte; De Pauw-Gillet, Marie-Claire; Gailly, Patrick; Vanheusden, Alain; Mainjot, Amélie

    2016-09-01

    Polymer-infiltrated-ceramic-network (PICN) materials constitute an innovative class of CAD-CAM materials offering promising perspectives in prosthodontics, but no data are available in the literature regarding their biological properties. The objective of the present study was to evaluate the in vitro biocompatibility of PICNs with human gingival fibroblasts (HGFs) in comparison with materials typically used for implant prostheses and abutments. HGF attachment, proliferation and spreading on discs made of PICN, grade V titanium (Ti), yttrium zirconia (Zi), lithium disilicate glass-ceramic (eM) and polytetrafluoroethylene (negative control), were evaluated using a specific insert-based culture system (IBS-R). Sample surface properties were characterized by XPS, contact angle measurement, profilometry and SEM. Ti and Zi gave the best results regarding HGF viability, morphology, number and coverage increase with time in comparison with the negative control, while PICN and eM gave intermediate results, cell spreading being comparable for PICN, Ti, Zi and eM. Despite the presence of polymers and their related hydrophobicity, PICN exhibited comparable results to glass-ceramic materials, which could be explained by the mode of polymerization of the monomers. The results of the present study confirm that the currently employed materials, i.e. Ti and Zi, can be considered to be the gold standard of materials in terms of HGF behavior, while PICN gave intermediate results comparable to eM. The impact of the present in vitro results needs to be further investigated clinically, particularly in the view of the utilization of PICNs for prostheses on bone-level implants. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Alteration of metabolomic profiles by titanium dioxide nanoparticles in human gingivitis model.

    Science.gov (United States)

    Garcia-Contreras, Rene; Sugimoto, Masahiro; Umemura, Naoki; Kaneko, Miku; Hatakeyama, Yoko; Soga, Tomoyoshi; Tomita, Masaru; Scougall-Vilchis, Rogelio J; Contreras-Bulnes, Rosalia; Nakajima, Hiroshi; Sakagami, Hiroshi

    2015-07-01

    Although nanoparticles (NPs) has afforded considerable benefits in various fields of sciences, several reports have shown their harmful effects, suggesting the necessity of adequate risk assessment. To clarify the mechanism of titanium dioxide nanoparticles (TiO2 NPs)-enhanced gingival inflammation, we conducted the full-scale metabolomic analyses of human gingival fibroblast cells treated with IL-1β alone or in combination with TiO2 NPs. Observation with transmission electron microscope demonstrated the incorporation of TiO2 NPs into vacuoles of the cells. TiO2 NPs significantly enhanced the IL-1β-induced prostaglandin E2 production and COX-1 and COX-2 protein expression. IL-1β reduced the intracellular concentrations of overall primary metabolites especially those of amino acid, urea cycle, polyamine, S-adenosylmethione and glutathione synthetic pathways. The addition of TiO2 NPs further augmented these IL-1β-induced metabolic changes, recommending careful use of dental materials containing TiO2 NPs towards patients with gingivitis or periodontitis. The impact of the present study is to identify the molecular targets of TiO2 NPs for the future establishment of new metabolic markers and therapeutic strategy of gingival inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts

    International Nuclear Information System (INIS)

    Ji, Jun; Tong, Xin; Huang, Xiaofeng; Wang, Tiancong; Lin, Zitong; Cao, Yazhou; Qin, Haiyan; Hu, Qingang; Zhang, Junfeng; Dong, Lei

    2015-01-01

    Hydroxyapatite (HA) is an important component of human bone and bone tissue engineering scaffolds. A plethora of bone tissue engineering scaffolds have been synthesized so far, including nano-HA/chitosan/gelatin (nHA/CG) scaffolds; and for seeding cells, stem cells, especially induced pluripotent stem cells (iPSCs), have been a promising cell source for bone tissue engineering recently. However, the influence of different HA nano-particle morphologies on the osteogenic differentiation of human iPSCs (hiPSCs) from human gingival fibroblasts (hGFs) is unknown. The purpose of this study was to investigate the osteogenic differentiation of hiPSCs from hGFs seeded on nHA/CG scaffolds with 2 shapes (rod and sphere) of nHA particles. Firstly, hGFs isolated from discarded normal gingival tissues were reprogrammed into hiPSCs. Secondly, hiPSCs were seeded on rod-like nHA/CG (rod-nHA/CG) and sphere-shaped nHA/CG (sphere-nHA/CG) scaffolds respectively and then cell/scaffold complexes were cultured in vitro. Scanning electron microscope, hematoxyline and eosin (HE) staining, Masson’s staining, and quantitative real-time polymerase chain reaction techniques were used to examine hiPSC morphology, proliferation, and differentiation on rod-nHA/CG and sphere-nHA/CG scaffolds. Finally, hiPSCs composited with 2 kinds of nHA/CG were transplanted in vivo in a subcutaneous implantation model for 12 weeks; pure scaffolds were also transplanted as a blank control. HE, Masson’s, and immunohistochemistry staining were applied to detect new bone regeneration ability. The results showed that sphere-nHA/CG significantly increased hiPSCs from hGF proliferation and osteogenic differentiation in vitro. hiPSCs and sphere-nHA/CG composities generated large bone, whereas hiPSCs and rod-nHA/CG composities produced tiny bone in vivo. Moreover, pure scaffolds without cells almost produced no bone. In conclusion, our work provided a potential innovative bone tissue engineering approach using

  8. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts.

    Science.gov (United States)

    Ji, Jun; Tong, Xin; Huang, Xiaofeng; Wang, Tiancong; Lin, Zitong; Cao, Yazhou; Zhang, Junfeng; Dong, Lei; Qin, Haiyan; Hu, Qingang

    2015-07-08

    Hydroxyapatite (HA) is an important component of human bone and bone tissue engineering scaffolds. A plethora of bone tissue engineering scaffolds have been synthesized so far, including nano-HA/chitosan/gelatin (nHA/CG) scaffolds; and for seeding cells, stem cells, especially induced pluripotent stem cells (iPSCs), have been a promising cell source for bone tissue engineering recently. However, the influence of different HA nano-particle morphologies on the osteogenic differentiation of human iPSCs (hiPSCs) from human gingival fibroblasts (hGFs) is unknown. The purpose of this study was to investigate the osteogenic differentiation of hiPSCs from hGFs seeded on nHA/CG scaffolds with 2 shapes (rod and sphere) of nHA particles. Firstly, hGFs isolated from discarded normal gingival tissues were reprogrammed into hiPSCs. Secondly, hiPSCs were seeded on rod-like nHA/CG (rod-nHA/CG) and sphere-shaped nHA/CG (sphere-nHA/CG) scaffolds respectively and then cell/scaffold complexes were cultured in vitro. Scanning electron microscope, hematoxyline and eosin (HE) staining, Masson's staining, and quantitative real-time polymerase chain reaction techniques were used to examine hiPSC morphology, proliferation, and differentiation on rod-nHA/CG and sphere-nHA/CG scaffolds. Finally, hiPSCs composited with 2 kinds of nHA/CG were transplanted in vivo in a subcutaneous implantation model for 12 weeks; pure scaffolds were also transplanted as a blank control. HE, Masson's, and immunohistochemistry staining were applied to detect new bone regeneration ability. The results showed that sphere-nHA/CG significantly increased hiPSCs from hGF proliferation and osteogenic differentiation in vitro. hiPSCs and sphere-nHA/CG composities generated large bone, whereas hiPSCs and rod-nHA/CG composities produced tiny bone in vivo. Moreover, pure scaffolds without cells almost produced no bone. In conclusion, our work provided a potential innovative bone tissue engineering approach using

  9. Treatment of chronic desquamative gingivitis using tissue-engineered human cultured gingival epithelial sheets: a case report.

    Science.gov (United States)

    Okuda, Kazuhiro; Momose, Manabu; Murata, Masashi; Saito, Yoshinori; lnoie, Masukazu; Shinohara, Chikara; Wolff, Larry F; Yoshie, Hiromasa

    2004-04-01

    Human cultured gingival epithelial sheets were used as an autologous grafting material for regenerating gingival tissue in the maxillary left and mandibular right quadrants of a patient with chronic desquamative gingivitis. Six months post-surgery in both treated areas, there were gains in keratinized gingiva and no signs of gingival inflammation compared to presurgery. In the maxillary left quadrant, preoperative histopathologic findings revealed the epithelium was separated from the connective tissue and inflammatory cells were extensive. After grafting with the gingival epithelial sheets, inflammatory cells were decreased and separation between epithelium and connective tissue was not observed. The human cultured gingival epithelial sheets fabricated using tissue engineering technology showed significant promise for gingival augmentation in periodontal therapy.

  10. Cytotoxicity evaluation of ZnO-eugenol (ZOE) using different ZnO structure on human gingival fibroblast

    Science.gov (United States)

    Bakhori, Siti Khadijah Mohd; Mahmud, Shahrom; Masudi, Sam'an Malik; Seeni, Azman; Mohamad, Dasmawati; Ann, Ling Chuo; Sirelkhatim, Amna

    2017-07-01

    Application of ZnO is widely used in many industries, such as in optoelectronic devices, automotive, textile, cosmetics, medical and dentistry. In this study, emphasis was given on ZnO-eugenol (ZOE) that has been used in dental restoration. ZOE contained 80% ZnO and 20% eugenol. ZOE exhibited selective toxicity that could kill bacteria but safe on human cells. The safety of ZOE on humans is critically important. Two types of ZnO with different morphology, namely ZnO-A and ZnO-K were used to make ZOE (ZOE-A and ZOE-K) and the cytotoxicity level on human gingival fibroblast (HGF) cell line were evaluated. Both ZnO were characterized for its morphology and structural using Field Emission Scanning Electron Microscopy (FESEM) and X-ray Diffraction (XRD), respectively. The cytotoxicity level was evaluated using CCK-8 assay where the percentage of viable cells after 72 h were observed. The result showed ZnO-A, containing mostly rod-like shape with a crystallite size of 37.5 nm, had a higher percentage of viable cells after 72 h. Sample ZnO-K, containing irregular shape morphology with bigger crystallite size of 42.2 nm, had a lower percentage of viable cells after 72 h. The HGF cell line was treated with extract dilution of ZOE-A and ZOE-K at 5, 10 and 15%, respectively. At 15% of extracts dilution, 97.3% of the HGF cells survived (for ZOE-A) while the survival percentage of ZOE-K was only 88.1%. This fact was probably due to the larger surface-to-volume ratio of ZnO-A that gave better interlocking bond in ZOE-A. This interlocking bond can prevent the ZnO and eugenol elements leaching out from the ZOE matrix thereby decrease in cytotoxicity effects on HGF.

  11. Patient-Derived Human Induced Pluripotent Stem Cells From Gingival Fibroblasts Composited With Defined Nanohydroxyapatite/Chitosan/Gelatin Porous Scaffolds as Potential Bone Graft Substitutes.

    Science.gov (United States)

    Ji, Jun; Tong, Xin; Huang, Xiaofeng; Zhang, Junfeng; Qin, Haiyan; Hu, Qingang

    2016-01-01

    Human embryonic stem cells and adult stem cells have always been the cell source for bone tissue engineering. However, their limitations are obvious, including ethical concerns and/or a short lifespan. The use of human induced pluripotent stem cells (hiPSCs) could avoid these problems. Nanohydroxyapatite (nHA) is an important component of natural bone and bone tissue engineering scaffolds. However, its regulation on osteogenic differentiation with hiPSCs from human gingival fibroblasts (hGFs) is unknown. The purpose of the present study was to investigate the osteogenic differentiation of hiPSCs from patient-derived hGFs regulated by nHA/chitosan/gelatin (HCG) scaffolds with different nHA ratios, such as HCG-111 (1 wt/vol% nHA) and HCG-311 (3 wt/vol% nHA). First, hGFs were reprogrammed into hiPSCs, which have enhanced osteogenic differentiation capability. Second, HCG-111 and HCG-311 scaffolds were successfully synthesized. Finally, hiPSC/HCG complexes were cultured in vitro or subcutaneously transplanted into immunocompromised mice in vivo. The osteogenic differentiation effects of two types of HCG scaffolds on hiPSCs were assessed for up to 12 weeks. The results showed that HCG-311 increased osteogenic-related gene expression of hiPSCs in vitro proved by quantitative real-time polymerase chain reaction, and hiPSC/HCG-311 complexes formed much bone-like tissue in vivo, indicated by cone-beam computed tomography imaging, H&E staining, Masson staining, and RUNX-2, OCN immunohistochemistry staining. In conclusion, our study has shown that osteogenic differentiation of hiPSCs from hGFs was improved by HCG-311. The mechanism might be that the nHA addition stimulates osteogenic marker expression of hiPSCs from hGFs. Our work has provided an innovative autologous cell-based bone tissue engineering approach with soft tissues such as clinically abundant gingiva. The present study focused on patient-personalized bone tissue engineering. Human induced pluripotent stem cells

  12. Biostimulatory effects of low-level laser therapy on epithelial cells and gingival fibroblasts treated with zoledronic acid

    International Nuclear Information System (INIS)

    Basso, F G; Pansani, T N; Turrioni, A P S; Hebling, J; De Souza Costa, C A; Kurachi, C; Bagnato, V S

    2013-01-01

    Low-level laser therapy (LLLT) has been considered as an adjuvant treatment for bisphosphonate-related osteonecrosis, presenting positive clinical outcomes. However, there are no data regarding the effect of LLLT on oral tissue cells exposed to bisphosphonates. This study aimed to evaluate the effects of LLLT on epithelial cells and gingival fibroblasts exposed to a nitrogen-containing bisphosphonate—zoledronic acid (ZA). Cells were seeded in wells of 24-well plates, incubated for 48 h and then exposed to ZA at 5 μM for an additional 48 h. LLLT was performed with a diode laser prototype—LaserTABLE (InGaAsP—780 nm ± 3 nm, 25 mW), at selected energy doses of 0.5, 1.5, 3, 5, and 7 J cm −2 in three irradiation sessions, every 24 h. Cell metabolism, total protein production, gene expression of vascular endothelial growth factor (VEGF) and collagen type I (Col-I), and cell morphology were evaluated 24 h after the last irradiation. Data were statistically analyzed by Kruskal–Wallis and Mann–Whitney tests at 5% significance. Selected LLLT parameters increased the functions of epithelial cells and gingival fibroblasts treated with ZA. Gene expression of VEGF and Col-I was also increased. Specific parameters of LLLT biostimulated fibroblasts and epithelial cells treated with ZA. Analysis of these in vitro data may explain the positive in vivo effects of LLLT applied to osteonecrosis lesions. (paper)

  13. Biostimulatory effects of low-level laser therapy on epithelial cells and gingival fibroblasts treated with zoledronic acid

    Science.gov (United States)

    Basso, F. G.; Pansani, T. N.; Turrioni, A. P. S.; Kurachi, C.; Bagnato, V. S.; Hebling, J.; de Souza Costa, C. A.

    2013-05-01

    Low-level laser therapy (LLLT) has been considered as an adjuvant treatment for bisphosphonate-related osteonecrosis, presenting positive clinical outcomes. However, there are no data regarding the effect of LLLT on oral tissue cells exposed to bisphosphonates. This study aimed to evaluate the effects of LLLT on epithelial cells and gingival fibroblasts exposed to a nitrogen-containing bisphosphonate—zoledronic acid (ZA). Cells were seeded in wells of 24-well plates, incubated for 48 h and then exposed to ZA at 5 μM for an additional 48 h. LLLT was performed with a diode laser prototype—LaserTABLE (InGaAsP—780 nm ± 3 nm, 25 mW), at selected energy doses of 0.5, 1.5, 3, 5, and 7 J cm-2 in three irradiation sessions, every 24 h. Cell metabolism, total protein production, gene expression of vascular endothelial growth factor (VEGF) and collagen type I (Col-I), and cell morphology were evaluated 24 h after the last irradiation. Data were statistically analyzed by Kruskal-Wallis and Mann-Whitney tests at 5% significance. Selected LLLT parameters increased the functions of epithelial cells and gingival fibroblasts treated with ZA. Gene expression of VEGF and Col-I was also increased. Specific parameters of LLLT biostimulated fibroblasts and epithelial cells treated with ZA. Analysis of these in vitro data may explain the positive in vivo effects of LLLT applied to osteonecrosis lesions.

  14. Streptococcus mitis/human gingival fibroblasts co-culture: the best natural association in answer to the 2-hydroxyethyl methacrylate release

    Science.gov (United States)

    Di Giulio, Mara; D'Ercole, Simonetta; Zara, Susi; Cataldi, Amelia; Cellini, Luigina

    2012-01-01

    One of the major components of dental polymerized resin-based restorative materials is 2-hydroxyethyl methacrylate (HEMA) and its release in monomeric form interferes with the oral cavity environment. This study aimed to evaluate HEMA monomeric effects on the co-culture of Streptococcus mitis and human gingival fibroblasts (HGFs). Streptococcus mitis DS12 and S. mitis ATCC 6249 were co-cultivated with HGF in the presence of HEMA (3 mM), for 48 and 72 h; the amount of sessile and planktonic cells, as well as the prokaryotic and eukaryotic cell viability were analyzed in treated and untreated samples. The treatment of S. mitis/HGFs with HEMA did not produce significant effects on the bacterial adhesion and induced an increase in planktonic S. mitis ATCC 6249 population after 48 and 72 h. HEMA increased significantly the planktonic S. mitis ATCC 6249 viability when co-cultured with HGFs, while a cytotoxic effect on HGFs, without bacteria, was recorded. An increase of bacterial aggregation on HGFs was also detected with HEMA. Data obtained in this study suggest that HEMA exhibits a toxic effect mainly on eukaryotic cells and this effect can be modulated by co-cultivation with the S. mitis cells which, in the presence of the monomer, enhance their aggregation rate on HGFs. PMID:22229269

  15. Regulation of matrix metalloproteinase-9 expression between gingival fibroblast cells from old and young rats

    International Nuclear Information System (INIS)

    Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook; Kim, Jeong-Ran; Moon, Sung-Kwon; Kim, Cheorl-Ho; Park, Young-Guk

    2009-01-01

    Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1β (IL-1β) stimulation with increasing in vitro age. Tumor necrosis factor-α (TNF-α)-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-κB and AP-1. These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.

  16. Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Reichl, Franz-Xaver [Walther-Straub-Institute of Pharmacology and Toxicology, Munich (Germany); Ludwig-Maximilians-University, Department of Operative Dentistry and Periodontology, Munich (Germany); Esters, Magali; Simon, Sabine; Seiss, Mario [Walther-Straub-Institute of Pharmacology and Toxicology, Munich (Germany); Kehe, Kai [Bundeswehr Institute of Pharmacology and Toxicology, Munich (Germany); Kleinsasser, Norbert [University of Regensburg, Head and Neck Surgery, Department of Otolaryngology, Regensburg (Germany); Folwaczny, Matthias; Glas, Juergen; Hickel, Reinhard [Ludwig-Maximilians-University, Department of Operative Dentistry and Periodontology, Munich (Germany)

    2006-06-15

    In order to test the hypothesis that released dental restorative materials can reach toxic levels in human oral tissues, the cytotoxicities of the resin-based dental (co)monomers hydroxyethylmethacrylate (HEMA), triethyleneglycoldimethacrylate (TEGDMA), urethanedimethacrylate (UDMA), and bisglycidylmethacrylate (BisGMA) compared with methyl mercury chloride (MeHgCl) and the amalgam component mercuric chloride (HgCl{sub 2}) were investigated on human gingival fibroblasts (HGF) using two different test systems: (1) the modified XTT-test and (2) the modified H 33342 staining assay. The HGF were exposed to various concentrations of the test-substances in all test systems for 24 h. All tested (co)monomers and mercury compounds significantly (P<0.05) decreased the formazan formation in the XTT-test. EC{sub 50} values in the XTT assay were obtained as half-maximum-effect concentrations from fitted curves. Following EC{sub 50} values were found (mean [mmol/l]; s.e.m. in parentheses; n=12; * significantly different to HEMA): HEMA 11.530 (0.600); TEGDMA* 3.460 (0.200); UDMA* 0.106 (0.005); BisGMA* 0.087 (0.001); HgCl{sub 2}* 0.013 (0.001); MeHgCl* 0.005 (0.001). Following relative toxicities were found: HEMA 1; TEGDMA 3; UDMA 109; BisGMA 133; HgCl{sub 2} 887; MeHgCl 2306. A significant (P<0.05) increase of the toxicity of (co)monomers and mercurials was found in the XTT-test in the following order: HEMA < TEGDMA < UDMA < BisGMA < HgCl{sub 2} < MeHgCl. TEGDMA and MeHgCl induced mainly apoptotic cell death. HEMA, UDMA, BisGMA, and HgCl{sub 2} induced mainly necrotic cell death. The results of this study indicate that resin composite components have a lower toxicity than mercury from amalgam in HGF. HEMA, BisGMA, UDMA, and HgCl{sub 2} induced mainly necrosis, but it is rather unlikely that eluted substances (solely) can reach concentrations, which might induce necrotic cell death in the human physiological situation, indicating that other (additional) factors may be involved in

  17. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiaohui [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Yang [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Jingwen [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Li, Peng [Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR (China); Liu, Yinan [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Wen, Jinhua, E-mail: jhwen@bjmu.edu.cn [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Luan, Qingxian, E-mail: kqluanqx@126.com [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China)

    2016-05-06

    Induced pluripotent stem cells (iPSCs) have been recognized as a promising cell source for periodontal tissue regeneration. However, the conventional virus-based reprogramming approach is associated with a high risk of genetic mutation and limits their therapeutic utility. Here, we successfully generated iPSCs from readily accessible human gingival fibroblasts (hGFs) through an integration-free and feeder-free approach via delivery of reprogramming factors of Oct4, Sox2, Klf4, L-myc, Lin28 and TP53 shRNA with episomal plasmid vectors. The iPSCs presented similar morphology and proliferation characteristics as embryonic stem cells (ESCs), and expressed pluripotent markers including Oct4, Tra181, Nanog and SSEA-4. Additionally, these cells maintained a normal karyotype and showed decreased CpG methylation ratio in the promoter regions of Oct4 and Nanog. In vivo teratoma formation assay revealed the development of tissues representative of three germ layers, confirming the acquisition of pluripotency. Furthermore, treatment of the iPSCs in vitro with enamel matrix derivative (EMD) or growth/differentiation factor-5 (GDF-5) significantly up-regulated the expression of periodontal tissue markers associated with bone, periodontal ligament and cementum respectively. Taken together, our data demonstrate that hGFs are a valuable cell source for generating integration-free iPSCs, which could be sequentially induced toward periodontal cells under the treatment of EMD and GDF-5. - Highlights: • Integration-free iPSCs are successfully generated from hGFs via an episomal approach. • EMD promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • GDF-5 promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • hGFs-derived iPSCs could be a promising cell source for periodontal regeneration.

  18. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Yin, Xiaohui; Li, Yang; Li, Jingwen; Li, Peng; Liu, Yinan; Wen, Jinhua; Luan, Qingxian

    2016-01-01

    Induced pluripotent stem cells (iPSCs) have been recognized as a promising cell source for periodontal tissue regeneration. However, the conventional virus-based reprogramming approach is associated with a high risk of genetic mutation and limits their therapeutic utility. Here, we successfully generated iPSCs from readily accessible human gingival fibroblasts (hGFs) through an integration-free and feeder-free approach via delivery of reprogramming factors of Oct4, Sox2, Klf4, L-myc, Lin28 and TP53 shRNA with episomal plasmid vectors. The iPSCs presented similar morphology and proliferation characteristics as embryonic stem cells (ESCs), and expressed pluripotent markers including Oct4, Tra181, Nanog and SSEA-4. Additionally, these cells maintained a normal karyotype and showed decreased CpG methylation ratio in the promoter regions of Oct4 and Nanog. In vivo teratoma formation assay revealed the development of tissues representative of three germ layers, confirming the acquisition of pluripotency. Furthermore, treatment of the iPSCs in vitro with enamel matrix derivative (EMD) or growth/differentiation factor-5 (GDF-5) significantly up-regulated the expression of periodontal tissue markers associated with bone, periodontal ligament and cementum respectively. Taken together, our data demonstrate that hGFs are a valuable cell source for generating integration-free iPSCs, which could be sequentially induced toward periodontal cells under the treatment of EMD and GDF-5. - Highlights: • Integration-free iPSCs are successfully generated from hGFs via an episomal approach. • EMD promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • GDF-5 promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • hGFs-derived iPSCs could be a promising cell source for periodontal regeneration.

  19. Effect of periodontal dressings on human gingiva fibroblasts in vitro

    International Nuclear Information System (INIS)

    Eber, R.M.; Shuler, C.F.; Buchanan, W.; Beck, F.M.; Horton, J.E.

    1989-01-01

    In vitro cytotoxicity studies of periodontal dressings have not generally produced a result consistent with in vivo observations. These prior in vitro studies have not used human intraoral cell lines. We tested the effects of two eugenol containing and two non-eugenol periodontal dressings on cultured human gingival fibroblasts (HGF) (ATCC No. 1292). Replicate HGF cultures grown in microtiter plates were exposed to stock, 1:4 and 1:16 dilutions of extracts made from each of the four periodontal dressings. The HGF cultures were pulse labelled with tritiated thymidine (3HTdR) after 24, 48, and 72 hours. Incorporations of the labelled thymidine were measured using liquid scintillation counting and expressed as counts per minute. The results showed that undiluted extracts from all four periodontal dressings totally inhibited 3HTdR uptake (P less than 0.05). The 1:4 dilution of eugenol dressings inhibited 3HTdR uptake significantly more than non-eugenol dressings (P less than 0.05). Interestingly, at 72 hours the 1:16 dilution of the non-eugenol dressings caused significantly increased 3HTdR uptake which was not observed with the eugenol dressings. The present results suggest that the use of a human fibroblastic cell line for testing the effects of periodontal dressings may provide information about the relative biological effects of these dressings. Using this cell line, we have found that eugenol dressings inhibit fibroblast proliferation to a greater extent than non-eugenol dressings

  20. Increased Eotaxin and MCP-1 Levels in Serum from Individuals with Periodontitis and in Human Gingival Fibroblasts Exposed to Pro-Inflammatory Cytokines

    Science.gov (United States)

    Sulniute, Rima; Palmqvist, Py; Majster, Mirjam; Holm, Cecilia Koskinen; Zwicker, Stephanie; Clark, Reuben; Önell, Sebastian; Johansson, Ingegerd; Lerner, Ulf H.; Lundberg, Pernilla

    2015-01-01

    Periodontitis is a chronic inflammatory disease of tooth supporting tissues resulting in periodontal tissue destruction, which may ultimately lead to tooth loss. The disease is characterized by continuous leukocyte infiltration, likely mediated by local chemokine production but the pathogenic mechanisms are not fully elucidated. There are no reliable serologic biomarkers for the diagnosis of periodontitis, which is today based solely on the degree of local tissue destruction, and there is no available biological treatment tool. Prompted by the increasing interest in periodontitis and systemic inflammatory mediators we mapped serum cytokine and chemokine levels from periodontitis subjects and healthy controls. We used multivariate partial least squares (PLS) modeling and identified monocyte chemoattractant protein-1 (MCP-1) and eotaxin as clearly associated with periodontitis along with C-reactive protein (CRP), years of smoking and age, whereas the number of remaining teeth was associated with being healthy. Moreover, body mass index correlated significantly with serum MCP-1 and CRP, but not with eotaxin. We detected higher MCP-1 protein levels in inflamed gingival connective tissue compared to healthy but the eotaxin levels were undetectable. Primary human gingival fibroblasts displayed strongly increased expression of MCP-1 and eotaxin mRNA and protein when challenged with tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β), key mediators of periodontal inflammation. We also demonstrated that the upregulated chemokine expression was dependent on the NF-κΒ pathway. In summary, we identify higher levels of CRP, eotaxin and MCP-1 in serum of periodontitis patients. This, together with our finding that both CRP and MCP-1 correlates with BMI points towards an increased systemic inflammatory load in patients with periodontitis and high BMI. Targeting eotaxin and MCP-1 in periodontitis may result in reduced leukocyte infiltration and inflammation in

  1. In vitro comparison of new bisphosphonic acids and zoledronate effects on human gingival fibroblasts viability, inflammation and matrix turnover.

    Science.gov (United States)

    De Colli, Marianna; Tortorella, Paolo; Marconi, Guya Diletta; Agamennone, Mariangela; Campestre, Cristina; Tauro, Marilena; Cataldi, Amelia; Zara, Susi

    2016-11-01

    Bisphosphonates (BPs) are drugs clinically used in resorptive diseases. It was already proved that some clinically relevant BPs can inhibit a class of enzymes called matrix metalloproteinases (MMPs), required during tissue remodelling. Combining the arylsulfonamide function with the bisphosphonic group, several compounds were synthesized to obtain selective inhibitors of MMPs. The aim of the present study was to compare the effect of zoledronic acid (ZA), the most potent bisphosphonate available as therapy, with new sulfonamide containing BPs in an in vitro model of human gingival fibroblasts (HGFs). Western blot was used to measure procollagen I, β1 integrin MMP-8 and MMP-9, phase contrast and MTT for cell viability; L-lactate-dehydrogenase (LDH) measurement was performed for toxicity evaluation and ELISA for prostaglandin E 2 (PGE 2 ) secretion assessment. When compared with ZA, the treatment with the newly synthesized compounds shows increasing viability, procollagen I expression and decreased expression of β1 integrin in HGFs. Higher levels of released LDH, PGE 2 and MMP-9 expression are recorded in ZA-treated HGFs. Increased levels of MMP-8 are recorded in newly synthesized compounds-treated samples. These findings allowed to conclude that new tested BPs did not affect HGFs viability and adhesion, did not induce cellular toxicity, were not responsible for inflammatory event induction and could preserve the physiological matrix turnover. It could be hypothesized that the new molecules were better tolerated by soft tissues, resulting in lesser side effects.

  2. Expression levels of novel cytokine IL-32 in periodontitis and its role in the suppression of IL-8 production by human gingival fibroblasts stimulated with Porphyromonas gingivalis

    Directory of Open Access Journals (Sweden)

    Kazuhisa Ouhara

    2012-03-01

    Full Text Available Background:IL-32 was recently found to be elevated in the tissue of rheumatoid arthritis and inflammatory bowel disease. Periodontitis is a chronic inflammatory disease caused by polymicrobial infections that result in soft tissue destruction and alveolar bone loss. Although IL-32 is also thought to be associated with periodontal disease, its expression and possible role in periodontal tissue remain unclear. Therefore, this study investigated the expression patterns of IL-32 in healthy and periodontally diseased gingival tissue. The expression of IL-32 in cultured human gingival fibroblasts (HGF as well as effects of autocrine IL-32 on IL-8 production from HGF were also examined.Methods:Periodontal tissue was collected from both healthy volunteers and periodontitis patients, and immunofluorescent staining was performed in order to determine the production of IL-32. Using real-time PCR and ELISA, mRNA expression and protein production of IL-32 in HGF, stimulated by Porphyromonas gingivalis (Pg, were also investigated.Results:Contrary to our expectation, the production of IL-32 in the periodontitis patients was significantly lower than in the healthy volunteers. According to immunofluorescent microscopy, positive staining for IL-32 was detected in prickle and basal cell layers in the epithelium as well as fibroblastic cells in connective tissue. Addition of fixed Pg in vitro was found to suppress the otherwise constitutive expression of IL-32 mRNA and protein in HGF. However, recombinant IL-32 in vitro inhibited the expression of IL-8 mRNA by HGF stimulated with Pg. Interestingly, anti-IL-32 neutralizing antibody upregulated the IL-8 mRNA expression in non-stimulated HGF, indicating that constitutive expression of IL-32 in HGF suppressed IL-8 mRNA expression in the absence of bacterial stimulation.Conclusion:These results indicate that IL-32 is constitutively produced by HGF which can be suppressed by Pg and may play a role in the downregulation

  3. Aged blood factors decrease cellular responses associated with delayed gingival wound repair.

    Directory of Open Access Journals (Sweden)

    María Paz Saldías

    Full Text Available Aging is a gradual biological process characterized by a decrease in cell and organism functions. Gingival wound healing is one of the impaired processes found in old rats. Here, we studied the in vivo wound healing process using a gingival repair rat model and an in vitro model using human gingival fibroblast for cellular responses associated to wound healing. To do that, we evaluated cell proliferation of both epithelial and connective tissue cells in gingival wounds and found decreased of Ki67 nuclear staining in old rats when compared to their young counterparts. We next evaluated cellular responses of primary gingival fibroblast obtained from young subjects in the presence human blood serum of individuals of different ages. Eighteen to sixty five years old masculine donors were classified into 3 groups: "young" from 18 to 22 years old, "middle-aged" from 30 to 48 years old and "aged" over 50 years old. Cell proliferation, measured through immunofluorescence for Ki67 and flow cytometry for DNA content, was decreased when middle-aged and aged serum was added to gingival fibroblast compared to young serum. Myofibroblastic differentiation, measured through alpha-smooth muscle actin (α-SMA, was stimulated with young but not middle-aged or aged serum both the protein levels and incorporation of α-SMA into actin stress fibers. High levels of PDGF, VEGF, IL-6R were detected in blood serum from young subjects when compared to middle-aged and aged donors. In addition, the pro-inflammatory cytokines MCP-1 and TNF were increased in the serum of aged donors. In old rat wound there is an increased of staining for TNF compared to young wound. Moreover, healthy gingiva (non injury shows less staining compared to a wound site, suggesting a role in wound healing. Moreover, serum from middle-aged and aged donors was able to stimulate cellular senescence in young cells as determined by the expression of senescence associated beta-galactosidase and histone H2

  4. Effect of gingival fibroblasts and ultrasound on dogs' root resorption during orthodontic treatment.

    Science.gov (United States)

    Crossman, Jacqueline; Hassan, Ali H; Saleem, Ali; Felemban, Nayef; Aldaghreer, Saleh; Fawzi, Elham; Farid, Mamdouh; Abdel-Ghaffar, Khaled; Gargoum, Ausama; El-Bialy, Tarek

    2017-01-01

    To investigate the effect of using osteogenic induced gingival fibroblasts (OIGFs) and low intensity pulsed ultrasound (LIPUS) on root resorption lacunae volume and cementum thickness in beagle dogs that received orthodontic tooth movement. Seven beagle dogs were used, from which gingival cells (GCs) were obtained and were induced osteogenically to produce OIGFs. Each third and fourth premolar was randomly assigned to one of the five groups, namely, LIPUS, OIGFs, bone morphogenetic protein-2 (BMP-2), OIGFs + LIPUS, and control. All groups received 4 weeks of bodily tooth movement, then LIPUS-treated groups received LIPUS for 20 min/day for 4 weeks, and OIGFs groups received an injection of OIGFs near the root apex. Microcomputed tomography analysis was used to calculate root resorption lacunae volume and histomorphometric analysis was performed to measure the cementum thickness of each root at 3 root levels on compression and tension sides. There was no significant difference in resorption volume between the treatment groups. OIGFs + LIPUS increased cementum thickness ( P > 0.05) in third premolars near the apex, and LIPUS increased cementum thickness ( P > 0.05) in fourth premolars near the apex. Furthermore, BMP2 increased cementum thickness at the coronal third at the compression side. OIGFs, LIPUS, and BMP-2 can be potential treatments for orthodontically induced root resorption, however, improvements in experimental design and treatment parameters are required to further investigate these repair modalities.

  5. Effects of Plasma Rich in Growth Factors and Platelet-Rich Fibrin on Proliferation and Viability of Human Gingival Fibroblasts

    Directory of Open Access Journals (Sweden)

    Surena Vahabi

    2016-01-01

    Full Text Available Objectives: Platelet preparations are commonly used to enhance bone and soft tissue regeneration. Considering the existing controversies on the efficacy of platelet products for tissue regeneration, more in vitro studies are required. The aim of the present study was to compare the in vitro effects of plasma rich in growth factors (PRGF and platelet-rich fibrin (PRF on proliferation and viability of human gingival fibroblasts (HGFs.Materials and Methods: Anitua's PRGF and Choukran's PRF were prepared according to the standard protocols. After culture periods of 24, 48 and 72 hours, proliferation of HGFs was evaluated by the methyl thiazol tetrazolium assay. Statistical analysis was performed using one-way ANOVA followed by Tukey-Kramer’s multiple comparisons and P-values<0.05 were considered statistically significant.Results: PRGF treatment induced statistically significant (P<0.001 proliferation of HGF cells compared to the negative control (100% viability at 24, 48 and 72 hours in values of 123%±2.25%, 102%±2.8% and 101%±3.92%, respectively. The PRF membrane treatment of HGF cells had a statistically significant effect on cell proliferation (21%±1.73%, P<0.001 at 24 hours compared to the negative control. However, at 48 and 72 hours after treatment, PRF had a negative effect on HGF cell proliferation and caused 38% and 60% decrease in viability and proliferation compared to the negative control, respectively. The HGF cell proliferation was significantly higher in PRGF than in PRF group (P< 0.001.Conclusion: This study demonstrated that PRGF had a strong stimulatory effect on HGF cell viability and proliferation compared to PRF.

  6. Influence of CAD/CAM all-ceramic materials on cell viability, migration ability and adenylate kinase release of human gingival fibroblasts and oral keratinocytes.

    Science.gov (United States)

    Pabst, A M; Walter, C; Grassmann, L; Weyhrauch, M; Brüllmann, D D; Ziebart, T; Scheller, H; Lehmann, K M

    2014-05-01

    The aim of this study was to analyze the influence of four CAD/CAM all-ceramic materials on cell viability, migration ability and adenylate kinase (ADK) release of human gingival fibroblasts (HGF) and oral keratinocytes (HOK). HGF and HOK were cultured on disc-shaped CAD/CAM all-ceramic materials (e.max CAD LT, e.max CAD HT, Empress CAD and Mark II) and on discs made of tissue culture polystyrene surface (TCPS) serving as control. Cell viability was analyzed by using an MTT assay, and migration ability was investigated by a scratch assay. A ToxiLight assay has been performed to analyze the effect of all-ceramic materials on ADK release and cell apoptosis. At MTT assay for HGF, no significant decrease of cell viability could be detected at all points of measurement (p each > 0.05), while HOK demonstrated a significant decrease in cell viability especially on Empress CAD and Mark II at each point of measurement (p each materials at all points of measurement (between -36 % and -71 %; p each ceramic materials could be investigated. This study disclosed significant differences in cell viability and migration ability of HGF and HOK on CAD/CAM all-ceramic materials. CAD/CAM all-ceramic materials can influence oral cell lines responsible for soft tissue creation which may affect the esthetic outcome.

  7. Replacement of murine fibroblasts by human fibroblasts irradiated in obtaining feeder layer for the culture of human keratinocytes

    International Nuclear Information System (INIS)

    Yoshito, Daniele; Sufi, Bianca S.; Santin, Stefany P.; Mathor, Monica B.; Altran, Silvana C.; Isaac, Cesar

    2011-01-01

    Human autologous epithelia cultivated in vitro, have been used successfully in treating damage to skin integrity. The methodology allowed the cultivation of these epithelia was described by Rheinwald and Green in 1975, this methodology consisted in seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate is controlled through the action of ionizing radiation. However, currently there is a growing concern about the possibility of transmitting prions and murine viruses to transplanted patients. Taking into account this concern, in this present work, we replaced the feeder layer originally composed of murine fibroblasts by human fibroblasts. To obtain this new feeder layer was necessary to standardize the enough irradiation dose to inhibit the replication of human fibroblasts and the verification of effectiveness of the development of keratinocytes culture on a feeder layer thus obtained. According to the obtained results we can verify that the human fibroblasts irradiated at various tested doses (60, 70, 100, 200, 250 and 300 Gy) had their mitotic activity inactivated by irradiation, allowing the use of any of these doses to confection of the feeder layer, since these fibroblasts irradiated still showed viable until fourteen days of cultivation. In the test of colony formation efficiency was observed that keratinocytes seeded on irradiated human fibroblasts were able to develop satisfactorily, preserving their clonogenic potential. Therefore it was possible the replacement of murine fibroblasts by human fibroblasts in confection of the feeder layer, in order to eliminate this xenobiotic component of the keratinocytes culture. (author)

  8. Replacement of murine fibroblasts by human fibroblasts irradiated in obtaining feeder layer for the culture of human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshito, Daniele; Sufi, Bianca S.; Santin, Stefany P.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Altran, Silvana C.; Isaac, Cesar [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Lab. de Microcirurgia Plastica; Esteves-Pedro, Natalia M. [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Ciencias Farmaceuticas. Lab. de Controle Biologico; Herson, Marisa R. [DonorTissue Bank of Victoria (Australia)

    2011-07-01

    Human autologous epithelia cultivated in vitro, have been used successfully in treating damage to skin integrity. The methodology allowed the cultivation of these epithelia was described by Rheinwald and Green in 1975, this methodology consisted in seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate is controlled through the action of ionizing radiation. However, currently there is a growing concern about the possibility of transmitting prions and murine viruses to transplanted patients. Taking into account this concern, in this present work, we replaced the feeder layer originally composed of murine fibroblasts by human fibroblasts. To obtain this new feeder layer was necessary to standardize the enough irradiation dose to inhibit the replication of human fibroblasts and the verification of effectiveness of the development of keratinocytes culture on a feeder layer thus obtained. According to the obtained results we can verify that the human fibroblasts irradiated at various tested doses (60, 70, 100, 200, 250 and 300 Gy) had their mitotic activity inactivated by irradiation, allowing the use of any of these doses to confection of the feeder layer, since these fibroblasts irradiated still showed viable until fourteen days of cultivation. In the test of colony formation efficiency was observed that keratinocytes seeded on irradiated human fibroblasts were able to develop satisfactorily, preserving their clonogenic potential. Therefore it was possible the replacement of murine fibroblasts by human fibroblasts in confection of the feeder layer, in order to eliminate this xenobiotic component of the keratinocytes culture. (author)

  9. Influence on proliferation and adhesion of human gingival fibroblasts from different titanium surface decontamination treatments: An in vitro study.

    Science.gov (United States)

    Cao, Jie; Wang, Tong; Pu, Yinfei; Tang, Zhihui; Meng, Huanxin

    2018-03-01

    To investigate the effects of different decontamination treatments on microstructure of titanium (Ti) surface as well as proliferation and adhesion of human gingival fibroblasts (HGFs). Ti discs with machined (M) and sand blasted, acid etched (SAE) surfaces were treated with five different decontamination treatments: (1) stainless steel curette (SSC), ultrasonic system with (2) straight carbon fiber tip (UCF) or (3) metal tip (UM), (4) rotating Ti brush (RTB), and (5) Er:YAG laser (30 mJ/pulse at 30 Hz). Surface roughness was analyzed under optical interferometry. HGFs were cultured on each disc. Proliferation and adhesive strength were analyzed. qRT-PCR and ELISA were performed to detect the RNA and protein expression of FAK, ITGB1, COL1A1, and FN1 respectively from different Ti surfaces. Surface roughness increased on M surface. Proliferation, adhesive strength and gene expression were higher on M surface than SAE surface. Decontamination treatments affected surface parameters significantly (P < 0.001), making M surface less smooth while SAE surface became less rough. SSC, UCF, UM and RTB decreased proliferation on M surfaces significantly (P < 0.05). UCF, RTB and laser increased proliferation on SAE surface significantly (P < 0.05). UM decreased adhesive strength on M surface significantly and laser increased adhesive strength on SAE surface significantly (P < 0.05). Gene expression increased with time and was altered by decontamination treatments significantly (P < 0.001). Decontamination treatments influence surface roughness and cell behavior of HGFs. Laser might be an optimal decontamination treatment which has the least negative effect on M surface and the most positive effect on SAE surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In vitro blood and fibroblast responses to BisGMA-TEGDMA/bioactive glass composite implants.

    Science.gov (United States)

    Abdulmajeed, Aous A; Kokkari, Anne K; Käpylä, Jarmo; Massera, Jonathan; Hupa, Leena; Vallittu, Pekka K; Närhi, Timo O

    2014-01-01

    This in vitro study was designed to evaluate both blood and human gingival fibroblast responses to bisphenol A-glycidyl methacrylate-triethyleneglycol dimethacrylate (BisGMA-TEGDMA)/bioactive glass (BAG) composite, aimed to be used as composite implant abutment surface modifier. Three different types of substrates were investigated: (a) plain polymer (BisGMA 50 wt%-TEGDMA 50 wt%), (b) BAG-composite (50 wt% polymer + 50 wt% fraction of BAG-particles, <50 μm), and (c) plain BAG plates (100 wt% BAG). The blood response, including the blood-clotting ability and platelet adhesion morphology were evaluated. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 10 days, then the cell proliferation rate was assessed using AlamarBlue assay™. The BAG-composite and plain BAG substrates had a shorter clotting time than plain polymer substrates. Platelet activation and aggregation were most extensive, qualitatively, on BAG-composite. Analysis of the normalized cell proliferation rate on the different surfaces showed some variations throughout the experiment, however, by day 10 the BAG-composite substrate showed the highest (P < 0.001) cell proliferation rate. In conclusion, the presence of exposed BAG-particles enhances fibroblast and blood responses on composite surfaces in vitro.

  11. Ultrastructural evaluation of gingival connective tissue in hereditary gingival fibromatosis.

    Science.gov (United States)

    Pêgo, Sabina Pena B; de Faria, Paulo Rogério; Santos, Luis Antônio N; Coletta, Ricardo D; de Aquino, Sibele Nascimento; Martelli-Júnior, Hercílio

    2016-07-01

    To describe the ultrastructural features of hereditary gingival fibromatosis (HGF) in affected family members and compare microscopic findings with normal gingival (NG) tissue. Gingival tissue samples from nine patients with HGF from five unrelated families were evaluated by transmission electron microscopy. Nine NG tissue samples were used for comparison. Areas containing collagen fibrils forming loops and folds were observed in both groups, whereas oxytalan fibers were frequently identified in the HGF group. The diameter of collagen fibrils and the interfibrillar space among them were more uniform in the NG group than in the HGF group. Fibroblasts were the most common cells found in both the HGF and NG groups and exhibited enlarged, rough endoplasmic reticulum, mitochondria with well-preserved crests, conspicuous nucleoli, and euchromatic chromatin. Other cells, such as mast cells, plasma cells, and macrophages, were also observed. HGF tissues had ultrastructural characteristics that were very similar to those of NG tissues. Oxytalan fibers were observed more frequently in the HGF samples than in the NG samples. Other studies of HGF in patients from different families should be performed to better understand the pathogenesis of this hereditary condition. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Changes in Gingival Crevicular Fluid Inflammatory Mediator Levels during the Induction and Resolution of Experimental Gingivitis in Humans

    Science.gov (United States)

    Offenbacher, Steven; Barros, Silvana; Mendoza, L; Mauriello, S; Preisser, J; Moss, K; de Jager, Marko; Aspiras, Marcelo

    2010-01-01

    Aim The goal of this study is to characterize the changes in 33 biomarkers within the gingival crevicular fluid during the 3-week induction and 4-week resolution of stent-induced, biofilm overgrowth mediated, experimental gingivitis in humans. Methods Experimental gingivitis was induced in 25 subjects for 21 days followed by treatment with a sonic powered toothbrush for 28 days. Clinical indices and gingival crevicular fluids were collected weekly during induction and biweekly during resolution. Samples were analyzed using a bead-based multiplexing analysis for the simultaneous measurements of 33 biomarkers within each sample including cytokines, matrix-metalloproteinases and adipokines. Prostaglandin-E2 was measured by enzyme-linked immunoadsorbant assay. Statistical testing using general linear models with structured covariance matrices were performed to compare stent to contralateral (non-stent) changes in clinical signs and in biomarker levels over time. Results Gingivitis induction was associated with a significant 2.6-fold increase in interleukin 1-beta, a 3.1 fold increase in interleukin 1-alpha, and a significant decrease in multiple chemokines as well as matrixmetalloproteinases −1, −3 and 13. All changes in clinical signs and mediators rebounded to baseline in response to treatmentin the resolution phase. Conclusions Stent-induced gingivitis is associated with marked, but reversible increases in interleukins 1-alpha and 1-beta with suppression of multiple chemokines as well as selected matrixmetalloproteinases. PMID:20447255

  13. Inducible expression of A Disintegrin and Metalloproteinase 8 in chronic periodontitis and gingival epithelial cells.

    Science.gov (United States)

    Aung, W P P; Chotjumlong, P; Pata, S; Montreekachon, P; Supanchart, C; Khongkhunthian, S; Sastraruji, T; Krisanaprakornkit, S

    2017-06-01

    The expression of A Disintegrin and Metalloproteinase 8 (ADAM8) is associated with several inflammatory diseases. Elevated ADAM8 levels have been shown in gingival crevicular fluid of patients with chronic periodontitis. The objective of this study was to investigate ADAM8 expression in chronic periodontitis tissues compared with that in normal tissues. ADAM8 expression and its inductive mechanism were examined in human gingival epithelial cells (HGECs) and human gingival fibroblasts. Total RNA and protein were extracted from gingival biopsies of 33 patients with chronic periodontitis and those of 23 healthy volunteers. ADAM8 mRNA and protein expression was analyzed by real-time polymerase chain reaction, immunoblotting and immunohistochemistry. ADAM8 expression in control and stimulated cells in the presence or absence of specific inhibitors for mitogen-activated protein kinase pathways was assayed by real-time polymerase chain reaction, immunoblotting, flow cytometry and immunofluorescence. ADAM8 mRNA and protein expression in chronic periodontitis tissues was significantly greater than that in normal tissues (p chronic periodontitis tissues (p chronic periodontitis tissues and localized within gingival epithelium, consistent with an upregulation of ADAM8 expression in F. nucleatum-stimulated HGECs, suggesting a possible role of ADAM8 in innate immunity of periodontal tissue. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Peroxisome proliferator-activated receptor δ inhibits Porphyromonas gingivalis lipopolysaccharide-induced activation of matrix metalloproteinase-2 by downregulating NADPH oxidase 4 in human gingival fibroblasts.

    Science.gov (United States)

    Yoo, T; Ham, S A; Hwang, J S; Lee, W J; Paek, K S; Oh, J W; Kim, J H; Do, J T; Han, C W; Kim, J H; Seo, H G

    2016-10-01

    We investigated the roles of peroxisome proliferator-activated receptor δ (PPARδ) in Porphyromonas gingivalis-derived lipopolysaccharide (Pg-LPS)-induced activation of matrix metalloproteinase 2 (MMP-2). In human gingival fibroblasts (HGFs), activation of PPARδ by GW501516, a specific ligand of PPARδ, inhibited Pg-LPS-induced activation of MMP-2 and generation of reactive oxygen species (ROS), which was associated with reduced expression of NADPH oxidase 4 (Nox4). These effects were significantly smaller in the presence of small interfering RNA targeting PPARδ or the specific PPARδ inhibitor GSK0660, indicating that PPARδ is involved in these events. In addition, modulation of Nox4 expression by small interfering RNA influenced the effect of PPARδ on MMP-2 activity, suggesting a mechanism in which Nox4-derived ROS modulates MMP-2 activity. Furthermore, c-Jun N-terminal kinase and p38, but not extracellular signal-regulated kinase, mediated PPARδ-dependent inhibition of MMP-2 activity in HGFs treated with Pg-LPS. Concomitantly, PPARδ-mediated inhibition of MMP-2 activity was associated with the restoration of types I and III collagen to levels approaching those in HGFs not treated with Pg-LPS. These results indicate that PPARδ-mediated downregulation of Nox4 modulates cellular redox status, which in turn plays a critical role in extracellular matrix homeostasis through ROS-dependent regulation of MMP-2 activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Gingival tissue transcriptomes in experimental gingivitis

    Science.gov (United States)

    Jönsson, Daniel; Ramberg, Per; Demmer, Ryan T.; Kebschull, Moritz; Dahlén, Gunnar; Papapanou, Panos N.

    2012-01-01

    Aims We investigated the sequential gene expression in the gingiva during the induction and resolution of experimental gingivitis. Methods Twenty periodontally and systemically healthy non-smoking volunteers participated in a 3-week experimental gingivitis protocol, followed by debridement and 2-week regular plaque control. We recorded clinical indices and harvested gingival tissue samples from 4 interproximal palatal sites in half of the participants at baseline, Day 7, 14 and 21 (‘induction phase’), and at day 21, 25, 30 and 35 in the other half (‘resolution phase’). RNA was extracted, amplified, reversed transcribed, amplified, labeled and hybridized with Affymetrix Human Genome U133Plus2.0 microarrays. Paired t-tests compared gene expression changes between consecutive time points. Gene ontology analyses summarized the expression patterns into biologically relevant categories. Results The median gingival index was 0 at baseline, 2 at Day 21 and 1 at Day 35. Differential gene regulation peaked during the third week of induction and the first four days of resolution. Leukocyte transmigration, cell adhesion and antigen processing/presentation were the top differentially regulated pathways. Conclusions Transcriptomic studies enhance our understanding of the pathobiology of the reversible inflammatory gingival lesion and provide a detailed account of the dynamic tissue responses during induction and resolution of experimental gingivitis. PMID:21501207

  16. Transcriptome profiling analysis of senescent gingival fibroblasts in response to Fusobacterium nucleatum infection.

    Directory of Open Access Journals (Sweden)

    Sun-Hee Ahn

    Full Text Available Periodontal disease is caused by dental plaque biofilms. Fusobacterium nucleatum is an important periodontal pathogen involved in the development of bacterial complexity in dental plaque biofilms. Human gingival fibroblasts (GFs act as the first line of defense against oral microorganisms and locally orchestrate immune responses by triggering the production of reactive oxygen species and pro-inflammatory cytokines (IL-6 and IL-8. The frequency and severity of periodontal diseases is known to increase in elderly subjects. However, despite several studies exploring the effects of aging in periodontal disease, the underlying mechanisms through which aging affects the interaction between F. nucleatum and human GFs remain unclear. To identify genes affected by infection, aging, or both, we performed an RNA-Seq analysis using GFs isolated from a single healthy donor that were passaged for a short period of time (P4 'young GFs' or for longer period of time (P22 'old GFs', and infected or not with F. nucleatum. Comparing F. nucleatum-infected and uninfected GF(P4 cells the differentially expressed genes (DEGs were involved in host defense mechanisms (i.e., immune responses and defense responses, whereas comparing F. nucleatum-infected and uninfected GF(P22 cells the DEGs were involved in cell maintenance (i.e., TGF-β signaling, skeletal development. Most DEGs in F. nucleatum-infected GF(P22 cells were downregulated (85% and were significantly associated with host defense responses such as inflammatory responses, when compared to the DEGs in F. nucleatum-infected GF(P4 cells. Five genes (GADD45b, KLF10, CSRNP1, ID1, and TM4SF1 were upregulated in response to F. nucleatum infection; however, this effect was only seen in GF(P22 cells. The genes identified here appear to interact with each other in a network associated with free radical scavenging, cell cycle, and cancer; therefore, they could be potential candidates involved in the aged GF's response to F

  17. Behavior of Gingival Fibroblasts on Titanium Implant Surfaces in Combination with either Injectable-PRF or PRP

    Directory of Open Access Journals (Sweden)

    Xuzhu Wang

    2017-02-01

    Full Text Available Various strategies have been employed to speed tissue regeneration using bioactive molecules. Interestingly, platelet concentrates derived from a patient’s own blood have been utilized as a regenerative strategy in recent years. In the present study, a novel liquid platelet formulation prepared without the use of anti-coagulants (injectable-platelet-rich fibrin, i-PRF was compared to standard platelet-rich plasma (PRP with gingival fibroblasts cultured on smooth and roughened titanium implant surfaces. Standard PRP and i-PRF (centrifuged at 700 rpm (60× g for 3 min were compared by assays for fibroblast biocompatibility, migration, adhesion, proliferation, as well as expression of platelet-derived growth factor (PDGF, transforming growth factor-β (TGF-β, collagen1 (COL1 and fibronectin (FN. The results demonstrate that i-PRF induced significantly higher cell migration, as well as higher messenger RNA (mRNA levels of PDGF, TGF-β, collagen1 and fibronectin when compared to PRP. Furthermore, collagen1 synthesis was highest in the i-PRF group. These findings demonstrate that liquid platelet concentrates can be formulated without the use of anticoagulants and present much translational potential for future research. Future animal and clinical trials are now necessary to further investigate the potential of utilizing i-PRF for soft tissue regenerative protocols in combination with various biomaterials.

  18. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissues regeneration.

    Science.gov (United States)

    Kaufman, Gili; Whitescarver, Ryan; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek

    2017-10-09

    Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by imageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within 3 days of incubation, fibroblast spheroids interacted with the fibers and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for

  19. Effects of protein-coated nanofibers on conformation of gingival fibroblast spheroids: potential utility for connective tissue regeneration.

    Science.gov (United States)

    Kaufman, Gili; Whitescarver, Ryan A; Nunes, Laiz; Palmer, Xavier-Lewis; Skrtic, Drago; Tutak, Wojtek

    2018-01-24

    Deep wounds in the gingiva caused by trauma or surgery require a rapid and robust healing of connective tissues. We propose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels of specific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature of dense and soft connective tissues. Gingival fibroblast monolayers and 3D spheroids were cultured on ECM substrate and covered with gas-blown poly-(DL-lactide-co-glycolide) (PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed by F-actin staining and confocal microscopy. Thicknesses of the cell layers, developed within the nanofibers, were quantified by ImageJ software. The expression of collagen1α1 chain (Col1α1), fibronectin, and metalloproteinase 2 (MMP2) encoding genes was determined by quantitative reverse transcription analysis. Collagen- and fibrin- coated nanofibers induced cell migration toward fibers and supported cellular growth within the scaffolds. Both proteins affected the spatial rearrangement of fibroblasts by favoring packed cell clusters or intermittent cell spreading. These cell arrangements resembled the structural characteristic of dense and soft connective tissues, respectively. Within three days of incubation, fibroblast spheroids interacted with the fibers, and grew robustly by increasing their thickness compared to monolayers. While the ECM key components, such as fibronectin and MMP2 encoding genes, were expressed in both protein groups, Col1α1 was predominantly expressed in bundled fibroblasts grown on collagen fibers. This enhanced expression of collagen1 is typical for dense connective tissue. Based on results of this study, our gas-blown, collagen- and fibrin-coated PLGA nanofibers are viable candidates for

  20. Chromosome aberration induction in human diploid fibroblast and epithelial cells

    International Nuclear Information System (INIS)

    Scott, D.

    1986-01-01

    The relative sensitivity of cultured human fibroblasts and epithelial cells to radiation-induced chromosomal aberrations was investigated. Lung fibroblast and kidney epithelial cells from the same fetus were compared, as were skin fibroblasts and epithelial keratinocytes from the same foreskin sample. After exposure of proliferating fetal cells to 1.5 Gy X-rays there was a very similar aberration yield in the fibroblasts and epithelial cells. Observations of either little or no difference in chromosomal sensitivity between human fibroblasts and epithelial cells give added confidence that quantitative cytogenetic data obtained from cultured fibroblasts are relevant to the question of sensitivity of epithelial cells which are the predominant cell type in human cancers. (author)

  1. Effects of LP-MOCVD prepared TiO2 thin films on the in vitro behavior of gingival fibroblasts

    International Nuclear Information System (INIS)

    Cimpean, Anisoara; Popescu, Simona; Ciofrangeanu, Cristina M.; Gleizes, Alain N.

    2011-01-01

    We report on the in vitro response of human gingival fibroblasts (HGF-1 cell line) to various thin films of titanium dioxide (TiO 2 ) deposited on titanium (Ti) substrates by low pressure metal-organic chemical vapor deposition (LP-MOCVD). The aim was to study the influence of film structural parameters on the cell behavior comparatively with a native-oxide covered titanium specimen, this objective being topical and interesting for materials applications in implantology. HGF-1 cells were cultured on three LP-MOCVD prepared thin films of TiO 2 differentiated by their thickness, roughness, transversal morphology, allotropic composition and wettability, and on a native-oxide covered Ti substrate. Besides traditional tests of cell viability and morphology, the biocompatibility of these materials was evaluated by fibronectin immunostaining, assessment of cell proliferation status and the zymographic evaluation of gelatinolytic activities specific to matrix metalloproteinases secreted by cells grown in contact with studied specimens. The analyzed surfaces proved to influence fibronectin fibril assembly, cell proliferation and capacity to degrade extracellular matrix without considerably affecting cell viability and morphology. The MOCVD of TiO 2 proved effective in positively modifying titanium surface for medical applications. Surface properties playing a crucial role for cell behavior were the wettability and, secondarily, the roughness, HGF-1 cells preferring a moderately rough and wettable TiO 2 coating.

  2. Cytotoxicity of dental composite (co)monomers and the amalgam component Hg{sup 2+} in human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Reichl, Franz-Xaver; Simon, Sabine; Esters, Magalie; Seiss, Mario [Ludwig-Maximilians-University of Munich, Walther-Straub-Institute of Pharmacology and Toxicology, Munich (Germany); Kehe, Kai [Bundeswehr Institute of Pharmacology and Toxicology, Munich (Germany); Kleinsasser, Norbert [University of Regensburg, Department of Otolaryngology - Head and Neck Surgery, Regensburg (Germany); Hickel, Reinhard [Ludwig-Maximilians-University, Department of Operative Dentistry and Periodontology, Munich (Germany)

    2006-08-15

    Unpolymerized resin (co)monomers or mercury (Hg) can be released from restorative dental materials (e.g. composites and amalgam). They can diffuse into the tooth pulp or the gingiva. They can also reach the gingiva and organs by the circulating blood after the uptake from swallowed saliva. The cytotoxicity of dental composite components hydroxyethylmethacrylate (HEMA), triethyleneglycoldimethacrylate (TEGDMA), urethanedimethacrylate (UDMA), and bisglycidylmethacrylate (Bis-GMA) as well as the amalgam component Hg{sup 2+} (as HgCl{sub 2}) and methyl mercury chloride (MeHgCl) was investigated on human gingival fibroblasts (HGFs) at two time intervals. To test the cytotoxicity of substances, the bromodeoxyuridine (BrdU) assay and the lactate dehydrogenase (LDH) assay were used. The test substances were added in various concentrations and cells were incubated for 24 or 48 h. The EC{sub 50} values were obtained as half-maximum-effect concentrations from fitted curves. Following EC{sub 50} values were found [BrdU: mean (mmol/l); SEM in parentheses; n=12]: (24 h/48 h) HEMA 8.860 (0.440)/6.600(0.630), TEGDMA 1.810(0.130)/1.220(0.130), UDMA 0.120(0.010)/0.140(0.010), BisGMA 0.060(0.004)/0.040(0.002), HgCl{sub 2} 0.015(0.001)/0.050(0.006), and MeHgCl 0.004(0.001)/0.005(0.001). Following EC{sub 50} values were found [LDH: mean (mmol/l); SEM in parentheses; n=12]: (24 h/48 h) HEMA 9.490(0.300)/7.890(1.230), TEGDMA 2.300(0.470)/1.950(0.310), UDMA 0.200(0.007)/0.100(0.007), BisGMA 0.070(0.005)/0.100(0.002), and MeHgCl 0.014(0.006)/0.010(0.003). In both assays, the following range of increased toxicity was found for composite components (24 and 48 h): HEMA < TEGDMA < UDMA < BisGMA. In both assays, MeHgCl was the most toxic substance. In the BrdU assay, Hg{sup 2+} was about fourfold less toxic than MeHgCl but Hg{sup 2+} was about fourfold more toxic than BisGMA. In the BrdU test, a significantly (P<0.05) decreased toxicity was observed for Hg{sup 2+} at 48 h, compared to the 24 h

  3. Human Memory B Cells in Healthy Gingiva, Gingivitis, and Periodontitis.

    Science.gov (United States)

    Mahanonda, Rangsini; Champaiboon, Chantrakorn; Subbalekha, Keskanya; Sa-Ard-Iam, Noppadol; Rattanathammatada, Warattaya; Thawanaphong, Saranya; Rerkyen, Pimprapa; Yoshimura, Fuminobu; Nagano, Keiji; Lang, Niklaus P; Pichyangkul, Sathit

    2016-08-01

    The presence of inflammatory infiltrates with B cells, specifically plasma cells, is the hallmark of periodontitis lesions. The composition of these infiltrates in various stages of homeostasis and disease development is not well documented. Human tissue biopsies from sites with gingival health (n = 29), gingivitis (n = 8), and periodontitis (n = 21) as well as gingival tissue after treated periodontitis (n = 6) were obtained and analyzed for their composition of B cell subsets. Ag specificity, Ig secretion, and expression of receptor activator of NF-κB ligand and granzyme B were performed. Although most of the B cell subsets in healthy gingiva and gingivitis tissues were CD19(+)CD27(+)CD38(-) memory B cells, the major B cell component in periodontitis was CD19(+)CD27(+)CD38(+)CD138(+)HLA-DR(low) plasma cells, not plasmablasts. Plasma cell aggregates were observed at the base of the periodontal pocket and scattered throughout the gingiva, especially apically toward the advancing front of the lesion. High expression of CXCL12, a proliferation-inducing ligand, B cell-activating factor, IL-10, IL-6, and IL-21 molecules involved in local B cell responses was detected in both gingivitis and periodontitis tissues. Periodontitis tissue plasma cells mainly secreted IgG specific to periodontal pathogens and also expressed receptor activator of NF-κB ligand, a bone resorption cytokine. Memory B cells resided in the connective tissue subjacent to the junctional epithelium in healthy gingiva. This suggested a role of memory B cells in maintaining periodontal homeostasis. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. The effect of nickel as a nickel chromium restoration corrosion product on gingival fibroblast through analysis of BCl-2

    Directory of Open Access Journals (Sweden)

    FX Ady Soesetijo

    2012-12-01

    Full Text Available Background: Restoration of NiCr may undergo corrosion process in artificial saliva. Corrosion product is soluble Ni substances in salivary electrolytes. Ni2+ may freely enter the cells through passive transport DMT-1. Ni2+ in the cell causes initiation of the ROS formation,which subsequently can conduct the redoxs reactions leading to DNA damage. The damage DNA affects the genetic expression, especially bcl-2, and even triggers apoptosis. Purpose: The aim of this study was to reveal the mechanism of Ni toxicity as a corrosion product of NiCr restoration on gingival fibroblasts through expression analysis of Bcl-2. Methods: Cells with a density of 105 planted on each coverslip in 72 wells to the treatment group and 24 wells to the control group (24 hours incubation. In the treatment groups, each well exposed with 20 μL artificial saliva containing Ni concentration results immerse each restoration, whereas the control group was exposed to 20 μL artificial saliva (incubation 1, 3, and 7 days. The data collected were subsequently analyzed using two-ways ANOVA, followed by one-way ANOVA. Comparing between experimental groups after one-way ANOVA was conducted using Fisher’s LSD. Whereas, the calculation and documentation of Bcl-2 expression was performed camera of Olympus Microscope BX-50 Japan. Results: Statistical analysis of two-ways ANOVA showed the presence of interaction between the increasing Ni concentration and exposure duration on the expression of Bcl-2 gingival fibroblasts (p=0.021gingival fibroblasts, and the longer incubation time will decreased Bcl-2 expression.Latar belakang: Restorasi NiCr dapat mengalami proses korosi di dalam saliva artificial. Produk korosi yang dihasilkan adalah substansi Ni yang terlarut di dalam elektrolit saliva. Ni2+ bebas dapat memasuki sel (fibroblas gingiva melalui transport pasif DMT-1. Ni2+ di dalam sel

  5. A titanium surface with nano-ordered spikes and pores enhances human dermal fibroblastic extracellular matrix production and integration of collagen fibers

    International Nuclear Information System (INIS)

    Yamada, Masahiro; Kato, Eiji; Sakurai, Kaoru; Yamamoto, Akiko

    2016-01-01

    The acquisition of substantial dermal sealing determines the prognosis of percutaneous titanium-based medical devices or prostheses. A nano-topographic titanium surface with ordered nano-spikes and pores has been shown to induce periodontal-like connective tissue attachment and activate gingival fibroblastic functions. This in vitro study aimed to determine whether an alkali-heat (AH) treatment-created nano-topographic titanium surface could enhance human dermal fibroblastic functions and binding strength to the deposited collagen on the titanium surface. The surface topographies of commercially pure titanium machined discs exposed to two different AH treatments were evaluated. Human dermal fibroblastic cultures grown on the discs were evaluated in terms of cellular morphology, proliferation, extracellular matrix (ECM) and proinflammatory cytokine synthesis, and physicochemical binding strength of surface-deposited collagen. An isotropically-patterned, shaggy nano-topography with a sponge-like inner network and numerous well-organized, anisotropically-patterned fine nano-spikes and pores were observed on each nano-topographic surface type via scanning electron microscopy. In contrast to the typical spindle-shaped cells on the machined surfaces, the isotropically- and anisotropically-patterned nano-topographic titanium surfaces had small circular/angular cells containing contractile ring-like structures and elongated, multi-shaped cells with a developed cytoskeletal network and multiple filopodia and lamellipodia, respectively. These nano-topographic surfaces enhanced dermal-related ECM synthesis at both the protein and gene levels, without proinflammatory cytokine synthesis or reduced proliferative activity. Deposited collagen fibers were included in these surfaces and sufficiently bound to the nano-topographies to resist the physical, enzymatic and chemical detachment treatments, in contrast to machined surfaces. Well-organized, isotropically

  6. Human diploid fibroblasts have receptors for the globular domain of C1Q

    International Nuclear Information System (INIS)

    Bordin, S.; Page, R.C.

    1986-01-01

    The authors showed that mass cultures of fibroblasts grown from gingival explants in DB medium with 10% human serum are enriched in a phenotype that binds C1q with an affinity much higher than the rest of the population. Because of potential biologic importance of C1q receptors, the authors studied whether the interaction between C1q and this phenotype was mediated by the globular or collagenous domains of the molecule. Globular fragments were prepared by digesting C1q with collagenase, and collagenous fragments obtained after pepsin treatment. C1q binding on cells in suspension was determined by reaction with 125 I-C1q as reported. Competition experiments were performed under conditions in which intact 125 I-C1q binding saturated all available receptors. The results showed that collagenous fragments inhibited 20% of the 125 I-C1q binding to high affinity receptors, whereas inhibition by globular fragments was 70%. Unlabeled intact C1q and collagen type 1 were used as controls, and inhibited 92% and 17% of C1q binding, respectively. These studies show that C1q interacts with the fibroblast phenotype expressing high affinity receptors through its globular domain. The authors suggest that at sites of trauma, native C1 may bind to the surface of these cells via the globular domain of C1q, and that this unique phenotype may play an important role in tissue repair

  7. Gingival pigmentation beneath a metallic crown

    International Nuclear Information System (INIS)

    Sakai, T.; Hirayasu, R.; Sakai, H.; Hashimoto, N.

    1988-01-01

    Light and electron microscopic studies and energy dispersive X-ray analysis disclosed that the essential cause of gingival discoloration following the placement of a metallic crown, was marked deposition of melanin pigment. Deposition of melanin pigment was observed in epithelial cells, on basement membranes, and in fibroblasts, macrophages and among intercellular ground substance of the proprial layer. Brown or dark brown colored granules were observed in the deep portion of the proprial layer. Some metallic elements as silver and sulfur were detected. It was presumed that these materials were dental metals accidentally implanted in gingival tissues during the therapeutic procedure. The deposition of melanin pigment closely corresponded with mucosal tissue where these materials were present in the deep portion of the proprial layer. These findings suggested that these materials influenced the physiological metabolism of melanin and induced its pathological deposition in the proprial tissue. (author)

  8. Cytokine and matrix metalloproteinase expression in fibroblasts from peri-implantitis lesions in response to viable Porphyromonas gingivalis

    NARCIS (Netherlands)

    Irshad, M.; Scheres, N.; Anssari Moin, D.; Crielaard, W.; Loos, B.G.; Wismeijer, D.; Laine, M.L.

    2013-01-01

    Background and Objective To assess inflammatory reactions of fibroblasts in the pathophysiology of peri-implantitis, we compared the pro-inflammatory and matrix-degrading responses of gingival and granulation tissue fibroblasts from periodontally healthy controls, peri-implantitis, and periodontitis

  9. Microprobe analysis of human fibroblasts

    International Nuclear Information System (INIS)

    Allan, G.L.; Zhu, J.; Legge, G.J.F.

    1985-01-01

    The Melbourne Proton Microprobe has been used to study the copper content in human skin fibroblast cells derived from patients with the genetic disease Menkes Syndrome. Both normal and diseased cells have been studied to investigate any elemental differences occurring between the two cell types. This paper details the preparatory techniques necessary for individual cell analysis and presents the elemental information with a new three dimensional contour mapping technique. These maps are used to highlight elemental differences between normal and mutant fibroblasts. The work also confirms the expected copper excess found in the Menkes cell and indicates that the microprobe can be used for rapid identification of a Menkes carrier

  10. Class I and II histone deacetylase expression in human chronic periodontitis gingival tissue.

    Science.gov (United States)

    Cantley, M D; Dharmapatni, A A S S K; Algate, K; Crotti, T N; Bartold, P M; Haynes, D R

    2016-04-01

    Histone deacetylase inhibitors (HDACi) are being considered to treat chronic inflammatory diseases at low doses. Currently HDACi that are more specific are being developed to target particular HDACs; therefore, this study aimed to determine levels and distribution of class I and II HDAC in human gingival samples obtained from patients with chronic periodontitis. Gingival biopsies were obtained from patients with and without (mild inflammation, no bone loss) periodontitis. Total RNA was isolated for real-time quantitative polymerase chain reaction to determine expression of HDACs 1-10. Immunohistochemistry was used to determine protein distribution of HDACs 1, 5, 8 and 9. Factor VIII, CD3 and tartrate resistant acid phosphatase (TRAP) were detected in serial sections to identify blood vessels, lymphocytes, pre-osteoclasts and osteoclasts cells respectively. Tumour necrosis factor α (TNF-α) expression was also assessed. mRNA for HDAC 1, 5, 8 and 9 were significantly upregulated in chronic periodontitis gingival tissues compared to non-periodontitis samples (p chronic periodontitis samples (p chronic periodontitis gingival tissues. HDAC 1, 5, 8 and 9 expression was higher in gingival tissues from patients with chronic periodontitis compared to non-periodontitis samples. Results suggest that these HDACs could therefore be targeted with specific acting HDACi. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Radiosensitivity in cultured human fibroblasts

    International Nuclear Information System (INIS)

    Cox, R.; Masson, W.K.

    1980-01-01

    Caution is urged in the use of freshly isolated cultures of human diploid fibroblasts for quantitative studies of radiosensitivity. The distribution of x ray sensitivities of 'normal' human fibroblast cultures of foetal origin (10 subjects, skin or lung biopsy) and post-foetal origin (34 subjects, skin biopsy) are compared with the distribution in 12 patients with ataxia telangiectasia (probability of including any one of these in a normal post-foetal distribution is 0.01%). Cultures from nominally normal subjects showed a broad distribution of D 0 range of 98 +- 160 rad and assuming normal distribution, a mean +- one standard deviation of 122 +- 17 rad. Mean D 0 values for foetal origin cultures were 117 +- 12; values for post-foetal cultures D 0 were 124 +- 18. No systematic variation in D 0 was observed for age of donor, number of cell divisions in culture or for cloning efficiency. For ataxia telangiectasia D 0 values were 46 +- 7 rad. (U.K.)

  12. Elastin hydrolysate derived from fish enhances proliferation of human skin fibroblasts and elastin synthesis in human skin fibroblasts and improves the skin conditions.

    Science.gov (United States)

    Shiratsuchi, Eri; Nakaba, Misako; Yamada, Michio

    2016-03-30

    Recent studies have shown that certain peptides significantly improve skin conditions, such as skin elasticity and the moisture content of the skin of healthy woman. This study aimed to investigate the effects of elastin hydrolysate on human skin. Proliferation and elastin synthesis were evaluated in human skin fibroblasts exposed to elastin hydrolysate and proryl-glycine (Pro-Gly), which is present in human blood after elastin hydrolysate ingestion. We also performed an ingestion test with elastin hydrolysate in humans and evaluated skin condition. Elastin hydrolysate and Pro-Gly enhanced the proliferation of fibroblasts and elastin synthesis. Maximal proliferation response was observed at 25 ng mL(-1) Pro-Gly. Ingestion of elastin hydrolysate improved skin condition, such as elasticity, number of wrinkles, and blood flow. Elasticity improved by 4% in the elastin hydrolysate group compared with 2% in the placebo group. Therefore, elastin hydrolysate activates human skin fibroblasts and has beneficial effects on skin conditions. © 2015 Society of Chemical Industry.

  13. Human fibroblasts display a differential focal adhesion phenotype relative to chimpanzee.

    Science.gov (United States)

    Advani, Alexander S; Chen, Annie Y; Babbitt, Courtney C

    2016-01-01

    There are a number of documented differences between humans and our closest relatives in responses to wound healing and in disease susceptibilities, suggesting a differential cellular response to certain environmental factors. In this study, we sought to look at a specific cell type, fibroblasts, to examine differences in cellular adhesion between humans and chimpanzees in visualized cells and in gene expression. We have found significant differences in the number of focal adhesions between primary human and chimpanzee fibroblasts. Additionally, we see that adhesion related gene ontology categories are some of the most differentially expressed between human and chimpanzee in normal fibroblast cells. These results suggest that human and chimpanzee fibroblasts may have somewhat different adhesive properties, which could play a role in differential disease phenotypes and responses to external factors. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  14. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    International Nuclear Information System (INIS)

    Story, M.T.

    1989-01-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue

  15. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations.

    Science.gov (United States)

    Philippeos, Christina; Telerman, Stephanie B; Oulès, Bénédicte; Pisco, Angela O; Shaw, Tanya J; Elgueta, Raul; Lombardi, Giovanna; Driskell, Ryan R; Soldin, Mark; Lynch, Magnus D; Watt, Fiona M

    2018-04-01

    Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Increased expression of C-reactive protein gene in inflamed gingival tissues could be derived from endothelial cells stimulated with interleukin-6.

    Science.gov (United States)

    Maekawa, Tomoki; Tabeta, Koichi; Kajita-Okui, Keiko; Nakajima, Takako; Yamazaki, Kazuhisa

    2011-11-01

    Epidemiological studies have suggested periodontitis as a risk factor for ischemic heart disease. High sensitive C-reactive protein (hs-CRP), a predictor of cardiovascular risk, is elevated in periodontitis patients. Therefore, local infection-induced elevation of systemic CRP could account for the relationship between the 2 diseases. However, the underlying mechanism of CRP production in the periodontal tissues has not been fully elucidated. Therefore, the aim of the present study was to clarify the mechanism of CRP production in periodontal tissues. Gene expression of CRP in gingival biopsies was analysed by quantitative PCR. Human gingival epithelial cells (HGECs), human gingival fibroblasts (HGFBs), and human coronary artery endothelial cells (HCAECs) were characterized for CRP-producing ability by incubating with interleukin (IL)-1β, IL-6, soluble IL-6 receptor (sIL-6R), and Porphyromonas gingivalis strain W83. Gene expression of CRP is significantly elevated in periodontitis lesions compared with gingivitis lesions. HCAECs, but not HGECs and HGFBs, produced CRP in response to IL-6 and IL-1β in the presence of sIL-6R. In contrast to IL-6, the effect of IL-1β on CRP production was indirect via induction of IL-6. IL-1β was produced by HGECs and HGFBs with stimulation of P. gingivalis antigens. These results suggest that CRP induced locally by periodontal infection may play another role in the pathogenesis of periodontal disease, and to a much lesser extent, has the potential to modulate systemic CRP level by extra-hepatic CRP production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts.

    Science.gov (United States)

    Gupta, Manoj K; Teo, Adrian Kee Keong; Rao, Tata Nageswara; Bhatt, Shweta; Kleinridders, Andre; Shirakawa, Jun; Takatani, Tomozumi; Hu, Jiang; De Jesus, Dario F; Windmueller, Rebecca; Wagers, Amy J; Kulkarni, Rohit N

    2015-10-01

    The impact of somatic cell proliferation rate on induction of pluripotent stem cells remains controversial. Herein, we report that rapid proliferation of human somatic fibroblasts is detrimental to reprogramming efficiency when reprogrammed using a lentiviral vector expressing OCT4, SOX2, KLF4, and cMYC in insulin-rich defined medium. Human fibroblasts grown in this medium showed higher proliferation, enhanced expression of insulin signaling and cell cycle genes, and a switch from glycolytic to oxidative phosphorylation metabolism, but they displayed poor reprogramming efficiency compared with cells grown in normal medium. Thus, in contrast to previous studies, our work reveals an inverse correlation between the proliferation rate of somatic cells and reprogramming efficiency, and also suggests that upregulation of proteins in the growth factor signaling pathway limits the ability to induce pluripotency in human somatic fibroblasts. The efficiency with which human cells can be reprogrammed is of interest to stem cell biology. In this study, human fibroblasts cultured in media containing different concentrations of growth factors such as insulin and insulin-like growth factor-1 exhibited variable abilities to proliferate, with consequences on pluripotency. This occurred in part because of changes in the expression of proteins involved in the growth factor signaling pathway, glycolysis, and oxidative phosphorylation. These findings have implications for efficient reprogramming of human cells. ©AlphaMed Press.

  18. Gingival Retraction Methods: A Systematic Review.

    Science.gov (United States)

    Tabassum, Sadia; Adnan, Samira; Khan, Farhan Raza

    2017-12-01

    The aim of this systematic review was to assess the gingival retraction methods in terms of the amount of gingival retraction achieved and changes observed in various clinical parameters: gingival index (GI), plaque index (PI), probing depth (PD), and attachment loss (AL). Data sources included three major databases, PubMed, CINAHL plus (Ebsco), and Cochrane, along with hand search. Search was made using the key terms in different permutations of gingival retraction* AND displacement method* OR technique* OR agents OR material* OR medicament*. The initial search results yielded 145 articles which were narrowed down to 10 articles using a strict eligibility criteria of including clinical trials or experimental studies on gingival retraction methods with the amount of tooth structure gained and assessment of clinical parameters as the outcomes conducted on human permanent teeth only. Gingival retraction was measured in 6/10 studies whereas the clinical parameters were assessed in 5/10 studies. The total number of teeth assessed in the 10 included studies was 400. The most common method used for gingival retraction was chemomechanical. The results were heterogeneous with regards to the outcome variables. No method seemed to be significantly superior to the other in terms of gingival retraction achieved. Clinical parameters were not significantly affected by the gingival retraction method. © 2016 by the American College of Prosthodontists.

  19. Chemical Conversion of Human Fibroblasts into Functional Schwann Cells

    Directory of Open Access Journals (Sweden)

    Eva C. Thoma

    2014-10-01

    Full Text Available Direct transdifferentiation of somatic cells is a promising approach to obtain patient-specific cells for numerous applications. However, conversion across germ-layer borders often requires ectopic gene expression with unpredictable side effects. Here, we present a gene-free approach that allows efficient conversion of human fibroblasts via a transient progenitor stage into Schwann cells, the major glial cell type of peripheral nerves. Using a multikinase inhibitor, we transdifferentiated fibroblasts into transient neural precursors that were subsequently further differentiated into Schwann cells. The resulting induced Schwann cells (iSCs expressed numerous Schwann cell-specific proteins and displayed neurosupportive and myelination capacity in vitro. Thus, we established a strategy to obtain mature Schwann cells from human postnatal fibroblasts under chemically defined conditions without the introduction of ectopic genes.

  20. Cyclosporin A promotes mineralization by human cementoblastoma-derived cells in culture.

    Science.gov (United States)

    Arzate, Higinio; Alvarez, Marco A; Narayanan, A Sampath

    2005-06-01

    The immunosuppressive drug cyclosporin A has been shown to induce cementum deposition in vivo in experimental animals. Using cementoblastoma-derived cells, we have studied whether this drug will be useful to study cementum mineralization and differentiation in vitro. Human cementoblastoma cells and gingival fibroblasts (controls) were cultured and treated with 0.5, 1.0 and 5.0 microg/ml of cyclosporin A. Cell proliferation was evaluated by MTT (tetrazolium) assay and cell number, and cell viability was assessed by trypan blue dye exclusion. Induction of mineralization was evaluated by alizarin red S staining to detect mineralized nodules and by reverse transcription-polymerase chain reaction (RT-PCR) to assess the expression of bone differentiation markers alkaline phosphatase, osteocalcin, bone sialoprotein and core-binding factor a1 (Cbfa1). Cyclosporin A at 5.0 microg/ml concentration reduced significantly the increase in the number of cementoblastoma cells. A dose-dependent increase in the number of mineralized nodules occurred in cultures of cementoblastoma-derived cells treated with cyclosporin A, and RT-PCR analyses showed significantly higher levels of expression of alkaline phosphatase, bone sialoprotein, type I collagen, matrix metalloproteinase-1, osteocalcin, osteopontin, and Cbfa1. Human gingival fibroblast proliferation and cell number were not affected. Mineralized nodules were not detected in gingival fibroblasts and bone specific proteins were not expressed. Presence of cyclosporin A during 14-day culture period appears to suppress the proliferation of cementoblastoma cells and induce the formation mineralized-like tissue by these cells.

  1. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  2. Colony size distributions according to in vitro aging in human skin fibroblasts

    International Nuclear Information System (INIS)

    Kim, Jun Sang; Kim, Jae Sung; Cho, Moon June; Park, Jeong Kyu; Paik, Tae Hyun

    1999-01-01

    To investigate the percentage of colonies with 16 or more cells distribution of human skin fibroblast according to in vitro aging, and to evaluate the relationship between percentage of colonies with 16 or more cells and in vivo donor age in human skin fibroblast culture. C1, C2, C3a, and C3b human skin fibroblast samples from three breast cancer patients were used as subjects. The C1, C2, and C3a donor were 44, 54, and 55 years old, respectively. C3a and C3b cells were isolated from the same person. Single cell suspension of skin fibroblasts was prepared with primary explant technique. One hundred cells are plated into 100ml tissue culture flask and cultured for two weeks. The colony size was defined as colonies with 16 or more cells. The cultured cell was stained with crystal violet, and number of cells in each colony was determined with stereo microscope at x 10 magnification. Passage number of C1, C2, C3a and C3b skin fibroblast were 12th, 17th, and 14th, respectively. Percentage of colonies with 16 or more cells of skin fibroblast samples decreased with increasing in vitro passage number. In contrast, cumulative population doublings of skin fibroblast sample increased with increasing in vitro passage number. Percentage of colonies with 16 or more cells also decreased with increasing population doublings in human skin fibroblast culture. There was strong correlation with percentage of colonised with 16 or more cells and population doublings in C3a skin fibroblast sample. At the same point of population doublings, the percentage of colonies with 16 or more cells of the young C1 donor was higher level than the old C3a donor. The population doublings increased with increasing in vitro passage number but percentage of colonies with 16 or more cells decreased. The results of this study imply that percentage of colonies with 16 or more cells is useful as a indicator of in vitro human skin fibroblast aging and may estimate the in vivo donor age

  3. Recombinant Human Acidic Fibroblast Growth Factor (aFGF) Expressed in Nicotiana benthamiana Potentially Inhibits Skin Photoaging.

    Science.gov (United States)

    Ha, Jang-Ho; Kim, Ha-Neul; Moon, Ki-Beom; Jeon, Jae-Heung; Jung, Dai-Hyun; Kim, Su-Jung; Mason, Hugh S; Shin, Seo-Yeon; Kim, Hyun-Soon; Park, Kyung-Mok

    2017-07-01

    Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana . Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana . The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana . The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana -derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli -derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana- derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana -derived recombinant human acidic fibroblast growth factor

  4. Effect of 660 nm Light-Emitting Diode on the Wound Healing in Fibroblast-Like Cell Lines

    Directory of Open Access Journals (Sweden)

    Myung-Sun Kim

    2015-01-01

    Full Text Available Light in the red to near-infrared (NIR range (630–1000 nm, which is generated using low energy laser or light-emitting diode (LED arrays, was reported to have a range of beneficial biological effects in many injury models. NIR via a LED is a well-accepted therapeutic tool for the treatment of infected, ischemic, and hypoxic wounds as well as other soft tissue injuries in humans and animals. This study examined the effects of exposure to 660 nm red LED light at intensities of 2.5, 5.5, and 8.5 mW/cm2 for 5, 10, and 20 min on wound healing and proliferation in fibroblast-like cells, such as L929 mouse fibroblasts and human gingival fibroblasts (HGF-1. A photo illumination-cell culture system was designed to evaluate the cell proliferation and wound healing of fibroblast-like cells exposed to 600 nm LED light. The cell proliferation was evaluated by MTT assay, and a scratched wound assay was performed to assess the rate of migrating cells and the healing effect. Exposure to the 660 nm red LED resulted in an increase in cell proliferation and migration compared to the control, indicating its potential use as a phototherapeutic agent.

  5. Granulocyte macrophage colony stimulating factor (GM-CSF biological actions on human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    S Montagnani

    2009-12-01

    Full Text Available Fibroblasts are involved in all pathologies characterized by increased ExtraCellularMatrix synthesis, from wound healing to fibrosis. Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF is a cytokine isolated as an hemopoietic growth factor but recently indicated as a differentiative agent on endothelial cells. In this work we demonstrated the expression of the receptor for GM-CSF (GMCSFR on human normal skin fibroblasts from healthy subjects (NFPC and on a human normal fibroblast cell line (NHDF and we try to investigate the biological effects of this cytokine. Human normal fibroblasts were cultured with different doses of GM-CSF to study the effects of this factor on GMCSFR expression, on cell proliferation and adhesion structures. In addition we studied the production of some Extra-Cellular Matrix (ECM components such as Fibronectin, Tenascin and Collagen I. The growth rate of fibroblasts from healthy donors (NFPC is not augmented by GM-CSF stimulation in spite of increased expression of the GM-CSFR. On the contrary, the proliferation of normal human dermal fibroblasts (NHDF cell line seems more influenced by high concentration of GM-CSF in the culture medium. The adhesion structures and the ECM components appear variously influenced by GM-CSF treatment as compared to fibroblasts cultured in basal condition, but newly only NHDF cells are really induced to increase their synthesis activity. We suggest that the in vitro treatment with GM-CSF can shift human normal fibroblasts towards a more differentiated state, due or accompanied by an increased expression of GM-CSFR and that such “differentiation” is an important event induced by such cytokine.

  6. Site specific mineral composition and microstructure of human supra-gingival dental calculus.

    Science.gov (United States)

    Hayashizaki, Junko; Ban, Seiji; Nakagaki, Haruo; Okumura, Akihiko; Yoshii, Saori; Robinson, Colin

    2008-02-01

    Dental calculus has been implicated in the aetiology of several periodontal conditions. Its prevention and removal are therefore desirable clinical goals. While it is known that calculus is very variable in chemical composition, crystallinity and crystallite size little is known about site specific variability within a dentition and between individuals. With this in mind, a study was undertaken to investigate the comparative site specific nature and composition of human dental supra-gingival dental calculus obtained from 66 male patients visiting for their dental check-up using fluorescent X-ray spectroscopy, X-ray diffractometry and Fourier transform infrared spectroscopy. The supra-gingival dental calculus formed on the lingual surfaces of lower anterior teeth and the buccal surfaces of upper molar teeth were classified into four types based on calcium phosphate phases present. There was significant difference in composition of the crystal phase types between lower and upper teeth (pdental calculus on anterior or molar teeth of all samples. The degree of crystallinity of dental calculus formed on the upper molar teeth was higher than that formed on the lower anterior teeth (pdental calculus formed on the lower anterior teeth were higher than on upper molar teeth (pdental supra-gingival dental calculus is related to its location in the mouth.

  7. Effects of recombinant human epidermal growth factor on the proliferation and radiation survival of human fibroblast cell lines in vitro

    International Nuclear Information System (INIS)

    Kim, Hyun Sook; Kang, Ki Mun; Na, Jae Boem; Chai, Gyu Young; Lee, Sang Wook

    2006-01-01

    To explore the effect of recombinant human EGF on the proliferation and survival of human fibroblast cell lines following irradiation. Fibroblast was originated human skin and primary cultured. The trypan blue stain assay and MTT assay were used to study the proliferative effects of EGF on human fibroblast cell lines in vitro. An incubation of fibroblasts with rhEGF for 24 hours immediately after irradiation was counted everyday. Cell cycle distributions were analyzed by FACS analysis. Number of fibroblast was significant more increased rhEGF (1.0 nM, 10 nM, 100 nM, 1,000 nM) treated cell than control after 8 Gy irradiation. Most effective dose of rhEGF was at 160 nM. These survival differences were maintained at 1 week later. Proportion of S phase was significantly increased on rhEGF treated cells. rhEGF cause increased fibroblast proliferation following irradiation. We expect that rhEGF was effective for radiation induced wound healing

  8. Blue light-irradiated human keloid fibroblasts: an in vitro study

    Science.gov (United States)

    Magni, Giada; Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Coppi, Elisabetta; Cherchi, Federica; Fusco, Irene; Pugliese, Anna Maria; Pedata, Felicita; Fraccalvieri, Marco; Gasperini, Stefano; Pavone, Francesco S.; Tripodi, Cristina; Alfieri, Domenico; Targetti, Lorenzo

    2018-02-01

    Blue LED light irradiation is currently under investigation because of its effect in wound healing improvement. In this context, several mechanisms of action are likely to occur at the same time, consistently with the presence of different light absorbers within the skin. In our previous studies we observed the wound healing in superficial abrasions in an in vivo murine model. The results evidenced that both inflammatory infiltrate and myofibroblasts activity increase after irradiation. In this study we focused on evaluating the consequences of light absorption in fibroblasts from human cells culture: they play a key role in wound healing, both in physiological conditions and in pathological ones, such as keloid scarring. In particular we used keloids fibroblasts as a new target in order to investigate a possible metabolic or cellular mechanism correlation. Human keloid tissues were excised during standard surgery and immediately underwent primary cell culture extraction. Fibroblasts were allowed to grow in the appropriate conditions and then exposed to blue light. A metabolic colorimetric test (WST-8) was then performed. The tests evidenced an effect in mitochondrial activity, which could be modulated by the duration of the treatment. Electrophysiology pointed out a different behavior of irradiated fibroblasts. In conclusion, the Blue LED light affects the metabolic activity of fibroblasts and thus the cellular proliferation rate. No specific effect was found on keloid fibroblasts, thus indicating a very basic intracellular component, such as cytochromes, being the target of the treatment.

  9. Assesment of gingival microcirculation in anterior teeth using laser Doppler flowmetry

    Science.gov (United States)

    Canjau, Silvana; Miron, Mariana I.; Todea, Carmen D.

    2016-03-01

    Introduction: Evaluating the health status of the gingival tissue represents an important objective in the daily practice. Inflammation changes the microcirculatory and micromorphological dynamics of human gingiva. Aim: The purpose of this study was to evaluate the microcirculation in subjects with moderate gingivitis and healthy gingiva by using laser Doppler flowmetry (LDF). Material and Methods: Recordings of the gingival microcirculation (GM) were taken from 20 healthy gingival sites and from 20 sites with moderate gingivitis. The gingival blood flows in the gingivitis group before treatment was significantly different from those in the healthy gingiva group. Signals were recorded with the aid of a laser Doppler MoorLab instrument VMS-LDF2 probe VP3 10 mm S/N 2482. Three consecutive determinations of the GM were registered for each site, as follows: before the initial therapy, at 24 hours after the initial therapy and then, 7 days after the initial therapy. The data were processed using the statistical analysis software SPSS v16.0.1. Results: The results of this preliminary study showed statistically significant differences among the GM values recorded before and after the initial therapy. Conclusions: LDF could be a useful, noninvasive, sensitive, reproducible, and harmless method for measuring gingival blood flow (gingival microcirculation) in humans.

  10. RNA-Guided Activation of Pluripotency Genes in Human Fibroblasts

    DEFF Research Database (Denmark)

    Xiong, Kai; Zhou, Yan; Blichfeld, Kristian Aabo

    2017-01-01

    -associated protein 9 (dCas9)-VP64 (CRISPRa) alone, or a combination of dCas9-VP64 and MS2-P65-HSF1 [synergistic activation mediator (SAM) system] mediated activation of five pluripotency genes: KLF4 (K), LIN28 (L), MYC (M), OCT4 (O), and SOX2 (S) in human cells (HEK293T, HeLa, HepG2, and primary fibroblasts...... could be obtained from these SAM fibroblasts. In conclusion, our study showed that CRISPR/Cas9-based ATFs are potent to activate and maintain transcription of endogenous human pluripotent genes. However, future improvements of the system are still required to improve activation efficiency and cellular...

  11. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Rong-hui, E-mail: fan_ronghuixa@163.com [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Zhu, Xiu-mei; Sun, Yao-wen [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China); Peng, Hui-zi [Department of Cosmetology Plastic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061 (China); Wu, Hang-li; Gao, Wen-jie [Department of Burn and Plastic Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068 (China)

    2016-07-08

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  12. CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts

    International Nuclear Information System (INIS)

    Fan, Rong-hui; Zhu, Xiu-mei; Sun, Yao-wen; Peng, Hui-zi; Wu, Hang-li; Gao, Wen-jie

    2016-01-01

    Skin fibrosis is characterized by excessive proliferation of fibroblasts and overproduction of extracellular matrix (ECM). C1q/tumor necrosis factor-related protein 6 (CTRP6), a member of CTRPs, has been involved in the development of cardiac fibrosis. However, the function and detailed regulatory mechanism of CTRP6 in skin fibrosis remain unclear. The aim of this study was to investigate the effect of CTRP6 on the activation of human dermal fibroblasts. Our results showed that CTRP6 was lowly expressed in scar tissues and transforming growth factor-β1 (TGF-β1)-treated dermal fibroblasts. CTRP6 overexpression significantly inhibited the proliferation of dermal fibroblasts, as well as suppressed the expression of ECM in TGF-β1-treated dermal fibroblasts. Furthermore, CTRP6 overexpression markedly inhibited TGF-β1-induced phosphorylation of Smad3 in dermal fibroblasts. In conclusion, the data reported here demonstrate that CTRP6 is able to inhibit the proliferation and ECM expression in human dermal fibroblasts through suppressing the TGF-β1/Smad3 signaling pathway. These findings suggest that CTRP6 may be a potential therapeutic target for the prevention of skin fibrosis. -- Highlights: •CTRP6 expression was decreased in scar tissues and TGF-β1-treated dermal fibroblasts. •CTRP6 inhibits TGF-β1-induced the proliferation of dermal fibroblasts. •CTRP6 inhibits expression of collagen type I and α-SMA. •CTRP6 inhibits the activation of TGF-β1/Smad3 signaling pathway in dermal fibroblasts.

  13. Radiation-Induced Differentiation in Human Lung Fibroblast

    International Nuclear Information System (INIS)

    Park, Sa-Rah; Ahn, Ji-Yeon; Han, Young-Soo; Shim, Jie-Young; Yun, Yeon-Sook; Song, Jie-Young

    2007-01-01

    One of the most common tumors in many countries is lung cancer and patients with lung cancer may take radiotherapy. Although radiotherapy may have its own advantages, it can also induce serious problems such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of α-SMA and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-β), tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) are related to fibrosis. Among them TGF-β with Smad signaling is known to be the main stream and other signaling molecules such as MAPK, ERK and JNK (3) also participates in the process. In addition to those above factors, it is thought that more diverse and complicate mechanisms may involve in the radiationinduced fibrosis. Therefore, to investigate the underlying mechanisms in radiation induced fibrosis, first of all, we confirmed whether radiation induces trans differentiation in human normal lung fibroblasts. Here, we suggest that not only TGF-β but also radiation can induce trans differentiation in human lung fibroblast WI-38 and IMR-90

  14. Gingival crevicular fluid proteomes in health, gingivitis and chronic periodontitis.

    Science.gov (United States)

    Huynh, A H S; Veith, P D; McGregor, N R; Adams, G G; Chen, D; Reynolds, E C; Ngo, L H; Darby, I B

    2015-10-01

    The aim of this study was to compare the proteome composition of gingival crevicular fluid obtained from healthy periodontium, gingivitis and chronic periodontitis affected sites. Owing to its site-specific nature, gingival crevicular fluid is ideal for studying biological processes that occur during periodontal health and disease progression. However, few studies have been conducted into the gingival crevicular fluid proteome due to the small volumes obtained. Fifteen males were chosen for each of three different groups, healthy periodontium, gingivitis and chronic periodontitis. They were categorized based on clinical measurements including probing depth, bleeding on probing, plaque index, radiographic bone level, modified gingival index and smoking status. Gingival crevicular fluid was collected from each patient, pooled into healthy, gingivitis and chronic periodontitis groups and their proteome analyzed by gel electrophoresis and liquid chromatography electrospray ionization ion trap tandem mass spectrometry. One hundred and twenty-one proteins in total were identified, and two-thirds of these were identified in all three conditions. Forty-two proteins were considered to have changed in abundance. Of note, cystatin B and cystatin S decreased in abundance from health to gingivitis and further in chronic periodontitis. Complement proteins demonstrated an increase from health to gingivitis followed by a decrease in chronic periodontitis. Immunoglobulins, keratin proteins, fibronectin, lactotransferrin precursor, 14-3-3 protein zeta/delta, neutrophil defensin 3 and alpha-actinin exhibited fluctuations in levels. The gingival crevicular fluid proteome in each clinical condition was different and its analysis may assist us in understanding periodontal pathogenesis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    Science.gov (United States)

    Illescas-Montes, Rebeca; Melguizo-Rodríguez, Lucía; Manzano-Moreno, Francisco Javier; García-Martínez, Olga; Ruiz, Concepción

    2017-01-01

    Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2) using different transmission modes (continuous or pulsed). The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing. PMID:28773152

  16. Cultured Human Fibroblast Biostimulation Using a 940 nm Diode Laser

    Directory of Open Access Journals (Sweden)

    Rebeca Illescas-Montes

    2017-07-01

    Full Text Available Background: Fibroblasts are the main cells involved in regeneration during wound healing. The objective was to determine the effect of 940 nm diode laser on cultured human fibroblasts using different irradiation regimens. Methods: The CCD-1064Sk human epithelial fibroblast cell line was treated with a 940 nm diode laser at different energy doses (power: 0.2–1 W and energy density: 1–7 J/cm2 using different transmission modes (continuous or pulsed. The effect on cell growth at 24 and 72 h post-treatment was examined by measuring the proliferative capacity, the impact on the cell cycle, and the effect on cell differentiation. Results: fibroblast proliferative capacity was increased at 24 and 72 h post-treatment as a function of the energy dose. The greatest increase was observed with a power of 0.2 or 0.5 W and energy density between 1 and 4 J/cm2; no difference was observed between continuous and pulsed modes. There were no significant differences in cell cycle between treated groups and controls. α-actin expression was increased by treatment, indicating enhanced cell differentiation. Conclusion: The 940 nm diode laser has biostimulating effects on fibroblasts, stimulating proliferative capacity and cell differentiation without altering the cell cycle. Further researches are necessary to explore its potential clinical usefulness in wound healing.

  17. Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts

    International Nuclear Information System (INIS)

    Samoszuk, Michael; Tan, Jenny; Chorn, Guillaume

    2005-01-01

    Accumulating evidence suggests that fibroblasts play a pivotal role in promoting the growth of breast cancer cells. The objective of the present study was to characterize and validate an in vitro model of the interaction between small numbers of human breast cancer cells and human fibroblasts. We measured the clonogenic growth of small numbers of human breast cancer cells co-cultured in direct contact with serum-activated, normal human fibroblasts. Using DNA microarrays, we also characterized the gene expression profile of the serum-activated fibroblasts. In order to validate the in vivo relevance of our experiments, we then analyzed clinical samples of metastatic breast cancer for the presence of myofibroblasts expressing α-smooth muscle actin. Clonogenic growth of human breast cancer cells obtained directly from in situ and invasive tumors was dramatically and consistently enhanced when the tumor cells were co-cultured in direct contact with serum-activated fibroblasts. This effect was abolished when the cells were co-cultured in transwells separated by permeable inserts. The fibroblasts in our experimental model exhibited a gene expression signature characteristic of 'serum response' (i.e. myofibroblasts). Immunostaining of human samples of metastatic breast cancer tissue confirmed that myofibroblasts are in direct contact with breast cancer cells. Serum-activated fibroblasts promote the clonogenic growth of human breast cancer cells in vitro through a mechanism that involves direct physical contact between the cells. This model shares many important molecular and phenotypic similarities with the fibroblasts that are naturally found in breast cancers

  18. Chloride transport in human fibroblasts is activated by hypotonic shock

    Energy Technology Data Exchange (ETDEWEB)

    Rugolo, M.; Mastocola, T.; Flamigni, A.; Lenaz, G. (Universita' di Bologna (Italy))

    1989-05-15

    Incubation of human skin fibroblasts in hypotonic media induced the activation of {sup 36}Cl- efflux which was roughly proportional to the decrease in the osmolality of the media. The efflux of {sup 36}Cl- was insensitive to DIDS plus furosemide and inhibited by addition of a Cl- channel blocker such as 5-nitro-2-(3-phenyl propylamino) benzoic acid (NPPB). We propose that a conductive pathway for Cl- transport, almost silent in isotonic conditions, is activated by exposing human fibroblasts to hypotonic shock, this conclusion being supported by evidence that also {sup 36}Cl- influx was enhanced by hypotonic medium.

  19. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts

    International Nuclear Information System (INIS)

    Ohshimo, Shinichiro; Yokoyama, Akihito; Hattori, Noboru; Ishikawa, Nobuhisa; Hirasawa, Yutaka; Kohno, Nobuoki

    2005-01-01

    The serum level of KL-6, a MUC1 mucin, is a clinically useful marker for various interstitial lung diseases. Previous studies demonstrated that KL-6 promotes chemotaxis of human fibroblasts. However, the pathophysiological role of KL-6 remains poorly understood. Here, we further investigate the functional aspects of KL-6 in proliferation and apoptosis of lung fibroblasts. KL-6 accelerated the proliferation and inhibited the apoptosis of all human lung fibroblasts examined. An anti-KL-6 monoclonal antibody counteracted both of these effects induced by KL-6 on human lung fibroblasts. The pro-fibroproliferative and anti-apoptotic effects of KL-6 are greater than and additive to those of the maximum effective concentrations of platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-β. These findings indicate that increased levels of KL-6 in the epithelial lining fluid may stimulate fibrotic processes in interstitial lung diseases and raise the possibility of applying an anti-KL-6 antibody to treat interstitial lung diseases

  20. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    Directory of Open Access Journals (Sweden)

    Maucksch C

    2012-01-01

    Full Text Available Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP-expressing astrocytes. This study represents a novel virus-free approach for direct reprogramming of human fibroblasts to a neural precursor fate.

  1. Use of chlorhexidine gel (0.2%) to control gingivitis and candida species colonization in human immunodeficiency virus-infected children: a pilot study.

    Science.gov (United States)

    Machado, Fernanda Campos; de Souza, Ivete Pomarico Ribeiro; Portela, Maristela Barbosa; de Araújo Soares, Rosangela Maria; Freitas-Fernandes, Liana Bastos; Castro, Gloria Fernanda

    2011-01-01

    The purpose of this study was to evaluate chlorhexidine to control gingivitis and Candida species (spp.) in children infected with the human immunodeficiency virus (HIV) and their acceptance of the therapy. Twenty-six HIV+ children were selected, and oral exam-established biofilm, gingival indexes, and stimulated saliva were collected for Candida ssp. identification. The children brushed their teeth for 21 days with chlorhexidine gel (0.2%). Salivary samples, biofilm, and gingival indexes were collected after 21-days and again 35 days after ceasing gel use. The children answered a questionnaire about the therapy. All children tested positive for Candida and gingivitis. After 21 days, Candida counts and gingivitis decreased in 25 and 26 children, respectively. Mean reduction was approximately 68% for Candida spp. and 74% for gingivitis. Thirty-five days after discontinuing gel use, gingivitis and Candida spp. increased in 13 and 16 patients, respectively. Considering the Candida spp., the heavy growth was lower in the first re-evaluation. Candida albicans was the most frequent species. Approximately 85% did not experience inconvenience with the gel, and approximately 48% thought it was good for tooth-brushing. Chlorhexidine therapy may be an option to treat and pre- vent gingivitis and reduce yeast counts in children infected with HIV.

  2. Degradation of type IV collagen by neoplastic human skin fibroblasts

    International Nuclear Information System (INIS)

    Sheela, S.; Barrett, J.C.

    1985-01-01

    An assay for the degradation of type IV (basement membrane) collagen was developed as a biochemical marker for neoplastic cells from chemically transformed human skin fibroblasts. Type IV collagen was isolated from basement membrane of Syrian hamster lung and type I collagen was isolated from rat tails; the collagens were radioactively labelled by reductive alkylation. The abilities of normal (KD) and chemically transformed (Hut-11A) human skin fibroblasts to degrade the collagens were studied. A cell-associated assay was performed by growing either normal or transformed cells in the presence of radioactively labelled type IV collagen and measuring the released soluble peptides in the medium. This assay also demonstrated that KD cells failed to synthesize an activity capable of degrading type IV collagen whereas Hut-11A cells degraded type IV collagen in a linear manner for up to 4 h. Human serum at very low concentrations, EDTA and L-cysteine inhibited the enzyme activity, whereas protease inhibitors like phenylmethyl sulfonyl fluoride, N-ethyl maleimide or soybean trypsin inhibitor did not inhibit the enzyme from Hut-11A cells. These results suggest that the ability to degrade specifically type IV collagen may be an important marker for neoplastic human fibroblasts and supports a role for this collagenase in tumor cell invasion

  3. Periodontopathogens and human β-defensin-2 expression in gingival crevicular fluid from patients with periodontal disease in Guangxi, China.

    Science.gov (United States)

    Yong, X; Chen, Y; Tao, R; Zeng, Q; Liu, Z; Jiang, L; Ye, L; Lin, X

    2015-06-01

    Periodontal diseases are often induced by periodontopathogens, which are always exposed to certain innate immune factors in gingival crevicular fluid, including human β-defensin-2 (hBD-2). This study aims to investigate the relationship among periodontopathogens, clinical parameters and hBD-2 expression. Thirty-two healthy controls, 42 patients with chronic gingivitis and 95 patients with chronic periodontitis were recruited in Guangxi, China. Bleeding index, probing depth and clinical attachment level were measured for all teeth including mesiobuccal, buccal, disobuccal, mesiolingual, lingual, disolingual six sites of all patient. Gingival crevicular fluid samples were collected from the study sites. The prevalence and copy numbers (CN) of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Treponema denticola, Tannerella forsythia and total bacteria in gingival crevicular fluid were quantified by real-time PCR. The hBD-2 concentration in gingival crevicular fluid was measured by ELISA. Both the prevalence and the CN of A. actinomycetemcomitans, P. gingivalis, T. denticola and T. forsythia were higher in patients with chronic periodontitis than in healthy controls and patients with chronic gingivitis; however, there was no significant difference in the prevalence of P. intermedia among the three study groups, and the highest CN was found in patients with chronic gingivitis, rather than in patients with chronic periodontitis. The loads of P. gingivalis, P. intermedia, T. denticola and total bacteria were positively related to probing depth, bleeding index and clinical attachment level. The concentration of hBD-2 in gingival crevicular fluid was higher in patients with chronic gingivitis and in patients with chronic periodontitis than in healthy controls. In addition, the hBD-2 concentration was positively related to the CN of P. gingivalis, T. forsythia and total bacteria, as well as to bleeding index and probing depth. The

  4. The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Lucia Pagani

    Full Text Available BACKGROUND: Diurnal behavior in humans is governed by the period length of a circadian clock in the suprachiasmatic nuclei of the brain hypothalamus. Nevertheless, the cell-intrinsic mechanism of this clock is present in most cells of the body. We have shown previously that for individuals of extreme chronotype ("larks" and "owls", clock properties measured in human fibroblasts correlated with extreme diurnal behavior. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have measured circadian period in human primary fibroblasts taken from normal individuals and, for the first time, compared it directly with physiological period measured in vivo in the same subjects. Human physiological period length was estimated via the secretion pattern of the hormone melatonin in two different groups of sighted subjects and one group of totally blind subjects, each using different methods. Fibroblast period length was measured via cyclical expression of a lentivirally delivered circadian reporter. Within each group, a positive linear correlation was observed between circadian period length in physiology and in fibroblast gene expression. Interestingly, although blind individuals showed on average the same fibroblast clock properties as sighted ones, their physiological periods were significantly longer. CONCLUSIONS/SIGNIFICANCE: We conclude that the period of human circadian behaviour is mostly driven by cellular clock properties in normal individuals and can be approximated by measurement in peripheral cells such as fibroblasts. Based upon differences among sighted and blind subjects, we also speculate that period can be modified by prolonged unusual conditions such as the total light deprivation of blindness.

  5. The growth of human fibroblasts and A431 epidermoid carcinoma cells on gamma-irradiated human amnion collagen substrata.

    Science.gov (United States)

    Liu, B; Harrell, R; Lamb, D J; Dresden, M H; Spira, M

    1989-10-15

    Human fibroblasts and A431 human epidermoid carcinoma cells were cultured on gamma-irradiated human amnion collagen as well as on plastic dishes and non-irradiated collagen coated dishes. The morphology, attachment, growth and short-term cytotoxicity of these culture conditions have been determined. Both irradiated and non-irradiated amnion collagen enhanced the attachment and proliferation of fibroblasts as compared to the plastic dishes. No differences in these properties were observed for A431 cells cultured on irradiated collagen when compared with culture on non-irradiated collagen substrates. Cytotoxicity assays showed that irradiated and non-irradiated collagens were not cytotoxic for either fibroblasts or A431 cells. The results demonstrated that amnion collagen irradiated at doses of 0.25-2.0 Mrads is optimal for cell growth.

  6. DETACHMENT OF HUMAN FIBROBLASTS FROM FEP-TEFLON SURFACES

    NARCIS (Netherlands)

    VANKOOTEN, TG; SCHAKENRAAD, JM; VANDERMEI, HC; BUSSCHER, HJ

    1991-01-01

    In this study a comparison is made between the detachment behavior of human fibroblasts adhered to hydrophobic FEP-Teflon (water contact angle 109 degrees) and to hydrophilic glass (water contact angle smaller than 15 degrees) during exposure to a laminar, incrementally loaded flow. Detachment from

  7. Influence of mechanical stimulation on human dermal fibroblasts derived from different body sites.

    Science.gov (United States)

    Kuang, Ruixia; Wang, Zhiguo; Xu, Quanchen; Liu, Su; Zhang, Weidong

    2015-01-01

    Mechanical stimulation is highly associated with pathogenesis of human hypertrophic scar. Although much work has focused on the influence of mechanical stress on fibroblast populations from various tissues and organs in the human body, their effects on cultured dermal fibroblasts by the area of the body have not been as well studied. In this study, cultures of skin fibroblasts from two different body sites were subjected to cyclic mechanical stimulation with a 10% stretching amplitude at a frequency of 0.1 Hz for 24, 36 and 48 hours, respectively, and thereafter harvested for experimental assays. Fibroblasts from scapular upper back skin, subjected to mechanical loads for 36 and 48 hours, respectively, were observed to proliferate at a higher rate and reach confluent more rapidly during in vitro culturing, had higher expression levels of mRNA and protein production of integrin β1, p130Cas and TGF β1 versus those from medial side of upper arm. These data indicate that skin fibroblasts, with regard to originated body sites studied in the experiments, display a diversity of mechanotransduction properties and biochemical reactions in response to applied mechanical stress, which contributes to the increased susceptibility to hypertrophic scars formation at certain areas of human body characterized by higher skin and muscle tension.

  8. Direct induction of chondrogenic cells from human dermal fibroblast culture by defined factors.

    Directory of Open Access Journals (Sweden)

    Hidetatsu Outani

    Full Text Available The repair of large cartilage defects with hyaline cartilage continues to be a challenging clinical issue. We recently reported that the forced expression of two reprogramming factors (c-Myc and Klf4 and one chondrogenic factor (SOX9 can induce chondrogenic cells from mouse dermal fibroblast culture without going through a pluripotent state. We here generated induced chondrogenic (iChon cells from human dermal fibroblast (HDF culture with the same factors. We developed a chondrocyte-specific COL11A2 promoter/enhancer lentiviral reporter vector to select iChon cells. The human iChon cells expressed marker genes for chondrocytes but not fibroblasts, and were derived from non-chondrogenic COL11A2-negative cells. The human iChon cells formed cartilage but not tumors in nude mice. This approach could lead to the preparation of cartilage directly from skin in human, without going through pluripotent stem cells.

  9. Direct conversion of human fibroblasts into functional osteoblasts by defined factors.

    Science.gov (United States)

    Yamamoto, Kenta; Kishida, Tsunao; Sato, Yoshiki; Nishioka, Keisuke; Ejima, Akika; Fujiwara, Hiroyoshi; Kubo, Toshikazu; Yamamoto, Toshiro; Kanamura, Narisato; Mazda, Osam

    2015-05-12

    Osteoblasts produce calcified bone matrix and contribute to bone formation and remodeling. In this study, we established a procedure to directly convert human fibroblasts into osteoblasts by transducing some defined factors and culturing in osteogenic medium. Osteoblast-specific transcription factors, Runt-related transcription factor 2 (Runx2), and Osterix, in combination with Octamer-binding transcription factor 3/4 (Oct4) and L-Myc (RXOL) transduction, converted ∼ 80% of the fibroblasts into osteocalcin-producing cells. The directly converted osteoblasts (dOBs) induced by RXOL displayed a similar gene expression profile as normal human osteoblasts and contributed to bone repair after transplantation into immunodeficient mice at artificial bone defect lesions. The dOBs expressed endogenous Runx2 and Osterix, and did not require continuous expression of the exogenous genes to maintain their phenotype. Another combination, Oct4 plus L-Myc (OL), also induced fibroblasts to produce bone matrix, but the OL-transduced cells did not express Osterix and exhibited a more distant gene expression profile to osteoblasts compared with RXOL-transduced cells. These findings strongly suggest successful direct reprogramming of fibroblasts into functional osteoblasts by RXOL, a technology that may provide bone regeneration therapy against bone disorders.

  10. [Effects of cytosolic bacteria on cyclic GMP-AMP synthase expression in human gingival tissues and periodontal ligament cells].

    Science.gov (United States)

    Xiaojun, Yang; Yongmei, Tan; Zhihui, Tian; Ting, Zhou; Wanghong, Zhao; Jin, Hou

    2017-04-01

    This work aims to determine the effect of cytosolic bacteria on the expression of cyclic GMP-AMP synthase (cGAS) in human periodontal ligament cells (hPDLCs) and gingival tissues. The ability of Porphyromonas gingivalis (P. gingivalis) to invade hPDLCs was detected using laser scanning confocal microscope assay at a multiplicity of infection of 10. P. gingivalis-infected cells were sorted by fluorescence-activated cell sorting (FACS). Then, quantitative real time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect cGAS expression in infected cells. Finally, the location and expression of cGAS in inflammatory and normal gingival tissues were investigated by immunohistochemistry. P. gingivalis actively invaded hPDLCs. Moreover, cGAS expression significantly increased in P. gingivalis-infected cells. Although cGAS was expressed in the epithelial and subepithelial cells of both inflamed and normal gingival tissues, cGAS expression significantly increased in inflamed gingival tissues. Cytosolic bacteria can upregulate cGAS expression in infected cells. These data suggest that cGAS may act as pattern-recognition receptors and participate in recognizing cytosolic nucleic acid pathogen-associated molecular patterns.
.

  11. Possible identity of IL-8 converting enzyme in human fibroblasts as a cysteine protease.

    Science.gov (United States)

    Ohashi, Kensaku; Sano, Emiko; Nakaki, Toshio; Naruto, Masanobu

    2003-04-01

    A converting activity was characterized in human diploid fibroblasts, which secrete 72IL-8 and 77IL-8 in treatment with IFN-beta and poly I: poly C. 77IL-8 was significantly converted to 72IL-8 by a partially purified fraction of the culture supernatant of human diploid fibroblasts. The converting activity, which was temperature-dependent and optimal at pH 6, was completely inhibited by cysteine protease inhibitors, antipain dihydrochloride and E-64, but not by other types of protease inhibitors. These data clearly show that human diploid fibroblasts are capable of processing IL-8 to produce a mature IL-8 and that the putative converting enzyme appears to be a cysteine protease.

  12. Cetylpyridinium chloride mouth rinses alleviate experimental gingivitis by inhibiting dental plaque maturation.

    Science.gov (United States)

    Teng, Fei; He, Tao; Huang, Shi; Bo, Cun-Pei; Li, Zhen; Chang, Jin-Lan; Liu, Ji-Quan; Charbonneau, Duane; Xu, Jian; Li, Rui; Ling, Jun-Qi

    2016-09-29

    Oral rinses containing chemotherapeutic agents, such as cetylpyridinium chloride (CPC), can alleviate plaque-induced gingival infections, but how oral microbiota respond to these treatments in human population remains poorly understood. Via a double-blinded, randomised controlled trial of 91 subjects, the impact of CPC-containing oral rinses on supragingival plaque was investigated in experimental gingivitis, where the subjects, after a 21-day period of dental prophylaxis to achieve healthy gingivae, received either CPC rinses or water for 21 days. Within-subject temporal dynamics of plaque microbiota and symptoms of gingivitis were profiled via 16S ribosomal DNA gene pyrosequencing and assessment with the Mazza gingival index. Cetylpyridinium chloride conferred gingival benefits, as progression of gingival inflammation resulting from a lack of dental hygiene was significantly slower in the mouth rinse group than in the water group due to inhibition of 17 gingivitis-enriched bacterial genera. Tracking of plaque α and β diversity revealed that CPC treatment prevents acquisition of new taxa that would otherwise accumulate but maintains the original biodiversity of healthy plaques. Furthermore, CPC rinses reduced the size, local connectivity and microbiota-wide connectivity of the bacterial correlation network, particularly for nodes representing gingivitis-enriched taxa. The findings of this study provide mechanistic insights into the impact of oral rinses on the progression and maturation of dental plaque in the natural human population.

  13. Differential binding of 125I-IGF-I preparations to human fibroblast monolayers

    International Nuclear Information System (INIS)

    Conover, C.A.; Misra, P.; Hintz, R.L.; Rosenfeld, R.G.

    1988-01-01

    Specific, high affinity binding of 125 I-IGF-I to the type IIGF receptor on human fibroblast monolyaers was not altered by varying feeding schedules, serum lots, washing procedures, or incubation times and temperatures. However, markedly different competitive binding curves were obtained when different iodinated IGF-I preparations were used. Five of six radioligands bound preferentially to the type IIGF receptor on human fibroblast monolayers, with 50% displacement at 4-8 μg/l unlabelled IGF-I; with one radioligand a paradoxical 20-200% increase in 125 I-IGF-I binding was observed at low concentrations of unlabelled IGF-I, while concentrations as high as 100 μg/l IGF-I failed to displace this radioligand. The latter binding pattern cannot be accounted for by 125 -I-IGF-I binding to the type II IGF receptor. These data indicate that various radioligands may have preferential affinities for different IGF-I binding sites on human fibroblast monolayers. (author)

  14. Role of postreplication repair in transformation of human fibroblasts to anchorage independence

    International Nuclear Information System (INIS)

    Boyer, J.C.; Kaufmann, W.K.; Cordeiro-Stone, M.

    1991-01-01

    Cellular capacity for postreplication repair (PRR) and sensitivity to transformation to anchorage independence (AI) were quantified in normal foreskin and xeroderma pigmentosum (XP) variant fibroblasts after treatment with UV or benzo(a)pyrene-diol-epoxide I (BPDE-I). PRR is defined here as a collection of pathways that facilitate the replication of DNA damaged by genotoxic agents. It is recognized biochemically as the process by which nascent DNA grows longer than the average distance between two lesions in the DNA template. PRR refers more directly to the elimination of gaps in the daughter-strand DNA by mechanisms which remain to be determined for human cells, but which may include translesion replication and recombination. PRR was measured in diploid human fibroblasts by analysis of the dose kinetics for inhibition of DNA strand growth in carcinogen-treated cells. Logarithmically growing foreskin fibroblasts (NHF1) displayed D0 values of 4.3 J/m 2 and 0.14 microM for the inhibition of DNA synthesis in active replicons by UV and BPDE-I, respectively. XP variant cells (CRL1162) exhibited corresponding D0 values of 1.5 J/m 2 and 0.16 microM. The increased sensitivity to inhibition of DNA replication by UV in these XP variant fibroblasts (2.9-fold greater than normal) was mirrored by an enhanced frequency of transformation to AI. XP variant fibroblasts (CRL1162) were 3.2 times more sensitive to transformation to AI by UV than were the normal foreskin fibroblasts. As predicted by the PRR studies, both cell types exhibited similar frequencies of AI colonies induced by BPDE-I. Apparent thresholds were observed for induction of AI by UV (normal fibroblasts, 2.7 J/m 2 ; XP variant fibroblasts, 0.3 J/m 2 ) and BPDE-I (both, 0.05 microM)

  15. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts.

    Science.gov (United States)

    Kakudo, Natsuko; Minakata, Tatsuya; Mitsui, Toshihito; Kushida, Satoshi; Notodihardjo, Frederik Zefanya; Kusumoto, Kenji

    2008-11-01

    This study evaluated changes in platelet-derived growth factor (PDGF)-AB and transforming growth factor (TGF)-beta1 release from platelets by platelet-rich plasma activation, and the proliferation potential of activated platelet-rich plasma and platelet-poor plasma on human adipose-derived stem cells and human dermal fibroblasts. Platelet-rich plasma was prepared using a double-spin method, with the number of platelets counted in each preparation stage. Platelet-rich and platelet-poor plasma were activated with autologous thrombin and calcium chloride, and levels of platelet-released PDGF-AB and TGF-beta1 were determined by enzyme-linked immunosorbent assay. Cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 5% whole blood plasma, nonactivated platelet-rich plasma, nonactivated platelet-poor plasma, activated platelet-rich plasma, or activated platelet-poor plasma. In parallel, these cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 1%, 5%, 10%, or 20% activated platelet-rich plasma. The cultured human adipose-derived stem cells and human dermal fibroblasts were assayed for proliferation. Platelet-rich plasma contained approximately 7.9 times as many platelets as whole blood, and its activation was associated with the release of large amounts of PDGF-AB and TGF-beta1. Adding activated platelet-rich or platelet-poor plasma significantly promoted the proliferation of human adipose-derived stem cells and human dermal fibroblasts. Adding 5% activated platelet-rich plasma to the medium maximally promoted cell proliferation, but activated platelet-rich plasma at 20% did not promote it. Platelet-rich plasma can enhance the proliferation of human adipose-derived stem cells and human dermal fibroblasts. These results support clinical platelet-rich plasma application for cell-based, soft-tissue engineering and wound healing.

  16. Effect of Gingivitis on Azithromycin Concentrations in Gingival Crevicular Fluid

    Science.gov (United States)

    Jain, Nidhi; Lai, Pin-Chuang; Walters, John D.

    2012-01-01

    Aim Macrolide antibiotics yield high concentrations in inflamed tissue, suggesting that their levels in gingival crevicular fluid (GCF) could be increased at gingivitis sites. However, the increased volume of GCF associated with gingivitis could potentially dilute macrolides. To determine whether these assumptions are correct, the bioavailability of systemically-administered azithromycin was compared in GCF from healthy and gingivitis sites. Materials and methods Experimental gingivitis was induced in one maxillary posterior sextant in nine healthy subjects. Contralateral healthy sextants served as controls. Subjects ingested 500 mg of azithromycin followed by a 250 mg dose 24 hours later. Four hours after the second dose, plaque was removed from experimental sites. GCF was collected from 8 surfaces in both the experimental and control sextants and pooled separately. GCF samples were subsequently collected on the 2nd, 3rd, 8th and 15th days and azithromycin content was determined by agar diffusion bioassay. Results On days 2 and 3, the pooled GCF volume at experimental sites was significantly higher than at control sites (P gingivitis sites and healthy sites, suggesting that the processes that regulate GCF azithromycin concentration can compensate for local inflammatory changes. PMID:22220766

  17. Transfection of Primary Human Skin Fibroblasts for Peroxisomal Studies

    NARCIS (Netherlands)

    Koster, Janet; Waterham, Hans R.

    2017-01-01

    Functional studies with primary human skin fibroblasts from patients with a peroxisomal disorder often require efficient transfection with plasmids to correct the genetic defect or to express heterologous reporter proteins. Here, we describe a protocol we commonly use for efficient nonviral

  18. Modulation of clonogenicity, growth, and radiosensitivity of three human epidermoid tumor cell lines by a fibroblastic environment

    International Nuclear Information System (INIS)

    Gery, Bernard; Little, John B.; Coppey, Jacques

    1996-01-01

    Purpose: To develop a model vitro system to examine the influence of fibroblasts on the growth and survival of human tumor cells after exposure to ionizing radiation. Methods and Materials: The cell system consists of three epidermoid carcinoma cell lines derived from head and neck tumors having differing growth potentials and intrinsic radiosensitivities, as well as a low passage skin fibroblast strain from a normal human donor. The tumor cells were seeded for five days prior to exposure to radiation: (a) in the presence of different numbers of fibroblasts, (b) in conditioned medium from stationary fibroblast cultures, and (c) on an extracted fibroblastic matrix. Results: When grown with fibroblasts, all three tumor cell lines showed increased clonogenicity and increased radioresistance. The radioprotective effect was maximal at a density of approximately 10 5 fibroblasts/100 mm Petri dish, and was greatest in the intrinsically radiosensitive tumor cell line. On the other hand, the effects of incubation with conditioned medium or on a fibroblastic matrix varied among the tumor cell lines. Thus, the protective effect afforded by coculture with fibroblasts must involve several cellular factors related to the fibroblast itself. Conclusions: These observations emphasize the importance of cultural conditions on the apparent radiosensitivity of human tumor cell lines, and suggest that the fibroblastic connective tissue enveloping the malignant cells should be considered when the aim is to establish a radiopredictive assay from surgical tumors fragments

  19. Normal Human Gingival Epithelial Cells Sense C. parapsilosis by Toll-Like Receptors and Module Its Pathogenesis through Antimicrobial Peptides and Proinflammatory Cytokines

    Directory of Open Access Journals (Sweden)

    Raouf Bahri

    2010-01-01

    Full Text Available This study was designed to investigate the interaction between C. parapsilosis and human epithelial cells using monolayer cultures and an engineered human oral mucosa (EHOM. C. parapsilosis was able to adhere to gingival epithelial cells and to adopt the hyphal form in the presence of serum. Interestingly, when cultured onto the engineered human oral mucosa (EHOM, C. parapsilosis formed small biofilm and invaded the connective tissue. Following contact with C. parapsilosis, normal human gingival epithelial cells expressed high levels of Toll-like receptors (TLR-2, -4, and -6, but not TLR-9 mRNA. The upregulation of TLRs was paralleled by an increase of IL-1β, TNFα, and IFNγ mRNA expression, suggesting the involvement of these cytokines in the defense against infection with C. parapsilosis. The active role of epithelial cells in the innate immunity against C. parapsilosis infection was enhanced by their capacity to express high levels of human beta-defensin-1, -2, and -3. The upregulation of proinflammatory cytokines and antimicrobial peptide expression may explain the growth inhibition of C. parapsilosis by the gingival epithelial cells. Overall results provide additional evidence of the involvement of epithelial cells in the innate immunity against C. parapsilosis infections.

  20. Impact of diabetes on gingival wound healing via oxidative stress.

    Directory of Open Access Journals (Sweden)

    Daisuke Kido

    Full Text Available The aim of this study is to investigate the mechanisms linking high glucose to gingival wound healing. Bilateral wounds were created in the palatal gingiva adjacent to maxillary molars of control rats and rats with streptozotocin-induced diabetes. After evaluating postsurgical wound closure by digital imaging, the maxillae including wounds were resected for histological examinations. mRNA expressions of angiogenesis, inflammation, and oxidative stress markers in the surgical sites were quantified by real-time polymerase chain reaction. Primary fibroblast culture from the gingiva of both rats was performed in high glucose and normal medium. In vitro wound healing and cell proliferation assays were performed. Oxidative stress marker mRNA expressions and reactive oxygen species production were measured. Insulin resistance was evaluated via PI3K/Akt and MAPK/Erk signaling following insulin stimulation using Western blotting. To clarify oxidative stress involvement in high glucose culture and cells of diabetic rats, cells underwent N-acetyl-L-cysteine treatment; subsequent Akt activity was measured. Wound healing in diabetic rats was significantly delayed compared with that in control rats. Nox1, Nox2, Nox4, p-47, and tumor necrosis factor-α mRNA levels were significantly higher at baseline in diabetic rats than in control rats. In vitro study showed that cell proliferation and migration significantly decreased in diabetic and high glucose culture groups compared with control groups. Nox1, Nox2, Nox4, and p47 expressions and reactive oxygen species production were significantly higher in diabetic and high glucose culture groups than in control groups. Akt phosphorylation decreased in the high glucose groups compared with the control groups. Erk1/2 phosphorylation increased in the high glucose groups, with or without insulin treatment, compared with the control groups. Impaired Akt phosphorylation partially normalized after antioxidant N

  1. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    Tendon fibroblasts synthesize collagen and form fibrils during embryonic development, but to what extent mature fibroblasts are able to recapitulate embryonic development and develop normal tendon structure is unknown. The present study examined the capability of mature human tendon fibroblasts t...

  2. Allogeneic human dermal fibroblasts are viable in peripheral blood mononuclear co-culture

    Directory of Open Access Journals (Sweden)

    Restu Syamsul Hadi

    2014-08-01

    Full Text Available Background Transplanted allogeneic dermal fibroblasts retain stem cell subpopulations, and are easily isolated, expanded and stored using standard techniques. Their potential for regenerative therapy of chronic wounds should be evaluated. The aim of this study was to determine allogeneic fibroblast viability in the presence of peripheral blood mononuclear cells (PBMC. Methods In this experimental study, fibroblasts were isolated from foreskin explants, expanded in the presence of serum, and stored using slow-freezing. We used one intervention group of allogeneic fibroblasts co-cultured with PBMC and 2 control groups of separate fibroblast and PBMC cultures.Fibroblasts were characterized by their collagen secretion and octamer-binding transcription factor 4 (OCT4 expression. Viability was evaluated using water soluble tetrazolium-1 (WST-1 proliferation assay. Absorbances were measured at 450 nm. Data analysis was performed by student’s paired t-test. Results Dermal fibroblasts were shown to secrete collagen, express OCT4, be recoverable after cryopreservation, and become attached to the culture dish in a co-culture with PBMC. Co-cultured and control fibroblasts had no significantly different cell viabilities (p>0.05. Calculated viable cell numbers increased 1.8 and 5.1-fold, respectively, at days 2 and 4 in vitro. Both groups showed comparable doubling times at days 2 and 4 in vitro. PBMC did not interfere with allogeneic fibroblast viability and proliferative capacity Conclusions Allogeneic fibroblasts remain viable and proliferate in the presence of host PBMC. Future research should evaluate allogeneic human dermal fibroblast competency in clinical settings. Dermal fibroblasts are a potential source for cell therapy in chronic wound management.

  3. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol.

    Science.gov (United States)

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol.

  4. Biological effects of plasma rich in growth factors (PRGF) on human endometrial fibroblasts.

    Science.gov (United States)

    Anitua, Eduardo; de la Fuente, María; Ferrando, Marcos; Quintana, Fernando; Larreategui, Zaloa; Matorras, Roberto; Orive, Gorka

    2016-11-01

    To evaluate the biological outcomes of plasma rich in growth factors (PRGF) on human endometrial fibroblasts in culture. PRGF was obtained from three healthy donors and human endometrial fibroblasts (HEF) were isolated from endometrial specimens from five healthy women. The effects of PRGF on cell proliferation and migration, secretion of vascular endothelial growth factor (VEGF), procollagen type I and hyaluronic acid (HA) and contractility of isolated and cultured human endometrial fibroblasts (HEF) were analyzed. Statistical analysis was performed in order to compare the effects of PRGF with respect to control situation (T-test or Mann-Whitney U-test). We report a significantly elevated human endometrial fibroblast proliferation and migration after treatment with PRGF. In addition, stimulation of HEF with PRGF induced an increased expression of the angiogenic factor VEGF and favored the endometrial matrix remodeling by the secretion of procollagen type I and HA and endometrial regeneration by elevating the contractility of HEF. These results were obtained for all PRGF donors and each endometrial cell line. The myriad of growth factors contained in PRGF promoted HEF proliferation, migration and synthesis of paracrine molecules apart from increasing their contractility potential. These preliminary results suggest that PRGF improves the biological activity of HEF in vitro, enhancing the regulation of several cellular processes implied in endometrial regeneration. This innovative treatment deserves further investigation for its potential in "in vivo" endometrial development and especially in human embryo implantation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Sangramiento gingival y flora bacteriana en la gingivitis y la periodontitis

    Directory of Open Access Journals (Sweden)

    Iriam Baldemira Rodríguez

    1996-08-01

    Full Text Available Se estudiaron 30 sitios o áreas periodontales que presentaban gingivitis y 30 con periodontitis, con el objetivo de determinar la relación existente entre el sangramiento gingival y la flora microbiana presente en la gingivitis y la periodontitis. Los pacientes seleccionados no presentaban antecedentes de enfermedad general y no habían recibido medicación antimicrobiana ni tratamiento periodontal en los útimos 6 meses; en el caso de las mujeres, no podían estar embarazadas. En los dientes seleccionados se procedió a tomar la muestra cumpliendo con los requisitos establecidos; luego se examinó inmediatamente en el microscopio de campo oscuro. Los resultados obtenidos indican que no hubo relación entre los morfotipos microbianos y los diferentes valores del índice de sangramiento gingival.Thirty periodontal sites presenting with gingivitis and 30 with periodontitis were studied with the aim of determining the relation between gingival bleeding and microflora present in gingivitis and periodontitis. Patients selected for the study did not present with a history of systemic diseases and received neither antimicrobial medication nor periodontal treatment during the last 6 months, in the case of women it was required that they were not pregnant. The sample was taken in the teeth chosen in compliance with the requirements established; then the sample was immediately examined in the dark field microscope. Results obtained suggest that there was no relationship between microbial morphological types and the different values of the gingival bleeding index.

  6. Basic calcium phosphate crystal-induced Egr-1 expression stimulates mitogenesis in human fibroblasts

    International Nuclear Information System (INIS)

    Zeng, Xiao R.; Sun Yubo; Wenger, Leonor; Cheung, Herman S.

    2005-01-01

    Previously, we have reported that basic calcium phosphate (BCP) crystals stimulate mitogenesis and synthesis of matrix metalloproteinases in cultured human foreskin and synovial fibroblasts. However, the detailed mechanisms involved are still unclear. In the present study, using RT-PCR and Egr-1 promoter analysis we showed that BCP crystals could stimulate early growth response gene Egr-1 transcription through a PKCα-dependent p44/p42 MAPK pathway. Using a retrovirus gene expression system (Clontech) to overexpress Egr-1 in human fibroblast BJ-1 cells resulted in promotion of mitogenesis measured either by MTT cell proliferation analysis or by direct cell counting. The results demonstrate that Egr-1 may play a key role in mediating BCP crystal-induced synovial fibroblast mitogenesis

  7. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  8. Treatment of Desquamative Gingivitis with Free Gingival Graft: A Case Report

    Directory of Open Access Journals (Sweden)

    Mehdi Vatankhah

    2010-03-01

    Full Text Available Recalcitrant gingival erythematous lichen planus lesions comprise a considerable therapeutic problem. This case of chronic desquamative gingivitis in a 25-year-old woman with erosive oral lichen planus was treated with topical and systemic corticosteroid administration, followed by placement of a free gingival graft on right upper quadrant. Although recurrence of the lesions was observed following both treatment modalities, free gingival graft despite being an aggressive therapy, proved more effective and with fewer side effects compared with topical or systemic steroid therapy, and seems to be a promising treatment modality with the benefit of more stable results, among others.

  9. Predictive modeling of gingivitis severity and susceptibility via oral microbiota.

    Science.gov (United States)

    Huang, Shi; Li, Rui; Zeng, Xiaowei; He, Tao; Zhao, Helen; Chang, Alice; Bo, Cunpei; Chen, Jie; Yang, Fang; Knight, Rob; Liu, Jiquan; Davis, Catherine; Xu, Jian

    2014-09-01

    Predictive modeling of human disease based on the microbiota holds great potential yet remains challenging. Here, 50 adults underwent controlled transitions from naturally occurring gingivitis, to healthy gingivae (baseline), and to experimental gingivitis (EG). In diseased plaque microbiota, 27 bacterial genera changed in relative abundance and functional genes including 33 flagellar biosynthesis-related groups were enriched. Plaque microbiota structure exhibited a continuous gradient along the first principal component, reflecting transition from healthy to diseased states, which correlated with Mazza Gingival Index. We identified two host types with distinct gingivitis sensitivity. Our proposed microbial indices of gingivitis classified host types with 74% reliability, and, when tested on another 41-member cohort, distinguished healthy from diseased individuals with 95% accuracy. Furthermore, the state of the microbiota in naturally occurring gingivitis predicted the microbiota state and severity of subsequent EG (but not the state of the microbiota during the healthy baseline period). Because the effect of disease is greater than interpersonal variation in plaque, in contrast to the gut, plaque microbiota may provide advantages in predictive modeling of oral diseases.

  10. Tryptophan Transport in Human Fibroblast Cells—A Functional Characterization

    Directory of Open Access Journals (Sweden)

    Ravi Vumma

    2011-01-01

    Full Text Available There are indications that serotonergic neurotransmission is disturbed in several psychiatric disorders. One explanation may be disturbed transport of tryptophan (precursor for serotonin synthesis across cell membranes. Human fibroblast cells offer an advantageous model to study the transport of amino acids across cell membranes, since they are easy to propagate and the environmental factors can be controlled. The aim of this study was to functionally characterize tryptophan transport and to identify the main transporters of tryptophan in fibroblast cell lines from healthy controls. Tryptophan kinetic parameters ( V max and K m at low and high concentrations were measured in fibroblasts using the cluster tray method. Uptake of 3 H (5-L-tryptophan at different concentrations in the presence and absence of excess concentrations of inhibitors or combinations of inhibitors of amino acid transporters were also measured. Tryptophan transport at high concentration (0.5 mM had low affinity and high V max and the LAT1 isoform of system-L was responsible for approximately 40% of the total uptake of tryptophan. In comparison, tryptophan transport at low concentration (50 nM had higher affinity, lower V max and approximately 80% of tryptophan uptake was transported by system-L with LAT1 as the major isoform. The uptake of tryptophan at the low concentration was mainly sodium (Na + dependent, while uptake at high substrate concentration was mainly Na + independent. A series of different transporter inhibitors had varying inhibitory effects on tryptophan uptake. This study indicates that tryptophan is transported by multiple transporters that are active at different substrate concentrations in human fibroblast cells. The tryptophan transport trough system-L was mainly facilitated by the LAT1 isoform, at both low and high substrate concentrations of tryptophan.

  11. Chemosensitivity of primary human fibroblasts with defective unhooking of DNA interstrand cross-links

    International Nuclear Information System (INIS)

    Clingen, Peter H.; Arlett, Colin F.; Hartley, John A.; Parris, Christopher N.

    2007-01-01

    Xeroderma pigmentosum (XP) is characterised by defects in nucleotide excision repair, ultraviolet (UV) radiation sensitivity and increased skin carcinoma. Compared to other complementation groups, XP-F patients show relatively mild cutaneous symptoms. DNA interstrand cross-linking agents are a highly cytotoxic class of DNA damage induced by common cancer chemotherapeutics such as cisplatin and nitrogen mustards. Although the XPF-ERCC1 structure-specific endonuclease is required for the repair of ICLs cellular sensitivity of primary human XP-F cells has not been established. In clonogenic survival assays, primary fibroblasts from XP-F patients were moderately sensitive to both UVC and HN2 compared to normal cells (2- to 3-fold and 3- to 5-fold, respectively). XP-A fibroblasts were considerably more sensitive to UVC (10- to 12-fold) but not sensitive to HN2. The sensitivity of XP-F fibroblasts to HN2 correlated with the defective incision or 'unhooking' step of ICL repair. Using the comet assay, XP-F cells exhibited only 20% residual unhooking activity over 24 h. Over the same time, normal and XP-A cells unhooked greater than 95% and 62% of ICLs, respectively. After HN2 treatment, ICL-associated DNA double-strand breaks (DSBs) are detected by pulse field gel electrophoresis in dividing cells. Induction and repair of DNA DSBs was normal in XP-F fibroblasts. These findings demonstrate that in primary human fibroblasts, XPF is required for the unhooking of ICLs and not for the induction or repair of ICL-associated DNA DSBs induced by HN2. In terms of cancer chemotherapy, people with mild DNA repair defects affecting ICL repair may be more prevalent in the general population than expected. Since cellular sensitivity of primary human fibroblasts usually reflects clinical sensitivity such patients with cancer would be at risk of increased toxicity

  12. Cellular radiosensitivity and DNA damage in primary human fibroblasts

    International Nuclear Information System (INIS)

    Wurm, R.; Burnet, N.G.; Duggal, N.

    1994-01-01

    To evaluate the relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts to decide whether the initial or residual DNA damage levels are more predictive of normal tissue cellular radiosensitivity. Five primary human nonsyndromic and two primary ataxia telangiectasia fibroblast strains grown in monolayer were studied. Cell survival was assessed by clonogenic assay. Irradiation was given at high dose rate (HDR) 1-2 Gy/min. DNA damage was measured in stationary phase cells and expressed as fraction released from the well by pulsed-field gel electrophoresis (PFGE). For initial damage, cells were embedded in agarose and irradiated at HDR on ice. Residual DNA damage was measured in monolayer by allowing a 4-h repair period after HDR irradiation. Following HDR irradiation, cell survival varied between SF 2 0.025 to 0.23. Measurement of initial DNA damage demonstrated linear induction up to 30 Gy, with small differences in the slope of the dose-response curve between strains. No correlation between cell survival and initial damage was found. Residual damage increased linearly up to 80 Gy with a variation in slope by a factor of 3.2. Cell survival correlated with the slope of the dose-response curves for residual damage of the different strains (p = 0.003). The relationship between radiation-induced cell survival and DNA damage in primary human fibroblasts of differing radiosensitivity is closest with the amount of DNA damage remaining after repair. If assays of DNA damage are to be used as predictors of normal tissue response to radiation, residual DNA damage provides the most likely correlation with cell survival. 52 refs., 5 figs., 2 tabs

  13. Correlation of expression and activity of matrix metalloproteinase-9 and -2 in human gingival cells of periodontitis patients.

    Science.gov (United States)

    Kim, Kyung-A; Chung, Soo-Bong; Hawng, Eun-Young; Noh, Seung-Hyun; Song, Kwon-Ho; Kim, Hanna-Hyun; Kim, Cheorl-Ho; Park, Young-Guk

    2013-02-01

    Matrix metalloproteinases (MMPs) are capable of degrading extracellular matrix, and they are inducible enzymes depending on an inflammatory environment such as periodontitis and bacterial infection in periodontal tissue. Gingival inflammation has been postulated to be correlated with the production of MMP-2 and MMP-9. The objective of this study was to quantify the expression and activity of MMP-9 and -2, and to determine the correlation between activity and expression of these MMPs in human gingival tissues with periodontitis. The gingival tissues of 13 patients were homogenized in 500 µL of phosphate buffered saline with a protease inhibitor cocktail. The expression and activity of MMP-2 and -9 were measured by enzyme-linked immunosorbent assay and Western blot analysis, and quantified by a densitometer. For the correlation line, statistical analysis was performed using the Systat software package. MMP-9 was highly expressed in all gingival tissue samples, whereas MMP-2 was underexpressed compared with MMP-9. MMP-9 activity increased together with the MMP-9 expression level, with a positive correlation (r=0.793, P=0.01). The correlation was not observed in MMP-2. The expression of MMP-2 and -9 might contribute to periodontal physiological and pathological processes, and the degree of MMP-9 expression and activity are predictive indicators relevant to the progression of periodontitis.

  14. Cell-free assay measuring repair DNA synthesis in human fibroblasts

    International Nuclear Information System (INIS)

    Ciarrocchi, G.; Linn, S.

    1978-01-01

    Osmotic disruption of confluent cultured human fibroblasts that have been irradiated or exposed to chemical carcinogens allows the specific measurement of repair DNA synthesis using dTTP as a precursor. Fibroblasts similarly prepared from various xeroderma pigmentosum cell lines show the deficiencies of uv-induced DNA synthesis predicted from in vivo studies, while giving normal responses to methylmethanesulfonate. A pyrimidine-dimer-specific enzyme, T4 endonuclease V, stimulated the rate of uv-induced repair synthesis with normal and xeroderma pigmentosum cell lines. This system should prove useful for identifying agents that induce DNA repair, and cells that respond abnormally to such induction. It should also be applicable to an in vitro complementation assay with repair-defective cells and proteins obtained from repair-proficient cells. Finally, by using actively growing fibroblasts and thymidine in the system, DNA replication can be measured and studied in vitro

  15. Pitanga (Eugenia uniflora L.) fruit juice and two major constituents thereof exhibit anti-inflammatory properties in human gingival and oral gum epithelial cells.

    Science.gov (United States)

    Josino Soares, Denise; Walker, Jessica; Pignitter, Marc; Walker, Joel Michael; Imboeck, Julia Maria; Ehrnhoefer-Ressler, Miriam Margit; Montenegro Brasil, Isabella; Somoza, Veronika

    2014-11-01

    Pitanga, Eugenia uniflora L., is a tropical fruit, which may be consumed as juice. While beneficial health effects of Eugenia uniflora L. leaf extracts have extensively been studied, limited data are available on an anti-inflammatory potential of pitanga juice. The aim of the presented study was to investigate anti-inflammatory properties of pitanga juice with regards to a prevention of inflammation-related periodontal diseases. For this purpose, six healthy volunteers swirled pitanga juice, containing 35% pitanga pulp, for 10 min. Thereafter, oral gum epithelial cells were harvested using a sterile brush and stimulated with lipopolysaccharides from Porphyromonas gingivalis (PG-LPS) for 6 h. Furthermore, human gingival fibroblasts (HGF-1) were used to elucidate the anti-inflammatory potential of pitanga juice constituents, cyanidin-3-glucoside and oxidoselina-1,3,7(11)-trien-8-one, in juice representative concentrations of 119 μg ml(-1) and 30 μg ml(-1), respectively. For the first time, an anti-inflammatory impact of pitanga juice on gingival epithelial cells was shown by means of an attenuation of IL-8 release by 55 ± 8.2% and 52 ± 11% in non-stimulated and PG-LPS-stimulated cells, respectively. In addition, both cyanidin-3-glucoside and oxidoselina-1,3,7(11)-trien-8-one reduced the LPS-stimulated CXCL8 mRNA expression by 50 ± 15% and 37 ± 18% and IL-8 release by 52 ± 9.9% and 45 ± 3.7% in HGF-1 cells, when concomitantly incubated with 10 μg ml(-1)PG-LPS for 6 h, revealing an anti-inflammatory potential of the volatile compound oxidoselina-1,3,7(11)-trien-8-one for the first time.

  16. Identification of molecules derived from human fibroblast feeder cells that support the proliferation of human embryonic stem cells

    DEFF Research Database (Denmark)

    Anisimov, Sergey V.; Christophersen, Nicolaj S.; Correia, Ana S.

    2011-01-01

    The majority of human embryonic stem cell lines depend on a feeder cell layer for continuous growth in vitro, so that they can remain in an undifferentiated state. Limited knowledge is available concerning the molecular mechanisms that underlie the capacity of feeder cells to support both...... the proliferation and pluripotency of these cells. Importantly, feeder cells generally lose their capacity to support human embryonic stem cell proliferation in vitro following long-term culture. In this study, we performed large-scale gene expression profiles of human foreskin fibroblasts during early...... foreskin fibroblasts to serve as feeder cells for human embryonic stem cell cultures. Among these, the C-KIT, leptin and pigment epithelium-derived factor (PEDF) genes were the most interesting candidates....

  17. Association between gingivitis and anterior gingival enlargement in subjects undergoing fixed orthodontic treatment

    Science.gov (United States)

    Zanatta, Fabricio Batistin; Ardenghi, Thiago Machado; Antoniazzi, Raquel Pippi; Pinto, Tatiana Militz Perrone; Rösing, Cassiano Kuchenbecker

    2014-01-01

    Objective The aim of this study was to investigate the association among gingival enlargement (GE), periodontal conditions and socio-demographic characteristics in subjects undergoing fixed orthodontic treatment. Methods A sample of 330 patients undergoing fixed orthodontic treatment for at least 6 months were examined by a single calibrated examiner for plaque and gingival indexes, probing pocket depth, clinical attachment loss and gingival enlargement. Socio-economic background, orthodontic treatment duration and use of dental floss were assessed by oral interviews. Associations were assessed by means of unadjusted and adjusted Poisson's regression models. Results The presence of gingival bleeding (RR 1.01; 95% CI 1.00-1.01) and excess resin around brackets (RR 1.02; 95% CI 1.02-1.03) were associated with an increase in GE. No associations were found between socio-demographic characteristics and GE. Conclusion Proximal anterior gingival bleeding and excess resin around brackets are associated with higher levels of anterior gingival enlargement in subjects under orthodontic treatment. PMID:25162567

  18. Direct Neural Conversion from Human Fibroblasts Using Self-Regulating and Nonintegrating Viral Vectors

    Directory of Open Access Journals (Sweden)

    Shong Lau

    2014-12-01

    Full Text Available Summary: Recent findings show that human fibroblasts can be directly programmed into functional neurons without passing via a proliferative stem cell intermediate. These findings open up the possibility of generating subtype-specific neurons of human origin for therapeutic use from fetal cell, from patients themselves, or from matched donors. In this study, we present an improved system for direct neural conversion of human fibroblasts. The neural reprogramming genes are regulated by the neuron-specific microRNA, miR-124, such that each cell turns off expression of the reprogramming genes once the cell has reached a stable neuronal fate. The regulated system can be combined with integrase-deficient vectors, providing a nonintegrative and self-regulated conversion system that rids problems associated with the integration of viral transgenes into the host genome. These modifications make the system suitable for clinical use and therefore represent a major step forward in the development of induced neurons for cell therapy. : Lau et al. now use miRNA targeting to build a self-regulating neural conversion system. Combined with nonintegrating vectors, this system can efficiently drive conversion of human fibroblasts into functional induced neurons (iNs suitable for clinical applications.

  19. Studies of the in vivo radiosensitivity of human skin fibroblasts

    International Nuclear Information System (INIS)

    Hill, Richard P.; Kaspler, Pavel; Griffin, Anthony M.; O'Sullivan, Brian; Catton, Charles; Alasti, Hamideh; Abbas, Ahmar; Heydarian, Moustafa; Ferguson, Peter; Wunder, Jay S.; Bell, Robert S.

    2007-01-01

    Background and purpose: To examine the radiosensitivity of skin cells obtained directly from the irradiated skin of patients undergoing fractionated radiation treatment prior to surgery for treatment of soft tissue sarcoma (STS) and to determine if there was a relationship with the development of wound healing complications associated with the surgery post-radiotherapy. Methods: Micronucleus (MN) formation was measured in cells (primarily dermal fibroblasts) obtained from human skin at their first division after being removed from STS patients during post-radiotherapy surgery (2-9 weeks after the end of the radiotherapy). At the time of radiotherapy (planned tumor dose - 50 Gy in 25 daily fractions) measurements were made of surface skin dose at predetermined marked sites. Skin from these sites was obtained at surgery and cell suspensions were prepared directly for the cytokinesis-blocked MN assay. Cultured strains of the fibroblasts were also established from skin nominally outside the edge of the radiation beam and DNA damage (MN formation) was examined following irradiation in vitro for comparison with the results from the in situ irradiations. Results: Extensive DNA damage (MN) was detectable in fibroblasts from human skin at extended periods after irradiation (2-9 weeks after the end of the 5-week fractionated radiotherapy). Analysis of skin receiving a range of doses demonstrated that the level of damage observed was dose dependent. There was no clear correlation between the level of damage observed after irradiation in situ and irradiation of cell strains in culture. Similarly, there was no correlation between the extent of MN formation following in situ irradiation and the propensity for the patient to develop wound healing complications post-surgery. Conclusions: Despite the presence of DNA damage in dermal fibroblasts weeks after the end of the radiation treatment, there was no relationship between this damage and wound healing complications following

  20. Effect of glutathione on arecanut treated normal human buccal fibroblast culture.

    Directory of Open Access Journals (Sweden)

    Saraswathi T

    2006-01-01

    Full Text Available BACKGROUND: Experimental studies have shown arecanut to be a cytotoxic substance with mutagenic and carcinogenic potential. OBJECTIVE: The present study was undertaken to evaluate the effect of glutathione on arecanut treated human buccal fibroblast culture and its potential as a chemopreventive agent. MATERIALS AND METHODS: Fibroblast culture was done in Dulbecco′s Modified Eagle′s Medium MEM supplemented with 10% Fetal Calf Serum (FCS and antibiotic at 370C degrees in an atmosphere of 5% carbon di-oxide and 95% air. The fibroblast cells were subjected to different concentrations of aqueous extracts of raw and boiled arecanut. Fibroblasts were plated in two 24-well culture plates and in each plate, cells were dividt,ednto 2 groups; 600gg microml of reduced glutathione was added to the first group of cells; subsequently, aqueous extracts of raw and boiled arecanut at least and highest concentrations i.e., 20j. microml and 100lg microml were added to the first group of cells in the respective plates whereas the second group served as a control. The morphological alterations and cell survival were assayed at 24, 48, 72, and 96 hours. Results Morphologically, the initial (10 hours attached fibroblast cells were converted from spheroidal shape towards hexagonal and finally to a fully extended spindle shaped configuration. The three morphological types of fibroblasts at 48 hours were F-I, F-II and F-III. Aqueous extract of raw arecanut exhibited significant cytotoxicity (p < .0 001 at all time periods studied, when compared against the control values of untreated fibroblasts. Addition of reduced glutathione to cultures showed a significant (p < 0. 001 reduction in cytotoxicity, as indicated by higher optical density values and morphological reversion to the spindle-shaped configuration. CoCONCLUSION:Addition of glutathione reduced the cytotoxic and morphological alterations of the fibroblasts treated with aqueous extracts of both raw and boiled

  1. ADHESION AND SPREADING OF HUMAN FIBROBLASTS ON SUPERHYDROPHOBIC FEP-TEFLON

    NARCIS (Netherlands)

    BUSSCHER, HJ; STOKROOS, [No Value; GOLVERDINGEN, JG; SCHAKENRAAD, JM

    1991-01-01

    Adhesion and spreading of human fibroblasts was studied on hydrophobized and hydrophilized FEP-Teflon, and compared with adhesion and spreading on untreated FEP-Teflon and Tissue culture polystyrene (TCPS). Superhydrophobic FEP-Teflon was prepared by ion etching followed by oxygen glow-discharge.

  2. Development of human skin equivalents mimicking skin aging : contrast between papillary and reticular fibroblasts as a lead

    NARCIS (Netherlands)

    Janson, D.

    2017-01-01

    This thesis describes the development of human skin equivalents that show characteristics of skin aging. The type of skin equivalent used was a fibroblast derived matrix equivalent, in which the dermal compartment is generated by fibroblasts and thus is fully of human origin. Two strategies are

  3. Estradiol stimulation of inositolphospholipid metabolism in human endometrial fibroblasts

    International Nuclear Information System (INIS)

    Iida, K.; Imai, A.; Tamaya, T.

    1989-01-01

    Stimulated inositolphospholipid turnover has been proposed to constitute a signal-transducing mechanism in many cell types. To determine the inositolphospholipid turnover during stimulation by 17 beta-estradiol, the turnover kinetics of phospholipids was investigated in human endometrial fibroblasts. In cells incubated with [ 32 P] phosphate for 1 h, estradiol rapidly and persisitently (for at least 30 min) enhanced the rate of 32 P-labeling of phosphatidic acid (PA). On the other hand, after a lag time of 5 min, 32 P-labeling of phosphatidylinositol (PI) was also increased also. These sequential 32 P-labeling of PA and PI demonstrated that inositolphospholipid turnover was stimulated in fibroblasts exposed to estradiol. The rapid estrogen-stimulated inositolphospholipid turnover may not be through the mechanism associated with classical action of estrogen

  4. Diffuse colonies of human skin fibroblasts in relation to cellular senescence and proliferation.

    Science.gov (United States)

    Zorin, Vadim; Zorina, Alla; Smetanina, Nadezhda; Kopnin, Pavel; Ozerov, Ivan V; Leonov, Sergey; Isaev, Artur; Klokov, Dmitry; Osipov, Andreyan N

    2017-05-16

    Development of personalized skin treatment in medicine and skin care may benefit from simple and accurate evaluation of the fraction of senescent skin fibroblasts that lost their proliferative capacity. We examined whether enriched analysis of colonies formed by primary human skin fibroblasts, a simple and widely available cellular assay, could reveal correlations with the fraction of senescent cells in heterogenic cell population. We measured fractions of senescence associated β-galactosidase (SA-βgal) positive cells in either mass cultures or colonies of various morphological types (dense, mixed and diffuse) formed by skin fibroblasts from 10 human donors. Although the donors were chosen to be within the same age group (33-54 years), the colony forming efficiency of their fibroblasts (ECO-f) and the percentage of dense, mixed and diffuse colonies varied greatly among the donors. We showed, for the first time, that the SA-βgal positive fraction was the largest in diffuse colonies, confirming that they originated from cells with the least proliferative capacity. The percentage of diffuse colonies was also found to correlate with the SA-βgal positive cells in mass culture. Using Ki67 as a cell proliferation marker, we further demonstrated a strong inverse correlation (r=-0.85, p=0.02) between the percentage of diffuse colonies and the fraction of Ki67+ cells. Moreover, a significant inverse correlation (r=-0.94, p=0.0001) between the percentage of diffuse colonies and ECO-f was found. Our data indicate that quantification of a fraction of diffuse colonies may provide a simple and useful method to evaluate the extent of cellular senescence in human skin fibroblasts.

  5. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    Science.gov (United States)

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Measurement of total antioxidant capacity in gingival crevicular fluid and serum in dogs with periodontal disease.

    Science.gov (United States)

    Pavlica, Zlatko; Petelin, Milan; Nemec, Alenka; Erzen, Damjan; Skaleric, Uros

    2004-11-01

    To determine whether gingival crevicular fluid (GCF) and serum total antioxidant capacities (TACs) correlate with the degree of severity of periodontal disease in dogs. 41 Toy and Miniature Poodles. After assessment of the degree of severity of naturally occurring periodontitis, GCF samples from both maxillary fourth premolars and a blood sample were collected from each dog. The condition of the periodontium of the entire dentition and at each site of GCF collection was recorded. Clinical parameters assessed included plaque index, gingival index, and probing depth. Radiographic analysis of alveolar bone level was also performed. Total antioxidant capacity was measured in GCF and serum samples by use of a commercial kit. Dogs with gingivitis and minimal periodontitis had significantly higher TAC in GCF than dogs with advanced periodontitis. Bivariate regression analysis revealed significant negative correlations between TAC in GCF and clinical parameters and age. The TAC in serum was significantly negatively correlated with the degree of gingival inflammation but was not significantly correlated with age. TAC in GCF is related to the degree of severity of periodontal disease in dogs. This is likely the result of release of reactive oxygen species by activated phagocytes and fibroblasts in the inflamed periodontal tissues. The results of our study suggest that the local delivery of antioxidants may be a useful adjunctive treatment for periodontitis in dogs.

  7. Podoplanin increases the migration of human fibroblasts and affects the endothelial cell network formation: A possible role for cancer-associated fibroblasts in breast cancer progression.

    Directory of Open Access Journals (Sweden)

    Jaroslaw Suchanski

    Full Text Available In our previous studies we showed that in breast cancer podoplanin-positive cancer-associated fibroblasts correlated positively with tumor size, grade of malignancy, lymph node metastasis, lymphovascular invasion and poor patients' outcome. Therefore, the present study was undertaken to assess if podoplanin expressed by fibroblasts can affect malignancy-associated properties of breast cancer cells. Human fibroblastic cell lines (MSU1.1 and Hs 578Bst overexpressing podoplanin and control fibroblasts were co-cultured with breast cancer MDA-MB-231 and MCF7 cells and the impact of podoplanin expressed by fibroblasts on migration and invasiveness of breast cancer cells were studied in vitro. Migratory and invasive properties of breast cancer cells were not affected by the presence of podoplanin on the surface of fibroblasts. However, ectopic expression of podoplanin highly increases the migration of MSU1.1 and Hs 578Bst fibroblasts. The present study also revealed for the first time, that podoplanin expression affects the formation of pseudo tubes by endothelial cells. When human HSkMEC cells were co-cultured with podoplanin-rich fibroblasts the endothelial cell capillary-like network was characterized by significantly lower numbers of nodes and meshes than in co-cultures of endothelial cells with podoplanin-negative fibroblasts. The question remains as to how our experimental data can be correlated with previous clinical data showing an association between the presence of podoplanin-positive cancer-associated fibroblasts and progression of breast cancer. Therefore, we propose that expression of podoplanin by fibroblasts facilitates their movement into the tumor stroma, which creates a favorable microenvironment for tumor progression by increasing the number of cancer-associated fibroblasts, which produce numerous factors affecting proliferation, survival and invasion of cancer cells. In accordance with this, the present study revealed for the first

  8. Podoplanin increases the migration of human fibroblasts and affects the endothelial cell network formation: A possible role for cancer-associated fibroblasts in breast cancer progression.

    Science.gov (United States)

    Suchanski, Jaroslaw; Tejchman, Anna; Zacharski, Maciej; Piotrowska, Aleksandra; Grzegrzolka, Jedrzej; Chodaczek, Grzegorz; Nowinska, Katarzyna; Rys, Janusz; Dziegiel, Piotr; Kieda, Claudine; Ugorski, Maciej

    2017-01-01

    In our previous studies we showed that in breast cancer podoplanin-positive cancer-associated fibroblasts correlated positively with tumor size, grade of malignancy, lymph node metastasis, lymphovascular invasion and poor patients' outcome. Therefore, the present study was undertaken to assess if podoplanin expressed by fibroblasts can affect malignancy-associated properties of breast cancer cells. Human fibroblastic cell lines (MSU1.1 and Hs 578Bst) overexpressing podoplanin and control fibroblasts were co-cultured with breast cancer MDA-MB-231 and MCF7 cells and the impact of podoplanin expressed by fibroblasts on migration and invasiveness of breast cancer cells were studied in vitro. Migratory and invasive properties of breast cancer cells were not affected by the presence of podoplanin on the surface of fibroblasts. However, ectopic expression of podoplanin highly increases the migration of MSU1.1 and Hs 578Bst fibroblasts. The present study also revealed for the first time, that podoplanin expression affects the formation of pseudo tubes by endothelial cells. When human HSkMEC cells were co-cultured with podoplanin-rich fibroblasts the endothelial cell capillary-like network was characterized by significantly lower numbers of nodes and meshes than in co-cultures of endothelial cells with podoplanin-negative fibroblasts. The question remains as to how our experimental data can be correlated with previous clinical data showing an association between the presence of podoplanin-positive cancer-associated fibroblasts and progression of breast cancer. Therefore, we propose that expression of podoplanin by fibroblasts facilitates their movement into the tumor stroma, which creates a favorable microenvironment for tumor progression by increasing the number of cancer-associated fibroblasts, which produce numerous factors affecting proliferation, survival and invasion of cancer cells. In accordance with this, the present study revealed for the first time, that such

  9. Effects of cholera toxin and isobutylmethylxanthine on growth of human fibroblasts

    International Nuclear Information System (INIS)

    Espinoza, B.; Wharton, W.

    1986-01-01

    Cholera toxin produced a dose-dependent decrease in the restimulation of G 0 /G 1 traverse in density-arrested human fibroblasts but did not inhibit the stimulation of cells arrested in G 0 after serum starvation at low density. In addition, cholera toxin did not inhibit the proliferation of sparse logarithmically growing human fibroblasts, even when low concentrations of the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) were also present. However, the final density to which sparse cells grew was limited by cholera toxin, when added either alone or together with low concentrations of IBMX. In contrast, high concentrations of the phosphodiesterase inhibitor alone produced a profound inhibition in the growth of sparse human fibrobasts. IBMX produced an inhibition both in the G 1 and in the G 2 phases of the cell cycle by a mechanism(s) that was not related to the magnitude of the increases in adenosine 3,5-cyclic monophosphate concentrations

  10. Asiaticoside induces cell proliferation and collagen synthesis in human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Linda Yulianti

    2015-08-01

    Full Text Available Asiatiocoside, a saponin component isolated from Centella asiatica can improve wound healing by promoting the proliferation of human dermal fibroblasts (HDF and synthesis of collagen. The skin-renewing cells and type I and III collagen synthesis decrease with aging, resulting in the reduction of skin elasticity and delayed wound healing. Usage of natural active compounds from plants in wound healing should be evaluated and compared to retinoic acid as an active agent that regulates wound healing. The aim of this study was to compare and evaluate the effect of asiaticoside and retinoic acid to induce greater cell proliferation and type I and III collagen synthesis in human dermal fibroblast. Methods Laboratory experiments were conducted using human dermal fibroblasts (HDF isolated from human foreskin explants. Seven passages of HDF were treated with asiaticoside and retinoic acid at several doses and incubated for 24 and 48 hours. Cell viability in all groups was tested with the MTT assay to assess HDF proliferation. Type I and III collagen synthesis was examined using the respective ELISA kits. Analysis of variance was performed to compare the treatment groups. Results Asiaticoside had significantly stronger effects on HDF proliferation than retinoic acid (p<0.05. The type III collagen production was significantly greater induction with asiaticoside compared to retinoic acid (p<0.05. Conclusion Asiaticoside induces HDF proliferation and type I and III collagen synthesis in a time- and dose-dependent pattern. Asiaticoside has a similar effect as retinoic acid on type I and type III collagen synthesis.

  11. Quantitation of the repair of gamma-radiation-induced double-strand DNA breaks in human fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.

    1981-01-01

    The quantitation and repair of double-strand DNA breaks in human fibroblasts has been determined using a method involving the nondenaturing elution of DNA from a filter. DNA from cells from two human fibroblast lines exposed to γ-radiation from 0 to 10000 rad showed increasing retention on a filter with decreasing radiation dose, and the data suggest a linear relationship between double-strand breaks induced and radiation dose. The ability of normal human fibroblasts to repair double-strand breaks with various doses of radiation was demonstrated, with a tsub(1/2) of 10 min for repair of 5000 rad exposure and 39 min for repair of 10000 rad damage. The kinetics of the DNA rejoining were not linear and suggest that, as in the repair of single-strand breaks, both an initial fast and a later slow mechanism may be involved. (Auth.)

  12. The polypeptide in Chlamys farreri can protect human dermal fibroblasts from ultraviolet B damage

    Science.gov (United States)

    Zhang, Yujiang; Zhan, Songmei; Cao, Pengli; Liu, Ning; Chen, Xuehong; Wang, Yuejun; Wang, Chunbo

    2005-09-01

    To investigate the effect of polypeptide from Chlamys farreri (PCF) on NHDF in vitro, we modeled oxidative damage on normal human dermal fibroblasts (NHDF) exposed to ultraviolet B (UVB). In this study, 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) were tested to measure cell viability. Enzymes including superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), catalase (CAT) and xanthine oxidase (XOD) were determined biochemically. Total antioxidative capacity (T-AOC) and anti-superoxide anion capacity (A-SAC) were also determined. Ultrastructure of fibroblasts was observed under transmission electron microscope. The results showed that: UVB (1.176×10-4 J/cm2) suppressed the growth of fibroblasts and the introduction of PCF (0.25% 1%) before UVB reduced the suppression in a concentration-dependent manner. PCF could enhance the activities of SOD, GSH-PX and T-AOC as well as A-SAC. Also PCF could inhibit XOD activity, while it did not affect CAT activity. Ultrastructure of fibroblasts were damaged after UVB irradiation, concentration-dependent PCF reduced the destructive effect of UVB on cells. These results indicated that PCF can protect human dermal fibroblasts from being harmed by UVB irradiation via its antioxidant proerty.

  13. Involvement of the mitochondrial compartment in human NCL fibroblasts

    International Nuclear Information System (INIS)

    Pezzini, Francesco; Gismondi, Floriana; Tessa, Alessandra; Tonin, Paola; Carrozzo, Rosalba; Mole, Sara E.; Santorelli, Filippo M.; Simonati, Alessandro

    2011-01-01

    Highlights: ► Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. ► Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. ► Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  14. Generation of hiPSTZ16 (ISMMSi003-A cell line from normal human foreskin fibroblasts

    Directory of Open Access Journals (Sweden)

    Marion Dejosez

    2018-01-01

    Full Text Available Human foreskin fibroblasts from a commercial source were reprogrammed into induced pluripotent stem cells to establish a clonal stem cell line, hiPSTZ16 (ISMMSi003-A. These cells show a normal karyotype and full differentiation potential in teratoma assays. The described cells provide a useful resource in combination with other iPS cell lines generated from normal human foreskin fibroblasts to study source- and reprogramming method-independent effects in downstream applications.

  15. Cytotoxic effects of nickel nanowires in human fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2016-03-09

    The increasing interest in the use of magnetic nanostructures for biomedical applications necessitates rigorous studies to be carried out in order to determine their potential toxicity. This work attempts to elucidate the cytotoxic effects of nickel nanowires (NWs) in human fibroblasts WI-38 by a colorimetric assay (MTT) under two different parameters: NW concentration and exposure time. This was complemented with TEM and confocal images to assess the NWs internalization and to identify any changes in the cell morphology. Ni NWs were fabricated by electrodeposition using porous alumina templates. Energy dispersive X-Ray analysis, scanning electron microscopy and transmission electron microscopy imaging were used for NW characterization. The results showed decreased cell metabolic activity for incubation times longer than 24 hours and no negative effects for exposure times shorter than that. The cytotoxicity effects for human fibroblasts were then compared with those reported for HCT 116 cells, and the findings point out that it is relevant to consider the cellular size. In addition, the present study compares the toxic effects of equivalent amounts of nickel in the form of its salt to those of NWs and shows that the NWs are more toxic than the salts. Internalized NWs were found in vesicles inside of the cells where their presence induced inflammation of the endoplasmic reticulum.

  16. In vitro cytotoxicity of chemical preservatives on human fibroblast cells

    Directory of Open Access Journals (Sweden)

    Daniel Gonsales Spindola

    2018-05-01

    Full Text Available ABSTRACT Preservatives are widely used substances that are commonly added to various cosmetic and pharmaceutical products to prevent or inhibit microbial growth. In this study, we compared the in vitro cytotoxicity of different types of currently used preservatives, including methylparaben, imidazolidinyl urea (IMU, and sodium benzoate, using the human newborn fibroblast cell line CCD1072Sk. Of the tested preservatives, only IMU induced a reduction in cell viability, as shown using the MTT assay and propidium iodide staining (IMU>methylparaben>sodium benzoate. IMU was shown to promote homeostatic alterations potentially related to the initiation of programed cell death, such as decreased mitochondrial membrane potential and caspase-3 activation, in the treated cells. Methylparaben and sodium benzoate were shown to have a very low cytotoxic activity. Taken together, our results suggest that IMU induces programed cell death in human fibroblasts by a canonical intrinsic pathway via mitochondrial perturbation and subsequent release of proapoptotic factors.

  17. E-Cigarette Vapor Induces an Apoptotic Response in Human Gingival Epithelial Cells Through the Caspase-3 Pathway.

    Science.gov (United States)

    Rouabhia, Mahmoud; Park, Hyun Jin; Semlali, Abdelhabib; Zakrzewski, Andrew; Chmielewski, Witold; Chakir, Jamila

    2017-06-01

    Electronic cigarettes represent an increasingly significant proportion of today's consumable tobacco products. E-cigarettes contain several chemicals which may promote oral diseases. The aim of this study was to investigate the effect of e-cigarette vapor on human gingival epithelial cells. Results show that e-cigarette vapor altered the morphology of cells from small cuboidal form to large undefined shapes. Both single and multiple exposures to e-cigarette vapor led to a bulky morphology with large faint nuclei and an enlarged cytoplasm. E-cigarette vapor also increased L-lactate dehydrogenase (LDH) activity in the targeted cells. This activity was greater with repeated exposures. Furthermore, e-cigarette vapor increased apoptotic/necrotic epithelial cell percentages compared to that observed in the control. Epithelial cell apoptosis was confirmed by TUNEL assay showing that exposure to e-cigarette vapor increased apoptotic cell numbers, particularly after two and three exposures. This negative effect involved the caspase-3 pathway, the activity of which was greater with repeated exposure and which decreased following the use of caspase-3 inhibitor. The adverse effects of e-cigarette vapor on gingival epithelial cells may lead to dysregulated gingival cell function and result in oral disease. J. Cell. Physiol. 232: 1539-1547, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Early superoxide dismutase alterations during SV40-transformation of human fibroblasts.

    Science.gov (United States)

    Bravard, A; Hoffschir, F; Sabatier, L; Ricoul, M; Pinton, A; Cassingena, R; Estrade, S; Luccioni, C; Dutrillaux, B

    1992-11-11

    The expression of superoxide dismutases (SOD) 1 and 2 was studied in 4 clones of human fibroblasts after their infection by simian virus 40 (SV40), in parallel with the alterations of chromosomes 21 and chromosome 6q arms, carrying the genes that encode for SOD1 and SOD2 respectively. For all clones, a similar scheme with 2 main phases was observed for both chromosome and SOD variations. The first phase, defined as the pre-crisis phase, was characterized by chromosomal instability, but maintenance of normal numbers of chromosome 6q arms and chromosomes 21. The level of SOD2 mRNA was high, while SOD2 activity and immunoreactive protein were low. SOD1 protein and activity were decreased. In the second phase, defined as the post-crisis phase, the accumulation of clonal chromosomal rearrangements led to the loss of 6q arms, while the number of chromosomes 21 remained normal. SOD2 mRNA level was decreased and SOD2 immunoreactive protein and activity remained low. SOD1 protein and activity increased with passages, reaching values similar to those of control cells at late passages. As in established SV40-transformed human fibroblast cell lines, good correlation was found between SOD2 activity and the relative number of 6q arms. These results allow us to reconstruct the sequence of events leading to the decrease of SOD2, a possible tumor-suppressor gene, during the process of SV40-transformation of human fibroblasts.

  19. Internalisation of hepatitis C virus core protein by human conjunctival fibroblasts.

    Science.gov (United States)

    Rajalakshmy, A R; Malathi, J; Madhavan, H N; Bhaskar, S; Iyer, G K

    2016-01-01

    Recent studies indicate that hepatitis C virus (HCV) proteins can mediate innate immune response and inflammation in conjunctival fibroblasts which contributes to the pathology of dry eye condition associated with chronic HCV infection. The present study investigates the phagocytic potential of human conjunctival fibroblasts (HCFj) for HCV core protein. HCFj cells were incubated with HCV core antigen for different periods of time, and fluorescent micrographs were taken to observe protein internalisation. HCFj cells were capable of internalising HCV core antigen within 1 h; this gives an insight into another molecular mechanism which may contribute towards HCV-associated conjunctival inflammation.

  20. Cellular Mechanics of Primary Human Cervical Fibroblasts: Influence of Progesterone and a Pro-inflammatory Cytokine.

    Science.gov (United States)

    Shukla, Vasudha; Barnhouse, Victoria; Ackerman, William E; Summerfield, Taryn L; Powell, Heather M; Leight, Jennifer L; Kniss, Douglas A; Ghadiali, Samir N

    2018-01-01

    The leading cause of neonatal mortality, pre-term birth, is often caused by pre-mature ripening/opening of the uterine cervix. Although cervical fibroblasts play an important role in modulating the cervix's extracellular matrix (ECM) and mechanical properties, it is not known how hormones, i.e., progesterone, and pro-inflammatory insults alter fibroblast mechanics, fibroblast-ECM interactions and the resulting changes in tissue mechanics. Here we investigate how progesterone and a pro-inflammatory cytokine, IL-1β, alter the biomechanical properties of human cervical fibroblasts and the fibroblast-ECM interactions that govern tissue-scale mechanics. Primary human fibroblasts were isolated from non-pregnant cervix and treated with estrogen/progesterone, IL-1β or both. The resulting changes in ECM gene expression, matrix remodeling, traction force generation, cell-ECM adhesion and tissue contractility were monitored. Results indicate that IL-1β induces a significant reduction in traction force and ECM adhesion independent of pre-treatment with progesterone. These cell level effects altered tissue-scale mechanics where IL-1β inhibited the contraction of a collagen gel over 6 days. Interestingly, progesterone treatment alone did not modulate traction forces or gel contraction but did result in a dramatic increase in cell-ECM adhesion. Therefore, the protective effect of progesterone may be due to altered adhesion dynamics as opposed to altered ECM remodeling.

  1. Re-evaluation of in vitro radiosensitivity of human fibroblasts of different genetic origins

    Energy Technology Data Exchange (ETDEWEB)

    Deschavanne, P.J.; Debieu, D.; Malaise, E.P.; Fertil, B.

    1986-08-01

    Statistical analysis of the radiosensitivity of 204 survival curves of non-transformed human fibroblast cell strains of different genetic origins was made using the multi-target one-hit model (characterized by parameters eta and D/sub 0/), the surviving fraction for a 2 Gy dose (S/sub 2/) and the mean inactivation dose (D-bar). D-bar is found to be the parameter for characterization of anomalous radiosensitivity linked to a genetic disorder and discrimination between groups of cell strains of differing radiosensitivity. It allows the description of a range of 'normal' radiosensitivity for control fibroblasts and classification of genetic disorders as a function of their mean radiosensitivity expressed in terms of D-bar. Nine groups of cell strains appear to exhibit radiosensitivity differing significantly from the controls: seven groups are hypersensitive (ataxia-telengiectasia homozygotes and heterozygotes, Cockayne's syndrome, Gardner's syndrome, 5-oxoprolinuria homozygotes and heterozygotes, Fanconi's anaemia) and two groups are more radioresistant (fibroblasts from retinoblastoma patients and individuals with chromosome 13 anomalies). Since the coupled parameter eta and D/sub 0/ failed to discriminate between the radiosensitivity of the different genetic groups, the use of D-bar to make an intercomparison of intrinsic radiosensitivity of non-transformed human fibroblasts is recommended. (U.K.).

  2. Re-evaluation of in vitro radiosensitivity of human fibroblasts of different genetic origins

    International Nuclear Information System (INIS)

    Deschavanne, P.J.; Debieu, D.; Malaise, E.P.; Fertil, B.

    1986-01-01

    Statistical analysis of the radiosensitivity of 204 survival curves of non-transformed human fibroblast cell strains of different genetic origins was made using the multi-target one-hit model (characterized by parameters eta and D 0 ), the surviving fraction for a 2 Gy dose (S 2 ) and the mean inactivation dose (D-bar). D-bar is found to be the parameter for characterization of anomalous radiosensitivity linked to a genetic disorder and discrimination between groups of cell strains of differing radiosensitivity. It allows the description of a range of 'normal' radiosensitivity for control fibroblasts and classification of genetic disorders as a function of their mean radiosensitivity expressed in terms of D-bar. Nine groups of cell strains appear to exhibit radiosensitivity differing significantly from the controls: seven groups are hypersensitive (ataxia-telengiectasia homozygotes and heterozygotes, Cockayne's syndrome, Gardner's syndrome, 5-oxoprolinuria homozygotes and heterozygotes, Fanconi's anaemia) and two groups are more radioresistant (fibroblasts from retinoblastoma patients and individuals with chromosome 13 anomalies). Since the coupled parameter eta and D 0 failed to discriminate between the radiosensitivity of the different genetic groups, the use of D-bar to make an intercomparison of intrinsic radiosensitivity of non-transformed human fibroblasts is recommended. (U.K.)

  3. Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis

    Directory of Open Access Journals (Sweden)

    Huang Shi

    2011-12-01

    Full Text Available Abstract Background Microbial communities inhabiting human mouth are associated with oral health and disease. Previous studies have indicated the general prevalence of adult gingivitis in China to be high. The aim of this study was to characterize in depth the oral microbiota of Chinese adults with or without gingivitis, by defining the microbial phylogenetic diversity and community-structure using highly paralleled pyrosequencing. Methods Six non-smoking Chinese, three with and three without gingivitis (age range 21-39 years, 4 females and 2 males were enrolled in the present cross-sectional study. Gingival parameters of inflammation and bleeding on probing were characterized by a clinician using the Mazza Gingival Index (MGI. Plaque (sampled separately from four different oral sites and salivary samples were obtained from each subject. Sequences and relative abundance of the bacterial 16 S rDNA PCR-amplicons were determined via pyrosequencing that produced 400 bp-long reads. The sequence data were analyzed via a computational pipeline customized for human oral microbiome analyses. Furthermore, the relative abundances of selected microbial groups were validated using quantitative PCR. Results The oral microbiomes from gingivitis and healthy subjects could be distinguished based on the distinct community structures of plaque microbiomes, but not the salivary microbiomes. Contributions of community members to community structure divergence were statistically accessed at the phylum, genus and species-like levels. Eight predominant taxa were found associated with gingivitis: TM7, Leptotrichia, Selenomonas, Streptococcus, Veillonella, Prevotella, Lautropia, and Haemophilus. Furthermore, 98 species-level OTUs were identified to be gingivitis-associated, which provided microbial features of gingivitis at a species resolution. Finally, for the two selected genera Streptococcus and Fusobacterium, Real-Time PCR based quantification of relative bacterial

  4. Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis

    Science.gov (United States)

    2011-01-01

    Background Microbial communities inhabiting human mouth are associated with oral health and disease. Previous studies have indicated the general prevalence of adult gingivitis in China to be high. The aim of this study was to characterize in depth the oral microbiota of Chinese adults with or without gingivitis, by defining the microbial phylogenetic diversity and community-structure using highly paralleled pyrosequencing. Methods Six non-smoking Chinese, three with and three without gingivitis (age range 21-39 years, 4 females and 2 males) were enrolled in the present cross-sectional study. Gingival parameters of inflammation and bleeding on probing were characterized by a clinician using the Mazza Gingival Index (MGI). Plaque (sampled separately from four different oral sites) and salivary samples were obtained from each subject. Sequences and relative abundance of the bacterial 16 S rDNA PCR-amplicons were determined via pyrosequencing that produced 400 bp-long reads. The sequence data were analyzed via a computational pipeline customized for human oral microbiome analyses. Furthermore, the relative abundances of selected microbial groups were validated using quantitative PCR. Results The oral microbiomes from gingivitis and healthy subjects could be distinguished based on the distinct community structures of plaque microbiomes, but not the salivary microbiomes. Contributions of community members to community structure divergence were statistically accessed at the phylum, genus and species-like levels. Eight predominant taxa were found associated with gingivitis: TM7, Leptotrichia, Selenomonas, Streptococcus, Veillonella, Prevotella, Lautropia, and Haemophilus. Furthermore, 98 species-level OTUs were identified to be gingivitis-associated, which provided microbial features of gingivitis at a species resolution. Finally, for the two selected genera Streptococcus and Fusobacterium, Real-Time PCR based quantification of relative bacterial abundance validated the

  5. Assembly of fibronectin into the extracellular matrix of early and late passage human skin fibroblasts

    International Nuclear Information System (INIS)

    Mann, D.M.

    1987-01-01

    The specific binding of soluble 125 I-human plasma fibronectin ( 125 I-HFN-P) to confluent cultures of early and late passage human skin fibroblasts was investigated. Previous studies HFN-P bound to fibroblast cell layers indicated that HNF-P was present in the cultures in two separate pools, distinguishable on the basis of their solubility in 1% deoxycholate. Examination of the kinetics of 125 I-HFN-P binding to Pool I of early and late passage cultures revealed that both cultures required 2-4 h to approach steady-state conditions. Other kinetic studies showed that the rates of low of 125 I-HFN-P from either Pool I or Pool II were similar for both cultures. Further, Scatchard analysis revealed a single class of Pool I binding sites with apparent dissociation constants (K/sub d/) of 5.3 x 10 -8 M (early passage) and 4.2 x 10 -8 M (late passage). These results indicate that early and late passage cultures of human fibroblasts exhibit differences in the number of cell surface biding sites for soluble fibronectin, and in the extent to which they incorporate soluble fibronectin into the extracellular matrix. Parameters which affect the fibronectin matrix assembly system of human skin fibroblasts were also examined. In addition, several monoclonal anti-fibronectin antibodies were characterized and developed as experimental probes for fibronectin structure and function

  6. Intraarticular Sprifermin (Recombinant Human Fibroblast Growth Factor 18) in Knee Osteoarthritis

    DEFF Research Database (Denmark)

    Lohmander, L. S.; Hellot, S.; Dreher, D.

    2014-01-01

    Objective. To evaluate the efficacy and safety of intraarticular sprifermin (recombinant human fibroblast growth factor 18) in the treatment of symptomatic knee osteoarthritis (OA). Methods. The study was a randomized, double-blind, placebo-controlled, proof-of-concept trial. Intraarticular sprif...

  7. Constituents from the roots of Taraxacum platycarpum and their effect on proliferation of human skin fibroblasts.

    Science.gov (United States)

    Warashina, Tsutomu; Umehara, Kaoru; Miyase, Toshio

    2012-01-01

    A MeOH extract from the roots of Taraxacum platycarpum has shown significant effects on the proliferation of normal human skin fibroblasts. Chemical analysis of the extract resulted in the isolation of 26 compounds, including eight new triterpenes, one new sesquiterpene glycoside, and seventeen known compounds. The structure of each new compound was established using NMR spectroscopy. Some triterpenes had a significant effect on the proliferation of normal human skin fibroblasts.

  8. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and

  9. The initiation of embryonic-like collagen fibrillogenesis by adult human tendon fibroblasts when cultured under tension

    DEFF Research Database (Denmark)

    Bayer, Monika L; Yeung, Chin-Yan C; Kadler, Karl E

    2010-01-01

    to initiate collagen fibrillogenesis when cultured in fixed-length fibrin gels. Fibroblasts were dissected from semitendinosus and gracilis tendons from healthy humans and cultured in 3D linear fibrin gels. The fibroblasts synthesized an extracellular matrix of parallel collagen fibrils that were aligned...

  10. Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts

    International Nuclear Information System (INIS)

    Appledorn, Daniel M; Dao, Kim-Hien T; O'Reilly, Sandra; Maher, Veronica M; McCormick, J Justin

    2010-01-01

    The activities of Rac1 and Cdc42 are essential for HRas-induced transformation of rodent fibroblasts. What is more, expression of constitutively activated mutants of Rac1 and/or Cdc42 is sufficient for their malignant transformation. The role for these two Rho GTPases in HRas-mediated transformation of human fibroblasts has not been studied. Here we evaluated the contribution of Rac1 and Cdc42 to maintaining HRas-induced transformation of human fibroblasts, and determined the ability of constitutively activated mutants of Rac1 or Cdc42 to induce malignant transformation of a human fibroblast cell strain. Under the control of a tetracycline regulatable promoter, dominant negative mutants of Rac1 and Cdc42 were expressed in a human HRas-transformed, tumor derived fibroblast cell line. These cells were used to determine the roles of Rac1 and/or Cdc42 proteins in maintaining HRas-induced transformed phenotypes. Similarly, constitutively active mutants were expressed in a non-transformed human fibroblast cell strain to evaluate their potential to induce malignant transformation. Affymetrix GeneChip arrays were used for transcriptome analyses, and observed expression differences were subsequently validated using protein assays. Expression of dominant negative Rac1 and/or Cdc42 significantly altered transformed phenotypes of HRas malignantly transformed human fibroblasts. In contrast, expression of constitutively active mutants of Rac1 or Cdc42 was not sufficient to induce malignant transformation. Microarray analysis revealed that the expression of 29 genes was dependent on Rac1 and Cdc42, many of which are known to play a role in cancer. The dependence of two such genes, uPA and VEGF was further validated in both normoxic and hypoxic conditions. The results presented here indicate that expression of both Rac1 and Cdc42 is necessary for maintaining several transformed phenotypes in oncogenic HRas transformed human cells, including their ability to form tumors in athymic

  11. Rac1 and Cdc42 are regulators of HRasV12-transformation and angiogenic factors in human fibroblasts

    Directory of Open Access Journals (Sweden)

    Dao Kim-Hien T

    2010-01-01

    Full Text Available Abstract Background The activities of Rac1 and Cdc42 are essential for HRas-induced transformation of rodent fibroblasts. What is more, expression of constitutively activated mutants of Rac1 and/or Cdc42 is sufficient for their malignant transformation. The role for these two Rho GTPases in HRas-mediated transformation of human fibroblasts has not been studied. Here we evaluated the contribution of Rac1 and Cdc42 to maintaining HRas-induced transformation of human fibroblasts, and determined the ability of constitutively activated mutants of Rac1 or Cdc42 to induce malignant transformation of a human fibroblast cell strain. Methods Under the control of a tetracycline regulatable promoter, dominant negative mutants of Rac1 and Cdc42 were expressed in a human HRas-transformed, tumor derived fibroblast cell line. These cells were used to determine the roles of Rac1 and/or Cdc42 proteins in maintaining HRas-induced transformed phenotypes. Similarly, constitutively active mutants were expressed in a non-transformed human fibroblast cell strain to evaluate their potential to induce malignant transformation. Affymetrix GeneChip arrays were used for transcriptome analyses, and observed expression differences were subsequently validated using protein assays. Results Expression of dominant negative Rac1 and/or Cdc42 significantly altered transformed phenotypes of HRas malignantly transformed human fibroblasts. In contrast, expression of constitutively active mutants of Rac1 or Cdc42 was not sufficient to induce malignant transformation. Microarray analysis revealed that the expression of 29 genes was dependent on Rac1 and Cdc42, many of which are known to play a role in cancer. The dependence of two such genes, uPA and VEGF was further validated in both normoxic and hypoxic conditions. Conclusion(s The results presented here indicate that expression of both Rac1 and Cdc42 is necessary for maintaining several transformed phenotypes in oncogenic HRas

  12. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs.

    Science.gov (United States)

    Ho, Lin; Hsu, Shan-Hui

    2018-04-01

    3D bioprinting is a technique which enables the direct printing of biodegradable materials with cells into 3D tissue. So far there is no cell reprogramming in situ performed with the 3D bioprinting process. Forkhead box D3 (FoxD3) is a transcription factor and neural crest marker, which was reported to reprogram human fibroblasts into neural crest stem-like cells. In this study, we synthesized a new biodegradable thermo-responsive waterborne polyurethane (PU) gel as a bioink. FoxD3 plasmids and human fibroblasts were co-extruded with the PU hydrogel through the syringe needle tip for cell reprogramming. The rheological properties of the PU hydrogel including the modulus, gelation time, and shear thinning were optimized for the transfection effect of FoxD3 in situ. The corresponding shear rate and shear stress were examined. Results showed that human fibroblasts could be reprogrammed into neural crest stem-like cells with high cell viability during the extrusion process under an average shear stress ∼190 Pa. We further translated the method to the extrusion-based 3D bioprinting, and demonstrated that human fibroblasts co-printed with FoxD3 in the thermo-responsive PU hydrogel could be reprogrammed and differentiated into a neural-tissue like construct at 14 days after induction. The neural-like tissue construct produced by 3D bioprinting from human fibroblasts may be applied to personalized drug screening or neuroregeneration. There is no study so far on cell reprogramming in situ with 3D bioprinting. In this manuscript, a new thermoresponsive polyurethane bioink was developed and employed to deliver FoxD3 plasmid into human fibroblasts by the extrusion-based bioprinting. When the polyurethane gel was extruded through the syringe tip, the shear stress generated may have caused the transient membrane permeability for transfection. The shear stress was optimized for transfection in situ by 3D bioprinting. We demonstrated that human fibroblasts could be

  13. SAOS-2 osteosarcoma cells bind fibroblasts via ICAM-1 and this is increased by tumour necrosis factor-α.

    Science.gov (United States)

    David, Manu S; Kelly, Elizabeth; Cheung, Ivan; Xaymardan, Munira; Moore, Malcolm A S; Zoellner, Hans

    2014-01-01

    We recently reported exchange of membrane and cytoplasmic markers between SAOS-2 osteosarcoma cells and human gingival fibroblasts (h-GF) without comparable exchange of nuclear markers, while similar h-GF exchange was seen for melanoma and ovarian carcinoma cells. This process of "cellular sipping" changes phenotype such that cells sharing markers of both SAOS-2 and h-GF have morphology intermediate to that of either cell population cultured alone, evidencing increased tumour cell diversity without genetic change. TNF-α increases cellular sipping between h-GF and SAOS-2, and we here study binding of SAOS-2 to TNF-α treated h-GF to determine if increased cellular sipping can be accounted for by cytokine stimulated SAOS-2 binding. More SAOS-2 bound h-GF pe-seeded wells than culture plastic alone (pcells migrating across different microenvironments can influence subsequent interactions with fibroblasts. Since cytokine stimulated binding was comparable in magnitude to earlier reported TNF-α stimulated cellular sipping, we conclude that TNF-α stimulated cellular sipping likely reflects increased SAOS-2 binding as opposed to enhanced exchange mechanisms.

  14. Unusual presentation of primary mandibular gingival squamous cell carcinoma in young male: A case report

    Directory of Open Access Journals (Sweden)

    Nishat Sultan

    2015-10-01

    Full Text Available BACKGROUND AND AIM: Squamous cell carcinoma (SCC is usually considered a disease of older people. Recently, there is a change in the occurrence of such lesions in young patients and lacking the established risk factors. CASE REPORT: A 21-year-old male reported with an innocuous gingival growth over lower incisors since a month. Within 15 days he noticed another gingival growth in same region lingually. The growths were mildly tender with no suppuration. The associated teeth were non-mobile and vital. The radiographic findings were insignificant. An excisional biopsy was performed under local anesthesia. The stained H and E section showed a hyper-parakeratinized stratified squamous surface epithelium with underlying connective tissue with collagen fibers, fibroblasts, blood vessels and areas of dense chronic inflammatory cell infiltrate. Epithelium exhibited features of dysplasia. There was a breach in the continuity of the basement membrane and the malignant epithelial cells were seen invading the connective tissue in form of thin cord. CONCLUSION: The histopathological study confirmed the diagnosis of well differentiated SCC. Oral SCC is not a disease of the elderly anymore. We also reviewed the literature of SCC in young patients. Thus biopsy is mandatory for any non-resolving gingival growth.

  15. Multiple gingival pregnancy tumors with rapid growth

    OpenAIRE

    Wei-Lian Sun; Li-Hong Lei; Li-Li Chen; Zhong-Sheng Yu; Jian-Wei Zhou

    2014-01-01

    Pregnancy gingivitis is an acute form of gingivitis that affects pregnant women, with a prevalence of 30%, possibly ranging up to 100%. Sometimes, pregnancy gingivitis shows a tendency toward a localized hyperplasia called gingival pyogenic granuloma. Pregnancy tumor is a benign gingival hyperplasia with the gingiva as the most commonly involved site, but rarely it involves almost the entire gingiva. A 22-year-old woman was referred to our clinic with a chief complaint of gingival swelling th...

  16. The small Rho GTPase Rac1 controls normal human dermal fibroblasts proliferation with phosphorylation of the oncoprotein c-myc

    International Nuclear Information System (INIS)

    Nikolova, Ekaterina; Mitev, Vanio; Zhelev, Nikolai; Deroanne, Christophe F.; Poumay, Yves

    2007-01-01

    Proliferation of dermal fibroblasts is crucial for the maintenance of skin. The small Rho GTPase, Rac1, has been identified as a key transducer of proliferative signals in various cell types, but in normal human dermal fibroblasts its significance to cell growth control has not been studied. In this study, we applied the method of RNA interference to suppress endogenous Rac1 expression and examined the consequences on human skin fibroblasts. Rac1 knock-down resulted in inhibition of DNA synthesis. This effect was not mediated by inhibition of the central transducer of proliferative stimuli, ERK1/2 or by activation of the pro-apoptotic p38. Rather, as a consequence of the suppressed Rac1 expression we observed a significant decrease in phosphorylation of c-myc, revealing for the first time that in human fibroblasts Rac1 exerts control on proliferation through c-myc phosphorylation. Thus Rac1 activates proliferation of normal fibroblasts through stimulation of c-myc phosphorylation without affecting ERK1/2 activity

  17. Base-metal dental casting alloy biocompatibility assessment using a human-derived 3D oral mucosal model

    OpenAIRE

    MORAN, GARY; MC GINLEY, EMMA LOUISE; FLEMING, GARRY

    2012-01-01

    PUBLISHED Nickel-chromium (Ni-Cr) alloys used in fixed prosthodontics have been associated with type IV nickel-induced hypersensitivity. We hypothesized the full-thickness human-derived oral mucosa model employed for biocompatibility testing of base-metal dental alloys would provide insights into mechanisms of nickel-induced toxicity. Primary oral keratinocytes and gingival fibroblasts were seeded onto Alloderm? and maintained until full-thickness was achieved prior to Ni-Cr and cobalt-chr...

  18. Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    David M Harris

    Full Text Available Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza and the growth factors (GF granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy.

  19. Comparison between human cord blood serum and platelet-rich plasma supplementation for Human Wharton's Jelly Stem Cells and dermal fibroblasts culture

    Directory of Open Access Journals (Sweden)

    Hashemi SS

    2016-08-01

    Full Text Available We carried out a side-by-side comparison of the effects of Human cord blood serum (HcbS versus embryonic PRP on Human Wharton's Jelly Stem Cells(hWMSCand dermal fibroblasts proliferation. Human umbilical cord blood was collected to prepare activated serum (HCS and platelet-rich plasma (CPRP.Wharton's Jelly Stem Cells and dermal fibroblasts were cultured in complete medium with10% CPRP, 10%HCSor 10% fetal bovine serumand control (serum-free media.The efficiency of the protocols was evaluated in terms of the number of adherent cells and their expansion and Cell proliferation. We showed that proliferation of fibroblasts and mesenchymal stem cells in the presence of cord blood serum and platelet-rich plasma significantly more than the control group (p≤0/05. As an alternative to FBS, cord blood serum has been proved as an effective component in cell tissue culture applications and embraced a vast future in clinical applications of regenerative medicine. However, there is still a need to explore the potential of HCS and its safe applications in humanized cell therapy or tissue engineering.

  20. Ca2+ influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    International Nuclear Information System (INIS)

    Murata, Naohiko; Ito, Satoru; Furuya, Kishio; Takahara, Norihiro; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-01-01

    Highlights: • Uniaxial stretching activates Ca 2+ signaling in human lung fibroblasts. • Stretch-induced intracellular Ca 2+ elevation is mainly via Ca 2+ influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca 2+ influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca 2+ concentration ([Ca 2+ ] i ) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca 2+ ] i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca 2+ ] i . The stretch-induced [Ca 2+ ] i elevation was attenuated in Ca 2+ -free solution. In contrast, the increase of [Ca 2+ ] i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd 3+ , ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca 2+ ] i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca 2+ influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP

  1. Sialylation regulates myofibroblast differentiation of human skin fibroblasts.

    Science.gov (United States)

    Sasaki, Norihiko; Itakura, Yoko; Toyoda, Masashi

    2017-04-18

    Fibroblasts are key players in maintaining skin homeostasis and in orchestrating physiological tissue repair and skin regeneration. Dysfunctions in fibroblasts that occur with aging and the senescent process lead to the delayed healing observed in elderly people. The molecular mechanisms leading to fibroblast dysfunction during aging and the senescent process have not yet been clarified. Previously, changes in patterns of glycosylation were observed in fibroblasts in aging and the senescent process, but the effect of these changes on the function of fibroblasts has not been well documented. Here, we investigated whether changes in glycosylation during the process to senescence may have functional effects on fibroblasts. The changes in cell surface glycans on skin fibroblasts during the process to senescence were examined in early-passage (EP) and late-passage (LP) skin fibroblasts by fluorescence-activated cell sorting analysis using lectins. The contributors to the changes in cell surface glycans were examined by real-time polymerase chain reaction or Western blot analysis. The effects of changes in glycosylation on proliferation, migration, induction of cellular senescence, and myofibroblast differentiation induced by transforming growth factor (TGF)-β1 stimulation were examined in EP fibroblasts. The changes in glycosylation were performed by GalNAc-α-O-benzyl or sialidase treatment. A decrease in sialylation of glycoproteins and an increase in sialidase NEU1 were observed in LP fibroblasts. The reduction of sialylation did not have any effect on proliferation, migration, or induction of cellular senescence. On the other hand, myofibroblast differentiation was inhibited by the reduction of sialylation, indicating that sialylation is important for myofibroblast differentiation. The localization of CD44 in lipid rafts, which is required for myofibroblast differentiation, was inhibited by the reduction of sialylation. Furthermore, reduced myofibroblast

  2. Response of chronic gingivitis to hygiene therapy and experimental gingivitis. Clinical, microbiological and metabonomic changes.

    Science.gov (United States)

    Klukowska, Malgorzata; Goyal, C Ram; Khambe, Deepa; Cannon, Michael; Miner, Melanie; Gurich, Nataliya; Circello, Ben; Huggins, Tom; Barker, Matthew L; Furnish, Carrie; Conde, Erinn; Hoke, Phyllis; Haught, Chris; Xie, Sancai; White, Donald J

    2015-10-01

    To compare the clinical, microbiological and metabonomic profiles of subjects with high and low levels of chronic gingival bleeding during a controlled oral hygiene regimen intervention including sequential phases of rigorous therapeutic oral hygiene followed by experimental gingivitis (EG). Two cohorts of qualified study subjects with differences in gingival bleeding on probing levels at their baseline clinical examination were entered into the study. These two cohorts were followed through three separate study phases including a 1-week baseline phase, a 2-week phase of rigorous oral hygiene including dental prophylaxis, and a 3-week EG phase of no oral hygiene to encourage relapse of gingivitis. The 58 subjects were assessed during each phase of the study for clinical presentation of gingivitis and concurrently had plaque sampled for real-time polymerase chain reaction (RTPCR) microbiological characterization and salivary lavage samples for 'systems biology' metabonomics assessment by 1H-NMR. Subjects presenting with different levels of gingival bleeding on probing when they entered the study responded differently to rigorous oral hygiene and EG. Specifically, the high bleeding cohort responded sluggishly to rigorous oral hygiene and exhibited markedly greater relapse to gingivitis during EG. RTPCR analysis showed changes in bacterial populations that were associated with study phases, particularly the increases in putative periodontal pathogens during EG. However, the microbiological profiles of high- and low-susceptibility gingival bleeding patients were largely similar. Metabonomic analysis likewise revealed significant changes in metabolite composition during study phases associated with differences in plaque toxicity, especially the short chain carboxylic acids propionate and n-butyrate, which tracked clinical changes in gingivitis severity. Systems analysis of metabonomic changes suggested differences between cohorts, although analysis to date has not

  3. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    International Nuclear Information System (INIS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-01-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  4. The vaginal microflora in relation to gingivitis

    Science.gov (United States)

    2009-01-01

    Background Gingivitis has been linked to adverse pregnancy outcome (APO). Bacterial vaginosis (BV) has been associated with APO. We assessed if bacterial counts in BV is associated with gingivitis suggesting a systemic infectious susceptibilty. Methods Vaginal samples were collected from 180 women (mean age 29.4 years, SD ± 6.8, range: 18 to 46), and at least six months after delivery, and assessed by semi-quantitative DNA-DNA checkerboard hybridization assay (74 bacterial species). BV was defined by Gram stain (Nugent criteria). Gingivitis was defined as bleeding on probing at ≥ 20% of tooth sites. Results A Nugent score of 0–3 (normal vaginal microflora) was found in 83 women (46.1%), and a score of > 7 (BV) in 49 women (27.2%). Gingivitis was diagnosed in 114 women (63.3%). Women with a diagnosis of BV were more likely to have gingivitis (p = 0.01). Independent of gingival conditions, vaginal bacterial counts were higher (p gingivitis had higher counts of Prevotella bivia (p 1.0 × 104 cells) and a diagnosis of gingivitis was 3.9 for P. bivia (95% CI 1.5–5.7, p gingivitis in comparison to women with BV but not gingivitis. P. bivia and P. disiens may be of specific significance in a relationship between vaginal and gingival infections. PMID:19161595

  5. Multistep carcinogenesis of normal human fibroblasts. Human fibroblasts immortalized by repeated treatment with Co-60 gamma rays were transformed into tumorigenic cells with Ha-ras oncogenes.

    Science.gov (United States)

    Namba, M; Nishitani, K; Fukushima, F; Kimoto, T

    1988-01-01

    Two normal mortal human fibroblast cell strains were transformed into immortal cell lines, SUSM-1 and KMST-6, by treatment with 4-nitroquinoline 1-oxide (4NQO) and Co-60 gamma rays, respectively. These immortalized cell lines showed morphological changes of cells and remarkable chromosome aberrations, but neither of them grew in soft agar or formed tumors in nude mice. The immortal cell line, KMST-6, was then converted into neoplastic cells by treatment with Harvey murine sarcoma virus (Ha-MSV) or the c-Ha-ras oncogene derived from a human lung carcinoma. These neoplastically transformed cells acquired anchorage-independent growth potential and developed tumors when transplanted into nude mice. All the tumors grew progressively without regression until the animals died of tumors. In addition, the tumors were transplantable into other nude mice. Normal human fibroblasts, on the other hand, were not transformed into either immortal or tumorigenic cells by treatment with Ha-MSV or c-Ha-ras alone. Our present data indicate that (1) the chemical carcinogen, 4NQO, or gamma rays worked as an initiator of carcinogenesis in normal human cells, giving rise to immortality, and (2) the ras gene played a role in the progression of the immortally transformed cells to more malignant cells showing anchorage-independent growth and tumorigenicity. In other words, the immortalization process of human cells seems to be a pivotal or rate-limiting step in the carcinogenesis of human cells.

  6. Oxidized DNA induces an adaptive response in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kostyuk, Svetlana V., E-mail: svet.kostyuk@gmail.com [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Tabakov, Viacheslav J.; Chestkov, Valerij V.; Konkova, Marina S.; Glebova, Kristina V.; Baydakova, Galina V.; Ershova, Elizaveta S.; Izhevskaya, Vera L. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Baranova, Ancha, E-mail: abaranov@gmu.edu [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation); Center for the Study of Chronic Metabolic Diseases, School of System Biology, George Mason University, Fairfax, VA 22030 (United States); Veiko, Natalia N. [Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Moscow (Russian Federation)

    2013-07-15

    Highlights: • We describe the effects of gDNAOX on human fibroblasts cultivated in serum withdrawal conditions. • gDNAOX evokes an adaptive response in human fibroblasts. • gDNAOX increases the survival rates in serum starving cell populations. • gDNAOX enhances the survival rates in cell populations irradiated at 1.2 Gy dose. • gDNAOX up-regulates NRF2 and inhibits NF-kappaB-signaling. - Abstract: Cell-free DNA (cfDNA) released from dying cells contains a substantial proportion of oxidized nucleotides, thus, forming cfDNA{sup OX}. The levels of cfDNA{sup OX} are increased in the serum of patients with chronic diseases. Oxidation of DNA turns it into a stress signal. The samples of genomic DNA (gDNA) oxidized by H{sub 2}O{sub 2}in vitro (gDNA{sup OX}) induce effects similar to that of DNA released from damaged cells. Here we describe the effects of gDNA{sup OX} on human fibroblasts cultivated in the stressful conditions of serum withdrawal. In these cells, gDNA{sup OX} evokes an adaptive response that leads to an increase in the rates of survival in serum starving cell populations as well as in populations irradiated at the dose of 1.2 Gy. These effects are not seen in control populations of fibroblasts treated with non-modified gDNA. In particular, the exposure to gDNA{sup OX} leads to a decrease in the expression of the proliferation marker Ki-67 and an increase in levels of PSNA, a decrease in the proportion of subG1- and G2/M cells, a decrease in proportion of cells with double strand breaks (DSBs). Both gDNA{sup OX} and gDNA suppress the expression of DNA sensors TLR9 and AIM2 and up-regulate nuclear factor-erythroid 2 p45-related factor 2 (NRF2), while only gDNA{sup OX} inhibits NF-κB signaling. gDNA{sup OX} is a model for oxidized cfDNA{sup OX} that is released from the dying tumor cells and being carried to the distant organs. The systemic effects of oxidized DNA have to be taken into account when treating tumors. In particular, the damaged DNA

  7. Differentiation of human multipotent dermal fibroblasts into islet-like cell clusters

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2010-06-01

    Full Text Available Abstract Background We have previously obtained a clonal population of cells from human foreskin that is able to differentiate into mesodermal, ectodermal and endodermal progenies. It is of great interest to know whether these cells could be further differentiated into functional insulin-producing cells. Results Sixty-one single-cell-derived dermal fibroblast clones were established from human foreskin by limiting dilution culture. Of these, two clones could be differentiated into neuron-, adipocyte- or hepatocyte-like cells under certain culture conditions. In addition, those two clones were able to differentiate into islet-like clusters under pancreatic induction. Insulin, glucagon and somatostatin were detectable at the mRNA and protein levels after induction. Moreover, the islet-like clusters could release insulin in response to glucose in vitro. Conclusions This is the first study to demonstrate that dermal fibroblasts can differentiate into insulin-producing cells without genetic manipulation. This may offer a safer cell source for future stem cell-based therapies.

  8. Unusual presentation of primary mandibular gingival squamous cell ‎carcinoma in young male: A case report

    Directory of Open Access Journals (Sweden)

    Nishat Sultan

    2015-05-01

    Full Text Available BACKGROUND AND AIM: Squamous cell carcinoma (SCC is usually considered a disease of older people. Recently, there is a change in the occurrence of such lesions in young patients and lacking the established risk factors. CASE REPORT: A 21-year-old male reported with an innocuous gingival growth over lower incisors since a month. Within 15 days he noticed another gingival growth in same region lingually. The growths were mildly tender with no suppuration. The associated teeth were non-mobile and vital. The radiographic findings were insignificant. An excisional biopsy was performed under local anesthesia. The stained H and E section showed a hyper-parakeratinized stratified squamous surface epithelium with underlying connective tissue with collagen fibers, fibroblasts, blood vessels and areas of dense chronic inflammatory cell infiltrate. Epithelium exhibited features of dysplasia. There was a breach in the continuity of the basement membrane and the malignant epithelial cells were seen invading the connective tissue in form of thin cord. CONCLUSION: The histopathological study confirmed the diagnosis of well differentiated SCC. Oral SCC is not a disease of the elderly anymore. We also reviewed the literature of SCC in young patients. Thus biopsy is mandatory for any non-resolving gingival growth.

  9. Effect of saccharin on metabolic cooperation between human fibroblasts

    International Nuclear Information System (INIS)

    Mosser, D.D.; Bols, N.C.

    1983-01-01

    Autoradiography was used to study the effect of saccharin on metabolic cooperation between human diploid fibroblasts. When the donors, HGPRT+ cells, and recipients, HGPRT- cells, were plated together in the presence of saccharin, all the interactions that developed in 4 and 24 h were positive for metabolic cooperation. When saccharin was added after donor cells and recipient cells had made contact, the proportion of interactions that were positive for metabolic cooperation was unchanged but the number of grains over primary recipients was reduced. However, in donor cells saccharin caused a reduction in [ 3 H]hypoxanthine incorporation into both acid-soluble and acid-insoluble fractions, although the relative distribution of radioactivity between these two fractions and between the phosphorylated and non-phosphorylated derivatives of [ 3 H]hypoxanthine was unchanged. Metabolic cooperation was studied under conditions in which the number of grains over the nuclei of both the primary recipient and the primary recipient's donor could be counted. The change in the number of grains over these two cell types in response to saccharin was compared and found to be the same. Thus in normal human fibroblasts saccharin does not appear to affect metabolic cooperation, which is a measure of cell-to-cell communication

  10. Oxidized low-density lipoprotein-induced periodontal inflammation is associated with the up-regulation of cyclooxygenase-2 and microsomal prostaglandin synthase 1 in human gingival epithelial cells

    International Nuclear Information System (INIS)

    Nagahama, Yu; Obama, Takashi; Usui, Michihiko; Kanazawa, Yukari; Iwamoto, Sanju; Suzuki, Kazushige; Miyazaki, Akira; Yamaguchi, Tomohiro; Yamamoto, Matsuo; Itabe, Hiroyuki

    2011-01-01

    Highlights: → OxLDL-induced responses in human gingival epithelial cells were studied. → OxLDL enhanced the production of IL-8, IL-1β and PGE 2 in Ca9-22 cells. → An NF-κB inhibitor suppressed the expression of COX-2 and mPGES1 induced by oxLDL. → Unlike the case in macrophages, oxLDL did not increase the CD36 level. -- Abstract: Periodontitis is characterized by chronic gingival tissue inflammation, and inflammatory mediators such as IL-8 and prostaglandin E 2 (PGE 2 ) are associated with disease progression. Previously we showed that oxidatively modified low-density lipoprotein (oxLDL) was present in gingival crevicular fluid. In this study, the role of oxLDL in the gingival epithelial cell inflammatory response was further investigated using Ca9-22 cells and primary human oral keratinocytes (HOK). Treatment of Ca9-22 cells and HOK with oxLDL induced an up-regulation of IL-8 and the PGE 2 -producing enzymes, cyclooxygenase-2 and microsomal PGE 2 synthase-1. These responses induced by oxLDL were significantly suppressed by a nuclear factor-kappa B (NF-κB) inhibitor. However, unlike the result in macrophages, oxLDL did not lead to an increase in CD36 expression in these two cells. These results suggest that oxLDL elicits gingival epithelial cell inflammatory responses through an activation of the NF-κB pathway. These data suggest a mechanistic link between periodontal disease and lipid metabolism-related disorders, including atherosclerosis.

  11. Oxidized low-density lipoprotein-induced periodontal inflammation is associated with the up-regulation of cyclooxygenase-2 and microsomal prostaglandin synthase 1 in human gingival epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nagahama, Yu [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Obama, Takashi [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Usui, Michihiko [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Kanazawa, Yukari [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Iwamoto, Sanju [Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Suzuki, Kazushige [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Miyazaki, Akira [Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Yamaguchi, Tomohiro [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University Dental Hospital, Tokyo (Japan); Itabe, Hiroyuki [Department of Biological Chemistry, Showa University School of Pharmacy, Tokyo (Japan)

    2011-10-07

    Highlights: {yields} OxLDL-induced responses in human gingival epithelial cells were studied. {yields} OxLDL enhanced the production of IL-8, IL-1{beta} and PGE{sub 2} in Ca9-22 cells. {yields} An NF-{kappa}B inhibitor suppressed the expression of COX-2 and mPGES1 induced by oxLDL. {yields} Unlike the case in macrophages, oxLDL did not increase the CD36 level. -- Abstract: Periodontitis is characterized by chronic gingival tissue inflammation, and inflammatory mediators such as IL-8 and prostaglandin E{sub 2} (PGE{sub 2}) are associated with disease progression. Previously we showed that oxidatively modified low-density lipoprotein (oxLDL) was present in gingival crevicular fluid. In this study, the role of oxLDL in the gingival epithelial cell inflammatory response was further investigated using Ca9-22 cells and primary human oral keratinocytes (HOK). Treatment of Ca9-22 cells and HOK with oxLDL induced an up-regulation of IL-8 and the PGE{sub 2}-producing enzymes, cyclooxygenase-2 and microsomal PGE{sub 2} synthase-1. These responses induced by oxLDL were significantly suppressed by a nuclear factor-kappa B (NF-{kappa}B) inhibitor. However, unlike the result in macrophages, oxLDL did not lead to an increase in CD36 expression in these two cells. These results suggest that oxLDL elicits gingival epithelial cell inflammatory responses through an activation of the NF-{kappa}B pathway. These data suggest a mechanistic link between periodontal disease and lipid metabolism-related disorders, including atherosclerosis.

  12. Distribution of smile line, gingival angle and tooth shape among the Saudi Arabian subpopulation and their association with gingival biotype.

    Science.gov (United States)

    AlQahtani, Nabeeh A; Haralur, Satheesh B; AlMaqbol, Mohammad; AlMufarrij, Ali Jubran; Al Dera, Ahmed Ali; Al-Qarni, Mohammed

    2016-04-01

    To determine the occurrence of smile line and maxillary tooth shape in the Saudi Arabian subpopulation, and to estimate the association between these parameters with gingival biotype. On the fulfillment of selection criteria, total 315 patients belong to Saudi Arabian ethnic group were randomly selected. Two frontal photographs of the patients were acquired. The tooth morphology, gingival angle, and smile line classification were determined with ImageJ image analyzing software. The gingival biotype was assessed by probe transparency method. The obtained data were analyzed with SPSS 19 (IBM Corporation, New York, USA) software to determine the frequency and association between other parameters and gingival biotype. Among the clinical parameters evaluated, the tapering tooth morphology (56.8%), thick gingival biotype (53%), and average smile line (57.5%) was more prevalent. The statistically significant association was found between thick gingival biotype and the square tooth, high smile line. The high gingival angle was associated with thin gingival biotype. The study results indicate the existence of an association between tooth shape, smile line, and gingival angle with gingival biotype.

  13. DNA synthesis in vitro in human fibroblast preparations

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, W.K.

    1983-01-01

    When confluent cultures of human fibroblasts were ultraviolet irradiated and either permeabilized or lysed, three types of DNA synthesis were subsequently observed during incubation in vitro: (A) a low level of DNA replication, which ceased after 15-30 min incubation at 37/sup 0/C; (B) radiation-dependent reparative gap-filling, which also ceased after 15 min at 37/sup 0/C; and (C) radiation-independent DNA synthesis, which was not semiconservative and proceeded at a linear rate for 1 hr at 37/sup 0/C. Normal and xeroderma pigmentosum fibroblasts displayed different rates of radiation-dependent reparative gap-filling after lysis but similar rates of radiation-independent DNA synthesis. The rates of DNA replication and radiation-independent DNA synthesis were less in the permeable cell system than in the lysed cell system, whereas radiation-dependent reparative gap-filling was the same in both. Preparations of permeable and lysed cells activated radiation-dependent reparative gap-filling at about 15% of the rate estimated for intact cells. No radiation-dependent DNA strand breaks, as assayed by alkaline elution, were observed in the lysed cell preparation. Some radiation-dependent breaks were observed in the permeable cell preparation, but radiation-dependent DNA breakage was less than that seen in intact cells. This inability to incise DNA at damaged sites could account for the low rate of activation of reparative gap-filling in vitro. DNA strand breaks were produced in fibroblast preparations nonspecifically during lysis or permeabilization and incubation in vitro, and this breakage of DNA probably was responsible for the radiation-independent DNA synthesis.

  14. Role of DNA lesions and DNA repair in mutagenesis by carcinogens in diploid human fibroblasts

    International Nuclear Information System (INIS)

    Maher, V.M.; McCormick, J.J.

    1986-01-01

    The authors investigated the cytotoxicity, mutagenicity, and transforming activity of carcinogens and radiation in diploid human fibroblasts, using cells which differ in their DNA repair capacity. The results indicate that cell killing and induction of mutations are correlated with the number of specific lesions remaining unrepaired in the cells at a particular time posttreatment. DNA excision repair acts to eliminate potentially cytotoxic and mutagenic (and transforming) damage from DNA before these can be converted into permanent cellular effects. Normal human fibroblasts were derived from skin biopsies or circumcision material. Skin fibroblasts from xeroderma pigmentosum (XP) patients provided cells deficient in nucleotide excision repair of pyrimidine dimers or DNA adducts formed by bulky ring structures. Cytotoxicity was determined from loss of ability to form a colony. The genetic marker used was resistance to 6-thioguanine (TG). Transformation was measured by determining the frequency of anchorage-independent cells

  15. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-glucoside Isolated from Polygoni Multiflori Ameliorates the Development of Periodontitis

    Directory of Open Access Journals (Sweden)

    Yu-Tang Chin

    2016-01-01

    Full Text Available Periodontitis, a chronic infection by periodontopathic bacteria, induces uncontrolled inflammation, which leads to periodontal tissue destruction. 2,3,5,4′-Tetrahydroxystilbene-2-O-beta-glucoside (THSG, a polyphenol extracted from Polygoni Multiflori, reportedly has anti-inflammatory properties. In this study, we investigated the mechanisms of THSG on the Porphyromonas gingivalis-induced inflammatory responses in human gingival fibroblasts and animal modeling of ligature-induced periodontitis. Human gingival fibroblast cells were treated with lipopolysaccharide (LPS extracted from P. gingivalis in the presence of resveratrol or THSG to analyze the expression of TNF-α, IL-1β, and IL-6 genes. Increased AMP-activated protein kinase (AMPK activation and SirT1 expression were induced by THSG. Treatment of THSG decreased the expression of LPS-induced inflammatory cytokines, enhanced AMPK activation, and increased the expression of SirT1. In addition, it suppressed the activation of NF-κB when cells were stimulated with P. gingivalis LPS. The anti-inflammatory effect of THSG and P. Multiflori crude extracts was reproduced in ligature-induced periodontitis animal modeling. In conclusion, THSG inhibited the inflammatory responses of P. gingivalis-stimulated human gingival fibroblasts and ameliorated ligature-induced periodontitis in animal model.

  16. Biocompatibility of Er:YSGG laser radiated root surfaces

    Science.gov (United States)

    Benthin, Hartmut; Ertl, Thomas P.; Schmidt, Dirk; Purucker, Peter; Bernimoulin, J.-P.; Mueller, Gerhard J.

    1996-01-01

    Pulsed Er:YAG and Er:YSGG lasers are well known to be effective instruments for the ablation of dental hard tissues. Developments in the last years made it possible to transmit the laser radiation at these wavelengths with flexible fibers. Therefore the application in the periodontal pocket may be possible. The aim of this study was to evaluate the in-vitro conditions to generate a bioacceptable root surface. Twenty extracted human teeth, stored in an antibiotic solution, were conventionally scaled, root planed and axially separated into two halves. Two main groups were determined. With the first group laser radiation was carried out without and in the second group with spray cooling. The laser beam was scanned about root surface areas. Laser parameters were varied in a selected range. The biocompatibility was measured with the attachment of human gingival fibroblasts and directly compared to conventionally treated areas of the root surfaces. The fibroblasts were qualified and counted in SEM investigations. On conventionally treated areas gingival fibroblasts show the typical uniform cover. In dependance on the root roughness after laser treatment the fibroblasts loose the typical parallel alignment to the root surface. With spray cooling a better in-vitro attachment could be obtained. Without spray cooling the higher increase in temperature conducted to less bioacceptance by the human gingival fibroblasts to the root surface. These results show the possibility of producing bioacceptable root surfaces with pulsed laser radiation in the range of very high water absorption near 3 micrometer.

  17. Gingival Recessions and Biomechanics

    DEFF Research Database (Denmark)

    Laursen, Morten Godtfredsen

    Gingival recessions and biomechanics “Tissue is the issue, but bone sets the tone.“ A tooth outside the cortical plate can result in loss of bone and development of a gingival recession. The presentation aims to show biomechanical considerations in relation to movement of teeth with gingival...... by moving the root back in the alveolus. The tooth movement is accompanied by bone gain and thus increase the success rate for soft tissue augmentation. The choice of biomechanical system influences the treatment outcome. If a standard straight wire appliance is used, a biomechanical dilemma can arise...

  18. Nonsurgical Management of Nifedipine Induced Gingival Overgrowth

    Directory of Open Access Journals (Sweden)

    George Sam

    2014-01-01

    Full Text Available Drug-induced gingival overgrowth is frequently associated with three particular drugs: phenytoin, cyclosporin, and nifedipine. As gingival enlargement develops, it affects the normal oral hygiene practice and may interfere with masticatory functions. The awareness in the medical community about this possible side effect of nifedipine is less when compared to the effects of phenytoin and cyclosporin. The frequency of gingival enlargement associated with chronic nifedipine therapy remains controversial. Within the group of patients that develop this unwanted effect, there appears to be variability in the extent and severity of the gingival changes. Although gingival inflammation is considered a primary requisite in their development, few cases with minimal or no plaque induced gingival inflammation have also been reported. A case report of gingival overgrowth induced by nifedipine in a patient with good oral hygiene and its nonsurgical management with drug substitution is discussed in this case report.

  19. Multiple gingival pregnancy tumors with rapid growth

    Directory of Open Access Journals (Sweden)

    Wei-Lian Sun

    2014-09-01

    Full Text Available Pregnancy gingivitis is an acute form of gingivitis that affects pregnant women, with a prevalence of 30%, possibly ranging up to 100%. Sometimes, pregnancy gingivitis shows a tendency toward a localized hyperplasia called gingival pyogenic granuloma. Pregnancy tumor is a benign gingival hyperplasia with the gingiva as the most commonly involved site, but rarely it involves almost the entire gingiva. A 22-year-old woman was referred to our clinic with a chief complaint of gingival swelling that had lasted for 2 days. The lesions progressed rapidly and extensively, and almost all the gingiva was involved a week later. Generalized erythema, edema, hyperplasia, a hemorrhagic tendency, and several typical hemangiomatous masses were noted. Pregnancy was denied by the patient at the first and second visits, but was confirmed 2 weeks after the primary visit. The patient was given oral hygiene instructions. She recovered well, and the mass gradually regressed and had disappeared completely at the end of 12 weeks of pregnancy, without recurrence. The gingival lesions were finally diagnosed as multiple gingival pregnancy tumors. The patient delivered a healthy infant. An extensive and rapid growth of gingival pregnancy tumors during the early first month of pregnancy is a rare occurrence that is not familiar to dentists, gynecologists, and obstetricians. Those practitioners engaged in oral medicine and periodontology, primary care obstetrics, and gynecology should be aware of such gingival lesions to avoid misdiagnosis and overtreatment.

  20. Subgingival Microbiome of Gingivitis in Chinese Undergraduates.

    Science.gov (United States)

    Deng, Ke; Ouyang, Xiang Ying; Chu, Yi; Zhang, Qian

    To analyse the microbiome composition of health and gingivitis in Chinese undergraduates with high-throughput sequencing. Sequencing of 16S rRNA gene amplicons was performed with the MiSeq system to compare subgingival bacterial communities from 54 subjects with gingivitis and 12 periodontally healthy controls. A total of 1,967,372 sequences representing 14 phyla, 104 genera, and 96 species were detected. Analysis of similarities (Anosim) test and Principal Component Analysis (PCA) showed significantly different community profiles between the health control and the subjects with gingivitis. Alpha-diversity metrics were significantly higher in the subgingival plaque of the subjects with gingivitis compared with that of the healthy control. Overall, the relative abundance of 35 genera and 46 species were significantly different between the two groups, among them 28 genera and 45 species showed higher relative abundance in the subjects with gingivitis, whereas seven genera and one species showed a higher relative abundance in the healthy control. The genera Porphyromonas, Treponema, and Tannerella showed higher relative abundance in the subjects with gingivitis, while the genera Capnocytophaga showed higher proportions in health controls. Porphyromonas gingivalis, Prevotella intermedia and Porphyromonas endodontalis had higher relative abundance in gingivitis. Among them, Porphyromonas gingivalis was most abundant. Our results revealed significantly different microbial community composition and structures of subgingival plaque between subjects with gingivitis and healthy controls. Subjects with gingivitis showed greater taxonomic diversity compared with periodontally healthy subjects. The proportion of Porphyromonas, especially Porphyromonas gingivalis, may be associated with gingivitis subjects aged between 18 and 21 years old in China. Adults with gingivitis in this age group may have a higher risk of developing periodontitis.

  1. Radiation-induced chromosome aberrations and cell killing in normal human fibroblasts and ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Kawata, T.; Saito, M.; Uno, T.; Ito, H.; Shigematsu, N.

    2003-01-01

    Full text: When cells are held in a non-dividing state (G0) after irradiation, an enhanced survival can be observed compared to that of immediate plating. A change of survival depending on post irradiation condition is known to be repair of potentially lethal damage (RPLD). The effects of confluent holding recovery (24-h incubation following irradiation) on chromosome aberrations in normal human fibroblasts (AG1522) and ataxia telangiectasia fibroblasts (GM02052C) were examined. A chemical-induced premature chromosome condensation (PCC) technique with fluorescent in situ hybridization (FISH) was applied to study chromosome aberrations in G2 and M-phase. Results from cell survival showed that the capacity for potentially lethal damage repair was normal in AG1522 cells but very little in GM02052C cells. The frequency of chromosome aberrations in AG1522 cells decreased when cells were allowed to repair for 24-h. Especially complex type exchanges were found to decrease markedly at high doses (4Gy and 6Gy). However, the frequency of chromosome aberrations including complex type exchanges showed little decrease in GM02052C cells. Confluent holding can effectively reduce chromosome aberrations, especially complex type exchanges in normal cells

  2. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization.

    Science.gov (United States)

    Deglesne, Pierre-Antoine; Arroyo, Rodrigo; Ranneva, Evgeniya; Deprez, Philippe

    2016-01-01

    Mesotherapy/biorevitalization with hyaluronic acid (HA) is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS(®) (Repairs, Refills, Stimulates) HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15%) and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts.

  3. [Clinical study on the effect of anti-gingivitis IgY toothpaste in control of gingivitis and dental plaque].

    Science.gov (United States)

    Zhang, Wei; Feng, Xi-Ping; Tao, Dan-Ying; Chen, Jian-Fen

    2016-08-01

    To observe the effect of anti-gingivitis IgY toothpaste in control of gingivitis and plaque. The study was a double-blind, randomized, parallel-controlled clinical trail with a total of 100 subjects who were divided into two groups, experimental group and control group. The subjects in experimental group used anti-gingivitis IgY toothpaste to brush twice daily for 3 minutes, and the subjects in control group used none anti-gingivitis IgY toothpaste. The examiner recorded GI, PI and BOP index of all subjects at the baseline, 6-weeks and 12-weeks. SPSS21.0 software package was used for statistical analysis. Twelve weeks later, there were significant differences in GI and BOP between the two groups. Yet no significant difference was found in PI. Anti-gingivitis IgY toothpaste is effective in control of gingivitis.

  4. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis

    International Nuclear Information System (INIS)

    Liu, Xueting; Fang, Shencun; Liu, Haijun; Wang, Xingang; Dai, Xiaoniu; Yin, Qing; Yun, Tianwei; Wang, Wei; Zhang, Yingming; Liao, Hong; Zhang, Wei; Yao, Honghong; Chao, Jie

    2015-01-01

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO 2 ). Phagocytosis of SiO 2 in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO 2 produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Methods and results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO 2 treatment resulted in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO 2 -induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO 2 -induced increase in cell migration. Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO 2 . CCR2 was also up-regulated in response to SiO 2 , and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO 2 -induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. - Highlights: • Role of pulmonary fibroblast-derived MCP-1 in experimental silicosis was studied. • SiO 2 induced MCP-1 release from cultured human pulmonary fibroblast (HPF-a). • SiO 2 directly activated HPF-a via the MCP-1/CCR2 pathway. • SiO 2 increased HPF-a migration in both 2D and 3D model via the MCP-1/CCR2 pathway. • RNA-i of MCP-1/CCR2

  5. Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueting [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Fang, Shencun [Nine Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu 210029 (China); Liu, Haijun [Neurobiology Laboratory, New Drug Screening Centre, China Pharmaceutical University, Nanjing, Jiangsu 210009 (China); Wang, Xingang; Dai, Xiaoniu; Yin, Qing; Yun, Tianwei [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Wang, Wei; Zhang, Yingming [Nine Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu 210029 (China); Liao, Hong [Neurobiology Laboratory, New Drug Screening Centre, China Pharmaceutical University, Nanjing, Jiangsu 210009 (China); Zhang, Wei [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Yao, Honghong [Department of Pharmacology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China); Chao, Jie, E-mail: chaojie@seu.edu.cn [Department of Physiology, Medical School of Southeast University, Nanjing, Jiangsu 210009 (China)

    2015-10-15

    Background: Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO{sub 2}). Phagocytosis of SiO{sub 2} in the lung initiates an inflammatory cascade that results in fibroblast proliferation and migration and subsequent fibrosis. Clinical evidence indicates that the activation of alveolar macrophages by SiO{sub 2} produces rapid and sustained inflammation that is characterized by the generation of monocyte chemotactic protein 1 (MCP-1), which induces fibrosis. Pulmonary fibroblast-derived MCP-1 may play a critical role in fibroblast proliferation and migration. Methods and results: Experiments using primary cultured adult human pulmonary fibroblasts (HPF-a) demonstrated the following results: 1) SiO{sub 2} treatment resulted in the rapid and sustained induction of MCP-1 as well as the elevation of the CC chemokine receptor type 2 (CCR2) protein levels; 2) pretreatment of HPF-a with RS-102895, a specific CCR2 inhibitor, abolished the SiO{sub 2}-induced increase in cell activation and migration in both 2D and 3D culture systems; and 3) RNA interference targeting CCR2 prevented the SiO{sub 2}-induced increase in cell migration. Conclusion: These data demonstrated that the up-regulation of pulmonary fibroblast-derived MCP-1 is involved in pulmonary fibroblast migration induced by SiO{sub 2}. CCR2 was also up-regulated in response to SiO{sub 2}, and this up-regulation facilitated the effect of MCP-1 on fibroblasts. Our study deciphered the link between fibroblast-derived MCP-1 and SiO{sub 2}-induced cell migration. This finding provides novel insight into the potential of MCP-1 in the development of novel therapeutic strategies for silicosis. - Highlights: • Role of pulmonary fibroblast-derived MCP-1 in experimental silicosis was studied. • SiO{sub 2} induced MCP-1 release from cultured human pulmonary fibroblast (HPF-a). • SiO{sub 2} directly activated HPF-a via the MCP-1/CCR2 pathway. • SiO{sub 2} increased HPF-a migration in both 2D and 3D

  6. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach.

    Directory of Open Access Journals (Sweden)

    Jordan R Plews

    2010-12-01

    Full Text Available Several methods have been used to induce somatic cells to re-enter the pluripotent state. Viral transduction of reprogramming genes yields higher efficiency but involves random insertions of viral sequences into the human genome. Although induced pluripotent stem (iPS cells can be obtained with the removable PiggyBac transposon system or an episomal system, both approaches still use DNA constructs so that resulting cell lines need to be thoroughly analyzed to confirm they are free of harmful genetic modification. Thus a method to change cell fate without using DNA will be very useful in regenerative medicine.In this study, we synthesized mRNAs encoding OCT4, SOX2, cMYC, KLF4 and SV40 large T (LT and electroporated them into human fibroblast cells. Upon transfection, fibroblasts expressed these factors at levels comparable to, or higher than those in human embryonic stem (ES cells. Ectopically expressed OCT4 localized to the cell nucleus within 4 hours after mRNA introduction. Transfecting fibroblasts with a mixture of mRNAs encoding all five factors significantly increased the expression of endogenous OCT4, NANOG, DNMT3β, REX1 and SALL4. When such transfected fibroblasts were also exposed to several small molecules (valproic acid, BIX01294 and 5'-aza-2'-deoxycytidine and cultured in human embryonic stem cell (ES medium they formed small aggregates positive for alkaline phosphatase activity and OCT4 protein within 30 days.Our results demonstrate that mRNA transfection can be a useful approach to precisely control the protein expression level and short-term expression of reprogramming factors is sufficient to activate pluripotency genes in differentiated cells.

  7. Bacterial Community Development in Experimental Gingivitis

    Science.gov (United States)

    Kistler, James O.; Booth, Veronica; Bradshaw, David J.; Wade, William G.

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1–V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344 267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  8. Bacterial community development in experimental gingivitis.

    Directory of Open Access Journals (Sweden)

    James O Kistler

    Full Text Available Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp, and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs per sample. Principal coordinates analysis (PCoA plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new

  9. Melanin: A scavenger in gingival inflammation

    Directory of Open Access Journals (Sweden)

    S Nilima

    2011-01-01

    Full Text Available Background: One of the major direct or indirect targets of ultraviolet exposure of skin is the melanocyte or the melanin -forming cell. Epidermal melanocytes act as a trap for free radicals. Based on the protective role of melanocytes in medical literature, the role of melanin pigmentation in gingiva needs to be elucidated. Periodontal pathogens and their products demonstrate the ability to induce the generation of reactive oxygen species. Hence purpose of this study was to unravel the protective role of melanin (if any against the gingival inflammation. Materials and Methods: A total of 80 subjects; 20 in each group were selected. The selection of subjects regarding gingival pigmentation was based on Dummett′s scoring criteria 0, 3. A complete medical, dental history and an informed consent were obtained from the patients. After evaluation of clinical parameters the GCF was collected using microcapillary pipettes at the selected sites. IL-1β levels were quantitated using ELISA. Results: In non-pigmented healthy and gingivitis groups, there was a positive correlation between plaque index, gingival index and bleeding index versus IL-1β level: indicating an increase in the biochemical mediator of inflammation corresponding to an increase in the clinical parameters of inflammation. Also a positive correlation was found between the gingival index and bleeding index versus the IL-1β levels in the pigmented healthy group. The pigmented gingivitis groups showed a negative correlation between the plaque index, gingival index and bleeding index. Conclusions: The clinical markers of inflammation such as gingival index, bleeding index was of low numerical value in pigmented group than in the non-pigmented group, supposedly due to the protective action of melanin. The negative correlation of clinical markers of inflammation to the IL-1β levels in the pigmented gingivitis group could possibly be attributed to the protective role of melanins.

  10. Bacterial community development in experimental gingivitis.

    Science.gov (United States)

    Kistler, James O; Booth, Veronica; Bradshaw, David J; Wade, William G

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  11. A rare clinical presentation of sarcoidosis; gingivitis.

    Science.gov (United States)

    Güzel, Aygül; Köksal, Nurhan; Aydın, Davut; Aslan, Kerim; Gören, Fikret; Karagöz, Filiz

    2013-10-01

    Gingivitis due to sarcoidosis is a relatively rare condition. Gingivitis or isolated gingival involvement may be the first sign of systemic sarcoidosis. We report the case of a 37 year-old woman with isolated gingivitis due to sarcoidosis confirmed by biopsy. Following treatment with a systemic corticosteroid (prednisolone 40 mg/day), all clinical and radiologic findings were completely improved. In cases of chronic and intractable gingivitis, systemic sarcoidosis should be suspected. It should be confirmed with a biopsy, and the patient should be referred to a chest disease clinic to exclude other organ involvement. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Gingival recession: a cross-sectional clinical investigation.

    Science.gov (United States)

    Goutoudi, P; Koidis, P T; Konstantinidis, A

    1997-06-01

    In this cross-sectional study, risk and potentially causative factors of gingival recession were examined and their relationship to apical migration of the gingival margin evaluated. Thirty eight patients (18-60 years), displaying one or more sites with gingival recession but without any significant periodontal disease participated. A total of 28 parameters were evaluated in both 'test' teeth (50 teeth with gingival recession) and 'control' teeth (50 contralateral teeth). The results revealed that gingival margin recession was associated with both high inflammatory and plaque scores, with decreased widths of keratinized and attached gingiva and with the subjects' toothbrush bristle hardness.

  13. Gingival Pigmentation Affected by Smoking among Different Age Groups: A Quantitative Analysis of Gingival Pigmentation Using Clinical Oral Photographs.

    Science.gov (United States)

    Kato, Tomotaka; Mizutani, Shinsuke; Takiuchi, Hiroya; Sugiyama, Seiichi; Hanioka, Takashi; Naito, Toru

    2017-08-04

    The presence of any age-related differences in gingival pigmentation associated with smoking, particularly in a young population, remains to be fully investigated. The purpose of this study was to determine the age-related differences in smoking gingival pigmentation. Gingival pigmentation was analyzed using the gingival melanosis record (GMR) and Hedin's classification with frontal oral photographs taken at 16 dental offices in Japan. Participants were categorized into 10-year age groups, and their baseline photographs were compared. In addition, to evaluate the effect of smoking cessation on gingival pigmentation, subjects were divided into a former smoker group (stopped smoking) and current smoker group. A total of 259 patients 19 to 79 years of age were analyzed. People in their 30s showed the most widespread gingival pigmentation. In addition, subjects in their 20s showed a weak effect of smoking cessation on gingival pigmentation. These findings suggested that the gingival pigmentation induced by smoking was more remarkable in young people than in middle-aged people. This information may be useful for anti-smoking education, especially among young populations with a high affinity for smoking.

  14. Generation of iPSC line iPSC-FH2.1 in hypoxic conditions from human foreskin fibroblasts

    Directory of Open Access Journals (Sweden)

    María Questa

    2016-03-01

    Full Text Available Human foreskin fibroblasts were used to generate the iPSC line iPSC-FH2.1 using the EF1a-hSTEMCCA-loxP vector expressing OCT4, SOX2, c-MYC and KLF4, in 5% O2 culture conditions. Stemness was confirmed, as was pluripotency both in vivo and in vitro, in normoxia and hypoxia. Human Embryonic Stem Cell (hESC line WA-09 and reprogrammed fibroblast primary culture HFF-FM were used as controls.

  15. Human cytomegalovirus replicates in gamma-irradiated fibroblasts

    International Nuclear Information System (INIS)

    Shanley, J.D.

    1986-01-01

    Because of the unique interdependence of human cytomegalovirus (HCMV) and the physiological state of the host cell, we evaluated the ability of human foreskin fibroblasts (HFF), exposed to gamma radiation, to support HCMV growth. Irradiation of HFF with 2,500 rADS prevented cellular proliferation and suppressed cellular DNA, but not RNA or protein synthesis. Treatment of HFF cells with 2,500 rADS 6 or 48 hours prior to infection did not alter the time course or virus yield during HCMV replication. Virus plaquing efficiency in irradiated cells was comparable to that of nonirradiated cells. As judged by thymidine incorporation and BUdR inhibition of virus replication, HCMV infection induced both thymidine kinase activity and host cell DNA synthesis in irradiated cells. In addition, virus could be recovered from HFF exposed to radiation 0-2 days after infection with HCMV. These studies indicate that the damage to cells by gamma irradiation does not alter the capacity of host cells to support HCMV replication

  16. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    International Nuclear Information System (INIS)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G.

    2012-01-01

    Highlights: ► We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. ► YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. ► There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. ► The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. ► The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929–933 sequence of the β1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.

  17. Detection of (Leu-7)-positive cells with NK activity in human gingival tissues from patients with periodontitis

    International Nuclear Information System (INIS)

    Komiyama, K.; Hirsch, H.Z.; Mestecky, J.; Moro, I.

    1986-01-01

    Natural killer (NK) cells have been identified in peripheral blood, lymphoid tissue and more recently in gut mucosa and may be involved in the regulation of immunoglobulin synthesis. They have assayed gingival tissues obtained from 25 periodontitis patients, for the presence and activity of NK cells. Routine histological techniques demonstrated an inflammatory infiltrate dominated by plasma cells and B lymphocytes. Indirect staining procedures with a biotin-labeled mouse anti-human, Leu-7 antibody revealed the presence of numerous positive cells accompanying the inflammatory cellular infiltrate in perivascular areas. Several specimens demonstrated positive-staining cells in the epithelium as well. Few cells were observed in histologically uninflammed areas. Single cell suspension obtained by collagenase digestion of 5 gingival samples were used in 51 Cr release cytotoxicity assay against K562 cells. Three of the five samples were positive in this assay. The finding of Leu-7-positive cells in areas of intense plasma cell foci but not in uninflammed areas, may support a role for these cells in the regulation of immunoglobulin synthesis in oral mucosal tissues

  18. Detection of (Leu-7)-positive cells with NK activity in human gingival tissues from patients with periodontitis

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, K.; Hirsch, H.Z.; Mestecky, J.; Moro, I.

    1986-03-05

    Natural killer (NK) cells have been identified in peripheral blood, lymphoid tissue and more recently in gut mucosa and may be involved in the regulation of immunoglobulin synthesis. They have assayed gingival tissues obtained from 25 periodontitis patients, for the presence and activity of NK cells. Routine histological techniques demonstrated an inflammatory infiltrate dominated by plasma cells and B lymphocytes. Indirect staining procedures with a biotin-labeled mouse anti-human, Leu-7 antibody revealed the presence of numerous positive cells accompanying the inflammatory cellular infiltrate in perivascular areas. Several specimens demonstrated positive-staining cells in the epithelium as well. Few cells were observed in histologically uninflammed areas. Single cell suspension obtained by collagenase digestion of 5 gingival samples were used in /sup 51/Cr release cytotoxicity assay against K562 cells. Three of the five samples were positive in this assay. The finding of Leu-7-positive cells in areas of intense plasma cell foci but not in uninflammed areas, may support a role for these cells in the regulation of immunoglobulin synthesis in oral mucosal tissues.

  19. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  20. Cultivation and irradiation of human fibroblasts in a medium enriched with platelet lysate for obtaining feeder layer in epidermal cell culture

    International Nuclear Information System (INIS)

    Yoshito, Daniele

    2011-01-01

    For over 30 years, the use of culture medium, enriched with bovine serum, and murines fibroblasts, with the rate of proliferation controlled by irradiation or by share anticarcinogenic drugs, has been playing successfully its role in assisting in the development of keratinocytes in culture, for clinical purposes. However, currently there is a growing concern about the possibility of transmitting prions and animals viruses to transplanted patients. Taking into account this concern, the present work aims to cultivate human fibroblasts in a medium enriched with human platelets lysate and determine the irradiation dose of these cells, for obtaining feeder layer in epidermal cell culture. For carrying out the proposed objective, platelets lysis has standardized, this lysate was used for human fibroblasts cultivation and the irradiation dose enough to inhibit its duplication was evaluated. Human keratinocytes were cultivated in these feeder layers, in culture medium enriched with the lysate. With these results we conclude that the 10% platelets lysate promoted a better adhesion and proliferation of human fibroblasts and in all dose levels tested (60 to 300 Gy), these had their mitotic activity inactivated by ionizing irradiation, being that the feeder layers obtained with doses from 70 to 150 Gy were those that provided the best development of keratinocytes in medium containing 2.5% of human platelet lysate. Therefore, it was possible to standardize both the cultivation of human fibroblasts as its inactivation for use as feeder layer in culture of keratinocytes, so as to eliminate xenobiotics components. (author)

  1. Regulation and inhibition of collagenase expression by long-wavelength ultraviolet radiation in cultured human skin fibroblasts

    International Nuclear Information System (INIS)

    Petersen, Marta; Hamilton, Tiffani; Haili Li

    1995-01-01

    The cellular mechanisms responsible for the connective tissue changes produced by chronic exposure to UV light are poorly understood. collagenase, a metalloproteinase, initiates degradation of types I and III collagen and thus plays a key role in the remodeling of dermal collagen. Collagenase synthesis by fibroblasts and keratinocytes involves the protein kinase C (PKC) second messenger system, and corticosteroids have been shown to suppress its synthesis at the level of gene transcription. Long-wavelength UV light (UVA, 320-400 nm) stimulates the synthesis of interstitial collagenase, as well as increasing PKC activity, in human skin fibroblasts in vitro. This study explores the regulation of collagenase expression by UVA in cultured human skin fibroblasts. Specifically, the time course, the effect of actinomycin D, an inhibitor of RNA synthesis, as well as the effect of PKC inhibitors and dexamethansone on expression of collagenase following UVA irradiation were examined. (Author)

  2. Bryostatin and its synthetic analog, picolog rescue dermal fibroblasts from prolonged stress and contribute to survival and rejuvenation of human skin equivalents.

    Science.gov (United States)

    Khan, Tapan K; Wender, Paul A; Alkon, Daniel L

    2018-02-01

    Skin health is associated with the day-to-day activity of fibroblasts. The primary function of fibroblasts is to synthesize structural proteins, such as collagen, extracellular matrix proteins, and other proteins that support the structural integrity of the skin and are associated with younger, firmer, and more elastic skin that is better able to resist and recover from injury. At sub-nanomolar concentrations (0.03-0.3 nM), bryostatin-1 and its synthetic analog, picolog (0.1-10 nM) sustained the survival and activation of human dermal fibroblasts cultured under the stressful condition of prolonged serum deprivation. Bryostatin-1 treatment stabilized human skin equivalents (HSEs), a bioengineered combination of primary human skin cells (keratinocytes and dermal fibroblasts) on an extracellular matrix composed of mainly collagen. Fibroblasts activated by bryostatin-1 protected the structural integrity of HSEs. Bryostatin-1 and picolog prolonged activation of Erk in fibroblasts to promote cell survival. Chronic stress promotes the progression of apoptosis. Dermal fibroblasts constitutively express all components of Fas associated apoptosis, including caspase-8, an initiator enzyme of apoptosis. Prolong bryostatin-1 treatment reduced apoptosis by decreasing caspase-8 and protected dermal fibroblasts. Our data suggest that bryostatin-1 and picolog could be useful in anti-aging skincare, and could have applications in tissue engineering and regenerative medicine. © 2017 Wiley Periodicals, Inc.

  3. Evaluation of resorbable membrane in treatment of human gingival isolated buccal recession

    Directory of Open Access Journals (Sweden)

    Sumit Narang

    2011-01-01

    Conclusion: Resorbable membrane is a versatile treatment modality for coverage of isolated buccal gingival recession. Although membrane exposure occurred in four patients, it did not interfere with post operative healing.

  4. Factors modifying 3-aminobenzamide cytotoxicity in normal and repair-deficient human fibroblasts

    International Nuclear Information System (INIS)

    Boorstein, R.J.; Pardee, A.B.

    1984-01-01

    3-Aminobenzamide (3-AB), an inhibitor of poly(ADP-ribosylation), is lethal to human fibroblasts with damaged DNA. Its cytotoxicity was determined relative to a number of factors including the types of lesions, the kinetics of repair, and the availability of alternative repair systems. A variety of alkylating agent, UV or gamma irradiation, or antimetabolites were used to create DNA lesions. 3-AB enhanced lethality with monofunctional alkylating agents only. Within this class of compounds, methylmethanesulfonate (MMS) treatments made cells more sensitive to 3-AB than did treatment with methylnitrosourea (MNU) or methylnitronitrosoguanidine (MNNG). 3-AB interfered with a dynamic repair process lasting several days, since human fibroblasts remained sensitive to 3-AB for 36-48 hours following MMS treatment. During this same interval 3-AB caused these cells to arrest in G 2 phase. Alkaline elution analysis also revealed that this slow repair was delayed further by 3-AB. Human mutant cell defective in DNA repair differed in their responses to 3-AB. Greater lethality with 3-AB could be dependent on inability of the mutant cells to repair damage by other processes

  5. Survival of human osteosarcoma cells and normal human fibroblasts following alpha particle irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.

    1981-01-01

    Cell survival of human osteosarcoma cells in culture following alpha particle irradiation is reported here for the first time. The osteosarcoma cell line (TE-85) is found to be less sensitive to inactivation by 5.6 MeV alpha particles (LET 86 keV/μm) than normal diploid human fibroblasts (NFS). Values for the mean lethal doses were estimated to be 103 rads for the TE-85 cells compared with 68 rads for the NFS cultures irradiated under identical conditions. It is postulated that the aneuploidy of the tumor cells with increased DNA chromosomal material may confer a selective advantage for the survival of tumor cells relative to normal cells with diploid chromosomes

  6. Selective enrichment and biochemical characterization of seven human skin fibroblasts cell types in vitro

    International Nuclear Information System (INIS)

    Rodemann, H.P.; Bayreuther, K.; Francz, P.I.; Dittmann, K.; Albiez, M.

    1989-01-01

    The mitotic and postmitotic populations of the human skin fibroblast cell line HH-8 are heterogeneous when studied in vitro. There are reproducible changes in the frequencies of the mitotic fibroblasts (MF), MF I, MF II, MF III, and the postmitotic fibroblasts (PMF), PMF IV, PMF V, PMF VI, and PMF VII. For biochemical characterization, methods for selective enrichment of homogeneous populations of these seven fibroblast cell types have been established. Clonal populations with 95% purity for the mitotic fibroblasts MF I, MF II, and MF III can be raised in uniform clone types of fibroblasts (CTF) CTF I, CTF II, and CTF III. Pure clonal subpopulations of MF I type cells are present in mass populations in the range of 1-20 cumulative population doublings (CPD). Populations of mitotic fibroblasts represent nearly homogeneous populations of MF II (75-85% purity) in the range of 28-34 CPD and MF III (73-86% purity) in the range of 48-53 CPD. These populations can be easily expanded to up to 10(7)-10(8) cells. The spontaneous transition of MF III to PMF VI takes 140-180 days. In order to shorten this period and increase the proportion of distinct postmitotic types, mitotic fibroblast mass populations (CPD 30-32, MF II: 75-85% purity) have been induced by uv-irradiation to differentiate to nearly homogeneous populations of PMF IV, PMF V, PMF VI, and PMF VII within 4 to 36 days of culture. Using this method, 10(7) cells of one differentiation stage can be obtained. Spontaneously arising and experimentally selected or induced homogeneous clonal and mass populations of MF I, MF II, MF III, PMF IV, PMF V, PMF VI, and PMF VII express an identical differentiation-dependent and cell-type-specific [35S]methionine-labeled polypeptide pattern

  7. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  8. Stochastic variation in telomere shortening rate causes heterogeneity of human fibroblast replicative life span.

    Science.gov (United States)

    Martin-Ruiz, Carmen; Saretzki, Gabriele; Petrie, Joanne; Ladhoff, Juliane; Jeyapalan, Jessie; Wei, Wenyi; Sedivy, John; von Zglinicki, Thomas

    2004-04-23

    The replicative life span of human fibroblasts is heterogeneous, with a fraction of cells senescing at every population doubling. To find out whether this heterogeneity is due to premature senescence, i.e. driven by a nontelomeric mechanism, fibroblasts with a senescent phenotype were isolated from growing cultures and clones by flow cytometry. These senescent cells had shorter telomeres than their cycling counterparts at all population doubling levels and both in mass cultures and in individual subclones, indicating heterogeneity in the rate of telomere shortening. Ectopic expression of telomerase stabilized telomere length in the majority of cells and rescued them from early senescence, suggesting a causal role of telomere shortening. Under standard cell culture conditions, there was a minor fraction of cells that showed a senescent phenotype and short telomeres despite active telomerase. This fraction increased under chronic mild oxidative stress, which is known to accelerate telomere shortening. It is possible that even high telomerase activity cannot fully compensate for telomere shortening in all cells. The data show that heterogeneity of the human fibroblast replicative life span can be caused by significant stochastic cell-to-cell variation in telomere shortening.

  9. Amelogenin is phagocytized and induces changes in integrin configuration, gene expression and proliferation of cultured normal human dermal fibroblasts

    DEFF Research Database (Denmark)

    Almqvist, Sofia; Werthén, Maria; Johansson, Anna

    2010-01-01

    Fibroblasts are central in wound healing by expressing important mediators and producing and remodelling extracellular matrix (ECM) components. This study aimed at elucidating possible mechanisms of action of the ECM protein amelogenin on normal human dermal fibroblasts (NHDF). Amelogenin at 100...

  10. circHIPK2-mediated σ-1R promotes endoplasmic reticulum stress in human pulmonary fibroblasts exposed to silica.

    Science.gov (United States)

    Cao, Zhouli; Xiao, Qingling; Dai, Xiaoniu; Zhou, Zewei; Jiang, Rong; Cheng, Yusi; Yang, Xiyue; Guo, Huifang; Wang, Jing; Xi, Zhaoqing; Yao, Honghong; Chao, Jie

    2017-12-13

    Silicosis is characterized by fibroblast accumulation and excessive deposition of extracellular matrix. Although the roles of SiO 2 -induced chemokines and cytokines released from alveolar macrophages have received significant attention, the direct effects of SiO 2 on protein production and functional changes in pulmonary fibroblasts have been less extensively studied. Sigma-1 receptor, which has been associated with cell proliferation and migration in the central nervous system, is expressed in the lung, but its role in silicosis remains unknown. To elucidate the role of sigma-1 receptor in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Both molecular biological assays and pharmacological techniques, combined with functional experiments, such as migration and proliferation, were applied in human pulmonary fibroblasts from adults to analyze the molecular and functional changes induced by SiO 2 . SiO 2 induced endoplasmic reticulum stress in association with enhanced expression of sigma-1 receptor. Endoplasmic reticulum stress promoted migration and proliferation of human pulmonary fibroblasts-adult exposed to SiO 2 , inducing the development of silicosis. Inhibition of sigma-1 receptor ameliorated endoplasmic reticulum stress and fibroblast functional changes induced by SiO 2 . circHIPK2 is involved in the regulation of sigma-1 receptor in human pulmonary fibroblasts-adult exposed to SiO 2 . Our study elucidated a link between SiO 2 -induced fibrosis and sigma-1 receptor signaling, thereby providing novel insight into the potential use of sigma-1 receptor/endoplasmic reticulum stress in the development of novel therapeutic strategies for silicosis treatment.

  11. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts.

    Science.gov (United States)

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.

  12. Generation of human induced pluripotent stem cell lines from human dermal fibroblasts using a non-integration system

    Directory of Open Access Journals (Sweden)

    Kyung-Ok Uhm

    2017-05-01

    Full Text Available We generated human induced pluripotent stem cells (hiPSCs from dermal fibroblasts using a Sendai virus (SeV-based gene delivery method. The generated hiPSC line, KSCBi002-A, has a normal karyotype (46,XY. The pluripotency and differentiation capacity were characterized by comparison with those of a human embryonic stem cell line. This cell line is registered and available from the National Stem Cell Bank, Korea National Institute of Health.

  13. Analysis of changes in gingival contour from three-dimensional co-ordinate data in subjects with drug-induced gingival overgrowth.

    Science.gov (United States)

    Thomason, J M; Ellis, J S; Jovanovski, V; Corson, M; Lynch, E; Seymour, R A

    2005-10-01

    This aim of this study was to develop and assess a technique that could be used to assess accurately the gingival volume changes seen in drug-induced gingival overgrowth by the analysis of data obtained from an entire gingival surface by means of three-dimensional imaging. Stone dental models of patients before and after gingivectomy procedures were digitized with a laser scanner and then regenerated as computer models constructed from the acquired three-dimensional co-ordinate data. A comparison of superposed "before" and "after" surfaces was undertaken to assess and accurately quantify changes in gingival contour. The mean vertical tissue reduction varied from 1.58 to 2.56 mm in the four study subjects and individual differences are shown. The maximum thickness of removed buccal gingival overgrowth was found to range between 1.20 and 3.40 mm. The volume of tissue removed from each inter-dental papilla ranged from 4.2 to 46.1 mm3 and the mean volume of the papilla removed from each subject+/-SD values was 24.8+/-13.1 mm3. This method will measure changes in gingival tissues to within 60 microm in one plane, making it ideal for the assessment of longitudinal changes in gingival contour as seen in the development of gingival overgrowth, its recurrence after surgery or the changes in volume brought about by surgery.

  14. Retracción gingival e hiperestesia dentinal: Causas y prevención Gingival recession and dentine hypersensitivity

    Directory of Open Access Journals (Sweden)

    Jorge Sotres Vázquez

    2004-08-01

    Full Text Available Se realizó una investigación en 230 pacientes que acudieron a los Servicios de Prótesis y Periodoncia de la Clínica Estomatológica "Hermanos Gómez" durante el año 2002. Se les evaluó la presencia de retracción gingival, sus causas y la relación existente con la hiperestesia dentinal. Se determinó que el 17,3 % de los dientes examinados presentaron algún grado de retracción gingival. Las causas más frecuentes fueron ausencia de dientes antagonistas e inserciones frénicas anormales. Existió una estrecha relación entre la hiperestesia dentinal y la retracción gingival. No existieron diferencias significativas de retracción gingival según el sexo, pero sí con la edad, pues aumentó significativamente según aumentó la edad.A research study was performed on 230 patients who went to the Denture and Periodontics Service at "Hermanos Gómez" dental clinic in the year 2002. They were evaluated as to presence of gingival recession, its causes and its relation with dentine hypersensitity. It was determined that 17,3% of examined teeth presented with some level of gingival recession frequently caused by lack of opposite teeth and abnormal frenal insertions. Gingival recession did not show significant differences by sex but it did by age since it markedly increased with the age.

  15. Possible involvement of loss of imprinting in immortalization of human fibroblasts.

    Science.gov (United States)

    Okamura, Kotaro; Ohno, Maki; Tsutsui, Takeki

    2011-04-01

    Disruption of the normal pattern of parental origin-specific gene expression is referred to as loss of imprinting (LOI), which is common in various cancers. To investigate a possible role of LOI in the early stage of human cell transformation, we studied LOI in 18 human fibroblast cell lines immortalized spontaneously, by viral oncogenes, by chemical or physical carcinogens, or by infection with a retrovirus vector encoding the human telomerase catalytic subunit, hTERT cDNA. LOI was observed in all the 18 immortal cell lines. The gene most commonly exhibiting LOI was NDN which displayed LOI in 15 of the 18 cell lines (83%). The other genes exhibiting LOI at high frequencies were PEG3 (50%), MAGE-L2 (61%) and ZNF 127 (50%). Expression of NDN that was lost in the immortal cell lines was restored by treatment with 5-aza-2'-deoxycytidine. The ratio of histone H3 lysine 9 methylation to histone H3 lysine 4 methylation of the chromatin containing the NDN promoter in the immortal WI-38VA13 cells was greater than that in the parental cells, suggesting chromatin structure-mediated regulation of NDN expression. We previously demonstrated that inactivation of the p16INK4a/pRb pathway is necessary for immortalization of human cells. Human fibroblasts in the pre-crisis phase and cells with an extended lifespan that eventually senesce, both of which have the normal p16INK4a/pRb pathway, did not show LOI at any imprinted gene examined. Although it is not clear if LOI plays a causal role in immortalization of human cells or is merely coincidental, these findings indicate a possible involvement of LOI in immortalization of human cells or a common mechanism involved in both processes.

  16. Dose-dependent micronuclei formation in normal human fibroblasts exposed to proton radiation

    Czech Academy of Sciences Publication Activity Database

    Litvinchuk, Alexandra; Vachelová, Jana; Michaelidesová, Anna; Wagner, Richard; Davídková, Marie

    2015-01-01

    Roč. 54, č. 3 (2015), s. 327-334 ISSN 0301-634X R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : human fibroblasts * proton radiation * micronuclei assay * biodosimetry Subject RIV: BO - Biophysics Impact factor: 1.923, year: 2015

  17. Rat embryonic fibroblasts improve reprogramming of human keratinocytes into induced pluripotent stem cells.

    Science.gov (United States)

    Linta, Leonhard; Stockmann, Marianne; Kleinhans, Karin N; Böckers, Anja; Storch, Alexander; Zaehres, Holm; Lin, Qiong; Barbi, Gotthold; Böckers, Tobias M; Kleger, Alexander; Liebau, Stefan

    2012-04-10

    Patient-specific human induced pluripotent stem (hiPS) cells not only provide a promising tool for cellular disease models in general, but also open up the opportunity to establish cell-type-specific systems for personalized medicine. One of the crucial prerequisites for these strategies, however, is a fast and efficient reprogramming strategy from easy accessible somatic cell populations. Keratinocytes from plucked human hair had been introduced as a superior cell source for reprogramming purposes compared with the widely used skin fibroblasts. The starting cell population is, however, limited and thereby further optimization in terms of time, efficiency, and quality is inevitable. Here we show that rat embryonic fibroblasts (REFs) should replace mouse embryonic fibroblasts as feeder cells in the reprogramming process. REFs enable a significantly more efficient reprogramming procedure as shown by colony number and total amount of SSEA4-positive cells. We successfully produced keratinocyte-derived hiPS (k-hiPS) cells from various donors. The arising k-hiPS cells display the hallmarks of pluripotency such as expression of stem cell markers and differentiation into all 3 germ layers. The increased reprogramming efficiency using REFs as a feeder layer occurred independent of the proliferation rate in the parental keratinocytes and acts, at least in part, in a non-cell autonomous way by secreting factors known to facilitate pluripotency such as Tgfb1, Inhba and Grem1. Hence, we provide an easy to use and highly efficient reprogramming system that could be very useful for a broad application to generate human iPS cells. © Mary Ann Liebert, Inc.

  18. In vitro study of RRS HA injectable mesotherapy/biorevitalization product on human skin fibroblasts and its clinical utilization

    Directory of Open Access Journals (Sweden)

    Deglesne PA

    2016-02-01

    Full Text Available Pierre-Antoine Deglesne,* Rodrigo Arroyo,* Evgeniya Ranneva, Philippe Deprez Research and Development, SKIN TECH PHARMA GROUP, Castelló d'Empúries, Spain  *These authors contributed equally to this work Abstract: Mesotherapy/biorevitalization with hyaluronic acid (HA is a treatment approach currently used for skin rejuvenation. Various products with a wide range of polycomponent formulations are available on the market. Most of these formulations contain noncross-linked HA in combination with a biorevitalization cocktail, formed by various amounts of vitamins, minerals, amino acids, nucleotides, coenzymes, and antioxidants. Although ingredients are very similar among the different products, in vitro and clinical effects may vary substantially. There is a real need for better characterization of these products in terms of their action on human skin or in vitro skin models. In this study, we analyzed the effect of the RRS® (Repairs, Refills, Stimulates HA injectable medical device on human skin fibroblasts in vitro. Skin fibroblast viability and its capacity to induce the production of key extracellular matrix were evaluated in the presence of different concentrations of RRS HA injectable. Viability was evaluated through colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, and key extracellular matrix genes, type I collagen and elastin, were quantified by quantitative polymerase chain reaction. Results demonstrated that RRS HA injectable could promote human skin fibroblast viability (+15% and increase fibroblast gene expression of type I collagen and elastin by 9.7-fold and 14-fold in vitro, respectively. These results demonstrate that mesotherapy/biorevitalization products can, at least in vitro, effectively modulate human skin fibroblasts.Keywords: mesotherapy, medical device, RRS, collagen, elastin, extracellular matrix

  19. Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials with Human Gingival Keratinocytes (HGKs).

    Science.gov (United States)

    Grenade, Charlotte; De Pauw-Gillet, Marie-Claire; Pirard, Catherine; Bertrand, Virginie; Charlier, Corinne; Vanheusden, Alain; Mainjot, Amélie

    2017-03-01

    Biocompatibility of polymer-infiltrated-ceramic-network (PICN) materials, a new class of CAD-CAM composites, is poorly explored in the literature, in particular, no data are available regarding Human Gingival Keratinocytes (HGK). The first objective of this study was to evaluate the in vitro biocompatibility of PICNs with HGKs in comparison with other materials typically used for implant prostheses. The second objective was to correlate results with PICN monomer release and indirect cytotoxicity. HGK attachment, proliferation and spreading on PICN, grade V titanium (Ti), yttrium zirconia (Zi), lithium disilicate glass-ceramic (eM) and polytetrafluoroethylene (negative control) discs were evaluated using a specific insert-based culture system. For PICN and eM samples, monomer release in the culture medium was quantified by high performance liquid chromatography and indirect cytotoxicity tests were performed. Ti and Zi exhibited the best results regarding HGK viability, number and coverage. eM showed inferior results while PICN showed statistically similar results to eM but also to Ti regarding cell number and to Ti and Zi regarding cell viability. No monomer release from PICN discs was found, nor indirect cytotoxicity, as for eM. The results confirmed the excellent behavior of Ti and Zi with gingival cells. Even if polymer based, PICN materials exhibited intermediate results between Ti-Zi and eM. These promising results could notably be explained by PICN high temperature-high pressure (HT-HP) innovative polymerization mode, as confirmed by the absence of monomer release and indirect cytotoxicity. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. A Pyrosequencing Investigation of Differences in the Feline Subgingival Microbiota in Health, Gingivitis and Mild Periodontitis.

    Science.gov (United States)

    Harris, Stephen; Croft, Julie; O'Flynn, Ciaran; Deusch, Oliver; Colyer, Alison; Allsopp, Judi; Milella, Lisa; Davis, Ian J

    2015-01-01

    Periodontitis is the most frequently diagnosed health problem in cats yet little is known about the bacterial species important for the disease. The objective of this study was to identify bacterial species associated with health, gingivitis or mild periodontitis (gingivitis or mild periodontitis. Pyrosequencing of the V1-V3 region of the 16S rDNA from these plaque samples generated more than one million reads and identified a total of 267 operational taxonomic units after bioinformatic and statistical analysis. Porphyromonas was the most abundant genus in all gingival health categories, particularly in health along with Moraxella and Fusobacteria. The Peptostreptococcaceae were the most abundant family in gingivitis and mild periodontitis. Logistic regression analysis identified species from various genera that were significantly associated with health, gingivitis or mild periodontitis. The species identified were very similar to those observed in canine plaque in the corresponding health and disease states. Such similarities were not observed between cat and human at the bacterial species level but with disease progression similarities did emerge at the phylum level. This suggests that interventions targeted at human pathogenic species will not be effective for use in cats but there is more potential for commonalities in interventions for cats and dogs.

  1. Gingival condition of patient with obesity

    Directory of Open Access Journals (Sweden)

    Atikah Sabrina Alyani

    2018-01-01

    Full Text Available The prevalence of obesity has increased drastically in most developed countries. Many studies showed that obesity associated with oral diseases, especially periodontal disease. A recent study showed the relation between WC and periodontal disease counted by gingival index (GI. However, studies regarding the mechanism of the relationship between obesity and periodontal disease are still quite a few, whereas many studies conducted suggested that obesity was a medical problem. The study was aimed to know and assess the gingival condition of obese people who visited the Dental Polyclinic of Hasan Sadikin Hospital. The type of this study was descriptive with the survey technique. A total of 54 people consisted of 35 female and 19 male patients with the age range of 20-49 years old, and not using any dental prosthesis or orthodontic appliance. This study was using a questionnaire and clinical examination to assess the condition of the gingival using the Löe and Silness Gingival index (GI. Examination of obesity conducted by measuring the waist circumference with criteria from WHO. The average value of the gingival index was 1.22. Meanwhile, the average value of the waist circumference (WC was 95.89 cm and 107.74 cm consecutively for female and male. The majority of obese patients suffered moderate gingivitis.

  2. Effect of mixed-sulfonated aluminium phthalocyanine on human skin fibroblasts for photodynamic therapy

    CSIR Research Space (South Africa)

    Ndhundhuma, IM

    2008-08-01

    Full Text Available of the study was to evaluate the effect of mixed-sulfonated aluminium phthalocyanine (AlPcSmix) used as photosensitizers for PDT, determined by changes in cell morphology and cell viability of human skin fibroblasts (WS1). Methods. Cells incubated with 5, 10...

  3. Gingivitis

    Science.gov (United States)

    ... the teeth. This can include the gums, the periodontal ligaments, and the tooth sockets. Gingivitis is due to the long-term effects of plaque deposits on your teeth. Plaque is a sticky material made of bacteria, mucus, and food debris that builds up on ...

  4. EMMPRIN is secreted by human uterine epithelial cells in microvesicles and stimulates metalloproteinase production by human uterine fibroblast cells.

    Science.gov (United States)

    Braundmeier, A G; Dayger, C A; Mehrotra, P; Belton, R J; Nowak, R A

    2012-12-01

    Endometrial remodeling is a physiological process involved in the gynecological disease, endometriosis. Tissue remodeling is directed by uterine fibroblast production of matrix metalloproteinases (MMPs). Several MMPs are regulated directly by the protein extracellular matrix metalloproteinase inducer (EMMPRIN) and also by proinflammatory cytokines such as interleukin (IL)1-α/β. We hypothesized that human uterine epithelial cells (HESs) secrete intact EMMPRIN to stimulate MMPs. Microvesicles from HES cell-conditioned medium (CM) expressed intact EMMPRIN protein. Treatment of HES cells with estradiol or phorbyl 12-myristate-13-acetate increased the release of EMMPRIN-containing microvesicles. The HES CM stimulated MMP-1, -2, and -3 messenger RNA levels in human uterine fibroblasts (HUFs) and EMMPRIN immunodepletion from HES-cell concentrated CM reduced MMP stimulation (P EMMPRIN, in response to ovarian hormones, proinflammatory cytokines as well as activation of protein kinase C.

  5. In vivo excision of pyrimidine dimers is mediated by a DNA N-glycosylase in Micrococcus luteus but not in human fibroblasts

    International Nuclear Information System (INIS)

    La Belle, M.; Linn, S.

    1982-01-01

    It has been previously shown that Micrococcus luteus possesses a pyrimidine dimer-specific endonuclease which in vitro, functions as both an endonuclease and DNA-glycosylase. To determine if these combined activities function in vivo, the excision products of UV-irradiated M. luteus were isolated and examined. In addition, a procedure was devised to isolate and examine the excision products from UV-irradiated human fibroblasts to determine if an endonuclease/glycosylase activity functions in the excision of UV-induced pyrimidine dimers in human fibroblasts. It was shown that, in vivo, an endonuclease/glycosylase mechanism is utilized extensively in the repair of pyrimidine dimers by M. luteus, but that human fibroblasts do not appear to use this mechanism. (author)

  6. In vivo excision of pyrimidine dimers is mediated by a DNA N-glycosylase in Micrococcus luteus but not in human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    La Belle, M; Linn, S [California Univ., Berkeley (USA). Dept. of Biochemistry

    1982-09-01

    It has been previously shown that Micrococcus luteus possesses a pyrimidine dimer-specific endonuclease which in vitro, functions as both an endonuclease and DNA-glycosylase. To determine if these combined activities function in vivo, the excision products of UV-irradiated M. luteus were isolated and examined. In addition, a procedure was devised to isolate and examine the excision products from UV-irradiated human fibroblasts to determine if an endonuclease/glycosylase activity functions in the excision of UV-induced pyrimidine dimers in human fibroblasts. It was shown that, in vivo, an endonuclease/glycosylase mechanism is utilized extensively in the repair of pyrimidine dimers by M. luteus, but that human fibroblasts do not appear to use this mechanism.

  7. Kekambuhan gingivitis hiperplasi setelah gingivektomi (Recurrent of hyperplastic gingivitis after gingivectomy

    Directory of Open Access Journals (Sweden)

    Iwan Ruhadi

    2005-09-01

    Full Text Available The inflammatory enlargement is clinically called hyperthropic gingivitis or gingival hyperplasia and generally related to local or systemic factors. They could be edematous or fibrous. The former is treated by scaling, but the latter that could not be treated by scaling only has to be removed by gingivectomy. There are some cases of gingivectomy resulting in recurrences. The writer wanted to find out the cause of the recurrences. The types of research were clinical and laboratories observational studies. The criteria of sample were: male or female patient who came to periodontal clinic of Faculty of Dentistry Airlangga University. They were diagnosed gingivitis hyperplasia; had no systemic diseases; did not wear the orthodontic appliances, prosthesis, and crown and bridge; do not smoke. The indicated teeth to be observed were the labial side of maxillary front teeth. The teeth had score hyperplastic index (HI = 2 at the 2nd weeks after scaling. There were 7 samples taken selectively. The results of the studies were based on the comparison of 1 hyperplasia index (HI; 2 the number and percentage of monosite and leucocytes from white blood impedance coutl (WIC and white blood optical coutl (WOC; 3 plaque Index; and 4 gingival index. The result of gingivectomy was reevaluated on the 30th, 45th, 60th, 90th day. The research concluded that the number of monosite was normal, but the dental plaque still accumulated and eventually caused the recurrences of the inflammation.

  8. Opposite cytokine synthesis by fibroblasts in contact co-culture with osteosarcoma cells compared with transwell co-cultures.

    Science.gov (United States)

    David, Manu S; Kelly, Elizabeth; Zoellner, Hans

    2013-04-01

    We recently reported exchange of membrane and cytoplasm during contact co-culture between human Gingival Fibroblasts (h-GF) and SAOS-2 osteosarcoma cells, a process we termed 'cellular sipping' to reflect the manner in which cells become morphologically diverse through uptake of material from the opposing cell type, independent of genetic change. Cellular sipping is increased by Tumor Necrosis Factor-α (TNF-α), and we here show for the first time altered cytokine synthesis in contact co-culture supporting cellular sipping compared with co-culture where h-GF and SAOS-2 were separated in transwells. SAOS-2 had often undetectably low cytokine levels, while Interleukin-6 (IL-6), Granulocyte Colony Stimulating Factor (G-CSF) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) were secreted primarily by TNF-α stimulated h-GF and basic Fibroblast Growth Factor (FGF) was prominent in h-GF lysates (p cultures permitting cellular sipping had lower IL-6, G-CSF and GM-CSF levels, as well as higher lysate FGF levels compared with TNF-α treated h-GF alone (p cultures in transwells, with increased IL-6, G-CSF and GM-CSF levels (p cultures where cellular sipping occurs, potentially contributing to tumor inflammatory responses. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Analysis of plasma membrane Ca(2+)-ATPase expression in control and SV40-transformed human fibroblasts.

    Science.gov (United States)

    Reisner, P D; Brandt, P C; Vanaman, T C

    1997-01-01

    It has been long known that neoplastic transformation is accompanied by a lowered requirement for extracellular Ca2+ for growth. The studies presented here demonstrate that human fibroblastic cell lines produce the two commonly found 'housekeeping' isoforms of the plasma membrane Ca(2+)-ATPase (PMCA), PMCA1b and 4b, and at the expression of both is demonstrably lower in cell lines neoplastically transformed by SV40 than in the corresponding parental cell lines. Western blot analyses of lysates from control (GM00037) and SV40-transformed (GM00637) skin fibroblasts revealed a 138 kDa PMCA whose level was significantly lower in the SV40-transformed cells relative to either total cellular protein or alpha-tubulin. Similar analyses of plasma membrane preparations from control WI-38) and SV40-transformed (WI-38VA13) lung fibroblasts revealed 3-4-fold lower levels of PMCA in the SV40-transformed cells. Competitive ELISAs performed on detergent solubilized plasma membrane preparations indicated at least 3-4-fold lower levels of PMCA in the SV40-transformed cell lines compared to controls. Reverse transcriptase coupled-PCR analyses showed that PMCA1b and PMCA4b were the only isoforms expressed in all four cell lines. The PMCA4b mRNA level detected by Northern analysis also was substantially lower in SV40 transformed skin fibroblasts than in non-transformed fibroblasts. Quantitative RT-PCR analyses showed levels of PMCA1b and 4b mRNAs to be 5 and 10-fold lower, respectively, in GM00637 than in GM00037 when the levels of PCR products were normalized to glyceraldehyde-3-phosphate dehydrogenase (G3PDH) mRNA. These results demonstrate that the expression of these distinct PMCA genes is substantially lower in SV40 transformed human skin and lung fibroblasts and may be coordinately regulated in these cells.

  10. Monocyte chemotactic protein-1, RANTES and macrophage migration inhibitory factor levels in gingival crevicular fluid of metabolic syndrome patients with gingivitis.

    Science.gov (United States)

    Gürkan, Ali; Eren, Gülnihal; Çetinkalp, Şevki; Akçay, Yasemin Delen; Emingil, Gülnur; Atilla, Gül

    2016-09-01

    The aim of the present study was to determine gingival crevicular fluid (GCF) levels of monocyte chemotactic protein-1 (MCP-1), regulated on activation, normal T-cell expressed and secreted protein (RANTES) and macrophage migration inhibitory factor (MIF) in metabolic syndrome patients with gingivitis. Twenty metabolic syndrome patients with gingivitis (MSG), 20 MetS patients with clinically healthy periodontium (MSH), 20 systemically healthy subjects with gingivitis and 20 subjects who were both systemically and periodontally healthy were included. Periodontal and systemical parameters were recorded. GCF MCP-1, RANTES and MIF levels were assayed by enzyme-linked immunosorbent assay method. MSG and MSH groups had elevated blood pressure, triglyceride, waist circumference and fasting glucose values in comparison to gingivitis and healthy groups (Pgingivitis groups when compared to those of the MSH and healthy groups (Pgingivitis group had higher MCP-1, RANTES and MIF levels compared to the healthy group (P=0.011, P=0.0001, P=0.011 respectively). The RANTES level of MSG group was significantly higher than those of the gingivitis group (P=0.01), but MCP-1 and MIF levels were similar in the MSG and gingivitis groups (P>0.05). Elevated levels of GCF RANTES in MetS patients with gingivitis might associate with the presence of increased gingival inflammation by MetS. Low-grade systemic inflammation associated with MetS and adipose tissue-derived RANTES might lead to altered GCF RANTES levels in the presence of gingival inflammation. Copyright © 2016. Published by Elsevier Ltd.

  11. Testosterone metabolism of fibroblasts grown from prostatic carcinoma, benign prostatic hyperplasia and skin fibroblasts

    International Nuclear Information System (INIS)

    Schweikert, H.U.; Hein, H.J.; Romijn, J.C.; Schroeder, F.H.

    1982-01-01

    The metabolism of [1,2,6,7-3H]testosterone was assessed in fibroblast monolayers derived from tissue of 5 prostates with benign hyperplasia (BPH), 4 prostates with carcinoma (PC), and 3 biopsy samples of skin, 2 nongenital skin (NG) and 1 genital skin. The following metabolites could be identified: androstanedione androstenedione, dihydrotestosterone, androsterone, epiandrosterone, androstane-3 alpha, 17 beta-diol and androstane-3 beta, 17 beta-diol. Testosterone was metabolized much more rapidly in fibroblasts originating from prostatic tissue than in fibroblasts derived from NG. A significantly higher formation of 5 alpha-androstanes and 3 alpha-hydroxysteroids could be observed in fibroblasts from BPH as compared to PC. 17-ketosteroid formation exceeded 5 alpha-androstane formation in BPH, whereas 5 alpha-reduction was the predominant pathway in fibroblasts grown from PC and NG. Since testosterone metabolism in fibroblasts of prostatic origin therefore resembles in many aspects that in whole prostatic tissue, fibroblasts grown from prostatic tissues might be a valuable tool for further investigation of the pathogenesis of human BPH and PC

  12. LACK OF ASSOCIATION BETWEEN HERPESVIRUS DETECTION IN SALIVA AND GINGIVITIS IN HIV‑INFECTED CHILDREN.

    Science.gov (United States)

    Otero, Renata A; Nascimento, Flávia N N; Souza, Ivete P R; Silva, Raquel C; Lima, Rodrigo S; Robaina, Tatiana F; Câmara, Fernando P; Santos, Norma; Castro, Gloria F

    2015-01-01

    The aims of this study were to compare the detection of human herpesviruses (HHVs) in the saliva of HIV-infected and healthy control children, and to evaluate associations between viral infection and gingivitis and immunodeficiency. Saliva samples were collected from 48 HIV-infected and 48 healthy control children. Clinical and laboratory data were collected during dental visits and from medical records. A trained dentist determined gingival indices and extension of gingivitis. Saliva samples were tested for herpes simplex virus types 1 and 2 (HSV-1 and HSV-2), varicella zoster virus (VZV), Epstein-Barr virus (EBV), and cytomegalovirus (CMV) by nested polymerase chain reaction assays. Thirty-five HIV-infected and 16 control children had gingivitis. Seventeen (35.4%) HIV-infected children and 13 (27%) control children were positive for HHVs. CMV was the most commonly detected HHV in both groups (HIV-infected, 25%; control, 12.5%), followed by HSV-1 (6.2% in both groups) and HSV-2 (HIV-infected, 4.2%; control, 8.3%). The presence of HHVs in saliva was not associated with the presence of gingivitis in HIV-1-infected children (p = 0.104) or healthy control children (p = 0.251), or with immunosuppression in HIV-infected individuals (p = 0.447). Gingivitis was correlated with HIV infection (p = 0.0001). These results suggest that asymptomatic salivary detection of HHVs is common in HIV-infected and healthy children, and that it is not associated with gingivitis.

  13. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhong Xin [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Sun, Cong Cong [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zheng, Jia Yong [Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Zhou, Xuan [Ningbo First Hospital, Ningbo, Zhejiang (China); Cong, Wei Tao [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Xiao Kun, E-mail: proflxk@163.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Jin, Li Tai, E-mail: jin_litai@126.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2017-06-15

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  14. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    International Nuclear Information System (INIS)

    Zhu, Zhong Xin; Sun, Cong Cong; Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui; Zheng, Jia Yong; Zhou, Xuan; Cong, Wei Tao; Li, Xiao Kun; Jin, Li Tai

    2017-01-01

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  15. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, So Young [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Jang, Hwan-Hee [Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration, Suwon 441-853 (Korea, Republic of); Ryu, Sung Ho [Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, Beom Joon [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Taehoon G., E-mail: taehoon@novacelltech.com [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  16. The effect of MTAD, an endodontic irrigant, on fibroblast attachment to periodontally affected root surfaces: A SEM analysis.

    Science.gov (United States)

    Ghandi, Mostafa; Houshmand, Behzad; Nekoofar, Mohammad H; Tabor, Rachel K; Yadeghari, Zahra; Dummer, Paul M H

    2013-03-01

    Root surface debridement (RSD) is necessary to create an environment suitable for reattachment of the periodontium. Root surface conditioning may aid the formation of a biocompatible surface suitable for cell reattachment. BioPure™ MTAD (mixture of Doxycycline, citric acid and a detergent) is an endodontic irrigant with antibacterial properties and the ability to remove smear layer. It was hypothesized that MTAD may be useful for root surface conditioning. The efficacy of MTAD as a conditioner was measured by examining fibroblast attachment to root surfaces. Thirty-two specimens of human teeth with advanced periodontal disease were used. The surfaces were root planed until smooth. Half of the specimens were treated with 0.9% saline and the other samples with Biopure MTAD. As a negative control group, five further samples were left unscaled with surface calculus. Human gingival fibroblast cells HGF1-PI1 were cultured and poured over the tooth specimens and incubated. After fixation, the samples were sputter-coated with gold and examined with a SEM. The morphology and number of attached, fixed viable cells were examined. The data was analysed using the Mann-Whitney-U statistical test. There was no significant difference between the numbers of attached cells in the experimental group treated with MTAD and the control group treated with saline. Little or no attached cells were seen in the negative control group. RSD created an environment suitable for cell growth and attachment in a laboratory setting. The use of MTAD did not promote the attachment and growth of cells on the surface of human roots following RSD.

  17. Insulin-like growth factor binding protein-6 delays replicative senescence of human fibroblasts

    DEFF Research Database (Denmark)

    Micutkova, Lucia; Diener, Thomas; Li, Chen

    2011-01-01

    Cellular senescence can be induced by a variety of mechanisms, and recent data suggest a key role for cytokine networks to maintain the senescent state. Here, we have used a proteomic LC-MS/MS approach to identify new extracellular regulators of senescence in human fibroblasts. We identified 26 e...

  18. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    Science.gov (United States)

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID

  19. Schisandrin B protects against solar irradiation-induced oxidative injury in BJ human fibroblasts.

    Science.gov (United States)

    Chiu, Po Yee; Lam, Philip Y; Yan, Chung Wai; Ko, Kam Ming

    2011-06-01

    The effects of schisandrin B (Sch B) and its analogs on solar irradiation-induced oxidative injury were examined in BJ human fibroblasts. Sch B and schisandrin C (Sch C) increased cellular reduced glutathione (GSH) level and protected against solar irradiation-induced oxidative injury. The photoprotection was paralleled by decreases in the elastases-type protease activity and matrix-metalloproteinases-1 expression in solar-irradiated fibroblasts. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production. The results suggest that by virtue of its pro-oxidant action and the subsequent glutathione antioxidant response, Sch B or Sch C may offer the prospect of preventing skin photo-aging. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Esthetic evaluation of dental and gingival asymmetries.

    Science.gov (United States)

    Fernandes, Liliana; Pinho, Teresa

    2015-06-01

    The aim of this study was to determine which smile asymmetries were less esthetic, dental or gingival. Laypeople (297), generalists (223), prosthodontists (50) and orthodontists (49), evaluated the esthetics of digitally-modified images taken from the same frontal intra-oral photograph, using the same lips, simulating upper maxillary midline shift, occlusal plane inclination, asymmetric incisal edge and asymmetric gingival migration. The images were later paired into 3 groups. The only ones considered esthetic were the asymmetric incisal edge of the 0.5 mm shorter upper central incisor and the asymmetric gingival migration (2 mm) of the upper central incisor. In the paired images, upper maxillary midline shift vs. occlusal plane inclination, the former was rated less esthetic, while in the asymmetric incisal edge vs. asymmetric gingival migration pair, the latter was considered to be less esthetic. Laypeople and generalists consider smiles more attractive. The only images considered esthetic were the asymmetric incisal edge of the central incisor shorter by 0.5 mm and the 2 mm asymmetric gingival migration of the upper central incisor. In the horizontal plane (maxillary midline shift vs. occlusal plane cant), the dental asymmetries were considered less esthetic than the gingival asymmetries. However, in the vertical plane (asymmetric incisal edge vs. asymmetric gingival migration) the opposite was recorded. Copyright © 2015 CEO. Published by Elsevier Masson SAS. All rights reserved.

  1. Probing around implants and teeth with healthy or inflamed peri-implant mucosa/gingival. A histologic comparison in cynomolgus monkeys. (Macaca fascicularis)

    DEFF Research Database (Denmark)

    Schou, Søren; Holmstrup, Palle; Stoltze, K.

    2002-01-01

    Osseointegrated oral implants; teeth; phathology; peri-implant mucositis; gingivitis; peri-implantitis; periodontitis; diagnosis; probing depth; non-human primates; cynomolgus monkeys: Macaca fascicularis......Osseointegrated oral implants; teeth; phathology; peri-implant mucositis; gingivitis; peri-implantitis; periodontitis; diagnosis; probing depth; non-human primates; cynomolgus monkeys: Macaca fascicularis...

  2. Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1.

    Science.gov (United States)

    Kumazaki, Tsutomu; Kurata, Sayaka; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2011-06-01

    Normal human cells have a replicative life span and therefore senesce. Usually, normal human cell strains are differentiated cells and reach a terminally differentiated state after a number of cell divisions. At present, definitive differences are not known between replicative senescence and terminal differentiation. TIG-1 is a human fibroblast strain established from fetal lung and has been used extensively in studies of cellular senescence, and numerous data were accumulated at the molecular level. Recently, a method for generating induced pluripotent stem cells (iPSCs) was developed. Using the method, we introduced four reprogramming genes to TIG-1 fibroblasts and succeeded in isolating colonies that had embryonic stem cell (ESC)-like morphologies. They showed alkaline phosphatase activity and expressed ESC markers, as shown by immunostaining of OCT4, SOX2, SSEA4, and TRA-1-81 as well as reverse-transcription polymerase chain reaction (RT-PCR) for OCT4 and NANOG transcripts. Thus, we succeeded in establishing iPSC clones from TIG-1. The iPSC clones could differentiate to cells originated from all three germ-cell layers, as shown by RT-PCR, for messenger RNA (mRNA) expression of α-fetoprotein (endoderm), MSX1 (mesoderm) and microtubule-associated protein 2 (ectoderm), and by immunostaining for α-fetoprotein (endoderm), α-smooth muscle actin (mesoderm), and β-III-tubulin (ectoderm). The iPSCs formed teratoma containing the structures developed from all three germ-cell layers in severe combined immune-deficiency mice. Thus, by comparing the aging process of parental TIG-1 cells and the differentiation process of iPSC-derived fibrocytes to fibroblasts, we can reveal the exact differences in processes between senescence and terminal differentiation.

  3. Differential Gene Expression in Primary Human Skin Keratinocytes and Fibroblasts in Response to Ionizing Radiation

    Science.gov (United States)

    Warters, Raymond L.; Packard, Ann T.; Kramer, Gwen F.; Gaffney, David K.; Moos, Philip J.

    2009-01-01

    Although skin is usually exposed during human exposures to ionizing radiation, there have been no thorough examinations of the transcriptional response of skin fibroblasts and keratinocytes to radiation. The transcriptional response of quiescent primary fibroblasts and keratinocytes exposed to from 10 cGy to 5 Gy and collected 4 h after treatment was examined. RNA was isolated and examined by microarray analysis for changes in the levels of gene expression. Exposure to ionizing radiation altered the expression of 279 genes across both cell types. Changes in RNA expression could be arranged into three main categories: (1) changes in keratinocytes but not in fibroblasts, (2) changes in fibroblasts but not in keratinocytes, and (3) changes in both. All of these changes were primarily of p53 target genes. Similar radiation-induced changes were induced in immortalized fibroblasts or keratinocytes. In separate experiments, protein was collected and analyzed by Western blotting for expression of proteins observed in microarray experiments to be overexpressed at the mRNA level. Both Q-PCR and Western blot analysis experiments validated these transcription changes. Our results are consistent with changes in the expression of p53 target genes as indicating the magnitude of cell responses to ionizing radiation. PMID:19580510

  4. Effects of conditioned medium from LL-37 treated adipose stem cells on human fibroblast migration.

    Science.gov (United States)

    Yang, Eun-Jung; Bang, Sa-Ik

    2017-07-01

    Adipose stem cell-conditioned medium may promote human dermal fibroblast (HDF) proliferation and migration by activating paracrine peptides during the re-epithelization phase of wound healing. Human antimicrobial peptide LL-37 is upregulated in the skin epithelium as part of the normal response to injury. The effects of conditioned medium (CM) from LL-37 treated adipose stem cells (ASCs) on cutaneous wound healing, including the mediation of fibroblast migration, remain to be elucidated, therefore the aim of the present study was to determine how ASCs would react to an LL-37-rich microenvironment and if CM from LL-37 treated ASCs may influence the migration of HDFs. The present study conducted migration assays with HDFs treated with CM from LL-37 treated ASCs. Expression of CXC chemokine receptor 4 (CXCR4), which controls the recruitment of HDFs, was analyzed at the mRNA and protein levels. To further characterize the stimulatory effects of LL-37 on ASCs, the expression of stromal cell-derived factor-1α (SDF-1α), a CXC chemokine, was investigated. CM from LL-37-treated ASCs induced migration of HDFs in a time- and dose-dependent manner, with a maximum difference in migration observed 24 h following stimulation with LL-37 at a concentration of 10 µg/ml. The HDF migration and the expression of CXCR4 in fibroblasts was markedly increased upon treatment with CM from LL-37-treated ASCs compared with CM from untreated ASCs. SDF-1α expression was markedly increased in CM from LL-37 treated ASCs. It was additionally observed that SDF-1α blockade significantly reduced HDF migration. These findings suggest the feasibility of CM from LL-37-treated ASCs as a potential therapeutic for human dermal fibroblast migration.

  5. Salivary biomarkers associated with gingivitis and response to therapy.

    Science.gov (United States)

    Syndergaard, Ben; Al-Sabbagh, Mohanad; Kryscio, Richard J; Xi, Jing; Ding, Xiuhua; Ebersole, Jeffrey L; Miller, Craig S

    2014-08-01

    Salivary biomarkers are potentially important for determining the presence, risk, and progression of periodontal disease. However, clinical translation of biomarker technology from lab to chairside requires studies that identify biomarkers associated with the transitional phase between health and periodontal disease (i.e., gingivitis). Eighty participants (40 with gingivitis, 40 healthy) provided saliva at baseline and 7 to 30 days later. An additional sample was collected from gingivitis participants 10 to 30 days after dental prophylaxis. Clinical parameters of gingival disease were recorded at baseline and the final visit. Salivary concentrations of interleukin (IL)-1β, IL-6, matrix metalloproteinase (MMP)-8, macrophage inflammatory protein (MIP)-1α, and prostaglandin E2 (PGE2) were measured. Clinical features of health and gingivitis were stable at both baseline visits. Participants with gingivitis demonstrated significantly higher bleeding on probing (BOP), plaque index (PI), and gingival index (GI) (P ≤0.002) and a significant drop in BOP, PI, and GI post-treatment (P ≤0.001). Concentrations of MIP-1α and PGE2 were significantly higher (2.8 times) in the gingivitis group than the healthy group (P ≤0.02). After dental prophylaxis, mean biomarker concentrations did not decrease significantly from baseline in the gingivitis group, although concentrations of IL-1β, IL-6, and MMP-8 approached healthy levels, whereas MIP-1α and PGE2 concentrations remained significantly higher than in the healthy group (P ≤0.04). Odds ratio analyses showed that PGE2 concentrations, alone and in combination with MIP-1α, readily discriminated gingivitis from health. Salivary PGE2 and MIP-1α discriminate gingivitis from health, and patients with gingivitis who return to clinical health continue to produce inflammatory mediators for weeks after dental prophylaxis.

  6. The protective effect of ursodeoxycholic acid in an in vitro model of the human fetal heart occurs via targeting cardiac fibroblasts.

    Science.gov (United States)

    Schultz, Francisca; Hasan, Alveera; Alvarez-Laviada, Anita; Miragoli, Michele; Bhogal, Navneet; Wells, Sarah; Poulet, Claire; Chambers, Jenny; Williamson, Catherine; Gorelik, Julia

    2016-01-01

    Bile acids are elevated in the blood of women with intrahepatic cholestasis of pregnancy (ICP) and this may lead to fetal arrhythmia, fetal hypoxia and potentially fetal death in utero. The bile acid taurocholic acid (TC) causes abnormal calcium dynamics and contraction in neonatal rat cardiomyocytes. Ursodeoxycholic acid (UDCA), a drug clinically used to treat ICP, prevents adverse effects of TC. During development, the fetus is in a state of relative hypoxia. Although this is essential for the development of the heart and vasculature, resident fibroblasts can transiently differentiate into myofibroblasts and form gap junctions with cardiomyocytes in vitro, resulting in cardiomyocyte depolarization. We expanded on previously published work using an in vitro hypoxia model to investigate the differentiation of human fetal fibroblasts into myofibroblasts. Recent evidence shows that potassium channels are involved in maintaining the membrane potential of ventricular fibroblasts and that ATP-dependent potassium (KATP) channel subunits are expressed in cultured fibroblasts. KATP channels are a valuable target as they are thought to have a cardioprotective role during ischaemic and hypoxic conditions. We investigated whether UDCA could modulate fibroblast membrane potential. We established the isolation and culture of human fetal cardiomyocytes and fibroblasts to investigate the effect of hypoxia, TC and UDCA on human fetal cardiac cells. UDCA hyperpolarized myofibroblasts and prevented TC-induced depolarisation, possibly through the activation of KATP channels that are expressed in cultured fibroblasts. Also, similar to the rat model, UDCA can counteract TC-induced calcium abnormalities in human fetal cultures of cardiomyocytes and myofibroblasts. Under normoxic conditions, we found a higher number of myofibroblasts in cultures derived from human fetal hearts compared to cells isolated from neonatal rat hearts, indicating a possible increased number of myofibroblasts

  7. Microcirculation alterations in experimentally induced gingivitis in dogs.

    Science.gov (United States)

    Matsuo, Masato; Okudera, Toshimitsu; Takahashi, Shun-Suke; Wada-Takahashi, Satoko; Maeda, Shingo; Iimura, Akira

    2017-01-01

    The present study aimed to morphologically examine the gingival microvascular network using a microvascular resin cast (MRC) technique, and to investigate how inflammatory disease functionally affects gingival microcirculation using laser Doppler flowmetry (LDF). We used four beagle dogs with healthy periodontal tissue as experimental animals. To cause periodontal inflammation, dental floss was placed around the cervical neck portions of the right premolars. The unmanipulated left premolars served as controls, and received plaque control every 7 days. After 90 days, gingivitis was induced in the experimental side, while the control side maintained healthy gingiva. To perform morphological examinations, we used an MRC method involving the injection of low-viscosity synthetic resin into the blood vessels, leading to peripheral soft-tissue dissolution and permitting observation of the bone, teeth, and vascular cast. Gingival blood flow was estimated using an LDF meter. The control gingival vasculature showed hairpin-loop-like networks along the tooth surface. The blood vessels had diameters of 20-40 μm and were regularly arranged around the cervical portion. On the other hand, the vasculature in the experimental group was twisted and gathered into spiral forms, with blood vessels that had uneven surfaces and smaller diameters of 8-10 μm. LDF revealed reduced gingival blood flow in the group with experimentally induced gingivitis compared to controls. The actual measurements of gingival blood flow by LDF were in agreement with the alterations that would be expected based on the gingivitis-induced morphological alterations observed with the MRC technique.

  8. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma

    DEFF Research Database (Denmark)

    Morsing, Mikkel; Klitgaard, Marie Christine; Jafari Kermani, Abbas

    2016-01-01

    Background The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human...... conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271low/MUC1high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation...... fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial...

  9. Evidence for calcifying nanoparticles in gingival crevicular fluid and dental calculus in periodontitis.

    Science.gov (United States)

    Zhang, Song-Mei; Tian, Fei; Jiang, Xin-Quan; Li, Jing; Xu, Chun; Guo, Xiao-Kui; Zhang, Fu-Qiang

    2009-09-01

    Calcifying nanoparticles (CNPs), also known as nanobacteria, can produce carbonate apatite on their cell walls and initiate pathologic calcification. The objective of this study was to determine whether CNPs are present in the gingival crevicular fluid (GCF) from subjects with periodontal disease and whether they can induce the pathologic calcification of primary cultured human gingival epithelial cells. GCF and dental calculus samples were collected from 10 subjects with gingivitis and 10 subjects with chronic periodontitis. CNPs in GCF and calculus filtrates were detected with nanocapture enzyme-linked immunosorbent assay kits. The CNPs in cultures of dental calculus filtrates were also identified using immunofluorescence staining, transmission electron microscopy (TEM), and chemical analysis. Pathologic changes in the CNP-treated gingival epithelial cells were observed with TEM, alizarin red staining, and disk-scanning confocal microscopy. CNPs were found in GCF samples from two subjects with chronic periodontitis. Based on chemical analysis, the surface-associated material from CNPs isolated and cultured from calculus has a composition similar to dental calculus. The pathologic calcification of CNP-treated gingival epithelial cells was also observed. Self-replicating calcifying nanoparticles can be cultured and identified from dental calculus. This raises the issue of whether CNPs contribute to the pathogenesis of periodontitis.

  10. Immortalization of normal human fibroblasts by treatment with 4-nitroquinoline 1-oxide.

    Science.gov (United States)

    Bai, L; Mihara, K; Kondo, Y; Honma, M; Namba, M

    1993-02-01

    Normal human fibroblasts (the OUMS-24 strain), derived from a 6-week-old human embryo, were transformed (into the OUMS-24F line) and immortalized by repeated treatments (59 times) with 4-nitroquinoline 1-oxide (4NQO). Treatment began during primary culture and ended at the 51st population doubling level (PDL). At the 57th PDL (146 days after the last treatment), morphologically altered, epithelial-type cells appeared, began to grow and became immortal (now past the 100th PDL). However, the control fibroblasts, which were not treated with 4NQO, senesced at the 62nd PDL. The finding that extensive, repeated treatments with 4NQO are required for the immortalization of normal human cells, indicates that multiple mutational events are involved in the immortalization of human cells in general. In other words, immortalization itself seems to be a multi-step process. Karyotypic analysis showed that many cells were hypodiploid before immortalization, but that afterwards chromosomes were distributed broadly in the diploid to tetraploid regions. The immortalized cells showed amplification and enhanced expression of c-myc. Two-dimensional electrophoretic analysis showed that the number of disappearing cellular proteins was greater than the number of the newly appearing ones after the cells became immortalized. Since the immortalized cells showed neither anchorage-independent growth nor tumorigenicity, they are useful for studying factors that can contribute to multi-step carcinogenesis in human cells. In addition, genetically matched normal (OUMS-24) and immortalized (OUMS-24F) cells will be useful for analyzing the genes related to cellular mortality and immortalization.

  11. Gingivitis and salivary osmolality in children with cerebral palsy.

    Science.gov (United States)

    Santos, Maria Teresa Botti Rodrigues; Ferreira, Maria Cristina Duarte; Guaré, Renata Oliveira; Diniz, Michele Baffi; Rösing, Cassiano Kuchenbecker; Rodrigues, Jonas Almeida; Duarte, Danilo Antonio

    2016-11-01

    To investigate the influence of salivary osmolality on the occurrence of gingivitis in children with cerebral palsy (CP). A total of 82 children with spastic CP were included in this cross-sectional study. Oral motor performance and gingival conditions were evaluated. Unstimulated saliva was collected using cotton swabs, and salivary osmolality was measured using a freezing point depression osmometer. Spearman's coefficient, receiver operating characteristic (ROC), and multiple logistic regression analyses were performed. Strong correlation (r > 0.7) was determined among salivary osmolality, salivary flow rate, visible plaque, dental calculus, and the occurrence of gingivitis. The area under the ROC to predict the influence of salivary osmolality on the occurrence of gingivitis was 0.88 (95% CI 0.81-0.96; P gingivitis was 22.5%, whereas for the group presenting osmolality >84.5 mOsm/kgH 2 O, the proportion of children with gingivitis was 77.5%. Salivary osmolality above 84.5 increased the likelihood of gingivitis fivefold, whereas each additional 0.1 mL of salivary flow reduced the likelihood of gingivitis by 97%. Gingivitis occurs more frequently in children with CP showing increased values of salivary osmolality. © 2016 BSPD, IAPD and John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Isolated gingival overgrowths: A review of case series

    Directory of Open Access Journals (Sweden)

    Shruti Raizada

    2016-01-01

    Full Text Available Clinicians are often intrigued by the varied manifestations of the gingival tissue. Gingival overgrowth is a common clinical finding and most of them represent a reactive hyperplasia as a direct result of plaque-related inflammatory gingival disease. These types of growth generally respond to good plaque control, removal of the causative irritants, and conservative tissue management. This case series highlights three different cases of localized gingival overgrowth and its management with emphasis on the importance of patient awareness and motivation.

  13. Gingival Cyst of Newborn.

    Science.gov (United States)

    Moda, Aman

    2011-01-01

    Gingival cyst of newborn is an oral mucosal lesion of transient nature. Although it is very common lesion within 3 to 6 weeks of birth, it is very rare to visualize the lesion thereafter. Presented here is a case report of gingival cyst, which was visible just after 15 days of birth. Clinical diagnoses of these conditions are important in order to avoid unnecessary therapeutic procedure and provide suitable information to parents about the nature of the lesion.

  14. Expression of antimicrobial peptides and interleukin-8 during early stages of inflammation: An experimental gingivitis study.

    Science.gov (United States)

    Dommisch, H; Staufenbiel, I; Schulze, K; Stiesch, M; Winkel, A; Fimmers, R; Dommisch, J; Jepsen, S; Miosge, N; Adam, K; Eberhard, J

    2015-12-01

    In the oral cavity, the epithelial surface is constantly exposed to a number of different microorganisms that are organized in a well-structured biofilm. The aim of this study was to monitor gingival expression of antimicrobial peptides (AMPs) and interleukin-8 (IL-8) in an early gingivitis model. Experimental gingivitis was allowed to develop in healthy volunteers (n = 17). Bleeding on probing (BOP%) and gingival crevicular fluid volume (GCF) were assessed at baseline and day 1, 3, 5, 7 and 14. Expression of AMPs (human beta-defensin-2, hBD-2; CC-chemokine ligand 20, CCL20; psoriasin, pso/S100A7) and IL-8 was analyzed by immunohistochemistry in gingival biopsies. In addition, hBD-2 and IL-8 protein expression was monitored in GCF using the ELISA technology. Experimental gingivitis gradually developed with an increase in BOP scores and GCF volume over time. In GCF, elevated concentrations of hBD-2 and IL-8 were monitored at day 1, 5 and 7 (p ≤ 0.0002). Immunohistochemical analysis of gingival sections demonstrated increased staining for hBD-2 at day 3, whereas the CCL20, pso/S100A7, and IL-8 expression was increased at later time points (p gingival inflammation. Differential temporal expression for AMPs may ensure a constant antimicrobial activity against changes in the bacterial composition of the growing dental biofilm. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Gingival Enlargement

    Science.gov (United States)

    ... cover the crowns of the teeth causing periodontal (gum) disease (due to difficulty in keeping the teeth clean) ... localized and/or generalized gingival enlargement such as pregnancy, hormonal imbalances, and leukemia. To the right is ...

  16. Effect of human vascular endothelial growth factor gene transfer on endogenous vascular endothelial growth factor mRNA expression in a rat fibroblast and osteoblast culture model.

    Science.gov (United States)

    Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H

    2010-09-01

    Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point

  17. Protein carbonyl: An oxidative stress marker in gingival crevicular fluid in healthy, gingivitis, and chronic periodontitis subjects

    Directory of Open Access Journals (Sweden)

    Avani R Pradeep

    2013-01-01

    Full Text Available Background: A defined role for reactive oxygen species (ROS in the tissue destruction that characterizes periodontitis has been described. Protein carbonyl (PC is the most widely used biomarker for oxidative damage to proteins, and reflects cellular damage induced by multiple forms of ROS. The purpose of this study is to determine the presence of PC in gingival crevicular fluid (GCF in healthy, gingivitis, and chronic periodontitis (CP subjects and to find an association, if any. Materials and Methods: A total number of 75 subjects (38 males and 37 females were selected based on their clinical parameters into three groups: Group 1 (25 healthy subjects, Group 2 (25 gingivitis subjects, and Group 3 (25 CP subjects. GCF samples were collected to estimate the levels of PC. Results: The PC concentration in GCF was highest in subjects with CP as compared to gingivitis and healthy subjects and a significant association was observed between GCF PC levels and all periodontal parameters. Conclusion: There was an increase in PC levels in GCF as the disease process progressed from healthy to gingivitis and CP, suggesting a role for increased oxidative stress in CP.

  18. Evaluation of Co-Q10 anti-gingivitis effect on plaque induced gingivitis: A randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Anirban Chatterjee

    2012-01-01

    Full Text Available Background: Deficiency of Co-Q10 has been found to be responsible for periodontal destruction; therefore, this study was undertaken to evaluate the anti-gingivitis effect of Co-Q10 on plaque induced gingivitis. Materials and Methods: Thirty subjects with plaque induced gingivitis were enrolled in a split mouth randomized controlled trial. For each subject, scaling was randomly performed for any two quadrants, followed by the topical application of Co-Q10 randomly in a previously scaled and as an unscaled quadrant for a period of 28 days. Four treatment options were planned: option A: scaling only; option B: Co-Q10 along with scaling; option C: Co-Q10. Results: Marked reduction in gingival, bleeding, and plaque scores were recorded at the sites where C0-Q10 was applied. Mean±S.D of aforementioned periodontal parameters at 28th day showed significant reduction for option A, B, and C when compared with baseline. Conclusion: Promising results were obtained after the solitary application of Co-Q10 as well as when it was used as an adjunct to scaling and root planing for treatment of plaque induced gingivitis.

  19. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro.

    Science.gov (United States)

    Wyganowska-Swiatkowska, Marzena; Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology.

  20. Sodium valproate induced gingival enlargement with pre-existing chronic periodontitis

    OpenAIRE

    Joshipura, Vaibhavi

    2012-01-01

    Gingival enlargement is a common clinical feature of gingival and periodontal diseases. Currently, more than 20 prescription medications are associated with gingival enlargement. Although the mechanisms of action may be different, the clinical and microscopic appearance of drug-induced gingival enlargement is similar with any drug. Gingival enlargement produces esthetic changes, and clinical symptoms including pain, tenderness, bleeding, speech disturbances, abnormal tooth movement, dental oc...

  1. Growth properties and growth factor responsiveness in skin fibroblasts from centenarians.

    Science.gov (United States)

    Tesco, G; Vergelli, M; Grassilli, E; Salomoni, P; Bellesia, E; Sikora, E; Radziszewska, E; Barbieri, D; Latorraca, S; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Franceschi, C; Sorbi, S

    1998-03-27

    Human fibroblast cultures, which have a finite replicative lifespan in vitro, are the most widely used model for the study of senescence at the cellular level. An inverse relationship between replicative capability and donor age has been reported in human fibroblast strains. We studied the growth capacity of fibroblast primary cultures derived from people whose lifespan was as closer as possible to the expected maximum human lifespan, i.e. people over one hundred. Our data suggest that outgrowth of fibroblasts from biopsies, growth kinetics at different population doubling levels, capability to respond to a classical mitogenic stimulus (such as 20% serum) and a variety of growth factors, were remarkably similar in fibroblasts from centenarians and young controls. On the whole, our data challenge the tenet of a simple and strict relationship between in vivo aging and in vitro proliferative capability of human fibroblasts, at least at the individual level.

  2. The chalcone butein from Rhus verniciflua Stokes inhibits clonogenic growth of human breast cancer cells co-cultured with fibroblasts

    Directory of Open Access Journals (Sweden)

    Tan Jenny

    2005-03-01

    Full Text Available Abstract Background Butein (3,4,2',4'-tetrahydroxychalone, a plant polyphenol, is a major biologically active component of the stems of Rhus verniciflua Stokes. It has long been used as a food additive in Korea and as an herbal medicine throughout Asia. Recently, butein has been shown to suppress the functions of fibroblasts. Because fibroblasts are believed to play an important role in promoting the growth of breast cancer cells, we investigated the ability of butein to inhibit the clonogenic growth of small numbers of breast cancer cells co-cultured with fibroblasts in vitro. Methods We first measured the clonogenic growth of small numbers of the UACC-812 human breast cancer cell line co-cultured on monolayers of serum-activated, human fibroblasts in the presence of butein (2 μg/mL or various other modulators of fibroblast function (troglitazone-1 μg/mL; GW9662-1 μM; meloxican-1 μM; and 3,4 dehydroproline-10 μg/mL. In a subsequent experiment, we measured the dose-response effect on the clonogenic growth of UACC-812 breast cancer cells by pre-incubating the fibroblasts with varying concentrations of butein (10 μg/ml-1.25 μg/mL. Finally, we measured the clonogenic growth of primary breast cancer cells obtained from 5 clinical specimens with normal fibroblasts and with fibroblasts that had been pre-treated with a fixed dose of butein (2.5 μg/mL. Results Of the five modulators of fibroblast function that we tested, butein was by far the most potent inhibitor of clonogenic growth of UACC-812 breast cancer cells co-cultured with fibroblasts. Pre-treatment of fibroblasts with concentrations of butein as low as 2.5 μg/mL nearly abolished subsequent clonogenic growth of UACC-812 breast cancer cells co-cultured with the fibroblasts. A similar dose of butein had no effect on the clonogenic growth of breast cancer cells cultured in the absence of fibroblasts. Significantly, clonogenic growth of the primary breast cancer cells was also

  3. Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts

    DEFF Research Database (Denmark)

    Le Boulch, Marine; Ahmed, Emad K; Rogowska-Wrzesinska, Adelina

    2018-01-01

    Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi-pro...

  4. Cyclosporine a inhibits apoptosis of rat gingival epithelium.

    Science.gov (United States)

    Ma, Su; Liu, Peihong; Li, Yanwu; Hou, Lin; Chen, Li; Qin, Chunlin

    2014-08-01

    The use of cyclosporine A (CsA) induces hyperplasia of the gingival epithelium in a site-specific response manner, but the molecular mechanism via which the lesion occurs is unclear. The present research aims to investigate the site-specific effect of CsA on the apoptosis of gingival epithelium associated with gingival hyperplasia. Forty Wistar rats were divided into CsA-treated and non-treated groups. Paraffin-embedded sections of mandibular first molars were selected for hematoxylin and eosin staining, immunohistochemistry analyses of bcl-2 and caspase-3, and the staining of terminal deoxynucleotidyl transfer-mediated dUTP nick-end labeling (TUNEL). The area of the whole gingival epithelium and the length of rete pegs were measured, and the number of bcl-2- and caspase-3-positive cells in the longest rete peg were counted. The analysis of variance for factorial designs and Fisher least significant difference test for post hoc analysis were used to determine the significance levels. In CsA-treated rats, bcl-2 expression was significantly upregulated, whereas caspase-3 expression was downregulated, along with a reduced number of TUNEL-positive cells. The site-specific distribution of bcl-2 was consistent with the site-specific hyperplasia of the gingival epithelium in CsA-treated rats. CsA inhibited gingival epithelial apoptosis via the mitochondrial pathway and common pathway. The antiapoptotic protein bcl-2 might play a critical role in the pathogenesis of the site-specific hyperplasia of gingival epithelium induced by CsA. There were mechanistic differences in the regulation of apoptosis for cells in the attached gingival epithelium, free gingival epithelium, and junctional epithelium.

  5. DNA damage in cultured human skin fibroblasts exposed to excimer laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rimoldi, D.; Miller, A.C.; Freeman, S.E.; Samid, D. (Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD (USA))

    1991-06-01

    Ultraviolet excimer lasers are being considered for use in a variety of refractive and therapeutic procedures, the long-term biologic consequences of which are unknown. The effect of sublethal doses of 193-nm laser radiation on cellular DNA was examined in cultured human skin fibroblasts. In contrast to 248 nm, treatments with the 193-nm laser radiation below 70 J/m2 did not cause significant pyrimidine dimer formation in the skin cells. This was indicated by the lack of excision repair activities (unscheduled DNA synthesis assay), and further demonstrated by direct analysis of pyrimidine dimers in DNA from irradiated cells. However, a low level of unscheduled DNA synthesis could be detected following irradiation at 193 nm with 70 J/m2. Both the 193-nm and 248-nm radiation were able to induce chromosomal aberrations, as indicated by a micronucleus assay. A dose-dependent increase in micronuclei frequency was observed 48 and 72 h after laser irradiation. These results indicate that exposure of actively replicating human skin fibroblasts to sublethal doses of either 193- or 248-nm laser radiation can result in genotoxicity.

  6. Doubling potential of fibroblasts from different species after ionising radiation

    International Nuclear Information System (INIS)

    Macieira-Coelho, A.; Diatloff, C.; Malaise, E.

    1976-01-01

    It is stated that whereas chicken fibroblasts invariably die after a certain number of doublings in vitro, and this fact is never altered by chemical or physical agents, mouse fibroblasts invariably acquire spontaneously an infinite growth potential. In the human species fibroblasts never acquire spontaneously the capacity to divide for ever, although they can become permanent cell lines after treatment with certain viruses. This behaviour of fibroblasts in vitro has been attributed to different nutritional requirements. Experiments are described with human and mouse fibroblasts in which it was found that the response to ionising radiation matches the relative tendencies of the fibroblasts to yield permanent cell lines. Irradiation was commenced during the phase of active proliferation. Human fibroblast cultures irradiated with 100 R stopped dividing earlier than the controls, whereas cultures irradiated with 200, 300 and 500 R had the same lifespan as the control cultures. Cultures irradiated with 400 R showed the longest survival. With mouse fibroblasts the growth curves of the irradiated cells were of the same type as in the controls, but recovery occurred earlier. The results indicated that ionising radiation accelerates a natural phenomenon; in cells with a limited growth potential (chicken) it shortens the lifespan, whereas in cells that can acquire an unlimited growth potential (mouse) it accelerates acquisition of this potential; human fibroblasts showed an intermediate response, since ionising radiation neither established the cultures as with mouse cells nor reduced the number of cells produced as with chicken fibroblasts. Possible explanations for the different behaviour of the species are offered. (U.K.)

  7. Prevalence of herpesviruses in gingivitis and chronic periodontitis: relationship to clinical parameters and effect of treatment

    Directory of Open Access Journals (Sweden)

    Rucha Shah

    2016-01-01

    Full Text Available Background: Assess the prevalence of herpesviruses in healthy subjects, gingivitis, and chronic periodontitis patients, to assess the relationship between the prevalence of herpesviruses and periodontal clinical parameters, and to evaluate the effect of phase-I therapy on the level of viral detection. Materials and Methods: Hundred patients consisting of 20 healthy subjects, 40 gingivitis, and 40 chronic periodontitis were included in the study. Clinical parameters recorded included plaque index, gingival index, sulcus bleeding index, probing depth, and clinical attachment level. The gingivitis and chronic periodontitis patients received phase-I periodontal therapy including oral hygiene instructions, full mouth scaling for gingivitis patients and scaling and root planing for chronic periodontitis patients. Gingival crevicular fluid (GCF was collected, and the presence of herpes simplex virus-1 (HSV-1, HSV-2, cytomegalovirus, and Epstein–Barr virus (EBV was analyzed using polymerase chain reaction (PCR. Recording of periodontal parameters as well as GCF collection was performed at baseline and 6 weeks postphase-I therapy. Results: At baseline, the levels of HSV-1 and EBV detection were lower in healthy controls as compared to gingivitis (P < 0.05 and chronic periodontitis cases (P < 0.001. Phase-I therapy led to reduction in the amount of HSV-1 and EBV in gingivitis patients (P < 0.05 and for HSV-1, human cytomegalovirus and EBV in chronic periodontitis patients (P < 0.05 in comparison to baseline. The prevalence of EBV in chronic periodontitis patients was positively associated with increased gingival index, probing depth and loss of clinical attachment (P < 0.05. Conclusions: Higher prevalence of HSV-1 and EBV viruses in GCF of gingivitis and chronic periodontitis suggests a strong association between these viruses and periodontal diseases and periodontal therapy can lead to a reduction in herpesviruses at infected sites.

  8. Transcriptomic profiles of human foreskin fibroblast cells in response to orf virus.

    Science.gov (United States)

    Chen, Daxiang; Long, Mingjian; Xiao, Bin; Xiong, Yufeng; Chen, Huiqin; Chen, Yu; Kuang, Zhenzhan; Li, Ming; Wu, Yingsong; Rock, Daniel L; Gong, Daoyuan; Wang, Yong; He, Haijian; Liu, Fang; Luo, Shuhong; Hao, Wenbo

    2017-08-29

    Orf virus has been utilized as a safe and efficient viral vector against not only diverse infectious diseases, but also against tumors. However, the nature of the genes triggered by the vector in human cells is poorly characterized. Using RNA sequencing technology, we compared specific changes in the transcriptomic profiles in human foreskin fibroblast cells following infection by the orf virus. The results indicated that orf virus upregulates or downregulates expression of a variety of genes, including genes involved in antiviral immune response, apoptosis, cell cycle and a series of signaling pathways, such as the IFN and p53-signaling pathways. The orf virus stimulates or inhibits immune gene expression such as chemokines, chemokine receptors, cytokines, cytokine receptors, and molecules involved in antigen uptake and processing after infection. Expression of pro-apoptotic genes increased at 8 hours post-infection. The p53 signaling pathway was activated to induce apoptosis at the same time. However, the cell cycle program was promoted after infection, which may be due to the immunomodulatory genes of the orf virus. This presents the first description of transcription profile changes in human foreskin fibroblast cells after orf virus infection and provides an in-depth analysis of the interaction between the host and orf virus. These data offer new insights into the understanding of the mechanisms of infection by orf virus and identify potential targets for future studies.

  9. Cytotoxic Effects of Nickel Nanowires in Human Fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2014-04-01

    There is an increasing interest for the use of nanostructures as potential tools in areas that include biology and medicine, for applications spanning from cell separation to treatments of diseases. Magnetic nanoparticles (MNPs) have been the most widely studied and utilized nanostructures in biomedical applications. Despite their popularity, the regular shape of MNPs limits their potential for certain applications. Studies have shown that magnetic nanowires (MNWs), due to their high-­‐aspect ratio and specific magnetic properties, might provide improved performance for some biomedical applications. As a consequence, MNWs have received increasing attention from researchers in the last years. However, as with any other nanostructure intended for biomedical applications, rigorous studies must be carried out to determine their potential toxicity and adverse effects before they can be successfully incorporated in clinical applications. This work attempts to elucidate the cytotoxic effects of nickel NWs (Ni NWs) in human fibroblasts by measuring cell viability under different parameters. Ni NWs of three different lengths (0.86 ± 0.02 μm, 1.1 ± 0.1 μm and 6.1 ± 0.6 μm) were fabricated by electrodeposition using porous aluminum oxide (PAO) membranes as templates. Energy dispersive X-­‐Ray analysis (EDAX) and X-­‐Ray diffraction (XRD) were used for the chemical characterization of the Ni NWs. Their physical characterization was done using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging. MTT assays were performed to assess cell viability of human fibroblasts in the presence of Ni NWs. NW length, NW/cell ratio and exposure time were changed throughout the experiments to elucidate their effects on cell viability. The results showed that NWs length has a strong effect on internalization and cytotoxicity. Smaller NWs showed higher toxicity levels at earlier times while longer NWs had stronger effects on cell viability at

  10. Cytotoxic Effects of Nickel Nanowires in Human Fibroblasts

    KAUST Repository

    Felix Servin, Laura P.

    2014-01-01

    There is an increasing interest for the use of nanostructures as potential tools in areas that include biology and medicine, for applications spanning from cell separation to treatments of diseases. Magnetic nanoparticles (MNPs) have been the most widely studied and utilized nanostructures in biomedical applications. Despite their popularity, the regular shape of MNPs limits their potential for certain applications. Studies have shown that magnetic nanowires (MNWs), due to their high-­‐aspect ratio and specific magnetic properties, might provide improved performance for some biomedical applications. As a consequence, MNWs have received increasing attention from researchers in the last years. However, as with any other nanostructure intended for biomedical applications, rigorous studies must be carried out to determine their potential toxicity and adverse effects before they can be successfully incorporated in clinical applications. This work attempts to elucidate the cytotoxic effects of nickel NWs (Ni NWs) in human fibroblasts by measuring cell viability under different parameters. Ni NWs of three different lengths (0.86 ± 0.02 μm, 1.1 ± 0.1 μm and 6.1 ± 0.6 μm) were fabricated by electrodeposition using porous aluminum oxide (PAO) membranes as templates. Energy dispersive X-­‐Ray analysis (EDAX) and X-­‐Ray diffraction (XRD) were used for the chemical characterization of the Ni NWs. Their physical characterization was done using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging. MTT assays were performed to assess cell viability of human fibroblasts in the presence of Ni NWs. NW length, NW/cell ratio and exposure time were changed throughout the experiments to elucidate their effects on cell viability. The results showed that NWs length has a strong effect on internalization and cytotoxicity. Smaller NWs showed higher toxicity levels at earlier times while longer NWs had stronger effects on cell viability at

  11. Chondrogenic potential of physically treated bovine cartilage matrix derived porous scaffolds on human dermal fibroblast cells.

    Science.gov (United States)

    Moradi, Ali; Ataollahi, Forough; Sayar, Katayoun; Pramanik, Sumit; Chong, Pan-Pan; Khalil, Alizan Abdul; Kamarul, Tunku; Pingguan-Murphy, Belinda

    2016-01-01

    Extracellular matrices have drawn attention in tissue engineering as potential biomaterials for scaffold fabrication because of their bioactive components. Noninvasive techniques of scaffold fabrication and cross-linking treatments are believed to maintain the integrity of bioactive molecules while providing proper architectural and mechanical properties. Cartilage matrix derived scaffolds are designed to support the maintenance of chondrocytes and provide proper signals for differentiation of chondroinducible cells. Chondroinductive potential of bovine articular cartilage matrix derived porous scaffolds on human dermal fibroblasts and the effect of scaffold shrinkage on chondrogenesis were investigated. An increase in sulfated glycosaminoglycans production along with upregulation of chondrogenic genes confirmed that physically treated cartilage matrix derived scaffolds have chondrogenic potential on human dermal fibroblasts. © 2015 Wiley Periodicals, Inc.

  12. Response of human fibroblasts to low dose rate gamma irradiation

    International Nuclear Information System (INIS)

    Dritschilo, A.; Brennan, T.; Weichselbaum, R.R.; Mossman, K.L.

    1984-01-01

    Cells from 11 human strains, including fibroblasts from patients with the genetic diseases of ataxia telangiectasia (AT), xeroderma pigmentosum (XP), and Fanconi's anemia (FA), were exposed to γ radiation at high (1.6-2.2 Gy/min) and at low (0.03-0.07 Gy/min) dose rates. Survival curves reveal an increase inthe terminal slope (D 0 ) when cells are irradiated at low dose rates compared to high dose rates. This was true for all cell lines tested, although the AT, FA, and XP cells are reported or postulated to have radiation repair deficiencies. From the response of these cells, it is apparent that radiation sensitivities differ; however, at low dose rate, all tested human cells are able to repair injury

  13. Aluminum is More Cytotoxic than Lunar Dust in Human Skin and Lung Fibroblasts

    Science.gov (United States)

    Hammond, D.; Shehata, T.; Hammond, D.; Shehata, T.; Wise, J.P.; Martino, J; Wise, J.P.; Wise, J.P.

    2009-01-01

    NASA plans to build a permanent space station on the moon to explore its surface. The surface of the moon is covered in lunar dust, which consists of fine particles that contain silicon, aluminum and titanium, among others. Because this will be a manned base, the potential toxicity of this dust has to be studied. Also, toxicity standards for potential exposure have to be set. To properly address the potential toxicity of lunar dust we need to understand the toxicity of its individual components, as well as their combined effects. In order to study this we compared NASA simulant JSC-1AVF (volcanic ash particles), that simulates the dust found on the moon, to aluminum, the 3rd most abundant component in lunar dust. We tested the cytotoxicity of both compounds on human lung and skin fibroblasts (WTHBF-6 and BJhTERT cell lines, respectively). Aluminum oxide was more cytotoxic than lunar dust to both cell lines. In human lung fibroblasts 5, 10 and 50 g/sq cm of aluminum oxide induced 85%, 61% and 30% relative survival, respectively. For human skin fibroblasts the same concentrations induced 58%, 41% and 58% relative survival. Lunar dust was also cytotoxic to both cell lines, but its effects were seen at higher concentrations: 50, 100, 200 and 400 g/sq cm of lunar dust induced a 69%, 46%, 35% and 30% relative survival in the skin cells and 53%, 16%, 8% and 2% on the lung cells. Overall, for both compounds, lung cells were more sensitive than skin cells. This work was supported by a NASA EPSCoR grant through the Maine Space Grant Consortium (JPW), the Maine Center for Toxicology and Environmental Health., a Fulbright Grant (JM) and a Delta Kappa Gamma Society International World Fellowship (JM).

  14. Cellular composition of long-standing gingivitis and periodontitis lesions.

    Science.gov (United States)

    Thorbert-Mros, S; Larsson, L; Berglundh, T

    2015-08-01

    Insufficient information on the cellular composition of long-standing gingivitis lesions without signs of attachment loss makes an understanding of differences in cellular composition between "destructive" and "nondestructive" periodontal lesions difficult. The aim of the current study was to analyze differences in cell characteristics between lesions representing long-standing gingivitis and severe periodontitis. Two groups of patients were recruited. One group consisted of 36 patients, 33-67 years of age, with severe generalized periodontitis (periodontitis group). The second group consisted of 28 patients, 41-70 years of age, with overt signs of gingival inflammation but no attachment loss (gingivitis group). From each patient a gingival biopsy was obtained from one selected diseased site and prepared for immunohistochemical analysis. Periodontitis lesions were twice as large and contained significantly larger proportions, numbers and densities of cells positive for CD138 (plasma cells) and CD68 (macrophages) than did gingivitis lesions. The proportion of B cells that expressed the additional CD5 marker (B-1a cells) was significantly larger in periodontitis lesions than in gingivitis lesions. The densities of T cells and B cells did not differ between periodontitis lesions and gingivitis lesions. T cells were not the dominating cell type in gingivitis lesions, as B cells together with their subset plasma cells comprised a larger number and proportion than T cells. Periodontitis lesions at teeth with advanced attachment and bone loss exhibit quantitative and qualitative differences in relation to gingivitis lesions at teeth with no attachment and bone loss. It is suggested that the large number and high density of plasma cells are the hallmarks of advanced periodontitis lesions and the most conspicuous difference in relation to long-standing gingivitis lesions. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts.

    Science.gov (United States)

    Khamaisi, Mogher; Katagiri, Sayaka; Keenan, Hillary; Park, Kyoungmin; Maeda, Yasutaka; Li, Qian; Qi, Weier; Thomou, Thomas; Eschuk, Danielle; Tellechea, Ana; Veves, Aris; Huang, Chenyu; Orgill, Dennis Paul; Wagers, Amy; King, George L

    2016-03-01

    Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.

  16. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie Saini

    2016-10-01

    Full Text Available Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration: ClinicalTrials.gov NCT01087307.

  17. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis.

    Science.gov (United States)

    Wang, Wei; Liu, Haijun; Dai, Xiaoniu; Fang, Shencun; Wang, Xingang; Zhang, Yingming; Yao, Honghong; Zhang, Xilong; Chao, Jie

    2015-11-18

    Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.

  18. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts

    Science.gov (United States)

    Baroni, S; Romero-Cordoba, S; Plantamura, I; Dugo, M; D'Ippolito, E; Cataldo, A; Cosentino, G; Angeloni, V; Rossini, A; Daidone, M G; Iorio, M V

    2016-01-01

    It is established that the interaction between microenvironment and cancer cells has a critical role in tumor development, given the dependence of neoplastic cells on stromal support. However, how this communication promotes the activation of normal (NFs) into cancer-associated fibroblasts (CAFs) is still not well understood. Most microRNA (miRNA) studies focused on tumor cell, but there is increasing evidence of their involvement in reprogramming NFs into CAFs. Here we show that miR-9, upregulated in various breast cancer cell lines and identified as pro-metastatic miRNA, affects the properties of human breast fibroblasts, enhancing the switch to CAF phenotype, thus contributing to tumor growth. Expressed at higher levels in primary triple-negative breast CAFs versus NFs isolated from patients, miR-9 improves indeed migration and invasion capabilities when transfected in immortalized NFs; viceversa, these properties are strongly impaired in CAFs upon miR-9 inhibition. We also demonstrate that tumor-secreted miR-9 can be transferred via exosomes to recipient NFs and this uptake results in enhanced cell motility. Moreover, we observed that this miRNA is also secreted by fibroblasts and in turn able to alter tumor cell behavior, by modulating its direct target E-cadherin, and NFs themselves. Consistently with the biological effects observed, gene expression profiles of NFs upon transient transfection with miR-9 show the modulation of genes mainly involved in cell motility and extracellular matrix remodeling pathways. Finally, we were able to confirm the capability of NFs transiently transfected with miR-9 to promote in vivo tumor growth. Taken together, these data provide new insights into the role of miR-9 as an important player in the cross-talk between cancer cells and stroma. PMID:27468688

  19. Fibroblast growth factor receptors in breast cancer.

    Science.gov (United States)

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  20. Generation of Footprint-Free Induced Pluripotent Stem Cells from Human Fibroblasts Using Episomal Plasmid Vectors.

    Science.gov (United States)

    Ovchinnikov, Dmitry A; Sun, Jane; Wolvetang, Ernst J

    2015-01-01

    Human induced pluripotent stem cells (hiPSCs) have provided novel insights into the etiology of disease and are set to transform regenerative medicine and drug screening over the next decade. The generation of human iPSCs free of a genetic footprint of the reprogramming process is crucial for the realization of these potential uses. Here we describe in detail the generation of human iPSC from control and disease-carrying individuals' fibroblasts using episomal plasmids.

  1. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts

    Directory of Open Access Journals (Sweden)

    Sivapragasam Gothai

    2016-03-01

    Full Text Available Background/Aim: Wounds are the outcome of injuries to the skin that interrupt the soft tissue. Healing of a wound is a complex and long-drawn-out process of tissue repair and remodeling in response to injury. A large number of plants are used by folklore traditions for treatment of cuts, wounds and burns. Moringa oleifera is an herb used as traditional folk medicine for the treatment of various skin wounds and associated diseases. The underlying mechanisms of wound healing activity of ethyl acetate fraction of M. oleifera leaves extract are completely unknown. Methods: In the current study, ethyl acetate fraction of Moringa oleifera leaves was investigated for its efficacy on cell viability, proliferation and migration (wound closure rate in human normal dermal fibroblast cells. Results: Results revealed that lower concentration (12.5 µg/ml, 25 µg/ml, and 50 µg/ml of ethyl acetate fraction of M. oleifera leaves showed remarkable proliferative and migratory effect on normal human dermal fibroblasts. Conclusion: The present study suggested that ethyl acetate fraction of M. oleifera leaves might be a potential therapeutic agent for skin wound healing by promoting fibroblast proliferation and migration through increasing the wound closure rate corroborating its traditional use. [J Complement Med Res 2016; 5(1.000: 1-6

  2. Effect of low-power red light laser irradiation on the viability of human skin fibroblast

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, K.; Rozga, B.; Leyko, W.; Bryszewska, M. [Institute of Biophysics, University of Lodz (Poland); Kolodziejczyk, K.; Szosland, D. [Diabetological Clinic, Medical Academy of Lodz (Poland)

    1998-10-01

    Human skin fibroblast monolayers (S-126 cell line) were exposed to laser radiation (wavelength 670 nm, power density 40 mW/cm{sup 2}). The energy densities were 2 J/cm{sup 2} and 12 J/cm{sup 2}, respectively, and the irradiation was carried out at a temperature of 22 C. For fibroblast viability evaluation, the colorimetric assay (conversion of thiazolyl blue to formazan) was used. The experiments were carried out at 37 C, in the presence of 5% CO{sub 2}, and at different time periods of incubation after irradiation (2, 4, 8 h and 1, 2, 3, 4, 5 days). The results indicated that there was a certain stimulating effect on the long-term proliferation of skin fibroblasts and that the stimulation proceeded in two stages, the first one 2 h and the second one 3 days post-irradiation. (orig.) With 4 figs., 2 tabs., 13 refs.

  3. Microbiological profile and calprotectin expression in naturally occurring and experimentally induced gingivitis.

    Science.gov (United States)

    Farina, Roberto; Guarnelli, Maria Elena; Figuero, Elena; Herrera, David; Sanz, Mariano; Trombelli, Leonardo

    2012-10-01

    This study was performed to evaluate the microbiological profile and the calprotectin expression in gingival crevicular fluid (GCF) in spontaneous and experimentally induced gingival inflammation. Thirty-seven periodontally healthy subjects were evaluated in real life conditions (N-O gingivitis) as well as after 21 days of experimental gingivitis trial (E-I gingivitis). During the experimental gingivitis trial, in one maxillary quadrant (test quadrant), gingival inflammation was induced by oral hygiene abstention, while in the contralateral (control) quadrant, oral hygiene was routinely continued. The results of the study showed that (1) the microbiological profile of quadrants where gingival inflammation was experimentally induced (i.e., E-I test quadrants) differed significantly from that of either quadrants where gingival inflammation was controlled by proper plaque control (i.e., E-I control quadrants) or quadrants with N-O gingivitis, and (2) GCF calprotectin was significantly higher at E-I test quadrants compared to either E-I control quadrants or quadrants with N-O gingivitis. A positive intrasubject correlation was found between GCF concentration of calprotectin at sites presenting N-O and E-I gingivitis. N-O and E-I gingivitis showed a different microbiological profile of the subgingival environment. GCF calprotectin is a reliable marker of gingival inflammation, and its concentration in N-O gingivitis is correlated with its expression in E-I gingivitis. The modality of plaque accumulation seems to affect the subgingival microbiological profile associated with a gingivitis condition. Calprotectin levels in GCF may be regarded as a promising marker of the individual susceptibility to develop gingival inflammation in response to experimentally induced plaque accumulation.

  4. Gingivitis, Psychological Factors and Quality of Life in Children.

    Science.gov (United States)

    da Silva, Priscila de Lima; Barbosa, Taís de Souza; Amato, Juliana Neide; Montes, Ana Bheatriz Marangoni; Gavião, Maria Beatriz Duarte

    2015-01-01

    To evaluate the associations between gingivitis, emotional status and quality of life in children. Sixty-four Brazilian students (11 to 12 years old) were examined for clinical and self-reported gingivitis. The participants were divided into two groups: those with gingivitis (n = 21) and controls (n = 43). Quality of life, anxiety and depression were measured using self-administered questionnaires. Saliva was collected 30 min after waking and at bedtime to measure the diurnal decline in salivary cortisol. The results were analysed using bivariate and multivariate analyses. There were significantly more female participants in the control group. Approximately 90% of the children with gingivitis had good oral hygiene and 10.5% had satisfactory oral hygiene. There was a significant positive correlation between anxiety and depression in both clinical groups. Anxiety was negatively correlated with quality of life in the control group. Depression was negatively correlated with quality of life and cortisol concentrations in the group with gingivitis, and with quality of life in the control group. Children with gingivitis were more likely to be older and males. Older children are more likely to experience gingival bleeding. The presence of gingivitis in children may be associated with worse psychological well-being, possibly compromising the quality of life.

  5. Efficient direct conversion of human fibroblasts into myogenic lineage induced by co-transduction with MYCL and MYOD1.

    Science.gov (United States)

    Wakao, Junko; Kishida, Tsunao; Fumino, Shigehisa; Kimura, Koseki; Yamamoto, Kenta; Kotani, Shin-Ichiro; Mizushima, Katsura; Naito, Yuji; Yoshikawa, Toshikazu; Tajiri, Tatsuro; Mazda, Osam

    2017-06-24

    The skeletal muscle consists of contractile myofibers and plays essential roles for maintenance of body posture, movement, and metabolic regulation. During the development and regeneration of the skeletal muscle tissue, the myoblasts fuse into multinucleated myotubes that subsequently form myofibers. Transplantation of myoblasts may make possible a novel regenerative therapy against defects or dysfunction of the skeletal muscle. It is reported that rodent fibroblasts are converted into myoblast-like cells and fuse to form syncytium after forced expression of exogenous myogenic differentiation 1 (MYOD1) that is a key transcription factor for myoblast differentiation. But human fibroblasts are less efficiently converted into myoblasts and rarely fused by MYOD1 alone. Here we found that transduction of v-myc avian myelocytomatosis viral oncogene lung carcinoma derived homolog (MYCL) gene in combination with MYOD1 gene induced myoblast-like phenotypes in human fibroblasts more strongly than MYOD1 gene alone. The rate of conversion was approximately 90%. The directly converted myoblasts (dMBs) underwent fusion in an ERK5 pathway-dependent manner. The dMBs also formed myofiber-like structure in vivo after an inoculation into mice at the subcutaneous tissue. The present results strongly suggest that the combination of MYCL plus MYOD1 may promote direct conversion of human fibroblasts into functional myoblasts that could potentially be used for regenerative therapy for muscle diseases and congenital muscle defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    International Nuclear Information System (INIS)

    Malpass, Gloria E.; Arimilli, Subhashini; Prasad, G.L.; Howlett, Allyn C.

    2014-01-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes

  7. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Malpass, Gloria E., E-mail: gloria.malpass@gmail.com [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Arimilli, Subhashini, E-mail: sarimill@wakehealth.edu [Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States); Prasad, G.L., E-mail: prasadg@rjrt.com [R and D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102 (United States); Howlett, Allyn C., E-mail: ahowlett@wakehealth.edu [Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157 (United States)

    2014-09-01

    Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1 h or 5 h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1 h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1 h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5 h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1 h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5 h), which was increased by nicotine but suppressed by other components of STE. Within 2 h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research. - Highlights: • Tobacco product preparations (TPPs) alter gene expression in dermal fibroblasts. • Some immediate early genes critical to the inflammatory process are affected. • Different TPPs produce differential responses in certain pro-inflammatory genes.

  8. Clinical effects of probiotics containing Bacillus species on gingivitis: a pilot randomized controlled trial.

    Science.gov (United States)

    Alkaya, B; Laleman, I; Keceli, S; Ozcelik, O; Cenk Haytac, M; Teughels, W

    2017-06-01

    Lactobacillus spp. and bifidobacteria are the most frequently used probiotics in oral health research. However, although probiotic effects have been suggested for other genera, such as bacilli, no trials are available to describe the effect of bacilli probiotics on gingivitis in humans. The aim of the present study was to evaluate the clinical effects of a bacilli-containing toothpaste, a mouthrinse and a toothbrush cleaner versus a placebo in patients with generalized gingivitis. In this double-blind placebo-controlled randomized clinical trial, nonsmoking, systemically healthy patients with generalized gingivitis were included. They used a placebo or an experimental probiotic Bacillus subtilis-, Bacillus megaterium- and Bacillus pumulus-containing toothpaste, mouthrinse and toothbrush cleaner for 8 wk. Primary outcome measures of interest were plaque and gingivitis index, and the secondary outcome measures were pocket probing depth and bleeding on probing. Twenty male and 20 female patients were randomized over the two groups. All participants could be included in the final analysis. Although plaque and gingivitis indices were significantly reduced after 8 wk, no intergroup differences could be found at any time point. Also, for the secondary outcome measure, intragroup but no intergroup differences could be detected. No harm or unintended effects were reported by the patients after using the study products. This study did not show any statistically significant differences between a placebo and a bacilli-containing toothpaste, mouthrinse and toothbrush cleaner on gingivitis parameters. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes.

    Science.gov (United States)

    El Ghalbzouri, Abdoelwaheb; Jonkman, Marcel F; Dijkman, Remco; Ponec, Maria

    2005-01-01

    This study was undertaken to examine the role fibroblasts play in the formation of the basement membrane (BM) in human skin equivalents. For this purpose, keratinocytes were seeded on top of fibroblast-free or fibroblast-populated collagen matrix or de-epidermized dermis and cultured in the absence of serum and exogenous growth factors. The expression of various BM components was analyzed on the protein and mRNA level. Irrespective of the presence or absence of fibroblasts, keratin 14, hemidesmosomal proteins plectin, BP230 and BP180, and integrins alpha1beta1, alpha2beta1, alpha3beta1, and alpha6beta4 were expressed but laminin 1 was absent. Only in the presence of fibroblasts or of various growth factors, laminin 5 and laminin 10/11, nidogen, uncein, type IV and type VII collagen were decorating the dermal/epidermal junction. These findings indicate that the attachment of basal keratinocytes to the dermal matrix is most likely mediated by integrins alpha1beta1 and alpha2beta1, and not by laminins that bind to integrin alpha6beta4 and that the epithelial-mesenchymal cross-talk plays an important role in synthesis and deposition of various BM components.

  10. Data on cytochrome c oxidase assembly in mice and human fibroblasts or tissues induced by SURF1 defect

    Directory of Open Access Journals (Sweden)

    Nikola Kovářová

    2016-06-01

    Full Text Available This paper describes data related to a research article entitled “Tissue- and species-specific differences in cytochrome c oxidase assembly induced by SURF1 defects” [1]. This paper includes data of the quantitative analysis of individual forms of respiratory chain complexes I, III and IV present in SURF1 knockout (SURF1−/− and control (SURF1+/+ mouse fibroblasts and tissues and in fibroblasts of human control and patients with SURF1 gene mutation. Also it includes data demonstrating response of complex IV, cytochrome c oxidase (COX, to reversible inhibition of mitochondrial translation in SURF1−/− mouse and SURF1 patient fibroblast cell lines.

  11. Comparative study of human-induced pluripotent stem cells derived from bone marrow cells, hair keratinocytes, and skin fibroblasts.

    Science.gov (United States)

    Streckfuss-Bömeke, Katrin; Wolf, Frieder; Azizian, Azadeh; Stauske, Michael; Tiburcy, Malte; Wagner, Stefan; Hübscher, Daniela; Dressel, Ralf; Chen, Simin; Jende, Jörg; Wulf, Gerald; Lorenz, Verena; Schön, Michael P; Maier, Lars S; Zimmermann, Wolfram H; Hasenfuss, Gerd; Guan, Kaomei

    2013-09-01

    Induced pluripotent stem cells (iPSCs) provide a unique opportunity for the generation of patient-specific cells for use in disease modelling, drug screening, and regenerative medicine. The aim of this study was to compare human-induced pluripotent stem cells (hiPSCs) derived from different somatic cell sources regarding their generation efficiency and cardiac differentiation potential, and functionalities of cardiomyocytes. We generated hiPSCs from hair keratinocytes, bone marrow mesenchymal stem cells (MSCs), and skin fibroblasts by using two different virus systems. We show that MSCs and fibroblasts are more easily reprogrammed than keratinocytes. This corresponds to higher methylation levels of minimal promoter regions of the OCT4 and NANOG genes in keratinocytes than in MSCs and fibroblasts. The success rate and reprogramming efficiency was significantly higher by using the STEMCCA system than the OSNL system. All analysed hiPSCs are pluripotent and show phenotypical characteristics similar to human embryonic stem cells. We studied the cardiac differentiation efficiency of generated hiPSC lines (n = 24) and found that MSC-derived hiPSCs exhibited a significantly higher efficiency to spontaneously differentiate into beating cardiomyocytes when compared with keratinocyte-, and fibroblast-derived hiPSCs. There was no significant difference in the functionalities of the cardiomyocytes derived from hiPSCs with different origins, showing the presence of pacemaker-, atrial-, ventricular- and Purkinje-like cardiomyocytes, and exhibiting rhythmic Ca2+ transients and Ca2+ sparks in hiPSC-derived cardiomyocytes. Furthermore, spontaneously and synchronously beating and force-developing engineered heart tissues were generated. Human-induced pluripotent stem cells can be reprogrammed from all three somatic cell types, but with different efficiency. All analysed iPSCs can differentiate into cardiomyocytes, and the functionalities of cardiomyocytes derived from different cell

  12. Cytotoxicity evaluation of sodium alendronate on cultured human periodontal ligament fibroblasts.

    Science.gov (United States)

    Correia, Vera de Fátima Padrão; Caldeira, Celso L; Marques, Márcia Martins

    2006-12-01

    External root resorption processes are usually associated with dental trauma, mainly avulsion and intrusion. In such cases endodontic therapy aims to prevent this process by using medications that can inhibit osteoclastic activity, such as bisphosphonates. However, these drugs must be biocompatible to the periapical tissues. The aim of this study was to analyze the cytotoxicity of a bisphosphonate (sodium alendronate) on human periodontal ligament fibroblasts (PDL cells). Cells were plated in a density of 1 x 10(3) cells per dish. The experimental groups were GI (control) no sodium alendronate, and GII, GIII, and GIV with sodium alendronate at the concentrations of 10(-5), 10(-6), and 10(-7) M, respectively. The experimental times were 1, 6, 12, and 24 h (short-term) for viability and 2, 4, 6, and 8 days (long-term) for cell survival. Data in triplicate were statistically analyzed. Cultures treated with the highest alendronate concentration (GII) showed cell viability percentages significantly lower (P < 0.01) than those of the other groups (GI, GIII, and GIV), at 12 and 24 h. Cell growth on GII and GIII groups was similar. GII presented smaller growth than the other groups (P < 0.05). We concluded that sodium alendronate, on direct contact with human periodontal ligament fibroblasts, is cytotoxic in concentrations higher than of 10(-6) M.

  13. Melatonin suppresses acrolein-induced IL-8 production in human pulmonary fibroblasts.

    Science.gov (United States)

    Kim, Gun-Dong; Lee, Seung Eun; Kim, Tae-Ho; Jin, Young-Ho; Park, Yong Seek; Park, Cheung-Seog

    2012-04-01

    Cigarette smoke (CS) causes harmful alterations in the lungs and airway structures and functions that characterize chronic obstructive pulmonary disease (COPD). In addition to COPD, active cigarette smoking causes other respiratory diseases and diminishes health status. Furthermore, recent studies show that, α, β-unsaturated aldehyde acrolein in CS induces the production of interleukin (IL)-8, which is known to be related to bronchitis, rhinitis, pulmonary fibrosis, and asthma. In addition, lung and pulmonary fibroblasts secrete IL-8, which has a chemotactic effect on leukocytes, and which in turn, play a critical role in lung inflammation. On the other hand, melatonin regulates circadian rhythm homeostasis in humans and has many other effects, which include antioxidant and anti-inflammatory effects, as demonstrated by the reduced expressions of iNOS, IL-1β, and IL-6 and increased glutathione (GSH) and superoxide dismutase activities. In this study, we investigated whether melatonin suppresses acrolein-induced IL-8 secretion in human pulmonary fibroblasts (HPFs). It was found that acrolein-induced IL-8 production was accompanied by increased levels of phosphorylation of Akt and extracellular signal-regulated kinases (ERK1/2) in HPFs, and that melatonin suppressed IL-8 production in HPFs. These results suggest that melatonin suppresses acrolein-induced IL-8 production via ERK1/2 and phosphatidylinositol 3-kinase (PI3K)/Akt signal inhibition in HPFs. © 2011 John Wiley & Sons A/S.

  14. Sodium valproate induced gingival enlargement with pre-existing chronic periodontitis

    Directory of Open Access Journals (Sweden)

    Vaibhavi Joshipura

    2012-01-01

    Full Text Available Gingival enlargement is a common clinical feature of gingival and periodontal diseases. Currently, more than 20 prescription medications are associated with gingival enlargement. Although the mechanisms of action may be different, the clinical and microscopic appearance of drug-induced gingival enlargement is similar with any drug. Gingival enlargement produces esthetic changes, and clinical symptoms including pain, tenderness, bleeding, speech disturbances, abnormal tooth movement, dental occlusion problems, enhancement of caries development and periodontal disorders. Sodium valproate is considered to produce gingival enlargement, but very rarely. This case report features sodium valproate induced gingival enlargement in a patient with pre-existing chronic periodontitis, who came to the Dental Department, Chinmaya Mission Hospital, Bangalore. The case is special as the patient did not develop the enlargement in spite of taking phenytoin for 1 year and developed enlargement with sodium valproate within 6 months.

  15. Sodium valproate induced gingival enlargement with pre-existing chronic periodontitis.

    Science.gov (United States)

    Joshipura, Vaibhavi

    2012-04-01

    Gingival enlargement is a common clinical feature of gingival and periodontal diseases. Currently, more than 20 prescription medications are associated with gingival enlargement. Although the mechanisms of action may be different, the clinical and microscopic appearance of drug-induced gingival enlargement is similar with any drug. Gingival enlargement produces esthetic changes, and clinical symptoms including pain, tenderness, bleeding, speech disturbances, abnormal tooth movement, dental occlusion problems, enhancement of caries development and periodontal disorders. Sodium valproate is considered to produce gingival enlargement, but very rarely. This case report features sodium valproate induced gingival enlargement in a patient with pre-existing chronic periodontitis, who came to the Dental Department, Chinmaya Mission Hospital, Bangalore. The case is special as the patient did not develop the enlargement in spite of taking phenytoin for 1 year and developed enlargement with sodium valproate within 6 months.

  16. Improved methods for reprogramming human dermal fibroblasts using fluorescence activated cell sorting.

    Directory of Open Access Journals (Sweden)

    David J Kahler

    Full Text Available Current methods to derive induced pluripotent stem cell (iPSC lines from human dermal fibroblasts by viral infection rely on expensive and lengthy protocols. One major factor contributing to the time required to derive lines is the ability of researchers to identify fully reprogrammed unique candidate clones from a mixed cell population containing transformed or partially reprogrammed cells and fibroblasts at an early time point post infection. Failure to select high quality colonies early in the derivation process results in cell lines that require increased maintenance and unreliable experimental outcomes. Here, we describe an improved method for the derivation of iPSC lines using fluorescence activated cell sorting (FACS to isolate single cells expressing the cell surface marker signature CD13(NEGSSEA4(POSTra-1-60(POS on day 7-10 after infection. This technique prospectively isolates fully reprogrammed iPSCs, and depletes both parental and "contaminating" partially reprogrammed fibroblasts, thereby substantially reducing the time and reagents required to generate iPSC lines without the use of defined small molecule cocktails. FACS derived iPSC lines express common markers of pluripotency, and possess spontaneous differentiation potential in vitro and in vivo. To demonstrate the suitability of FACS for high-throughput iPSC generation, we derived 228 individual iPSC lines using either integrating (retroviral or non- integrating (Sendai virus reprogramming vectors and performed extensive characterization on a subset of those lines. The iPSC lines used in this study were derived from 76 unique samples from a variety of tissue sources, including fresh or frozen fibroblasts generated from biopsies harvested from healthy or disease patients.

  17. The effect of MTAD, an endodontic irrigant, on fibroblast attachment to periodontally affected root surfaces: A SEM analysis

    Directory of Open Access Journals (Sweden)

    Mostafa Ghandi

    2013-01-01

    Full Text Available Background: Root surface debridement (RSD is necessary to create an environment suitable for reattachment of the periodontium. Root surface conditioning may aid the formation of a biocompatible surface suitable for cell reattachment. BioPure™ MTAD (mixture of Doxycycline, citric acid and a detergent is an endodontic irrigant with antibacterial properties and the ability to remove smear layer. It was hypothesized that MTAD may be useful for root surface conditioning. The efficacy of MTAD as a conditioner was measured by examining fibroblast attachment to root surfaces. Materials and Methods: Thirty-two specimens of human teeth with advanced periodontal disease were used. The surfaces were root planed until smooth. Half of the specimens were treated with 0.9% saline and the other samples with Biopure MTAD. As a negative control group, five further samples were left unscaled with surface calculus. Human gingival fibroblast cells HGF1-PI1 were cultured and poured over the tooth specimens and incubated. After fixation, the samples were sputter-coated with gold and examined with a SEM. The morphology and number of attached, fixed viable cells were examined. The data was analysed using the Mann-Whitney-U statistical test. Results: There was no significant difference between the numbers of attached cells in the experimental group treated with MTAD and the control group treated with saline. Little or no attached cells were seen in the negative control group. Conclusion: RSD created an environment suitable for cell growth and attachment in a laboratory setting. The use of MTAD did not promote the attachment and growth of cells on the surface of human roots following RSD.

  18. Proteus syndrome: association with gingival hyperplasia.

    Science.gov (United States)

    Arendorf, T M; Hanslo, B

    1995-09-01

    A 9-year old Black boy with gigantism of the hands and feet, and recurrent gingival hyperplasia, diagnosed as Proteus syndrome is presented. The oral manifestations of this syndrome are described. To the best of our knowledge, this is the first reported case of gingival hyperplasia associated with Proteus syndrome.

  19. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Yongjun Yin

    2016-05-01

    Full Text Available Activating mutations in fibroblast growth factor receptor 3 (FGFR3 have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9, a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11 with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3.

  20. The effectiveness of dentifrices without and with sodium lauryl sulfate on plaque, gingivitis and gingival abrasion--a randomized clinical trial.

    Science.gov (United States)

    Sälzer, S; Rosema, N A M; Martin, E C J; Slot, D E; Timmer, C J; Dörfer, C E; van der Weijden, G A

    2016-04-01

    The aim of this study was to compare the efficacy of a dentifrice without sodium lauryl sulfate (SLS) to a dentifrice with SLS in young adults aged 18-34 years on gingivitis. One hundred twenty participants (non-dental students) with a moderate gingival inflammation (bleeding on probing at 40-70 % of test sites) were included in this randomized controlled double blind clinical trial. According to randomization, participants had to brush their teeth either with dentifrice without SLS or with SLS for 8 weeks. The primary outcome was bleeding on marginal probing (BOMP). The secondary outcomes were plaque scores and gingival abrasion scores (GA) as well as a visual analogue scale (VAS) score at exit survey. Baseline and end differences were analysed by univariate analysis of covariance (ANCOVA) test, between group differences by independent t test and within groups by paired sample t test. BOMP improved within groups from on average 0.80 at baseline to 0.60 in the group without SLS and to 0.56 in the group with SLS. No statistical difference for BOMP, plaque and gingival abrasion was found between both groups. VAS scores for taste, freshness and foaming effect were significantly in favour of the SLS-containing dentifrice. The test dentifrice without SLS was as effective as a regular SLS dentifrice on gingival bleeding scores and plaque scores. There was no significant difference in the incidence of gingival abrasion. In patients diagnosed with gingivitis, a dentifrice without SLS seems to be equally effective compared to a dentifrice with SLS and did not demonstrate any significant difference in gingival abrasion. In patient with recurrent aphthous ulcers, the absence of SLS may even be beneficial. However, participants indicate that they appreciate the foaming effect of a dentifrice with SLS more.

  1. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    International Nuclear Information System (INIS)

    Li, Xiaoou; Liu, Lian; Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan; Wen, Fuqiang

    2014-01-01

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis

  2. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoou [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Liu, Lian [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Wen, Fuqiang, E-mail: wenfuqiang.scu@gmail.com [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China)

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.

  3. TP53inp1 Gene Is Implicated in Early Radiation Response in Human Fibroblast Cells

    Directory of Open Access Journals (Sweden)

    Nikolett Sándor

    2015-10-01

    Full Text Available Tumor protein 53-induced nuclear protein-1 (TP53inp1 is expressed by activation via p53 and p73. The purpose of our study was to investigate the role of TP53inp1 in response of fibroblasts to ionizing radiation. γ-Ray radiation dose-dependently induces the expression of TP53inp1 in human immortalized fibroblast (F11hT cells. Stable silencing of TP53inp1 was done via lentiviral transfection of shRNA in F11hT cells. After irradiation the clonogenic survival of TP53inp1 knockdown (F11hT-shTP cells was compared to cells transfected with non-targeting (NT shRNA. Radiation-induced senescence was measured by SA-β-Gal staining and autophagy was detected by Acridine Orange dye and microtubule-associated protein-1 light chain 3 (LC3B immunostaining. The expression of TP53inp1, GDF-15, and CDKN1A and alterations in radiation induced mitochondrial DNA deletions were evaluated by qPCR. TP53inp1 was required for radiation (IR induced maximal elevation of CDKN1A and GDF-15 expressions. Mitochondrial DNA deletions were increased and autophagy was deregulated following irradiation in the absence of TP53inp1. Finally, we showed that silencing of TP53inp1 enhances the radiation sensitivity of fibroblast cells. These data suggest functional roles for TP53inp1 in radiation-induced autophagy and survival. Taken together, we suppose that silencing of TP53inp1 leads radiation induced autophagy impairment and induces accumulation of damaged mitochondria in primary human fibroblasts.

  4. [Experimental study on co-culture of human fibroblasts on decellularized Achilles tendon].

    Science.gov (United States)

    Wang, Zhibing; Zhang, Xia; Guo, Xinyu; Qin, Chuan

    2013-07-01

    To investigate the preparation of decellularized Achilles tendons and the effect of co-culture of human fibroblasts on the scaffold so as to provide a scaffold for the tissue engineered ligament reconstruction. Achilles tendons of both hind limbs were harvested from 10 male New Zealand white rabbits (5-month-old; weighing, 4-5 kg). The Achilles tendons were decellularized using trypsin, Triton X-100, and sodium dodecyl sulfate (SDS), and then gross observation, histological examination, and scanning electron microscope (SEM) observation were performed; the human fibroblasts were seeded on the decellularized Achilles tendon, and then cytocompatibility was tested using the cell counting kit 8 method at 1, 3, 5, 7, and 9 days after co-culture. At 4 weeks after co-culture, SEM, HE staining, and biomechanical test were performed for observing cell-scaffold composite, and a comparison was made with before and after decellularization. After decellularization, the tendons had integrated aponeurosis and enlarged volume with soft texture and good toughness; there was no loose connective tissue and tendon cells between tendon bundles, the collagen fibers arranged loosely with three-dimensional network structure and more pores between tendon bundles; and it had good cytocompatibility. At 4 weeks after co-culture, cells migrated into the pores, and three-dimensional network structure disappeared. By biomechanical test, the tensile strength and Young's elastic modulus of the decellularized Achilles tendon group decreased significantly when compared with normal Achilles tendons group and cell-scaffold composite group (P Achilles tendons group and cell-scaffold composite group (P > 0.05). There was no significant difference in elongation at break among 3 groups (P > 0.05). The decellularized Achilles tendon is biocompatible to fibroblasts. It is suit for the scaffold for tissue engineered ligament reconstruction.

  5. Cytoskeletal proteins from human skin fibroblasts, peripheral blood leukocytes, and a lymphoblastoid cell line compared by two-dimensional gel electrophoresis

    International Nuclear Information System (INIS)

    Giometti, C.S.; Willard, K.E.; Anderson, N.L.

    1982-01-01

    Differences in proteins between cells grown as suspension cultures and those grown as attached cultures were studied by comparing the proteins of detergent-resistant cytoskeletons prepared from peripheral blood leukocytes and a lymphoblastoid cell line (GM607) (both grown as suspension cultures) and those of human skin fibroblasts (grown as attached cultures) by two-dimensional gel electrophoresis. The major cytoskeletal proteins of the leukocytes were also present in the protein pattern of GM607 cytoskeletons. In contrast, the fibroblast cytoskeletal protein pattern contained four groups of proteins that differed from the patterns of the leukocytes and GM607. In addition, surface labeling of GM607 and human fibroblasts with 125 I demonstrated that substantial amounts of vimentin and actin are exposed at the surface of the attached fibroblasts, but there is little evidence of similar exposure at the surface of the suspension-grown GM607. These results demonstrate some differences in cytoskeletal protein composition between different types of cells could be related to their ability or lack of ability to grow as attached cells in tissue culture

  6. Treatment of gingival hyperpigmentation by open spray cryotherapy

    Directory of Open Access Journals (Sweden)

    Belkız Uyar

    2013-03-01

    Full Text Available Background and Design: Although gingival hyperpigmentation is not a medical problem, people who have moderate or severe gingival pigmentation, particularly patients having a gummy smile, frequently request cosmetic treatment. For gingival depigmentation, different treatment modalities have been reported such as surgical treatment, cryotherapy, electrosurgery, and laser therapy. Materials and Methods: Twenty-one patients with gingival melanin pigmentation were included in the study. We applied liquid nitrogen to the hyperpigmented area for 5-10 seconds using open spray technique with a cryogun. Clinical observations for intensity of pigmentation were recorded at baseline and 3 months after the treatment. Clinical parameters, such as bleeding, swelling, redness, and healing, were evaluated immediately after the cryotherapy and 24 hours, and 1 week after the treatment. We used a numeric pain scale to evaluate the pain level. Results: Three months after the treatment, the mean gingival melanin pigmentation score decreased from 41.62±16.58 to 19.28±11.85. The difference between pretreatment and posttreatment mean scores was found to be statistically significant.Discussion: Removal of gingival melanin pigmentation can be performed safely by open spray cryotherapy in dermatology clinics.

  7. DNA repair synthesis in human fibroblasts requires DNA polymerase delta

    International Nuclear Information System (INIS)

    Nishida, C.; Reinhard, P.; Linn, S.

    1988-01-01

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II. Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone

  8. Potentially lethal damage repair in cell lines of radioresistant human tumours and normal skin fibroblasts

    International Nuclear Information System (INIS)

    Marchese, M.J.; Minarik, L.; Hall, E.J.; Zaider, M.

    1985-01-01

    Radiation cell survival data were obtained in vitro for three cell lines isolated from human tumours traditionally considered to be radioresistant-two melanomas and one osteosarcoma-as well as from a diploid skin fibroblast cell line. One melanoma cell line was much more radioresistant than the other, while the osteosarcoma and fibroblast cell lines were more radiosensitive than either. For cells growing exponentially, little potentially lethal damage repair (PLDR) could be demonstrated by comparing survival data for cells in which subculture was delayed by 6 h with those sub-cultured immediately after treatment. For the malignant cells in plateau phase, which in these cells might be better termed 'slowed growth phase', since an appreciable fraction of the cells are still cycling, a small amount of PLDR was observed, but not as much as reported by other investigators in the literature. The normal fibroblasts, which achieved a truer plateau phase in terms of noncycling cells, showed a significantly larger amount of PLDR than the tumour cells. (author)

  9. Effects of amalgam corrosion products on human cells

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, P R; Cogen, R B; Taubman, S B [Departments of Periodontics and Pathology, University of Connecticut Health Center, Farmington, Connecticut, U.S.A.

    1976-01-01

    Using three independent criteria, we have found that 10/sup -4/,10/sup -6/M concentrations of ions presumably liberated from the corrosion of dental amalgam produce injurious effects on either human gingival fibroblasts or HeLa cells when the cells are grown in culture. Release of /sup 51/Cr and uptake of trypan blue dye were seen with 10/sup -5/M Hg/sup + +/ and Ag/sup +/. Inhibition of amino acid incorporation into protein-like material was seen with eluates of amalgam and with ionic solutions of most metals comprising dental amalgam. Stannous ion showed little if any cytotoxic potential. These results suggest that corrosion products of amalgam are capable of causing cellular injury or destruction.

  10. A fibroblast-associated antigen: Characterization in fibroblasts and immunoreactivity in smooth muscle differentiated stromal cells

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Celis, Julio E.; van Deurs, Bo

    1992-01-01

    major brands migrating at apparent Mr of 38,000, 45,000, and 80,000, in addition to many minor bands between Mr 45,000 and 97,000, including Mr 52,000. The Mr 45,000 and 38,000 were associated with the cell membrane and Mr 52,000 as well as Mr 38,000 were associated with the lysosomes. The 1B10......Fibroblasts with smooth muscle differentiation are frequently derived from human breast tissue. Immunofluorescence cytochemistry of a fibroblast-associated antigen recognized by a monoclonal antibody (MAb), 1B10, was analyzed with a view to discriminating smooth muscle differentiated fibroblasts...

  11. Prevalence of gingivitis and perception of gingival colour among pregnant women attending the antenatal clinic of Lagos University Teaching Hospital, Idi-Araba

    Directory of Open Access Journals (Sweden)

    Modupeoluwa Omotunde Soroye

    2016-01-01

    Full Text Available Objective: To determine the prevalence of gingivitis and perception of gingival colour among pregnant women attending the antenatal clinic of a tertiary health institution in Lagos State, Nigeria. Materials and Methods: A single-point assessment was conducted using a self-reported questionnaire completed by participants. Information such as patients′ age, gestational age, educational status, occupation, and perception of gingival colours was obtained. Furthermore, the participants were examined by trained dentists to determine their gingival colours and the presence and severity of gingival inflammation. The data obtained were processed, and descriptive and comparative analyses were done using Epi info version 3.5.1 (2008. Statistical significance was established at P values <0.05. Results: Four hundred and forty-five pregnant women aged between 18 years and 43 years [mean age: 30.3 (±4.61 years] participated in the study. Gestational age was between 4 weeks and 41 weeks with a mean of 23.49 (±9.53 weeks. The prevalence of gingivitis was 85.2%. Two hundred and thirty (51.7% participants described their gingival colour as pink, 127 (28.5% as red, 51 (11.5% as black, 3 (0.7% as white, 2 (0.4% as brown, and 32 (7.2% could not determine the colour of their gingivae. Two hundred and ten (47.2% participants knew that pink was the normal colour of a healthy gingiva. From objective clinical examinations by dentists, 344 (77.3% patients had pink gingivae, 85 (19.1% had pigmented gingivae, and only 16 (3.6% had red gingivae. Conclusion: The higher prevalence of gingivitis during pregnancy is well-established and that observation is corroborated by this study. Since a change in gingival colour may be an early indication of gingival inflammation, early detection and prompt treatment could prevent further periodontal deterioration. Hence, there is the need to incorporate and intensify oral health education during antenatal care so that pregnant women are

  12. Clinical Characteristics of Abutment Teeth with Gingival Discoloration.

    Science.gov (United States)

    Ristic, Ljubisa; Dakovic, Dragana; Postic, Srdjan; Lazic, Zoran; Bacevic, Miljana; Vucevic, Dragana

    2017-04-06

    The grey-bluish discoloration of gingiva (known as "amalgam tattoo") does not appear only in the presence of amalgam restorations. It may also be seen in cases of teeth restored with cast dowels and porcelain-fused-to-metal (PFM) restorations. The aim of this article was to determine the clinical characteristics of abutment teeth with gingival discoloration. This research was conducted on 25 patients referred for cast dowel and PFM restorations. These restorations were manufactured from Ni-Cr alloys. Ninety days after cementing the fixed prosthodontic restorations, the abutment teeth (n = 61) were divided into a group with gingival discoloration (GD) (n = 25) and without gingival discoloration (NGD) (n = 36). The control group (CG) comprised the contralateral teeth (n = 61). Plaque index, gingival index, clinical attachment level, and probing depth were assessed before fabrication and also 90 days after cementation of the PFM restorations. The gingival index, clinical attachment level, and probing depths of the abutment teeth that had GD were statistically higher before restoration, in comparison with the abutment teeth in the NGD and control groups. Ninety days after cementation, the abutment teeth with GD had significantly lower gingival indexes and probing depths, compared to the abutment teeth in the NGD group. Both abutment teeth groups (GD and NGD) had significantly higher values of clinical attachment levels when compared to the control group. There were no statistically significant differences in plaque index values between the study groups. The results of this study indicated that impairment of periodontal status of abutment teeth seemed to be related to the presence of gingival discolorations. Therefore, fabrication of fixed prosthodontic restorations requires careful planning and abutment teeth preparation to minimize the occurrence of gingival discolorations. With careful preparation of abutment teeth for cast dowels and crown restorations it may be

  13. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix.

    Science.gov (United States)

    Berning, Manuel; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-09-01

    Three-dimensional in vitro skin and skin cancer models help to dissect epidermal-dermal and tumor-stroma interactions. In the model presented here, normal human dermal fibroblasts isolated from adult skin self-assembled into dermal equivalents with their specific fibroblast-derived matrix (fdmDE) over 4 weeks. The fdmDE represented a complex human extracellular matrix that was stabilized by its own heterogeneous collagen fiber meshwork, largely resembling a human dermal in vivo architecture. Complemented with normal human epidermal keratinocytes, the skin equivalent (fdmSE) thereof favored the establishment of a well-stratified and differentiated epidermis and importantly allowed epidermal regeneration in vitro for at least 24 weeks. Moreover, the fdmDE could be used to study the features of cutaneous skin cancer. Complementing fdmDE with HaCaT cells in different stages of malignancy or tumor-derived cutaneous squamous cell carcinoma cell lines, the resulting skin cancer equivalents (fdmSCEs) recapitulated the respective degree of tumorigenicity. In addition, the fdmSCE invasion phenotypes correlated with their individual degree of tissue organization, disturbance in basement membrane organization, and presence of matrix metalloproteinases. Together, fdmDE-based models are well suited for long-term regeneration of normal human epidermis and, as they recapitulate tumor-specific growth, differentiation, and invasion profiles of cutaneous skin cancer cells, also provide an excellent human in vitro skin cancer model.

  14. Chronic gingivitis: the prevalence of periodontopathogens and therapy efficiency.

    Science.gov (United States)

    Igic, M; Kesic, L; Lekovic, V; Apostolovic, M; Mihailovic, D; Kostadinovic, L; Milasin, J

    2012-08-01

    The purpose of this study was to determine the level of gingival inflammation and the prevalence of periodontopathogenic microorganisms in adolescents with chronic gingivitis, as well as to compare the effectiveness of two approaches in gingivitis treatment-basic therapy alone and basic therapy + adjunctive low-level laser therapy (LLLT). After periodontal evaluation, the content of gingival pockets of 140 adolescents with gingivitis was analyzed by multiplex PCR for the presence of P. gingivalis, A. actinomycetemcomitans, T. forsythensis and P. intermedia. Subsequent to bacteria detection, the examinees were divided into two groups with homogenous clinical and microbiological characteristics. Group A was subjected to basic gingivitis therapy, and group B underwent basic therapy along with adjunctive LLLT. A statistically significant difference between the values of plaque-index (PI) and sulcus bleeding index (SBI) before and after therapy was confirmed in both groups (pgingivitis should be regarded as a sign for dentists to foster more effective oral health programs. LLLT appears to be beneficial as adjuvant to basic therapy.

  15. The hallmarks of fibroblast ageing.

    Science.gov (United States)

    Tigges, Julia; Krutmann, Jean; Fritsche, Ellen; Haendeler, Judith; Schaal, Heiner; Fischer, Jens W; Kalfalah, Faiza; Reinke, Hans; Reifenberger, Guido; Stühler, Kai; Ventura, Natascia; Gundermann, Sabrina; Boukamp, Petra; Boege, Fritz

    2014-06-01

    Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-)adaptation, thus constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated, although these cells have been a preferred model of cell ageing in vitro for decades. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Relationship between oral hygiene and gingival condition of Malaysian students

    Directory of Open Access Journals (Sweden)

    Muhammad Arif Mohd Marsin

    2018-01-01

    Full Text Available The primary etiologic agent of gingival disease was dental plaque which also involving the oral hygiene. The oral hygiene can be affected by individuals knowledge, attitude, practice, environment, and others. The purpose of this study was to assess the relationship between oral hygiene and gingival condition of Malaysian students. The type of this study was cross-sectional study. The study was conducted on a total of 66 Malaysian students. The data were collected by using an examination form and clinical examination using the Loe & Sillness gingival index followed by the Loe & Sillness plaque index. The results showed that 100% of students have gingivitis with the gingival index average of 1.25 and the plaque index average of 1.85. The relationship of gingival and plaque index was analyzed by using Spearman’s Rank Correlation Coefficient test, and the score was 0.623. It is concluded that the oral hygiene status of Malaysian students was in the fair category, and all Malaysian students had a moderate gingivitis. Also, there was a relationship between the oral hygiene status and gingival condition of Malaysian students.

  17. Oral gingival metastasis: A diagnostic dilemma

    Directory of Open Access Journals (Sweden)

    Nalini Aswath

    2017-01-01

    Full Text Available Oral cavity is a rare target for metastasis with an incidence of 1% among all oral cancers. In 24% of such cases, oral metastasis is the first indication of an undiagnosed primary. Metastatic oral malignancies have been reported in the mandible, tongue, and gingiva. Although gingival metastasis has been reported from lung, prostate, rectal carcinoma in men and carcinoma of breast, adrenal glands, and genitalia in females, gingival metastasis from carcinoma of the penis has not been reported. Herein, a case of metastatic gingival carcinoma that developed after extraction of teeth from primary carcinoma of the penis is presented. An extensive literature search revealed no such similar case reports.

  18. The effect of ultraviolet light on the cyclic nucleotide system of human fibroblasts

    International Nuclear Information System (INIS)

    Fertel, R.H.; Tejwani, G.A.; Albrightson, C.R.; Hart, R.W.

    1981-01-01

    The concentrations of cyclic AMP and cyclic GMP in in human skin fibroblasts in culture were determined after exposing the cells to varying fluences of UV (254 nm) light. The cyclic nucleotide concentrations of cells irradiated in the log phase of growth were unchanged relative to controls. In contrast, there was a rise in the concentration of cyclic AMP in cells irradiated after they reached confluency. The increase in concentration was observed as early as 30 min after irradiation, reached a maximum of about 200% of control at 4 to 6 h after exposure, and returned to control values by 24 h after irradiation. The effect was proportional to a UV fluence from 5 to 20 J/m 2 , and was blocked by the addition of the UV absorbing agent para-aminobenzoic acid. In contrast, the results indicated that UV light had no effect on the concentration of cyclic GMP in human fibroblast cell cultures. Because of the importance of cyclic nucleotides in the regulation of cellular function, it is reasonable to hypothesize that changes in cyclic AMP induced by UV light may effect the extranuclear functions of irradiated cells. (author)

  19. Clinical efficacy of turmeric use in gingivitis: A comprehensive review.

    Science.gov (United States)

    Stoyell, Karissa A; Mappus, Jennifer L; Gandhi, Mona A

    2016-11-01

    Gingivitis affects an estimated 80% of the population, and is characterized as the world's most predominant inflammatory periodontal disease. Without intervention, gingivitis can advance to alveolar bone loss. Therefore, the primary goal in patients suffering with gingivitis is to control plaque buildup and soft tissue inflammation. Current guidelines consider chlorhexidine as the gold standard in the prevention and treatment of gingivitis. However, negative side effects of chlorhexidine, including oral mucosal erosion, discoloration of teeth, and bitter taste, provide an opportunity for alternative medications. Turmeric, a commonly used herb, possesses anti-inflammatory, antioxidant, antibacterial, antiviral, and antifungal properties. By virtue of these properties, multiple controlled trials have been performed to investigate the efficacy of turmeric in gingivitis. The aim of this comprehensive review is to summarize and evaluate the evidence on the efficacy of turmeric as compared to chlorhexidine in the prevention and treatment of gingivitis. PubMed, MedLine (Web of Science), and EBSCO (academic search complete) were utilized as primary literature search tools. The following search strategy was used: ((turmeric OR curcumin OR curcuma) AND (gingivitis OR "gum inflammation")). Five reviewed studies show that both turmeric and chlorhexidine significantly decrease plaque index (PI) and gingival index (GI), and can therefore be used in the prevention and treatment of gingivitis. Both chlorhexidine and turmeric can be used as an adjunct to mechanical means in preventing and treating gingivitis. However, trials longer than 21 days with a greater number of patients are necessary to further evaluate the comparison between turmeric and chlorhexidine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    Science.gov (United States)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  1. Prevalence of gingivitis among school attendees in Qazvin, Iran ...

    African Journals Online (AJOL)

    Conclusion: In present study the frequency of gingivitis was found to be higher. According to the high prevalence of gingivitis the most prevalent areas of plaque and gingivitis identified in this study should be taken in consideration during oral hygiene instructions, which should be given to children, parents, and teachers ...

  2. Resveratrol Prevents High Fluence Red Light-Emitting Diode Reactive Oxygen Species-Mediated Photoinhibition of Human Skin Fibroblast Migration.

    Directory of Open Access Journals (Sweden)

    Andrew Mamalis

    Full Text Available Skin fibrosis is a significant medical problem that leads to a functional, aesthetic, and psychosocial impact on quality-of-life. Light-emitting diode-generated 633-nm red light (LED-RL is part of the visible light spectrum that is not known to cause DNA damage and is considered a safe, non-invasive, inexpensive, and portable potential alternative to ultraviolet phototherapy that may change the treatment paradigm of fibrotic skin disease.The goal of our study was to investigate the how reactive oxygen species (ROS free radicals generated by high fluence LED-RL inhibit the migration of skin fibroblasts, the main cell type involved in skin fibrosis. Fibroblast migration speed is increased in skin fibrosis, and we studied cellular migration speed of cultured human skin fibroblasts as a surrogate measure of high fluence LED-RL effect on fibroblast function. To ascertain the inhibitory role of LED-RL generated ROS on migration speed, we hypothesized that resveratrol, a potent antioxidant, could prevent the photoinhibitory effects of high fluence LED-RL on fibroblast migration speed.High fluence LED-RL generated ROS were measured by flow cytometry analysis using dihydrorhodamine (DHR. For purposes of comparison, we assessed the effects of ROS generated by hydrogen peroxide (H2O2 on fibroblast migration speed and the ability of resveratrol, a well known antioxidant, to prevent LED-RL and H2O2 generated ROS-associated changes in fibroblast migration speed. To determine whether resveratrol could prevent the high fluence LED-RL ROS-mediated photoinhibition of human skin fibroblast migration, treated cells were incubated with resveratrol at concentrations of 0.0001% and 0.001% for 24 hours, irradiated with high fluences LED-RL of 480, 640, and 800 J/cm2.High fluence LED-RL increases intracellular fibroblast ROS and decreases fibroblast migration speed. LED-RL at 480, 640 and 800 J/cm2 increased ROS levels to 132.8%, 151.0%, and 158.4% relative to matched

  3. Abnormal phenotype of cultured fibroblasts in human skin with chronic radiotherapy damage

    International Nuclear Information System (INIS)

    Delanian, S.; Martin, M.; Lefaix, J.-L.; Bravard, A.; Luccioni, C.

    1998-01-01

    Purpose: The pathophysiological aspects of radiation-induced fibrosis (RIF) have not been well characterized. We therefore cultured human fibroblasts from samples of skin with RIF to investigate the long-term effects of therapeutic irradiation. Materials and methods: Biopsies of normal and RIF skin were obtained from patients previously irradiated for cancer, without recurrence. Cells were extracted from dermis samples by the outgrowth technique, seeded as monolayers and cultured at confluence. Enzyme activities and proteins were assayed, RNA was isolated and Northern blot analysis was performed on surviving cells between passages 2 and 5. Results: RIF cell cultures displayed heterogeneous fibroblasts populations. The initial outgrowth consisted of one-third small cells that floated rapidly, one-third spindle-shaped cells migrating far from the explant to form islets and one-third large pleiomorphic cells. In subsequent subcultures, surviving cells exhibited either myofibroblastic characteristics with a normal proliferative capacity or senescent morphology with a reduced proliferative capacity. These RIF cells had a brief finite lifespan, with dramatically reduced growth rate during their initial outgrowth and the following passages. Study of the antioxidant metabolism showed that Mn superoxide dismutase and catalase activities were significantly weaker in surviving RIF cells than healthy fibroblasts. These exhausted RIF cells exhibited no overexpression of transforming growth factor β or tissue inhibitor of metalloproteinase. Conclusion: Irradiation may lead to apparently contradictory effects such as fibrosis and necrosis in clinical practice. In cell culture, we observed two main cellular phenotypes which may be related to both processes, i.e. myofibroblast-like cells and fibrocyte-like cells. These two phenotypes may represent two steps in the differentiation induced as a long-term effect of therapeutic irradiation of the skin. Cell culture probably

  4. Comparative analysis of gingival crevicular fluid β-glucuronidase levels in health, chronic gingivitis and chronic periodontitis.

    Science.gov (United States)

    Sanara, P P; Shereef, Mohammed; Hegde, Shashikanth; Rajesh, K S; Arun Kumar, M S; Mohamed, Shabeer

    2015-08-01

    Current methods available for periodontal disease diagnosis are seriously deficient in terms of accuracy, in the ability to predict ongoing or future disease activity and indeed in determining whether previously diseased sites are in an arrested phase or still active. One area that is receiving a great deal of attention is the biochemical investigation of gingival crevicular fluid (GCF). β-glucuronidase (βG) is one of the enzymes found in GCF that is involved in degradation of the ground substance and fibrillar components of host connective tissue. GCF βG activity might be a good indicator or predictor of periodontal disease activity. This study was conducted to estimate and compare the GCF βG levels in patients with healthy periodontium, chronic gingivitis, and chronic periodontitis. Subjects were classified into three groups of 20 patients each; healthy individuals, chronic gingivitis, and chronic periodontitis. After recording the plaque index, gingival index and probing pocket depth, 1 μL GCF was collected by placing a calibrated microcapillary pipette extracrevicularly and transferred to sterile plastic vials containing 350 μL of normal saline with 1% bovine serum albumin. Analysis of βG was done by spectrophotometry. βG levels in GCF were significantly higher in chronic periodontitis group (mean value - 2.04743), followed by chronic gingivitis group (mean - 1.11510) and healthy group (0.53643). Increased βG levels were observed in patients with increased periodontal destruction, hence GCF βG levels can be used as biochemical marker for periodontal disease activity.

  5. The effect of non-steroidal anti-inflammatory drugs on the metabolism of 14C-arachidonic acid by human gingival tissue in vitro

    International Nuclear Information System (INIS)

    Elattar, T.M.; Lin, H.S.; Tira, D.E.

    1983-01-01

    We investigated the effect of non-steroidal anti-inflammatory drugs on prostaglandins (PGs) and 12-hydroxyeicosatetraenoic acid (12-HETE) formation by inflamed human gingival tissues. Gingival tissue homogenates were incubated with 14 C-arachidonic acid in the presence of indomethacin, piroxicam, or ibuprofen, and the organic solvent extracts were chromatographed on silica gel plates with standards for radiometric assay. There was a significant negative trend between the doses (10(-7)-10(-3) M) of each of indomethacin, piroxicam, and ibuprofen, and the amounts of PGF2 alpha, PGE2, PGD2, and 15-keto-PGE2 produced. All three drugs have a significant inhibitory effect on PGs and 12-HETE production at 10(-3) M when compared with the control. The rank order effectiveness of the drugs, at 10(-3) M, on PG inhibition was indomethacin greater than piroxicam greater than ibuprofen, and on 12-HETE inhibition was indomethacin greater than ibuprofen greater than piroxicam

  6. Transforming growth factor-β1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts.

    Science.gov (United States)

    Jablonska, Ewa; Markart, Philipp; Zakrzewicz, Dariusz; Preissner, Klaus T; Wygrecka, Malgorzata

    2010-04-09

    Coagulation factor XII (FXII) is a liver-derived serine protease involved in fibrinolysis, coagulation, and inflammation. The regulation of FXII expression is largely unknown. Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that has been linked to several pathological processes, including tissue fibrosis by modulating procoagulant and fibrinolytic activities. This study investigated whether TGF-beta1 may regulate FXII expression in human lung fibroblasts. Treatment of human lung fibroblasts with TGF-beta1 resulted in a time-dependent increase in FXII production, activation of p44/42, p38, JNK, and Akt, and phosphorylation and translocation into the nucleus of Smad3. However, TGF-beta1-induced FXII expression was repressed only by the JNK inhibitor and JNK and Smad3 antisense oligonucleotides but not by MEK, p38, or phosphoinositide 3-kinase blockers. JNK inhibition had no effect on TGF-beta1-induced Smad3 phosphorylation, association with Smad4, and its translocation into the nucleus but strongly suppressed Smad3-DNA complex formation. FXII promoter analysis revealed that the -299/+1 region was sufficient for TGF-beta1 to induce FXII expression. Sequence analysis of this region detected a potential Smad-binding element at position -272/-269 (SBE-(-272/-269)). Chromatin immunoprecipitation and streptavidin pulldown assays demonstrated TGF-beta1-dependent Smad3 binding to SBE-(-272/-269). Mutation or deletion of SBE-(-272/-269) substantially reduced TGF-beta1-mediated activation of the FXII promoter. Clinical relevance was demonstrated by elevated FXII levels and its co-localization with fibroblasts in the lungs of patients with acute respiratory distress syndrome. Our results show that JNK/Smad3 pathway plays a critical role in TGF-beta1-induced FXII expression in human lung fibroblasts and implicate its possible involvement in pathological conditions characterized by elevated TGF-beta1 levels.

  7. Mechanisms of inhibition of DNA replication by ultraviolet light in normal human and xeroderma pigmentosum fibroblasts

    International Nuclear Information System (INIS)

    Kaufmann, W.K.; Cleaver, J.E.

    1981-01-01

    The inhibition of DNA replication in ultraviolet-irradiated human fibroblasts was characterized by quantitative analysis of radiation-induced alterations in the steady-state distribution of sizes of pulse-labeled, nascent DNA. Low, noncytotoxic fluences rapidly produced an inhibition of DNA synthesis in half-replicon-size replication intermediates. With time, the inhibition produced by low fluences spread progressively to include multi-replicon-size intermediates. The results indicate that ultraviolet radiation inhibits the initiation of DNA synthesis in replicons. Higher cytotoxic fluences inhibited DNA synthesis in operating replicons. Xeroderma pigmentosum fibroblasts with deficiencies in DNA excision repair exhibited an inhibition of replicon initiation after low radiation fluences, indicating the effect was not solely dependent upon operation of the nucleotidyl excision repair pathway. Owing to their inability to remove pyrimidine dimers ahead of DNA growing points, the repair-deficient cells also were more sensitive than normal cells to the ultraviolet-induced inhibition of chain elongation. Xeroderma pigmentosum cells belonging to the variant class were even more sensitive to inhibition of chain elongation despite their ability to remove pyrimidine dimers. The analysis suggested that normal and repair-deficient human fibroblasts either are able to rapidly bypass certain dimers or these dimers are not recognized by the chain elongation machinery. (author)

  8. Photodynamic therapy induces antifibrotic alterations in primary human vocal fold fibroblasts.

    Science.gov (United States)

    Zhang, Chi; Wang, Jiajia; Chou, Adriana; Gong, Ting; Devine, Erin E; Jiang, Jack J

    2018-04-18

    Photodynamic therapy (PDT) is a promising treatment modality for laryngeal dysplasia, early-stage carcinoma, and papilloma, and was reported to have the ability to preserve laryngeal function and voice quality without clinical fibrotic response. We aimed to investigate the mechanism behind the antifibrotic effects of PDT on primary human vocal fold fibroblasts (VFFs) in vitro. In vitro analysis from one human donor. Cell viability of VFFs in response to varying doses of PDT was investigated by the Cell Counting Kit-8 method. Sublethal-dose PDT (SL-PDT) was used for the following experiments. Expression of genes related to vocal fold extracellular matrix formation was analyzed by real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blotting. Effects of PDT on cell migration, collagen contraction, and transforming growth factor β-1 (TGF-β1)-induced myofibroblast differentiation were also analyzed. PDT affects the viability of VFFs in a dose-dependent manner. SL-PDT significantly changed the expression profile of VFFs with antifibrotic effects. It also inhibited cell migration, reduced collagen contraction, and reversed the fibroblast-myofibroblast differentiation induced by TGF-β1. SL-PDT induces antifibrotic alterations in VFFs. This could explain the low incidence of vocal fold scar associated with PDT. Moreover, PDT may be useful in treating existing vocal fold scars. Further studies should focus on the in vivo effect of PDT on vocal fold wound healing and scar remodeling. NA Laryngoscope, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  9. An unusual clinical presentation of gingival melanoacanthoma

    Directory of Open Access Journals (Sweden)

    S. P. K. Kennedy Babu

    2013-01-01

    Full Text Available Gingival melanoacanthoma is a rare, benign pigmented lesion characterized clinically by sudden onset and rapid growth of a macular brown black lesion and histologically by acanthosis of superficial epithelium and proliferation of dendritic melanocytes. This article reports a previously undescribed case of pigmented unilateral diffuse gingival enlargement, which on histopathological examination proved to be melanoacanthoma. Intraoral examination revealed pigmented unilateral diffuse gingival enlargement in relation to second and third quadrants buccally, palatally/lingually. Based on these clinical findings, gingivectomy was performed and the excised tissue was sent for biopsy. Microscopic examination revealed acanthotic and parakeratotic surface epithelium with dendritic melanocytes distributed in basal and suprabasal layers of the epithelium. 1 year follow-up recall revealed no recurrence of lesion at the surgical sites. Our patient exhibits an unusual clinical presentation of melanoacanthoma of gingiva. Pigmented gingival overgrowth of recent origin and without any etiologic factors warrants histopathologic examination.

  10. Hypoxia-Induced Collagen Synthesis of Human Lung Fibroblasts by Activating the Angiotensin System

    Directory of Open Access Journals (Sweden)

    Shan-Shan Liu

    2013-12-01

    Full Text Available The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II on collagen synthesis in hypoxic human lung fibroblast (HLF cells. The HLF-1 cell line was used for in vitro studies. Angiotensinogen (AGT, angiotensin converting enzyme (ACE, angiotensin II type 1 receptor (AT1R and angiotensin II type 2 receptor (AT2R expression levels in human lung fibroblasts were analysed using real-time polymerase chain reaction (RT-PCR after hypoxic treatment. Additionally, the collagen type I (Col-I, AT1R and nuclear factor κappaB (NF-κB protein expression levels were detected using Western blot analysis, and NF-κB nuclear translocation was measured using immunofluorescence localization analysis. Ang II levels in HLF-1 cells were measured with an enzyme-linked immunosorbent assay (ELISA. We found that hypoxia increased Col-I mRNA and protein expression in HLF-1 cells, and this effect could be inhibited by an AT1R or AT2R inhibitor. The levels of NF-κB, RAS components and Ang II production in HLF-1 cells were significantly increased after the hypoxia exposure. Hypoxia or Ang II increased NF-κB-p50 protein expression in HLF-1 cells, and the special effect could be inhibited by telmisartan (TST, an AT1R inhibitor, and partially inhibited by PD123319, an AT2R inhibitor. Importantly, hypoxia-induced NF-κB nuclear translocation could be nearly completely inhibited by an AT1R or AT2R inhibitor. Furthermore pyrrolidine dithiocarbamate (PDTC, a NF-κB blocker, abolished the expression of hypoxia-induced AT1R and Col-I in HLF-1 cells. Our results indicate that Ang II-mediated NF-κB signalling via ATR is involved in hypoxia-induced collagen synthesis in human lung fibroblasts.

  11. [Precision and accuracy of a dental spectrophotometer in gingival color measurement of maxillary anterior gingival].

    Science.gov (United States)

    Du, Yang; Tan, Jian-guo; Chen, Li; Wang, Fang-ping; Tan, Yao; Zhou, Jian-feng

    2012-08-18

    To explore a gingival shade matching method and to evaluate the precision and accuracy of a dental spectrophotometer modified to be used in gingival color measurement. Crystaleye, a dental spectrophotometer (Olympus, Tokyo, Japan) with a custom shading cover was tested. For precision assessment, two experienced experimenters measured anterior maxillary incisors five times for each tooth. A total of 20 healthy gingival sites (attached gingiva, free gingiva and medial gingival papilla in anterior maxillary region) were measured,the Commission Internationale de I' Eclairage (CIE) color parameters (CIE L*a*b*) of which were analyzed using the supporting software. For accuracy assessment, a rectangular area of approximately 3 mm×3 mm was chosen in the attached gingival portion for spectral analysis. PR715 (SpectraScan;Photo Research Inc.,California, USA), a spectroradiometer, was utilized as standard control. Average color differences (ΔE) between the values from PR715 and Crystaleye were calculated. In precision assessment,ΔL* between the values in all the test sites and average values were from(0.28±0.16)to(0.78±0.57), with Δa*and Δb* from(0.28±0.15)to (0.87±0.65),from(0.19±0.09)to( 0.58±0.78), respectively. Average ΔE between values in all test sites and average values were from (0.62 ± 0.17) to (1.25 ± 0.98) CIELAB units, with a total average ΔE(0.90 ± 0.18). In accuracy assessment, ΔL* with control device were from(0.58±0.50)to(2.22±1.89),with Δa*and Δb* from(1.03±0.67)to(2.99±1.32),from(0.68±0.78)to(1.26±0.83), respectively. Average ΔE with the control device were from (2.44±0.82) to (3.51±1.03) CIELAB units, with a total average ΔE (2.96 ± 1.08). With appropriate modification, Crystaleye, the spectrophotometer, has demonstrated relative minor color variations that can be useful in gingival color measurement.

  12. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway.

    Science.gov (United States)

    Tandon, Nina; Cimetta, Elisa; Villasante, Aranzazu; Kupferstein, Nicolette; Southall, Michael D; Fassih, Ali; Xie, Junxia; Sun, Ying; Vunjak-Novakovic, Gordana

    2014-01-01

    Electrical signals have been implied in many biological mechanisms, including wound healing, which has been associated with transient electrical currents not present in intact skin. One method to generate electrical signals similar to those naturally occurring in wounds is by supplementation of galvanic particles dispersed in a cream or gel. We constructed a three-layered model of skin consisting of human dermal fibroblasts in hydrogel (mimic of dermis), a hydrogel barrier layer (mimic of epidermis) and galvanic microparticles in hydrogel (mimic of a cream containing galvanic particles applied to skin). Using this model, we investigated the effects of the properties and amounts of Cu/Zn galvanic particles on adult human dermal fibroblasts in terms of the speed of wound closing and gene expression. The collected data suggest that the effects on wound closing are due to the ROS-mediated enhancement of fibroblast migration, which is in turn mediated by the BMP/SMAD signaling pathway. These results imply that topical low-grade electric currents via microparticles could enhance wound healing. © 2013 Elsevier Inc. All rights reserved.

  13. Gingival recession: prevalence and risk indicators among young greek adults.

    Science.gov (United States)

    Chrysanthakopoulos, Nikolaos A

    2014-07-01

    The aim of the current research was to assess the prevalence of gingival recession and to investigate possible associations among this condition, periodontal and epidemiological variables in a sample of young Greek adults in a general dental practice. A total of 1,430 young adults was examined clinically and interviewed regarding several periodontal and epidemiological variables. Collected data included demographic variables, oral hygiene habits and smoking status. Clinical examination included the recording of dental plaque, supragingival calculus presence, gingival status and buccal gingival recession. Multivariate logistic regression analysis model was performed to access the possible association between gingival recession and several periodontal and epidemiological variables as potential risk factors. The overall prevalence of gingival recession was 63.9%. The statistical analysis indicated that higher educational level [OR= 2.12, 95% CI= 0.53-8.51], cigarette smoking [OR= 1.97, 95% CI= 1.48-7.91], frequent tooth brushing [OR= 0.98, 95% CI= 0.56-1.96], presence of oral piercing [OR= 0.92, 95% CI= 0.38-1.58], presence of gingival inflammation [OR= 4.54, 95% CI= 1.68-7.16], presence of dental plaque [OR= 1.67, 95% CI= 0.68-2.83] and presence of supragingival calculus [OR=1.34, 95% CI= 0.59-1.88], were the most important associated factors of gingival recession. The observations of the current research supported the results from previous authors that several periodontal factors, educational level and smoking were significantly associated with the presence of gingival recession, while presence of oral piercing was a new factor that was found to be associated with gingival recession. Key words:Gingival recession, prevalence, risk factors, young adults.

  14. The impacts of gingivitis and calculus on Thai children's quality of life.

    Science.gov (United States)

    Krisdapong, Sudaduang; Prasertsom, Piyada; Rattanarangsima, Khanit; Sheiham, Aubrey; Tsakos, Georgios

    2012-09-01

    To assess associations of socio-demographic, behavioural and the extent of gingivitis and calculus with oral health-related quality of life (OHRQoL) in nationally representative samples of 12- and 15-year-old Thai children. In the Thailand National Oral Health Survey, 1,063 twelve-year olds and 811 fifteen-year olds were clinically examined and interviewed for OHRQoL using the Child-OIDP and OIDP indices, respectively, and completed a behavioural questionnaire. We assessed associations of condition-specific impacts (CS-impacts) with gingivitis and calculus, adjusted for socio-demographic and behavioural factors. Gingivitis and calculus were highly prevalent: 79.3% in 12-year and 81.5% in 15-year olds. CS-impacts relating to calculus and/or gingivitis were reported by 26.0% of 12-year and 29.6% of 15-year olds. Except for calculus without gingivitis, calculus and/or gingivitis in any form was significantly related to any level of CS-impacts. At a moderate or higher level of CS-impacts, there were significant relationships with extensive calculus and/or gingivitis in 12-year olds and for extensive gingivitis and gingivitis without calculus in 15-year olds. Gingivitis was generally associated with any level of CS-impacts attributed to calculus and/or gingivitis. CS-impacts were related more to gingivitis than to calculus. © 2012 John Wiley & Sons A/S.

  15. Rejoining of DNA double-strand breaks in human fibroblasts and its impairment in one ataxia telangiectasia and two Fanconi strains

    International Nuclear Information System (INIS)

    Coquerelle, T.M.; Weibezahn, K.F.

    1981-01-01

    Using the technique of neutral elution through polycarbonate filters as a measure of DNA length, and hence of the number of double-strand breaks incurred as a result of radiation damage, we found that normal human fibroblasts rejoin 50% of all breaks within only 3 min (37 degrees C). This fast rejoining was impaired in fibroblasts from one patient with Ataxia telangiectasia and in fibroblasts from two patients with Fanconi's anemia. Also the number of residual breaks after several hours of repair was higher than in control cells. Other cases with the same diseases were normal in their rejoining of double-strand breaks

  16. Characterization of ultraviolet light-induced diphtheria toxin-resistant mutations in normal and Xeroderma pigmentosum human fibroblasts

    International Nuclear Information System (INIS)

    Glover, T.W.

    1979-01-01

    Quantitative mutagenesis studies in human cells have been severely limited by the lack of reliable genetic markers. Experiments were therefore performed to develop and characterize a better quantitative mutation assay for human cells. The uv-induction of diphtheria toxin resistant (DT/sup r/) mutations in normal and excision repair defective xeroderma pigmentosum (XP) fibroblasts has been quantitatively characterized. A concentration of diphtheria toxin to use in the selection of resistant mutants was determined whereby DT/sup r/ cells are cross-resistant to Pseudomonas aeurginosa exotoxin A, indicating mutants have altered elongation factor-2 (EF-2) which is not susceptible to ADP-ribosylation by either toxin. Results of this study indicate that XP fibroblasts have higher uv-induced mutation frequencies per unit uv-dose but similar frequencies per unit survival compared to normal cells as measured using a new genetic marker for quantitative mutagenesis. Furthermore, these results support a prediction of the mutation theory of cancer, namely, that cells from individuals with certain human syndromes that predispose the individual to cancer will have higher induced mutation frequencies than cells from non-susceptible individuals. This newly characterized genetic marker should be useful in quantitative mutagenesis studies in human cells

  17. MicroRNA Expression Profiles in Cultured Human Fibroblasts in Space

    Science.gov (United States)

    Wu, Honglu; Lu, Tao; Jeevarajan, John; Rohde, Larry; Zhang, Ye

    2014-01-01

    Microgravity, or an altered gravity environment from the static 1g, has been shown to influence global gene expression patterns and protein levels in living organisms. However, it is unclear how these changes in gene and protein expressions are related to each other or are related to other factors regulating such changes. A different class of RNA, the small non-coding microRNA (miRNA), can have a broad effect on gene expression networks by mainly inhibiting the translation process. Previously, we investigated changes in the expression of miRNA and related genes under simulated microgravity conditions on the ground using the NASA invented bioreactor. In comparison to static 1 g, simulated microgravity altered a number of miRNAs in human lymphoblastoid cells. Pathway analysis with the altered miRNAs and RNA expressions revealed differential involvement of cell communication and catalytic activity, as well as immune response signaling and NGF activation of NF-kB pathways under simulated microgravity condition. The network analysis also identified several projected networks with c- Rel, ETS1 and Ubiquitin C as key factors. In a flight experiment on the International Space Station (ISS), we will investigate the effects of actual spaceflight on miRNA expressions in nondividing human fibroblast cells in mostly G1 phase of the cell cycle. A fibroblast is a type of cell that synthesizes the extracellular matrix and collagen, the structural framework for tissues, and plays a critical role in wound healing and other functions. In addition to miRNA expressions, we will investigate the effects of spaceflight on the cellular response to DNA damages from bleomycin treatment.

  18. Inhibition of EGF processing in responsive and nonresponsive human fibroblasts

    International Nuclear Information System (INIS)

    Schaudies, R.P.; Wray, H.L.

    1988-01-01

    We have examined the proteolytic processing of radiolabeled epidermal growth factor (EGF) in EGF growth-responsive human foreskin fibroblasts (HFF) versus EGF nonresponsive human fetal lung fibroblasts (HFL). Previous studies have shown that both cell lines demonstrate similar binding affinities and numbers of binding sites, as well as similar rates of internalization and degradation of the bound, radiolabeled hormone. We have used nondenaturing electrophoresis to compare how these two cell lines process EGF at its carboxy terminus. EGF lacking either one [des-(53)-EGF] or six [des (48-53)-EGF] carboxy terminal amino acids could be distinguished by this method. Chloroquine or leupeptin were added to the incubation system in an attempt to accentuate potential differences in hormonal processing between the responsive and nonresponsive cell lines. In the absence of inhibitors, the responsive and nonresponsive cells generated similar distributions of processed forms of EGF after 30-minutes incubation. However, after 4-hours incubation in the constant presence of 125I-EGF, the electrophoretic profiles of extracted hormone were substantially different. The radiolabel within the responsive cells, as well as that released from them, migrated predominantly at the dye front, indicating complete degradation of EGF. In contrast, the majority of the radiolabel within the nonresponsive cells migrated as partially processed forms of hormone, while the released radiolabel migrated at the dye front. Addition of chloroquine to either cell line inhibited processing of EGF beyond removal of the carboxyl terminal arginine residue. Both intact 125I-EGF, and 125I-EGF lacking the carboxyl terminal arginine were released from chloroquine-treated cells in a ratio equal to that present in the intact cells

  19. Adenoviral-mediated correction of methylmalonyl-CoA mutase deficiency in murine fibroblasts and human hepatocytes

    Directory of Open Access Journals (Sweden)

    Korson Mark

    2007-04-01

    Full Text Available Abstract Background Methylmalonic acidemia (MMA, a common organic aciduria, is caused by deficiency of the mitochondrial localized, 5'deoxyadenosylcobalamin dependent enzyme, methylmalonyl-CoA mutase (MUT. Liver transplantation in the absence of gross hepatic dysfunction provides supportive therapy and metabolic stability in severely affected patients, which invites the concept of using cell and gene delivery as future treatments for this condition. Methods To assess the effectiveness of gene delivery to restore the defective metabolism in this disorder, adenoviral correction experiments were performed using murine Mut embryonic fibroblasts and primary human methylmalonyl-CoA mutase deficient hepatocytes derived from a patient who harbored two early truncating mutations, E224X and R228X, in the MUT gene. Enzymatic and expression studies were used to assess the extent of functional correction. Results Primary hepatocytes, isolated from the native liver after removal subsequent to a combined liver-kidney transplantation procedure, or Mut murine fibroblasts were infected with a second generation recombinant adenoviral vector that expressed the murine methylmalonyl-CoA mutase as well as eGFP from distinct promoters. After transduction, [1-14C] propionate macromolecular incorporation studies and Western analysis demonstrated complete correction of the enzymatic defect in both cell types. Viral reconstitution of enzymatic expression in the human methylmalonyl-CoA mutase deficient hepatocytes exceeded that seen in fibroblasts or control hepatocytes. Conclusion These experiments provide proof of principle for viral correction in methylmalonic acidemia and suggest that hepatocyte-directed gene delivery will be an effective therapeutic treatment strategy in both murine models and in human patients. Primary hepatocytes from a liver that was unsuitable for transplantation provided an important resource for these studies.

  20. Epidemiology of gingivitis in schoolchildren in Bucharest, Romania: a cross-sectional study.

    Science.gov (United States)

    Funieru, C; Klinger, A; Băicuș, C; Funieru, E; Dumitriu, H T; Dumitriu, A

    2017-04-01

    Gingivitis is the most prevalent oral disease in children, being strongly associated to social gradients. Many studies have reported different results concerning the extent and intra-oral distribution of gingivitis in children. The aim of this study was to investigate the epidemiologic parameters and socio-related risk factors of gingivitis in the 10-17-year-old Bucharest schoolchildren population and to analyze its intra-oral distribution. Cross-sectional data were obtained from 1595 schoolchildren, social condition being assigned using a simple questionnaire. Classes of students were used as clusters in a single-stage cluster sampling method. An intra-oral exam was performed for all the children included in this study. Silness and Löe scores, prevalence and the extent of gingivitis were calculated. The gingival scores showed a mild inflammation and the prevalence of gingivitis was 91%. Boys had a higher gingival (0.19 vs. 0.18; p gingival conditions (p Gingivitis was more severe on the upper teeth, with the maximum score being reached at the right upper lateral incisor (0.63 on distal surface). Gingival condition in Bucharest schoolchildren population was associated to social gradients. School dental services are also another factor that seems to be related with gingivitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Human mammary fibroblasts stimulate invasion of breast cancer cells in a three-dimensional culture and increase stroma development in mouse xenografts

    International Nuclear Information System (INIS)

    Olsen, Charlotta J; Moreira, José; Lukanidin, Eugene M; Ambartsumian, Noona S

    2010-01-01

    Tumour phenotype is regulated in a complex fashion as a result of interactions between malignant cells and the tumour stroma. Fibroblasts are the most abundant and perhaps most active part of the tumour stroma. A better understanding of the changes that occur in fibroblasts in response to the presence of malignant cells may lead to the development of new strategies for cancer treatment. We explored the effects of fibroblasts on the growth and invasion of mammary carcinoma tumour cells in vitro and in vivo. In order to analyse secreted factors that affect invasive abilities of breast cancer cells we co-cultured human mammary fibroblasts (HMF3s) and cancer cells (MCF7S1) in three-dimensional (3D) growth conditions devoid of heterogeneous cell-cell contact. To study the possible influence of fibroblasts on MCF7S1 cancer cell growth in vivo we co-injected HMF3s and MCF7S1 cells in Balb/c nu/nu mice. In 3D co-culture both HMF3s and MCF7S1 cells demonstrated enhanced invasion into a Matrigel matrix. This was correlated with enhanced expression of the metastasis promoting S100A4 protein in fibroblasts, stimulation of the matrix metalloproteinase (MMP)-2 activity, and enhanced secretion of a range of different cytokines. Orthotopic injection of oestrogen-dependent MCF7S1 cancer cells together with fibroblasts showed stimulation of tumour growth in mice without an external oestrogen supply. The resulting tumours were characterized by increased development of extracellular matrix, as well as an increase of murine S100A4 concentration and activity of MMP-2 in the tumour interstitial fluid. Stimulation of the invasive phenotype of tumour cells in 3D co-cultures with fibroblasts could be correlated with increased production of S100A4 and MMP-2. We propose that enhanced development of mouse host-derived tumour stroma in a MCF7S1 co-injection xenograft model leads to oestrogen independency and is triggered by the initial presence of human fibroblasts

  2. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition.

    Science.gov (United States)

    Kahounová, Zuzana; Kurfürstová, Daniela; Bouchal, Jan; Kharaishvili, Gvantsa; Navrátil, Jiří; Remšík, Ján; Šimečková, Šárka; Študent, Vladimír; Kozubík, Alois; Souček, Karel

    2017-04-06

    The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (Ep

  3. Surgical management of generalized gingival enlargement - a case series

    International Nuclear Information System (INIS)

    Akhtar, M.U.; Nazir, A.; Montmorency College of Dentistry, Lahore; Kiran, S.; Montmorency College of Dentistry, Lahore

    2014-01-01

    Generalized gingival enlargement is characterized by massive and exuberant gingival overgrowth that poses social, aesthetic, phonetic and functional problems for the patient. Therefore, it requires meticulous management. Objective: To describe the surgical management of generalized gingival enlargement by electrosurgical excision of patients presenting to a tertiary care centre. Study Design: Case series. Materials and Methods: The study was conducted at the Department of Oral and Maxillofacial Surgery, de'Montmorency College of Dentistry, Lahore, from January 2010 to December 2012. A total of sixteen patients were operated by using electrosurgical approach under general anaesthesia for surgical excision of generalized gingival enlargement. Results: All of the sixteen patients, 11 males and 5 females, showed excellent healing postoperatively without any recurrent gingival overgrowth. Discussion: To the best of our knowledge, the current study presents the largest case series of generalized gingival enlargement. Most of these cases were with massive disease due to lack of information of the study population about their disease, delay in referral by the general dental practitioners, painless and innocent nature of the problem. Early referral of such patients to tertiary care centers can prevent the patients from social and psychological embarrassment. Conclusion: Electrosurgical excision is an excellent surgical technique for management of generalized gingival enlargement. Moreover, cross comparative studies are required to establish some diagnostic and therapeutic standards for such patients. (author)

  4. Effect of microemulsions on cell viability of human dermal fibroblasts

    Science.gov (United States)

    Li, Juyi; Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam; Garti, Nissim

    Microemulsions are optically clear, thermostable and isotropic mixture consisting of water, oil and surfactants. Their advantages of ease preparation, spontaneous formation, long-term stability and enhanced solubility of bioactive materials make them great potentials as vehicles in food and pharmaceutical applications. In this study, comparative in vitro cytotoxicity tests were performed to select a best formulation of microemulsion with the least toxicity for human dermal fibroblasts. Three different kinds of oils and six different kinds of surfactants were used to form microemulsions by different ratios. The effect of oil type and surfactant type as well as their proportions on cell proliferation and viability were tested.

  5. Cigarette smoke exposure inhibits extracellular MMP-2 (gelatinase A activity in human lung fibroblasts

    Directory of Open Access Journals (Sweden)

    Cappello Francesco

    2007-03-01

    Full Text Available Abstract Background Exposure to cigarette smoke is considered a major risk factor for the development of lung diseases, since its causative role has been assessed in the induction and maintenance of an inflamed state in the airways. Lung fibroblasts can contribute to these processes, due to their ability to produce proinflammatory chemotactic molecules and extracellular matrix remodelling proteinases. Among proteolytic enzymes, gelatinases A and B have been studied for their role in tissue breakdown and mobilisation of matrix-derived signalling molecules. Multiple reports linked gelatinase deregulation and overexpression to the development of inflammatory chronic lung diseases such as COPD. Methods In this study we aimed to determine variations in the gelatinolytic pattern of human lung fibroblasts (HFL-1 cell line exposed to cigarette smoke extract (CSE. Gelatinolytic activity levels were determined by using gelatin zymography for the in-gel detection of the enzymes (proenzyme and activated forms, and the subsequent semi-quantitative densitometric evaluation of lytic bands. Expression of gelatinases was evaluated also by RT-PCR, zymography of the cell lysates and by western blotting. Results CSE exposure at the doses used (1–10% did not exert any significant cytotoxic effects on fibroblasts. Zymographic analysis showed that CSE exposure resulted in a linear decrease of the activity of gelatinase A. Control experiments allowed excluding a direct inhibitory effect of CSE on gelatinases. Zymography of cell lysates confirmed the expression of MMP-2 in all conditions. Semi-quantitative evaluation of mRNA expression allowed assessing a reduced transcription of the enzyme, as well as an increase in the expression of TIMP-2. Statistical analyses showed that the decrease of MMP-2 activity in conditioned media reached the statistical significance (p = 0.0031 for 24 h and p = 0.0012 for 48 h, while correlation analysis showed that this result was

  6. Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts

    Directory of Open Access Journals (Sweden)

    Luketich James D

    2004-12-01

    Full Text Available Abstract Background Non-neuronal cells, including those derived from lung, are reported to express nicotinic acetylcholine receptors (nAChR. We examined nAChR subunit expression in short-term cultures of human airway cells derived from a series of never smokers, ex-smokers, and active smokers. Methods and Results At the mRNA level, human bronchial epithelial (HBE cells and airway fibroblasts expressed a range of nAChR subunits. In multiple cultures of both cell types, mRNA was detected for subunits that constitute functional muscle-type and neuronal-type pentomeric receptors. Two immortalized cell lines derived from HBE cells also expressed muscle-type and neuronal-type nAChR subunits. Airway fibroblasts expressed mRNA for three muscle-type subunits (α1, δ, and ε significantly more often than HBE cells. Immunoblotting of HBE cell and airway fibroblast extracts confirmed that mRNA for many nAChR subunits is translated into detectable levels of protein, and evidence of glycosylation of nAChRs was observed. Some minor differences in nAChR expression were found based on smoking status in fibroblasts or HBE cells. Nicotine triggered calcium influx in the immortalized HBE cell line BEAS2B, which was blocked by α-bungarotoxin and to a lesser extent by hexamethonium. Activation of PKC and MAPK p38, but not MAPK p42/44, was observed in BEAS2B cells exposed to nicotine. In contrast, nicotine could activate p42/44 in airway fibroblasts within five minutes of exposure. Conclusions These results suggest that muscle-type and neuronal-type nAChRs are functional in airway fibroblasts and HBE cells, that prior tobacco exposure does not appear to be an important variable in nAChR expression, and that distinct signaling pathways are observed in response to nicotine.

  7. Diagnosis and Clinical Management of Human Papilloma Virus-Related Gingival Squamous Cell Carcinoma in a Patient With Leukemia: A Case Report.

    Science.gov (United States)

    Yassin, Alaa; Dixon, Douglas R; Oda, Dolphine; London, Robert M

    2016-02-01

    Close clinical inspection for intraoral lesions in patients with leukemia that develop chronic graft-versus-host disease (cGVHD) is critical. Additionally, neoplasias developing in bone marrow transplant patients after treatment for leukemia represent a significant obstacle for long-term patient survival, necessitating lifetime follow-up by health care providers. This case report describes the identification, diagnosis, and treatment of gingival squamous cell carcinoma (SCC) in a patient with leukemia who was treated previously with a stem cell transplant and referred for routine periodontal care. A 53-year-old male was referred to the Department of Periodontics for an assessment of tooth #10 with 2+ mobility and associated cross-bite occlusion. The patient was diagnosed with acute myeloid leukemia at age 39 years, received hematopoietic stem cell transplantation (HSCT), and later developed cGVHD followed by human papilloma virus (HPV) infections. During the periodontal evaluation, a large, non-painful, exophytic, alveolar gingival mass was identified and later diagnosed as SCC. It is unusual that oral SCC presents as an exophytic, gingival swelling. The patient received comprehensive periodontal management in coordination with his otolaryngology team before and during the diagnosis of SCC secondary to cGVHD and HPV infection. Patients with a history of HSCT treatment for leukemia and subsequent cGVHD are at a high risk of developing second primary oral malignancies, including SCC. Exposure to oncogenic HPV infection may compound this risk. Therefore, it is important for dentists to be aware of special treatment concerns and to frequently screen these patients to achieve early diagnosis and treatment of these neoplasms.

  8. Gingival and Periodontal Diseases in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Vivek Singh Chauhan

    2012-01-01

    Full Text Available Periodontal diseases are among the most frequent diseases affecting children and adolescents. These include gingivitis, localized or generalized aggressive periodontitis (a.k.a., early onset periodontitis and periodontal diseases associated with systemic disorders. The effects of periodontal diseases observed in adults have earlier inception in life period. Gingival diseases in a child may progress to jeopardize the periodontium in adulthood. Therefore, periodontal diseases must be prevented and diagnosed early in the life. This paper reviews the most common periodontal diseases affecting children: chronic gingivitis (or dental plaque-induced gingival diseases and aggressive periodontitis. In addition, systemic diseases that affect the periodontium in young children and necrotizing periodontal diseases are addressed. The prevalence, diagnostic characteristics, microbiology, host- related factors, and therapeutic management of each of these disease entities are discussed.

  9. Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector

    International Nuclear Information System (INIS)

    Shitara, Shingo; Kakeda, Minoru; Nagata, Keiko; Hiratsuka, Masaharu; Sano, Akiko; Osawa, Kanako; Okazaki, Akiyo; Katoh, Motonobu; Kazuki, Yasuhiro; Oshimura, Mitsuo; Tomizuka, Kazuma

    2008-01-01

    Telomerase-mediated life-span extension enables the expansion of normal cells without malignant transformation, and thus has been thought to be useful in cell therapies. Currently, integrating vectors including the retrovirus are used for human telomerase reverse transcriptase (hTERT)-mediated expansion of normal cells; however, the use of these vectors potentially causes unexpected insertional mutagenesis and/or activation of oncogenes. Here, we established normal human fibroblast (hPF) clones retaining non-integrating human artificial chromosome (HAC) vectors harboring the hTERT expression cassette. In hTERT-HAC/hPF clones, we observed the telomerase activity and the suppression of senescent-associated SA-β-galactosidase activity. Furthermore, the hTERT-HAC/hPF clones continued growing beyond 120 days after cloning, whereas the hPF clones retaining the silent hTERT-HAC senesced within 70 days. Thus, hTERT-HAC-mediated episomal expression of hTERT allows the extension of the life-span of human primary cells, implying that gene delivery by non-integrating HAC vectors can be used to control cellular proliferative capacity of primary cultured cells

  10. Smoking influences on the thickness of marginal gingival epithelium

    Directory of Open Access Journals (Sweden)

    Villar Cristina Cunha

    2003-01-01

    Full Text Available Smoking patients show reduction of inflammatory clinical signs that might be associated with local vasoconstriction and an increased gingival epithelial thickness. The purpose of this work was to evaluate the thickness of the marginal gingival oral epithelium in smokers and non-smokers, with clinically healthy gingivae or with gingivitis. Twenty biopsies were obtained from four different groups. Group I: non-smokers with clinically healthy gingivae (n = 5. Group II: non-smokers with gingivitis (n = 5. Group III: smokers with clinically healthy gingivae (n = 5. Group IV: smokers with gingivitis (n = 5. These biopsies were histologically processed, serially sectioned at 5 mm, stained with H. E., and examined by image analysis software (KS400, which was used to perform the morphometric evaluation and the quantification of the major epithelial thickness, the epithelial base thickness and the external and internal epithelial perimeters. Differences between the four groups were analyzed using ANOVA test and Tukey's test. The criteria for statistical significance were accepted at the probability level p < 0.05. A greater epithelial thickness was observed in smokers independent of the gingival health situation.

  11. Microbiota-based Signature of Gingivitis Treatments: A Randomized Study.

    Science.gov (United States)

    Huang, Shi; Li, Zhen; He, Tao; Bo, Cunpei; Chang, Jinlan; Li, Lin; He, Yanyan; Liu, Jiquan; Charbonneau, Duane; Li, Rui; Xu, Jian

    2016-04-20

    Plaque-induced gingivitis can be alleviated by various treatment regimens. To probe the impacts of various anti-gingivitis treatments on plaque microflora, here a double blinded, randomized controlled trial of 91 adults with moderate gingivitis was designed with two anti-gingivitis regimens: the brush-alone treatment and the brush-plus-rinse treatment. In the later group, more reduction in both Plaque Index (TMQHI) and Gingival Index (mean MGI) at Day 3, Day 11 and Day 27 was evident, and more dramatic changes were found between baseline and other time points for both supragingival plaque microbiota structure and salivary metabonomic profiles. A comparison of plaque microbiota changes was also performed between these two treatments and a third dataset where 50 subjects received regimen of dental scaling. Only Actinobaculum, TM7 and Leptotrichia were consistently reduced by all the three treatments, whereas the different microbial signatures of the three treatments during gingivitis relieve indicate distinct mechanisms of action. Our study suggests that microbiota based signatures can serve as a valuable approach for understanding and potentially comparing the modes of action for clinical treatments and oral-care products in the future.

  12. Cathelicidin suppresses colon cancer development by inhibition of cancer associated fibroblasts

    Directory of Open Access Journals (Sweden)

    Cheng M

    2014-12-01

    Full Text Available Michelle Cheng,1,* Samantha Ho,1,* Jun Hwan Yoo,1,2,* Deanna Hoang-Yen Tran,1,* Kyriaki Bakirtzi,1 Bowei Su,1 Diana Hoang-Ngoc Tran,1 Yuzu Kubota,1 Ryan Ichikawa,1 Hon Wai Koon1 1Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; 2Digestive Disease Center, CHA University Bundang Medical Center, Seongnam, Republic of Korea *These authors share co-first authorship Background: Cathelicidin (LL-37 in humans and mCRAMP in mice represents a family of endogenous antimicrobial and anti-inflammatory peptides. Cancer-associated fibroblasts can promote the proliferation of colon cancer cells and growth of colon cancer tumors. Methods: We examined the role of cathelicidin in the development of colon cancer, using subcutaneous human HT-29 colon-cancer-cell-derived tumor model in nude mice and azoxymethane- and dextran sulfate-mediated colon cancer model in C57BL/6 mice. We also determined the indirect antitumoral mechanism of cathelicidin via the inhibition of epithelial–mesenchymal transition (EMT of colon cancer cells and fibroblast-supported colon cancer cell proliferation. Results: Intravenous administration of cathelicidin expressing adeno-associated virus significantly reduced the size of tumors, tumor-derived collagen expression, and tumor-derived fibroblast expression in HT-29-derived subcutaneous tumors in nude mice. Enema administration of the mouse cathelicidin peptide significantly reduced the size and number of colonic tumors in azoxymethane- and dextran sulfate-treated mice without inducing apoptosis in tumors and the adjacent normal colonic tissues. Cathelicidin inhibited the collagen expression and vimentin-positive fibroblast expression in colonic tumors. Cathelicidin did not directly affect HT-29 cell viability, but did significantly reduce tumor growth factor-ß1-induced EMT of colon cancer cells. Media conditioned by the

  13. Idiopathic Gingival Fibromatosis: Case Report and Its Management

    Directory of Open Access Journals (Sweden)

    Prashant P. Jaju

    2009-01-01

    Full Text Available Idiopathic gingival fibromatosis is a rare condition. We present a case of idiopathic gingival fibromatosis with its multidisciplinary approach of management. The clinical, radiographic, and histopathological features have been described in detail.

  14. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jaguin, Marie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes Cedex (France); Lecureur, Valérie, E-mail: valerie.lecureur@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France)

    2015-06-15

    Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants. - Highlights: • PDGF-B expression and secretion are increased by DEPe exposure in human M1 and M2 MΦ. • DEPe-induced PDGF-B expression is aryl-hydrocarbon-dependent. • DEPe-exposed M1 MΦ secrete sufficient PDGF-B to increase lung fibroblast proliferation.

  15. Silencing of the pentose phosphate pathway genes influences DNA replication in human fibroblasts.

    Science.gov (United States)

    Fornalewicz, Karolina; Wieczorek, Aneta; Węgrzyn, Grzegorz; Łyżeń, Robert

    2017-11-30

    Previous reports and our recently published data indicated that some enzymes of glycolysis and the tricarboxylic acid cycle can affect the genome replication process by changing either the efficiency or timing of DNA synthesis in human normal cells. Both these pathways are connected with the pentose phosphate pathway (PPP pathway). The PPP pathway supports cell growth by generating energy and precursors for nucleotides and amino acids. Therefore, we asked if silencing of genes coding for enzymes involved in the pentose phosphate pathway may also affect the control of DNA replication in human fibroblasts. Particular genes coding for PPP pathway enzymes were partially silenced with specific siRNAs. Such cells remained viable. We found that silencing of the H6PD, PRPS1, RPE genes caused less efficient enterance to the S phase and decrease in efficiency of DNA synthesis. On the other hand, in cells treated with siRNA against G6PD, RBKS and TALDO genes, the fraction of cells entering the S phase was increased. However, only in the case of G6PD and TALDO, the ratio of BrdU incorporation to DNA was significantly changed. The presented results together with our previously published studies illustrate the complexity of the influence of genes coding for central carbon metabolism on the control of DNA replication in human fibroblasts, and indicate which of them are especially important in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The effect of non-steroidal anti-inflammatory drugs on the metabolism of /sup 14/C-arachidonic acid by human gingival tissue in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Elattar, T.M.; Lin, H.S.; Tira, D.E.

    1983-09-01

    We investigated the effect of non-steroidal anti-inflammatory drugs on prostaglandins (PGs) and 12-hydroxyeicosatetraenoic acid (12-HETE) formation by inflamed human gingival tissues. Gingival tissue homogenates were incubated with /sup 14/C-arachidonic acid in the presence of indomethacin, piroxicam, or ibuprofen, and the organic solvent extracts were chromatographed on silica gel plates with standards for radiometric assay. There was a significant negative trend between the doses (10(-7)-10(-3) M) of each of indomethacin, piroxicam, and ibuprofen, and the amounts of PGF2 alpha, PGE2, PGD2, and 15-keto-PGE2 produced. All three drugs have a significant inhibitory effect on PGs and 12-HETE production at 10(-3) M when compared with the control. The rank order effectiveness of the drugs, at 10(-3) M, on PG inhibition was indomethacin greater than piroxicam greater than ibuprofen, and on 12-HETE inhibition was indomethacin greater than ibuprofen greater than piroxicam.

  17. In vitro adhesion of human dermal fibroblasts on iron cross-linked alginate films

    International Nuclear Information System (INIS)

    Machida-Sano, Ikuko; Namiki, Hideo; Matsuda, Yasushi

    2009-01-01

    We evaluated the potential of alginate film incorporating ferric ions as a gelling agent (Fe-alginate) in comparison with that incorporating calcium ions (Ca-alginate) as a scaffold for culturing normal human dermal fibroblasts (NHDF). NHDF adhered to Fe-alginate and proliferated well, but no growth of the cells was observed on Ca-alginate. Since vitronectin and fibronectin play pivotal roles in cellular adhesion, their participation in NHDF behavior on alginate surfaces was investigated. We found that vitronectin was a critical element for initial attachment and spreading of NHDF on Fe-alginate. The surface properties of both alginate films were characterized in terms of protein adsorption ability and surface wettability, and it was revealed that Fe-alginate film adsorbed a significantly higher amount of proteins, including vitronectin and fibronectin, and had a higher surface hydrophobicity than Ca-alginate film. Moreover, under serum-free conditions, only a small number of NHDF were able to attach to the surface of Fe-alginate. Fe-alginate appeared to provide an appropriate surface for cellular attachment by adsorption of serum proteins such as vitronectin. These results suggest that Fe-alginate can serve as a scaffold for human fibroblasts and may be useful for tissue engineering research and other biomedical applications.

  18. Segmentation of images for gingival growth measurement

    Science.gov (United States)

    Kim, Dong-Il; Wilson, Joseph N.

    1992-12-01

    The ability to measure gingival volume growth from dental casts would provide a valuable resource for periodontists. This problem is attractive from a computer vision standpoint due to the complexities of data acquisition, segmentation of gingival and tooth surfaces and boundaries, and extraction of features (such as tooth axes) to help solve the correspondence problem for multiple casts. In this paper, a structured light 3-D range finder is used to collect raw data. The most complicated subtask is that of detecting discontinuities such as the gingival margin. Discontinuity detection is hindered both by cast anomalies (such as bubbles and holes generated during the process of dental impression) and by the subtle nature of the discontinuities themselves. First, we discuss an approach to segmenting a dental cast into tooth and gingival units using depth and orientation discontinuities. The visible cast surface is reconstructed by obtaining the minimum of a parameterized functional. The first derivative of the energy functional (which corresponds to the Euler-Lagrange equation) is solved using the multigrid methods. both orientation and depth discontinuities are detected by adding a discrete discontinuity functional to the energy functional. The principal axes and boundaries of the teeth provide the information necessary to determine the region to be measured in estimating gingival growth. Finally, voxels corresponding to growth regions are counted to measure the target volume.

  19. Microarray analysis of the transcriptional response to single or multiple doses of ionizing radiation in human subcutaneous fibroblasts

    DEFF Research Database (Denmark)

    Rødningen, Olaug Kristin; Overgaard, Jens; Alsner, Jan

    2005-01-01

    cell lines after various ionizing radiation (IR) schemes in order to provide information on potential targets for prevention and to suggest candidate genes for SNP association studies aimed at predicting individual risk of radiation-induced morbidity. PATIENTS AND METHODS: Thirty different human......BACKGROUND AND PURPOSE: Transcriptional profiling of fibroblasts derived from breast cancer patients might improve our understanding of subcutaneous radiation-induced fibrosis. The aim of this study was to get a comprehensive overview of the changes in gene expression in subcutaneous fibroblast...... fibroblast cell lines were included in the study, and two different radiation schemes; single dose experiments with 3.5 Gy or fractionated with 3 x 3.5 Gy. Expression analyses were performed on unexposed and exposed cells after different time points. The IR response was analyzed using the statistical method...

  20. Matrix metalloproteinase-3 gene polymorphism in renal transplant patients with gingival overgrowth.

    Science.gov (United States)

    Drozdzik, A; Kurzawski, M; Lener, A; Kozak, M; Banach, J; Drozdzik, M

    2010-02-01

    Gingival enlargement frequently occurs in transplant patients receiving immunosuppressive drugs. It was hypothesized that gingival enlargement associated with cyclosporine use results from reduced degradation of extracellular matrix in the gingiva. Matrix metalloproteinase-3 (MMP-3) is involved in biodegradation of the extracellular matrix, and its inhibition may contribute to an abnormal accumulation of fibronectin and proteoglycans, which are MMP-3 substrates. The aim of this study was to investigate whether an association exists between MMP-3 genotypes and gingival enlargement in kidney transplant patients medicated with cyclosporine A. Sixty-four unrelated kidney transplant patients suffering from gingival overgrowth, as well as 111 control transplant patients without gingival overgrowth, were enrolled in the study. Gingival overgrowth was assessed 6 mo after transplantation. During the post-transplant period all patients were given cyclosporine A as a principal immunosuppressive agent. MMP-3 polymorphism was determined using a PCR restriction fragment length polymorphism assay. In kidney transplant patients suffering from gingival overgrowth the mean gingival overgrowth score was 1.35 +/- 0.57, whereas in control subjects the mean gingival overgrowth score was 0.0. The distribution of MMP-3-1178A/dupA alleles among all kidney transplant patients, as well as in the two study subgroups, did not differ significantly from Hardy-Weinberg equilibrium. The frequency of the MMP-3-1171A/A genotype (28.1% for gingival overgrowth vs. 26.1% for controls) and of the MMP-3-1171dupA/dupA genotype (32.8% for gingival overgrowth vs. 22.5% for controls) was similar for both study groups. The risk of gingival overgrowth was lowest among patients carrying the MMP-3-1171A/dupA genotype (odds ratio 0.52), but this did not differ markedly from the other genotypes. No association between MMP-3 gene polymorphism and gingival overgrowth was revealed in kidney transplant patients

  1. Evaluation of X-Inactivation Status and Cytogenetic Stability of Human Dermal Fibroblasts after Long-Term Culture

    Directory of Open Access Journals (Sweden)

    Zhi-Gang Xue

    2010-01-01

    Full Text Available Human primary fibroblasts are a popular type of somatic cells for the production of induced pluripotent stem (iPS cells. Here we characterized biological properties of primary fibroblasts in terms of cell-growth rate, cytogenetic stability, and the number of inactive X chromosomes during long-term passaging. We produced eight lines of female human dermal fibroblasts (HDFs and found normal karyotype and expected pattern of X chromosome inactivation (XCI at low passages (Passage P1-5. However, four out of the eight HDF lines at high passage numbers (≥P10 exhibited duplicated hallmarks of inactive X chromosome including two punctuate signals of histone H3 lysine 27 trimethylation (H3K27me3 and X inactive-specific transcript (XIST RNA signals in approximately 8.5–18.5% of the cells. Our data suggest that the copy number of inactive X chromosomes in a subset of female HDF is increased by a two-fold. Consistently, DNA fluorescent in situ hybridization (FISH identified 3-4 copies of X chromosomes in one nucleus in this subset of cells with two inactive Xs. We conclude that female HDF cultures exhibit a higher risk of genetic anomalies such as carrying an increased number of X chromosomes including both active and inactive X chromosomes at a high passage (≥P10.

  2. Niemann-Pick C2 protein regulates sterol transport between plasma membrane and late endosomes in human fibroblasts

    DEFF Research Database (Denmark)

    Berzina, Zane; Solanko, Lukasz M; Mehadi, Ahmed S

    2018-01-01

    /LYSs is currently unknown. We show that the close cholesterol analog dehydroergosterol (DHE), when delivered to the plasma membrane (PM) accumulates in LE/LYSs of human fibroblasts lacking functional NPC2. We measured two different time scales of sterol diffusion; while DHE rich LE/LYSs moved by slow anomalous...... but not of DHE is reduced 10-fold in disease fibroblasts compared to control cells. Internalized NPC2 rescued the sterol storage phenotype and strongly expanded the dynamic sterol pool seen in FRAP experiments. Together, our study shows that cholesterol esterification and trafficking of sterols between the PM...

  3. The Possible Pre- and Post-UVA Radiation Protective Effect of Amaranth Oil on Human Skin Fibroblast Cells.

    Science.gov (United States)

    Wolosik, Katarzyna; Zareba, Ilona; Surazynski, Arkadiusz; Markowska, Agnieszka

    2017-07-01

    The health effects of Amaranth Oil (AO) are attributed to its specific chemical composition. That makes it an outstanding natural product for the prevention and treatment of ultraviolet (UV) irradiation-related pathologies such as sunburn, photoaging, photoimmunosuppression, and photocarcinogenesis. Most of the studies are taken on animal model, and there is a lack of research on the endogenous effect of AO on fibroblast level, where UVA takes it harmful place. The aim of this study was evaluation if AO can protect or abolish UVA exposure effect on human skin fibroblast. The 0.1% AO, 0.25% AO, and 0.5% AO concentration and irradiation for 15 min under UVA-emitting lamp were studied in various condition. In all experiments, the mean values for six assays ± standard deviations were calculated. Pretreatment with various concentrations of AO was tested. The highest concentration of AO where cell survival was observed was 0.5%. Cytotoxicity assays provided evidence for pre- and post-UVA protective effect of 0.1% AO among three tested concentrations. The results also provide evidence that UVA has inhibitory effect on collagen biosynthesis in confluent skin fibroblast, but presence of 0.1% AO abolishes pre- and post-UVA effect comparing to other used AO concentration. The assessment results on DNA biosynthesis show the significant abolished post-UVA effect when 0.1% and 0.5% of AO were added. AO gives pre- and post-UVA protection in low concentration. This provides the evidence for using it not as a main protective factor against UV but as one of the combined components in cosmetic formulation. The recommended Amaranth Oil (AO) concentration in cosmetic formulation is between 0.1 and 5%Pretreatment with various concentrations of AO suggests to use the highest 0.5% concentration of AO in human skin fibroblast culturesThe 0.1% of AO in fibroblast cultures, protects and abolishes effect of ultraviolet A (UVA) exposureUVA has inhibitory effect on collagen biosynthesis in

  4. Enlargement gingival treatment on teeth 11 and 21

    Directory of Open Access Journals (Sweden)

    Umi Ghoni Tjiptoningsih

    2016-12-01

    Full Text Available Gingival enlargement in the interdental papillae, thickened, rounded gingival contour and discomfort became major issues that must be treated in order to be optimal appearance and function. Gingival enlargement that experienced fibrosis would not disappear with only plaque control, but required surgery that is gingivectomy and gingivoplasty. The 24-year-old woman came to the periodonsia clinic with complaints maxillary anterior gingiva swelled at teeth 11-21 with plaque index 52%. The depth of the tooth pocket 11: labial (mesial: 4, medial: 1, distal: 3. Palatal (mesial: 3, medial: 2, distal 1. The depth of the tooth pocket 21 is labial (mesial: 4, medial: 1, distal: 1, palatal (mesial: 3, medial: 1, distal 1. Gingivectomy treatment and gingivoplasty were performed with the aim of eliminating pockets and restore physiologic gingival contour which can help prevent the recurrence of the disease periodontal. In performing surgical gingivectomy and gingivoplasty, which must be considered is to minimize the disposal of gingival tissue to maintain the aesthetic, adequate access to the bone defect in order to make good corrections, and the minimization of bleeding and discomfort after surgery.

  5. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    International Nuclear Information System (INIS)

    Mizoshiri, N.; Kishida, T.; Yamamoto, K.; Shirai, T.; Terauchi, R.; Tsuchida, S.; Mori, Y.; Ejima, A.; Sato, Y.; Arai, Y.; Fujiwara, H.; Yamamoto, T.; Kanamura, N.; Mazda, O.; Kubo, T.

    2015-01-01

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  6. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Mizoshiri, N. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kishida, T. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, K. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Shirai, T.; Terauchi, R.; Tsuchida, S. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mori, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Ejima, A. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Sato, Y. [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Arai, Y.; Fujiwara, H. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan); Yamamoto, T.; Kanamura, N. [Department of Dental Medicine, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, O., E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Kubo, T. [Department of Orthopaedics, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2015-11-27

    Introduction: Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. Materials and Methods: We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. Results: As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. Discussion: The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. - Highlights: • Introducing L-myc in a combination with either Oct3/4, Oct6 or Oct9 enables the conversion of fibroblasts to osteoblasts. • A combination of L-myc with Oct3/4 or Oct9 can induce the cells to a phenotype closer to normal osteoblasts. • N-myc was considered the most appropriate Myc family gene for induction of osteoblast-like phenotype in fibroblasts. • The combination of Oct9 plus N-myc has the strongest capability of inducing osteoblast-like phenotype.

  7. Endotoxemia and the host systemic response during experimental gingivitis

    Science.gov (United States)

    Wahaidi, Vivian Y.; Kowolik, Michael J.; Eckert, George J.; Galli, Dominique M.

    2011-01-01

    Aim To assess endotoxemia episodes and subsequent changes in serum inflammatory biomarkers using the experimental gingivitis model Materials and Methods Data from 50 healthy black and white adult males and females were compared for serum concentrations of endotoxin, and serum biomarkers [neutrophil oxidative activity, interleukin (IL)-1β, IL-6, IL-8, C-reactive protein, and fibrinogen] at baseline, at 3 weeks of experimental gingivitis, and after 2 weeks of recovery. Means were compared using repeated measures ANOVA. Results Endotoxemia was reported in 56% of the serum samples at three weeks of induced gingivitis. At two weeks of recovery, endotoxin levels decreased to levels similar to those reported at baseline. Neutrophil oxidative activity increased significantly following three weeks of gingivitis versus baseline (pgingivitis was associated with endotoxemia and hyperactivity of circulating neutrophils, but not with changes in systemic levels of cytokines and acute phase proteins. This may be attributed to the mild nature and the short duration of the induced gingivitis. PMID:21320151

  8. Gingival fibroma versus verrucous leukoplakia – A clinical dilemma!!!

    Directory of Open Access Journals (Sweden)

    Renu Garg

    2016-01-01

    Full Text Available Gingival overgrowths found in the oral cavity are mostly due to reactive hyperplasia and rarely depict neoplastic nature. It is a challenge for the clinician to give final diagnoses of gingival overgrowth. Gingiva is a common site for various benign and malignant lesions. Oral cavity is an ideal niche for the manifestation of various precancerous and cancerous lesions. Fibrous growths present in the oral cavity include a varying group of reactive, precancerous, and cancerous conditions. This report describes a case of a 55-year-old male who clinically presented with a localized fibromatous gingival overgrowth in relation to lower left mandibular canine-premolar region that was diagnosed as a gingival fibroma associated with leukoplakia. On histopathological examination, it was diagnosed as a case of proliferative verrucous leukoplakia. Many a times, clinicians face dilemma while diagnosing an overgrowth as it is difficult to differentiate clinically. Hence, a thorough clinical knowledge and a pathologist's opinion become mandatory to give final diagnosis to such gingival overgrowths.

  9. Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts.

    Science.gov (United States)

    Wirohadidjojo, Yohanes Widodo; Budiyanto, Arief; Soebono, Hardyanto

    2016-09-01

    To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm⁻²) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined.

  10. Gingival mask: A case report on enhancing smiles

    Directory of Open Access Journals (Sweden)

    Aashritha Shenava

    2014-01-01

    Full Text Available Periodontal attachment loss in the maxillary anterior region can often lead to esthetic and functional clinical problems including disproportional and elongated clinical crowns and visible interdental embrasures. Gingival replacement prosthesis has historically been used to replace lost tissue. A gingival mask is an easily constructed and practical device to optimize the esthetic and functional outcome in these special situations while permitting cleansibility of the prosthesis and supporting tissues. This is a case report of a young female patient treated using silicon gingival veneer with a 2-year follow-up. The silicon gingival mask has enabled the patient to regain her lost smile and face people with newly found confidence also enhancing the esthetic appearance. Virtually, no problem was encountered during the 2 years of usage of the veneer and the patient continues to use it comfortably.

  11. Induction of anchorage-independent growth of human embryonic fibroblasts with a deletion in the short arm of chromosome 11 by human papillomavirus type 16 DNA

    International Nuclear Information System (INIS)

    Smits, H.L.; Raadsheer, E.; Rood, I.; Mehendale, S.; Slater, R.M.; van der Noordaa, J.; Ter Schegget, J.

    1988-01-01

    Human embryonic fibroblasts with a large deletion (11p11.11p15.1) in the short arm of one chromosome 11 (del-11 cells) appeared to be susceptible to transformation by early human papillomavirus type 16 (HPV-16) DNA, whereas diploid human embryonic fibroblasts were not. This difference in susceptibility might be explained by the absence of a tumor suppressor gene located within the deleted part on the short arm of chromosome 11. The presence of abundant viral early-gene transcripts in transformed cells suggests that transformation was induced by an elevated level of an HPV-16 early-gene product(s). The low transcriptional activity of HPV-16 in diploid cells may indicate that cellular genes affect viral transcription. Interruption of the HPV-16 E2 early open reading frame is probably required for high-level HPV-16 early-gene expression driven from the homologous enhancer-promoter region

  12. An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts.

    Science.gov (United States)

    Jaquemar, D; Schenker, T; Trueb, B

    1999-03-12

    We have identified a novel transformation-sensitive mRNA, which is present in cultured fibroblasts but is lacking in SV40 transformed cells as well as in many mesenchymal tumor cell lines. The corresponding gene is located on human chromosome 8 in band 8q13. The open reading frame of the mRNA encodes a protein of 1119 amino acids forming two distinct domains. The N-terminal domain consists of 18 repeats that are related to the cytoskeletal protein ankyrin. The C-terminal domain contains six putative transmembrane segments that resemble many ion channels. This overall structure is reminiscent of TRP-like proteins that function as store-operated calcium channels. The novel protein with an Mr of 130 kDa is expressed at a very low level in human fibroblasts and at a moderate level in liposarcoma cells. Overexpression in eukaryotic cells appears to interfere with normal growth, suggesting that it might play a direct or indirect role in signal transduction and growth control.

  13. Blocking negative effects of senescence in human skin fibroblasts with a plant extract.

    Science.gov (United States)

    Lämmermann, Ingo; Terlecki-Zaniewicz, Lucia; Weinmüllner, Regina; Schosserer, Markus; Dellago, Hanna; de Matos Branco, André Dargen; Autheried, Dominik; Sevcnikar, Benjamin; Kleissl, Lisa; Berlin, Irina; Morizot, Frédérique; Lejeune, Francois; Fuzzati, Nicola; Forestier, Sandra; Toribio, Alix; Tromeur, Anaïs; Weinberg, Lionel; Higareda Almaraz, Juan Carlos; Scheideler, Marcel; Rietveld, Marion; El Ghalbzouri, Abdoel; Tschachler, Erwin; Gruber, Florian; Grillari, Johannes

    2018-01-01

    There is increasing evidence that senescent cells are a driving force behind many age-related pathologies and that their selective elimination increases the life- and healthspan of mice. Senescent cells negatively affect their surrounding tissue by losing their cell specific functionality and by secreting a pro-tumorigenic and pro-inflammatory mixture of growth hormones, chemokines, cytokines and proteases, termed the senescence-associated secretory phenotype (SASP). Here we identified an extract from the plant Solidago virgaurea subsp. alpestris , which exhibited weak senolytic activity, delayed the acquisition of a senescent phenotype and induced a papillary phenotype with improved functionality in human dermal fibroblasts. When administered to stress-induced premature senescent fibroblasts, this extract changed their global mRNA expression profile and particularly reduced the expression of various SASP components, thereby ameliorating the negative influence on nearby cells. Thus, the investigated plant extract represents a promising possibility to block age-related loss of tissue functionality.

  14. Early detection of degraded A14-125I-insulin in human fibroblasts by the use of high performance liquid chromatography

    International Nuclear Information System (INIS)

    Stentz, F.B.; Harris, H.L.; Kitabchi, A.E.

    1983-01-01

    We studied the metabolism of A14-125I-insulin in intact human fibroblasts using high performance liquid chromatography (HPLC) to detect and separate its early degradation products. The high resolving power of HPLC enabled us to separate what has been considered ''intact insulin'' by Sephadex G-50 chromatography or TCA precipitability into two additional peaks that had decreased biochemical properties with respect to immunoprecipitability and receptor binding but not decreased TCA precipitability. We conclude that human fibroblast is capable of metabolizing insulin within 2 min at 37 degrees C into intermediate molecules that can be detected by HPLC but not by TCA precipitability or molecular sieve chromatography

  15. Portulaca oleracea extracts protect human keratinocytes and fibroblasts from UV-induced apoptosis.

    Science.gov (United States)

    Lee, Suyeon; Kim, Ki Ho; Park, Changhoon; Lee, Jong-Suk; Kim, Young Heui

    2014-10-01

    Portulaca oleracea extracts, known as Ma Chi Hyun in the traditional Korean medicine, show a variety of biomedical efficacies including those in anti-inflammation and anti-allergy. In this study, we investigate the protective activity of the P. oleracea extracts against UVB-induced damage in human epithelial keratinocytes and fibroblasts by several apoptosis-related tests. The results suggest that P. oleracea extracts have protective effects from UVB-induced apoptosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Brydone, Alistair S; Dominic Meek, R M [Department of Orthopaedics, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TF (United Kingdom); Dalby, Matthew J; Berry, Catherine C; McNamara, Laura E, E-mail: alibrydone@gmail.com [Centre for Cell Engineering, Joseph Black Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2011-06-15

    Extracellular matrix (ECM) remodelling is an essential physiological process in which matrix-metalloproteinases (MMPs) have a key role. Manipulating the manner in which cells produce MMPs and ECMs may enable the creation of a desired tissue type, i.e. effect repair, or the prevention of tissue invasion (e.g. metastasis). The aim of this project was to determine if culturing fibroblasts on grooved topography altered collagen deposition or MMP production. Human fibroblasts were seeded on planar or grooved polycaprolactone substrates (grooves were 12.5 {mu}m wide with varying depths of 240 nm, 540 nm or 2300 nm). Cell behaviour and collagen production were studied using fluorescence microscopy and the spent culture medium was assessed using gel zymography to detect MMPs. Total collagen deposition was high on the 240 nm deep grooves, but decreased as the groove depth increased, i.e. as cell contact guidance decreased. There was an increase in gelatinase on the 2300 nm deep grooved topography and there was a difference in the temporal expression of MMP-3 observed on the planar surface compared to the 540 nm and 2300 nm topographies. These results show that topography can alter collagen and MMP production. A fuller understanding of these processes may permit the design of surfaces tailored to tissue regeneration e.g. tendon repair.

  17. Grooved surface topography alters matrix-metalloproteinase production by human fibroblasts

    International Nuclear Information System (INIS)

    Brydone, Alistair S; Dominic Meek, R M; Dalby, Matthew J; Berry, Catherine C; McNamara, Laura E

    2011-01-01

    Extracellular matrix (ECM) remodelling is an essential physiological process in which matrix-metalloproteinases (MMPs) have a key role. Manipulating the manner in which cells produce MMPs and ECMs may enable the creation of a desired tissue type, i.e. effect repair, or the prevention of tissue invasion (e.g. metastasis). The aim of this project was to determine if culturing fibroblasts on grooved topography altered collagen deposition or MMP production. Human fibroblasts were seeded on planar or grooved polycaprolactone substrates (grooves were 12.5 μm wide with varying depths of 240 nm, 540 nm or 2300 nm). Cell behaviour and collagen production were studied using fluorescence microscopy and the spent culture medium was assessed using gel zymography to detect MMPs. Total collagen deposition was high on the 240 nm deep grooves, but decreased as the groove depth increased, i.e. as cell contact guidance decreased. There was an increase in gelatinase on the 2300 nm deep grooved topography and there was a difference in the temporal expression of MMP-3 observed on the planar surface compared to the 540 nm and 2300 nm topographies. These results show that topography can alter collagen and MMP production. A fuller understanding of these processes may permit the design of surfaces tailored to tissue regeneration e.g. tendon repair.

  18. The effect of tranilast on fibroblast activation protein α (FAP-α expression in normal and keloid fibroblasts in vitro

    Directory of Open Access Journals (Sweden)

    Paweł P. Antończak

    2017-07-01

    Full Text Available Introduction . Tranilast (N-(3’,4’-demethoxycinnamoyl-anthranilic acid is an anti-allergic drug. Its mechanism of action is based on the inhibition of antigen-induced release of chemical mediators from mast cells and basophils. It also reveals antifibroproliferative activities. These properties of tranilast are used in the treatment of hypertrophic scars and keloids. Keloids are characterized by incorrect extracellular matrix components turnover. Fibroblasts derived from keloids reveal overproduction of collagen type I and decreased degradation of extracellular matrix in comparison with normal fibroblasts. Fibroblast activation protein α (FAP-α may play an important role in remodeling of extracellular matrix and the invasive properties of keloids. Objective . In the present study, the effect of tranilast on expression of FAP-α gene and its protein was evaluated in normal human dermal fibroblasts and fibroblasts derived from keloids cultured in vitro . Materials and methods. In the first stage of the study, the influence of tranilast on cell viability was estimated. The second stage of the study included the quantitative evaluation of FAP-α mRNA expression in normal and keloid fibroblasts treated with tranilast. The third stage of the study comprised fibroblast activation protein α expression analysis in the examined cells treated with tranilast. Results and conclusions . The expression of FAP-α gene and fibroblast activation protein α is higher in keloid fibroblasts. Tranilast at concentrations of 3 μM and 30 μM up-regulated mRNA FAP-α expression in normal fibroblasts but did not influence keloid fibroblasts. The drug, at concentrations of 30 μM and 300 μM up-regulated fibroblast activation protein α expression in normal fibroblasts and did not influence keloid fibroblasts. Tranilast antiproliferative effect is not associated with FAP-α expression in keloid fibroblasts.

  19. Esthetic impact of gingival plastic surgery from the dentistry students’ perspective

    Science.gov (United States)

    Ayyildiz, Erdem; Tan, Enes; Keklik, Hakan; Demirtag, Zulfikar; Celebi, Ahmet Arif; Pithon, Matheus Melo

    2016-01-01

    Objective: The aim of the this study was to evaluate the perception of smile esthetics and alterations in cases of gingival plastic surgery for correction of a gummy smile, by means of alterations in smile photograph among dentistry degree students. Materials and Methods: A frontal smile photograph of a 40-year-old woman having normal occlusion was used with diverse compositions of gingival exposure level and crown length of maxillary teeth. The eight photographs were evaluated by 216 dentistry students in five class groups (1st, 2nd, 3rd, 4th and 5th classes). Results: The results revealed that almost all of the class’ students perceived differences between images, additionally, the highest percentage of students that answered “no difference” was 12% at 1st class’ students. 1st and 2nd class’ students most liked photograph which is 2.5 mm gingival display and 3rd class students liked two different photographs which are 2.5 mm gingival display and 2 mm gingival display whereas 4th class students preferred two different photographs which are 1.5 mm gingival display and 1 mm gingival display, 5th class students preferred photograph which is 1.5 mm gingival display as the most. Conclusion: Esthetic perception of smile improve as a student passes to higher study classes in terms of gingival exposure. The harmonious display of gingiva exhibits an important effect in the smile esthetics rather than reduced or excessive display. PMID:27403061

  20. Monophasic Pulsed 200-μA Current Promotes Galvanotaxis With Polarization of Actin Filament and Integrin α2β1 in Human Dermal Fibroblasts.

    Science.gov (United States)

    Uemura, Mikiko; Maeshige, Noriaki; Koga, Yuka; Ishikawa-Aoyama, Michiko; Miyoshi, Makoto; Sugimoto, Masaharu; Terashi, Hiroto; Usami, Makoto

    2016-01-01

    The monophasic pulsed microcurrent is used to promote wound healing, and galvanotaxis regulation has been reported as one of the active mechanisms in the promotion of tissue repair with monophasic pulsed microcurrent. However, the optimum monophasic pulsed microcurrent parameters and intracellular changes caused by the monophasic pulsed microcurrent have not been elucidated in human dermal fibroblasts. The purpose of this study was to investigate the optimum intensity for promoting galvanotaxis and the effects of electrical stimulation on integrin α2β1 and actin filaments in human dermal fibroblasts. Human dermal fibroblasts were treated with the monophasic pulsed microcurrent of 0, 100, 200, or 300 μA for 8 hours, and cell migration and cell viability were measured 24 hours after starting monophasic pulsed microcurrent stimulation. Polarization of integrin α2β1 and lamellipodia formation were detected by immunofluorescent staining 10 minutes after starting monophasic pulsed microcurrent stimulation. The migration toward the cathode was significantly higher in the cells treated with the 200-μA monophasic pulsed microcurrent than in the controls (P microcurrent did not alter the migration ratio. The electrostimulus of 200 μA also promoted integrin α2β1 polarization and lamellipodia formation at the cathode edge (P microcurrent intensity to promote migration toward the cathode, and this intensity could regulate polarization of migration-related intracellular factors in human dermal fibroblasts.

  1. Effect of Sleep and Salivary Glucose on Gingivitis in Children.

    Science.gov (United States)

    Alqaderi, H; Tavares, M; Hartman, M; Goodson, J M

    2016-11-01

    It has been shown that inadequate sleep has deleterious effects on health by suppressing immunity and promoting inflammation. The aim of this study was to investigate the effect of sleep and salivary glucose levels on the development of gingivitis in a prospective longitudinal study of Kuwaiti children. Data were collected from 10-y-old children ( N = 6,316) in 2012 and again in 2014. Children were approximately equally distributed from 138 elementary schools representing the 6 governorates of Kuwait. Calibrated examiners conducted oral examination, self-reported sleep evaluation interviews, anthropomorphic measurements, and unstimulated whole saliva sample collection. Salivary glucose levels were measured by a florescent glucose oxidase method; values of salivary glucose ≥1.13 mg/dL were defined as high glucose levels. A multilevel random intercept and slope analysis was conducted to determine the relationship between sleep duration and gingivitis on 3 levels: within schools, among children, and over time. The outcome was the progression of the extent of gingival inflammation in children over time. The main independent variables were the number of daily sleep hours and salivary glucose levels. Other explanatory variables and confounders assessed were governorate, dental caries and restorations, and obesity by waist circumference (adjusted for snacking and sex). Gingivitis increased over time in children who had shorter sleep duration ( P 1.13 mg/dL predicted gingivitis ( P gingivitis ( P gingivitis and obesity. The level of gingivitis was different among the 6 governorates of Kuwait. Additionally, there was a strong clustering effect of the observations within schools and among children across time. Longitudinal analysis of 6,316 Kuwaiti children revealed that shorter sleep duration and higher salivary glucose levels were both associated with increased gingival inflammation.

  2. Multistep process of neoplastic transformation of normal human fibroblasts by 60Co gamma rays and Harvey sarcoma viruses

    Energy Technology Data Exchange (ETDEWEB)

    Namba, M.; Nishitani, K.; Fukushima, F.; Kimoto, T.; Nose, K.

    1986-03-15

    As reported previously (Namba et al., 1985), normal human fibroblasts were transformed by 60Co gamma-ray irradiation into immortal cells with abnormal karyotypes. These transformed cells (KMST-6), however, showed a low cloning efficiency in soft agar and no transplantability. However, upon treatment with Harvey murine sarcoma virus (Ha-MSV), the cells acquired elevated clonability in soft agar and transplantability in nude mice. Ha-MSV alone, however, did not convert normal human fibroblasts into either immortal or tumorigenic cells. The Ha-MSV-transformed KMST-6 cells showed an enhanced expression of the ras oncogene, but normal and 60Co gamma-ray-transformed cells did not. Our current data suggest that gamma rays worked against normal human cells as an initiator, giving rise to chromosome aberrations and immortality, and that Ha-MSV, probably through its ras oncogene, played a role in the progression of the malignant cell population to a more malignant one showing enhanced colony formation in soft agar and tumorigenicity in nude mice.

  3. High-efficiency generation of induced pluripotent mesenchymal stem cells from human dermal fibroblasts using recombinant proteins.

    Science.gov (United States)

    Chen, Fanfan; Zhang, Guoqiang; Yu, Ling; Feng, Yanye; Li, Xianghui; Zhang, Zhijun; Wang, Yongting; Sun, Dapeng; Pradhan, Sriharsa

    2016-07-30

    Induced pluripotent mesenchymal stem cells (iPMSCs) are novel candidates for drug screening, regenerative medicine, and cell therapy. However, introduction of transcription factor encoding genes for induced pluripotent stem cell (iPSC) generation which could be used to generate mesenchymal stem cells is accompanied by the risk of insertional mutations in the target cell genome. We demonstrate a novel method using an inactivated viral particle to package and deliver four purified recombinant Yamanaka transcription factors (Sox2, Oct4, Klf4, and c-Myc) resulting in reprogramming of human primary fibroblasts. Whole genome bisulfite sequencing was used to analyze genome-wide CpG methylation of human iPMSCs. Western blot, quantitative PCR, immunofluorescence, and in-vitro differentiation were used to assess the pluripotency of iPMSCs. The resulting reprogrammed fibroblasts show high-level expression of stem cell markers. The human fibroblast-derived iPMSC genome showed gains in DNA methylation in low to medium methylated regions and concurrent loss of methylation in previously hypermethylated regions. Most of the differentially methylated regions are close to transcription start sites and many of these genes are pluripotent pathway associated. We found that DNA methylation of these genes is regulated by the four iPSC transcription factors, which functions as an epigenetic switch during somatic reprogramming as reported previously. These iPMSCs successfully differentiate into three embryonic germ layer cells, both in vitro and in vivo. Following multipotency induction in our study, the delivered transcription factors were degraded, leading to an improved efficiency of subsequent programmed differentiation. Recombinant transcription factor based reprogramming and derivatization of iPMSC offers a novel high-efficiency approach for regenerative medicine from patient-derived cells.

  4. Protective role of vitamin E preconditioning of human dermal fibroblasts against thermal stress in vitro.

    Science.gov (United States)

    Butt, Hira; Mehmood, Azra; Ali, Muhammad; Tasneem, Saba; Anjum, Muhammad Sohail; Tarar, Moazzam N; Khan, Shaheen N; Riazuddin, Sheikh

    2017-09-01

    Oxidative microenvironment of burnt skin restricts the outcome of cell based therapies of thermal skin injuries. The aim of this study was to precondition human dermal fibroblasts with an antioxidant such as vitamin E to improve their survival and therapeutic abilities in heat induced oxidative in vitro environment. Fibroblasts were treated with 100μM vitamin E for 24h at 37°C followed by heat shock for 10min at 51°C in fresh serum free medium. Preconditioning with vitamin E reduced cell injury as demonstrated by decreased expression of annexin-V, cytochrome p450 (CYP450) mediated oxidative reactions, senescence and release of lactate dehydrogenase (LDH) accomplished by down-regulated expression of pro-apoptotic BAX gene. Vitamin E preconditioned cells exhibited remarkable improvement in cell viability, release of paracrine factors such as epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), stromal derived factor-1alpha (SDF-1α) and also showed significantly up-regulated levels of PCNA, VEGF, BCL-XL, FGF7, FGF23, FLNβ and Col7α genes presumably through activation of phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. The results suggest that pretreatment of fibroblasts with vitamin E prior to transplantation in burnt skin speeds up the wound healing process by improving the antioxidant scavenging responses in oxidative environment of transplanted burn wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts.

    Science.gov (United States)

    Sitte, N; Merker, K; von Zglinicki, T; Grune, T

    2000-03-01

    One of the highlights of age-related changes of cellular metabolism is the accumulation of oxidized proteins. The aging process on a cellular level can be treated either as the ongoing proliferation until a certain number of cell divisions is reached (the Hayflick limit) or as the aging of nondividing cells, that is, the age-related changes in cells without proliferation. The present investigation was undertaken to reveal the changes in protein turnover, proteasome activity, and protein oxidation status during proliferative senescence. We were able to demonstrate that the activity of the cytosolic proteasomal system declines dramatically during the proliferative senescence of human MRC-5 fibroblasts. Regardless of the loss in activity, it could be demonstrated that there are no changes in the transcription and translation of proteasomal subunits. This decline in proteasome activity was accompanied by an increased concentration of oxidized proteins. Cells at higher proliferation stages were no longer able to respond with increased degradation of endogenous [(35)S]-Met-radiolabeled proteins after hydrogen peroxide- or quinone-induced oxidative stress. It could be demonstrated that oxidized proteins in senescent human MRC-5 fibroblasts are not as quickly removed as they are in young cells. Therefore, our study demonstrates that the accumulation of oxidized proteins and decline in protein turnover and activity of the proteasomal system are not only a process of postmitotic aging but also occur during proliferative senescence and result in an increased half-life of oxidized proteins.

  6. Risk factors for gingivitis in a group of Brazilian schoolchildren.

    Science.gov (United States)

    Chiapinotto, Fabiana Amaral; Vargas-Ferreira, Fabiana; Demarco, Flávio Fernando; Corrêa, Fernanda Oliveira Bello; Masotti, Alexandre Severo

    2013-01-01

    Studies on gingivitis in children and adolescents are scarce and the results are inconclusive. The aim of this study was to assess the prevalence and extension of gingivitis and associated factors in Brazilian schoolchildren. Cross-sectional data from 1,211 schoolchildren 8 to 12 years old from Southern Brazil in 20 public and private schools were analyzed. Socioeconomic, demographic, and oral hygiene habits were assessed by questionnaires answered by parents and children. Buccal examination assessed presence of plaque, crowding, and gingivitis. Data were analyzed using Poisson regression [prevalence ratio (PR); 95% confidence interval (CI)]. Prevalence of visible plaque was 89.7% (95% CI 88.0-91.3) and gingival bleeding on probing was 78.4% (95% CI 76.1-81.0). The mean and median numbers of sites with gingival bleeding were 3.10 and 2 (SD ± 3.22), respectively. In multivariate adjusted analysis, the presence of a greater number of sites with plaque was significantly associated with gingivitis (PR 1.26; 95% CI 1.07-1.47) and its extension (PR 1.96; 95% CI 1.53-2.51). Lighter-skinned black children had a lower probability of having severe gingivitis (PR 0.69; 95% CI 0.48-0.98) compared with white children. This association was observed after adjusting for other variables. Gingivitis was associated with higher number of sites with plaque and with skin color, reflecting the influence of biological and demographic factors on this oral condition. © 2012 American Association of Public Health Dentistry.

  7. The effectiveness of dentifrices without and with sodium lauryl sulfate on plaque, gingivitis and gingival abrasion : a randomized clinical trial

    NARCIS (Netherlands)

    Sälzer, S.; Rosema, N.A.M.; Martin, E.C.J.; Slot, D.E.; Timmer, C.J.; Dörfer, C.E.; van der Weijden, G.A.

    2016-01-01

    Objectives The aim of this study was to compare the efficacy of a dentifrice without sodium lauryl sulfate (SLS) to a dentifrice with SLS in young adults aged 18–34 years on gingivitis. Material and methods One hundred twenty participants (non-dental students) with a moderate gingival inflammation

  8. Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts

    DEFF Research Database (Denmark)

    Dabelsteen, S; Wandall, H H; Grøn, B

    1997-01-01

    Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF mRNA is expres......Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF m......RNA is expressed in periodontal ligament fibroblasts, and that the expression is increased upon serum stimulation. Fibroblasts from human periodontal ligament, from buccal mucosa, from gingiva, and from skin were established from explants. Alkaline phosphatase activity was used as an indicator of the periodontal...

  9. Gingival plasma cell granuloma

    Directory of Open Access Journals (Sweden)

    Amitkumar B Pandav

    2012-01-01

    Full Text Available Plasma cell granuloma, also known as inflammatory pseudotumor is a tumor-like lesion that manifests primarily in the lungs. But it may occur in various other anatomic locations like orbit, head and neck, liver and rarely in the oral cavity. We here report an exceedingly rare case of gingival plasma cell granuloma in a 58 year old woman who presented with upper gingival polypoidal growth. The histopathological examination revealed a mass composed of proliferation of benign spindle mesenchymal cells in a loose myxoid and fibrocollagenous stroma along with dense infiltrate of chronic inflammatory cells predominantly containing plasma cells. Immunohistochemistry for kappa and lambda light chains showed a polyclonal staining pattern confirming a diagnosis of plasma cell granuloma.

  10. Selection and characterization of a human neutralizing antibody to human fibroblast growth factor-2

    International Nuclear Information System (INIS)

    Tao, Jun; Xiang, Jun-Jian; Li, Dan; Deng, Ning; Wang, Hong; Gong, Yi-Ping

    2010-01-01

    Compelling evidences suggest that fibroblast growth factor-2 (FGF-2) plays important roles in tumor growth, angiogenesis and metastasis. Molecules blocking the FGF-2 signaling have been proposed as anticancer agents. Through screening of a human scFv phage display library, we have isolated several human single-chain Fv fragments (scFvs) that bind to human FGF-2. After expression and purification in bacteria, one scFv, named 1A2, binds to FGF-2 with a high affinity and specificity, and completes with FGF-2 binding to its receptor. This 1A2 scFv was then cloned into the pIgG1 vector and expressed in 293T cells. The purified hIgG1-1A2 antibody showed a high binding affinity of 8 x 10 -9 M to rhFGF-2. In a set of vitro assays, it inhibited various biological activities of FGF-2 such as the proliferation, migration and tube formation of human umbilical vein endothelial cells. More importantly, hIgG1-1A2 antibody also efficiently blocked the growth while inducing apoptosis of glioma cells. For the first time, we generated a human anti-FGF-2 antibody with proven in vitro anti-tumor activity. It may therefore present a new therapeutic candidate for the treatment of cancers that are dependent on FGF-2 signaling for growth and survival.

  11. Gene targeting in adult rhesus macaque fibroblasts

    Directory of Open Access Journals (Sweden)

    Wolf Don P

    2008-03-01

    Full Text Available Abstract Background Gene targeting in nonhuman primates has the potential to produce critical animal models for translational studies related to human diseases. Successful gene targeting in fibroblasts followed by somatic cell nuclear transfer (SCNT has been achieved in several species of large mammals but not yet in primates. Our goal was to establish the protocols necessary to achieve gene targeting in primary culture of adult rhesus macaque fibroblasts as a first step in creating nonhuman primate models of genetic disease using nuclear transfer technology. Results A primary culture of adult male fibroblasts was transfected with hTERT to overcome senescence and allow long term in vitro manipulations. Successful gene targeting of the HPRT locus in rhesus macaques was achieved by electroporating S-phase synchronized cells with a construct containing a SV40 enhancer. Conclusion The cell lines reported here could be used for the production of null mutant rhesus macaque models of human genetic disease using SCNT technology. In addition, given the close evolutionary relationship and biological similarity between rhesus macaques and humans, the protocols described here may prove useful in the genetic engineering of human somatic cells.

  12. Zymosterol is located in the plasma membrane of cultured human fibroblasts

    International Nuclear Information System (INIS)

    Echevarria, F.; Norton, R.A.; Nes, W.D.; Lange, Y.

    1990-01-01

    Zymosterol (5 alpha-cholesta-8(9),24-dien-3 beta-ol) comprised a negligible fraction of the mass of sterol in cultured human fibroblasts but was well labeled biosynthetically with radioactive acetate. Treatment of cells with triparanol, a potent inhibitor of sterol delta 24-reductase, led to a marked increase in labeled zymosterol while its mass rose to 1 mol% of total sterol. All of this sterol could be chased into cholesterol. Furthermore, cell homogenates converted exogenous radiolabeled zymosterol to cholesterol. Three lines of evidence suggested that biosynthetically labeled zymosterol was associated with the plasma membrane. (1) About 80% of radiolabeled zymosterol was oxidized by the impermeant enzyme, cholesterol oxidase, in glutaraldehyde-fixed intact cells. (2) Sucrose density gradient analysis of homogenates showed that the equilibrium buoyant density profile of newly synthesized zymosterol was identical with that of the plasma membrane. (3) Newly synthesized zymosterol was transferred as readily from fixed intact fibroblasts to exogenous acceptors as was cholesterol. Given that cholesterol is synthesized within the cell, it is unclear why most of the zymosterol is in the plasma membrane. The pathway of cholesterol biosynthesis may compel zymosterol to flux through the plasma membrane. Alternatively, plasma membrane zymosterol may represent a separate pool, in equilibrium with the zymosterol in the intracellular biosynthetic pool

  13. Diverse modalities of gingival replacement: A report of three cases

    Directory of Open Access Journals (Sweden)

    Dileep N Vinnakota

    2012-01-01

    Full Text Available Gingival replacement is often a component of comprehensive prosthodontics. Gingival prostheses may be fixed or removable. It can be made from acrylics, composite resins, silicones or porcelain-based materials.This paper describes different clinical situations in which three types of gingival prostheses, removable acrylic veneer with melanin pigmentation, fixed ceramic veneer and flexible nylon based veneer, were used effectively.

  14. Transduction of Oct6 or Oct9 gene concomitant with Myc family gene induced osteoblast-like phenotypic conversion in normal human fibroblasts.

    Science.gov (United States)

    Mizoshiri, N; Kishida, T; Yamamoto, K; Shirai, T; Terauchi, R; Tsuchida, S; Mori, Y; Ejima, A; Sato, Y; Arai, Y; Fujiwara, H; Yamamoto, T; Kanamura, N; Mazda, O; Kubo, T

    2015-11-27

    Osteoblasts play essential roles in bone formation and regeneration, while they have low proliferation potential. Recently we established a procedure to directly convert human fibroblasts into osteoblasts (dOBs). Transduction of Runx2 (R), Osterix (X), Oct3/4 (O) and L-myc (L) genes followed by culturing under osteogenic conditions induced normal human fibroblasts to express osteoblast-specific genes and produce calcified bone matrix both in vitro and in vivo Intriguingly, a combination of only two factors, Oct3/4 and L-myc, significantly induced osteoblast-like phenotype in fibroblasts, but the mechanisms underlying the direct conversion remains to be unveiled. We examined which Oct family genes and Myc family genes are capable of inducing osteoblast-like phenotypic conversion. As result Oct3/4, Oct6 and Oct9, among other Oct family members, had the capability, while N-myc was the most effective Myc family gene. The Oct9 plus N-myc was the best combination to induce direct conversion of human fibroblasts into osteoblast-like cells. The present findings may greatly contribute to the elucidation of the roles of the Oct and Myc proteins in osteoblast direct reprogramming. The results may also lead to establishment of novel regenerative therapy for various bone resorption diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Oral health education and therapy reduces gingivitis during pregnancy.

    Science.gov (United States)

    Geisinger, Maria L; Geurs, Nicolaas C; Bain, Jennifer L; Kaur, Maninder; Vassilopoulos, Philip J; Cliver, Suzanne P; Hauth, John C; Reddy, Michael S

    2014-02-01

    Pregnant women demonstrate increases in gingivitis despite similar plaque levels to non-pregnant counterparts. To evaluate an intensive protocol aimed at reducing gingivitis in pregnant women and provide pilot data for large-scale randomized controlled trials investigating oral hygiene measures to reduce pregnancy gingivitis and alter maternity outcomes. One hundred and twenty participants between 16 and 24 weeks gestation with Gingival Index (GI) scores ≥2 at ≥50% of tooth sites were enrolled. Plaque index (PI), gingival inflammation (GI), probing depth (PD), and clinical attachment levels (CAL) were recorded at baseline and 8 weeks. Dental prophylaxis was performed at baseline and oral hygiene instructions at baseline, 4 and 8 weeks. Pregnancy outcomes were recorded at parturition. Mixed-model analysis of variance was used to compare clinical measurements at baseline and 8 weeks. Statistically significant reductions in PI, GI, PD, and CAL occurred over the study period. Mean whole mouth PI and GI scores decreased approximately 50% and the percentage of sites with PI and GI ≥2 decreased from 40% to 17% and 53% to 21.8%, respectively. Mean decreases in whole mouth PD and CAL of 0.45 and 0.24 mm, respectively, were seen. Intensive oral hygiene regimen decreased gingivitis in pregnant patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Irradiated murine fibroblasts as feeder layer used in human cell culture

    International Nuclear Information System (INIS)

    Almeida, Tiago L.; Klingbeil, Fatima G.; Yoshito, Daniele; Caproni, Priscila; Mathor, Monica B.; Herson, Marisa R.

    2007-01-01

    In 1975, Rheinwald and Green published an in vitro model for keratinocyte cell cultures in which the use of murine fibroblasts, as a feeder layer was introduced. These cells are modified fibroblasts, which presence render keratinocyte cells to remain proliferative for longer periods of time. This optimization of culture outputs has allowed for several clinical applications of confluent keratinocyte cultures as skin substitutes or wound dressings in situations such as post burn extensive skin loss, loss of oral mucosa, and other skin disorders. Nevertheless, proliferation of fibroblast in co-culture with keratinocytes must be controlled by anti-proliferative measures such as irradiation; at the same time, keratinocytes require specific nutrients in the culture medium, which may interfere with the fibroblast feeder layer viability. Therefore, the thorough understanding of the impact of different issues such as culture media composition, irradiation dose and pre-plating storage conditions of irradiated fibroblast to be used as feeder layer in these co-culture systems is important. In this work, changes as far as viability and proliferative rates of irradiated fibroblasts in culture were evaluated in relation to the type of culture medium used, dose of gamma radiation exposure, storage and timing of cell plating post irradiation. Results indicate that the type of culture medium used and time-lag between irradiation, refrigeration and plating of irradiated cells do not have significant impact in culture outcomes. However, the dose of gamma radiation administered to the cells may influence the final quality of these cells if to be used as a feeder layer. (author)

  17. Gingival enlargment treatment on 11 and 21 teeth: A case report

    Directory of Open Access Journals (Sweden)

    Umi Ghoni Tjiptoningsih

    2016-06-01

    Full Text Available The main problem of gingival enlargement in the interdental papillae is thickening of gingival contour, rounde and uncomfort feeling, that must be needed immediate in order to be optimal appearance and functionale. Fibrosis gingival enlargement  wont be healed  with plaque control only, but must be require a surgery treatment such as gingivectomy and gingivoplasty. A 24-year-old woman  came into periodontia clinic complaining a hard swelling at anterior maxillary gingiva at 11-21. Plaque index 52%. Gingival pocket depth at tooth 11 is labial (mesial: 4, medial:1, distal:3. Palatal (mesial:3, medial:2, distal:1 and Tooth 21 is labial (mesial:4, medial:1, distal:1, palatal (mesial:3, medial:1, distal:1. Treatment planning done by gingivectomy and gingivoplasty. The aim of the treatment is to eliminating the gingival pocket and physiologic gingival recontouring that can be help to prevent the recurrence of the disease. We must be considered in gingivectomy and gingivoplasty surgery is to minimize disposal the gingival to maintain the aesthetic, adequate access to the bone defect in order to good correction, minimized the bleeding and discomfort after surgery.

  18. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.

    Science.gov (United States)

    Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae

    2018-05-01

    SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.

  19. Differences in motility pattern between human buccal fibroblasts and periodontal and skin fibroblasts

    DEFF Research Database (Denmark)

    Lepekhin, Eugene; Grøn, Birgitte; Berezin, Vladimir

    2002-01-01

    at these sites can be explained by differences in the motile behavior of their respective fibroblast populations. The migratory characteristics were studied in a two-dimensional culture system. The migration of single cells was time-lapse video recorded at intervals of 15 min for a period of 6 h using a computer...

  20. Drug-induced gingival enlargement: Series of cases

    Directory of Open Access Journals (Sweden)

    Isabella Manzur-Villalobos

    2018-01-01

    Full Text Available Introduction: Gingival enlargement (GA is a benign condition of the oral cavity that is characterized by the excessive growth of the gingiva in mass and volume. This lesion is not only caused by hereditary factors or poor oral hygiene, but also by the intake of medications, including antihypertensive, anticonvulsant and immunosuppressive drugs. Objective: To sensitize the prevention or early care in patients with pathologies that merit the use of antihypertensive and anticonvulsants in conjunction with the dentist, to treat or avoid the drug-induced gingival enlargement (DIGE. Materials and methods: A series of clinical cases of patients with gingival enlargement by various drugs are reported, including Phenytoin, Amlodipine and Nifedipine. Periodontal and gingivectomy hygienic phase measures were applied to obtain better effects. Results: Satisfactory results were obtained with a considerable decrease in DIGE. Conclusions: The integral management is important in conjunction with the treating physician to follow up the drug that can be generating gingival enlargement. It is necessary to employ an initial approach with strategies of periodontal hygiene, and in severe cases and, as last resort, the periodontal surgery with gingivectomy and gingivoplasty.

  1. The gingival condition of oral contraceptives users at desa Hegarmanah, Kecamatan Jatinangor

    Directory of Open Access Journals (Sweden)

    Miduk Sibuea

    2010-03-01

    Full Text Available The change of hormonal condition is a systemic condition that affected the periodontium condition. Oral contraceptives is one of the systemic risk that can change hormonal condition. The purpose of the research was to evaluate gingival condition of oral contraceptives users and to find the difference of gingival condition between users and non users of oral contraceptives at Desa Hegarmanah, Kecamatan Jatinangor. The research method was descriptive analytic with purposive sampling, consist of 69 users and 30 non users of oral contraceptives. The gingival condition was scored by using Loe and Sillnes gingival index. The research showed that the average of gingival index in oral contraceptives users was 1.913 and non users was 1.707. The statistic analysis was U Mann Whitney non parametric test and the α was 5% showed that there was a significant difference of gingival condition between users and non users of oral contraceptives. The conclusion of the research was the gingival condition of oral contraceptives users was different with non users at Desa Hegarmanah Kecamatan Jatinangor but clinically was the same, that is in moderate gingivitis category.

  2. Membrane damage induced in cultured human skin fibroblasts by UVA irradiation

    International Nuclear Information System (INIS)

    Gaboriau, F.; Morliere, P.; Marquis, I.; Moysan, A.; Geze, M.; Dubertret, L.

    1993-01-01

    Irradiation of cultured human skin fibroblasts with ultraviolet light from 320 to 400 nm (UVA) leads to a decrease in the membrane fluidity exemplified by an enhanced fluorescence anisotropy of the lipophilic fluorescent probe 1-[4-trimethylamino)-phenyl]-6-phenylhexa-1,3,5-triene. This UVA-induced decrease in fluidity is associated with lactate dehydrogenase leakage in the supernatant. Vitamin E, an inhibitor of lipid peroxidation, exerts a protective effect on both phenomena. Therefore, this UVA-induced damage in membrane properties may be related to lipid peroxidation processes. Moreover, exponentially growing cells are more sensitive to these UVA-induced alterations than confluent cells. (Author)

  3. Presence of gingivitis and periodontitis significantly increases hospital charges in patients undergoing heart valve surgery.

    Science.gov (United States)

    Allareddy, Veerasathpurush; Elangovan, Satheesh; Rampa, Sankeerth; Shin, Kyungsup; Nalliah, Romesh P; Allareddy, Veerajalandhar

    2015-01-01

    To examine the prevalence and impact of gingivitis and periodontitis in patients having heart valve surgical procedures. Nationwide Inpatient Sample for the years 2004-2010 was used. All patients who had heart valve surgical procedures were selected. Prevalence of gingivitis/periodontitis was examined in these patients. Impact of gingivitis/periodontitis on hospital charges, length of stay, and infectious complications was examined. 596,190 patients had heart valve surgical procedures. Gingivitis/periodontitis was present in 0.2 percent. Outcomes included: median hospital charges ($175,418 with gingivitis/ periodontitis versus $149,353 without gingivitis/periodontitis) and median length of stay (14 days with gingivitis/periodontitis versus 8 days without gingivitis/periodontitis). After adjusting for the effects of patient- and hospital-level confounding factors, hospital charges and length of stay were significantly higher (p gingivitis/periodontitis compared to their counterparts. Further, patients with gingivitis/periodontitis had significantly higher odds for having bacterial infections (OR = 3.41, 95% CI = 2.33-4.98, p gingivitis/periodontitis. Presence of gingivitis and periodontitis is associated with higher risk for bacterial infections and significant hospital resource utilization.

  4. Longitudinal quantification of the gingival crevicular fluid proteome during progression from gingivitis to periodontitis in a canine model.

    Science.gov (United States)

    Davis, Ian J; Jones, Andrew W; Creese, Andrew J; Staunton, Ruth; Atwal, Jujhar; Chapple, Iain L C; Harris, Stephen; Grant, Melissa M

    2016-07-01

    Inflammatory periodontal disease is widespread in dogs. This study evaluated site-specific changes in the canine gingival crevicular fluid (GCF) proteome during longitudinal progression from very mild gingivitis to mild periodontitis. Periodontitis diagnosis in dogs requires general anaesthesia with associated risks and costs; our ultimate aim was to develop a periodontitis diagnostic for application in conscious dogs. The objective of this work was to identify potential biomarkers of periodontal disease progression in dogs. Gingival crevicular fluid was sampled from a total of 10 teeth in eight dogs at three different stages of health/disease and samples prepared for quantitative mass spectrometry (data available via ProteomeXchange; identifier PXD003337). A univariate mixed model analysis determined significantly altered proteins between health states and six were evaluated by ELISA. Four hundred and six proteins were identified with 84 present in all samples. The prevalence of 40 proteins was found to be significantly changed in periodontitis relative to gingivitis. ELISA measurements confirmed that haptoglobin was significantly increased. This study demonstrates for the first time that proteins detected by mass spectrometry have potential to identify novel biomarkers for canine periodontal disease. Further work is required to validate additional biomarkers for a periodontitis diagnostic. © 2016 The Authors. Journal of Clinical Periodontology Published by John Wiley & Sons Ltd.

  5. Production of immunoglobulins in gingival tissue explant cultures from juvenile periodontitis patients

    International Nuclear Information System (INIS)

    Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B.

    1990-01-01

    B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected. Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients

  6. Production of immunoglobulins in gingival tissue explant cultures from juvenile periodontitis patients

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.R.; Falkler, W.A. Jr.; Suzuki, J.B. (Univ. of Maryland Dental School, Baltimore (USA))

    1990-10-01

    B lymphocytes and plasma cells are histologically observed in granulomatous periodontal tissues of juvenile periodontitis (JP) patients. Local immune processes may participate in protective or immunopathologic roles in the pathogenesis of this disease. An in vitro explant culture system was utilized to demonstrate the production of immunoglobulins by diseased JP tissues. Immunodiffusion studies using goat anti-human gamma, alpha, or mu chain serum revealed IgG to be the major immunoglobulin present in 92% of the day 1 supernatant fluids (SF) of the 47 JP gingival tissue explant cultures. IgA was present in 15% of the SF; however, no IgM was detected. Staph Protein A isolated 14C-labeled IgG from the SF, when allowed to react with goat anti-human gamma chain serum, formed lines of precipitation. Positive autoradiographs confirmed the biosynthesis of IgG by the explant cultures. The in vitro gingival tissue explant culture system described provides a useful model for the study of localized immunoglobulins produced by diseased tissues of JP patients.

  7. Management of excessive gingival display: Lip repositioning technique

    Directory of Open Access Journals (Sweden)

    Upasana Sthapak

    2015-01-01

    Full Text Available The lips form the frame of a smile and define the esthetic zone. Excessive gingival display during smile is often referred to as "gummy smile". A successful management of excessive gingival display with lip repositioning procedure has shown excellent results. The procedure involves removing a strip of partial thickness mucosa from maxillary vestibule, then suturing it back to the lip mucosa at the level of mucogingival junction. This technique results in restricted muscle pull and a narrow vestibule, thereby reducing the gingival display. In this case gummy smile was treated by modification of Rubinstein and Kostianovsky′s surgical lip repositioning technique which resulted in a harmonious smile.

  8. Gingival recession is likely associated with tongue piercings.

    Science.gov (United States)

    Reynolds, Mark A

    2012-09-01

    A convenience sample of 60 subjects (27 male; 33 female) with tongue piercings (case group) and 120 subjects (43 male; 77 female) without tongue piercings (control group), ranging in age from 13 to 28 years, were identified from a mix of races living in a geographic area of low socioeconomic status in Brazil. Subjects were recruited from school groups and university centers between January 2008 and March 2009. For each case, 2 controls were selected on a consecutive basis from the same school according to criteria that included age, gender, smoking, and previous orthodontic treatment. Exclusion criteria included individuals with systemic diseases that might compromise the immune system, as well as antibiotics within 3 months or other medications that could affect the gingival tissues. The key study factor was the use or nonuse of tongue piercings (jewelry). The analysis compared periodontal parameters, such as the occurrence, location, and severity of gingival recession, in subjects with and without tongue jewelry. Gingival recession in the anterior lingual mandibular region was assessed as the primary outcome measure. The study sample was divided according to the presence or absence of gingival recession as well as the severity (1-2, 3, and ≥ 4 mm) of gingival recession. The average age of subjects was similar in the case and control groups (18.9 versus 17.7 years, respectively). Fractures of the anterior teeth were present significantly more frequently in cases than controls (26.7% versus 11.7%, respectively; P piercings (OR = 11.0, 95% confidence interval [CI] 5.02-24.09, P <.001). The severity of recession in this region was also significantly higher (calculated using an ordinal scale) in cases than in controls (P < .001). The final multivariate logistic regression model for occurrence of gingival recession included the variables tongue jewelry (yes/no), age, male gender, and the presence of bleeding on probing in the anterior region. Subjects with tongue

  9. Aetiology and severity of gingival recession in an adult population sample in Greece

    Directory of Open Access Journals (Sweden)

    Nikolaos Andreas Chrysanthakopoulos

    2011-01-01

    Full Text Available Background: Gingival recession is the most common and undesirable condition of the gingiva. The aim of study was to investigate the aetiology and severity of gingival recession in a Greek adult population sample. Methods : The study was performed on 165 males and 179 females, 18-68 years old who sought dental treatment in a private dental practice and showed gingival recession. All subjects were clinically examined and answered questions regarding their oral hygiene habits such as the type of toothbrush, frequency of brushing and method of brushing. The association between gingival recession and the following parameters was assessed: plaque score, gingival score and tooth position. Statistical analysis of the results was accomplished using chi-square test (α = 0.05. Results: The majority (79.4% of the patients showed grade I gingival recession and 15.3% showed grade II gingival recession. The maxillary 1 st and 2 nd molars (35.3% and the mandibular 1 st and 2 nd molars (28.7% were the teeth most frequently affected by root surface exposure. Patients with sub-gingival calculus, bacterial plaque and gingival inflammation (P < 0.05, malpositioned teeth (P < 0.001, horizontal brushing method, medium type of toothbrush (P < 0.001 and brushing once daily (P < 0.001 appeared to be the most common precipitating aetiological factor for gingival recession. Conclusion: According to the results of the present study, gingival recession was the result of more than one factor acting together. Horizontal brushing method, usage of medium type toothbrush and tooth brushing once daily were found to be more associated with gingival recession.

  10. Mitochondrial damage and cytoskeleton reorganization in human dermal fibroblasts exposed to artificial visible light similar to screen-emitted light.

    Science.gov (United States)

    Rascalou, Adeline; Lamartine, Jérôme; Poydenot, Pauline; Demarne, Frédéric; Bechetoille, Nicolas

    2018-05-05

    Artificial visible light is everywhere in modern life. Social communication confronts us with screens of all kinds, and their use is on the rise. We are therefore increasingly exposed to artificial visible light, the effects of which on skin are poorly known. The purpose of this study was to model the artificial visible light emitted by electronic devices and assess its effect on normal human fibroblasts. The spectral irradiance emitted by electronic devices was optically measured and equipment was developed to accurately reproduce such artificial visible light. Effects on normal human fibroblasts were analyzed on human genome microarray-based gene expression analysis. At cellular level, visualization and image analysis were performed on the mitochondrial network and F-actin cytoskeleton. Cell proliferation, ATP release and type I procollagen secretion were also measured. We developed a device consisting of 36 LEDs simultaneously emitting blue, green and red light at distinct wavelengths (450 nm, 525 nm and 625 nm) with narrow spectra and equivalent radiant power for the three colors. A dose of 99 J/cm 2 artificial visible light was selected so as not to induce cell mortality following exposure. Microarray analysis revealed 2984 light-modulated transcripts. Functional annotation of light-responsive genes revealed several enriched functions including, amongst others, the "mitochondria" and "integrin signaling" categories. Selected results were confirmed by real-time quantitative PCR, analyzing 24 genes representing these two categories. Analysis of micro-patterned culture plates showed marked fragmentation of the mitochondrial network and disorganization of the F-actin cytoskeleton following exposure. Functionally, there was considerable impairment of cell growth and spread, ATP release and type I procollagen secretion in exposed fibroblasts. Artificial visible light induces drastic molecular and cellular changes in normal human fibroblasts. This may impede

  11. Evaluating the potential of poly(beta-amino ester) nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells.

    Science.gov (United States)

    Bhise, Nupura S; Wahlin, Karl J; Zack, Donald J; Green, Jordan J

    2013-01-01

    Gene delivery can potentially be used as a therapeutic for treating genetic diseases, including neurodegenerative diseases, as well as an enabling technology for regenerative medicine. A central challenge in many gene delivery applications is having a safe and effective delivery method. We evaluated the use of a biodegradable poly(beta-amino ester) nanoparticle-based nonviral protocol and compared this with an electroporation-based approach to deliver episomal plasmids encoding reprogramming factors for generation of human induced pluripotent stem cells (hiPSCs) from human fibroblasts. A polymer library was screened to identify the polymers most promising for gene delivery to human fibroblasts. Feeder-independent culturing protocols were developed for nanoparticle-based and electroporation-based reprogramming. The cells reprogrammed by both polymeric nanoparticle-based and electroporation-based nonviral methods were characterized by analysis of pluripotency markers and karyotypic stability. The hiPSC-like cells were further differentiated toward the neural lineage to test their potential for neurodegenerative retinal disease modeling. 1-(3-aminopropyl)-4-methylpiperazine end-terminated poly(1,4-butanediol diacry-late-co-4-amino-1-butanol) polymer (B4S4E7) self-assembled with plasmid DNA to form nanoparticles that were more effective than leading commercially available reagents, including Lipofectamine® 2000, FuGENE® HD, and 25 kDa branched polyethylenimine, for nonviral gene transfer. B4S4E7 nanoparticles showed effective gene delivery to IMR-90 human primary fibroblasts and to dermal fibroblasts derived from a patient with retinitis pigmentosa, and enabled coexpression of exogenously delivered genes, as is needed for reprogramming. The karyotypically normal hiPSC-like cells generated by conventional electroporation, but not by poly(beta-amino ester) reprogramming, could be differentiated toward the neuronal lineage, specifically pseudostratified optic cups. This

  12. Effects of human umbilical cord blood-derived mesenchymal stromal cells and dermal fibroblasts on diabetic wound healing.

    Science.gov (United States)

    Moon, Kyung-Chul; Lee, Jong-Seok; Han, Seung-Kyu; Lee, Hyup-Woo; Dhong, Eun-Sang

    2017-07-01

    A previous study demonstrated that human umbilical cord blood-derived mesenchymal stromal cells (hUCB-MSCs) have superior wound-healing activity compared with fibroblasts in vitro. However, wound healing in vivo is a complex process that involves multiple factors. The purpose of this study was to compare the effects of hUCB-MSCs and fibroblasts on diabetic wound healing in vivo. This study especially focused on collagen synthesis and angiogenesis, which are considered to be the important factors affecting diabetic wound healing. Porous polyethylene discs were loaded with either fibroblasts or hUCB-MSCs, and a third group, which served as a control, was not loaded with cells. The discs were then implanted in the back of diabetic mice. During the first and the second week after implantation, the discs were harvested, and collagen level and microvascular density were compared. In terms of collagen synthesis, the hUCB-MSC group showed the highest collagen level (117.7 ± 8.9 ng/mL), followed by the fibroblast group (83.2 ± 5.2 ng/mL) and the no-cell group (60.0 ± 4.7 ng/mL) in the second week after implantation. In terms of angiogenesis, the microvascular density in the hUCB-MSC group was 56.8 ± 16.4, which was much higher than that in the fibroblast group (14.3 ± 4.0) and the no-cell group (5.7 ± 2.1) in the second week after implantation. These results demonstrate that hUCB-MSCs are superior to fibroblasts in terms of their effect on diabetic wound healing in vivo. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Response of human corneal fibroblasts on silk film surface patterns.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Marchant, Jeff; Omenetto, Fiorenzo; Kaplan, David L

    2010-06-11

    Transparent, biodegradable, mechanically robust, and surface-patterned silk films were evaluated for the effect of surface morphology on human corneal fibroblast (hCF) cell proliferation, orientation, and ECM deposition and alignment. A series of dimensionally different surface groove patterns were prepared from optically graded glass substrates followed by casting poly(dimethylsiloxane) (PDMS) replica molds. The features on the patterned silk films showed an array of asymmetric triangles and displayed 37-342 nm depths and 445-3 582 nm widths. hCF DNA content on all patterned films were not significantly different from that on flat silk films after 4 d in culture. However, the depth and width of the grooves influenced cell alignment, while the depth differences affected cell orientation; overall, deeper and narrower grooves induced more hCF orientation. Over 14 d in culture, cell layers and actin filament organization demonstrated that confluent hCFs and their cytoskeletal filaments were oriented along the direction of the silk film patterned groove axis. Collagen type V and proteoglycans (decorin and biglycan), important markers of corneal stromal tissue, were highly expressed with alignment. Understanding corneal stromal fibroblast responses to surface features on a protein-based biomaterial applicable in vivo for corneal repair potential suggests options to improve corneal tissue mimics. Further, the approaches provide fundamental biomaterial designs useful for bioengineering oriented tissue layers, an endemic feature in most biological tissue structures that lead to critical tissue functions.

  14. Chronic inflammatory gingival enlargement associated with orthodontic therapy--a case report.

    Science.gov (United States)

    Jadhav, Tanya; Bhat, K Mahalinga; Bhat, G Subraya; Varghese, Jothi M

    2013-02-01

    Gingival enlargement, also synonymous with the terms gingival hyperplasia or hypertrophy, is defined as an abnormal overgrowth of gingival tissues. A case of a 19-year-old male presenting with maxillary and mandibular chronic inflammatory gingival enlargement associated with prolonged orthodontic therapy is reported here. Surgical therapy was carried out to provide a good aesthetic outcome. No recurrence was reported at the end of 1 year. The importance of patient motivation and compliance during and after therapy as a critical factor in the success of treatment has also been highlighted through this case report.

  15. Evaluating the potential of poly(beta-amino ester nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Bhise NS

    2013-12-01

    Full Text Available Nupura S Bhise,1,* Karl J Wahlin,2,* Donald J Zack,2–4 Jordan J Green1,21Department of Biomedical Engineering, Translational Tissue Engineering Center, and Institute for Nanobiotechnology, 2Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 3Solomon H Snyder Department of Neuroscience, Department of Molecular Biology and Genetics, and Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; 4Institut de la Vision, Paris, France*These authors contributed equally to this workBackground: Gene delivery can potentially be used as a therapeutic for treating genetic diseases, including neurodegenerative diseases, as well as an enabling technology for regenerative medicine. A central challenge in many gene delivery applications is having a safe and effective delivery method. We evaluated the use of a biodegradable poly(beta-amino ester nanoparticle-based nonviral protocol and compared this with an electroporation-based approach to deliver episomal plasmids encoding reprogramming factors for generation of human induced pluripotent stem cells (hiPSCs from human fibroblasts.Methods: A polymer library was screened to identify the polymers most promising for gene delivery to human fibroblasts. Feeder-independent culturing protocols were developed for nanoparticle-based and electroporation-based reprogramming. The cells reprogrammed by both polymeric nanoparticle-based and electroporation-based nonviral methods were characterized by analysis of pluripotency markers and karyotypic stability. The hiPSC-like cells were further differentiated toward the neural lineage to test their potential for neurodegenerative retinal disease modeling.Results: 1-(3-aminopropyl-4-methylpiperazine end-terminated poly(1,4-butanediol diacrylate-co-4-amino-1-butanol polymer (B4S4E7 self-assembled with plasmid DNA to form nanoparticles that were more effective than leading commercially available

  16. Experimental gingivitis, bacteremia and systemic biomarkers: a randomized clinical trial.

    Science.gov (United States)

    Kinane, D F; Zhang, P; Benakanakere, M; Singleton, J; Biesbrock, A; Nonnenmacher, C; He, T

    2015-12-01

    Bacteremia and systemic inflammatory markers are associated with periodontal and systemic diseases and may be linking mechanisms between these conditions. We hypothesized that in the development of gingival inflammation, systemic markers of inflammation and bacteremia would increase. To study the effect of bacteremia on systemic inflammatory markers, we recruited 80 subjects to participate in an experimental gingivitis study. Subjects were stratified based on gender, smoking and the number of bleeding sites and then randomized to one of two groups: control group (n = 40) or experimental gingivitis group (n = 40). Subjects in the control group conducted an oral hygiene regimen: brushing twice daily with a regular sodium fluoride cavity protection dentifrice and a standard manual toothbrush, flossing twice daily, and mouth rinsing with an anti-cavity fluoride rinse once daily. The experimental group stopped brushing and flossing, and used only the fluoride anti-cavity mouth rinse for 21 d. Seventy-nine of 80 subjects were evaluable. One subject in the control group was excluded from the results due to antibiotic use during the study. Our data showed the experimental gingivitis group exhibited a significant (p gingival inflammatory indices relative to baseline and the control group but a decrease in bacteremia and soluble intercellular adhesion molecule-1 levels vs. baseline. Bacteremia was negatively correlated with gingival inflammatory indices and soluble intercellular adhesion molecule-1 levels in the experimental gingivitis group, thus negating our hypothesis. We conclude that there are marked differences in systemic cytokine levels over the course of short-term experimentally induced gingivitis and further conclude that a long-term periodontitis study must be considered to address mechanisms whereby oral diseases may affect systemic diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. DIFFERENTIAL HISTOMORPHOMETRIC CHANGES IN NORMAL AND INFLAMED GINGIVAL EPITHELIUM

    Directory of Open Access Journals (Sweden)

    Tanaskovic Stankovic Sanja

    2016-12-01

    Full Text Available Introduction and aim: In recent decades, many factors such as smoking, unhealthy diet as well as high alcohol intake were marked as risk factors that can lead to increased incidence of malignant alterations, gingivitis, periodontal disease and other oral epithelium pathological changes. Having in mind that in the group of non-malignant and non-dental oral pathology gingivitis and periodontal disease are the most common oral mucosa alterations aim of our research was to investigate histomorphometric characteristics of healthy and altered oral and gingival epithelium. Material and methods: Tissue samples of 24 oral and gingival mucosa specimens were collected. Samples were fixed in 10% buffered paraformaldehyde, routinely processed and embedded in paraffin blocks. From each block sections 5 micrometer thin were made and standard H/E staining as well as immunocytochemical detection of Ki-67 proliferation marker and CD79a lymphocyte marker were performed. Measurements and image analysis was performed with Image Pro Plus software (Media Cybernetics, USA and Axiovision (Ziess, USA. Results: We showed that inflamed gingival epithelium is increasing its thickness in proportion to the severity of adjacent inflammation. Furthermore, mitotic index is rising (up to 132% in the same manner as well as basal lamina length (up to 70% when normal and inflamed gingiva is compared. Architecture of epithelial ridges is changed from straightforward to mesh-like. Conclusion: Assessment of the free gingival epithelium thickness is directly related to the severity of the inflammation process i

  18. Gingival Recession in a Child‑Patient; Easily Missed Etiologies ...

    African Journals Online (AJOL)

    with age-appropriate complement of teeth except for a missing tooth 42. ... frenal attachment is more important in gingival recession in the child‑patient. A healthy child‑ ... spared rules out a possible role of brushing-induced gingival abrasion.

  19. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells

    OpenAIRE

    Patwardhan, Juilee; Bhatt, Purvi

    2015-01-01

    Background: The exposure of skin to ultraviolet-B (UV-B) radiations leads to deoxyribonucleic acid (DNA) damage and can induce production of free radicals which imbalance the redox status of the cell and lead to increased oxidative stress. Clove has been traditionally used for its analgesic, anti-inflammatory, anti-microbial, anti-viral, and antiseptic effects. Objective: To evaluate the UV-B protective activity of flavonoids from Eugenia caryophylata (clove) buds on human dermal fibroblast c...

  20. Prevalence and severity of plaque-induced gingivitis in a Saudi adult population

    Science.gov (United States)

    Idrees, Majdy M.; Azzeghaiby, Saleh N.; Hammad, Mohammad M.; Kujan, Omar B.

    2014-01-01

    Objectives: To evaluate the prevalence and severity of plaque-induced gingivitis among a Saudi adult population in Riyadh region. Methods: Three hundred and eighty-five eligible participants in this cross-sectional study were recruited from routine dental patients attending the oral diagnosis clinic at Al-Farabi College in Riyadh, Saudi Arabia from June 2013 to December 2013. A clinical examination was performed by 2 dentists to measure the gingival and plaque indices of Löe and Silness for each participant. Results: The prevalence of gingivitis was 100% among adult subjects aged between 18-40 years old. Moreover, the mean gingival index was 1.68±0.31, which indicates a moderate gingival inflammation. In fact, males showed more severe signs of gingival inflammation compared with females (p=0.001). In addition, the mean plaque index was 0.875±0.49, which indicates a good plaque status of the participants. Interestingly, the age was not related either to the gingival inflammation (p=0.13), or to the amount of plaque accumulation (p=0.17). However, males were more affected than females (p=0.005). Conclusion: The results of this study show that plaque accumulation is strongly associated with high prevalence of moderate to severe gingivitis among Saudi subjects. PMID:25399215

  1. Effects of triclosan on host response and microbial biomarkers during experimental gingivitis.

    Science.gov (United States)

    Pancer, Brooke A; Kott, Diana; Sugai, James V; Panagakos, Fotinos S; Braun, Thomas M; Teles, Ricardo P; Giannobile, William V; Kinney, Janet S

    2016-05-01

    This exploratory randomized, controlled clinical trial sought to evaluate anti-inflammatory and -microbial effects of triclosan during experimental gingivitis as assessed by host response biomarkers and biofilm microbial pathogens. Thirty participants were randomized to triclosan or control dentifrice groups who ceased homecare for 21 days in an experimental gingivitis (EG) protocol. Plaque and gingival indices and saliva, plaque, and gingival crevicular fluid (GCF) were assessed/collected at days 0, 14, 21 and 35. Levels and proportions of 40 bacterial species from plaque samples were determined using checkerboard DNA-DNA hybridization. Ten biomarkers associated with inflammation, matrix degradation, and host protection were measured from GCF and saliva and analysed using a multiplex array. Participants were stratified as "high" or "low" responders based on gingival index and GCF biomarkers and bacterial biofilm were combined to generate receiver operating characteristic curves and predict gingivitis susceptibility. No differences in mean PI and GI values were observed between groups and non-significant trends of reduction of host response biomarkers with triclosan treatment. Triclosan significantly reduced levels of A. actinomycetemcomitans and P. gingivalis during induction of gingivitis. Triclosan reduced microbial levels during gingivitis development (ClinicalTrials.gov NCT01799226). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Idiopathic Gingival Fibromatosis Rehabilitation: A Case Report with Two-Year Followup

    Directory of Open Access Journals (Sweden)

    Mahesh Jayachandran

    2013-01-01

    Full Text Available Gingival enlargements are quite common and may be either inflammatory, noninflammatory, or a combination of both. Gingival hyperplasia is a bizarre condition causing esthetic, functional, psychological, and masticatory disturbances of the oral cavity. Causes of gingival enlargement can be due to plaque accumulation, due to poor oral hygiene, inadequate nutrition, or systemic hormonal stimulation (Bakaeen and Scully, 1998. It can occur as an isolated disease or as part of a syndrome or chromosomal abnormality. A progressive fibrous enlargement of the gingiva is a facet of idiopathic fibrous hyperplasia of the gingiva (Carranza and Hogan, 2002; Gorlin et al., 1976. It is described variously as fibromatosis gingivae, gingivostomatitis, hereditary gingival fibromatosis, idiopathic fibromatosis, familial elephantiasis, and diffuse fibroma. We present a case of idiopathic gingival fibromatosis with its multidisciplinary approach of management.

  3. Diagnostic considerations concerning a case of an unusual gingivitis

    NARCIS (Netherlands)

    van der Haring, I.S.; Witjes, M.J.H.

    2006-01-01

    A young woman presented a severe gingivitis that wouldn't respond to antibiotics prescribed by her general practitioner. Thorough clinical examination showed atypical gingival inflammation. In such unusual cases a careful anamnesis is essential in determining appropriate continued diagnostic

  4. Differential gene expression in human fibroblasts after alpha-particle emitter (211)At compared with (60)Co irradiation

    DEFF Research Database (Denmark)

    Danielsson, Anna; Claesson, Kristina; Parris, Toshima Z

    2013-01-01

    trastuzumab monoclonal antibody (0.25, 0.5, and 1 Gy) and (60)Co (1, 2, and 3 Gy). Results: We report gene expression profiles that distinguish the effect different radiation qualities and absorbed doses have on cellular functions in human fibroblasts. In addition, we identified commonly expressed transcripts...

  5. Plasma Cell Gingivitis Associated With Inflammatory Chelitis: A ...

    African Journals Online (AJOL)

    Background: Plasma cell gingivitis (PGC) is a rare disease of gingival tissues which is difficult to treat. It has a higher rate of reoccurrence and needs a detailed and careful analysis of etiology. Further, its association with chelitis is rare, only few cases have been reported and the condition with this presentation poses a ...

  6. Characteristics of human infant primary fibroblast cultures from Achilles tendons removed post-mortem

    DEFF Research Database (Denmark)

    Rohde, Marianne Cathrine; Corydon, Thomas Juhl; Hansen, Jakob

    2014-01-01

    Primary cell cultures were investigated as a tool for molecular diagnostics in a forensic setting. Fibroblast cultures had been established from human Achilles tendon resected at autopsies, from cases of sudden infant death syndrome and control infants who died in traumatic events (n=41). After...... established from post-mortem tissue are renewable sources of biological material; they can be the foundation for genetic, metabolic and other functional studies and thus constitute a valuable tool for molecular and pathophysiological investigations in biomedical and forensic sciences....

  7. Poly(I:C) induces expressions of MMP-1, -2, and -3 through various signaling pathways including IRF3 in human skin fibroblasts.

    Science.gov (United States)

    Yao, Cheng; Lee, Dong Hun; Oh, Jang-Hee; Kim, Min-Kyoung; Kim, Kyu Han; Park, Chi-Hyun; Chung, Jin Ho

    2015-10-01

    Ultraviolet (UV) irradiation can result in premature skin aging (photoaging) which is characterized by decreased expression of collagen and increased expression of matrix metalloproteinases (MMPs). Double-stranded RNAs (dsRNAs) can be generated at various conditions including virally infected cells or UV-damaged skin cells. Recent studies have shown that a synthetic dsRNA, polyinosinic-polycytidylic acid (poly(I:C)), can reduce procollagen expression in human skin fibroblasts. However, little is known about the effect of poly(I:C) on the expression of MMPs in skin fibroblasts and its underlying mechanisms. We examined the effect of poly(I:C) on MMP-1, -2, and -3 expressions in human skin fibroblasts. Then, we further explored the underlying signaling pathways involved in the processes. Human skin fibroblasts were treated with poly(I:C) for the indicated times in the presence or the absence of various chemical inhibitors or small interfering RNAs (siRNAs) at the indicated concentrations. Protein and mRNA levels of various target molecules were examined by Western blotting and quantitative real-time PCR, respectively. Poly(I:C) induced MMP-1, -2, and -3 expressions, which were dependent on TLR3. Poly(I:C) also induced activations of the mitogen-activated protein kinases (MAPKs), the nuclear factor-kappaB (NF-κB) and the interferon regulatory factor 3 (IRF3) pathways. By using specific inhibitors, we found that poly(I:C)-induced expressions of MMP-1, -2, and -3 were differentially regulated by these signaling pathways. In particular, we found that the inhibition of IRF3 signaling pathways attenuated poly(I:C)-induced expressions of all the three MMPs. Our data show that the expressions of MMP-1, -2, and -3 are induced by poly(I:C) through various signaling pathways in human skin fibroblasts and suggest that TLR3 and/or IRF3 may be good targets for regulating the expressions of MMP-1, -2, and -3 induced by dsRNAs. Copyright © 2015 Elsevier Ireland Ltd. All rights

  8. Comparison of the effect of activated or non-activated PRP in various concentrations on osteoblast and fibroblast cell line proliferation.

    Science.gov (United States)

    Vahabi, Surena; Yadegari, Zahra; Mohammad-Rahimi, Hossein

    2017-09-01

    Platelet-rich plasma (PRP) contains growth factors which positively affect cell proliferation, cell differentiation, chemotaxis and intracellular matrix synthesis. All these processes are involved in wound healing and tissue regeneration; thus, PRP as a source of growth factors can be used in periodontal regenerative therapies. The purpose of the present study was to assess the effect of various concentrations of activated and non-activated PRP on proliferation of osteoblasts and fibroblasts in vitro. PRP was obtained from three healthy volunteers. 75, 50, 25, and 10% concentrations of f PRP were prepared by dilution in Dulbecco's modified Eagle's medium. In activated PRP groups, PRP concentrations were activated by adding calcium gluconate. Human gingival fibroblast (HGF) cell line and MG-63 (osteosarcoma) human osteoblast-like cell line were used in the study. The MTT proliferation assay was used to assess the effect of different types of PRP concentrates on proliferation of HGF and MG-63 cells, in 24, 48 and 72 h. After 24, 48, and 72 h, the proliferation rate of both cell lines was higher in the positive control group, except in 72 h in HGF cell lines, that 10% non-activated PRP group and 10 and 25% activated PRP groups has higher proliferation rate than the positive control group, which it was not significant. Proliferation rate in cells with 10% activated PRP was highest among samples containing PRP. The current study failed to show the significant effect of activated or non-activated PRP on proliferation of HGFs or MG-63 osteoblast-like cells. However, our results showed that activated PRP had a greater effect than non-activated PRP.

  9. THERAPEUTIC DIFFICULTIES IN ACHIEVEMENT OF OPTIMAL ROOT COVERAGE AND AESTHETIC IN CLASS III GINGIVAL RECESSION.

    Directory of Open Access Journals (Sweden)

    Christina Popova

    2013-07-01

    Full Text Available The width of the attached gingiva is defined as a distance between the depth of the gingival sulcus or gingival/periodontal pocket to the mucogingival junction. Authors suggest that a minimal amount of attached gingiva is necessary to ensure the gingival health. When the buccal bone plate and gingival tissues are thin and the position of the tooth is too vestibular gingival margin often displaces apically, and gingival recession develops. In the presence of gingival recession and reduced vestibular depth oral hygiene procedures are embarrassed.The definition of class III gingival recession is marginal lack of tissue extended to/or beyond the mucogingival junction with bone and soft tissue loss interdentally or malpositioning of the tooth.Prognosis for class III and IV gingival recession is that only partial coverage can be expected after root coverage procedures - FGG (free gingival graft or connective tissue graft (CTG. Adjunctive surgical techniques would be helpful to achieve better aesthetic outcomes.

  10. Pearl extract enhances the migratory ability of fibroblasts in a wound healing model.

    Science.gov (United States)

    Li, Yi-Chen; Chen, Chi-Ruei; Young, Tai-Horng

    2013-03-01

    For 2000 years, traditional Chinese medicine has been used as a remedy for general health improvement, including the fight against aging. Pearl powder has recently been used as a health food that has antioxidant, antiaging, antiradioactive, and tonic activities for cells; it is also applied to cure aphthous ulcer, gastric ulcer, and duodenal ulcer on clinical therapy. In addition, the mother of pearl, nacre, could enhance the cell adhesion and tissue regeneration of skin fibroblasts. Fibroblast is regarded as indispensable in the processes of wound healing. Therefore, the effect of pearl extract (PL) on fibroblasts is investigated in this study. PL is produced by a room temperature super extraction system (Taiwan patent no. I271 220). DMEM medium containing PL (300 μg/mL) was used to examine the effect of migration-promoting potential on human fibroblast cell line or human primary fibroblast cells in a wound healing model in vitro. Medium containing PL (300 μg/mL) demonstrated that the migratory cell numbers of fibroblasts were three times more than that without PL, and mRNA expression of collagen type III was higher than in collagen type I in fibroblasts. It revealed a migration-promoting potential of human fibroblasts in a wound healing model in vitro. The present study found that the migration-promoting effect in PL, which could be a supplement in cell culture. These data suggest PL could be useful for enhancing the wound healing of fibroblasts.

  11. Association of gingivitis with child oral health-related quality of life.

    Science.gov (United States)

    Tomazoni, Fernanda; Zanatta, Fabricio B; Tuchtenhagen, Simone; da Rosa, Guilherme N; Del Fabro, Joana P; Ardenghi, Thiago M

    2014-11-01

    Child oral health-related quality of life (COHRQoL) has been increasingly assessed. However, the full relationship between gingivitis and COHRQoL has been assessed by only a small number of studies. This study aims to assess the association between gingival bleeding and how a child perceives its OHRQoL. This cross-sectional study used multistage random sampling to enroll 1,134 12-year-old schoolchildren from Santa Maria, a southern city in Brazil. Participants were examined for gingival bleeding according to the community periodontal index criteria, a full-mouth clinical examination of six sites per tooth. COHRQoL was assessed by the Brazilian version of the Child Perceptions Questionnaire for 11- to 14-Year-Old Children (CPQ11-14), and data on socioeconomic status were collected. Multilevel Poisson regression models fitted the association of gingivitis with overall and domain-specific CPQ11-14 scores. In general, children with bleeding in ≥15% of sites had higher total CPQ11-14 scores and domain-specific scores than their counterparts. This association persisted after adjustment for other potential confounders. The presence and extent of gingival bleeding was associated mainly with emotional limitation domains of the CPQ11-14; those with extended levels of gingivitis had a 1.20 times higher mean score than those with low-level/no gingival bleeding (rate ratio = 1.20; 95% confidence interval = 1.10 to 1.31). The present results indicate that the presence of extensive levels of gingivitis might be negatively associated with how children perceive their oral health and their daily life.

  12. Injerto de tejido conectivo en recesión gingival de incisivo

    Directory of Open Access Journals (Sweden)

    Luis Fang Mercado

    2013-10-01

    Full Text Available ResumenLa recesión gingival es definida como la ubicación del margen gingival apical a la unión amelocementaria de uno o más dientes. Esta deformidad apical ocasiona generalmente sensibilidad radicular, pobre apariencia estética y lesiones cervicales cariosas por lo que los pacientes pueden preguntar de manera frecuente a los clínicos por procedimientos de recubrimiento radicular. Existen dos grandes grupos de causas de recesión gingival, las que se originan de enfermedad periodontal y de origen traumático, además, se consideran ciertos factores y se les clasifica como factores predisponentes y precipitantes desencadenantes. Patológicamente las recesiones gingivales están ocasionadas por la destrucción de tejido conectivo de la encía, lo cual ocasiona una disminución del flujo sanguíneo a nivel gingival. Se desarrollan varias técnicas con el mismo fin, dentro de estas están el colgajo pediculado, injerto gingival libre, injerto de tejido conectivo y la regeneración tisular guiada. Las condiciones de éxito en el tratamiento de las recesiones gingivales, descansan en el conocimiento de su etiología y de las posibilidades de cicatrización de acuerdo a las diferentes técnicas quirúrgicas consideradas para corregirlas. Los objetivos a considerar en el tratamiento de las recesiones son: mejorar la estética, recubrir las zonas radiculares expuestas y lograr estabilidad clínica. Se presenta un caso clínico donde se utilizó el enfoque del injerto de conectivo subpediculado en un diente único para crear encía adherida y a la vez intentar cubrir una recesión en diente inferior anterior. (DUAZARY 2011 No. 2, 206 - 212.AbstractGingival recession is defined as the location of gingival margin apical to the CEJ one or more teeth. This deformity causes apical usually root sensitivity, poor appearance aesthetics and carious cervical lesions so that Patients may wonder procedures root coverage. There are two main groups causes of

  13. Management of gingival hyperpigmentation by semiconductor diode laser

    Directory of Open Access Journals (Sweden)

    Geeti Gupta

    2011-01-01

    Full Text Available Gingival hyperpigmentation is caused by excessive deposition of melanin in the basal and suprabasal cell layers of the epithelium. Although melanin pigmentation of the gingiva is completely benign, cosmetic concerns are common, particularly in patients having a very high smile line (gummy smile. Various depigmentation techniques have been employed, such as scalpel surgery, gingivectomy, gingivectomy with free gingival autografting, cryosurgery, electrosurgery, chemical agents such as 90% phenol and 95% alcohol, abrasion with diamond burs, Nd:YAG laser, semiconductor diode laser, and CO 2 laser. The present case report describes simple and effective depigmentation technique using semiconductor diode laser surgery - for gingival depigmentation, which have produced good results with patient satisfaction.

  14. Bioactive reagents used in mesotherapy for skin rejuvenation in vivo induce diverse physiological processes in human skin fibroblasts in vitro- a pilot study.

    Science.gov (United States)

    Jäger, Claudia; Brenner, Christiane; Habicht, Jüri; Wallich, Reinhard

    2012-01-01

    The promise of mesotherapy is maintenance and/or recovery of a youthful skin with a firm, bright and moisturized texture. Currently applied medications employ microinjections of hyaluronic acid, vitamins, minerals and amino acids into the superficial layer of the skin. However, the molecular and cellular processes underlying mesotherapy are still elusive. Here we analysed the effect of five distinct medication formulas on pivotal parameters involved in skin ageing, that is collagen expression, cell proliferation and morphological changes using normal human skin fibroblast cultures in vitro. Whereas in the presence of hyaluronic acid, NCTF135(®) and NCTF135HA(®) , cell proliferation was comparable to control cultures; however, with higher expression of collagen type-1, matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1, addition of Soluvit(®) N and Meso-BK led to apoptosis and/or necrosis of human fibroblasts. The data indicate that bioactive reagents currently applied for skin rejuvenation elicit strikingly divergent physiological processes in human skin fibroblast in vitro. © 2011 John Wiley & Sons A/S.

  15. Effect of phosphatidylserine on free radical susceptibility in human diploid fibroblasts.

    Science.gov (United States)

    Latorraca, S; Piersanti, P; Tesco, G; Piacentini, S; Amaducci, L; Sorbi, S

    1993-01-01

    We studied the effect of phosphatidylserine (PdtSER) on oxygen metabolite toxicity in skin fibroblast cell lines from apparently normal subjects. Fibroblast damage was produced by the generation of oxygen metabolites during the enzymatic oxidation of acetaldehyde by xanthine-oxidase (Xo). In order to quantify cell damage, we measured lactate dehydrogenase (LDH) activity in culture medium and cell viability in fibroblast cultures, with and without preincubation for 4 days with PdtSER 13 microM, after Xo incubation. We found a significant increase of LDH activity in culture medium of cells without preincubation with PdtSER. No significant increase of LDH activity was observed in the same cell lines after preincubation with PdtSER.

  16. [Gingival health and esthetics--another aspect of objectives of orthodontic treatment].

    Science.gov (United States)

    Ai, Dongqing; Xu, Hui; Bai, Ding

    2013-04-01

    Contemporary orthodontic care should be a team approach to achieve health and esthetics of soft and hard tissue. It should be given enough attention that periodontal health provides the foundation for tooth movement, and that distinct esthetic results can be achieved by subtle changes in tooth alignment and gingival contours. Orthodontic treatment planning should include evaluation of gingival health and esthetics to anticipate the need for interdisciplinary approaches. Studies on the effect of orthodontic treatment on gingiva can provides basis for maintaining gingival health and esthetic. This article will focus primarily on the gingival health and esthetic care in orthodontic treatment.

  17. Amlodipine-induced gingival hyperplasia in chronic renal failure: a ...

    African Journals Online (AJOL)

    Amlodipine is a dihydropyridine calcium channel blocker that is used in the management of both hypertension and angina. Amlodipine induced side effects are headache, dizziness, edema, flushing, palpitations, and rarely gingival hyperplasia. The exact reason of amlodipine-induced gingival hyperplasia is not known.

  18. In normal human fibroblasts variation in DSB repair capacity cannot be ascribed to radiation-induced changes in the localisation, expression or activity of major NHEJ proteins

    DEFF Research Database (Denmark)

    Kasten-Pisula, Ulla; Vronskaja, Svetlana; Overgaard, Jens

    2008-01-01

    in the activity of the DNA-PK complex induced upon irradiation. CONCLUSIONS: For normal human fibroblasts, the level or activity of NHEJ proteins measured prior to or after irradiation cannot be used to predict the DSB repair capacity or cellular radiosensitivity. Udgivelsesdato: 2008-Mar......BACKGROUND AND PURPOSE: The aim of the present study was to test whether for normal human fibroblasts the variation in double-strand break (DSB) repair capacity results from radiation-induced differences in localisation, expression or activity of major non-homologous end-joining (NHEJ) proteins....... MATERIALS AND METHODS: Experiments were performed with 11 normal human fibroblast strains AF01-11. NHEJ proteins were determined by Western blot and DNA-PK activity by pulldown-assay. RESULTS: The four NHEJ proteins tested (Ku70, Ku80, XRCC4 and DNA-PKcs) were found to be localised almost exclusively...

  19. A Spectrophotometric Color Evaluation of Natural Teeth and Gingival

    DEFF Research Database (Denmark)

    Peng, Min; Hosseini, Mandana; Gotfredsen, Klaus

    2012-01-01

    positions of each tooth (incisal 1/3, body1/3, cervical 1/3 and gingival) were assessed using a spectrophotometer (SpectroShadeTM, Micro Dental, Seria No. HDL3214, MHT, S.p.A, Italy) in CIELab coordinates. Descriptive statistics of Spss17.0 was used to analyze the distribution of color coordinates. Pearson...... correlation was used to test the relationship between the coordinates and age. Independent t test was used to test the difference between gender groups. Results: All the color coordinates for teeth and gingival were in right-left symmetric distribution by the central incisors and the distribution was in same...... mode at each tooth. The body part of the central incisor had the highest L value and the cervical part of the canine had the highest a, b value. No statistical difference was found among positions regarding the gingival color. Statistical correlation was found between the gingival color...

  20. Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Kyle J Hewitt

    2011-02-01

    Full Text Available Human induced pluripotent stem (hiPS cells offer a novel source of patient-specific cells for regenerative medicine. However, the biological potential of iPS-derived cells and their similarities to cells differentiated from human embryonic stem (hES cells remain unclear. We derived fibroblast-like cells from two hiPS cell lines and show that their phenotypic properties and patterns of DNA methylation were similar to that of mature fibroblasts and to fibroblasts derived from hES cells. iPS-derived fibroblasts (iPDK and their hES-derived counterparts (EDK showed similar cell morphology throughout differentiation, and patterns of gene expression and cell surface markers were characteristic of mature fibroblasts. Array-based methylation analysis was performed for EDK, iPDK and their parental hES and iPS cell lines, and hierarchical clustering revealed that EDK and iPDK had closely-related methylation profiles. DNA methylation analysis of promoter regions associated with extracellular matrix (ECM-production (COL1A1 by iPS- and hESC-derived fibroblasts and fibroblast lineage commitment (PDGFRβ, revealed promoter demethylation linked to their expression, and patterns of transcription and methylation of genes related to the functional properties of mature stromal cells were seen in both hiPS- and hES-derived fibroblasts. iPDK cells also showed functional properties analogous to those of hES-derived and mature fibroblasts, as seen by their capacity to direct the morphogenesis of engineered human skin equivalents. Characterization of the functional behavior of ES- and iPS-derived fibroblasts in engineered 3D tissues demonstrates the utility of this tissue platform to predict the capacity of iPS-derived cells before their therapeutic application.