WorldWideScience

Sample records for human genomic clone

  1. A set of BAC clones spanning the human genome.

    NARCIS (Netherlands)

    Krzywinski, M.; Bosdet, I.; Smailus, D.; Chiu, R.; Mathewson, C.; Wye, N.; Barber, S.; Brown-John, M.; Chan, S.; Chand, S.; Cloutier, A.; Girn, N.; Lee, D.; Masson, A.; Mayo, M.; Olson, T.; Pandoh, P.; Prabhu, A.L.; Schoenmakers, E.F.P.M.; Tsai, M.Y.; Albertson, D.; Lam, W.W.; Choy, C.O.; Osoegawa, K.; Zhao, S.; Jong, P.J. de; Schein, J.; Jones, S.; Marra, M.A.

    2004-01-01

    Using the human bacterial artificial chromosome (BAC) fingerprint-based physical map, genome sequence assembly and BAC end sequences, we have generated a fingerprint-validated set of 32 855 BAC clones spanning the human genome. The clone set provides coverage for at least 98% of the human

  2. A BAC clone fingerprinting approach to the detection of human genome rearrangements

    Science.gov (United States)

    Krzywinski, Martin; Bosdet, Ian; Mathewson, Carrie; Wye, Natasja; Brebner, Jay; Chiu, Readman; Corbett, Richard; Field, Matthew; Lee, Darlene; Pugh, Trevor; Volik, Stas; Siddiqui, Asim; Jones, Steven; Schein, Jacquie; Collins, Collin; Marra, Marco

    2007-01-01

    We present a method, called fingerprint profiling (FPP), that uses restriction digest fingerprints of bacterial artificial chromosome clones to detect and classify rearrangements in the human genome. The approach uses alignment of experimental fingerprint patterns to in silico digests of the sequence assembly and is capable of detecting micro-deletions (1-5 kb) and balanced rearrangements. Our method has compelling potential for use as a whole-genome method for the identification and characterization of human genome rearrangements. PMID:17953769

  3. Human Cloning

    National Research Council Canada - National Science Library

    Johnson, Judith A; Williams, Erin D

    2006-01-01

    .... Scientists in other labs, including Harvard University and the University of California at San Francisco, intend to produce cloned human embryos in order to derive stem cells for medical research...

  4. Human Cloning

    Science.gov (United States)

    2006-07-20

    Human Fertilization and Embryology Authority (HFEA). A team of scientists headed by Alison Murdoch at the University of Newcastle received permission...not yet reported success in isolating stem cells from a cloned human embryo. A research team headed by Ian Wilmut at the University of Edinburgh...research group, headed by Douglas Melton and Kevin Eggan, submitted their proposal to a Harvard committee composed of ethicists, scientists and public

  5. Chromosome microdissection and cloning in human genome and genetic disease analysis

    International Nuclear Information System (INIS)

    Kao, Faten; Yu, Jingwei

    1991-01-01

    A procedure has been described for microdissection and microcloning of human chromosomal DNA sequences in which universal amplification of the dissected fragments by Mbo I linker adaptor and polymerase chain reaction is used. A very large library comprising 700,000 recombinant plasmid microclones from 30 dissected chromosomes of human chromosome 21 was constructed. Colony hybridization showed that 42% of the clones contained repetitive sequences and 58% contained single or low-copy sequences. The insert sizes generated by complete Mbo I cleavage ranged from 50 to 1,100 base pairs with a mean of 416 base pairs. Southern blot analysis of microclones from the library confirmed their human origin and chromosome 21 specificity. Some of these clones have also been regionally mapped to specific sites of chromosome 21 by using a regional mapping panel of cell hybrids. This chromosome microtechnology can generate large numbers of microclones with unique sequences from defined chromosomal regions and can be used for processes such as (i) isolating corresponding yeast artificial chromosome clones with large inserts, (ii) screening various cDNA libraries for isolating expressed sequences, and (iii) constructing region-specific libraries of the entire human genome. The studies described here demonstrate the power of this technology for high-resolution genome analysis and explicate their use in an efficient search for disease-associated genes localized to specific chromosomal regions

  6. Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA

    International Nuclear Information System (INIS)

    Indik, Z.; Yeh, H.; Ornstein-goldstein, N.; Sheppard, P.; Anderson, N.; Rosenbloom, J.C.; Peltonen, L.; Rosenbloom, J.

    1987-01-01

    Poly(A) + RNA, isolated from a single 7-mo fetal human aorta, was used to synthesize cDNA by the RNase H method, and the cDNA was inserted into λgt10. Recombinant phage containing elastin sequences were identified by hybridization with cloned, exon-containing fragments of the human elastin gene. Three clones containing inserts of 3.3, 2.7, and 2.3 kilobases were selected for further analysis. Three overlapping clones containing 17.8 kilobases of the human elastin gene were also isolated from genomic libraries. Complete sequence analysis of the six clones demonstrated that: (i) the cDNA encompassed the entire translated portion of the mRNA encoding 786 amino acids, including several unusual hydrophilic amino acid sequences not previously identified in porcine tropoelastin, (ii) exons encoding either hydrophobic or crosslinking domains in the protein alternated in the gene, and (iii) a great abundance of Alu repetitive sequences occurred throughout the introns. The data also indicated substantial alternative splicing of the mRNA. These results suggest the potential for significant variation in the precise molecular structure of the elastic fiber in the human population

  7. BIOETHICS AND HUMAN CLONING

    Directory of Open Access Journals (Sweden)

    Željko Kaluđerović

    2011-12-01

    Full Text Available In this paper the authors analyze the process of negotiating and beginning of the United Nations Declaration on Human Cloning as well as the paragraphs of the very Declaration. The negotiation was originally conceived as a clear bioethical debate that should have led to a general agreement to ban human cloning. However, more often it had been discussed about human rights, cultural, civil and religious differences between people and about priorities in case of eventual conflicts between different value systems. In the end, a non-binding Declaration on Human Cloning had been adopted, full of numerous compromises and ambiguous formulations, that relativized the original intention of proposer states. According to authors, it would have been better if bioethical discussion and eventual regulations on cloning mentioned in the following text had been left over to certain professional bodies, and only after the public had been fully informed about it should relevant supranational organizations have taken that into consideration.

  8. Genomic organization and promoter cloning of the human X11α gene APBA1.

    LENUS (Irish Health Repository)

    Chai, Ka-Ho

    2012-05-01

    X11α is a brain specific multi-modular protein that interacts with the Alzheimer\\'s disease amyloid precursor protein (APP). Aggregation of amyloid-β peptide (Aβ), an APP cleavage product, is believed to be central to the pathogenesis of Alzheimer\\'s disease. Recently, overexpression of X11α has been shown to reduce Aβ generation and to ameliorate memory deficit in a transgenic mouse model of Alzheimer\\'s disease. Therefore, manipulating the expression level of X11α may provide a novel route for the treatment of Alzheimer\\'s disease. Human X11α is encoded by the gene APBA1. As evidence suggests that X11α expression can be regulated at transcription level, we have determined the gene structure and cloned the promoter of APBA1. APBA1 spans over 244 kb on chromosome 9 and is composed of 13 exons and has multiple transcription start sites. A putative APBA1 promoter has been identified upstream of exon 1 and functional analysis revealed that this is highly active in neurons. By deletion analysis, the minimal promoter was found to be located between -224 and +14, a GC-rich region that contains a functional Sp3 binding site. In neurons, overexpression of Sp3 stimulates the APBA1 promoter while an Sp3 inhibitor suppresses the promoter activity. Moreover, inhibition of Sp3 reduces endogenous X11α expression and promotes the generation of Aβ. Our findings reveal that Sp3 play an essential role in APBA1 transcription.

  9. The First Human Cloned Embryo.

    Science.gov (United States)

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  10. Human cloning. Fact or fiction

    International Nuclear Information System (INIS)

    Abushama, Mandy D.; Ahmed, Badreldeen I.

    2003-01-01

    Cloning is the production of one or more individual plants or animals that are genetically identical to other plant, animal or human. Scientists even demonstrated that they were able to clone frog tadpoles from frog embryonic cells using nuclear transfer.Many animals have been cloned from adult cells using nuclear transfer. Somatic cell nuclear transfer which refers to the transfer of the nucleous from a somatic cell to an egg cell. Article further deals with benefits and misuses of human cloning

  11. Genomic structure and cloning of two transcript isoforms of human Sp8.

    NARCIS (Netherlands)

    M.A. Milona (Maria-athina); J.E. Gough (Julie); A.J. Edgar (Alasdair)

    2004-01-01

    textabstractBACKGROUND: The Specificity proteins (Sp) are a family of transcription factors that have three highly conserved zinc-fingers located towards the carboxy-terminal that bind GC-boxes and assist in the initiation of gene transcription. Human Sp1-7 genes have been

  12. Molecular cloning of the human hepatitis C virus genome from Japanese patients with non-A, non-B hepatitis

    International Nuclear Information System (INIS)

    Kato, Nobuyuki; Hijikata, Makoto; Ootsuyama, Yuko; Nakagawa, Masanori; Ohkoshi, Showgo; Sugimura, Takashi; Shimotohno, Kunitada

    1990-01-01

    The nucleotide sequence of the Japanese type of hepatitis C virus (HCV-J) genome, consisting of 9413 nucleotides, was determined by analyses of cDNA clones from plasma specimens from Japanese patients with chronic hepatitis. HCV-J genome contains a long open reading frame that can encode a sequence of 3010 amino acid residues. Comparison of HCV-J with the American isolate of HCV showed 22.6% difference in nucleotide sequence and 15.1% difference in amino acid sequence. Thus HCV-J and the American isolate of HCV are probably different subtypes of HCV. The relationship of HCV-J with other animal RNA virus families and the putative organization of the HCV-J genome are discussed

  13. Three concepts of cloning in human beings.

    Science.gov (United States)

    Cui, Ke-Hui

    2005-07-01

    Human cloning, organ cloning and tissue cloning are various types of cloning that occur at different levels with different methodologies. According to three standards of terminology for an embryo (fertilization through germ cells, development in the uterus and having the potential to produce a human life), tissue cloning and type I organ cloning will not produce an embryo. In contrast, human cloning and type II organ cloning will produce an embryo. Thus, only non-germinal tissue cloning and type I organ cloning are beyond the ethical question and will not change human beings as a species. Using cloned tissues to make new tissues or organs is promising for the future of medicine.

  14. [Scientific ethics of human cloning].

    Science.gov (United States)

    Valenzuela, Carlos Y

    2005-01-01

    True cloning is fission, budding or other types of asexual reproduction. In humans it occurs in monozygote twinning. This type of cloning is ethically and religiously good. Human cloning can be performed by twinning (TWClo) or nuclear transfer (NTClo). Both methods need a zygote or a nuclear transferred cell, obtained in vitro (IVTec). They are under the IVTec ethics. IVTecs use humans (zygotes, embryos) as drugs or things; increase the risk of malformations; increase development and size of abnormalities and may cause long-term changes. Cloning for preserving extinct (or almost extinct) animals or humans when sexual reproduction is not possible is ethically valid. The previous selection of a phenotype in human cloning violates some ethical principles. NTClo for reproductive or therapeutic purposes is dangerous since it increases the risk for nucleotide or chromosome mutations, de-programming or re-programming errors, aging or malignancy of the embryo cells thus obtained.

  15. Statement on Human Cloning

    Science.gov (United States)

    ... as our understanding of this technology advances. Support Stem Cell Research (including Research Cloning) AAAS supports stem cell research, including the use of nuclear transplantation techniques (also ...

  16. Human cloning and child welfare.

    Science.gov (United States)

    Burley, J; Harris, J

    1999-01-01

    In this paper we discuss an objection to human cloning which appeals to the welfare of the child. This objection varies according to the sort of harm it is expected the clone will suffer. The three formulations of it that we will consider are: 1. Clones will be harmed by the fearful or prejudicial attitudes people may have about or towards them (H1); 2. Clones will be harmed by the demands and expectations of parents or genotype donors (H2); 3. Clones will be harmed by their own awareness of their origins, for example the knowledge that the genetic donor is a stranger (H3). We will show why these three versions of the child welfare objection do not necessarily supply compelling reasons to ban human reproductive cloning. The claim that we will develop and defend in the course of our discussion is that even if it is the case that a cloned child will suffer harms of the type H1-H3, it is none the less permissible to conceive by cloning so long as these cloning-induced welfare deficits are not such as to blight the existence of the resultant child, whoever this may be. PMID:10226914

  17. Human cloning and 'posthuman' society.

    Science.gov (United States)

    Blackford, Russell

    2005-01-01

    Since early 1997, when the creation of Dolly the sheep by somatic cell nuclear transfer was announced in Nature, numerous government reports, essays, articles and books have considered the ethical problems and policy issues surrounding human reproductive cloning. In this article, I consider what response a modern liberal society should give to the prospect of human cloning, if it became safe and practical. Some opponents of human cloning have argued that permitting it would place us on a slippery slope to a repugnant future society, comparable to that portrayed in Aldous Huxley's novel, Brave New World. I conclude that, leaving aside concerns about safety, none of the psychological or social considerations discussed in this article provides an adequate policy justification for invoking the state's coercive powers to prevent human cloning.

  18. Islamic perspectives on human cloning.

    Science.gov (United States)

    Sadeghi, Mahmoud

    2007-01-01

    The present paper seeks to assess various views from Islamic jurists relating to human cloning, which is one of the controversial topics in the recent past. Taking Islamic jurisprudence principles, such as the rule of necessity for self preservation and respect for human beings, the rule of la darar wa la dirar ('the necessity to refrain from causing harm to oneself and others') and the rule of usr wa haraj, one may indicate that if human cloning could not be prohibited, as such, it could still be opposed because it gives way to various harmful consequences, which include family disorder, chaos in the clone's family relationships, physical and mental diseases for clones and suffering of egg donors and surrogate mothers. However with due attention to the fact that the reasons behind the prohibition of abortion only restrict the destruction of human embryos in their post-implantation stages, human cloning for biomedical research and exploitation of stem cells from cloned embryos at the blastocyst stage for therapeutic purposes would be acceptable.

  19. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Fujiyama, A.; Matsubara, K.

    1987-01-01

    A human hepatocellular carcinoma cell line (Huh6-c15) was transfected with a recombinant DNA molecule that consists of tandemly arranged hepatitis B virus (HBV) genome and a neomycin-resistant gene. One clone resistant to G-418 produces and releases surface antigen and e antigen into medium at a high level and accumulates core particles intracellularly. This clone has a chromosomally integrated set of the original recombinant DNA and produces a 3.5-kilobase transcript corresponding to the pregenome RNA as well as HBV DNAs in an extrachromosomal form. Most of these DNAs were in single-stranded or partially double-stranded form and were packaged in the intracellular core particles. In the medium, particles were detected that contained HBV DNA and were morphologically indistinguishable from Dane particles. These results demonstrate that the HBV genome in an integrated state acted as a template for viral gene expression and replication. The cells were maintained for more than 6 months without losing the ability to produce the extrachromosomal HBV DNA and Dane-like particles. Thus, the cells can be used as a model system for analyses of gene expression and DNA replication of HBV in human hepatocytes

  20. Human cloning and human dignity

    Directory of Open Access Journals (Sweden)

    Hasan Eslami

    2006-12-01

    Full Text Available Catholic Church and most of Muslims believe that human cloning is in contrast with human rights. They argue that applying Somatic Nuclear Transfer Technique or so-called cloning to humans is against human dignity. Their main reason is that the cloned person would be a copy or shadow of another person and lack his or her identity and uniqueness. They also argue that in the process of cloning human beings would be treated as laboratory mice. This article tries to evaluate this kind of argumentation and shows that the "human dignity" expression in the relevant writings is vague and has been used inappropriately. مسیحیان و برخی از مسلمانان استدلال می‌کنند که کاربست تکنیک شبیه‌سازی ناقض کرامت انسانی است. این دلیل خود به صورت‌های مختلفی بیان می‌شود، مانند آنکه انسان موضوع آزمایش‌های علمی قرار می‌گیرد و با او مانند حیوانات رفتار می‌شود. گاه نیز تغییر نحوة تولید مثل، مایة نقض کرامت انسانی قلمداد می‌گردد و گاه به مسئلة از بین رفتن هویت فردی اشاره می‌شود. نگارنده در دو قسمت، دیدگاه مسیحیان و مسلمانان را در این باره نقل و تحلیل کرده است و کوشیده است نشان دهد که استناد به مفهوم کرامت انسانی در این جا مبهم و ناگویاست و مخالفان کوشش دقیقی در جهت تبیین دلیل خود به عمل نیاورده‌اند.

  1. Molecular cloning of human T-cell lymphotrophic virus type I-like proviral genome from the peripheral lymphocyte DNA of a patient with chronic neurologic disorders

    International Nuclear Information System (INIS)

    Reddy, E.P.; Mettus, R.V.; DeFreitas, E.; Wroblewska, Z.; Cisco, M.; Koprowski, H.

    1988-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-I), the etiologic agent of human T-cell leukemia, has recently been shown to be associated with neurologic disorders such as tropical spastic paraparesis, HTLV-associated myelopathy, and possibly with multiple sclerosis. In this communication, the authors have examined one specific case of neurologic disorder that can be classified as multiple sclerosis or tropical spastic paraparesis. The patient suffering from chronic neurologic disorder was found to contain antibodies to HTLV-I envelope and gag proteins in his serum and cerebrospinal fluid. Lymphocytes from peripheral blood and cerebrospinal fluid of the patient were shown to express viral RNA sequences by in situ hybridization. Southern blot analysis of the patient lymphocyte DNA revealed the presence of HTLV-I-related sequences. Blot-hybridization analysis of the RNA from fresh peripheral lymphocytes stimulated with interleukin 2 revealed the presence of abundant amounts of genomic viral RNA with little or no subgenomic RNA. They have clones the proviral genome from the DNA of the peripheral lymphocytes and determined its restriction map. This analysis shows that this proviral genome is very similar if not identical to that of the prototype HTLV-I genome

  2. Human cloning: can it be made safe?

    Science.gov (United States)

    Rhind, Susan M; Taylor, Jane E; De Sousa, Paul A; King, Tim J; McGarry, Michelle; Wilmut, Ian

    2003-11-01

    There are continued claims of attempts to clone humans using nuclear transfer, despite the serious problems that have been encountered in cloning other mammals. It is known that epigenetic and genetic mechanisms are involved in clone failure, but we still do not know exactly how. Human reproductive cloning is unethical, but the production of cells from cloned embryos could offer many potential benefits. So, can human cloning be made safe?

  3. Molecular cloning of a human glycophorin B cDNA: nucleotide sequence and genomic relationship to glycophorin A

    International Nuclear Information System (INIS)

    Siebert, P.D.; Fukuda, M.

    1987-01-01

    The authors describe the isolation and nucleotide sequence of a human glycophorin B cDNA. The cDNA was identified by differential hybridization of synthetic oligonucleotide probes to a human erythroleukemic cell line (K562) cDNA library constructed in phage vector λgt10. The nucleotide sequence of the glycophorin B cDNA was compared with that of a previously cloned glycophorin A cDNA. The nucleotide sequences encoding the NH 2 -terminal leader peptide and first 26 amino acids of the two proteins are nearly identical. This homologous region is followed by areas specific to either glycophorin A or B and a number of small regions of homology, which in turn are followed by a very homologous region encoding the presumed membrane-spanning portion of the proteins. They used RNA blot hybridization with both cDNA and synthetic oligonucleotide probes to prove our previous hypothesis that glycophorin B is encoded by a single 0.5- to 0.6-kb mRNA and to show that glycophorins A and B are negatively and coordinately regulated by a tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate. They established the intron/exon structure of the glycophorin A and B genes by oligonucleotide mapping; the results suggest a complex evolution of the glycophorin genes

  4. Cloning humans? Biological, ethical, and social considerations.

    Science.gov (United States)

    Ayala, Francisco J

    2015-07-21

    There are, in mankind, two kinds of heredity: biological and cultural. Cultural inheritance makes possible for humans what no other organism can accomplish: the cumulative transmission of experience from generation to generation. In turn, cultural inheritance leads to cultural evolution, the prevailing mode of human adaptation. For the last few millennia, humans have been adapting the environments to their genes more often than their genes to the environments. Nevertheless, natural selection persists in modern humans, both as differential mortality and as differential fertility, although its intensity may decrease in the future. More than 2,000 human diseases and abnormalities have a genetic causation. Health care and the increasing feasibility of genetic therapy will, although slowly, augment the future incidence of hereditary ailments. Germ-line gene therapy could halt this increase, but at present, it is not technically feasible. The proposal to enhance the human genetic endowment by genetic cloning of eminent individuals is not warranted. Genomes can be cloned; individuals cannot. In the future, therapeutic cloning will bring enhanced possibilities for organ transplantation, nerve cells and tissue healing, and other health benefits.

  5. Human reproductive cloning: a conflict of liberties.

    Science.gov (United States)

    Havstad, Joyce C

    2010-02-01

    Proponents of human reproductive cloning do not dispute that cloning may lead to violations of clones' right to self-determination, or that these violations could cause psychological harms. But they proceed with their endorsement of human reproductive cloning by dismissing these psychological harms, mainly in two ways. The first tactic is to point out that to commit the genetic fallacy is indeed a mistake; the second is to invoke Parfit's non-identity problem. The argument of this paper is that neither approach succeeds in removing our moral responsibility to consider and to prevent psychological harms to cloned individuals. In fact, the same commitment to personal liberty that generates the right to reproduce by means of cloning also creates the need to limit that right appropriately. Discussion of human reproductive cloning ought to involve a careful and balanced consideration of both the relevant aspects of personal liberty - the parents' right to reproductive freedom and the cloned child's right to self-determination.

  6. Human therapeutic cloning (NTSC): applying research from mammalian reproductive cloning.

    Science.gov (United States)

    French, Andrew J; Wood, Samuel H; Trounson, Alan O

    2006-01-01

    Human therapeutic cloning or nuclear transfer stem cells (NTSC) to produce patient-specific stem cells, holds considerable promise in the field of regenerative medicine. The recent withdrawal of the only scientific publications claiming the successful generation of NTSC lines afford an opportunity to review the available research in mammalian reproductive somatic cell nuclear transfer (SCNT) with the goal of progressing human NTSC. The process of SCNT is prone to epigenetic abnormalities that contribute to very low success rates. Although there are high mortality rates in some species of cloned animals, most surviving clones have been shown to have normal phenotypic and physiological characteristics and to produce healthy offspring. This technology has been applied to an increasing number of mammals for utility in research, agriculture, conservation, and biomedicine. In contrast, attempts at SCNT to produce human embryonic stem cells (hESCs) have been disappointing. Only one group has published reliable evidence of success in deriving a cloned human blastocyst, using an undifferentiated hESC donor cell, and it failed to develop into a hESC line. When optimal conditions are present, it appears that in vitro development of cloned and parthenogenetic embryos, both of which may be utilized to produce hESCs, may be similar to in vitro fertilized embryos. The derivation of ESC lines from cloned embryos is substantially more efficient than the production of viable offspring. This review summarizes developments in mammalian reproductive cloning, cell-to-cell fusion alternatives, and strategies for oocyte procurement that may provide important clues facilitating progress in human therapeutic cloning leading to the successful application of cell-based therapies utilizing autologous hESC lines.

  7. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  8. Human cloning: Eastern Mediterranean Region perspective.

    Science.gov (United States)

    Abdur Rab, M; Khayat, M H

    2006-01-01

    Recent advances in genomics and biotechnology have ushered in a new era in health development. Therapeutic cloning possesses enormous potential for revolutionizing medical and therapeutic techniques. Cloning technology, however, is perceived as having the potential for reproductive cloning, which raises serious ethical and moral concerns. It is important that the Islamic countries come to a consensus on this vital issue. Developing science and technology for better health is a religious and moral obligation. There is an urgent need for Muslim scholars to discuss the issue of stem cell research and cloning rationally; such dialogue will not only consider the scientific merits but also the moral, ethical and legal implications.

  9. Human papillomaviruses associated with epidermodysplasia verruciformis. II. Molecular cloning and biochemical characterization of human papillomavirus 3a, 8, 10, and 12 genomes.

    OpenAIRE

    Kremsdorf, D; Jablonska, S; Favre, M; Orth, G

    1983-01-01

    The DNAs of four human papillomaviruses (HPVs) that were found in the benign lesions of three patients suffering from epidermodysplasia verruciformis have been characterized. The flat wart-like lesions and the macular lesions of patient 1 contained two viruses, HPV-3a and HPV-8, respectively, whose genomes had previously been only partially characterized. The flat wart-like lesions of patient 2 and the macular lesions of patient 3 each contained a virus previously considered as belonging to t...

  10. Genetic stability of pestivirus genomes cloned into BACs

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, Ilona; Uttenthal, Åse

    pestivirus genomes to demonstrate the suitability of the BAC vector for harbouring pestivirus genomes. Two BAC clones, comprising the complete genomes of BDV Gifhorn (pBeloGif3) and CSFV Paderborn (pBeloPader10) were passaged 15 times in E.coli representing at least 360 bacteria generations. From 15th...

  11. Genetics, genomes and cloning the biotechnology revolution

    CERN Document Server

    CERN. Geneva

    1999-01-01

    As this century draws to a close, spectacular advances in the fields of genomics and genetics are opening up dramatic new horizons for medicine. For much of the 20th century, genetic research has focused on rare diseases caused by mutations in a particular gene. However, more recently it has been realised that common genetic variations (polymorphisms), interacting with the environment, can influence an individual's susceptibility to diseases widely represented in our populations (e.g. mental illness and asthma), redefining the term "genetic disease". Officially starting in 1990, the Human Genome Project was a $3-billion, 15-year program to find the estimated 80,000 human genes and determine the sequence of the 3 billion DNA building blocks that underlie all of human biology and its diversity. The resulting boom in genetic information and technologies, not only from humans, but from many other organisms, means that we now have new tools to understand and treat normal and disease states. This information is bei...

  12. "Goodbye Dolly?" The ethics of human cloning.

    Science.gov (United States)

    Harris, J

    1997-01-01

    The ethical implications of human clones have been much alluded to, but have seldom been examined with any rigour. This paper examines the possible uses and abuses of human cloning and draws out the principal ethical dimensions, both of what might be done and its meaning. The paper examines some of the major public and official responses to cloning by authorities such as President Clinton, the World Health Organisation, the European parliament, UNESCO, and others and reveals their inadequacies as foundations for a coherent public policy on human cloning. The paper ends by defending a conception of reproductive rights of "procreative autonomy" which shows human cloning to be not inconsistent with human rights and dignity. PMID:9451604

  13. The ethics of human reproductive cloning.

    Science.gov (United States)

    Strong, Carson

    2005-03-01

    This article addresses the question of whether human reproductive cloning could be ethically justifiable in at least some cases involving infertile couples who would choose cloning as a way to have a genetically related child. At present, the risk of congenital anomalies constitutes a compelling argument against human reproductive cloning. The article explores whether reproductive cloning could be ethically justifiable if, at some future time, cloning becomes possible without an elevated risk of anomalies. It is argued that freedom to use cloning is a form of procreative freedom and, as such, deserves respect. All of the objections that have been raised against human reproductive cloning fall under three main categories: those that appeal to the interests of the child, those based on consequences for society, and those arising from teleological views. Objections that appeal to the child's interests are, in turn, of two main kinds: consequentialist and deontological. All of these types of objections are examined, and it is found that each involves serious problems that prevent it from being a reasonable objection in the context of the infertility cases considered. It is concluded that human reproductive cloning would be ethically justifiable in at least some cases involving infertile couples, provided that it could be performed without an elevated risk of anomalies.

  14. Human Cloning: Let's Discuss It.

    Science.gov (United States)

    Taras, Loretta; Stavroulakis, Anthea M.; Ortiz, Mary T.

    1999-01-01

    Describes experiences with holding discussions on cloning at a variety of levels in undergraduate biology courses. Discusses teaching methods used and student reactions to the discussions. Contains 12 references. (WRM)

  15. GenMapDB: a database of mapped human BAC clones

    OpenAIRE

    Morley, Michael; Arcaro, Melissa; Burdick, Joshua; Yonescu, Raluca; Reid, Thomas; Kirsch, Ilan R.; Cheung, Vivian G.

    2001-01-01

    GenMapDB (http://genomics.med.upenn.edu/genmapdb) is a repository of human bacterial artificial chromosome (BAC) clones mapped by our laboratory to sequence-tagged site markers. Currently, GenMapDB contains over 3000 mapped clones that span 19 chromosomes, chromosomes 2, 4, 5, 9–22, X and Y. This database provides positional information about human BAC clones from the RPCI-11 human male BAC library. It also contains restriction fragment analysis data and end sequen...

  16. Intraclonal genome diversity of Pseudomonas aeruginosa clones CHA and TB

    Science.gov (United States)

    2013-01-01

    Background Adaptation of Pseudomonas aeruginosa to different living conditions is accompanied by microevolution resulting in genomic diversity between strains of the same clonal lineage. In order to detect the impact of colonized habitats on P. aeruginosa microevolution we determined the genomic diversity between the highly virulent cystic fibrosis (CF) isolate CHA and two temporally and geographically unrelated clonal variants. The outcome was compared with the intraclonal genome diversity between three more closely related isolates of another clonal complex. Results The three clone CHA isolates differed in their core genome in several dozen strain specific nucleotide exchanges and small deletions from each other. Loss of function mutations and non-conservative amino acid replacements affected several habitat- and lifestyle-associated traits, for example, the key regulator GacS of the switch between acute and chronic disease phenotypes was disrupted in strain CHA. Intraclonal genome diversity manifested in an individual composition of the respective accessory genome whereby the highest number of accessory DNA elements was observed for isolate PT22 from a polluted aquatic habitat. Little intraclonal diversity was observed between three spatiotemporally related outbreak isolates of clone TB. Although phenotypically different, only a few individual SNPs and deletions were detected in the clone TB isolates. Their accessory genome mainly differed in prophage-like DNA elements taken up by one of the strains. Conclusions The higher geographical and temporal distance of the clone CHA isolates was associated with an increased intraclonal genome diversity compared to the more closely related clone TB isolates derived from a common source demonstrating the impact of habitat adaptation on the microevolution of P. aeruginosa. However, even short-term habitat differentiation can cause major phenotypic diversification driven by single genomic variation events and uptake of phage

  17. Japan. Human cloning ban allows some research.

    Science.gov (United States)

    Normile, D

    2000-12-08

    TOKYO--Japanese legislators last week approved a ban on human cloning that leaves room for the use of certain techniques in basic research. The action comes at the same time officials in two other countries--China and France--aired similar proposals that would prohibit so-called reproductive cloning while recognizing the possible importance of the technology in combating disease and improving human health.

  18. Human embryo cloning prohibited in Hong Kong.

    Science.gov (United States)

    Liu, Athena

    2005-12-01

    Since the birth of Dolly (the cloned sheep) in 1997, debates have arisen on the ethical and legal questions of cloning-for-biomedical-research (more commonly termed "therapeutic cloning") and of reproductive cloning using human gametes. Hong Kong enacted the Human Reproductive Technology Ordinance (Cap 561) in 2000. Section 15(1)(e) of this Ordinance prohibits the "replacing of the nucleus of a cell of an embryo with a nucleus taken from any other cell," i.e., nucleus substitution. Section 15(1)(f) prohibits the cloning of any embryo. The scope of the latter, therefore, is arguably the widest, prohibiting all cloning techniques such as cell nucleus replacement, embryo splitting, parthenogenesis, and cloning using stem cell lines. Although the Human Reproductive Technology Ordinance is not yet fully operative, this article examines how these prohibitions may adversely impact on basic research and the vision of the Hong Kong scientific community. It concludes that in light of recent scientific developments, it is time to review if the law offers a coherent set of policies in this area.

  19. [Human cloning in Muslim and Arab law].

    Science.gov (United States)

    Aldeeb Abu-Sahlieh, Sami A

    2009-01-01

    Cloning is a modern medical procedure that Muslim religious authorities treat en resorting to the general principles established by classical Muslim law based on the Koran and the Sunnah of Muhhamad as the messenger of God. In this regard, human beings are not capable of deciding what is or what is not lawful without resorting to divine norms. Cloning clashes with several principles. Firstly, the principle of the respect for life in relation to surpernumeraries, but Muslim authors are not in unanimous agreement on the determination of the moment at which life begins. Secondly, is the respect of progeny: cloning could only take place between a married couple. But even if these two principles are respected, cloning poses two major problems: the diversity of species expounded by the Koran and the Sunnah and a lack of interest. Which explains the quasi-unanimous opposition of Muslim writings regarding cloning.

  20. The Shiite Pluralistic Position on Human Cloning

    Directory of Open Access Journals (Sweden)

    Sayyid Hasan Islami Ardekani

    2012-01-01

    Full Text Available With regard to human cloning or artificial human reproduction – and contrary to the opinions of Sunni scholars - Shiite thinkers have not held a unified position. After having surveyed a number of Shiite fatwas and analyses on the subject, this essay will classify them into four groups. The first group states that we are granted absolute permission to engage in human cloning; while the second group believes that there is limited permission; the third group argues that cloning as such is primarily permitted but because of its consequences and secondary grounds it is prohibited and unlawful; and the fourth group is of the view that cloning as such and by itself is prohibited and unlawful. In what follows, the author has examined these four views, ending in support of the permission theory.

  1. Emotional reactions to human reproductive cloning.

    Science.gov (United States)

    May, Joshua

    2016-01-01

    Extant surveys of people's attitudes towards human reproductive cloning focus on moral judgements alone, not emotional reactions or sentiments. This is especially important given that some (especially Leon Kass) have argued against such cloning on the ground that it engenders widespread negative emotions, like disgust, that provide a moral guide. To provide some data on emotional reactions to human cloning, with a focus on repugnance, given its prominence in the literature. This brief mixed-method study measures the self-reported attitudes and emotions (positive or negative) towards cloning from a sample of participants in the USA. Most participants condemned cloning as immoral and said it should be illegal. The most commonly reported positive sentiment was by far interest/curiosity. Negative emotions were much more varied, but anxiety was the most common. Only about a third of participants selected disgust or repugnance as something they felt, and an even smaller portion had this emotion come to mind prior to seeing a list of options. Participants felt primarily interested and anxious about human reproductive cloning. They did not primarily feel disgust or repugnance. This provides initial empirical evidence that such a reaction is not appropriately widespread. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. cDNA, genomic sequence cloning and overexpression of ribosomal ...

    African Journals Online (AJOL)

    RPS16 of eukaryote is a component of the 40S small ribosomal subunit encoded by RPS16 gene and is also a homolog of prokaryotic RPS9. The cDNA and genomic sequence of RPS16 was cloned successfully for the first time from the Giant Panda (Ailuropoda melanoleuca) using reverse transcription-polymerase chain ...

  3. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    Energy Technology Data Exchange (ETDEWEB)

    Deymier, Martin J., E-mail: mdeymie@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Claiborne, Daniel T., E-mail: dclaibo@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ende, Zachary, E-mail: zende@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Ratner, Hannah K., E-mail: hannah.ratner@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Kilembe, William, E-mail: wkilembe@rzhrg-mail.org [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Allen, Susan, E-mail: sallen5@emory.edu [Zambia-Emory HIV Research Project (ZEHRP), B22/737 Mwembelelo, Emmasdale Post Net 412, P/BagE891, Lusaka (Zambia); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States); Hunter, Eric, E-mail: eric.hunter2@emory.edu [Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road NE, Atlanta, GA 30329 (United States); Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA (United States)

    2014-11-15

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  4. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    International Nuclear Information System (INIS)

    Deymier, Martin J.; Claiborne, Daniel T.; Ende, Zachary; Ratner, Hannah K.; Kilembe, William; Allen, Susan; Hunter, Eric

    2014-01-01

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor

  5. Human reproductive cloning and reasons for deprivation.

    Science.gov (United States)

    Jensen, D A

    2008-08-01

    Human reproductive cloning provides the possibility of genetically related children for persons for whom present technologies are ineffective. I argue that the desire for genetically related children is not, by itself, a sufficient reason to engage in human reproductive cloning. I show this by arguing that the value underlying the desire for genetically related children implies a tension between the parent and the future child. This tension stems from an instance of a deprivation and violates a general principle of reasons for deprivation. Alternative considerations, such as a right to procreative autonomy, do not appear helpful in making the case for human reproductive cloning merely on the basis of the desire for genetically related children.

  6. A Seminar on Human Cloning: Cloning in Reproductive Medicine

    OpenAIRE

    Illmensee, Karl

    2001-01-01

    This review article summarizes the historical development of mammalian cloning, presents current advances and presumed risk factors in the field of reproductive cloning, discusses possible clinical applications of therapeutic and diagnostic cloning and outlines prospective commercial trends in pharmacytical cloning. Predictable progress in biotechnology and stem cell engineering should prove to be advantageous for patients' health and for novel benefits in reproductive and regenerative medicine.

  7. Cloning

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  8. Properties of promoters cloned randomly from the Saccharomyces cerevisiae genome.

    Science.gov (United States)

    Santangelo, G M; Tornow, J; McLaughlin, C S; Moldave, K

    1988-01-01

    Promoters were isolated at random from the genome of Saccharomyces cerevisiae by using a plasmid that contains a divergently arrayed pair of promoterless reporter genes. A comprehensive library was constructed by inserting random (DNase I-generated) fragments into the intergenic region upstream from the reporter genes. Simple in vivo assays for either reporter gene product (alcohol dehydrogenase or beta-galactosidase) allowed the rapid identification of promoters from among these random fragments. Poly(dA-dT) homopolymer tracts were present in three of five randomly cloned promoters. With two exceptions, each RNA start site detected was 40 to 100 base pairs downstream from a TATA element. All of the randomly cloned promoters were capable of activating reporter gene transcription bidirectionally. Interestingly, one of the promoter fragments originated in a region of the S. cerevisiae rDNA spacer; regulated divergent transcription (presumably by RNA polymerase II) initiated in the same region. Images PMID:2847031

  9. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    Science.gov (United States)

    Džunková, Mária; D'Auria, Giuseppe; Pérez-Villarroya, David; Moya, Andrés

    2012-01-01

    Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb) cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs) with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  10. Hybrid sequencing approach applied to human fecal metagenomic clone libraries revealed clones with potential biotechnological applications.

    Directory of Open Access Journals (Sweden)

    Mária Džunková

    Full Text Available Natural environments represent an incredible source of microbial genetic diversity. Discovery of novel biomolecules involves biotechnological methods that often require the design and implementation of biochemical assays to screen clone libraries. However, when an assay is applied to thousands of clones, one may eventually end up with very few positive clones which, in most of the cases, have to be "domesticated" for downstream characterization and application, and this makes screening both laborious and expensive. The negative clones, which are not considered by the selected assay, may also have biotechnological potential; however, unfortunately they would remain unexplored. Knowledge of the clone sequences provides important clues about potential biotechnological application of the clones in the library; however, the sequencing of clones one-by-one would be very time-consuming and expensive. In this study, we characterized the first metagenomic clone library from the feces of a healthy human volunteer, using a method based on 454 pyrosequencing coupled with a clone-by-clone Sanger end-sequencing. Instead of whole individual clone sequencing, we sequenced 358 clones in a pool. The medium-large insert (7-15 kb cloning strategy allowed us to assemble these clones correctly, and to assign the clone ends to maintain the link between the position of a living clone in the library and the annotated contig from the 454 assembly. Finally, we found several open reading frames (ORFs with previously described potential medical application. The proposed approach allows planning ad-hoc biochemical assays for the clones of interest, and the appropriate sub-cloning strategy for gene expression in suitable vectors/hosts.

  11. The human genome project

    International Nuclear Information System (INIS)

    Worton, R.

    1996-01-01

    The Human Genome Project is a massive international research project, costing 3 to 5 billion dollars and expected to take 15 years, which will identify the all the genes in the human genome - i.e. the complete sequence of bases in human DNA. The prize will be the ability to identify genes causing or predisposing to disease, and in some cases the development of gene therapy, but this new knowledge will raise important ethical issues

  12. Technological Literacy and Human Cloning. Resources in Technology.

    Science.gov (United States)

    Baird, Steven L.

    2002-01-01

    Discusses how technology educators can deal with advances in human genetics, specifically, cloning. Includes a definition and history of cloning, discusses its benefits, and looks at social concerns and arguments for and against human cloning. Includes classroom activities and websites. (Contains 10 references.) (JOW)

  13. Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Fortson, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Joyce, G. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Kimble, H. J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Max, C. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Prince, T. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, P. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Woodin, W. H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  14. Human genome I

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    An international conference, Human Genome I, was held Oct. 2-4, 1989 in San Diego, Calif. Selected speakers discussed: Current Status of the Genome Project; Technique Innovations; Interesting regions; Applications; and Organization - Different Views of Current and Future Science and Procedures. Posters, consisting of 119 presentations, were displayed during the sessions. 119 were indexed for inclusion to the Energy Data Base

  15. Ethical issues regarding human cloning: a nursing perspective.

    Science.gov (United States)

    Dinç, Leyla

    2003-05-01

    Advances in cloning technology and successful cloning experiments in animals raised concerns about the possibility of human cloning in recent years. Despite many objections, this is not only a possibility but also a reality. Human cloning is a scientific revolution. However, it also introduces the potential for physical and psychosocial harm to human beings. From this point of view, it raises profound ethical, social and health related concerns. Human cloning would have an impact on the practice of nursing because it could result in the creation of new physiological and psychosocial conditions that would require nursing care. The nursing profession must therefore evaluate the ethics of human cloning, in particular the potential role of nurses. This article reviews the ethical considerations of reproductive human cloning, discusses the main reasons for concern, and reflects a nursing perspective regarding this issue.

  16. Brain cDNA clone for human cholinesterase

    International Nuclear Information System (INIS)

    McTiernan, C.; Adkins, S.; Chatonnet, A.; Vaughan, T.A.; Bartels, C.F.; Kott, M.; Rosenberry, T.L.; La Du, B.N.; Lockridge, O.

    1987-01-01

    A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase. Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum. The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase rather than acetylcholinesterase. It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes coded for cholinesterase

  17. Human somatic cell nuclear transfer and cloning.

    Science.gov (United States)

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  18. Cloning Mice and Men: Prohibiting the Use of iPS Cells for Human Reproductive Cloning

    OpenAIRE

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2010-01-01

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation.

  19. Cloning mice and men: prohibiting the use of iPS cells for human reproductive cloning.

    Science.gov (United States)

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2010-01-08

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Human social genomics.

    Directory of Open Access Journals (Sweden)

    Steven W Cole

    2014-08-01

    Full Text Available A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural "social signal transduction" pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.

  1. Coding sequence of human rho cDNAs clone 6 and clone 9

    Energy Technology Data Exchange (ETDEWEB)

    Chardin, P; Madaule, P; Tavitian, A

    1988-03-25

    The authors have isolated human cDNAs including the complete coding sequence for two rho proteins corresponding to the incomplete isolates previously described as clone 6 and clone 9. The deduced a.a. sequences, when compared to the a.a. sequence deduced from clone 12 cDNA, show that there are in human at least three highly homologous rho genes. They suggest that clone 12 be named rhoA, clone 6 : rhoB and clone 9 : rhoC. RhoA, B and C proteins display approx. 30% a.a. identity with ras proteins,. mainly clustered in four highly homologous internal regions corresponding to the GTP binding site; however at least one significant difference is found; the 3 rho proteins have an Alanine in position corresponding to ras Glycine 13, suggesting that rho and ras proteins might have slightly different biochemical properties.

  2. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  3. Decoding the human genome

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Antonerakis, S E

    2002-01-01

    Decoding the Human genome is a very up-to-date topic, raising several questions besides purely scientific, in view of the two competing teams (public and private), the ethics of using the results, and the fact that the project went apparently faster and easier than expected. The lecture series will address the following chapters: Scientific basis and challenges. Ethical and social aspects of genomics.

  4. Human Germline Genome Editing

    OpenAIRE

    Ormond, Kelly E.; Mortlock, Douglas P.; Scholes, Derek T.; Bombard, Yvonne; Brody, Lawrence C.; Faucett, W. Andrew; Garrison, Nanibaa’ A.; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E.

    2017-01-01

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Gen...

  5. The Human Cloning Prohibition Act of 2001: vagueness and federalism.

    Science.gov (United States)

    Swartz, Jonathan S

    2002-01-01

    On July 31, 2001, the U.S. House of Representatives passed The Human Cloning Prohibition Act of 2001. The legislation proposes a complete ban on somatic cell nuclear transfer to create cloned human embryos; it threatens transgressors with criminal punishment and civil fines. House Bill 2505 is the first human cloning prohibition to pass either chamber of Congress. This note argues that the bill is unconstitutionally vague and inconsistent with the Supreme Court's recent Commerce Clause jurisprudence.

  6. Construction of an infectious clone of human adenovirus type 41.

    Science.gov (United States)

    Chen, Duo-Ling; Dong, Liu-Xin; Li, Meng; Guo, Xiao-Juan; Wang, Min; Liu, Xin-Feng; Lu, Zhuo-Zhuang; Hung, Tao

    2012-07-01

    Human adenovirus type 41 (HAdV-41) is well known for its fastidiousness in cell culture. To construct an infectious clone of HAdV-41, a DNA fragment containing the left and right ends of HAdV-41 as well as a kanamycin resistance gene and a pBR322 replication origin was excised from the previously constructed plasmid pAd41-GFP. Using homologous recombination, the plasmid pKAd41 was generated by co-transformation of the E. coli BJ5183 strain with this fragment and HAdV-41 genomic DNA. Virus was rescued from pKAd41-transfected 293TE7 cells, a HAdV-41 E1B55K-expressing cell line. The genomic integrity of the rescued virus was verified by restriction analysis and sequencing. Two fibers on the virion were confirmed by western blot. Immunofluorescence showed that more expression of the hexon protein could be found in 293TE7 cells than in 293 cells after HAdV-41 infection. The feature of non-lytic replication was preserved in 293TE7 cells, since very few progeny HAdV-41 viruses were released to the culture medium. These results show that pKAd41 is an effective infectious clone and suggest that the combination of pKAd41 and 293TE7 cells is an ideal system for virological study of HAdV-41.

  7. Human cloning: category, dignity, and the role of bioethics.

    Science.gov (United States)

    Shuster, Evelyne

    2003-10-01

    Human cloning has been simultaneously a running joke for massive worldwide publicity of fringe groups like the Raelians, and the core issue of an international movement at the United Nations in support of a treaty to ban the use of cloning techniques to produce a child (so called reproductive cloning). Yet, even though debates on human cloning have greatly increased since the birth of Dolly, the clone sheep, in 1997, we continue to wonder whether cloning is after all any different from other methods of medically assisted reproduction, and what exactly makes cloning an 'affront to the dignity of humans.' Categories we adopt matter mightily as they inform but can also misinform and lead to mistaken and unproductive decisions. And thus bioethicists have a responsibility to ensure that the proper categories are used in the cloning debates and denounce those who try to win the ethical debate through well-crafted labels rather than well-reasoned argumentations. But it is as important for bioethicists to take a position on broad issues such as human cloning and species altering interventions. One 'natural question' would be, for example, should there be an international treaty to ban human reproductive cloning?

  8. Annotating individual human genomes.

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A; Topol, Eric J; Schork, Nicholas J

    2011-10-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. ANNOTATING INDIVIDUAL HUMAN GENOMES*

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A.; Topol, Eric J.; Schork, Nicholas J.

    2014-01-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely to amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. PMID:21839162

  10. An overview of the human genome project

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.

    1994-01-01

    The human genome project is one of the most ambitious scientific projects to date, with the ultimate goal being a nucleotide sequence for all four billion bases of human DNA. In the process of determining the nucleotide sequence for each base, the location, function, and regulatory regions from the estimated 100,000 human genes will be identified. The genome project itself relies upon maps of the human genetic code derived from several different levels of resolution. Genetic linkage analysis provides a low resolution genome map. The information for genetic linkage maps is derived from the analysis of chromosome specific markers such as Sequence Tagged Sites (STSs), Variable Number of Tandem Repeats (VNTRs) or other polymorphic (highly informative) loci in a number of different-families. Using this information the location of an unknown disease gene can be limited to a region comprised of one million base pairs of DNA or less. After this point, one must construct or have access to a physical map of the region of interest. Physical mapping involves the construction of an ordered overlapping (contiguous) set of recombinant DNA clones. These clones may be derived from a number of different vectors including cosmids, Bacterial Artificial Chromosomes (BACs), P1 derived Artificial Chromosomes (PACs), somatic cell hybrids, or Yeast Artificial Chromosomes (YACs). The ultimate goal for physical mapping is to establish a completely overlapping (contiguous) set of clones for the entire genome. After a gene or region of interest has been localized using physical mapping the nucleotide sequence is determined. The overlap between genetic mapping, physical mapping and DNA sequencing has proven to be a powerful tool for the isolation of disease genes through positional cloning.

  11. [Human cloning and the protection of women's interests].

    Science.gov (United States)

    Canabes, Marcela Ahumada

    2008-01-01

    The Human Cloning, both therapeutic and full birth cloning, involves and affects women in a special way. The United Nation's Declaration on the Cloning of Human Beings includes a special clause referred to them. Also the Spanish law does it. This works pretend to analyse the meaning of the inclusion of women's interests in this document. At the same time, I will consider the foundations and the importance of the reference to the women.

  12. Cloning

    Science.gov (United States)

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  13. Knowledge and attitudes toward human cloning in Israel.

    Science.gov (United States)

    Barnoy, Sivia; Ehrenfeld, Malka; Sharon, Rina; Tabak, Nili

    2006-04-01

    The success of mammal cloning in 1997 has brought the issue of human cloning into public discussion. Human cloning has several aspects and potential applications for use in both reproductive and non-reproductive matters. The aim of this study was to evaluate the knowledge and attitudes toward human cloning in Israel. Data from 120 respondents (68 health professionals and 52 non-health professionals), all Jewish, Hebrew speaking with at least 15 years of education each, were collected using two questionnaires that dealt with knowledge and attitudes toward human cloning. Results showed that although health professionals had significantly more knowledge that non-health professionals, all respondents had poor knowledge about cloning. No difference in attitudes was found between the groups. Most respondents opposed human cloning, but more positive attitudes toward non-reproductive cloning were found. The results are discussed in the context of the deficit model. The findings indicate a need to provide information about human cloning to allow people to form their attitudes based on factual knowledge.

  14. Human Germline Genome Editing.

    Science.gov (United States)

    Ormond, Kelly E; Mortlock, Douglas P; Scholes, Derek T; Bombard, Yvonne; Brody, Lawrence C; Faucett, W Andrew; Garrison, Nanibaa' A; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E

    2017-08-03

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Genetic Counselors. These groups, as well as the American Society for Reproductive Medicine, Asia Pacific Society of Human Genetics, British Society for Genetic Medicine, Human Genetics Society of Australasia, Professional Society of Genetic Counselors in Asia, and Southern African Society for Human Genetics, endorsed the final statement. The statement includes the following positions. (1) At this time, given the nature and number of unanswered scientific, ethical, and policy questions, it is inappropriate to perform germline gene editing that culminates in human pregnancy. (2) Currently, there is no reason to prohibit in vitro germline genome editing on human embryos and gametes, with appropriate oversight and consent from donors, to facilitate research on the possible future clinical applications of gene editing. There should be no prohibition on making public funds available to support this research. (3) Future clinical application of human germline genome editing should not proceed unless, at a minimum, there is (a) a compelling medical rationale, (b) an evidence base that supports its clinical use, (c) an ethical justification, and (d) a transparent public process to solicit and incorporate stakeholder input. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  15. In silico analysis of the fucosylation-associated genome of the human blood fluke Schistosoma mansoni: cloning and characterization of the fucosyltransferase multigene family.

    Science.gov (United States)

    Peterson, Nathan A; Anderson, Tavis K; Yoshino, Timothy P

    2013-01-01

    Fucosylated glycans of the parasitic flatworm Schistosoma mansoni play key roles in its development and immunobiology. In the present study we used a genome-wide homology-based bioinformatics approach to search for genes that contribute to fucosylated glycan expression in S. mansoni, specifically the α2-, α3-, and α6-fucosyltransferases (FucTs), which transfer L-fucose from a GDP-L-fucose donor to an oligosaccharide acceptor. We identified and in silico characterized several novel schistosome FucT homologs, including six α3-FucTs and six α6-FucTs, as well as two protein O-FucTs that catalyze the unrelated transfer of L-fucose to serine and threonine residues of epidermal growth factor- and thrombospondin-type repeats. No α2-FucTs were observed. Primary sequence analyses identified key conserved FucT motifs as well as characteristic transmembrane domains, consistent with their putative roles as fucosyltransferases. Most genes exhibit alternative splicing, with multiple transcript variants generated. A phylogenetic analysis demonstrated that schistosome α3- and α6-FucTs form monophyletic clades within their respective gene families, suggesting multiple gene duplications following the separation of the schistosome lineage from the main evolutionary tree. Quantitative decreases in steady-state transcript levels of some FucTs during early larval development suggest a possible mechanism for differential expression of fucosylated glycans in schistosomes. This study systematically identifies the complete repertoire of FucT homologs in S. mansoni and provides fundamental information regarding their genomic organization, genetic variation, developmental expression, and evolutionary history.

  16. Telomeres and the ethics of human cloning.

    Science.gov (United States)

    Allhoff, Fritz

    2004-01-01

    In search of a potential problem with cloning, I investigate the phenomenon of telomere shortening which is caused by cell replication; clones created from somatic cells will have shortened telomeres and therefore reach a state of senescence more rapidly. While genetic intervention might fix this problem at some point in the future, I ask whether, absent technological advances, this biological phenomenon undermines the moral permissibility of cloning.

  17. Cloning the interleukin 1 receptor from human T cells

    International Nuclear Information System (INIS)

    Sims, J.E.; Acres, R.B.; Grubin, C.E.; McMahan, C.J.; Wignall, J.M.; March, C.J.; Dower, S.K.

    1989-01-01

    cDNA clones of the interleukin 1 (IL-1) receptor expressed in a human T-cell clone have been isolated by using a murine IL-1 receptor cDNA as a probe. The human and mouse receptors show a high degree of sequence conservation. Both are integral membrane proteins possessing a single membrane-spanning segment. Similar to the mouse receptor, the human IL-1 receptor contains a large cytoplasmic region and an extracellular, IL-1 binding portion composed of three immunoglobulin-like domains. When transfected into COS cells, the human IL-1 receptor cDNA clone leads to expression of two different affinity classes of receptors, with K a values indistinguishable from those determined for IL-1 receptors in the original T-cell clone. An IL-1 receptor expressed in human dermal fibroblasts has also been cloned and sequenced and found to be identical to the IL-1 receptor expressed in T cells

  18. Procreative liberty, enhancement and commodification in the human cloning debate.

    Science.gov (United States)

    Shapshay, Sandra

    2012-12-01

    The aim of this paper is to scrutinize a contemporary standoff in the American debate over the moral permissibility of human reproductive cloning in its prospective use as a eugenic enhancement technology. I shall argue that there is some significant and under-appreciated common ground between the defenders and opponents of human cloning. Champions of the moral and legal permissibility of cloning support the technology based on the right to procreative liberty provided it were to become as safe as in vitro fertilization and that it be used only by adults who seek to rear their clone children. However, even champions of procreative liberty oppose the commodification of cloned embryos, and, by extension, the resulting commodification of the cloned children who would be produced via such embryos. I suggest that a Kantian moral argument against the use of cloning as an enhancement technology can be shown to be already implicitly accepted to some extent by champions of procreative liberty on the matter of commodification of cloned embryos. It is in this argument against commodification that the most vocal critics of cloning such as Leon Kass and defenders of cloning such as John Robertson can find greater common ground. Thus, I endeavor to advance the debate by revealing a greater degree of moral agreement on some fundamental premises than hitherto recognized.

  19. Revised genomic consensus for the hypermethylated CpG island region of the human L1 transposon and integration sites of full length L1 elements from recombinant clones made using methylation-tolerant host strains

    DEFF Research Database (Denmark)

    Crowther, P J; Doherty, J P; Linsenmeyer, M E

    1991-01-01

    preferentially from L1 members which have accumulated mutations that have removed sites of methylation. We present a revised consensus from the 5' presumptive control region of these elements. This revised consensus contains a consensus RNA polymerase III promoter which would permit the synthesis of transcripts......Efficient recovery of clones from the 5' end of the human L1 dispersed repetitive elements necessitates the use of deletion mcr- host strains since this region contains a CpG island which is hypermethylated in vivo. Clones recovered with conventional mcr+ hosts seem to have been derived...... from the 5' end of full length L1 elements. Such potential transcripts are likely to exhibit a high degree of secondary structure. In addition, we have determined the flanking sequences for 6 full length L1 elements. The majority of full length L1 clones show no convincing evidence for target site...

  20. Towards an understanding of British public attitudes concerning human cloning.

    Science.gov (United States)

    Shepherd, Richard; Barnett, Julie; Cooper, Helen; Coyle, Adrian; Moran-Ellis, Jo; Senior, Victoria; Walton, Chris

    2007-07-01

    The ability of scientists to apply cloning technology to humans has provoked public discussion and media coverage. The present paper reports on a series of studies examining public attitudes to human cloning in the UK, bringing together a range of quantitative and qualitative methods to address this question. These included a nationally representative survey, an experimental vignette study, focus groups and analyses of media coverage. Overall the research presents a complex picture of attitude to and constructions of human cloning. In all of the analyses, therapeutic cloning was viewed more favourably than reproductive cloning. However, while participants in the focus groups were generally negative about both forms of cloning, and this was also reflected in the media analyses, quantitative results showed more positive responses. In the quantitative research, therapeutic cloning was generally accepted when the benefits of such procedures were clear, and although reproductive cloning was less accepted there was still substantial support. Participants in the focus groups only differentiated between therapeutic and reproductive cloning after the issue of therapeutic cloning was explicitly raised; initially they saw cloning as being reproductive cloning and saw no real benefits. Attitudes were shown to be associated with underlying values associated with scientific progress rather than with age, gender or education, and although there were a few differences in the quantitative data based on religious affiliation, these tended to be small effects. Likewise in the focus groups there was little direct appeal to religion, but the main themes were 'interfering with nature' and the 'status of the embryo', with the latter being used more effectively to try to close down further discussion. In general there was a close correspondence between the media analysis and focus group responses, possibly demonstrating the importance of media as a resource, or that the media reflect

  1. Hepatocyte specific expression of human cloned genes

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, R

    1986-01-01

    A large number of proteins are specifically synthesized in the hepatocyte. Only the adult liver expresses the complete repertoire of functions which are required at various stages during development. There is therefore a complex series of regulatory mechanisms responsible for the maintenance of the differentiated state and for the developmental and physiological variations in the pattern of gene expression. Human hepatoma cell lines HepG2 and Hep3B display a pattern of gene expression similar to adult and fetal liver, respectively; in contrast, cultured fibroblasts or HeLa cells do not express most of the liver specific genes. They have used these cell lines for transfection experiments with cloned human liver specific genes. DNA segments coding for alpha1-antitrypsin and retinol binding protein (two proteins synthesized both in fetal and adult liver) are expressed in the hepatoma cell lines HepG2 and Hep3B, but not in HeLa cells or fibroblasts. A DNA segment coding for haptoglobin (a protein synthesized only after birth) is only expressed in the hepatoma cell line HepG2 but not in Hep3B nor in non hepatic cell lines. The information for tissue specific expression is located in the 5' flanking region of all three genes. In vivo competition experiments show that these DNA segments bind to a common, apparently limiting, transacting factor. Conventional techniques (Bal deletions, site directed mutagenesis, etc.) have been used to precisely identify the DNA sequences responsible for these effects. The emerging picture is complex: they have identified multiple, separate transcriptional signals, essential for maximal promoter activation and tissue specific expression. Some of these signals show a negative effect on transcription in fibroblast cell lines.

  2. Genomic clones of bovine parvovirus: Construction and effect of deletions and terminal sequence inversions on infectivity

    International Nuclear Information System (INIS)

    Shull, B.C.; Chen, K.C.; Lederman, M.; Stout, E.R.; Bates, R.C.

    1988-01-01

    Genomic clones of the autonomous parvovirus bovine parvovirus (BPV) were constructed by blunt-end ligation of reannealed virion plus and minus DNA strands into the plasmid pUC8. These clones were stable during propagation in Escherichia coli JM107. All clones tested were found to be infectious by the criteria of plaque titer and progressive cytophathic effect after transfection into bovine fetal lung cells. Sequencing of the recombinant plasmids demonstrated that all of the BPV inserts had left-end (3')-terminal deletions of up to 34 bases. Defective genomes could also be detected in the progeny DNA even though the infection was initiated with homogeneous, cloned DNA. Full-length genomic clones with 3' flip and 3' flop conformations were constructed and were found to have equal infectivity. Expression of capsid proteins from tranfected genomes was demonstrated by hemagglutination, indirect immunofluorescence, and immunoprecipitation of [ 35 S]methionine-labeled cell lysates. Use of appropriate antiserum for immunoprecipitation showed the synthesis of BPV capsid and noncapsid proteins after transfection. Independently, a series of genomic clones with increasingly larger 3'-terminal deletions was prepared from separately subcloned 3'-terminal fragments. Transfection of these clones into bovine fetal lung cells revealed that deletions of up to 34 bases at the 3' end lowered but did not abolish infectivity, while deletions of greater than 52 bases were lethal. End-label analysis showed that the 34-base deletion was repaired to wild-type length in the progeny virus

  3. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA.

    Science.gov (United States)

    Hu, Lin-Yong; Cui, Chen-Chen; Song, Yu-Jie; Wang, Xiang-Guo; Jin, Ya-Ping; Wang, Ai-Hua; Zhang, Yong

    2012-07-01

    cDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.

  4. Molecular cloning and characterization of human papilloma virus DNA derived from a laryngeal papilloma.

    OpenAIRE

    Gissmann, L; Diehl, V; Schultz-Coulon, H J; zur Hausen, H

    1982-01-01

    Papilloma virus DNA from a laryngeal papilloma was cloned in phage lambda L 47 and characterized after cleavage with different restriction enzymes. Hybridization with the DNAs of human papilloma virus types 1, 2, 3, 4, 5, and 8 showed no homology under stringent hybridization conditions. Human papilloma virus type 6 DNA, however, was partially identical to laryngeal papilloma virus DNA; different restriction enzyme fragments hybridizing with the other DNA were identified on each genome. The d...

  5. National Human Genome Research Institute

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  6. The global governance of human cloning: the case of UNESCO.

    Science.gov (United States)

    Langlois, Adèle

    2017-03-21

    Since Dolly the Sheep was cloned in 1996, the question of whether human reproductive cloning should be banned or pursued has been the subject of international debate. Feelings run strong on both sides. In 2005, the United Nations adopted its Declaration on Human Cloning to try to deal with the issue. The declaration is ambiguously worded, prohibiting "all forms of human cloning inasmuch as they are incompatible with human dignity and the protection of human life". It received only ambivalent support from UN member states. Given this unsatisfactory outcome, in 2008 UNESCO (the United Nations Educational, Scientific and Cultural Organization) set up a Working Group to investigate the possibility of a legally binding convention to ban human reproductive cloning. The Working Group was made up of members of the International Bioethics Committee, established in 1993 as part of UNESCO's Bioethics Programme. It found that the lack of clarity in international law is unhelpful for those states yet to formulate national regulations or policies on human cloning. Despite this, member states of UNESCO resisted the idea of a convention for several years. This changed in 2015, but there has been no practical progress on the issue. Drawing on official records and first-hand observations at bioethics meetings, this article examines the human cloning debate at UNESCO from 2008 onwards, thus building on and advancing current scholarship by applying recent ideas on global governance to an empirical case. It concludes that, although human reproductive cloning is a challenging subject, establishing a robust global governance framework in this area may be possible via an alternative deliberative format, based on knowledge sharing and feasibility testing rather than the interest-based bargaining that is common to intergovernmental organizations and involving a wide range of stakeholders. This article is published as part of a collection on global governance.

  7. Origins of the Human Genome Project.

    Science.gov (United States)

    Watson, J D; Cook-Deegan, R M

    1991-01-01

    The Human Genome Project has become a reality. Building on a debate that dates back to 1985, several genome projects are now in full stride around the world, and more are likely to form in the next several years. Italy began its genome program in 1987, and the United Kingdom and U.S.S.R. in 1988. The European communities mounted several genome projects on yeast, bacteria, Drosophila, and Arabidospis thaliana (a rapidly growing plant with a small genome) in 1988, and in 1990 commenced a new 2-year program on the human genome. In the United States, we have completed the first year of operation of the National Center for Human Genome Research at the National Institutes of Health (NIH), now the largest single funding source for genome research in the world. There have been dedicated budgets focused on genome-scale research at NIH, the U.S. Department of Energy, and the Howard Hughes Medical Institute for several years, and results are beginning to accumulate. There were three annual meetings on genome mapping and sequencing at Cold Spring Harbor, New York, in the spring of 1988, 1989, and 1990; the talks have shifted from a discussion about how to approach problems to presenting results from experiments already performed. We have finally begun to work rather than merely talk. The purpose of genome projects is to assemble data on the structure of DNA in human chromosomes and those of other organisms. A second goal is to develop new technologies to perform mapping and sequencing. There have been impressive technical advances in the past 5 years since the debate about the human genome project began. We are on the verge of beginning pilot projects to test several approaches to sequencing long stretches of DNA, using both automation and manual methods. Ordered sets of yeast artificial chromosome and cosmid clones have been assembled to span more than 2 million base pairs of several human chromosomes, and a region of 10 million base pairs has been assembled for

  8. Cloning and characterization of human DNA repair genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Brookman, K.W.; Weber, C.A.; Salazar, E.P.; Stewart, S.A.; Carrano, A.V.

    1987-01-01

    The isolation of two addition human genes that give efficient restoration of the repair defects in other CHO mutant lines is reported. The gene designated ERCC2 (Excision Repair Complementing Chinese hamster) corrects mutant UV5 from complementation group 1. They recently cloned this gene by first constructing a secondary transformant in which the human gene was shown to have become physically linked to the bacterial gpt dominant-marker gene by cotransfer in calcium phosphate precipitates in the primary transfection. Transformants expressing both genes were recovered by selecting for resistance to both UV radiation and mycophenolic acid. Using similar methods, the human gene that corrects CHO mutant EM9 was isolated in cosmids and named XRCC1 (X-ray Repair Complementing Chinese hamster). In this case, transformants were recovered by selecting for resistance to CldUrd, which kills EM9 very efficiently. In both genomic and cosmid transformants, the XRCC1 gene restored resistance to the normal range. DNA repair was studied using the kinetics of strand-break rejoining, which was measured after exposure to 137 Cs γ-rays

  9. ReMixT: clone-specific genomic structure estimation in cancer.

    Science.gov (United States)

    McPherson, Andrew W; Roth, Andrew; Ha, Gavin; Chauve, Cedric; Steif, Adi; de Souza, Camila P E; Eirew, Peter; Bouchard-Côté, Alexandre; Aparicio, Sam; Sahinalp, S Cenk; Shah, Sohrab P

    2017-07-27

    Somatic evolution of malignant cells produces tumors composed of multiple clonal populations, distinguished in part by rearrangements and copy number changes affecting chromosomal segments. Whole genome sequencing mixes the signals of sampled populations, diluting the signals of clone-specific aberrations, and complicating estimation of clone-specific genotypes. We introduce ReMixT, a method to unmix tumor and contaminating normal signals and jointly predict mixture proportions, clone-specific segment copy number, and clone specificity of breakpoints. ReMixT is free, open-source software and is available at http://bitbucket.org/dranew/remixt .

  10. Molecular cloning of the human gene for von Willebrand factor and identification of the transcription initiation site

    International Nuclear Information System (INIS)

    Collins, C.J.; Underdahl, J.P.; Levene, R.B.; Ravera, C.P.; Morin, M.J.; Dombalagian, M.J.; Ricca, G.; Livingston, D.M.; Lynch, D.C.

    1987-01-01

    A series of overlapping cosmid genomic clones have been isolated that contain the entire coding unit of the human gene for van Willebrand factor (vWf), a major component of the hemostatic system. The cloned segments span ≅ 175 kilobases of human DNA sequence, and hybridization analysis suggest that the vWf coding unit is ≅150 kilobases in length. Within one of these clones, the vWF transcription initiation site has been mapped and a portion of the vWf promoter region has been sequenced, revealing a typical TATA box, a downstream CCAAT box, and a perfect downstream repeat of the 8 base pairs containing the transcription start site. Sequencing of a segment of another genomic clone has revealed the vWF translation termination codon. Where tested, comparative restriction analysis of cloned and chromosomal DNA segments strongly suggests that no major alterations occurred during cloning and that there is only one complete copy of the vWf gene in the human haploid genome. Similar analyses of DNA from vWf-producing endothelial cells and nonexpressing leukocytes suggest that vWf gene expression is not accompanied by gross genomic rearrangements. In addition, there is significant homology of C-terminal coding sequences among the vWf genes of several vertebrate species

  11. Chromosomal mapping of canine-derived BAC clones to the red fox and American mink genomes.

    Science.gov (United States)

    Kukekova, Anna V; Vorobieva, Nadegda V; Beklemisheva, Violetta R; Johnson, Jennifer L; Temnykh, Svetlana V; Yudkin, Dmitry V; Trut, Lyudmila N; Andre, Catherine; Galibert, Francis; Aguirre, Gustavo D; Acland, Gregory M; Graphodatsky, Alexander S

    2009-01-01

    High-quality sequencing of the dog (Canis lupus familiaris) genome has enabled enormous progress in genetic mapping of canine phenotypic variation. The red fox (Vulpes vulpes), another canid species, also exhibits a wide range of variation in coat color, morphology, and behavior. Although the fox genome has not yet been sequenced, canine genomic resources have been used to construct a meiotic linkage map of the red fox genome and begin genetic mapping in foxes. However, a more detailed gene-specific comparative map between the dog and fox genomes is required to establish gene order within homologous regions of dog and fox chromosomes and to refine breakpoints between homologous chromosomes of the 2 species. In the current study, we tested whether canine-derived gene-containing bacterial artificial chromosome (BAC) clones can be routinely used to build a gene-specific map of the red fox genome. Forty canine BAC clones were mapped to the red fox genome by fluorescence in situ hybridization (FISH). Each clone was uniquely assigned to a single fox chromosome, and the locations of 38 clones agreed with cytogenetic predictions. These results clearly demonstrate the utility of FISH mapping for construction of a whole-genome gene-specific map of the red fox. The further possibility of using canine BAC clones to map genes in the American mink (Mustela vison) genome was also explored. Much lower success was obtained for this more distantly related farm-bred species, although a few BAC clones were mapped to the predicted chromosomal locations.

  12. Analysis of an epigenetic argument against human reproductive cloning.

    Science.gov (United States)

    Nordgren, Anders

    2006-08-01

    Human reproductive cloning is a much disputed ethical issue. This technology is often condemned as being contrary to human dignity. However, there are also risk arguments. An ethical argument that is often put forward by scientists but seldom developed in more detail focuses on health risks in animal cloning. There is a high risk that animal clones exhibit abnormalities and these are increasingly believed to be due to errors in epigenetic reprogramming. The argument is that human reproductive cloning should not be carried out because human clones are also likely to exhibit abnormalities due to inappropriate epigenetic reprogramming. Different versions of this epigenetic argument are analysed, a categorical version and a non-categorical. The non-categorical version is suggested to be more well-considered. With regard to policy making on human reproductive cloning, the categorical version can be used to prescribe a permanent ban, while the non-categorical version can be used to prescribe a temporary ban. The implications of the precautionary principle--as interpreted in the European Union--are investigated. The conclusion is that it seems possible to support a temporary ban by reference to this principle.

  13. Genomic clone encoding the α chain of the OKM1, LFA-1, and platelet glycoprotein IIb-IIIa molecules

    International Nuclear Information System (INIS)

    Cosgrove, L.J.; Sandrin, M.S.; Rajasekariah, P.; McKenzie, I.F.C.

    1986-01-01

    LFA-1, an antigen involved in cytolytic T lymphocyte-mediated killing, and Mac-1, the receptor for complement component C3bi, constitute a family of structurally and functionally related cell surface glycoproteins involved in cellular interactions. In both mouse and man, Mac-1 (OKM1) and LFA-1 share a common 95-kDa β subunit but are distinguished by their α chains, which have different cellular distributions, apparent molecular masses (165 and 177 kDa, respectively), and peptide maps. The authors report the isolation of a genomic clone from a human genomic library that on transfection into mouse fibroblasts produced a molecule(s) reactive with monoclonal antibodies to OKM1, to LFA-1, and to platelet glycoprotein IIb-IIIa. This gene was cloned by several cycles of transfection of L cells with a human genomic library cloned in λ phase Charon 4A and subsequent rescue of the λ phage. Transfection with the purified recombinant λ DNA yielded a transfectant that expressed the three human α chains of OKM1, LFA-1, and glycoprotein IIb-IIIa, presumably in association with the murine β chain

  14. [A review of the genomic and gene cloning studies in trees].

    Science.gov (United States)

    Yin, Tong-Ming

    2010-07-01

    Supported by the Department of Energy (DOE) of U.S., the first tree genome, black cottonwood (Populus trichocarpa), has been completely sequenced and publicly release. This is the milestone that indicates the beginning of post-genome era for forest trees. Identification and cloning genes underlying important traits are one of the main tasks for the post-genome-era tree genomic studies. Recently, great achievements have been made in cloning genes coordinating important domestication traits in some crops, such as rice, tomato, maize and so on. Molecular breeding has been applied in the practical breeding programs for many crops. By contrast, molecular studies in trees are lagging behind. Trees possess some characteristics that make them as difficult organisms for studying on locating and cloning of genes. With the advances in techniques, given also the fast growth of tree genomic resources, great achievements are desirable in cloning unknown genes from trees, which will facilitate tree improvement programs by means of molecular breeding. In this paper, the author reviewed the progress in tree genomic and gene cloning studies, and prospected the future achievements in order to provide a useful reference for researchers working in this area.

  15. Intra-strain polymorphisms are detected but no genomic alteration is found in cloned mice

    International Nuclear Information System (INIS)

    Gotoh, Koshichi; Inoue, Kimiko; Ogura, Atsuo; Oishi, Michio

    2006-01-01

    In-gel competitive reassociation (IGCR) is a method for differential subtraction of polymorphic (RFLP) DNA fragments between two DNA samples of interest without probes or specific sequence information. Here, we applied the IGCR procedure to two cloned mice derived from an F1 hybrid of the C57BL/6Cr and DBA/2 strains, in order to investigate the possibility of genomic alteration in the cloned mouse genomes. Each of the five of the genomic alterations we detected between the two cloned mice corresponded to the 'intra-strain' polymorphisms in the C57BL/6Cr and DBA/2 mouse strains. Our result suggests that no severe aberration of genome sequences occurs due to somatic cell nuclear transfer

  16. Should we clone human beings? Cloning as a source of tissue for transplantation.

    Science.gov (United States)

    Savulescu, J

    1999-01-01

    The most publicly justifiable application of human cloning, if there is one at all, is to provide self-compatible cells or tissues for medical use, especially transplantation. Some have argued that this raises no new ethical issues above those raised by any form of embryo experimentation. I argue that this research is less morally problematic than other embryo research. Indeed, it is not merely morally permissible but morally required that we employ cloning to produce embryos or fetuses for the sake of providing cells, tissues or even organs for therapy, followed by abortion of the embryo or fetus. PMID:10226910

  17. Cloning of the cDNA for human 12-lipoxygenase

    International Nuclear Information System (INIS)

    Izumi, T.; Hoshiko, S.; Radmark, O.; Samuelsson, B.

    1990-01-01

    A full-length cDNA clone encoding 12-lipoxygenase was isolated from a human platelet cDNA library by using a cDNA for human reticulocyte 15-lipoxygenase as probe for the initial screening. The cDNA had an open reading frame encoding 662 amino acid residues with a calculated molecular weight of 75,590. Three independent clones revealed minor heterogeneities in their DNA sequences. Thus, in three positions of the deduced amino acid sequence, there is a choice between two different amino acids. The deduced sequence from the clone plT3 showed 65% identity with human reticulocyte 15-lipoxygenase and 42% identity with human leukocyte 5-lipoxygenase. The 12-lipoxygenase cDNA recognized a 3.0-kilobase mRNA species in platelets and human erythroleukemia cells (HEL cells). Phorbol 12-tetradecanoyl 13-acetate induced megakaryocytic differentiation of HEL cells and 12-lipoxygenase activity and increased mRNA for 12-lipoxygenase. The identity of the cloned 12-lipoxygenase was assured by expression in a mammalian cell line (COS cells). Human platelet 12-lipoxygenase has been difficult to purify to homogeneity. The cloning of this cDNA will increase the possibilities to elucidate the structure and function of this enzyme

  18. Cloning of the human androgen receptor cDNA

    International Nuclear Information System (INIS)

    Govindan, M.V.; Burelle, M.; Cantin, C.; Kabrie, C.; Labrie, F.; Lachance, Y.; Leblanc, G.; Lefebvre, C.; Patel, P.; Simard, J.

    1988-01-01

    The authors discuss how in order to define the functional domains of the human androgen receptor, complementary DNA (cDNA) clones encoding the human androgen receptor (hAR) have been isolated from a human testis λgtll cDNA library using synthetic oligonnucleotide probes, homologous to segments of the human glucocorticoid, estradiol and progesterone receptors. The cDNA clones corresponding to the human glucocorticoid, estradiol and progesterone receptors were eliminated after cross-hybridization with their respective cDNA probes and/or after restriction mapping of the cDNA clones. The remaining cDNA clones were classified into different groups after analysis by restriction digestion and cross-hybridization. Two of the largest cDNA clones from each group were inserted into an expression vector in both orientations. The linearized plasmids were used as templates in in vitro transcription with T7 RNA polymerase. Subsequent in vitro translation of the purified transcripts in rabbit reticulocyte lysate followed by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) permitted the characterization of the encoded polyeptides. The expressed proteins larger than 30,000 Da were analyzed for their ability to bind tritium-labelled dihydrotestosterone ([ 3 H] DHT) with high affinity and specificity

  19. [The status of human cloning in the international setting].

    Science.gov (United States)

    Rey del Castillo, Javier

    2006-01-01

    The General Assembly of the United Nations submitted a Declaration on Human Cloning in March 2005. The text of such Declaration was the result of a difficult and long process, taking more than three years. Being a Declaration instead of a Resolution, it has not legal capability in inforcing United Nations members to act according to its recommendations. This article begins with an explanation of several terms referred to cloning. Different countries' legislation on cloning is analyzed. Positions of the same countries at the Convention of the United Nations are as well analyzed. Comparing both countries' views shows that national legislation on cloning is independent and orientated by some countries' particular interests and biological and ethical views on these issues. Future developments on human cloning and its applications will be shared among all countries, both the ones currently allowing and supporting "therapeutic" cloning and the ones now banning it. In such case, it would be important to reach agreements on these issues at an international level. The article discusses possible legislative developments and offers some proposals to reach such agreements.

  20. Description of genomic islands associated to the multidrug-resistant Pseudomonas aeruginosa clone ST277.

    Science.gov (United States)

    Silveira, Melise Chaves; Albano, Rodolpho Mattos; Asensi, Marise Dutra; Carvalho-Assef, Ana Paula D'Alincourt

    2016-08-01

    Multidrug-resistant Pseudomonas aeruginosa clone ST277 is disseminated in Brazil where it is mainly associated with the presence of metallo-β-lactamase SPM-1. Furthermore, it carries the class I integron In163 and a 16S rRNA methylase rmtD that confers aminoglycoside resistance. To analyze the genetic characteristics that might be responsible for the success of this endemic clone, genomes of four P. aeruginosa strains that were isolated in distinct years and in different Brazilian states were sequenced. The strains differed regarding the presence of the genes blaSPM-1 and rmtD. Genomic comparisons that included genomes of other clones that have spread worldwide from this species were also performed. These analyses revealed a 763,863bp region in the P. aeruginosa chromosome that concentrates acquired genetic structures comprising two new genomic islands (PAGI-13 and PAGI-14), a mobile element that could be used for ST277 fingerprinting and a recently reported Integrative and Conjugative Element (ICE) associated to blaSPM-1. The genetic elements rmtD and In163 are inserted in PAGI-13 while PAGI-14 has genes encoding proteins related to type III restriction system and phages. The data reported in this study provide a basis for a clearer understanding of the genetic content of clone ST277 and illustrate the mechanisms that are responsible for the success of these endemic clones. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Human cloning, stem cell research. An Islamic perspective.

    Science.gov (United States)

    Al-Aqeel, Aida I

    2009-12-01

    The rapidly changing technologies that involve human subjects raise complex ethical, legal, social, and religious issues. Recent advances in the field of cloning and stem cell research have introduced new hopes for the treatment of serious diseases. But this promise has raised many complex questions. This field causes debate and challenge, not only among scientists but also among ethicists, religious scholars, governments, and politicians. There is no consensus on the morality of human cloning, even within specific religious traditions. In countries in which religion has a strong influence on political decision making, the moral status of the human embryo is at the center of the debate. Because of the inevitable consequences of reproductive cloning, it is prohibited in Islam. However, stem cell research for therapeutic purposes is permissible with full consideration, and all possible precautions in the pre-ensoulment stages of early fetus development, if the source is legitimate.

  2. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  3. Molecular cloning, functional expression, and tissue distribution of a novel human gap junction-forming protein, connexin-31.9. Interaction with zona occludens protein-1

    NARCIS (Netherlands)

    Nielsen, Peter A; Beahm, Derek L; Giepmans, Ben N G; Baruch, Amos; Hall, James E; Kumar, Nalin M

    2002-01-01

    A novel human connexin gene (GJA11) was cloned from a genomic library. The open reading frame encoded a hypothetical protein of 294 amino acid residues with a predicted molecular mass of 31,933, hence referred to as connexin-31.9 (Cx31.9) or alpha 11 connexin. A clone in GenBank containing the

  4. The ethics of cloning and human embryo research.

    Science.gov (United States)

    Saran, Madeleine

    2002-01-01

    The successful cloning experiments that led to Dolly in 1997 have raised many ethical and policy questions. This paper will focus on cloning research in human embryonic cells. The possible gains of the research will be judged against the moral issues of doing research on a person. This paper concludes that while the embryo has some moral status, its moral status is outweighed by the multitude of benefits that embryonic stem cell research will bring to humanity. Policy suggestions are given for dealing with this new and developing field of stem cell research.

  5. Cloning an expressed gene shared by the human sex chromosomes

    International Nuclear Information System (INIS)

    Darling, S.M.; Banting, G.S.; Pym, B.; Wolfe, J.; Goodfellow, P.N.

    1986-01-01

    The existence of genes shared by mammalian sex chromosomes has been predicted on both evolutionary and functional grounds. However, the only experimental evidence for such genes in humans is the cell-surface antigen encoded by loci on the X and Y chromosomes (MIC2X and MIC2Y, respectively), which is recognized by the monoclonal antibody 12E7. Using the bacteriophage λgt11 expression system in Escherichia coli and immunoscreening techniques, the authors have isolated a cDNA clone whose primary product is recognized by 12E7. Southern blot analysis using somatic cell hybrids containing only the human X or Y chromosomes shows that the sequences reacting with the cDNA clone are localized to the sex chromosomes. In addition, the clone hybridizes to DNAs isolated from mouse cells that have been transfected with human DNA and selected for 12E7 expression on the fluorescence-activated cell sorter. The authors conclude that the cDNA clone encodes the 12E7 antigen, which is the primary product of the MIC2 loci. The clone was used to explore sequence homology between MIC2X and MIC2Y; these loci are closely related, if not identical

  6. Human genome. 1993 Program report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  7. Gene cloning: exploring cotton functional genomics and genetic improvement

    Institute of Scientific and Technical Information of China (English)

    Diqiu LIU; Xianlong ZHANG

    2008-01-01

    Cotton is the most important natural fiber plant in the world. The genetic improvement of the quality of the cotton fiber and agricultural productivity is imperative under the situation of increasing consumption and rapid development of textile technology. Recently, the study of cotton molecular biology has progressed greatly. A lot of specifically or preferentially expressed cotton fiber genes were cloned and analyzed. On the other hand, identification of stress response genes expressed in cotton was performed by other research groups. The major stress factors were studied including the wilt pathogens Verticillium dahliae, Fusarium oxy-sporum f. sp. vasinfectum, bacterial blight, root-knot nematode, drought, and salt stress. What is more, a few genes related to the biosynthesis of gossypol, other sesquiterpene phytoalexins and the major seed oil fatty acids were isolated from cotton. In the present review, we focused on the major advances in cotton gene cloning and expression profiling in the recent years.

  8. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  9. Cloning, chromosome localization and features of a novel human ...

    Indian Academy of Sciences (India)

    We report cloning and some features of a novel human gene, MATH2, which encodes a protein of 337 amino acid residues with a basic helix–loop–helix domain ... State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China ...

  10. Molecular cloning and characterization of a novel human testis ...

    Indian Academy of Sciences (India)

    Molecular cloning and characterization of a novel human testis-specific gene by use of ... pared against 70 other libraries, and the hits showing >10- fold differences .... proteins or testis-development-related proteins such as TSP-. NY, TPX1 ...

  11. Accurate DNA assembly and genome engineering with optimized uracil excision cloning

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Seppala, Susanna

    2015-01-01

    Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway that pro......Simple and reliable DNA editing by uracil excision (a.k.a. USER cloning) has been described by several research groups, but the optimal design of cohesive DNA ends for multigene assembly remains elusive. Here, we use two model constructs based on expression of gfp and a four-gene pathway...... that produces β-carotene to optimize assembly junctions and the uracil excision protocol. By combining uracil excision cloning with a genomic integration technology, we demonstrate that up to six DNA fragments can be assembled in a one-tube reaction for direct genome integration with high accuracy, greatly...... facilitating the advanced engineering of robust cell factories....

  12. Psychological aspects of human cloning and genetic manipulation: the identity and uniqueness of human beings.

    Science.gov (United States)

    Morales, N M

    2009-01-01

    Human cloning has become one of the most controversial debates about reproduction in Western civilization. Human cloning represents asexual reproduction, but the critics of human cloning argue that the result of cloning is not a new individual who is genetically unique. There is also awareness in the scientific community, including the medical community, that human cloning and the creation of clones are inevitable. Psychology and other social sciences, together with the natural sciences, will need to find ways to help the healthcare system, to be prepared to face the new challenges introduced by the techniques of human cloning. One of those challenges is to help the healthcare system to find specific standards of behaviour that could be used to help potential parents to interact properly with cloned babies or children created through genetic manipulation. In this paper, the concepts of personality, identity and uniqueness are discussed in relationship to the contribution of twin studies in these areas. The author argues that an individual created by human cloning techniques or any other type of genetic manipulation will not show the donor's characteristics to the extent of compromising uniqueness. Therefore, claims to such an effect are needlessly alarmist.

  13. Reproductive cloning in humans and therapeutic cloning in primates: is the ethical debate catching up with the recent scientific advances?

    Science.gov (United States)

    Camporesi, S; Bortolotti, L

    2008-09-01

    After years of failure, in November 2007 primate embryonic stem cells were derived by somatic cellular nuclear transfer, also known as therapeutic cloning. The first embryo transfer for human reproductive cloning purposes was also attempted in 2006, albeit with negative results. These two events force us to think carefully about the possibility of human cloning which is now much closer to becoming a reality. In this paper we tackle this issue from two sides, first summarising what scientists have achieved so far, then discussing some of the ethical arguments in favour and against human cloning which are debated in the context of policy making and public consultation. Therapeutic cloning as a means to improve and save lives has uncontroversial moral value. As to human reproductive cloning, we consider and assess some common objections and failing to see them as conclusive. We do recognise, though, that there will be problems at the level of policy and regulation that might either impair the implementation of human reproductive cloning or make its accessibility restricted in a way that could become difficult to justify on moral grounds. We suggest using the time still available before human reproductive cloning is attempted successfully to create policies and institutions that can offer clear directives on its legitimate applications on the basis of solid arguments, coherent moral principles, and extensive public consultation.

  14. cDNA, genomic cloning and sequence analysis of ribosomal protein ...

    African Journals Online (AJOL)

    enoh

    2012-03-13

    Mar 13, 2012 ... cDNA and the genomic sequence of RPS4X were cloned successfully from ... S4 genes plays a role in Turner syndrome; however, this ..... Project of Educational Committee of Sichuan Province ... Molecular biology of the cell.

  15. cDNA, genomic sequence cloning and analysis of the ribosomal ...

    African Journals Online (AJOL)

    Ribosomal protein L37A (RPL37A) is a component of 60S large ribosomal subunit encoded by the RPL37A gene, which belongs to the family of ribosomal L37AE proteins, located in the cytoplasm. The complementary deoxyribonucleic acid (cDNA) and the genomic sequence of RPL37A were cloned successfully from giant ...

  16. Game of clones: the genomic evolution of severe congenital neutropenia.

    Science.gov (United States)

    Touw, Ivo P

    2015-01-01

    Severe congenital neutropenia (SCN) is a genetically heterogeneous condition of bone marrow failure usually diagnosed in early childhood and characterized by a chronic and severe shortage of neutrophils. It is now well-established that mutations in HAX1 and ELANE (and more rarely in other genes) are the genetic cause of SCN. In contrast, it has remained unclear how these mutations affect neutrophil development. Innovative models based on induced pluripotent stem cell technology are being explored to address this issue. These days, most SCN patients receive life-long treatment with granulocyte colony-stimulating factor (G-CSF, CSF3). CSF3 therapy has greatly improved the life expectancy of SCN patients, but also unveiled a high frequency of progression toward myelodysplastic syndrome (MDS) and therapy refractory acute myeloid leukemia (AML). Expansion of hematopoietic clones with acquired mutations in the gene encoding the G-CSF receptor (CSF3R) is regularly seen in SCN patients and AML usually descends from one of these CSF3R mutant clones. These findings raised the questions how CSF3R mutations affect CSF3 responses of myeloid progenitors, how they contribute to the pre-leukemic state of SCN, and which additional events are responsible for progression to leukemia. The vast (sub)clonal heterogeneity of AML and the presence of AML-associated mutations in normally aged hematopoietic clones make it often difficult to determine which mutations are responsible for the leukemic process. Leukemia predisposition syndromes such as SCN are unique disease models to identify the sequential acquisition of these mutations and to interrogate how they contribute to clonal selection and leukemic evolution. © 2015 by The American Society of Hematology. All rights reserved.

  17. The PCNA pseudogenes in the human genome

    Directory of Open Access Journals (Sweden)

    Stoimenov Ivaylo

    2012-02-01

    Full Text Available Abstract Background The proliferating cell nuclear antigen (PCNA is a key protein in the eukaryotic DNA replication and cell proliferation. Following the cloning and characterisation of the human PCNA gene, the question of the existence of pseudogenes in the human genome was raised. Findings In this short communication we summarise the existing information about the PCNA pseudogenes and critically assess their status. Conclusions We propose the existence of at least four valid PCNA pseudogenes, PCNAP1, PCNAP2, LOC392454 and LOC390102. We would like to recommend assignment of a name for LOC392454 as "proliferating cell nuclear antigen pseudogene 3" (alias PCNAP3 and a name for LOC390102 as "proliferating cell nuclear antigen pseudogene 4" (alias PCNAP4. We prompt for more critical evaluation of the existence of a PCNA pseudogene, designated as PCNAP.

  18. Construction and sequencing of an infectious clone of the human parvovirus B19

    International Nuclear Information System (INIS)

    Zhi Ning; Zadori, Zoltan; Brown, Kevin E.; Tijssen, Peter

    2004-01-01

    Human parvovirus B19 has a nonenveloped, icosahedral capsid packaging a linear single-stranded DNA genome of 5.6 kb with long inverted terminal repeats (ITR) at both the 5' and 3' end. Previous attempts to construct a full-length B19 clone were unsuccessful due to deletions in the ITR sequences. We cloned the complete parvovirus B19 genome with intact ITRs from an aplastic crisis patient. Sequence analysis of the complete viral genome indicated that both 5' and 3' ITRs have two sequence configurations and several base changes within the ITRs compared to previous published sequences. After transfection of the plasmid into permissive cells, spliced and non-spliced viral transcripts and viral capsid proteins could be detected. Southern blot analysis of the DNA purified from the plasmid-transfected cells confirmed parvovirus B19 DNA replication. Production of infectious virus by the B19 plasmid was shown by inoculation of cell lysate derived from transfected cells into fresh cells. Together, these results indicate the first successful production of an infectious clone for parvovirus B19 virus

  19. Spatial constraints govern competition of mutant clones in human epidermis.

    Science.gov (United States)

    Lynch, M D; Lynch, C N S; Craythorne, E; Liakath-Ali, K; Mallipeddi, R; Barker, J N; Watt, F M

    2017-10-24

    Deep sequencing can detect somatic DNA mutations in tissues permitting inference of clonal relationships. This has been applied to human epidermis, where sun exposure leads to the accumulation of mutations and an increased risk of skin cancer. However, previous studies have yielded conflicting conclusions about the relative importance of positive selection and neutral drift in clonal evolution. Here, we sequenced larger areas of skin than previously, focusing on cancer-prone skin spanning five decades of life. The mutant clones identified were too large to be accounted for solely by neutral drift. Rather, using mathematical modelling and computational lattice-based simulations, we show that observed clone size distributions can be explained by a combination of neutral drift and stochastic nucleation of mutations at the boundary of expanding mutant clones that have a competitive advantage. These findings demonstrate that spatial context and cell competition cooperate to determine the fate of a mutant stem cell.

  20. Cloning, expression, and chromosome mapping of human galectin-7

    DEFF Research Database (Denmark)

    Madsen, Peder; Rasmussen, H H; Flint, T

    1995-01-01

    The galectins are a family of beta-galactoside-binding proteins implicated in modulating cell-cell and cell-matrix interactions. Here we report the cloning and expression of a novel member of this family (galectin-7) that correspond to IEF (isoelectric focusing) 17 (12,700 Da; pI, 7.6) in the human...... keratinocyte protein data base, and that is strikingly down-regulated in SV40 transformed keratinocytes (K14). The cDNA was cloned from a lambda gt11 cDNA expression library using degenerated oligodeoxyribonucleotides back-translated from an IEF 17 peptide sequence. The protein encoded by the galectin-7 clone......14 keratinocytes imply a role in cell-cell and/or cell-matrix interactions necessary for normal growth control. The galectin-7 gene was mapped to chromosome 19. Udgivelsesdato: 1995-Mar-17...

  1. Human Genome Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Richard Myers; Lane Conn

    2000-05-01

    The funds from the DOE Human Genome Program, for the project period 2/1/96 through 1/31/98, have provided major support for the curriculum development and field testing efforts for two high school level instructional units: Unit 1, ''Exploring Genetic Conditions: Genes, Culture and Choices''; and Unit 2, ''DNA Snapshots: Peaking at Your DNA''. In the original proposal, they requested DOE support for the partial salary and benefits of a Field Test Coordinator position to: (1) complete the field testing and revision of two high school curriculum units, and (2) initiate the education of teachers using these units. During the project period of this two-year DOE grant, a part-time Field-Test Coordinator was hired (Ms. Geraldine Horsma) and significant progress has been made in both of the original proposal objectives. Field testing for Unit 1 has occurred in over 12 schools (local and non-local sites with diverse student populations). Field testing for Unit 2 has occurred in over 15 schools (local and non-local sites) and will continue in 12-15 schools during the 96-97 school year. For both curricula, field-test sites and site teachers were selected for their interest in genetics education and in hands-on science education. Many of the site teachers had no previous experience with HGEP or the unit under development. Both of these first-year biology curriculum units, which contain genetics, biotechnology, societal, ethical and cultural issues related to HGP, are being implemented in many local and non-local schools (SF Bay Area, Southern California, Nebraska, Hawaii, and Texas) and in programs for teachers. These units will reach over 10,000 students in the SF Bay Area and continues to receive support from local corporate and private philanthropic organizations. Although HGEP unit development is nearing completion for both units, data is still being gathered and analyzed on unit effectiveness and student learning. The final field

  2. Systematic cloning of human minisatellites from ordered array charomid libraries.

    Science.gov (United States)

    Armour, J A; Povey, S; Jeremiah, S; Jeffreys, A J

    1990-11-01

    We present a rapid and efficient method for the isolation of minisatellite loci from human DNA. The method combines cloning a size-selected fraction of human MboI DNA fragments in a charomid vector with hybridization screening of the library in ordered array. Size-selection of large MboI fragments enriches for the longer, more variable minisatellites and reduces the size of the library required. The library was screened with a series of multi-locus probes known to detect a large number of hypervariable loci in human DNA. The gridded library allowed both the rapid processing of positive clones and the comparative evaluation of the different multi-locus probes used, in terms of both the relative success in detecting hypervariable loci and the degree of overlap between the sets of loci detected. We report 23 new human minisatellite loci isolated by this method, which map to 14 autosomes and the sex chromosomes.

  3. Complete Genomes of Classical Swine Fever Virus Cloned into Bacterial Artificial Chromosomes

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Reimann, I.; Uttenthal, Åse

    Complete genome amplification of viral RNA provides a new tool for the generation of modified pestiviruses. We have used our full-genome amplification strategy for generation of amplicons representing complete genomes of classical swine fever virus. The amplicons were cloned directly into a stabl...... single-copy bacterial artificial chromosome (BAC) generating full-length pestivirus DNAs from which infectious RNA transcripts could be also derived. Our strategy allows construction of stable infectious BAC DNAs from a single full-length PCR product....

  4. cDNA, genomic sequence cloning and overexpression of ribosomal ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... basic machinery of protein synthesis and regulation, but also in various ... The genomic DNA was isolated from Giant Panda muscle tissue according to the ... for 45 s, 72°C for 2 min in the first cycle and the anneal temperature deceased 0.2°C ..... edition, Cold Spring Harbor aboratory Press. Cold Spring ...

  5. Human terminal deoxyribonucleotidyltransferase: molecular cloning and structural analysis of the gene and 5' flanking region

    International Nuclear Information System (INIS)

    Riley, L.K.; Morrow, J.K.; Danton, M.J.; Coleman, M.S.

    1988-01-01

    Human terminal deoxyribonucleotidyltransferase cDNA contains an open reading frame of 1530 base pairs (bp) corresponding to a protein containing 510 amino acids. The encoded protein is a template-independent DNA polymerase found only in a restricted population of normal and malignant prelymphocytes. To begin to investigate the genetic elements responsible for the tissue-specific expression of terminal deoxyribonucleotidyltransferase, genomic clones, containing the entire human gene were isolated and characterized. Initially, cDNA clones were isolated from a library generated from the human lymphoblastoid cell line, MOLT-4R. A cDNA clone containing the entire coding region of the protein was used to isolate a series of overlapping clones from two human genomic libraries. The gene comprises 11 exons and 10 introns and spans 49.4 kilobases. The 5' flanking region (709 bp) including exon 1 was sequenced. Several putative transcription initiation sites were mapped. Within 500 nucleotides of the translation start site, a series of promoter elements was detected. TATA and CAAT sequences, respectively, were found to start at nucleotides -185 and -204, -328 and -370, and -465 and -505. Start sites were found for a cyclic AMP-dependent promoter analog at nucleotide -121, an eight-base sequence corresponding to the IgG promoter enhancer (cd) at nucleotide -455, and an analog of the IgG promoter (pd) at nucleotide -159. These findings suggest that transcripts coding for terminal deoxyribonucleotidyltransferase may be variable in length and that transcription may be influenced by a variety of genetic elements

  6. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells

    Directory of Open Access Journals (Sweden)

    Misako Yajima

    2018-04-01

    Full Text Available Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.

  7. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells.

    Science.gov (United States)

    Yajima, Misako; Ikuta, Kazufumi; Kanda, Teru

    2018-04-03

    Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.

  8. Human Genome Research: Decoding DNA

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Human Genome Research: Decoding DNA Resources with of the DNA double helix during April 2003. James D. Watson, Francis Crick, and Maurice Wilkins were company Celera announced the completion of a "working draft" reference DNA sequence of the human

  9. Human cloning laws, human dignity and the poverty of the policy making dialogue

    Directory of Open Access Journals (Sweden)

    Caulfield Timothy

    2003-07-01

    Full Text Available Abstract Background The regulation of human cloning continues to be a significant national and international policy issue. Despite years of intense academic and public debate, there is little clarity as to the philosophical foundations for many of the emerging policy choices. The notion of "human dignity" is commonly used to justify cloning laws. The basis for this justification is that reproductive human cloning necessarily infringes notions of human dignity. Discussion The author critiques one of the most commonly used ethical justifications for cloning laws – the idea that reproductive cloning necessarily infringes notions of human dignity. He points out that there is, in fact, little consensus on point and that the counter arguments are rarely reflected in formal policy. Rarely do domestic or international instruments provide an operational definition of human dignity and there is rarely an explanation of how, exactly, dignity is infringed in the context reproductive cloning. Summary It is the author's position that the lack of thoughtful analysis of the role of human dignity hurts the broader public debate about reproductive cloning, trivializes the value of human dignity as a normative principle and makes it nearly impossible to critique the actual justifications behind many of the proposed policies.

  10. Human cloning laws, human dignity and the poverty of the policy making dialogue

    Science.gov (United States)

    Caulfield, Timothy

    2003-01-01

    Background The regulation of human cloning continues to be a significant national and international policy issue. Despite years of intense academic and public debate, there is little clarity as to the philosophical foundations for many of the emerging policy choices. The notion of "human dignity" is commonly used to justify cloning laws. The basis for this justification is that reproductive human cloning necessarily infringes notions of human dignity. Discussion The author critiques one of the most commonly used ethical justifications for cloning laws – the idea that reproductive cloning necessarily infringes notions of human dignity. He points out that there is, in fact, little consensus on point and that the counter arguments are rarely reflected in formal policy. Rarely do domestic or international instruments provide an operational definition of human dignity and there is rarely an explanation of how, exactly, dignity is infringed in the context reproductive cloning. Summary It is the author's position that the lack of thoughtful analysis of the role of human dignity hurts the broader public debate about reproductive cloning, trivializes the value of human dignity as a normative principle and makes it nearly impossible to critique the actual justifications behind many of the proposed policies. PMID:12887735

  11. Human cloning laws, human dignity and the poverty of the policy making dialogue.

    Science.gov (United States)

    Caulfield, Timothy

    2003-07-29

    The regulation of human cloning continues to be a significant national and international policy issue. Despite years of intense academic and public debate, there is little clarity as to the philosophical foundations for many of the emerging policy choices. The notion of "human dignity" is commonly used to justify cloning laws. The basis for this justification is that reproductive human cloning necessarily infringes notions of human dignity. The author critiques one of the most commonly used ethical justifications for cloning laws - the idea that reproductive cloning necessarily infringes notions of human dignity. He points out that there is, in fact, little consensus on point and that the counter arguments are rarely reflected in formal policy. Rarely do domestic or international instruments provide an operational definition of human dignity and there is rarely an explanation of how, exactly, dignity is infringed in the context reproductive cloning. It is the author's position that the lack of thoughtful analysis of the role of human dignity hurts the broader public debate about reproductive cloning, trivializes the value of human dignity as a normative principle and makes it nearly impossible to critique the actual justifications behind many of the proposed policies.

  12. Diversity of chloroplast genome among local clones of cocoa (Theobroma cacao, L.) from Central Sulawesi

    Science.gov (United States)

    Suwastika, I. Nengah; Pakawaru, Nurul Aisyah; Rifka, Rahmansyah, Muslimin, Ishizaki, Yoko; Cruz, André Freire; Basri, Zainuddin; Shiina, Takashi

    2017-02-01

    Chloroplast genomes typically range in size from 120 to 170 kilo base pairs (kb), which relatively conserved among plant species. Recent evaluation on several species, certain unique regions showed high variability which can be utilized in the phylogenetic analysis. Many fragments of coding regions, introns, and intergenic spacers, such as atpB-rbcL, ndhF, rbcL, rpl16, trnH-psbA, trnL-F, trnS-G, etc., have been used for phylogenetic reconstructions at various taxonomic levels. Based on that status, we would like to analysis the diversity of chloroplast genome within species of local cacao (Theobroma cacao L.) from Central Sulawesi. Our recent data showed, there were more than 20 clones from local farming in Central Sulawesi, and it can be detected based on phenotypic and nuclear-genome-based characterization (RAPD- Random Amplified Polymorphic DNA and SSR- Simple Sequences Repeat) markers. In developing DNA marker for this local cacao, here we also included analysis based on the variation of chloroplast genome. At least several regions such as rpl32-TurnL, it can be considered as chloroplast markers on our local clone of cocoa. Furthermore, we could develop phylogenetic analysis in between clones of cocoa.

  13. Molecular cloning and biological characterization of the human excision repair gene ERCC-3

    International Nuclear Information System (INIS)

    Weeda, G.; van Ham, R.C.; Masurel, R.; Westerveld, A.; Odijk, H.; de Wit, J.; Bootsma, D.; van der Eb, A.J.; Hoeijmakers, J.H.

    1990-01-01

    In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion

  14. Virtual Northern analysis of the human genome.

    Directory of Open Access Journals (Sweden)

    Evan H Hurowitz

    2007-05-01

    Full Text Available We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale.We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90% confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs tend to be longer or shorter than average; these functional classes were similar in both human and yeast.Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.

  15. Virtual Northern analysis of the human genome.

    Science.gov (United States)

    Hurowitz, Evan H; Drori, Iddo; Stodden, Victoria C; Donoho, David L; Brown, Patrick O

    2007-05-23

    We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.

  16. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B

    International Nuclear Information System (INIS)

    Brown-Shimer, S.; Johnson, K.A.; Bruskin, A.; Green, N.R.; Hill, D.E.; Lawrence, J.B.; Johnson, C.

    1990-01-01

    The inactivation of growth suppressor genes appears to play a major role in the malignant process. To assess whether protein phosphotyrosyl phosphatases function as growth suppressors, the authors have isolated a cDNA clone encoding human protein phosphotyrosyl phosphatase 1B for structural and functional characterization. The translation product deduced from the 1,305-nucleotide open reading frame predicts a protein containing 435 amino acids and having a molecular mass of 49,966 Da. The amino-terminal 321 amino acids deduced from the cDNA sequence are identical to the empirically determined sequence of protein phosphotyrosyl phosphatase 1B. A genomic clone has been isolated and used in an in situ hybridization to banded metaphase chromosomes to determine that the gene encoding protein phosphotyrosyl phosphatase 1B maps as a single-copy gene to the long arm of chromosome 20 in the region q13.1-q13.2

  17. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group

    DEFF Research Database (Denmark)

    Iacono, M.; Villa, L.; Fortini, D.

    2008-01-01

    The whole-genome sequence of an epidemic, multidrug-resistant Acinetobacter baumannii strain (strain ACICU) belonging to the European clone II group and carrying the plasmid-mediated bla(OXA-58) carbapenem resistance gene was determined. The A. baumannii ACICU genome was compared with the genomes...

  18. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods.

    Science.gov (United States)

    Oldfield, Lauren M; Grzesik, Peter; Voorhies, Alexander A; Alperovich, Nina; MacMath, Derek; Najera, Claudia D; Chandra, Diya Sabrina; Prasad, Sanjana; Noskov, Vladimir N; Montague, Michael G; Friedman, Robert M; Desai, Prashant J; Vashee, Sanjay

    2017-10-17

    Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOS YA , replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.

  19. The ethics of human reproductive cloning: when world views collide.

    Science.gov (United States)

    Cohen, Cynthia B

    2004-01-01

    Two camps in bioethics with seemingly opposing world views have staked out conflicting positions regarding the ethics of human reproductive cloning. These camps do not appear to share common concepts or ways of reasoning through which to exchange views and come to a meeting of minds about uses of this technology. Yet analysis of their respective approaches to several issues surrounding reproductive cloning, such as where the ethical limits of individual reproductive choice lie, whether the use of this technology would violate human dignity, whether it would create risks to the resulting fetuses and children that would make its use intolerable, and whether it would challenge certain core social values, reveals that they are not wholly opposed to one another. Indeed, it displays that they hold certain beliefs, values, and concerns in common. Moreover, it indicates that the different world views that they each presuppose, while flawed in certain respects, do not collide in every respect, but can be reconciled in significant ways that provide fertile ground for agreement about several issues related to human reproductive cloning.

  20. Molecular cloning, nucleotide sequence, and expression of the gene encoding human eosinophil differentiation factor (interleukin 5)

    International Nuclear Information System (INIS)

    Campbell, H.D.; Tucker, W.Q.J.; Hort, Y.; Martinson, M.E.; Mayo, G.; Clutterbuck, E.J.; Sanderson, C.J.; Young, I.G.

    1987-01-01

    The human eosinophil differentiation factor (EDF) gene was cloned from a genomic library in λ phage EMBL3A by using a murine EDF cDNA clone as a probe. The DNA sequence of a 3.2-kilobase BamHI fragment spanning the gene was determined. The gene contains three introns. The predicted amino acid sequence of 134 amino acids is identical with that recently reported for human interleukin 5 but shows no significant homology with other known hemopoietic growth regulators. The amino acid sequence shows strong homology (∼ 70% identity) with that of murine EDF. Recombinant human EDF, expressed from the human EDF gene after transfection into monkey COS cells, stimulated the production of eosinophils and eosinophil colonies from normal human bone marrow but had no effect on the production of neutrophils or mononuclear cells (monocytes and lymphoid cells). The apparent specificity of human EDF for the eosinophil lineage in myeloid hemopoiesis contrasts with the properties of human interleukin 3 and granulocyte/macrophage and granulocyte colony-stimulating factors but is directly analogous to the biological properties of murine EDF. Human EDF therefore represents a distinct hemopoietic growth factor that could play a central role in the regulation of eosinophilia

  1. Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences

    Directory of Open Access Journals (Sweden)

    Shade Larry L

    2006-06-01

    Full Text Available Abstract Background Approximately 11 Mb of finished high quality genomic sequences were sampled from cattle, dog and human to estimate genomic divergences and their regional variation among these lineages. Results Optimal three-way multi-species global sequence alignments for 84 cattle clones or loci (each >50 kb of genomic sequence were constructed using the human and dog genome assemblies as references. Genomic divergences and substitution rates were examined for each clone and for various sequence classes under different functional constraints. Analysis of these alignments revealed that the overall genomic divergences are relatively constant (0.32–0.37 change/site for pairwise comparisons among cattle, dog and human; however substitution rates vary across genomic regions and among different sequence classes. A neutral mutation rate (2.0–2.2 × 10(-9 change/site/year was derived from ancestral repetitive sequences, whereas the substitution rate in coding sequences (1.1 × 10(-9 change/site/year was approximately half of the overall rate (1.9–2.0 × 10(-9 change/site/year. Relative rate tests also indicated that cattle have a significantly faster rate of substitution as compared to dog and that this difference is about 6%. Conclusion This analysis provides a large-scale and unbiased assessment of genomic divergences and regional variation of substitution rates among cattle, dog and human. It is expected that these data will serve as a baseline for future mammalian molecular evolution studies.

  2. The first complete genome sequences of clinical isolates of human coronavirus 229E

    NARCIS (Netherlands)

    Farsani, Seyed Mohammad Jazaeri; Dijkman, Ronald; Jebbink, Maarten F.; Goossens, Herman; Ieven, Margareta; Deijs, Martin; Molenkamp, Richard; van der Hoek, Lia

    2012-01-01

    Human coronavirus 229E has been identified in the mid-1960s, yet still only one full-genome sequence is available. This full-length sequence has been determined from the cDNA-clone Inf-1 that is based on the lab-adapted strain VR-740. Lab-adaptation might have resulted in genomic changes, due to

  3. Comparative Genomic Analysis of Rapid Evolution of an Extreme-Drug-Resistant Acinetobacter baumannii Clone

    Science.gov (United States)

    Tan, Sean Yang-Yi; Chua, Song Lin; Liu, Yang; Høiby, Niels; Andersen, Leif Percival; Givskov, Michael; Song, Zhijun; Yang, Liang

    2013-01-01

    The emergence of extreme-drug-resistant (EDR) bacterial strains in hospital and nonhospital clinical settings is a big and growing public health threat. Understanding the antibiotic resistance mechanisms at the genomic levels can facilitate the development of next-generation agents. Here, comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clone from the intensive care unit (ICU) of Rigshospitalet at Copenhagen. Two resistant A. baumannii strains, 48055 and 53264, were sequentially isolated from two individuals who had been admitted to ICU within a 1-month interval. Multilocus sequence typing indicates that these two isolates belonged to ST208. The A. baumannii 53264 strain gained colistin resistance compared with the 48055 strain and became an EDR strain. Genome sequencing indicates that A. baumannii 53264 and 48055 have almost identical genomes—61 single-nucleotide polymorphisms (SNPs) were found between them. The A. baumannii 53264 strain was assembled into 130 contigs, with a total length of 3,976,592 bp with 38.93% GC content. The A. baumannii 48055 strain was assembled into 135 contigs, with a total length of 4,049,562 bp with 39.00% GC content. Genome comparisons showed that this A. baumannii clone is classified as an International clone II strain and has 94% synteny with the A. baumannii ACICU strain. The ResFinder server identified a total of 14 antibiotic resistance genes in the A. baumannii clone. Proteomic analyses revealed that a putative porin protein was down-regulated when A. baumannii 53264 was exposed to antimicrobials, which may reduce the entry of antibiotics into the bacterial cell. PMID:23538992

  4. Draft Genome Sequences of the Probiotic Enterococcus faecalis Symbioflor 1 Clones DSM16430 and DSM16434

    OpenAIRE

    Fritzenwanker, Moritz; Chakraborty, Anindita; Hain, Torsten; Zimmermann, Kurt; Domann, Eugen

    2016-01-01

    The probiotic Symbioflor 1 is a historical concoction of 10 isolates of Enterococcus faecalis. Pulsed-field gel electrophoresis revealed two groups: one comprising eight identical clones (DSM16430, DSM16432, DSM16433, DSM16435 to DSM16439) and a further two isolates (DSM16431, DSM16434) with marginally different profiles. Here, we report a comparative analysis of the draft genome sequences of representative isolates.

  5. Osteoponin Promoter Controlled by DNA Methylation: Aberrant Methylation in Cloned Porcine Genome

    Directory of Open Access Journals (Sweden)

    Chih-Jie Shen

    2014-01-01

    Full Text Available Cloned animals usually exhibited many defects in physical characteristics or aberrant epigenetic reprogramming, especially in some important organ development. Osteoponin (OPN is an extracellular-matrix protein involved in heart and bone development and diseases. In this study, we investigated the correlation between OPN mRNA and its promoter methylation changes by the 5-aza-dc treatment in fibroblast cell and promoter assay. Aberrant methylation of porcine OPN was frequently found in different tissues of somatic nuclear transferred cloning pigs, and bisulfite sequence data suggested that the OPN promoter region −2615 to −2239 nucleotides (nt may be a crucial regulation DNA element. In pig ear fibroblast cell culture study, the demethylation of OPN promoter was found in dose-dependent response of 5-aza-dc treatment and followed the OPN mRNA reexpression. In cloned pig study, discrepant expression pattern was identified in several cloned pig tissues, especially in brain, heart, and ear. Promoter assay data revealed that four methylated CpG sites presenting in the −2615 to −2239 nt region cause significant downregulation of OPN promoter activity. These data suggested that methylation in the OPN promoter plays a crucial role in the regulation of OPN expression that we found in cloned pigs genome.

  6. Radiobiological parameters of a human tumor parent line and four tumor clones of a human epidermoid carcinoma

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Beckett, M.; Dahlberg, W.

    1987-01-01

    The authors examined the radiobiological parameters of a parent tumor line and four tumor clones of a human squamous cell carcinoma of the skin. The parent line and clones have a tumor morphology, aneuploid karyotype, and the ability to passage continuously in vitro. With the exception of clone F2A, all cell lines form tumors in nude mice. The parent line, SCC-12 has a D/sub o/ of 154 and an n 7.5 In four tumor clones, D/sub o/ ranges from 131 (clone V) to 266 (clone B2); n ranges from 22.8 in clone V to 2.1 in clone B2. PLDR following 1100 rad ranges from 1.7 in clone B2 to 13.1 in clone V. However, PLDR following equitoxic doses of radiation is similar in the parent and all sub-clones. Radiobiological heterogeneity may complicate predictive assays for clinical radiotherapy

  7. Cloning and analysis of the promoter region of the human fibronectin gene

    International Nuclear Information System (INIS)

    Dean, D.C.; Bowlus, C.L.; Bourgeois, S.

    1987-01-01

    Human fibronectin (FN) genomic clones were isolated by screening a human genomic library with a 75-base oligonucleotide. The sequence of the oligonucleotide corresponds to a region near the 5' end of the human FN cDNA clone pFH6 that contains the amino-terminal coding sequences but does not extend to the 5' end of the mRNA. The 5' end of the FN gene is found on a 3.7-kilobase-pair EcoRI fragment that contains about 2.7 kilobase pairs of flanking sequence. The first exon is 414 base pairs long, with a 5' untranslated region of 267 base pairs. As deduced on the basis of the position of the initiation codon, FN is synthesized with a 31-residue amino acid extension on the amion terminus that is not present in the mature polypeptide. This amino-terminal extension appears to contain both a signal peptide and a propeptide. The first 200 base pairs of 5'-flanking sequence is very G+C rich. Upstream of this the sequence becomes relatively A+T rich. The sequence ATATAA is found at -25 and the sequence CAAT is present at -150. The sequence GGGGCGGGGC at -102 exhibits homology to the binding site for the transcription factor SP1, and the sequence TGACGTCA at -173 exhibits homology to 5'-flanking sequences important for induction by cAMP

  8. Induction of genomic instability and activation of autophagy in artificial human aneuploid cells

    Energy Technology Data Exchange (ETDEWEB)

    Ariyoshi, Kentaro [Hirosaki University, Institute of Radiation Emergency Medicine, 66-1 Hon-cho, Hirosaki 036-8564 (Japan); Miura, Tomisato; Kasai, Kosuke; Fujishima, Yohei [Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564 (Japan); Oshimura, Mitsuo [Chromosome Engineering Research Center (CERC), Tottori University, Nishicho 86, Yonago, Tottori 683-8503 (Japan); Yoshida, Mitsuaki A., E-mail: ariyoshi@hirosaki-u.ac.jp [Hirosaki University, Institute of Radiation Emergency Medicine, 66-1 Hon-cho, Hirosaki 036-8564 (Japan)

    2016-08-15

    Highlights: • Clones with artificial aneuploidy of chromosome 8 or chromosome 22 both show inhibited proliferation and genomic instability. • Increased autophagy was observed in the artificially aneuploid clones. • Inhibition of autophagy resulted in increased genomic instability and DNA damage. • Intracellular levels of reactive oxygen species were up-regulated in the artificially aneuploid clones. - Abstract: Chromosome missegregation can lead to a change in chromosome number known as aneuploidy. Although aneuploidy is a known hallmark of cancer cells, the various mechanisms by which altered gene and/or DNA copy number facilitate tumorigenesis remain unclear. To understand the effect of aneuploidy occurring in non-tumorigenic human breast epithelial cells, we generated clones harboring artificial aneuploidy using microcell-mediated chromosome transfer. Our results demonstrate that clones with artificial aneuploidy of chromosome 8 or chromosome 22 both show inhibited proliferation and genomic instability. Also, the increased autophagy was observed in the artificially aneuploidy clones, and inhibition of autophagy resulted in increased genomic instability and DNA damage. In addition, the intracellular levels of reactive oxygen species were up-regulated in the artificially aneuploid clones, and inhibition of autophagy further increased the production of reactive oxygen species. Together, these results suggest that even a single extraneous chromosome can induce genomic instability, and that autophagy triggered by aneuploidy-induced stress is a mechanism to protect cells bearing abnormal chromosome number.

  9. Induction of genomic instability and activation of autophagy in artificial human aneuploid cells

    International Nuclear Information System (INIS)

    Ariyoshi, Kentaro; Miura, Tomisato; Kasai, Kosuke; Fujishima, Yohei; Oshimura, Mitsuo; Yoshida, Mitsuaki A.

    2016-01-01

    Highlights: • Clones with artificial aneuploidy of chromosome 8 or chromosome 22 both show inhibited proliferation and genomic instability. • Increased autophagy was observed in the artificially aneuploid clones. • Inhibition of autophagy resulted in increased genomic instability and DNA damage. • Intracellular levels of reactive oxygen species were up-regulated in the artificially aneuploid clones. - Abstract: Chromosome missegregation can lead to a change in chromosome number known as aneuploidy. Although aneuploidy is a known hallmark of cancer cells, the various mechanisms by which altered gene and/or DNA copy number facilitate tumorigenesis remain unclear. To understand the effect of aneuploidy occurring in non-tumorigenic human breast epithelial cells, we generated clones harboring artificial aneuploidy using microcell-mediated chromosome transfer. Our results demonstrate that clones with artificial aneuploidy of chromosome 8 or chromosome 22 both show inhibited proliferation and genomic instability. Also, the increased autophagy was observed in the artificially aneuploidy clones, and inhibition of autophagy resulted in increased genomic instability and DNA damage. In addition, the intracellular levels of reactive oxygen species were up-regulated in the artificially aneuploid clones, and inhibition of autophagy further increased the production of reactive oxygen species. Together, these results suggest that even a single extraneous chromosome can induce genomic instability, and that autophagy triggered by aneuploidy-induced stress is a mechanism to protect cells bearing abnormal chromosome number.

  10. The Dao of human cloning: utopian/dystopian hype in the British press and popular films.

    Science.gov (United States)

    Jensen, Eric

    2008-04-01

    The issue of human cloning has featured in the national science policy agendas in both the United States and the United Kingdom since the announcement in 1997 of Dolly the cloned sheep's birth in Scotland. Such news stories suggesting the imminent cloning of humans have inspired fictional entertainment media over the years, including numerous popular films. Study 1 examines elite British press coverage of human cloning from 1997 to 2004 (n = 857). Study 2 focuses on five human cloning films released between 1978 and 2003. Two sharply divergent discourses emerged from these data. Unqualified hope and habitually hyped claims of future cures permeated the press discourse. In contrast, the films constructed human cloning as an inherently dangerous technology often wielded by hubristic scientists in the tradition of Frankenstein. Both the predominately positive hype in the broadsheet press and the largely negative hype in the films indicate an impoverished and "thin" public debate on the issue of human cloning.

  11. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-01

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human

  12. Genomics and the human genome project: implications for psychiatry

    OpenAIRE

    Kelsoe, J R

    2004-01-01

    In the past decade the Human Genome Project has made extraordinary strides in understanding of fundamental human genetics. The complete human genetic sequence has been determined, and the chromosomal location of almost all human genes identified. Presently, a large international consortium, the HapMap Project, is working to identify a large portion of genetic variation in different human populations and the structure and relationship of these variants to each other. The Human Genome Project h...

  13. Demographic profile of states with human cloning laws: morality policy meets political economy.

    Science.gov (United States)

    Stabile, Bonnie

    2007-03-01

    This analysis seeks to identify factors that may shape the policy stance - whether restrictive or permissive - that each state in the United States with a human cloning law in place takes toward human therapeutic cloning. The investigation also considers if cloning policy is more the product of morality politics or political economy. Results show that among states with human cloning policies in place, those with a greater biotechnological capacity, more permissive abortion laws, fewer Evangelical Protestants, and higher political liberalism rankings are more likely to have permissive cloning laws. A higher Roman Catholic population is strongly associated with permissive cloning laws, rather than restrictive cloning laws as originally supposed. Factors with morality policy and economic bases were both found to be associated with cloning policy outcomes. Results suggest that morality policies, though distinct in some ways, do share determinants with public policies based on political economy.

  14. HGVA: the Human Genome Variation Archive

    OpenAIRE

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gr?f, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-01-01

    Abstract High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic...

  15. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. (Universita di Bari (Italy)); Antonacci, R. (Instituto Anatomia Umana Normale, Modena (Italy))

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  16. Bovine viral diarrhea virus: molecular cloning of genomic RNA and its diagnostic application

    International Nuclear Information System (INIS)

    Brock, K.V.

    1987-01-01

    Molecular cloning of a field isolate of bovine viral diarrhea virus (BVDV) strain 72 RNA was done in this study. The sensitivity and specificity of cloned cDNA sequences in hybridization assays with various BVDV strains were determined. cDNA was synthesized from polyadenylated BVDV RNA templates with oligo-dT primers, reverse transcriptase, and DNA polymerase I. The newly synthesized double-stranded BVDV cDNA was C-tailed with terminal deoxytransferase and annealed into G-tailed, Pst-1-cut pUC9 plasmid. Escherichia coli was transformed with the recombinant plasmids and a library of approximately 200 BVDV specific cDNA clones varying in length from 0.5 to 2.6 kilobases were isolated. The sensitivity and specificity of hybridization between the labelled cDNA and BVDV target sequences were determined. Cloned BVDV sequences were isolated from pUC9 plasmid DNA and labelled with 32 P by nick translation. The detection limit by dot blot hybridization assay was 20 pg of purified genomic BVDV RNA. cDNA hybridization probes were specific for all strains of BVDV tested, regardless of whether they were noncytopathic and cytopathic, but did not hybridize with heterologous bovine viruses tested. Probes did not hybridize with uninfected cell culture or cellular RNA. Hybridization probes were at least as sensitive as infectivity assays in detecting homologous virus

  17. Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses.

    Directory of Open Access Journals (Sweden)

    Inmaculada Garcia-Heredia

    Full Text Available BACKGROUND: Metaviriomes, the viral genomes present in an environment, have been studied by direct sequencing of the viral DNA or by cloning in small insert libraries. The short reads generated by both approaches make it very difficult to assemble and annotate such flexible genomic entities. Many environmental viruses belong to unknown groups or prey on uncultured and little known cellular lineages, and hence might not be present in databases. METHODOLOGY AND PRINCIPAL FINDINGS: Here we have used a different approach, the cloning of viral DNA into fosmids before sequencing, to obtain natural contigs that are close to the size of a viral genome. We have studied a relatively low diversity extreme environment: saturated NaCl brines, which simplifies the analysis and interpretation of the data. Forty-two different viral genomes were retrieved, and some of these were almost complete, and could be tentatively identified as head-tail phages (Caudovirales. CONCLUSIONS AND SIGNIFICANCE: We found a cluster of phage genomes that most likely infect Haloquadratum walsbyi, the square archaeon and major component of the community in these hypersaline habitats. The identity of the prey could be confirmed by the presence of CRISPR spacer sequences shared by the virus and one of the available strain genomes. Other viral clusters detected appeared to prey on the Nanohaloarchaea and on the bacterium Salinibacter ruber, covering most of the diversity of microbes found in this type of environment. This approach appears then as a viable alternative to describe metaviriomes in a much more detailed and reliable way than by the more common approaches based on direct sequencing. An example of transfer of a CRISPR cluster including repeats and spacers was accidentally found supporting the dynamic nature and frequent transfer of this peculiar prokaryotic mechanism of cell protection.

  18. Complete genome sequence of community-associated methicillin-resistant Staphylococcus aureus (strain USA400-0051, a prototype of the USA400 clone

    Directory of Open Access Journals (Sweden)

    Marina Farrel Côrtes

    Full Text Available Staphylococcus aureus subsp. aureus, commonly referred as S. aureus, is an important bacterial pathogen frequently involved in hospital- and community-acquired infections in humans, ranging from skin infections to more severe diseases such as pneumonia, bacteraemia, endocarditis, osteomyelitis, and disseminated infections. Here, we report the complete closed genome sequence of a community-acquired methicillin-resistant S. aureus strain, USA400-0051, which is a prototype of the USA400 clone.

  19. Chromosomal locations of members of a family of novel endogenous human retroviral genomes

    International Nuclear Information System (INIS)

    Horn, T.M.; Huebner, K.; Croce, C.; Callahan, R.

    1986-01-01

    Human cellular DNA contains two distinguishable families of retroviral related sequences. One family shares extensive nucleotide sequence homology with infectious mammalian type C retroviral genomes. The other family contains major regions of homology with the pol genes of infectious type A and B and avian type C and D retroviral genomes. Analysis of the human recombinant clone HLM-2 has shown that the pol gene in the latter family is located within an endogenous proviral genome. The authors show that the proviral genome in HLM-2 and the related recombinant clone HLM-25 are located, respectively, on human chromosomes 1 and 5. Other related proviral genomes are located on chromosomes 7, 8, 11, 14, and 17

  20. In silico analysis of the fucosylation-associated genome of the human blood fluke Schistosoma mansoni: cloning and characterization of the enzymes involved in GDP-L-fucose synthesis and Golgi import.

    Science.gov (United States)

    Peterson, Nathan A; Anderson, Tavis K; Wu, Xiao-Jun; Yoshino, Timothy P

    2013-07-09

    Carbohydrate structures of surface-expressed and secreted/excreted glycoconjugates of the human blood fluke Schistosoma mansoni are key determinants that mediate host-parasite interactions in both snail and mammalian hosts. Fucose is a major constituent of these immunologically important glycans, and recent studies have sought to characterize fucosylation-associated enzymes, including the Golgi-localized fucosyltransferases that catalyze the transfer of L-fucose from a GDP-L-fucose donor to an oligosaccharide acceptor. Importantly, GDP-L-fucose is the only nucleotide-sugar donor used by fucosyltransferases and its availability represents a bottleneck in fucosyl-glycotope expression. A homology-based genome-wide bioinformatics approach was used to identify and molecularly characterize the enzymes that contribute to GDP-L-fucose synthesis and Golgi import in S. mansoni. Putative functions were further investigated through molecular phylogenetic and immunocytochemical analyses. We identified homologs of GDP-D-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase (GMER), which constitute a de novo pathway for GDP-L-fucose synthesis, in addition to a GDP-L-fucose transporter (GFT) that putatively imports cytosolic GDP-L-fucose into the Golgi. In silico primary sequence analyses identified characteristic Rossman loop and short-chain dehydrogenase/reductase motifs in GMD and GMER as well as 10 transmembrane domains in GFT. All genes are alternatively spliced, generating variants of unknown function. Observed quantitative differences in steady-state transcript levels between miracidia and primary sporocysts may contribute to differential glycotope expression in early larval development. Additionally, analyses of protein expression suggest the occurrence of cytosolic GMD and GMER in the ciliated epidermal plates and tegument of miracidia and primary sporocysts, respectively, which is consistent with previous localization of highly

  1. Genomic stability and physiological assessments of live offspring sired by a bull clone, Starbuck II.

    Science.gov (United States)

    Ortegon, H; Betts, D H; Lin, L; Coppola, G; Perrault, S D; Blondin, P; King, W A

    2007-01-01

    It appears that overt phenotypic abnormalities observed in some domestic animal clones are not transmitted to their progeny. The current study monitored Holstein heifers sired by a bull clone, Starbuck II, from weaning to puberty. Genomic stability was assessed by telomere length status and chromosomal analysis. Growth parameters, blood profiles, physical exams and reproductive parameters were assessed for 12 months (and compared to age-matched control heifers). Progeny sired by the clone bull did not differ (P>0.05) in weight, length and height compared to controls. However, progeny had lower heart rates (HR) (P=0.009), respiratory rates (RR) (P=0.007) and body temperature (P=0.03). Hematological profiles were within normal ranges and did not differ (P>0.05) between both groups. External and internal genitalia were normal and both groups reached puberty at expected ages. Progeny had two or three ovarian follicular waves per estrous cycle and serum progesterone concentrations were similar (P=0.99) to controls. Telomere lengths of sperm and blood cells from Starbuck II were not different (P>0.05) than those of non-cloned cattle; telomere lengths of progeny were not different (P>0.05) from age-matched controls. In addition, progeny had normal karyotypes in peripheral blood leukocytes compared to controls (89.1% versus 86.3% diploid, respectively). In summary, heifers sired by a bull clone had normal chromosomal stability, growth, physical, hematological and reproductive parameters, compared to normal heifers. Furthermore, they had moderate stress responses to routine handling and restraint.

  2. Multimedia Presentations on the Human Genome: Implementation and Assessment of a Teaching Program for the Introduction to Genome Science Using a Poster and Animations

    Science.gov (United States)

    Kano, Kei; Yahata, Saiko; Muroi, Kaori; Kawakami, Masahiro; Tomoda, Mari; Miyaki, Koichi; Nakayama, Takeo; Kosugi, Shinji; Kato, Kazuto

    2008-01-01

    Genome science, including topics such as gene recombination, cloning, genetic tests, and gene therapy, is now an established part of our daily lives; thus we need to learn genome science to better equip ourselves for the present day. Learning from topics directly related to the human has been suggested to be more effective than learning from…

  3. Ethical attitudes on human cloning among professionals in Taiwan and the policy implications for regulation.

    Science.gov (United States)

    Yang, Che-Ming; Chung, Chun-Chih; Lu, Meei-Shiow; Lin, Chiou-Fen; Chen, Jiun-Shyan

    2005-01-01

    This research focused on understanding the attitudes toward human cloning in Taiwan among professionals in healthcare, law, and religion. The study was conducted utilizing a structured questionnaire. 220 healthcare professionals from two regional hospitals located in Taipei, 351 religious professionals in the northern Taiwan and 711 legal professionals were selected by to receive questionnaires. The valid response rate is 42.1% The questions were generated by an expert panel and represented major arguments in the human cloning debate. There were a total of six Likert scaled questions in the questionnaire. The responses were coded from 1 to 5 with 1 representing strong opposition to human cloning, 3 representing a neutral attitude; and 5 representing a strong favorable attitude toward human cloning. Healthcare professionals had the highest overall average score of 2.14 and the religious professionals had the lowest average at 1.58. All three categories of respondents' attitude toward cloning ranged from mild opposition to strong opposition to human cloning. The religious professionals were more strongly opposed to cloning. Age, education, and religion significantly influenced attitudes toward cloning. Professionals between fifty-one and sixty years old, those with less education, and Roman Catholic professionals were more strongly opposed to cloning. Religious professionals were more strongly opposed to human cloning than professionals in healthcare or law. Younger professionals as an age group demonstrated less opposition to human cloning. Regulation of human cloning will be influenced by professionals in healthcare, law, and religion, and the regulatory environment chosen now will play a pivotal role in influencing the acceptance of human cloning in the future.

  4. Cloning and characterization of a functional human ¿-aminobutyric acid (GABA) transporter, human GAT-2

    DEFF Research Database (Denmark)

    Christiansen, Bolette; Meinild, Anne-Kristine; Jensen, Anders A.

    2007-01-01

    Plasma membrane gamma-aminobutyric acid (GABA) transporters act to terminate GABA neurotransmission in the mammalian brain. Intriguingly four distinct GABA transporters have been cloned from rat and mouse, whereas only three functional homologs of these transporters have been cloned from human....... The aim of this study therefore was to search for this fourth missing human transporter. Using a bioinformatics approach, we successfully identified and cloned the full-length cDNA of a so far uncharacterized human GABA transporter (GAT). The predicted protein displays high sequence similarity to rat GAT......-2 and mouse GAT3, and in accordance with the nomenclature for rat GABA transporters, we therefore refer to the transporter as human GAT-2. We used electrophysiological and cell-based methods to demonstrate that this protein is a functional transporter of GABA. The transport was saturable...

  5. The Human Genome Diversity Project

    Energy Technology Data Exchange (ETDEWEB)

    Cavalli-Sforza, L. [Stanford Univ., CA (United States)

    1994-12-31

    The Human Genome Diversity Project (HGD Project) is an international anthropology project that seeks to study the genetic richness of the entire human species. This kind of genetic information can add a unique thread to the tapestry knowledge of humanity. Culture, environment, history, and other factors are often more important, but humanity`s genetic heritage, when analyzed with recent technology, brings another type of evidence for understanding species` past and present. The Project will deepen the understanding of this genetic richness and show both humanity`s diversity and its deep and underlying unity. The HGD Project is still largely in its planning stages, seeking the best ways to reach its goals. The continuing discussions of the Project, throughout the world, should improve the plans for the Project and their implementation. The Project is as global as humanity itself; its implementation will require the kinds of partnerships among different nations and cultures that make the involvement of UNESCO and other international organizations particularly appropriate. The author will briefly discuss the Project`s history, describe the Project, set out the core principles of the Project, and demonstrate how the Project will help combat the scourge of racism.

  6. All about the Human Genome Project (HGP)

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  7. An integrative analysis of reprogramming in human isogenic system identified a clone selection criterion.

    Science.gov (United States)

    Shutova, Maria V; Surdina, Anastasia V; Ischenko, Dmitry S; Naumov, Vladimir A; Bogomazova, Alexandra N; Vassina, Ekaterina M; Alekseev, Dmitry G; Lagarkova, Maria A; Kiselev, Sergey L

    2016-01-01

    The pluripotency of newly developed human induced pluripotent stem cells (iPSCs) is usually characterized by physiological parameters; i.e., by their ability to maintain the undifferentiated state and to differentiate into derivatives of the 3 germ layers. Nevertheless, a molecular comparison of physiologically normal iPSCs to the "gold standard" of pluripotency, embryonic stem cells (ESCs), often reveals a set of genes with different expression and/or methylation patterns in iPSCs and ESCs. To evaluate the contribution of the reprogramming process, parental cell type, and fortuity in the signature of human iPSCs, we developed a complete isogenic reprogramming system. We performed a genome-wide comparison of the transcriptome and the methylome of human isogenic ESCs, 3 types of ESC-derived somatic cells (fibroblasts, retinal pigment epithelium and neural cells), and 3 pairs of iPSC lines derived from these somatic cells. Our analysis revealed a high input of stochasticity in the iPSC signature that does not retain specific traces of the parental cell type and reprogramming process. We showed that 5 iPSC clones are sufficient to find with 95% confidence at least one iPSC clone indistinguishable from their hypothetical isogenic ESC line. Additionally, on the basis of a small set of genes that are characteristic of all iPSC lines and isogenic ESCs, we formulated an approach of "the best iPSC line" selection and confirmed it on an independent dataset.

  8. A new approach for cloning hLIF cDNA from genomic DNA isolated from the oral mucous membrane.

    Science.gov (United States)

    Cui, Y H; Zhu, G Q; Chen, Q J; Wang, Y F; Yang, M M; Song, Y X; Wang, J G; Cao, B Y

    2011-11-25

    Complementary DNA (cDNA) is valuable for investigating protein structure and function in the study of life science, but it is difficult to obtain by traditional reverse transcription. We employed a novel strategy to clone human leukemia inhibitory factor (hLIF) gene cDNA from genomic DNA, which was directly isolated from the mucous membrane of mouth. The hLIF sequence, which is 609 bp long and is composed of three exons, can be acquired within a few hours by amplifying each exon and splicing all of them using overlap-PCR. This new approach developed is simple, time- and cost-effective, without RNA preparation or cDNA synthesis, and is not limited to the specific tissues for a particular gene and the expression level of the gene.

  9. Comparative Genomic Analysis of Rapid Evolution of an Extreme-Drug-Resistant Acinetobacter baumannii Clone

    DEFF Research Database (Denmark)

    Tan, Sean Yang-Yi; Chua, Song Lin; Liu, Yang

    2013-01-01

    , comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clone from the intensive care unit (ICU) of Rigshospitalet at Copenhagen. Two resistant A. baumannii strains, 48055 and 53264, were sequentially isolated from two individuals who had been admitted to ICU...... within a 1-month interval. Multilocus sequence typing indicates that these two isolates belonged to ST208. The A. baumannii 53264 strain gained colistin resistance compared with the 48055 strain and became an EDR strain. Genome sequencing indicates that A. baumannii 53264 and 48055 have almost identical...... genomes—61 single-nucleotide polymorphisms (SNPs) were found between them. The A. baumannii 53264 strain was assembled into 130 contigs, with a total length of 3,976,592 bp with 38.93% GC content. The A. baumannii 48055 strain was assembled into 135 contigs, with a total length of 4,049,562 bp with 39...

  10. Genomic validation of PB 260 clone of rubber (Hevea brasiliensis) at Cikumpay Plantation by SSR marker

    Science.gov (United States)

    Royani, J. I.; Safarrida, A.; Rachmawati, I.; Khairiyah, H.; Mustika, I. P.; Suyono, A.; Rudiyana, Y.; Kubil; Nurjaya; Arianto, A.

    2017-05-01

    Rubber from Hevea brasiliensis is the only commercial natural rubber in the world. Propagation of rubber trees usually done by grafting and seed germination. BPPT had been producing rubber tree by in vitro technique with embryo somatic methods. Validation of mother plant for in vitro propagation is important to compare between mother plant and propagated plants. The aim for this research was to validation of PB 260 clone that planted at Cikumpay Plantation by SSR marker. Sampling of 10 rubber leaves were done at Cikumpay Plantation based on GPS position from the area of PB 260 clone. Rubber leaves were isolated with CTAB modification method to obtained DNA. Four of SSR primers from rubber, i.e.: hmac 4, hmac 5, hmct 1, and hmct 5, were used as primers to amplification of rubber DNA. The result showed that no band that different from 10 rubber of PB 260 clone at Cikumpay Plantation. This research will continue to compare genomic validation between mother plant and propagated plants that had been produced from BPPT.

  11. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues

    International Nuclear Information System (INIS)

    Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.; Goldberg, O.; Soreq, H.

    1987-01-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from λgt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A) + RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species

  12. Distant homology between yeast photoreactivating gene fragment and human genomic digests

    International Nuclear Information System (INIS)

    Meechan, P.J.; Milam, K.M.; Cleaver, J.E.

    1985-01-01

    Hybridization of DNA coding for the yeast DNA photolyase to human genomic DNA appears to allow one to determine whether a conserved enzyme is coded for in human cells. Under stringent conditions (68 0 C), hybridization is not found between the cloned yeast fragment (YEp13-phr1) and human or chick genomic digests. At less stringent conditions (60 0 C), hybridization is observed with chick digests, indicating evolutionary divergence even among organisms capable of photo-reactivation. At 50 0 C, weak hybridization with human digests was observed, indicating further divergence from the cloned gene. Data concerning the precise extent of homology and methods to clone the chick gene for use as another probe are discussed

  13. Creation of BAC genomic resources for cocoa ( Theobroma cacao L.) for physical mapping of RGA containing BAC clones.

    Science.gov (United States)

    Clément, D; Lanaud, C; Sabau, X; Fouet, O; Le Cunff, L; Ruiz, E; Risterucci, A M; Glaszmann, J C; Piffanelli, P

    2004-05-01

    We have constructed and validated the first cocoa ( Theobroma cacao L.) BAC library, with the aim of developing molecular resources to study the structure and evolution of the genome of this perennial crop. This library contains 36,864 clones with an average insert size of 120 kb, representing approximately ten haploid genome equivalents. It was constructed from the genotype Scavina-6 (Sca-6), a Forastero clone highly resistant to cocoa pathogens and a parent of existing mapping populations. Validation of the BAC library was carried out with a set of 13 genetically-anchored single copy and one duplicated markers. An average of nine BAC clones per probe was identified, giving an initial experimental estimation of the genome coverage represented in the library. Screening of the library with a set of resistance gene analogues (RGAs), previously mapped in cocoa and co-localizing with QTL for resistance to Phytophthora traits, confirmed at the physical level the tight clustering of RGAs in the cocoa genome and provided the first insights into the relationships between genetic and physical distances in the cocoa genome. This library represents an available BAC resource for structural genomic studies or map-based cloning of genes corresponding to important QTLs for agronomic traits such as resistance genes to major cocoa pathogens like Phytophthora spp ( palmivora and megakarya), Crinipellis perniciosa and Moniliophthora roreri.

  14. The zebrafish reference genome sequence and its relationship to the human genome

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  15. The zebrafish reference genome sequence and its relationship to the human genome.

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  16. Human Contamination in Public Genome Assemblies.

    Science.gov (United States)

    Kryukov, Kirill; Imanishi, Tadashi

    2016-01-01

    Contamination in genome assembly can lead to wrong or confusing results when using such genome as reference in sequence comparison. Although bacterial contamination is well known, the problem of human-originated contamination received little attention. In this study we surveyed 45,735 available genome assemblies for evidence of human contamination. We used lineage specificity to distinguish between contamination and conservation. We found that 154 genome assemblies contain fragments that with high confidence originate as contamination from human DNA. Majority of contaminating human sequences were present in the reference human genome assembly for over a decade. We recommend that existing contaminated genomes should be revised to remove contaminated sequence, and that new assemblies should be thoroughly checked for presence of human DNA before submitting them to public databases.

  17. The bonobo genome compared with the chimpanzee and human genomes

    Science.gov (United States)

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R.; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R.; Mullikin, James C.; Meader, Stephen J.; Ponting, Chris P.; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E.; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M.; Fischer, Anne; Ptak, Susan E.; Lachmann, Michael; Symer, David E.; Mailund, Thomas; Schierup, Mikkel H.; Andrés, Aida M.; Kelso, Janet; Pääbo, Svante

    2012-01-01

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours1–4, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other. PMID:22722832

  18. cDNA cloning, sequence analysis, and chromosomal localization of the gene for human carnitine palmitoyltransferase

    International Nuclear Information System (INIS)

    Finocchiaro, G.; Taroni, F.; Martin, A.L.; Colombo, I.; Tarelli, G.T.; DiDonato, S.; Rocchi, M.

    1991-01-01

    The authors have cloned and sequenced a cDNA encoding human liver carnitine palmitoyltransferase an inner mitochondrial membrane enzyme that plays a major role in the fatty acid oxidation pathway. Mixed oligonucleotide primers whose sequences were deduced from one tryptic peptide obtained from purified CPTase were used in a polymerase chain reaction, allowing the amplification of a 0.12-kilobase fragment of human genomic DNA encoding such a peptide. A 60-base-pair (bp) oligonucleotide synthesized on the basis of the sequence from this fragment was used for the screening of a cDNA library from human liver and hybridized to a cDNA insert of 2255 bp. This cDNA contains an open reading frame of 1974 bp that encodes a protein of 658 amino acid residues including 25 residues of an NH 2 -terminal leader peptide. The assignment of this open reading frame to human liver CPTase is confirmed by matches to seven different amino acid sequences of tryptic peptides derived from pure human CPTase and by the 82.2% homology with the amino acid sequence of rat CPTase. The NH 2 -terminal region of CPTase contains a leucine-proline motif that is shared by carnitine acetyl- and octanoyltransferases and by choline acetyltransferase. The gene encoding CPTase was assigned to human chromosome 1, region 1q12-1pter, by hybridization of CPTase cDNA with a DNA panel of 19 human-hanster somatic cell hybrids

  19. Identification and cloning of a gamma 3 subunit splice variant of the human GABA(A) receptor.

    Science.gov (United States)

    Poulsen, C F; Christjansen, K N; Hastrup, S; Hartvig, L

    2000-05-31

    cDNA sequences encoding two forms of the GABA(A) gamma 3 receptor subunit were cloned from human hippocampus. The nucleotide sequences differ by the absence (gamma 3S) or presence (gamma 3L) of 18 bp located in the presumed intracellular loop between transmembrane region (TM) III and IV. The extra 18 bp in the gamma 3L subunit generates a consensus site for phosphorylation by protein kinase C (PKC). Analysis of human genomic DNA encoding the gamma 3 subunit reveals that the 18 bp insert is contiguous with the upstream proximal exon.

  20. Cloning and sequence of the human adrenodoxin reductase gene

    International Nuclear Information System (INIS)

    Lin, Dong; Shi, Y.; Miller, W.L.

    1990-01-01

    Adrenodoxin reductase is a flavoprotein mediating electron transport to all mitochondrial forms of cytochrome P450. The authors cloned the human adrenodoxin reductase gene and characterized it by restriction endonuclease mapping and DNA sequencing. The entire gene is approximately 12 kilobases long and consists of 12 exons. The first exon encodes the first 26 of the 32 amino acids of the signal peptide, and the second exon encodes the remainder of signal peptide and the apparent FAD binding site. The remaining 10 exons are clustered in a region of only 4.3 kilobases, separated from the first two exons by a large intron of about 5.6 kilobases. Two forms of human adrenodoxin reductase mRNA, differing by the presence or absence of 18 bases in the middle of the sequence, arise from alternate splicing at the 5' end of exon 7. This alternately spliced region is directly adjacent to the NADPH binding site, which is entirely contained in exon 6. The immediate 5' flanking region lacks TATA and CAAT boxes; however, this region is rich in G+C and contains six copies of the sequence GGGCGGG, resembling promoter sequences of housekeeping genes. RNase protection experiments show that transcription is initiated from multiple sites in the 5' flanking region, located about 21-91 base pairs upstream from the AUG translational initiation codon

  1. Construction of an infectious clone of canine herpesvirus genome as a bacterial artificial chromosome.

    Science.gov (United States)

    Arii, Jun; Hushur, Orkash; Kato, Kentaro; Kawaguchi, Yasushi; Tohya, Yukinobu; Akashi, Hiroomi

    2006-04-01

    Canine herpesvirus (CHV) is an attractive candidate not only for use as a recombinant vaccine to protect dogs from a variety of canine pathogens but also as a viral vector for gene therapy in domestic animals. However, developments in this area have been impeded by the complicated techniques used for eukaryotic homologous recombination. To overcome these problems, we used bacterial artificial chromosomes (BACs) to generate infectious BACs. Our findings may be summarized as follows: (i) the CHV genome (pCHV/BAC), in which a BAC flanked by loxP sites was inserted into the thymidine kinase gene, was maintained in Escherichia coli; (ii) transfection of pCHV/BAC into A-72 cells resulted in the production of infectious virus; (iii) the BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus CHV/BAC by co-infection with CHV/BAC and a recombinant adenovirus that expressed the Cre recombinase; and (iv) a recombinant virus in which the glycoprotein C gene was deleted was generated by lambda recombination followed by Flp recombination, which resulted in a reduction in viral titer compared with that of the wild-type virus. The infectious clone pCHV/BAC is useful for the modification of the CHV genome using bacterial genetics, and CHV/BAC should have multiple applications in the rapid generation of genetically engineered CHV recombinants and the development of CHV vectors for vaccination and gene therapy in domestic animals.

  2. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  3. Cloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21-22

    International Nuclear Information System (INIS)

    Tsai-Pflugfelder, M.; Liu, L.F.; Liu, A.A.; Tewey, K.M.; Whang-Peng, J.; Knutsen, T.; Huebner, K.; Croce, C.M.; Wang, J.C.

    1988-01-01

    Two overlapping cDNA clones encoding human DNA topoisomerase II were identified by two independent methods. In one, a human cDNA library in phage λ was screened by hybridization with a mixed oligonucleotide probe encoding a stretch of seven amino acids found in yeast and Drosophila DNA topoisomerase II; in the other, a different human cDNA library in a λgt11 expression vector was screened for the expression of antigenic determinants that are recognized by rabbit antibodies specific to human DNA topoisomerase II. The entire coding sequences of the human DNA topoisomerase II gene were determined from these and several additional clones, identified through the use of the cloned human TOP2 gene sequences as probes. Hybridization between the cloned sequences and mRNA and genomic DNA indicates that the human enzyme is encoded by a single-copy gene. The location of the gene was mapped to chromosome 17q21-22 by in situ hybridization of a cloned fragment to metaphase chromosomes and by hybridization analysis with a panel of mouse-human hybrid cell lines, each retaining a subset of human chromosomes

  4. Human Endothelial Cells: Use of Heparin in Cloning and Long-Term Serial Cultivation

    Science.gov (United States)

    Thornton, Susan C.; Mueller, Stephen N.; Levine, Elliot M.

    1983-11-01

    Endothelial cells from human blood vessels were cultured in vitro, with doubling times of 17 to 21 hours for 42 to 79 population doublings. Cloned human endothelial cell strains were established for the first time and had similar proliferative capacities. This vigorous cell growth was achieved by addition of heparin to culture medium containing reduced concentrations of endothelial cell growth factor. The routine cloning and long-term culture of human endothelial cells will facilitate studying the human endothelium in vitro.

  5. Comparative Genome Analyses of Streptococcus suis Isolates from Endocarditis Demonstrate Persistence of Dual Phenotypic Clones.

    Science.gov (United States)

    Tohya, Mari; Watanabe, Takayasu; Maruyama, Fumito; Arai, Sakura; Ota, Atsushi; Athey, Taryn B T; Fittipaldi, Nahuel; Nakagawa, Ichiro; Sekizaki, Tsutomu

    2016-01-01

    Many bacterial species coexist in the same niche as heterogeneous clones with different phenotypes; however, understanding of infectious diseases by polyphenotypic bacteria is still limited. In the present study, encapsulation in isolates of the porcine pathogen Streptococcus suis from persistent endocarditis lesions was examined. Coexistence of both encapsulated and unencapsulated S. suis isolates was found in 26 out of 59 endocarditis samples. The isolates were serotype 2, and belonged to two different sequence types (STs), ST1 and ST28. The genomes of each of the 26 pairs of encapsulated and unencapsulated isolates from the 26 samples were sequenced. The data showed that each pair of isolates had one or more unique nonsynonymous mutations in the cps gene, and the encapsulated and unencapsulated isolates from the same samples were closest to each other. Pairwise comparisons of the sequences of cps genes in 7 pairs of encapsulated and unencapsulated isolates identified insertion/deletions (indels) ranging from one to 104 bp in different cps genes of unencapsulated isolates. Capsule expression was restored in a subset of unencapsulated isolates by complementation in trans with cps expression vectors. Examination of gene content common to isolates indicated that mutation frequency was higher in ST28 pairs than in ST1 pairs. Genes within mobile genetic elements were mutation hot spots among ST28 isolates. Taken all together, our results demonstrate the coexistence of dual phenotype (encapsulated and unencapsulated) bacterial clones and suggest that the dual phenotypes arose independently in each farm by means of spontaneous mutations in cps genes.

  6. Genome sequencing and molecular characterisation of Staphylococcus aureus ST772-MRSA-V, "Bengal Bay Clone".

    Science.gov (United States)

    Monecke, Stefan; Baier, Vico; Coombs, Geoffrey W; Slickers, Peter; Ziegler, Albrecht; Ehricht, Ralf

    2013-12-20

    The PVL-positive ST772-MRSA-V is an emerging community-associated (CA-) MRSA clone that has been named Bengal Bay Clone since most patients have epidemiological connections to the Indian subcontinent. It is found increasingly common in other areas of the world. One isolate of ST772-MRSA-V was sequenced using the Illumina Genome Analyzer System. After initial assembling the multiple sequence contigs were analysed using different in-house annotation scripts. Results were compared to microarray hybridisation results of clinical isolates of ST772-MRSA-V, of related strains and to another ST772-MRSA-V genome sequence. According to MLST e-burst analysis, ST772-MRSA-V belongs to Clonal Complex (CC)1, differing from ST1 only in one MLST allele (pta-22). However, there are several additional differences including agr alleles (group II rather than III), capsule type (5 rather than 8), the presence of the egc enterotoxin gene cluster and of the enterotoxin homologue ORF CM14 as well as the absence of the enterotoxin H gene seh. Enterotoxin genes sec and sel are present. ST772-MRSA-V harbours the genes encoding enterotoxin A (sea) and PVL (lukS/F-PV). Both are located on the same prophage. ST772-MRSA-V may have emerged from the same lineage as globally spread CC1 and CC5 strains. It has acquired a variety of virulence factors, and for a CA-MRSA strain it has an unusually high number of genes associated with antibiotic resistance.

  7. Cloning and chromosomal localization of the three human syntrophin genes

    Energy Technology Data Exchange (ETDEWEB)

    Feener, C.A.; Anderson, M.D.S.; Selig, S. [Children`s Hospital, Boston, MA (United States)] [and others

    1994-09-01

    Dystrophin, the protein product the Duchenne muscular dystrophy locus, is normally found to be associated with a complex of proteins. Among these dystrophin-associated proteins are the syntrophins, a group of 59 kDa membrane-associated proteins. When the syntrophins are purified based upon their association with dystrophin, they have been shown previously to form two distinct groups, the acidic ({alpha}) and basic ({beta}) forms. Based on peptide and rodent cDNA sequences, three separate syntrophin genes have been cloned and characterized from human tissues. The predicted amino acid sequences from these cDNA reveal that these proteins are related but are distinct with respect to charge, as predicted from their biochemistry. The family consists of one acidic ({alpha}-syntrophin, analogous to mouse syntrophin-1) and two basic ({beta}{sub 1}-syntrophin; and {beta}{sub 2}-syntrophin, analogous to mouse syntrophin-2) genes. Each of the three genes are widely expressed in a variety of human tissues, but the relative abundance of the three are unique with respect to each other. {alpha}-syntrophin is expressed primarily in skeletal muscle and heart as a single transcript. {beta}{sub 1}-syntrophin is expressed widely in up to five distinct transcript sizes, and is most abundant in brain. The human chromosomal locations of the three syntrophins are currently being mapped. {beta}{sub 1}-syntrophin maps to chromosome 8q23-24 and {beta}{sub 2}-syntrophin to chromosome 16. The {alpha}-syntrophin gene will be mapped accordingly. Although all three genes are candidates for neuromuscular diseases, the predominant expression of {alpha}-syntrophin in skeletal muscle and heart makes it a strong candidate to be involved in a neuromuscular disease.

  8. Molecular cloning of the human casein kinase II α subunit

    International Nuclear Information System (INIS)

    Meisner, H.; Heller-Harrison, R.; Buxton, J.; Czech, M.P.

    1989-01-01

    A human cDNA encoding the α subunit of casein kinase II and a partial cDNA encoding the rat homologue were isolated by using a Drosophila casein kinase II cDNA probe. The 2.2-kb human cDNA contains a 1.2-kb open reading frame, 150 nucleotides of 5' leader, and 850 nucleotides of 3' noncoding region. Except for the first 7 deduced amino acids that are missing in the rat cDNA, the 328 amino acids beginning with the amino terminus are identical between human and rat. The Drosophila enzyme sequence is 90% identical with the human casein kinase II sequence, and there is only a single amino acid difference between the published partial bovine sequence and the human sequence. In addition, the C-terminus of the human cDNA has an extra 53 amino acids not present in Drosophila. Northern analysis of rat and human RNA showed predominant bands of 5.5, 3.1, and 1.8 kb. In rat tissues, brain and spleen had the highest levels of casein kinase II α subunit specific RNA, while skeletal muscle showed the lowest. Southern analysis of human cultured cell and tissue genomic DNA using the full-length cDNA probe revealed two bands with restriction enzymes that have no recognition sites within the cDNA and three to six bands with enzymes having single internal sites. These results are consistent with the possibility that two genes encode the α subunits

  9. Cloning, expression and location of RNase9 in human epididymis

    Directory of Open Access Journals (Sweden)

    Lin YQ

    2008-11-01

    Full Text Available Abstract Background Mammalian spermatozoa become fully motile and fertile during transit through the luminal fluid of the epididymis. At least 200 proteins are present in the epididymal lumen, but the potential roles of these luminal proteins in male fertility are unknown. Investigation of the function of these proteins will elucidate the mechanism of sperm maturation, and also provide new drug targets for male contraception. We cloned RNase9 from a human epididymis cDNA library for characterization and analysis of its functions. Findings It was predicted that human RNase9 gene was located on chromosome 14q11.2 and encoded a 205 amino acids protein with a signal peptide of 26 amino acids at the N-terminus. The protein had eight conserved cysteine residues characteristic of the RNase A family members and several potential post-translational modification sites. At the transcriptional level, RNase9 was expressed in a wide variety of tissues, and the expression was higher in men than in boys. RNase9 was localized to the post-equatorial region of the sperms' head. Immunofluorescence staining showed that RNase9 protein was present mostly in the epithelium of the epididymal tubule. Recombinant RNase9 had no ribonuclease activity. In addition, RNase9 had no detectable effect on sperm motility and fertilization as demonstrated by blocking spermatozoa with anti-RNase9 polyclonal serum. Conclusion RNase9 is expressed in a wide variety of tissues. It is located on the post-equatorial region of the sperm head and the epithelium of epididymal tubule. Although RNase9 belongs to the RNase A family, it has no ribonuclease activity.

  10. Cloning humans? Current science, current views, and a perspective from Christianity.

    Science.gov (United States)

    Brun, Rudolf B

    2002-01-01

    Therapeutic cloning is urgent and should be vigorously supported. To successfully argue for this position, the distinction between a human embryo and a human nuclear transplant may be helpful. Even if current technical difficulties should be solved, global legislation should prohibit cloning for the purpose of fabricating babies. This position originates from a view on human nature in general and from a Christian perspective in particular.

  11. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing

    Directory of Open Access Journals (Sweden)

    Jianguo Wen

    2017-06-01

    Full Text Available Abstract Background Sickle cell disease (SCD is a disorder of red blood cells (RBCs expressing abnormal hemoglobin-S (HbS due to genetic inheritance of homologous HbS gene. However, people with the sickle cell trait (SCT carry a single allele of HbS and do not usually suffer from SCD symptoms, thus providing a rationale to treat SCD. Methods To validate gene therapy potential, hematopoietic stem cells were isolated from the SCD patient blood and treated with CRISPR/Cas9 approach. To precisely dissect genome-editing effects, erythroid progenitor cells were cloned from single colonies of CRISPR-treated cells and then expanded for simultaneous gene, protein, and cellular function studies. Results Genotyping and sequencing analysis revealed that the genome-edited erythroid progenitor colonies were converted to SCT genotype from SCD genotype. HPLC protein assays confirmed reinstallation of normal hemoglobin at a similar level with HbS in the cloned genome-edited erythroid progenitor cells. For cell function evaluation, in vitro RBC differentiation of the cloned erythroid progenitor cells was induced. As expected, cell sickling assays indicated function reinstitution of the genome-edited offspring SCD RBCs, which became more resistant to sickling under hypoxia condition. Conclusions This study is an exploration of genome editing of SCD HSPCs.

  12. Cloning, production, and purification of proteins for a medium-scale structural genomics project.

    Science.gov (United States)

    Quevillon-Cheruel, Sophie; Collinet, Bruno; Trésaugues, Lionel; Minard, Philippe; Henckes, Gilles; Aufrère, Robert; Blondeau, Karine; Zhou, Cong-Zhao; Liger, Dominique; Bettache, Nabila; Poupon, Anne; Aboulfath, Ilham; Leulliot, Nicolas; Janin, Joël; van Tilbeurgh, Herman

    2007-01-01

    The South-Paris Yeast Structural Genomics Pilot Project (http://www.genomics.eu.org) aims at systematically expressing, purifying, and determining the three-dimensional structures of Saccharomyces cerevisiae proteins. We have already cloned 240 yeast open reading frames in the Escherichia coli pET system. Eighty-two percent of the targets can be expressed in E. coli, and 61% yield soluble protein. We have currently purified 58 proteins. Twelve X-ray structures have been solved, six are in progress, and six other proteins gave crystals. In this chapter, we present the general experimental flowchart applied for this project. One of the main difficulties encountered in this pilot project was the low solubility of a great number of target proteins. We have developed parallel strategies to recover these proteins from inclusion bodies, including refolding, coexpression with chaperones, and an in vitro expression system. A limited proteolysis protocol, developed to localize flexible regions in proteins that could hinder crystallization, is also described.

  13. Insights from Human/Mouse genome comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  14. Identification of DNA repair genes in the human genome

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; van Duin, M.; Westerveld, A.; Yasui, A.; Bootsma, D.

    1986-01-01

    To identify human DNA repair genes we have transfected human genomic DNA ligated to a dominant marker to excision repair deficient xeroderma pigmentosum (XP) and CHO cells. This resulted in the cloning of a human gene, ERCC-1, that complements the defect of a UV- and mitomycin-C sensitive CHO mutant 43-3B. The ERCC-1 gene has a size of 15 kb, consists of 10 exons and is located in the region 19q13.2-q13.3. Its primary transcript is processed into two mRNAs by alternative splicing of an internal coding exon. One of these transcripts encodes a polypeptide of 297 aminoacids. A putative DNA binding protein domain and nuclear location signal could be identified. Significant AA-homology is found between ERCC-1 and the yeast excision repair gene RAD10. 58 references, 6 figures, 1 table

  15. Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G + C-rich attenuating structure

    International Nuclear Information System (INIS)

    Soreq, H.; Ben-Aziz, R.; Prody, C.A.; Seidman, S.; Gnatt, A.; Neville, L.; Lieman-Hurwitz, J.; Lev-Lehman, E.; Ginzberg, D.; Lapidot-Lifson, Y.; Zakut, H.

    1990-01-01

    To study the primary structure of human acetylcholinesterase and its gene expression and amplification, cDNA libraries from human tissues expressing oocyte-translatable AcChoEase mRNA were constructed and screened with labeled oligodeoxynucleotide probes. Several cDNA clones were isolated that encoded a polypeptide with ≥50% identically aligned amino acids to Torpedo AcChoEase and human butyrylcholinesterase. However, these cDNA clones were all truncated within a 300-nucleotide-long G + C-rich region with a predicted pattern of secondary structure having a high Gibbs free energy downstream from the expected 5' end of the coding region. Screening of a genomic DNA library revealed the missing 5' domain. When ligated to the cDNA and constructed into a transcription vector, this sequence encoded a synthetic mRNA translated in microinjected oocytes into catalytically active AcChoEase with marked preference for acetylthiocholine over butyrylthiocholine as a substrate, susceptibility to inhibition by the AcChoEase inhibitor BW284C51, and resistance to the AcChoEase inhibitor tetraisopropylpyrophosphoramide. Blot hybridization of genomic DNA from different individuals carrying amplified AcChoEase genes revealed variable intensities and restriction patterns with probes from the regions upstream and downstream from the predicted G + C-rich structure. Thus, the human AcChoEase gene includes a putative G + C-rich attenuator domain and is subject to structural alterations in cases of AcChoEase gene amplification

  16. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-25

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human genome variations: 1) HapMap Data (1,417 individuals) (http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-08_phaseII+III/forward/), 2) HGDP (Human Genome Diversity Project) Data (940 individuals) (http://www.hagsc.org/hgdp/files.html), 3) 1000 genomes Data (2,504 individuals) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ If we can integrate all three data into a single volume of data, we should be able to conduct a more detailed analysis of human genome variations for a total number of 4,861 individuals (= 1,417+940+2,504 individuals). In fact, we successfully integrated these three data sets by use of information on the reference human genome sequence, and we conducted the big data analysis. In particular, we constructed a phylogenetic tree of about 5,000 human individuals at the genome level. As a result, we were able to identify clusters of ethnic groups, with detectable admixture, that were not possible by an analysis of each of the three data sets. Here, we report the outcome of this kind of big data analyses and discuss evolutionary significance of human genomic variations. Note that the present study was conducted in collaboration with Katsuhiko Mineta and Kosuke Goto at KAUST.

  17. Radiation-induced genomic instability, and the cloning and functional analysis of its related gene

    International Nuclear Information System (INIS)

    Muto, Masahiro; Kanari, Yasuyoshi; Kubo, Eiko; Yamada, Yutaka

    2000-01-01

    Exposure to ionizing radiation produces a number of biological consequences including gene mutations, chromosome aberrations, cellular transformation and cell death. The classical view has been that mutations occur at the sites of DNA damage, that is, damage produced by radiation is converted into a mutation during subsequent DNA replication or as a consequence of enzymatic repair processes. However, many investigators have presented evidence for an alternative mechanism to explain these biological effects. This evidence suggests that radiation may induce a process of genomic instability that is transmissible over many generations of cell replication and that serves to enhance the probability of the occurrence of such genetic effects among the progeny of the irradiated cell after many generations of cell replication. If such a process exists in vivo, it could have significant implications for mechanisms of carcinogenesis. Exposure of B10 mice to fractionated X-irradiation induces a high incidence of thymic lymphomas, whereas the incidence in STS/A mice is very low. Such strain differences are presumably determined genetically, and various genetic factors have been reported to be involved in radiation-induced lymphomagenesis. The mechanism of radiation-induced lymphomagenesis appears to develop through a complex and multistep process. Using this experimental system, we characterized the prelymphoma cells induced by radiation, and identified the genetic changes preceding the development of thymic lymphomas by comparing the oncogenic alterations with the pattern of T cell receptor (TCR) γ rearrangements. In these studies, the latent expression of some chromosomal aberrations and p53 mutations in irradiated progeny has been interpreted to be a manifestation of genomic instability. In the present report we review the results of in vivo studies conducted in our laboratory that support the hypothesis of genomic instability induced by radiation, and we describe the

  18. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute's genomic medicine portfolio.

    Science.gov (United States)

    Manolio, Teri A

    2016-10-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of "Genomic Medicine Meetings," under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. Published by Elsevier Ireland Ltd.

  19. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones

    OpenAIRE

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Söderlund-Venermo, Maria; Young, Neal S.; Brown, Kevin E.

    2008-01-01

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showe...

  20. Characterization and immunological identification of cDNA clones encoding two human DNA topoisomerase II isozymes

    International Nuclear Information System (INIS)

    Chung, T.D.Y.; Drake, F.H.; Tan, K.B.; Per, S.R.; Crooke, S.T.; Mirabelli, C.K.

    1989-01-01

    Several DNA topoisomerase II partial cDNA clones obtained from a human Raji-HN2 cDNA library were sequenced and two classes of nucleotide sequences were found. One member of the first class, SP1, was identical to an internal fragment of human HeLa cell Topo II cDNA described earlier. A member of the second class, SP11, shared extensive nucleotide (75%) and predicted peptide (92%) sequence similarities with the first two-thirds of HeLa Topo II. Each class of cDNAs hybridized to unique, nonoverlapping restriction enzyme fragments of genomic DNA from several human cell lines. Synthetic 24-mer oligonucleotide probes specific for each cDNA class hybridized to 6.5-kilobase mRNAs; furthermore, hybridization of probe specific for one class was not blocked by probe specific for the other. Antibodies raised against a synthetic SP1-encoded dodecapeptide specifically recognized the 170-kDa form of Topo II, while antibodies raised against the corresponding SP11-encoded dodecapeptide, or a second unique SP11-encoded tridecapeptide, selectively recognized the 180-kDa form of Topo II. These data provide genetic and immunochemical evidence for two Topo II isozymes

  1. Isolation and characterization of cDNA clones for human erythrocyte β-spectrin

    International Nuclear Information System (INIS)

    Prchal, J.T.; Morley, B.J.; Yoon, S.H.; Coetzer, T.L.; Palek, J.; Conboy, J.G.; Kan, Y.W.

    1987-01-01

    Spectrin is an important structural component of the membrane skeleton that underlies and supports the erythrocyte plasma membrane. It is composed of nonidentical α (M/sub r/ 240,000) and β (M/sub r/ 220,000) subunits, each of which contains multiple homologous 106-amino acid segments. The authors report here the isolation and characterization of a human erythroid-specific β-spectrin cDNA clone that encodes parts of the β-9 through β-12 repeat segments. This cDNA was used as a hybridization probe to assign the β-spectrin gene to human chromosome 14 and to begin molecular analysis of the gene and its mRNA transcripts. RNA transfer blot analysis showed that the reticulocyte β-spectrin mRNA is 7.8 kilobases in length. Southern blot analysis of genomic DNA revealed the presence of restriction fragment length polymorphisms (RFLPs) within the β-spectrin gene locus. The isolation of human spectrin cDNA probes and the identification of closely linked RFLPs will facilitate analysis of mutant spectrin genes causing congenital hemolytic anemias associated with quantitative and qualitative spectrin abnormalities

  2. Comparative Genome Analyses of Streptococcus suis Isolates from Endocarditis Demonstrate Persistence of Dual Phenotypic Clones.

    Directory of Open Access Journals (Sweden)

    Mari Tohya

    Full Text Available Many bacterial species coexist in the same niche as heterogeneous clones with different phenotypes; however, understanding of infectious diseases by polyphenotypic bacteria is still limited. In the present study, encapsulation in isolates of the porcine pathogen Streptococcus suis from persistent endocarditis lesions was examined. Coexistence of both encapsulated and unencapsulated S. suis isolates was found in 26 out of 59 endocarditis samples. The isolates were serotype 2, and belonged to two different sequence types (STs, ST1 and ST28. The genomes of each of the 26 pairs of encapsulated and unencapsulated isolates from the 26 samples were sequenced. The data showed that each pair of isolates had one or more unique nonsynonymous mutations in the cps gene, and the encapsulated and unencapsulated isolates from the same samples were closest to each other. Pairwise comparisons of the sequences of cps genes in 7 pairs of encapsulated and unencapsulated isolates identified insertion/deletions (indels ranging from one to 104 bp in different cps genes of unencapsulated isolates. Capsule expression was restored in a subset of unencapsulated isolates by complementation in trans with cps expression vectors. Examination of gene content common to isolates indicated that mutation frequency was higher in ST28 pairs than in ST1 pairs. Genes within mobile genetic elements were mutation hot spots among ST28 isolates. Taken all together, our results demonstrate the coexistence of dual phenotype (encapsulated and unencapsulated bacterial clones and suggest that the dual phenotypes arose independently in each farm by means of spontaneous mutations in cps genes.

  3. Comparative Genome Analyses of Streptococcus suis Isolates from Endocarditis Demonstrate Persistence of Dual Phenotypic Clones

    Science.gov (United States)

    Tohya, Mari; Watanabe, Takayasu; Maruyama, Fumito; Arai, Sakura; Ota, Atsushi; Athey, Taryn B. T.; Fittipaldi, Nahuel; Nakagawa, Ichiro; Sekizaki, Tsutomu

    2016-01-01

    Many bacterial species coexist in the same niche as heterogeneous clones with different phenotypes; however, understanding of infectious diseases by polyphenotypic bacteria is still limited. In the present study, encapsulation in isolates of the porcine pathogen Streptococcus suis from persistent endocarditis lesions was examined. Coexistence of both encapsulated and unencapsulated S. suis isolates was found in 26 out of 59 endocarditis samples. The isolates were serotype 2, and belonged to two different sequence types (STs), ST1 and ST28. The genomes of each of the 26 pairs of encapsulated and unencapsulated isolates from the 26 samples were sequenced. The data showed that each pair of isolates had one or more unique nonsynonymous mutations in the cps gene, and the encapsulated and unencapsulated isolates from the same samples were closest to each other. Pairwise comparisons of the sequences of cps genes in 7 pairs of encapsulated and unencapsulated isolates identified insertion/deletions (indels) ranging from one to 104 bp in different cps genes of unencapsulated isolates. Capsule expression was restored in a subset of unencapsulated isolates by complementation in trans with cps expression vectors. Examination of gene content common to isolates indicated that mutation frequency was higher in ST28 pairs than in ST1 pairs. Genes within mobile genetic elements were mutation hot spots among ST28 isolates. Taken all together, our results demonstrate the coexistence of dual phenotype (encapsulated and unencapsulated) bacterial clones and suggest that the dual phenotypes arose independently in each farm by means of spontaneous mutations in cps genes. PMID:27433935

  4. The Arsenic Resistance-Associated Listeria Genomic Island LGI2 Exhibits Sequence and Integration Site Diversity and a Propensity for Three Listeria monocytogenes Clones with Enhanced Virulence.

    Science.gov (United States)

    Lee, Sangmi; Ward, Todd J; Jima, Dereje D; Parsons, Cameron; Kathariou, Sophia

    2017-11-01

    populations of human pathogens with pronounced environmental lifestyles such as L. monocytogenes Arsenic resistance is encountered primarily in certain serotype 4b clones considered to have enhanced virulence and is associated with a large chromosomal island, Listeria genomic island 2 (LGI2). LGI2 also harbors a cadmium resistance cassette and genes putatively involved in DNA integration, conjugation, and pathogenicity. Our findings indicate that LGI2 exhibits pronounced content plasticity and is capable of transferring various accessory genes into diverse chromosomal locations. LGI2 may serve as a paradigm on how exposure to a potent environmental toxicant such as arsenic may have dynamically selected for arsenic-resistant subpopulations in certain clones of L. monocytogenes which also contribute significantly to disease. Copyright © 2017 American Society for Microbiology.

  5. Radiation-induced instability of human genome

    International Nuclear Information System (INIS)

    Ryabchenko, N.N.; Demina, Eh.A.

    2014-01-01

    A brief review is dedicated to the phenomenon of radiation-induced genomic instability where the increased level of genomic changes in the offspring of irradiated cells is characteristic. Particular attention is paid to the problems of genomic instability induced by the low-dose radiation, role of the bystander effect in formation of radiation-induced instability, and its relationship with individual radiosensitivity. We believe that in accordance with the paradigm of modern radiobiology the increased human individual radiosensitivity can be formed due to the genome instability onset and is a significant risk factor for radiation-induced cancer

  6. Unexplored therapeutic opportunities in the human genome

    DEFF Research Database (Denmark)

    Oprea, Tudor I; Bologa, Cristian G; Brunak, Søren

    2018-01-01

    A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially d...... as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development....

  7. Body maps on the human genome.

    Science.gov (United States)

    Cherniak, Christopher; Rodriguez-Esteban, Raul

    2013-12-20

    Chromosomes have territories, or preferred locales, in the cell nucleus. When these sites are taken into account, some large-scale structure of the human genome emerges. The synoptic picture is that genes highly expressed in particular topologically compact tissues are not randomly distributed on the genome. Rather, such tissue-specific genes tend to map somatotopically onto the complete chromosome set. They seem to form a "genome homunculus": a multi-dimensional, genome-wide body representation extending across chromosome territories of the entire spermcell nucleus. The antero-posterior axis of the body significantly corresponds to the head-tail axis of the nucleus, and the dorso-ventral body axis to the central-peripheral nucleus axis. This large-scale genomic structure includes thousands of genes. One rationale for a homuncular genome structure would be to minimize connection costs in genetic networks. Somatotopic maps in cerebral cortex have been reported for over a century.

  8. The characterization of twenty sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Kimberly Pelak

    2010-09-01

    Full Text Available We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.

  9. Experimental annotation of the human genome using microarray technology.

    Science.gov (United States)

    Shoemaker, D D; Schadt, E E; Armour, C D; He, Y D; Garrett-Engele, P; McDonagh, P D; Loerch, P M; Leonardson, A; Lum, P Y; Cavet, G; Wu, L F; Altschuler, S J; Edwards, S; King, J; Tsang, J S; Schimmack, G; Schelter, J M; Koch, J; Ziman, M; Marton, M J; Li, B; Cundiff, P; Ward, T; Castle, J; Krolewski, M; Meyer, M R; Mao, M; Burchard, J; Kidd, M J; Dai, H; Phillips, J W; Linsley, P S; Stoughton, R; Scherer, S; Boguski, M S

    2001-02-15

    The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using 'exon' and 'tiling' arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.

  10. EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Maury, Jerome; Germann, Susanne Manuela; Jacobsen, Simo Abdessamad

    2016-01-01

    Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred...... of integrative vectors, EasyCloneMulti, that enables multiple and simultaneous integration of genes in S. cerevisiae. By creating vector backbones that combine consensus sequences that aim at targeting subsets of Ty sequences and a quickly degrading selective marker, integrations at multiple genomic loci...... and a range of expression levels were obtained, as assessed with the green fluorescent protein (GFP) reporter system. The EasyCloneMulti vector set was applied to balance the expression of the rate-controlling step in the β-alanine pathway for biosynthesis of 3-hydroxypropionic acid (3HP). The best 3HP...

  11. HGVA: the Human Genome Variation Archive.

    Science.gov (United States)

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gräf, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-07-03

    High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic data for key reference projects in a clean, fast and integrated fashion. HGVA provides an efficient and intuitive web-interface for easy data mining, a comprehensive RESTful API and client libraries in Python, Java and JavaScript for fast programmatic access to its knowledge base. HGVA calculates population frequencies for these projects and enriches their data with variant annotation provided by CellBase, a rich and fast annotation solution. HGVA serves as a proof-of-concept of the genome analysis developments being carried out by the University of Cambridge together with UK's 100 000 genomes project and the National Institute for Health Research BioResource Rare-Diseases, in particular, deploying open-source for Computational Biology (OpenCB) software platform for storing and analyzing massive genomic datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. The Combinational Use of CRISPR/Cas9 and Targeted Toxin Technology Enables Efficient Isolation of Bi-Allelic Knockout Non-Human Mammalian Clones

    Directory of Open Access Journals (Sweden)

    Satoshi Watanabe

    2018-04-01

    Full Text Available Recent advances in genome editing systems such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9 have facilitated genomic modification in mammalian cells. However, most systems employ transient treatment with selective drugs such as puromycin to obtain the desired genome-edited cells, which often allows some untransfected cells to survive and decreases the efficiency of generating genome-edited cells. Here, we developed a novel targeted toxin-based drug-free selection system for the enrichment of genome-edited cells. Cells were transfected with three expression vectors, each of which carries a guide RNA (gRNA, humanized Cas9 (hCas9 gene, or Clostridium perfringens-derived endo-β-galactosidase C (EndoGalC gene. Once EndoGalC is expressed in a cell, it digests the cell-surface α-Gal epitope, which is specifically recognized by BS-I-B4 lectin (IB4. Three days after transfection, these cells were treated with cytotoxin saporin-conjugated IB4 (IB4SAP for 30 min at 37 °C prior to cultivation in a normal medium. Untransfected cells and those weakly expressing EndoGalC will die due to the internalization of saporin. Cells transiently expressing EndoGalC strongly survive, and some of these surviving clones are expected to be genome-edited bi-allelic knockout (KO clones due to their strong co-expression of gRNA and hCas9. When porcine α-1,3-galactosyltransferase gene, which can synthesize the α-Gal epitope, was attempted to be knocked out, 16.7% and 36.7% of the surviving clones were bi-allelic and mono-allelic knockout (KO cells, respectively, which was in contrast to the isolation of clones in the absence of IB4SAP treatment. Namely, 0% and 13.3% of the resulting clones were bi-allelic and mono-allelic KO cells, respectively. A similar tendency was seen when other target genes such as DiGeorge syndrome critical region gene 2 and transforming growth factor-β receptor type 1 gene were

  13. De novo assembly and phasing of a Korean human genome.

    Science.gov (United States)

    Seo, Jeong-Sun; Rhie, Arang; Kim, Junsoo; Lee, Sangjin; Sohn, Min-Hwan; Kim, Chang-Uk; Hastie, Alex; Cao, Han; Yun, Ji-Young; Kim, Jihye; Kuk, Junho; Park, Gun Hwa; Kim, Juhyeok; Ryu, Hanna; Kim, Jongbum; Roh, Mira; Baek, Jeonghun; Hunkapiller, Michael W; Korlach, Jonas; Shin, Jong-Yeon; Kim, Changhoon

    2016-10-13

    Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 (ref. 1) using single-molecule real-time sequencing, next-generation mapping, microfluidics-based linked reads, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9 Mb and a scaffold N50 size of 44.8 Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03 Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6 Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of

  14. A resource-based version of the argument that cloning is an affront to human dignity.

    Science.gov (United States)

    McDougall, R

    2008-04-01

    The claim that human reproductive cloning constitutes an affront to human dignity became a familiar one in 1997 as policymakers and bioethicists responded to the announcement of the birth of Dolly the sheep. Various versions of the argument that reproductive cloning is an affront to human dignity have been made, most focusing on the dignity of the child produced by cloning. However, these arguments tend to be unpersuasive and strongly criticised in the bioethical literature. In this paper I put forward a different argument that reproductive cloning is an affront to human dignity, one that looks beyond the dignity of the child produced. I suggest that allocating funds to such a pursuit can affront human dignity by diverting resources away from those existing people who lack sufficient health to enable them to exercise basic rights and liberties. This version of the argument posits cloning as an affront to human dignity in particular circumstances, rather than claiming the technology as intrinsically inconsistent with human dignity.

  15. Somatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs

    Directory of Open Access Journals (Sweden)

    Timothy P. Sheets

    2016-12-01

    Full Text Available The domestic pig is an ideal “dual purpose” animal model for agricultural and biomedical research. With the availability of genome editing tools such as clustered regularly interspaced short palindromic repeat (CRISPR and associated nuclease Cas9 (CRISPR/Cas9, it is now possible to perform site-specific alterations with relative ease, and will likely help realize the potential of this valuable model. In this article, we investigated for the first time a combination of somatic cell nuclear transfer (SCNT and direct injection of CRISPR/Cas ribonucleoprotein complex targeting GRB10 into the reconstituted oocytes to generate GRB10 ablated Ossabaw fetuses. This strategy resulted in highly efficient (100% generation of biallelic modifications in cloned fetuses. By combining SCNT with CRISPR/Cas9 microinjection, genome edited animals can now be produced without the need to manage a founder herd, while simultaneously eliminating the need for laborious in vitro culture and screening. Our approach utilizes standard cloning techniques while simultaneously performing genome editing in the cloned zygotes of a large animal model for agriculture and biomedical applications.

  16. Human-specific HERV-K insertion causes genomic variations in the human genome.

    Directory of Open Access Journals (Sweden)

    Wonseok Shin

    Full Text Available Human endogenous retroviruses (HERV sequences account for about 8% of the human genome. Through comparative genomics and literature mining, we identified a total of 29 human-specific HERV-K insertions. We characterized them focusing on their structure and flanking sequence. The results showed that four of the human-specific HERV-K insertions deleted human genomic sequences via non-classical insertion mechanisms. Interestingly, two of the human-specific HERV-K insertion loci contained two HERV-K internals and three LTR elements, a pattern which could be explained by LTR-LTR ectopic recombination or template switching. In addition, we conducted a polymorphic test and observed that twelve out of the 29 elements are polymorphic in the human population. In conclusion, human-specific HERV-K elements have inserted into human genome since the divergence of human and chimpanzee, causing human genomic changes. Thus, we believe that human-specific HERV-K activity has contributed to the genomic divergence between humans and chimpanzees, as well as within the human population.

  17. Human genome and philosophy: what ethical challenge will human genome studies bring to the medical practices in the 21st century?

    Science.gov (United States)

    Renzong, Q

    2001-12-01

    A human being or person cannot be reduced to a set of human genes, or human genome. Genetic essentialism is wrong, because as a person the entity should have self-conscious and social interaction capacity which is grown in an interpersonal relationship. Genetic determinism is wrong too, the relationship between a gene and a trait is not a linear model of causation, but rather a non-linear one. Human genome is a complexity system and functions in a complexity system of human body and a complexity of systems of natural/social environment. Genetic determinism also caused the issue of how much responsibility an agent should take for her/his action, and how much degrees of freedom will a human being have. Human genome research caused several conceptual issues. Can we call a gene 'good' or 'bad', 'superior' of 'inferior'? Is a boy who is detected to have the gene of Huntington's chorea or Alzheimer disease a patient? What should the term 'eugenics' mean? What do the terms such as 'gene therapy', 'treatment' and 'enhancement' and 'human cloning' mean etc.? The research of human genome and its application caused and will cause ethical issues. Can human genome research and its application be used for eugenics, or only for the treatment and prevention of diseases? Must the principle of informed consent/choice be insisted in human genome research and its application? How to protecting gene privacy and combating the discrimination on the basis of genes? How to promote the quality between persons, harmony between ethnic groups and peace between countries? How to establish a fair, just, equal and equitable relationship between developing and developed countries in regarding to human genome research and its application?

  18. Analysing human genomes at different scales

    DEFF Research Database (Denmark)

    Liu, Siyang

    The thriving of the Next-Generation sequencing (NGS) technologies in the past decade has dramatically revolutionized the field of human genetics. We are experiencing a wave of several large-scale whole genome sequencing studies of humans in the world. Those studies vary greatly regarding cohort...... will be reflected by the analysis of real data. This thesis covers studies in two human genome sequencing projects that distinctly differ in terms of studied population, sample size and sequencing depth. In the first project, we sequenced 150 Danish individuals from 50 trio families to 78x coverage....... The sophisticated experimental design enables high-quality de novo assembly of the genomes and provides a good opportunity for mapping the structural variations in the human population. We developed the AsmVar approach to discover, genotype and characterize the structural variations from the assemblies. Our...

  19. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR mediated by low-copy repeats (LCRs. Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ~1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR-mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease.

  20. Initial genomics of the human nucleolus.

    Directory of Open Access Journals (Sweden)

    Attila Németh

    2010-03-01

    Full Text Available We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD-localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD-specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture.

  1. Initial Genomics of the Human Nucleolus

    Science.gov (United States)

    Németh, Attila; Conesa, Ana; Santoyo-Lopez, Javier; Medina, Ignacio; Montaner, David; Péterfia, Bálint; Solovei, Irina; Cremer, Thomas; Dopazo, Joaquin; Längst, Gernot

    2010-01-01

    We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs) in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD–localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD–specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture. PMID:20361057

  2. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. (eds.)

    1992-01-01

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  3. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. [eds.

    1992-12-31

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  4. Inversion variants in human and primate genomes.

    Science.gov (United States)

    Catacchio, Claudia Rita; Maggiolini, Flavia Angela Maria; D'Addabbo, Pietro; Bitonto, Miriana; Capozzi, Oronzo; Signorile, Martina Lepore; Miroballo, Mattia; Archidiacono, Nicoletta; Eichler, Evan E; Ventura, Mario; Antonacci, Francesca

    2018-05-18

    For many years, inversions have been proposed to be a direct driving force in speciation since they suppress recombination when heterozygous. Inversions are the most common large-scale differences among humans and great apes. Nevertheless, they represent large events easily distinguishable by classical cytogenetics, whose resolution, however, is limited. Here, we performed a genome-wide comparison between human, great ape, and macaque genomes using the net alignments for the most recent releases of genome assemblies. We identified a total of 156 putative inversions, between 103 kb and 91 Mb, corresponding to 136 human loci. Combining literature, sequence, and experimental analyses, we analyzed 109 of these loci and found 67 regions inverted in one or multiple primates, including 28 newly identified inversions. These events overlap with 81 human genes at their breakpoints, and seven correspond to sites of recurrent rearrangements associated with human disease. This work doubles the number of validated primate inversions larger than 100 kb, beyond what was previously documented. We identified 74 sites of errors, where the sequence has been assembled in the wrong orientation, in the reference genomes analyzed. Our data serve two purposes: First, we generated a map of evolutionary inversions in these genomes representing a resource for interrogating differences among these species at a functional level; second, we provide a list of misassembled regions in these primate genomes, involving over 300 Mb of DNA and 1978 human genes. Accurately annotating these regions in the genome references has immediate applications for evolutionary and biomedical studies on primates. © 2018 Catacchio et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Cloning and expression of a cDNA encoding human sterol carrier protein 2

    International Nuclear Information System (INIS)

    Yamamoto, Ritsu; Kallen, C.B.; Babalola, G.O.; Rennert, H.; Strauss, J.F. III; Billheimer, J.T.

    1991-01-01

    The authors report the cloning and expression of a cDNA encoding human sterol carrier protein 2 (SCP 2 ). The 1.3-kilobase (kb) cDNA contains an open reading frame which encompasses a 143-amino acid sequence which is 89% identical to the rat SCP 2 amino acid sequence. The deduced amino acid sequence of the polypeptide reveals a 20-residue amino-terminal leader sequence in front of the mature polypeptide, which contains a carboxyl-terminal tripeptide (Ala-Lys-Leu) related to the peroxisome targeting sequence. The expressed cDNA in COS-7 cells yields a 15.3-kDa polypeptide and increased amounts of a 13.2-kDa polypeptide, both reacting with a specific rabbit antiserum to rat liver SCP 2 . The cDNA insert hybridizes with 3.2- and 1.8-kb mRNA species in human liver poly(A) + RNA. In human fibroblasts and placenta the 1.8-kb mRNA was most abundant. Southern blot analysis suggests either that there are multiple copies of the SCP 2 gene in the human genome or that the SCP 2 gene is very large. Coexpression of the SCP 2 cDNA with expression vectors for cholesterol side-chain cleavage enzyme and adrenodoxin resulted in a 2.5-fold enhancement of progestin synthesis over that obtained with expression of the steroidogenic enzyme system alone. These findings are concordant with the notion that SCP 2 plays a role in regulating steroidogenesis, among other possible functions

  6. Cloning of the cDNA and gene for a human D2 dopamine receptor

    International Nuclear Information System (INIS)

    Grady, D.K.; Makam, H.; Stofko, R.E.; Bunzow, J.R.; Civelli, O.; Marchionni, M.A.; Alfano, M.; Frothingham, L.; Fischer, J.B.; Burke-Howie, K.J.; Server, A.C.

    1989-01-01

    A clone encoding a human D 2 dopamine receptor was isolated from a pituitary cDNA library and sequenced. The deduced protein sequence is 96% identical with that of the cloned rat receptor with one major difference: the human receptor contains an additional 29 amino acids in its putative third cytoplasmic loop. Southern blotting demonstrated the presence of only one human D 2 receptor gene. Two overlapping phage containing the gene were isolated and characterized. DNA sequence analysis of these clones showed that the coding sequence is interrupted by six introns and that the additional amino acids present in the human pituitary receptor are encoded by a single exon of 87 base pairs. The involvement of this sequence in alternative splicing and its biological significance are discussed

  7. Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos.

    Science.gov (United States)

    Shi, Li-Hong; Miao, Yi-Liang; Ouyang, Ying-Chun; Huang, Jun-Cheng; Lei, Zi-Li; Yang, Ji-Wen; Han, Zhi-Ming; Song, Xiang-Fen; Sun, Qing-Yuan; Chen, Da-Yuan

    2008-03-01

    The interspecies somatic cell nuclear transfer (iSCNT) technique for therapeutic cloning gives great promise for treatment of many human diseases. However, the incomplete nuclear reprogramming and the low blastocyst rate of iSCNT are still big problems. Herein, we observed the effect of TSA on the development of rabbit-rabbit intraspecies and rabbit-human interspecies cloned embryos. After treatment with TSA for 6 hr during activation, we found that the blastocyst rate of rabbit-rabbit cloned embryos was more than two times higher than that of untreated embryos; however, the blastocyst rate of TSA-treated rabbit-human interspecies cloned embryos decreased. We also found evident time-dependent histone deacetylation-reacetylation changes in rabbit-rabbit cloned embryos, but not in rabbit-human cloned embryos from fusion to 6 hr after activation. Our results suggest that TSA-treatment does not improve blastocyst development of rabbit-human iSCNT embryos and that abnormal histone deacetylation-reacetylation changes in iSCNT embryos may account for their poor blastocyst development. (c) 2008 Wiley-Liss, Inc.

  8. Cloning, sequencing, and expression of cDNA for human β-glucuronidase

    International Nuclear Information System (INIS)

    Oshima, A.; Kyle, J.W.; Miller, R.D.

    1987-01-01

    The authors report here the cDNA sequence for human placental β-glucuronidase (β-D-glucuronoside glucuronosohydrolase, EC 3.2.1.31) and demonstrate expression of the human enzyme in transfected COS cells. They also sequenced a partial cDNA clone from human fibroblasts that contained a 153-base-pair deletion within the coding sequence and found a second type of cDNA clone from placenta that contained the same deletion. Nuclease S1 mapping studies demonstrated two types of mRNAs in human placenta that corresponded to the two types of cDNA clones isolated. The NH 2 -terminal amino acid sequence determined for human spleen β-glucuronidase agreed with that inferred from the DNA sequence of the two placental clones, beginning at amino acid 23, suggesting a cleaved signal sequence of 22 amino acids. When transfected into COS cells, plasmids containing either placental clone expressed an immunoprecipitable protein that contained N-linked oligosaccharides as evidenced by sensitivity to endoglycosidase F. However, only transfection with the clone containing the 153-base-pair segment led to expression of human β-glucuronidase activity. These studies provide the sequence for the full-length cDNA for human β-glucuronidase, demonstrate the existence of two populations of mRNA for β-glucuronidase in human placenta, only one of which specifies a catalytically active enzyme, and illustrate the importance of expression studies in verifying that a cDNA is functionally full-length

  9. Human Genome Editing and Ethical Considerations.

    Science.gov (United States)

    Krishan, Kewal; Kanchan, Tanuj; Singh, Bahadur

    2016-04-01

    Editing human germline genes may act as boon in some genetic and other disorders. Recent editing of the genome of the human embryo with the CRISPR/Cas9 editing tool generated a debate amongst top scientists of the world for the ethical considerations regarding its effect on the future generations. It needs to be seen as to what transformation human gene editing brings to humankind in the times to come.

  10. Development and application of Human Genome Epidemiology

    Science.gov (United States)

    Xu, Jingwen

    2017-12-01

    Epidemiology is a science that studies distribution of diseases and health in population and its influencing factors, it also studies how to prevent and cure disease and promote health strategies and measures. Epidemiology has developed rapidly in recent years and it is an intercross subject with various other disciplines to form a series of branch disciplines such as Genetic epidemiology, molecular epidemiology, drug epidemiology and tumor epidemiology. With the implementation and completion of Human Genome Project (HGP), Human Genome Epidemiology (HuGE) has emerged at this historic moment. In this review, the development of Human Genome Epidemiology, research content, the construction and structure of relevant network, research standards, as well as the existing results and problems are briefly outlined.

  11. Lysis of cells infected with typhus group rickettsiae by a human cytotoxic T cell clone

    International Nuclear Information System (INIS)

    Carl, M.; Robbins, F.; Hartzman, R.J.; Dasch, G.A.

    1987-01-01

    Cytolytic human T cells clones generated in response to the intracellular bacterium Rickettsia typhi were characterized. Growing clones were tested for their ability to proliferate specifically in response to antigens derived from typhus group rickettsiae or to lyse targets infected with R. typhi or Rickettsia prowazekii, as measured by 51 Cr-release from target cells. Two clones were able to lyse targets infected with typhus group rickettsiae. One of these clones was more fully characterized because of its rapid growth characteristics. This cytolytic clone was capable of lysing an autologous infected target as well as a target matched for class I and II histocompatibility leukocyte antigens (HLA). It was not capable, however, of lysing either a target mismatched for both class I and II HLA or a target partially matched for class I HLA. In addition, the clone exhibited specificity in that it was able to lyse an autologous target infected with typhus group rickettsiae, but did not lyse an autologous target infected with an antigenically distinct rickettsial species, Rickettsia tsutsugamushi. These results demonstrate, for the first time, that cells infected with intracellular bacteria can be lysed by human cytotoxic T lymphocytes

  12. Integrative annotation of 21,037 human genes validated by full-length cDNA clones.

    Directory of Open Access Journals (Sweden)

    Tadashi Imanishi

    2004-06-01

    Full Text Available The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/. It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs, identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA

  13. Genome Editing in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Carlson-Stevermer, Jared; Saha, Krishanu

    2017-01-01

    Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.

  14. Human genomics projects and precision medicine.

    Science.gov (United States)

    Carrasco-Ramiro, F; Peiró-Pastor, R; Aguado, B

    2017-09-01

    The completion of the Human Genome Project (HGP) in 2001 opened the floodgates to a deeper understanding of medicine. There are dozens of HGP-like projects which involve from a few tens to several million genomes currently in progress, which vary from having specialized goals or a more general approach. However, data generation, storage, management and analysis in public and private cloud computing platforms have raised concerns about privacy and security. The knowledge gained from further research has changed the field of genomics and is now slowly permeating into clinical medicine. The new precision (personalized) medicine, where genome sequencing and data analysis are essential components, allows tailored diagnosis and treatment according to the information from the patient's own genome and specific environmental factors. P4 (predictive, preventive, personalized and participatory) medicine is introducing new concepts, challenges and opportunities. This review summarizes current sequencing technologies, concentrates on ongoing human genomics projects, and provides some examples in which precision medicine has already demonstrated clinical impact in diagnosis and/or treatment.

  15. Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA

    International Nuclear Information System (INIS)

    Permutt, M.A.; Koranyi, L.; Keller, K.; Lacy, P.E.; Scharp, D.W.; Mueckler, M.

    1989-01-01

    Previous studies have suggested that pancreatic islet glucose transport is mediated by a high-K m , low-affinity facilitated transporter similar to that expressed in liver. To determine the relationship between islet and liver glucose transporters, liver-type glucose-transporter cDNA clones were isolated from a human liver cDNA library. The liver-type glucose-transporter cDNA clone hybridized to mRNA transcripts of the same size in human liver and pancreatic islet RNA. A cDNA library was prepared from purified human pancreatic islet tissue and screened with human liver-type glucose-transporter cDNA. The authors isolated two overlapping cDNA clones encompassing 2600 base pairs, which encode a pancreatic islet protein identical in sequence to that of the putative liver-type glucose-transporter protein. Xenopus oocytes injected with synthetic mRNA transcribed from a full-length cDNA construct exhibited increased uptake of 2-deoxyglucose, confirming the functional identity of the clone. These cDNA clones can now be used to study regulation of expression of the gene and to assess the role of inherited defects in this gene as a candidate for inherited susceptibility to non-insulin-dependent diabetes mellitus

  16. What exactly is an exact copy? And why it matters when trying to ban human reproductive cloning in Australia

    Science.gov (United States)

    Gogarty, B

    2003-01-01

    This paper examines the current Australian regulatory response to human reproductive cloning. The central consideration is the capacity of the current regulatory regime to effectively deter human cloning efforts. A legislative prohibition on human cloning must be both effective and clear enough to allow researchers to know what practices are acceptable. This paper asks whether the current Australian regime evinces these qualities and suggests that Australia should follow the example set in the UK by the enactment of the Human Reproductive Cloning Act 2001. PMID:12672887

  17. What exactly is an exact copy? And why it matters when trying to ban human reproductive cloning in Australia.

    Science.gov (United States)

    Gogarty, B

    2003-04-01

    This paper examines the current Australian regulatory response to human reproductive cloning. The central consideration is the capacity of the current regulatory regime to effectively deter human cloning efforts. A legislative prohibition on human cloning must be both effective and clear enough to allow researchers to know what practices are acceptable. This paper asks whether the current Australian regime evinces these qualities and suggests that Australia should follow the example set in the UK by the enactment of the Human Reproductive Cloning Act 2001.

  18. Isolation of BAC Clones Containing Conserved Genes from Libraries of Three Distantly Related Moths: A Useful Resource for Comparative Genomics of Lepidoptera

    Directory of Open Access Journals (Sweden)

    Yuji Yasukochi

    2011-01-01

    Full Text Available Lepidoptera, butterflies and moths, is the second largest animal order and includes numerous agricultural pests. To facilitate comparative genomics in Lepidoptera, we isolated BAC clones containing conserved and putative single-copy genes from libraries of three pests, Heliothis virescens, Ostrinia nubilalis, and Plutella xylostella, harboring the haploid chromosome number, =31, which are not closely related with each other or with the silkworm, Bombyx mori, (=28, the sequenced model lepidopteran. A total of 108–184 clones representing 101–182 conserved genes were isolated for each species. For 79 genes, clones were isolated from more than two species, which will be useful as common markers for analysis using fluorescence in situ hybridization (FISH, as well as for comparison of genome sequence among multiple species. The PCR-based clone isolation method presented here is applicable to species which lack a sequenced genome but have a significant collection of cDNA or EST sequences.

  19. Sequence of a cloned cDNA encoding human ribosomal protein S11

    Energy Technology Data Exchange (ETDEWEB)

    Lott, J B; Mackie, G A

    1988-02-11

    The authors have isolated a cloned cDNA that encodes human ribosomal protein (rp) S11 by screening a human fibroblast cDNA library with a labelled 204 bp DNA fragment encompassing residues 212-416 of pRS11, a rat rp Sll cDNA clone. The human rp S11 cloned cDNA consists of 15 residues of the 5' leader, the entire coding sequence and all 51 residues of the 3' untranslated region. The predicted amino acid sequence of 158 residues is identical to rat rpS11. The nucleotide sequence in the coding region differs, however, from that in rat in the first position in two codons and in the third position in 44 codons.

  20. Cloning of rat thymic stromal lymphopoietin receptor (TSLPR) and characterization of genomic structure of murine Tslpr gene

    DEFF Research Database (Denmark)

    Blagoev, Blagoy; Nielsen, Mogens M; Angrist, Misha

    2002-01-01

    , a cytokine involved in B- and T-cell function. We have cloned the TSLP receptor from rat and find that the WSXWX motif commonly found in extracellular domains of cytokine receptors is conserved as a W(T/S)XV(T/A) motif among TSLP receptors from mouse, rat and human. As in the mouse, TSLP receptor is widely...

  1. Human cloning and embryo research: the 2003 John J. Conley Lecture on medical ethics.

    Science.gov (United States)

    George, Robert P

    2004-01-01

    The author, a member of the U.S. President's Council on Bioethics, discusses ethical issues raised by human cloning, whether for purposes of bringing babies to birth or for research purposes. He first argues that every cloned human embryo is a new, distinct, and enduring organism, belonging to the species Homo sapiens, and directing its own development toward maturity. He then distinguishes between two types of capacities belonging to individual organisms belonging to this species, an immediately exerciseable capacity and a basic natural capacity that develops over time. He argues that it is the second type of capacity that is the ground for full moral respect, and that this capacity (and its concomitant degree of respect) belongs to cloned human embryos no less than to adult human beings. He then considers and rejects counter-arguments to his position, including the suggestion that the capacity of embryos is equivalent to the capacity of somatic cells, that full human rights are afforded only to human organisms with functioning brains, that the possibility of twinning diminishes the moral status of embryos, that the fact that people do not typically mourn the loss of early embryos implies that they have a diminished moral status, that the fact that early spontaneous abortions occur frequently diminishes the moral status of embryos, and that his arguments depend upon a concept of ensoulment. He concludes that if the moral status of cloned human embryos is equivalent to that of adults, then public policy should be based upon this assumption.

  2. Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Kitcher, P.

    1998-11-01

    The Human Genome Project (HGP), launched in 1991, aims to map and sequence the human genome by 2006. During the fifteen-year life of the project, it is projected that $3 billion in federal funds will be allocated to it. The ultimate aims of spending this money are to analyze the structure of human DNA, to identify all human genes, to recognize the functions of those genes, and to prepare for the biology and medicine of the twenty-first century. The following summary examines some of the implications of the program, concentrating on its scientific import and on the ethical and social problems that it raises. Its aim is to expose principles that might be used in applying the information which the HGP will generate. There is no attempt here to translate the principles into detailed proposals for legislation. Arguments and discussion can be found in the full report, but, like this summary, that report does not contain any legislative proposals.

  3. The Human Genome Project and Biology Education.

    Science.gov (United States)

    McInerney, Joseph D.

    1996-01-01

    Highlights the importance of the Human Genome Project in educating the public about genetics. Discusses four challenges that science educators must address: teaching for conceptual understanding, the nature of science, the personal and social impact of science and technology, and the principles of technology. Contains 45 references. (JRH)

  4. Attitudes towards the Human Genome Project.

    Science.gov (United States)

    Shahroudi, Julie; Shaw, Geraldine

    Attitudes concerning the Human Genome Project were reported by faculty (N=40) and students (N=66) from a liberal arts college. Positive attitudes toward the project involved privacy, insurance and health, economic purposes, reproductive purposes, genetic counseling, religion and overall opinions. Negative attitudes were expressed regarding…

  5. Unexplored therapeutic opportunities in the human genome.

    Science.gov (United States)

    Oprea, Tudor I; Bologa, Cristian G; Brunak, Søren; Campbell, Allen; Gan, Gregory N; Gaulton, Anna; Gomez, Shawn M; Guha, Rajarshi; Hersey, Anne; Holmes, Jayme; Jadhav, Ajit; Jensen, Lars Juhl; Johnson, Gary L; Karlson, Anneli; Leach, Andrew R; Ma'ayan, Avi; Malovannaya, Anna; Mani, Subramani; Mathias, Stephen L; McManus, Michael T; Meehan, Terrence F; von Mering, Christian; Muthas, Daniel; Nguyen, Dac-Trung; Overington, John P; Papadatos, George; Qin, Jun; Reich, Christian; Roth, Bryan L; Schürer, Stephan C; Simeonov, Anton; Sklar, Larry A; Southall, Noel; Tomita, Susumu; Tudose, Ilinca; Ursu, Oleg; Vidovic, Dušica; Waller, Anna; Westergaard, David; Yang, Jeremy J; Zahoránszky-Köhalmi, Gergely

    2018-05-01

    A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development.

  6. Efficient assembly of de novo human artificial chromosomes from large genomic loci

    Directory of Open Access Journals (Sweden)

    Stromberg Gregory

    2005-07-01

    Full Text Available Abstract Background Human Artificial Chromosomes (HACs are potentially useful vectors for gene transfer studies and for functional annotation of the genome because of their suitability for cloning, manipulating and transferring large segments of the genome. However, development of HACs for the transfer of large genomic loci into mammalian cells has been limited by difficulties in manipulating high-molecular weight DNA, as well as by the low overall frequencies of de novo HAC formation. Indeed, to date, only a small number of large (>100 kb genomic loci have been reported to be successfully packaged into de novo HACs. Results We have developed novel methodologies to enable efficient assembly of HAC vectors containing any genomic locus of interest. We report here the creation of a novel, bimolecular system based on bacterial artificial chromosomes (BACs for the construction of HACs incorporating any defined genomic region. We have utilized this vector system to rapidly design, construct and validate multiple de novo HACs containing large (100–200 kb genomic loci including therapeutically significant genes for human growth hormone (HGH, polycystic kidney disease (PKD1 and ß-globin. We report significant differences in the ability of different genomic loci to support de novo HAC formation, suggesting possible effects of cis-acting genomic elements. Finally, as a proof of principle, we have observed sustained ß-globin gene expression from HACs incorporating the entire 200 kb ß-globin genomic locus for over 90 days in the absence of selection. Conclusion Taken together, these results are significant for the development of HAC vector technology, as they enable high-throughput assembly and functional validation of HACs containing any large genomic locus. We have evaluated the impact of different genomic loci on the frequency of HAC formation and identified segments of genomic DNA that appear to facilitate de novo HAC formation. These genomic loci

  7. Human cloning and stem cell research: engaging in the political process. (Legislation review: prohibition of Human Cloning Act 2002 and the research involving Human Embryos Act).

    Science.gov (United States)

    Skene, Loane

    2008-03-01

    Committees appointed by governments to inquire into specific policy issues often have no further role when the Committee's report is delivered to government, but that is not always so. This paper describes the activities of members of the Australian Committee on human cloning and embryo research (the Lockhart Committee) to inform Parliament and the community about the Committee's recommendations after its report was tabled in Parliament. It explains their participation in the political process as their recommendations were debated and amending legislation was passed by Parliament. It illustrates a method of communication about scientific and policy issues that explores people's concerns and what they 'need to know' to make a judgment; and then responds to questions they raise, with the aim of facilitating discussion, not arguing for one view. The paper considers whether this type of engagement and communication is appropriate and could be used in other policy discussions.

  8. Viral symbiosis and the holobiontic nature of the human genome.

    Science.gov (United States)

    Ryan, Francis Patrick

    2016-01-01

    The human genome is a holobiontic union of the mammalian nuclear genome, the mitochondrial genome and large numbers of endogenized retroviral genomes. This article defines and explores this symbiogenetic pattern of evolution, looking at the implications for human genetics, epigenetics, embryogenesis, physiology and the pathogenesis of inborn errors of metabolism and many other diseases. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  9. "Orphan" retrogenes in the human genome.

    Science.gov (United States)

    Ciomborowska, Joanna; Rosikiewicz, Wojciech; Szklarczyk, Damian; Makałowski, Wojciech; Makałowska, Izabela

    2013-02-01

    Gene duplicates generated via retroposition were long thought to be pseudogenized and consequently decayed. However, a significant number of these genes escaped their evolutionary destiny and evolved into functional genes. Despite multiple studies, the number of functional retrogenes in human and other genomes remains unclear. We performed a comparative analysis of human, chicken, and worm genomes to identify "orphan" retrogenes, that is, retrogenes that have replaced their progenitors. We located 25 such candidates in the human genome. All of these genes were previously known, and the majority has been intensively studied. Despite this, they have never been recognized as retrogenes. Analysis revealed that the phenomenon of replacing parental genes with their retrocopies has been taking place over the entire span of animal evolution. This process was often species specific and contributed to interspecies differences. Surprisingly, these retrogenes, which should evolve in a more relaxed mode, are subject to a very strong purifying selection, which is, on average, two and a half times stronger than other human genes. Also, for retrogenes, they do not show a typical overall tendency for a testis-specific expression. Notably, seven of them are associated with human diseases. Recognizing them as "orphan" retrocopies, which have different regulatory machinery than their parents, is important for any disease studies in model organisms, especially when discoveries made in one species are transferred to humans.

  10. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A

    DEFF Research Database (Denmark)

    Eriksson, Maria; Nilsson, Anna; Froelich-Fabre, Susanne

    2002-01-01

    Native N-methyl-D-aspartate (NMDA) receptors are heteromeric assemblies of four or five subunits. The NMDA receptor subunits, NR1, NR2A, NR2B, NR2C, and NR2D have been cloned in several species, including man. The NR3A subunit, which in rodents is predominantly expressed during early development......, seems to function by reducing the NMDA receptor response. The human homologue to the rat NR3A, however, had not been cloned. In order to study the functions of the human NR3A (hNR3A), we have cloned and sequenced the hNR3A. It was found to share 88% of the DNA sequence with the rat gene, corresponding...

  11. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    Science.gov (United States)

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  12. Immortalization of human myogenic progenitor cell clone retaining multipotentiality

    International Nuclear Information System (INIS)

    Hashimoto, Naohiro; Kiyono, Tohru; Wada, Michiko R.; Shimizu, Shirabe; Yasumoto, Shigeru; Inagawa, Masayo

    2006-01-01

    Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate

  13. Construction and characterization of a yeast artificial chromosome library containing seven haploid human genome equivalents

    International Nuclear Information System (INIS)

    Albertsen, H.M.; Abderrahim, H.; Cann, H.M.; Dausset, J.; Le Paslier, D.; Cohen, D.

    1990-01-01

    Prior to constructing a library of yeast artificial chromosomes (YACs) containing very large human DNA fragments, the authors performed a series of preliminary experiments aimed at developing a suitable protocol. They found an inverse relationship between YAC insert size and transformation efficiency. Evidence of occasional rearrangement within YAC inserts was found resulting in clonally stable internal deletions or clonally unstable size variations. A protocol was developed for preparative electrophoretic enrichment of high molecular mass human DNA fragments from partial restriction digests and ligation with the YAC vector in agarose. A YAC library has been constructed from large fragments of DNA from an Epstein-Barr virus-transformed human lymphoblastoid cell line. The library presently contains 50,000 clones, 95% of which are greater than 250 kilobase pairs in size. The mean YAC size of the library, calculated from 132 randomly isolated clones, is 430 kilobase pairs. The library thus contains the equivalent of approximately seven haploid human genomes

  14. Prosthetic clone and natural human tooth comparison by speckle interferometry

    Science.gov (United States)

    Slangen, Pierre; Corn, Stephane; Fages, Michel; Raynal, Jacques; Cuisinier, Frederic J. G.

    2010-09-01

    New trends in dental prosthodontic interventions tend to preserve the maximum of "body" structure. With the evolution of CAD-CAM techniques, it is now possible to measure "in mouth" the remaining dental tissues. The prosthetic crown is then designed using this shape on which it will be glued on, and also by taking into account the contact surface of the opposite jaw tooth. Several theories discuss on the glue thickness and formulation, but also on the way to evolve to a more biocompatible crown and also new biomechanical concepts. In order to validate these new concepts and materials, and to study the mechanical properties and mechanical integrity of the prosthesis, high resolution optical measurements of the deformations of the glue and the crown are needed. Samples are two intact premolars extracted for orthodontics reasons. The reference sample has no modifications on the tooth while the second sample tooth is shaped to receive a feldspathic ceramic monoblock crown which will be glued. This crown was manufactured with a chairside CAD-CAM system from an intra-oral optical print. The software allows to realize a nearly perfect clone of the reference sample. The necessary space for the glue is also entered with ideal values. This duplication process yields to obtain two samples with identical anatomy for further processing. The glue joint thickness can also be modified if required. The purpose is to compare the behaviour of a natural tooth and its prosthetic clone manufactured with "biomechanical" concepts. Vertical cut samples have been used to deal with planar object observation, and also to look "inside" the tooth. We have developed a complete apparatus enabling the study of the compressive mechanical behaviour of the concerned tooth by speckle interferometry. Because in plane displacements are of great interest for orthodontic measurements1, an optical fiber in-plane sensitive interferometer has been designed. The fibers are wrapped around piezoelectric

  15. Genomic uracil and human disease

    DEFF Research Database (Denmark)

    Hagen, Lars; Pena Diaz, Javier; Kavli, Bodil

    2006-01-01

    Uracil is present in small amounts in DNA due to spontaneous deamination of cytosine and incorporation of dUMP during replication. While deamination generates mutagenic U:G mismatches, incorporated dUMP results in U:A pairs that are not directly mutagenic, but may be cytotoxic. In most cells, mut...... retroviral infections. Ung(-/-) mice have a similar phenotype and develop B-cell lymphomas late in life. However, there is no evidence indicating that UNG deficiency causes lymphomas in humans....

  16. Research for genetic instability of human genome

    Energy Technology Data Exchange (ETDEWEB)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M. (National Inst. of Radiological Sciences, Chiba (Japan)); Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author).

  17. Helminth Genomics: The Implications for Human Health

    Science.gov (United States)

    Brindley, Paul J.; Mitreva, Makedonka; Ghedin, Elodie; Lustigman, Sara

    2009-01-01

    More than two billion people (one-third of humanity) are infected with parasitic roundworms or flatworms, collectively known as helminth parasites. These infections cause diseases that are responsible for enormous levels of morbidity and mortality, delays in the physical development of children, loss of productivity among the workforce, and maintenance of poverty. Genomes of the major helminth species that affect humans, and many others of agricultural and veterinary significance, are now the subject of intensive genome sequencing and annotation. Draft genome sequences of the filarial worm Brugia malayi and two of the human schistosomes, Schistosoma japonicum and S. mansoni, are now available, among others. These genome data will provide the basis for a comprehensive understanding of the molecular mechanisms involved in helminth nutrition and metabolism, host-dependent development and maturation, immune evasion, and evolution. They are likely also to predict new potential vaccine candidates and drug targets. In this review, we present an overview of these efforts and emphasize the potential impact and importance of these new findings. PMID:19855829

  18. Research for genetic instability of human genome

    International Nuclear Information System (INIS)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M.; Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author)

  19. [Between sancticity and value of human life: in perspective of human cloning].

    Science.gov (United States)

    Dyk, W

    2001-01-01

    The more we know, the more duties and greater responsibility we have. The dynamic development of biology carries a lot of hope for the freeing of mankind from genetic diseases. But the introduction of scientific thought necessarily has to be bound with the development of technology. It is wrong when technology dictates science a direction of development; when technique comes before ethics; and when technology does not respect the essence of a human being. The uncritical introduction of eugenics, especially cloning of people and rejecting all moral arguments, recalls inglorious acts of science when the ideology of progress determined the range of problems that researchers focused on. The same ideology of progress, although originating from other sources, pushes science toward a second extreme, into utilitarianism. In the article the author wishes to substantiate the necessity for researchers to respect ethical norms. Recognition of natural laws alone does not provide science with full development if the rights of conscience are violated.

  20. Primary structure of the human follistatin precursor and its genomic organization

    International Nuclear Information System (INIS)

    Shimasaki, Shunichi; Koga, Makoto; Esch, F.

    1988-01-01

    Follistatin is a single-chain gonadal protein that specifically inhibits follicle-stimulating hormone release. By use of the recently characterized porcine follistatin cDNA as a probe to screen a human testis cDNA library and a genomic library, the structure of the complete human follistatin precursor as well as its genomic organization have been determined. Three of eight cDNA clones that were sequenced predicted a precursor with 344 amino acids, whereas the remaining five cDNA clones encoded a 317 amino acid precursor, resulting from alternative splicing of the precursor mRNA. Mature follistatins contain four contiguous domains that are encoded by precisely separated exons; three of the domains are highly similar to each other, as well as to human epidermal growth factor and human pancreatic secretory trypsin inhibitor. The genomic organization of the human follistatin is similar to that of the human epidermal growth factor gene and thus supports the notion of exon shuffling during evolution

  1. Complete amino acid sequence of human intestinal aminopeptidase N as deduced from cloned cDNA

    DEFF Research Database (Denmark)

    Cowell, G M; Kønigshøfer, E; Danielsen, E M

    1988-01-01

    The complete primary structure (967 amino acids) of an intestinal human aminopeptidase N (EC 3.4.11.2) was deduced from the sequence of a cDNA clone. Aminopeptidase N is anchored to the microvillar membrane via an uncleaved signal for membrane insertion. A domain constituting amino acid 250...

  2. Cloning, chromosome localization and features of a novel human ...

    Indian Academy of Sciences (India)

    Unknown

    Math2 may have the same functions in the nervous system. [Guo L., Jiang M., Ma Y., Cheng ... from a human foetal brain cDNA library, and its localiza- tion in the human ... using the BLASTN,. BLASTP and BLASTX algorithms on the NCBI web.

  3. Can artificial parthenogenesis sidestep ethical pitfalls in human therapeutic cloning? An historical perspective

    Science.gov (United States)

    Fangerau, H

    2005-01-01

    The aim of regenerative medicine is to reconstruct tissue that has been lost or pathologically altered. Therapeutic cloning seems to offer a method of achieving this aim; however, the ethical debate surrounding human therapeutic cloning is highly controversial. Artificial parthenogenesis—obtaining embryos from unfertilised eggs—seems to offer a way to sidestep these ethical pitfalls. Jacques Loeb (1859–1924), the founding father of artificial parthogenesis, faced negative public opinion when he published his research in 1899. His research, the public's response to his findings, and his ethical foundations serve as an historical argument both for the communication of science and compromise in biological research. PMID:16319240

  4. About human genome Acerca del genoma humano

    Directory of Open Access Journals (Sweden)

    Mojica Tobias

    2000-12-01

    Full Text Available The sequence ofthe human genome, an undertaking ofadvanced countries, is nearly complete. In fact The Human Genome Project has around 85% ofthe genome sequenced 4 times on the average, with an accuracy of roughly 1 in 1000 nucleotides. Celera Genomics, on the other hand, has 99% of the sequence of one person, with an accuracy of slightly less than 1 in 100. The Human Genome project trives to produce a physical map for public consumption following a step by step strategy, in which the researcher sequences short DNA fragments belonging to Iarger fragments of known relative
    position. Celera Genomics wants to have very rapidly a physical map which can be quickly used to develop genetic tests and drugs, which can be later sold. We feel that the sequence ofthe human genome is something, which will widen the gap between advanced and backward countries.En este artículo se revisan los eventos, alrededor del secuenciamiento del genoma humano, que han llevado a tanta excitación en los medios noticiosos y académicos en meses recientes. Se explican las estrategias que han llevado a que tengamos dos borradores diferentes pero complementarios, la estrategia llevada a cabo con el dinero
    de los contribuyentes que consiste en establecer el orden de fragmentos grandes de DNA antes de ser secuenciados y la estrategia llevada a cabo con dineros aportados por la industria privada, con la intención de explotar gananciosamente el conocimiento derivado del genoma humano. El genoma humano a mediados del año 2000 es
    un borrador incompleto que cubre aliededor del 85% de la secuencia con una precisión de un error en 1000 y el 99% de la secuencia con una precisión menor de 1 en 100 nucleótidos, También se discuten algunas de las posibles avenidas

  5. Genomic organization and developmental fate of adjacent repeated sequences in a foldback DNA clone of Tetrahymena thermophila

    International Nuclear Information System (INIS)

    Tschunko, A.H.; Loechel, R.H.; McLaren, N.C.; Allen, S.L.

    1987-01-01

    DNA sequence elimination and rearrangement occurs during the development of somatic cell lineages of eukaryotes and was first discovered over a century ago. However, the significance and mechanism of chromatin elimination are not understood. DNA elimination also occurs during the development of the somatic macronucleus from the germinal micronucleus in unicellular ciliated protozoa such as Tetrahymena thermophila. In this study foldback DNA from the micronucleus was used as a probe to isolate ten clones. All of those tested (4/4) contained sequences that were repetitive in the micronucleus and rearranged in the macronucleus. Inverted repeated sequences were present in one clone. This clone, pTtFBl, was subjected to a detailed analysis of its developmental fate. Subregions were subcloned and used as probes against Southern blots of micronuclear and macronuclear DNA. DNA was labeled with [ 33 P]-labeled dATP. The authors found that all subregions defined repeated sequence families in the micronuclear genome. A minimum of four different families was defined, two of which are retained in the macronucleus and two of which are completely eliminated. The inverted repeat family is retained with little rearrangement. Two of the families, defined by subregions that do not contain parts of the inverted repeat are totally eliminated during macronuclear development-and contain open reading frames. The significance of retained inverted repeats to the process of elimination is discussed

  6. VP1u phospholipase activity is critical for infectivity of full-length parvovirus B19 genomic clones.

    Science.gov (United States)

    Filippone, Claudia; Zhi, Ning; Wong, Susan; Lu, Jun; Kajigaya, Sachiko; Gallinella, Giorgio; Kakkola, Laura; Söderlund-Venermo, Maria; Young, Neal S; Brown, Kevin E

    2008-05-10

    Three full-length genomic clones (pB19-M20, pB19-FL and pB19-HG1) of parvovirus B19 were produced in different laboratories. pB19-M20 was shown to produce infectious virus. To determine the differences in infectivity, all three plasmids were tested by transfection and infection assays. All three clones were similar in viral DNA replication, RNA transcription, and viral capsid protein production. However, only pB19-M20 and pB19-HG1 produced infectious virus. Comparison of viral sequences showed no significant differences in ITR or NS regions. In the capsid region, there was a nucleotide sequence difference conferring an amino acid substitution (E176K) in the phospholipase A2-like motif of the VP1-unique (VP1u) region. The recombinant VP1u with the E176K mutation had no catalytic activity as compared with the wild-type. When this mutation was introduced into pB19-M20, infectivity was significantly attenuated, confirming the critical role of this motif. Investigation of the original serum from which pB19-FL was cloned confirmed that the phospholipase mutation was present in the native B19 virus.

  7. Safety, identity and consent: a limited defense of reproductive human cloning.

    Science.gov (United States)

    Lane, Robert

    2006-06-01

    Some opponents of reproductive human cloning have argued that, because of its experimental nature, any attempt to create a child by way of cloning would risk serious birth defects or genetic abnormalities and would therefore be immoral. Some versions of this argument appeal to the consent of the person to be conceived in this way. In particular, they assume that if an experimental reproductive technology has not yet been shown to be safe, then, before we use it, we are morally obligated to get either the actual consent or the presumed consent of the person to be conceived. In this article, I attempt to explain the appeal of such consent-based arguments as deriving from a mistaken view of personal identity. I then argue that since this view is false, such arguments are unsound. Finally, I argue that even if reproductive cloning is unsafe, it may still be morally permissible in some circumstances.

  8. Statistical analysis of clone formation in cultures of human stem cells.

    Science.gov (United States)

    Bochkov, N P; Vinogradova, M S; Volkov, I K; Voronina, E S; Kuleshov, N P

    2011-08-01

    We performed a statistical analysis of clone formation from aneuploid cells (chromosomes 6, 8, 11, X) in cultures of bone marrow-derived human multipotent mesenchymal stromal cells by spontaneous level of aneuploidy at different terms of culturing (from 2 to 19 cell cycles). It was found that the duration of cell cycle increased from 65.6 h at passages 2-3 to 164.5 h at passage 12. The expected ratio of aneuploid cells was calculated using modeled 5, 10, 20 and 30% selective preference in reproduction. The size of samples for detecting 10, 25, and 50% increased level of aneuploidy was calculated. The presented principles for evaluation of aneuploid clone formation may be used to distinguish clones of any abnormal cells.

  9. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wang, Jun; Sun, Na; Deng, Ting; Zhang, Lida; Zuo, Kaijing

    2014-11-06

    Heat shock transcriptional factors (Hsfs) play important roles in the processes of biotic and abiotic stresses as well as in plant development. Cotton (Gossypium hirsutum, 2n=4x=(AD)2=52) is an important crop for natural fiber production. Due to continuous high temperature and intermittent drought, heat stress is becoming a handicap to improve cotton yield and lint quality. Recently, the related wild diploid species Gossypium raimondii genome (2n=2x=(D5)2=26) has been fully sequenced. In order to analyze the functions of different Hsfs at the genome-wide level, detailed characterization and analysis of the Hsf gene family in G. hirsutum is indispensable. EST assembly and genome-wide analyses were applied to clone and identify heat shock transcription factor (Hsf) genes in Upland cotton (GhHsf). Forty GhHsf genes were cloned, identified and classified into three main classes (A, B and C) according to the characteristics of their domains. Analysis of gene duplications showed that GhHsfs have occurred more frequently than reported in plant genomes such as Arabidopsis and Populus. Quantitative real-time PCR (qRT-PCR) showed that all GhHsf transcripts are expressed in most cotton plant tissues including roots, stems, leaves and developing fibers, and abundantly in developing ovules. Three expression patterns were confirmed in GhHsfs when cotton plants were exposed to high temperature for 1 h. GhHsf39 exhibited the most immediate response to heat shock. Comparative analysis of Hsfs expression differences between the wild-type and fiberless mutant suggested that Hsfs are involved in fiber development. Comparative genome analysis showed that Upland cotton D-subgenome contains 40 Hsf members, and that the whole genome of Upland cotton contains more than 80 Hsf genes due to genome duplication. The expression patterns in different tissues in response to heat shock showed that GhHsfs are important for heat stress as well as fiber development. These results provide an improved

  10. Cloning of Novel Oncogenes Involved in Human Breast Cancer

    National Research Council Canada - National Science Library

    Clark, Geoffrey

    1998-01-01

    .... In order to identify genes which may play a role in breast cancer we have begun a process of manufacturing cDNA expression libraries derived from human breast tumor cell lines in retroviral vectors...

  11. Human Chromosome 21: Mapping of the chromosomes and cloning of cDNAs

    Energy Technology Data Exchange (ETDEWEB)

    Antonarakis, S.E.

    1991-09-01

    The objective of the research funded by DOE grant DE-FG02-89ER60857 from 6/15/89 to 8/31/91 was to contribute to the physical mapping of human chromosome 21 (HC21) by cloning large fragments of DNA into Yeast Artificial Chromosomes (YACs) and identify YACs that map on HC21. A total of 54 sequence tagged sites (STS) have been developed and mapped in our laboratory to HC21 and can be used as initial reference points for YAC identification and construction of overlapping clones. A small YAC library was constructed which is HC21 specific. DNA from somatic cell hybrid WAV17 or from flow-sorted HC21 was partially digested with EcoRI, ligated into vectors PJS97, PJS98, and YACs have been obtained with average size insert of more than 300 kb. This library has been deposited in D. Patterson's lab for the Joint YAC screening effort. Additional YAC libraries from ICI Pharmaceuticals or from Los Alamos National Laboratories have been screened with several STS and positive YACs have been identified. Work in progress includes screening of YAC libraries in order to construct overlapping clones, characterization of the cloning ends of YACs, characterization of additional STS and cloning of HC21 specific cDNAs. 15 refs., 2 figs., 5 tabs.

  12. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    Science.gov (United States)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  13. Establishment and characterization of Epstein-Barr virus-specific human CD4+ T lymphocyte clones

    International Nuclear Information System (INIS)

    Honda, S.; Okuno, K.; Yasutomi, M.; Takasaki, T.; Kurane, I.

    1998-01-01

    We developed a simple method for establishing Epstein-Barr virus (EBV)-specific, human CD4+ T cell clones. The method originates from our experience that the regression of cell growth in in vitro EBV transformation of B cells occurs when round lymphoid cells appear in the culture. Peripheral blood mononuclear cells were cultured with EBV; and IL-2 (20 U/ml) was added to the culture on day 17 after the virus addition. The phenotype of the growing cells was CD3+ , CD4+ , and CD8-. The cells were cytotoxic for autologous lymphoblastoid B cell line (LCL) and EBV-super-infected autologous LCL. The cytotoxic T lymphocytes (CTLs) were confirmed to be CD4+ T cells but not CD8+ T cells in the culture. CTL clones were established by a limiting dilution method. All the CTL clones had the phenotype of CD3+ , CD4+ and CD8-, and proliferated in response to autologous LCL. They produced interferon (IFN)-gamma, interleukin 2 (IL-2) and tumour necrosis factor (TNF)-beta but not IL-4. All but one clone responded to both autologous, EBV-super-infected and non-super-infected LCLs. Proliferative and cytotoxic responses to allogeneic LCLs were heterogeneous. These results suggest that this method induces heterogeneous, EBV-specific CD4+ CTL clones and is useful for analysis of CD4+ T cells in EBV infections. (authors)

  14. Cloning-free genome engineering in Sinorhizobium meliloti advances applications of Cre/loxP site-specific recombination.

    Science.gov (United States)

    Döhlemann, Johannes; Brennecke, Meike; Becker, Anke

    2016-09-10

    The soil-dwelling α-proteobacterium Sinorhizobium meliloti serves as model for studies of symbiotic nitrogen fixation, a highly important process in sustainable agriculture. Here, we report advancements of the genetic toolbox accelerating genome editing in S. meliloti. The hsdMSR operon encodes a type-I restriction-modification (R-M) system. Transformation of S. meliloti is counteracted by the restriction endonuclease HsdR degrading DNA which lacks the appropriate methylation pattern. We provide a stable S. meliloti hsdR deletion mutant showing enhanced transformation with Escherichia coli-derived plasmid DNA and demonstrate that using an E. coli plasmid donor, expressing S. meliloti methyl transferase genes, is an alternative strategy of increasing the transformation efficiency of S. meliloti. Furthermore, we devise a novel cloning-free genome editing (CFGE) method for S. meliloti, Agrobacterium tumefaciens and Xanthomonas campestris, and demonstrate the applicability of this method for intricate applications of the Cre/lox recombination system in S. meliloti. An enhanced Cre/lox system, allowing for serial deletions of large genomic regions, was established. An assay of lox spacer mutants identified a set of lox sites mediating specific recombination. The availability of several non-promiscuous Cre recognition sites enables simultaneous specific Cre/lox recombination events. CFGE combined with Cre/lox recombination is put forward as powerful approach for targeted genome editing, involving serial steps of manipulation to expedite the genetic accessibility of S. meliloti as chassis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Annotating the human genome with Disease Ontology

    Science.gov (United States)

    Osborne, John D; Flatow, Jared; Holko, Michelle; Lin, Simon M; Kibbe, Warren A; Zhu, Lihua (Julie); Danila, Maria I; Feng, Gang; Chisholm, Rex L

    2009-01-01

    Background The human genome has been extensively annotated with Gene Ontology for biological functions, but minimally computationally annotated for diseases. Results We used the Unified Medical Language System (UMLS) MetaMap Transfer tool (MMTx) to discover gene-disease relationships from the GeneRIF database. We utilized a comprehensive subset of UMLS, which is disease-focused and structured as a directed acyclic graph (the Disease Ontology), to filter and interpret results from MMTx. The results were validated against the Homayouni gene collection using recall and precision measurements. We compared our results with the widely used Online Mendelian Inheritance in Man (OMIM) annotations. Conclusion The validation data set suggests a 91% recall rate and 97% precision rate of disease annotation using GeneRIF, in contrast with a 22% recall and 98% precision using OMIM. Our thesaurus-based approach allows for comparisons to be made between disease containing databases and allows for increased accuracy in disease identification through synonym matching. The much higher recall rate of our approach demonstrates that annotating human genome with Disease Ontology and GeneRIF for diseases dramatically increases the coverage of the disease annotation of human genome. PMID:19594883

  16. De novo assembly of a haplotype-resolved human genome.

    Science.gov (United States)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang; Huang, Shujia; Sun, Yuhui; Tong, Xin; Xie, Yinlong; Liu, Binghang; Yang, Hailong; Zheng, Hancheng; Li, Jian; Li, Bo; Wang, Yu; Yang, Fang; Sun, Peng; Liu, Siyang; Gao, Peng; Huang, Haodong; Sun, Jing; Chen, Dan; He, Guangzhu; Huang, Weihua; Huang, Zheng; Li, Yue; Tellier, Laurent C A M; Liu, Xiao; Feng, Qiang; Xu, Xun; Zhang, Xiuqing; Bolund, Lars; Krogh, Anders; Kristiansen, Karsten; Drmanac, Radoje; Drmanac, Snezana; Nielsen, Rasmus; Li, Songgang; Wang, Jian; Yang, Huanming; Li, Yingrui; Wong, Gane Ka-Shu; Wang, Jun

    2015-06-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.

  17. Cloning and characterization of the human colipase cDNA

    International Nuclear Information System (INIS)

    Lowe, M.E.; Rosenblum, J.L.; McEwen, P.; Strauss, A.W.

    1990-01-01

    Pancreatic lipase hydrolyzes dietary triglycerides to monoglycerides and fatty acids. In the presence of bile salts, the activity of pancreatic lipase is markedly decreased. The activity can be restored by the addition of colipase, a low molecular weight protein secreted by the pancreas. The action of pancreatic lipase in the gut lumen is dependent upon its interaction with colipase. As a first step in elucidating the molecular events governing the interaction of lipase and colipase with each other and with fatty acids, a cDNA encoding human colipase was isolated from a λgt11 cDNA library with a rabbit polyclonal anti-human colipase antibody. The full-length 525 bp cDNA contained an open reading frame encoding 112 amino acids, including a 17 amino acid signal peptide. The predicted sequence contains 100% of the published protein sequence for human colipase determined by chemical methods, but predicts the presence of five additional NH 2 -terminal amino acids and four additional COOH-terminal amino acids. Comparison of the predicted protein sequence with the known sequences of colipase from other species reveals regions of extensive identity. The authors report, for the first time, a cDNA for colipase. The cDNA predicts a human procolipase an suggests that there may also be processing at the COOH-terminus. The regions of identity with colipase from other species will aid in defining the interaction with lipase and lipids through site-specific mutagenesis

  18. Molecular cloning and characterization of a novel human kinase ...

    Indian Academy of Sciences (India)

    throughput cDNA sequencing. It encodes a protein of 341 amino acids, which shows 69% identity with the human kinase CLIK1 (AAL99353), which was suggested to be the CLP-36 interacting kinase. Bioinformatics analysis suggests that the ...

  19. Molecular cloning and genomic organization of a second probable allatostatin receptor from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    We (C. Lenz et al. (2000) Biochem. Biophys. Res. Commun. 269, 91-96) and others (N. Birgül et al. (1999) EMBO J. 18, 5892-5900) have recently cloned a Drosophila receptor that was structurally related to the mammalian galanin receptors, but turned out to be a receptor for a Drosophila peptide bel...

  20. Evaluation of cloned cells, animal model, and ATRA sensitivity of human testicular yolk sac tumor

    Directory of Open Access Journals (Sweden)

    Zhao Junfeng

    2012-03-01

    Full Text Available Abstract The testicular yolk sac tumor (TYST is the most common neoplasm originated from germ cells differentiated abnormally, a major part of pediatric malignant testicular tumors. The present study aimed at developing and validating the in vitro and vivo models of TYST and evaluating the sensitivity of TYST to treatments, by cloning human TYST cells and investigating the histology, ultra-structure, growth kinetics and expression of specific proteins of cloned cells. We found biological characteristics of cloned TYST cells were similar to the yolk sac tumor and differentiated from the columnar to glandular-like or goblet cells-like cells. Chromosomes for tumor identification in each passage met nature of the primary tumor. TYST cells were more sensitive to all-trans-retinoic acid which had significantly inhibitory effects on cell proliferation. Cisplatin induced apoptosis of TYST cells through the activation of p53 expression and down-regulation of Bcl- expression. Thus, we believe that cloned TYST cells and the animal model developed here are useful to understand the molecular mechanism of TYST cells and develop potential therapies for human TYST.

  1. Molecular cloning and expression of the human homologue of the murine gene encoding myeloid leukemia-inhibitory factor

    International Nuclear Information System (INIS)

    Gough, N.M.; Gearing, D.P.; King, J.A.; Willson, T.A.; Hilton, D.J.; Nicola, N.A.; Metcalf, D.

    1988-01-01

    A human homologue of the recently cloned murine leukemia-inhibitory factor (LIF) gene was isolated from a genomic library by using the marine cDNA as a hybridization probe. The nucleotide sequence of the human gene indicated that human LIF has 78% amino acid sequence identity with murine LIF, with no insertions or deletions, and that the region of the human gene encoding the mature protein has one intervening sequence. After oligonucleotide-mediated mutagenesis, the mature protein-coding region of the LIF gene was introduced into the yeast expression vector YEpsec1. Yeast cells transformed with the resulting recombinant could be induced with galactose to produce high levels of a factor that induced the differentiation of murine M1 leukemic cells in a manner analogous to murine LIF. This factor competed with 125 I-labeled native murine LIF for binding to specific cellular receptors on murine cells, compatible with a high degree of structural similarity between the murine and human factors

  2. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit.

    Science.gov (United States)

    Wang, Zupeng; Wang, Shuaibin; Li, Dawei; Zhang, Qiong; Li, Li; Zhong, Caihong; Liu, Yifei; Huang, Hongwen

    2018-01-13

    Kiwifruit is an important fruit crop; however, technologies for its functional genomic and molecular improvement are limited. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been successfully applied to genetic improvement in many crops, but its editing capability is variable depending on the different combinations of the synthetic guide RNA (sgRNA) and Cas9 protein expression devices. Optimizing conditions for its use within a particular species is therefore needed to achieve highly efficient genome editing. In this study, we developed a new cloning strategy for generating paired-sgRNA/Cas9 vectors containing four sgRNAs targeting the kiwifruit phytoene desaturase gene (AcPDS). Comparing to the previous method of paired-sgRNA cloning, our strategy only requires the synthesis of two gRNA-containing primers which largely reduces the cost. We further compared efficiencies of paired-sgRNA/Cas9 vectors containing different sgRNA expression devices, including both the polycistronic tRNA-sgRNA cassette (PTG) and the traditional CRISPR expression cassette. We found the mutagenesis frequency of the PTG/Cas9 system was 10-fold higher than that of the CRISPR/Cas9 system, coinciding with the relative expressions of sgRNAs in two different expression cassettes. In particular, we identified large chromosomal fragment deletions induced by the paired-sgRNAs of the PTG/Cas9 system. Finally, as expected, we found both systems can successfully induce the albino phenotype of kiwifruit plantlets regenerated from the G418-resistance callus lines. We conclude that the PTG/Cas9 system is a more powerful system than the traditional CRISPR/Cas9 system for kiwifruit genome editing, which provides valuable clues for optimizing CRISPR/Cas9 editing system in other plants. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons

  3. Human body motion tracking based on quantum-inspired immune cloning algorithm

    Science.gov (United States)

    Han, Hong; Yue, Lichuan; Jiao, Licheng; Wu, Xing

    2009-10-01

    In a static monocular camera system, to gain a perfect 3D human body posture is a great challenge for Computer Vision technology now. This paper presented human postures recognition from video sequences using the Quantum-Inspired Immune Cloning Algorithm (QICA). The algorithm included three parts. Firstly, prior knowledge of human beings was used, the key joint points of human could be detected automatically from the human contours and skeletons which could be thinning from the contours; And due to the complexity of human movement, a forecasting mechanism of occlusion joint points was addressed to get optimum 2D key joint points of human body; And then pose estimation recovered by optimizing between the 2D projection of 3D human key joint points and 2D detection key joint points using QICA, which recovered the movement of human body perfectly, because this algorithm could acquire not only the global optimal solution, but the local optimal solution.

  4. Report on the Human Genome Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, I.; Cahill, G.; Cantor, C.; Caskey, T.; Dulbecco, R.; Engelhardt, D. L.; Hood, L.; Lerman, L. S.; Mendelsohn, M. L.; Sinsheimer, R. L.; Smith, T.; Soll, D.; Stormo, G.; White, R. L.

    1987-04-01

    The report urges DOE and the Nation to commit to a large. multi-year. multidisciplinary. technological undertaking to order and sequence the human genome. This effort will first require significant innovation in general capability to manipulate DNA. major new analytical methods for ordering and sequencing. theoretical developments in computer science and mathematical biology, and great expansions in our ability to store and manipulate the information and to interface it with other large and diverse genetic databases. The actual ordering and sequencing involves the coordinated processing of some 3 billion bases from a reference human genome. Science is poised on the rudimentary edge of being able to read and understand human genes. A concerted. broadly based. scientific effort to provide new methods of sufficient power and scale should transform this activity from an inefficient one-gene-at-a-time. single laboratory effort into a coordinated. worldwide. comprehensive reading of "the book of man". The effort will be extraordinary in scope and magnitude. but so will be the benefit to biological understanding. new technology and the diagnosis and treatment of human disease.

  5. Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth.

    Science.gov (United States)

    Gloux, Karine; Leclerc, Marion; Iliozer, Harout; L'Haridon, René; Manichanh, Chaysavanh; Corthier, Gérard; Nalin, Renaud; Blottière, Hervé M; Doré, Joël

    2007-06-01

    Metagenomic libraries derived from human intestinal microbiota (20,725 clones) were screened for epithelial cell growth modulation. Modulatory clones belonging to the four phyla represented among the metagenomic libraries were identified (hit rate, 0.04 to 8.7% depending on the screening cutoff). Several candidate loci were identified by transposon mutagenesis and subcloning.

  6. Tripolar mitosis and partitioning of the genome arrests human preimplantation development in vitro.

    Science.gov (United States)

    Ottolini, Christian S; Kitchen, John; Xanthopoulou, Leoni; Gordon, Tony; Summers, Michael C; Handyside, Alan H

    2017-08-29

    Following in vitro fertilisation (IVF), only about half of normally fertilised human embryos develop beyond cleavage and morula stages to form a blastocyst in vitro. Although many human embryos are aneuploid and genomically imbalanced, often as a result of meiotic errors inherited in the oocyte, these aneuploidies persist at the blastocyst stage and the reasons for the high incidence of developmental arrest remain unknown. Here we use genome-wide SNP genotyping and meiomapping of both polar bodies to identify maternal meiotic errors and karyomapping to fingerprint the parental chromosomes in single cells from disaggregated arrested embryos and excluded cells from blastocysts. Combined with time lapse imaging of development in culture, we demonstrate that tripolar mitoses in early cleavage cause chromosome dispersal to clones of cells with identical or closely related sub-diploid chromosome profiles resulting in intercellular partitioning of the genome. We hypothesise that following zygotic genome activation (ZGA), the combination of genomic imbalance and partial genome loss disrupts the normal pattern of embryonic gene expression blocking development at the morula-blastocyst transition. Failure to coordinate the cell cycle in early cleavage and regulate centrosome duplication is therefore a major cause of human preimplantation developmental arrest in vitro.

  7. [Cloning of human CD45 gene and its expression in Hela cells].

    Science.gov (United States)

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  8. Clone and expression of human transferrin receptor gene: a marker gene for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Li Li; Liu Lizhi; Lv Yanchun; Liu Xuewen; Cui Chunyan; Wu Peihong; Liu Qicai; Ou Shanxing

    2007-01-01

    Objective: To clone human transferrin receptor (hTfR) gene and construct expression vector producing recombination protein. Methods: Human transferrin receptor gene cDNA was amplified by RT-PCR from human embryonic liver and lung tissue. Recombinant pcDNA3-hTfR and pEGFP-Cl-hTfR plasmids were constructed and confirmed by DNA sequencing. These plasmids were stably transfected into the HEK293 cells. The protein expression in vitro was confirmed by Western Blot. The efficiency of expression and the location of hTfR were also investigated by fluorescence microscopy and confocal fluorescence microscopy. Results: The full length cDNA of hTfR gene (2332 bp) was cloned and sequenced. The hTfR (190 000) was overexpressed in transfected HEK293 cells by Western blot analysis. Fluorescence micrographs displayed that the hTfR was expressed at high level and located predominantly in the cell surface. Conclusions: Human transferrin receptor (hTfR) gene has been successfully cloned and obtained high-level expression in HEK293 cells, and the recombination protein of hTfR distributed predominantly in the cell membrane. (authors)

  9. cDNA Clones with Rare and Recurrent Mutations Found in Cancers | Office of Cancer Genomics

    Science.gov (United States)

    The CTD2 Center at UT- MD Anderson Cancer Center has developed High-Throughput Mutagenesis and Molecular Barcoding (HiTMMoB)1,2 pipeline to construct mutant alleles open reading frame expression clones that are either recurrent or rare in cancers. These barcoded genes can be used for context-specific functional validation, detection of novel biomarkers (pathway activation) and targets (drug sensitivity).

  10. The Human Genome Project (HGP): dividends and challenges: a ...

    African Journals Online (AJOL)

    The Human Genome Project (HGP): dividends and challenges: a review. ... Genomic studies have given profound insights into the genetic organization of ... with it will be an essential part of modern medicine and biology for years to come.

  11. Tetranectin, a plasminogen kringle 4-binding protein. Cloning and gene expression pattern in human colon cancer

    DEFF Research Database (Denmark)

    Wewer, U M; Albrechtsen, R

    1992-01-01

    BACKGROUND: Tetranectin is a recently discovered protein that binds to kringle 4 region of plasminogen (Clemmensen I, Petersen LC, Kluft C. Eur J Biochem 1986; 156:327. EXPERIMENTAL DESIGN: The mRNA encoding human tetranectin was cloned by using degenerate primers in a reverse transcriptase...... reaction followed by polymerase chain reaction amplification. The resulting polymerase chain reaction product was examined by DNA sequencing and subsequently used as probe for screening a human placental cDNA library. A full length cDNA clone (TET-1) was isolated, characterized, and used for Northern blot...... prominent in the lungs and spleen. No hybridization signal was detected in three carcinoma cell lines examined in parallel. Northern blot analysis of poly A+ RNA isolated from solid tumors revealed a tetranectin specific mRNA band. In situ hybridizations on tissue sections of colon carcinomas and normal...

  12. The complexity of Rhipicephalus (Boophilus microplus genome characterised through detailed analysis of two BAC clones

    Directory of Open Access Journals (Sweden)

    Valle Manuel

    2011-07-01

    Full Text Available Abstract Background Rhipicephalus (Boophilus microplus (Rmi a major cattle ectoparasite and tick borne disease vector, impacts on animal welfare and industry productivity. In arthropod research there is an absence of a complete Chelicerate genome, which includes ticks, mites, spiders, scorpions and crustaceans. Model arthropod genomes such as Drosophila and Anopheles are too taxonomically distant for a reference in tick genomic sequence analysis. This study focuses on the de-novo assembly of two R. microplus BAC sequences from the understudied R microplus genome. Based on available R. microplus sequenced resources and comparative analysis, tick genomic structure and functional predictions identify complex gene structures and genomic targets expressed during tick-cattle interaction. Results In our BAC analyses we have assembled, using the correct positioning of BAC end sequences and transcript sequences, two challenging genomic regions. Cot DNA fractions compared to the BAC sequences confirmed a highly repetitive BAC sequence BM-012-E08 and a low repetitive BAC sequence BM-005-G14 which was gene rich and contained short interspersed elements (SINEs. Based directly on the BAC and Cot data comparisons, the genome wide frequency of the SINE Ruka element was estimated. Using a conservative approach to the assembly of the highly repetitive BM-012-E08, the sequence was de-convoluted into three repeat units, each unit containing an 18S, 5.8S and 28S ribosomal RNA (rRNA encoding gene sequence (rDNA, related internal transcribed spacer and complex intergenic region. In the low repetitive BM-005-G14, a novel gene complex was found between to 2 genes on the same strand. Nested in the second intron of a large 9 Kb papilin gene was a helicase gene. This helicase overlapped in two exonic regions with the papilin. Both these genes were shown expressed in different tick life stage important in ectoparasite interaction with the host. Tick specific sequence

  13. Serine esterase and hemolytic activity in human cloned cytotoxic T lymphocytes

    OpenAIRE

    1988-01-01

    Target cell lysis by most murine cytotoxic T lymphocytes appears to be mediated by a complement (C9)-like protein called perforin, contained in high-density cytoplasmic granules. These granules also contain high levels of serine esterase activity, which may also play a role in cytolysis. Analysis of 17 cloned human cytotoxic T lymphocytes revealed the presence of serine esterase that is very similar to its murine counterpart in substrate and inhibitor specificities, pH optimum, and molecular ...

  14. United Nations and human cloning: a slender and fortunate defence for biomedical research.

    Science.gov (United States)

    Edwards, R G

    2003-12-01

    Numerous biomedical scientists have contributed to the wide knowledge on the growth of preimplantation human embryos in vitro, now improving every aspect of the form of clinical care. These data were gained ethically in many countries, to open new vistas including the alleviation of infertility, preimplantation genetic diagnosis and stem cells, combined with some recent reports on human reproductive cloning. After detailed consultations with scientists, clinicians, ethicists and lawyers, many governments passed legislation permitting research under their own particular socially-defined conditions. Virtually all of them rejected reproductive cloning; a few have accepted therapeutic cloning. These legislatures saluted the many biomedical scientists striving to improve IVF and its derivatives, recognizing their immense medical potential. A motion recently placed before the United Nations then recommended a worldwide ban on all forms of human cloning. Proponents included the Vatican and many Roman Catholic countries, the USA and others. Opponents included Belgium, China, Japan, Brazil, UK, Germany and France. Mediation was achieved by Iran and other Muslim nations, and led to a motion passed by single vote for a two-year delay. This may be the first-ever proposal to ban worldwide a particular form of research. It sounds the alarm bells for further research. It raises questions about the UN being an appropriate forum for ethical decisions affecting the entire world and its future medicine. Large blocs of nations committed to particular religions and outlooks confronted each other, a situation in total contrast to the detailed and widespread consultations made by individual governments when deciding their own individual ethics. This event was clearly a narrow escape for free research as defined by each country's own jurisprudence. It also places research on human embryology and reproductive biomedicine into a more critical situation than before. Current liberalism in

  15. The draft genome sequence of multidrug-resistant Pseudomonas aeruginosa strain CCBH4851, a nosocomial isolate belonging to clone SP (ST277 that is prevalent in Brazil

    Directory of Open Access Journals (Sweden)

    Melise Silveira

    2014-12-01

    Full Text Available The high occurrence of nosocomial multidrug-resistant (MDR microorganisms is considered a global health problem. Here, we report the draft genome sequence of a MDR Pseudomonas aeruginosa strain isolated in Brazil that belongs to the endemic clone ST277. The genome encodes important resistance determinant genes and consists of 6.7 Mb with a G+C content of 66.86% and 6,347 predicted coding regions including 60 RNAs.

  16. Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos

    DEFF Research Database (Denmark)

    Lin, Lin; Luo, Yonglun; Sørensen, Peter

    2014-01-01

    derived by PA or HMC. Hierarchical clustering depicted stage-specific genomic expression profiling. At the 4-cell and blastocyst stages, 103 and 163 transcripts were differentially expressed between the HMC and PA embryos, respectively (P

  17. The pros and cons of human therapeutic cloning in the public debate.

    Science.gov (United States)

    Nippert, Irmgard

    2002-09-11

    Few issues linked to genetic research have raised as much controversial debate as the use of somatic cell nuclear transfer technology to create embryos specifically for stem cell research. Whereas European countries unanimously agree that reproductive cloning should be prohibited there is no agreement to be found on whether or not research into therapeutic cloning should be permitted. Since the UK took the lead and voted in favour of regulations allowing therapeutic cloning the public debate has intensified on the Continent. This debate reflects the wide spectrum of diverse religious and secular moralities that are prevalent in modern multicultural European democratic societies. Arguments range from putting forward strictly utilitarian views that weight the moral issues involved against the potential benefits that embryonic stem cell research may harbour to considering the embryo as a human being, endowed with human dignity and human rights from the moment of its creation, concluding that its use for research is unethical and should be strictly prohibited. Given the current state of dissension among the various European states, it is difficult to predict whether 'non-harmonisation' will prevail or whether in the long run 'harmonisation' of legislation that will allow stem cell research will evolve in the EU.

  18. Origins of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, Robert

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the US and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  19. Origins of the Human Genome Project

    Science.gov (United States)

    Cook-Deegan, Robert (Affiliation: Institute of Medicine, National Academy of Sciences)

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  20. Genomic landscape of human diversity across Madagascar

    Science.gov (United States)

    Pierron, Denis; Heiske, Margit; Razafindrazaka, Harilanto; Rakoto, Ignace; Rabetokotany, Nelly; Ravololomanga, Bodo; Rakotozafy, Lucien M.-A.; Rakotomalala, Mireille Mialy; Razafiarivony, Michel; Rasoarifetra, Bako; Raharijesy, Miakabola Andriamampianina; Razafindralambo, Lolona; Ramilisonina; Fanony, Fulgence; Lejamble, Sendra; Thomas, Olivier; Mohamed Abdallah, Ahmed; Rocher, Christophe; Arachiche, Amal; Tonaso, Laure; Pereda-loth, Veronica; Schiavinato, Stéphanie; Brucato, Nicolas; Ricaut, Francois-Xavier; Kusuma, Pradiptajati; Sudoyo, Herawati; Ni, Shengyu; Boland, Anne; Deleuze, Jean-Francois; Beaujard, Philippe; Grange, Philippe; Adelaar, Sander; Stoneking, Mark; Rakotoarisoa, Jean-Aimé; Radimilahy, Chantal; Letellier, Thierry

    2017-01-01

    Although situated ∼400 km from the east coast of Africa, Madagascar exhibits cultural, linguistic, and genetic traits from both Southeast Asia and Eastern Africa. The settlement history remains contentious; we therefore used a grid-based approach to sample at high resolution the genomic diversity (including maternal lineages, paternal lineages, and genome-wide data) across 257 villages and 2,704 Malagasy individuals. We find a common Bantu and Austronesian descent for all Malagasy individuals with a limited paternal contribution from Europe and the Middle East. Admixture and demographic growth happened recently, suggesting a rapid settlement of Madagascar during the last millennium. However, the distribution of African and Asian ancestry across the island reveals that the admixture was sex biased and happened heterogeneously across Madagascar, suggesting independent colonization of Madagascar from Africa and Asia rather than settlement by an already admixed population. In addition, there are geographic influences on the present genomic diversity, independent of the admixture, showing that a few centuries is sufficient to produce detectable genetic structure in human populations. PMID:28716916

  1. Biological Parameters and Molecular Markers of Clone CL Brener - The Reference Organism of the Trypanosoma cruzi Genome Project

    Directory of Open Access Journals (Sweden)

    Bianca Zingales

    1997-11-01

    Full Text Available Clone CL Brener is the reference organism used in the Trypanosoma cruzi Genome Project. Some biological parameters of CL Brener were determined: (a the doubling time of epimastigote forms cultured in liver infusion-tryptose (LIT medium at 28oC is 58±13 hr; (b differentiation of epimastigotes to metacyclic trypomastigotes is obtained by incubation in LIT-20% Grace´s medium; (c trypomastigotes infect mammalian cultured cells and perform the complete intracellular cycle at 33 and 37oC; (d blood forms are highly infective to mice; (e blood forms are susceptible to nifurtimox and benznidazole. The molecular typing of CL Brener has been determined: (a isoenzymatic profiles are characteristic of zymodeme ZB; (b PCR amplification of a 24Sa ribosomal RNA sequence indicates it belongs to T. cruzi lineage 1; (c schizodeme, randomly amplified polymorphic DNA (RAPD and DNA fingerprinting analyses were performed

  2. The Human Genome Initiative of the Department of Energy

    Science.gov (United States)

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.

  3. Animal cloning: problems and prospects.

    Science.gov (United States)

    Wells, D N

    2005-04-01

    An efficient animal cloning technology would provide many new opportunities for livestock agriculture, human medicine, and animal conservation. Nuclear cloning involves the production of animals that are genetically identical to the donor cells used in a technique known as nuclear transfer (NT). However, at present it is an inefficient process: in cattle, only around 6% of the embryos transferred to the reproductive tracts of recipient cows result in healthy, longterm surviving clones. Of concern are the high losses throughout gestation, during birth and in the post-natal period through to adulthood. Many of the pregnancy losses relate to failure of the placenta to develop and function correctly. Placental dysfunction may also have an adverse influence on postnatal health. These anomalies are probably due to incorrect epigenetic reprogramming of the donor genome following NT, leading to inappropriate patterns of gene expression during the development of clones. Whilst some physiological tests on surviving clones suggest normality, other reports indicate a variety of post-natal clone-associated abnormalities. This variability in outcome may reflect species-specific and/or cloning methodological differences. Importantly, to date it appears that these clone-associated phenotypes are not transmitted to offspring following sexual reproduction. This indicates that they represent epigenetic errors, rather than genetic errors, which are corrected during gametogenesis. Whilst this needs confirmation at the molecular level, it provides initial confidence in the first application of NT in agriculture, namely, the production of small numbers of cloned sires from genetically elite bulls, for natural mating, to effectively disseminate genetic gain. In addition to the animal welfare concerns with the technology, the underlying health of the animals and the consequential effect on food safety are critical aspects that require investigation to gain regulatory and consumer

  4. The Clone Factory

    Science.gov (United States)

    Stoddard, Beryl

    2005-01-01

    Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…

  5. Comparative genomics of emerging human ehrlichiosis agents.

    Directory of Open Access Journals (Sweden)

    Julie C Dunning Hotopp

    2006-02-01

    Full Text Available Anaplasma (formerly Ehrlichia phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.

  6. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity.

    Science.gov (United States)

    Leisner, Courtney P; Hamilton, John P; Crisovan, Emily; Manrique-Carpintero, Norma C; Marand, Alexandre P; Newton, Linsey; Pham, Gina M; Jiang, Jiming; Douches, David S; Jansky, Shelley H; Buell, C Robin

    2018-05-01

    Cultivated potato (Solanum tuberosum L.) is a highly heterozygous autotetraploid that presents challenges in genome analyses and breeding. Wild potato species serve as a resource for the introgression of important agronomic traits into cultivated potato. One key species is Solanum chacoense and the diploid, inbred clone M6, which is self-compatible and has desirable tuber market quality and disease resistance traits. Sequencing and assembly of the genome of the M6 clone of S. chacoense generated an assembly of 825 767 562 bp in 8260 scaffolds with an N50 scaffold size of 713 602 bp. Pseudomolecule construction anchored 508 Mb of the genome assembly into 12 chromosomes. Genome annotation yielded 49 124 high-confidence gene models representing 37 740 genes. Comparative analyses of the M6 genome with six other Solanaceae species revealed a core set of 158 367 Solanaceae genes and 1897 genes unique to three potato species. Analysis of single nucleotide polymorphisms across the M6 genome revealed enhanced residual heterozygosity on chromosomes 4, 8 and 9 relative to the other chromosomes. Access to the M6 genome provides a resource for identification of key genes for important agronomic traits and aids in genome-enabled development of inbred diploid potatoes with the potential to accelerate potato breeding. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  7. The Human Genome Project: how do we protect Australians?

    Science.gov (United States)

    Stott Despoja, N

    It is the moon landing of the nineties: the ambitious Human Genome Project--identifying the up to 100,000 genes that make up human DNA and the sequences of the three billion base-pairs that comprise the human genome. However, unlike the moon landing, the effects of the genome project will have a fundamental impact on the way we see ourselves and each other.

  8. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute’s genomic medicine portfolio

    Science.gov (United States)

    Manolio, Teri A.

    2016-01-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual’s genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of “Genomic Medicine Meetings,” under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and diffficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI’s genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. PMID:27612677

  9. Enzyme free cloning for high throughput gene cloning and expression

    NARCIS (Netherlands)

    de Jong, R.N.; Daniëls, M.; Kaptein, R.; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning

  10. Recurrent DNA inversion rearrangements in the human genome

    DEFF Research Database (Denmark)

    Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia

    2007-01-01

    Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome...... to human genomic variation is discussed........ In particular, we have identified intrachromosomal identical repeats that are located in reverse orientation, which may lead to chromosomal inversions. A bioinformatic workflow pathway to select appropriate regions for analysis was developed. Three such regions overlapping with known human genes, located...

  11. Using therapeutic cloning to fight human disease: a conundrum or reality?

    Science.gov (United States)

    Hall, Vanessa J; Stojkovic, Petra; Stojkovic, Miodrag

    2006-07-01

    The development and transplantation of autologous cells derived from nuclear transfer embryonic stem cell (NT-ESC) lines to treat patients suffering from disease has been termed therapeutic cloning. Human NT is still a developing field, with further research required to improve somatic cell NT and human embryonic stem cell differentiation to deliver safe and effective cell replacement therapies. Furthermore, the implications of transferring mitochondrial heteroplasmic cells, which may harbor aberrant epigenetic gene expression profiles, are of concern. The production of human NT-ESC lines also remains plagued by ethical dilemmas, societal concerns, and controversies. Recently, a number of alternate therapeutic strategies have been proposed to circumvent the moral implications surrounding human nuclear transfer. It will be critical to overcome these biological, legislative, and moral restraints to maximize the potential of this therapeutic strategy and to alleviate human disease.

  12. The Transcriptome of the Reference Potato Genome Solanum tuberosum Group Phureja Clone DM1-3 516R44

    Science.gov (United States)

    Massa, Alicia N.; Childs, Kevin L.; Lin, Haining; Bryan, Glenn J.; Giuliano, Giovanni; Buell, C. Robin

    2011-01-01

    Advances in molecular breeding in potato have been limited by its complex biological system, which includes vegetative propagation, autotetraploidy, and extreme heterozygosity. The availability of the potato genome and accompanying gene complement with corresponding gene structure, location, and functional annotation are powerful resources for understanding this complex plant and advancing molecular breeding efforts. Here, we report a reference for the potato transcriptome using 32 tissues and growth conditions from the doubled monoploid Solanum tuberosum Group Phureja clone DM1-3 516R44 for which a genome sequence is available. Analysis of greater than 550 million RNA-Seq reads permitted the detection and quantification of expression levels of over 22,000 genes. Hierarchical clustering and principal component analyses captured the biological variability that accounts for gene expression differences among tissues suggesting tissue-specific gene expression, and genes with tissue or condition restricted expression. Using gene co-expression network analysis, we identified 18 gene modules that represent tissue-specific transcriptional networks of major potato organs and developmental stages. This information provides a powerful resource for potato research as well as studies on other members of the Solanaceae family. PMID:22046362

  13. Human Rhinovirus B and C Genomes from Rural Coastal Kenya

    NARCIS (Netherlands)

    Agoti, Charles N.; Kiyuka, Patience K.; Kamau, Everlyn; Munywoki, Patrick K.; Bett, Anne; van der Hoek, Lia; Kellam, Paul; Nokes, D. James; Cotten, Matthew

    2016-01-01

    Primer-independent agnostic deep sequencing was used to generate three human rhinovirus (HRV) B genomes and one HRV C genome from samples collected in a household respiratory survey in rural coastal Kenya. The study provides the first rhinovirus genomes from Kenya and will help improve the

  14. Molecular cloning and genomic organization of an allatostatin preprohormone from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    The insect allatostatins are neurohormones, acting on the corpora allata (where they block the release of juvenile hormone) and on the insect gut (where they block smooth muscle contraction). We screened the "Drosophila Genome Project" database with electronic sequences corresponding to various i...

  15. Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR

    DEFF Research Database (Denmark)

    Reid, Robert J D; Lisby, Michael; Rothstein, Rodney

    2002-01-01

    . Furthermore, many of the techniques described here rely on preexisting and commercially available adaptamer sets that can be obtained inexpensively rather than designing new primers for every experiment. Although a cost is incurred when performing multiple PCR amplifications, the increase in recombination...... efficiency is dramatic. Finally, the adaptamer-mediated PCR fusion methodology is versatile and can be applied to varied genome manipulations....

  16. Human genetics and genomics a decade after the release of the draft sequence of the human genome

    Science.gov (United States)

    2011-01-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605

  17. Gene design, cloning and protein-expression methods for high-value targets at the Seattle Structural Genomics Center for Infectious Disease

    International Nuclear Information System (INIS)

    Raymond, Amy; Haffner, Taryn; Ng, Nathan; Lorimer, Don; Staker, Bart; Stewart, Lance

    2011-01-01

    An overview of one salvage strategy for high-value SSGCID targets is given. Any structural genomics endeavor, particularly ambitious ones such as the NIAID-funded Seattle Structural Genomics Center for Infectious Disease (SSGCID) and Center for Structural Genomics of Infectious Disease (CSGID), face technical challenges at all points of the production pipeline. One salvage strategy employed by SSGCID is combined gene engineering and structure-guided construct design to overcome challenges at the levels of protein expression and protein crystallization. Multiple constructs of each target are cloned in parallel using Polymerase Incomplete Primer Extension cloning and small-scale expressions of these are rapidly analyzed by capillary electrophoresis. Using the methods reported here, which have proven particularly useful for high-value targets, otherwise intractable targets can be resolved

  18. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    International Nuclear Information System (INIS)

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in λ gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated λ hARG6 and λ hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying λ hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes

  19. Genomic stability of adipogenic human adenovirus 36.

    Science.gov (United States)

    Nam, J-H; Na, H-N; Atkinson, R L; Dhurandhar, N V

    2014-02-01

    Human adenovirus Ad36 increases adiposity in several animal models, including rodents and non-human primates. Importantly, Ad36 is associated with human obesity, which has prompted research to understand its epidemiology and to develop a vaccine to prevent a subgroup of obesity. For this purpose, understanding the genomic stability of Ad36 in vivo and in vitro infections is critical. Here, we examined whether in vitro cell passaging over a 14-year period introduced any genetic variation in Ad36. We sequenced the whole genome of Ad36-which was plaque purified in 1998 from the original strain obtained from American Type Culture Collection, and passaged approximately 12 times over the past 14 years (Ad36-2012). This DNA sequence was compared with a previously published sequence of Ad36 likely obtained from the same source (Ad36-1988). Compared with Ad36-1988, only two nucleotides were altered in Ad36-2012: a T insertion at nucleotide 1862, which may induce early termination of the E1B viral protein, and a T➝C transition at nucleotide 26 136. Virus with the T insertion (designated Ad36-2012-T6) was mixed with wild-type virus lacking the T insertion (designated Ad36-2012-T5) in the viral stock. The transition at nucleotide 26 136 does not change the encoded amino acid (aspartic acid) in the pVIII viral protein. The rate of genetic variation in Ad36 is ∼2.37 × 10(-6) mutations/nucleotide/passage. Of particular importance, there were no mutations in the E4orf1 gene, the critical gene for producing obesity. This very-low-variation rate should reduce concerns about genetic variability when developing Ad36 vaccines or developing assays for detecting Ad36 infection in populations.

  20. The genome of the simian and human malaria parasite Plasmodium knowlesi

    DEFF Research Database (Denmark)

    Pain, A; Böhme, U; Berry, A E

    2008-01-01

    Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite...... species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood...... cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described...

  1. The first insight into the salvia (lamiaceae) genome via bac library construction and high-throughput sequencing of target bac clones

    International Nuclear Information System (INIS)

    Hao, D.C.; Vautrin, S.; Berges, H.; Chen, S.L.

    2015-01-01

    Salvia is a representative genus of Lamiaceae, a eudicot family with significant species diversity and population adaptibility. One of the key goals of Salvia genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of medicinal plants to increase their health and productivity. Large-insert genomic libraries are a fundamental tool for achieving this purpose. We report herein the construction, characterization and screening of a gridded BAC library for Salvia officinalis (sage). The S. officinalis BAC library consists of 17,764 clones and the average insert size is 107 Kb, corresponding to 3 haploid genome equivalents. Seventeen positive clones (average insert size 115 Kb) containing five terpene synthase (TPS) genes were screened out by PCR and 12 of them were subject to Illumina HiSeq 2000 sequencing, which yielded 28,097,480 90-bp raw reads (2.53 Gb). Scaffolds containing sabinene synthase (Sab), a Sab homolog, TPS3 (kaurene synthase-like 2), copalyl diphosphate synthase 2 and one cytochrome P450 gene were retrieved via de novo assembly and annotation, which also have flanking noncoding sequences, including predicted promoters and repeat sequences. Among 2,638 repeat sequences, there are 330 amplifiable microsatellites. This BAC library provides a new resource for Lamiaceae genomic studies, including microsatellite marker development, physical mapping, comparative genomics and genome sequencing. Characterization of positive clones provided insights into the structure of the Salvia genome. These sequences will be used in the assembly of a future genome sequence for S. officinalis. (author)

  2. Cloning and characterization of the complementary DNA for the B chain of normal human serum C1q.

    Science.gov (United States)

    Reid, K B; Bentley, D R; Wood, K J

    1984-09-06

    Normal human C1q is a serum glycoprotein of 460 kDa containing 18 polypeptide chains (6A, 6B, 6C) each 226 amino acids long and each containing an N-terminal collagen-like domain and a C-terminal globular domain. Two unusual forms of C1q have been described: a genetically defective form, which has a molecular mass of approximately 160 kDa and is found in the sera of homozygotes for the defect who show a marked susceptibility to immune complex related disease; a fibroblast form, shown to be synthesized and secreted, in vitro, with a molecular mass of about 800 kDa and with chains approximately 16 kDa greater than those of normal C1q. A higher than normal molecular mass form of C1q has also been described in human colostrum and a form of C1q has been claimed to represent one of the types of Fc receptor on guinea-pig macrophages. To initiate studies, at the genomic level, on these various forms of C1q, and to investigate the possible relation between the C1q genes and the procollagen genes, the complementary DNA corresponding to the B chain of normal C1q has been cloned and characterized.

  3. 75 FR 8374 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health...

  4. 77 FR 5035 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-02-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health...

  5. 78 FR 64222 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-10-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Review, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, 301...

  6. 77 FR 20646 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-04-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research.... Agenda: To review and evaluate grant applications. Place: National Human Genome Research Institute, 5635...

  7. 77 FR 58402 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-09-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research...: To review and evaluate grant applications. Place: National Human Genome Research Institute, 5635...

  8. 76 FR 65204 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-10-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome... Review Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane...

  9. 77 FR 12604 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-03-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. >Name of Committee: National Human Genome Research... review and evaluate contract proposals. Place: National Human Genome Reseach Institute, 5635 Fishers Lane...

  10. 78 FR 55752 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-09-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research.... Pozzatti, Ph.D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research...

  11. 78 FR 56905 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-09-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research....m. Agenda: To review and evaluate grant applications. Place: National Human Genome Research...

  12. 76 FR 28056 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Counselors, National Human Genome Research Institute. The meeting will be closed to the public as indicated... National Human Genome Research Institute, including consideration of personnel qualifications and...

  13. 76 FR 17930 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-03-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Review Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane...

  14. 77 FR 59933 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research....D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research Institute...

  15. 78 FR 107 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-01-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... evaluate grant applications. Place: National Human Genome Research Institute, 3rd Floor Conference Room....D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research Institute...

  16. 76 FR 58023 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial..., Scientific Review Officer, Office of Scientific Review, National Human Genome Research Institute, National...

  17. 77 FR 28888 - National Human Genome Research Institute Notice of Closed Meeting

    Science.gov (United States)

    2012-05-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial...: To review and evaluate grant applications. Place: National Human Genome Research Institute, 3635...

  18. 78 FR 70063 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-11-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Counselors, National Human Genome Research Institute. The meeting will be closed to the public as indicated... NATIONAL HUMAN GENOME RESEARCH INSTITUTE, including consideration of personnel qualifications and...

  19. 78 FR 9707 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-02-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076...

  20. 77 FR 71604 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-12-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special..., Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635...

  1. 76 FR 5390 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Place: National Human Genome Research Institute Special Emphasis... Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076...

  2. 75 FR 13558 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-03-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Counselors, National Human Genome Research Institute. The meeting will be closed to the public as indicated... National Human Genome Research Institute, including consideration of personnel qualifications and...

  3. 76 FR 29772 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-05-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... of Scientific Review, National Human Genome Research Institute, National Institutes of Health...

  4. Characterization of a TK6-Bcl-xL gly-159-ala Human Lymphoblast Clone

    Energy Technology Data Exchange (ETDEWEB)

    Chyall, L.: Gauny, S.; Kronenberg, A.

    2006-01-01

    TK6 cells are a well-characterized human B-lymphoblast cell line derived from WIL-2 cells. A derivative of the TK6 cell line that was stably transfected to express a mutated form of the anti-apoptotic protein Bcl-xL (TK6-Bcl-xL gly-159- ala clone #38) is compared with the parent cell line. Four parameters were evaluated for each cell line: growth under normal conditions, plating efficiency, and frequency of spontaneous mutation to 6‑thioguanine resistance (hypoxanthine phosphoribosyl transferase locus) or trifluorothymidine resistance (thymidine kinase locus). We conclude that the mutated Bcl-xL protein did not affect growth under normal conditions, plating efficiency or spontaneous mutation frequencies at the thymidine kinase (TK) locus. Results at the hypoxanthine phosphoribosyl transferase (HPRT) locus were inconclusive. A mutant fraction for TK6‑Bcl-xL gly-159-ala clone #38 cells exposed to 150cGy of 160kVp x-rays was also calculated. Exposure to x-irradiation increased the mutant fraction of TK6‑Bcl-xL gly-159-ala clone #38 cells.

  5. Cloning of non-human primates: the road "less traveled by".

    Science.gov (United States)

    Sparman, Michelle L; Tachibana, Masahito; Mitalipov, Shoukhrat M

    2010-01-01

    Early studies on cloning of non-human primates by nuclear transfer utilized embryonic blastomeres from preimplantation embryos which resulted in the reproducible birth of live offspring. Soon after, the focus shifted to employing somatic cells as a source of donor nuclei (somatic cell nuclear transfer, SCNT). However, initial efforts were plagued with inefficient nuclear reprogramming and poor embryonic development when standard SCNT methods were utilized. Implementation of several key SCNT modifications was critical to overcome these problems. In particular, a non-invasive method of visualizing the metaphase chromosomes during enucleation was developed to preserve the reprogramming capacity of monkey oocytes. These modifications dramatically improved the efficiency of SCNT, yielding high blastocyst development in vitro. To date, SCNT has been successfully used to derive pluripotent embryonic stem cells (ESCs) from adult monkey skin fibroblasts. These remarkable advances have the potential for development of human autologous ESCs and cures for many human diseases. Reproductive cloning of nonhuman primates by SCNT has not been achieved yet. We have been able to establish several pregnancies with SCNT embryos which, so far, did not progress to term. In this review, we summarize the approaches, obstacles and accomplishments of SCNT in a non-human primate model.

  6. Language and values in the human cloning debate: a web-based survey of scientists and Christian fundamentalist pastors.

    Science.gov (United States)

    Weasel, Lisa H; Jensen, Eric

    2005-04-01

    Over the last seven years, a major debate has arisen over whether human cloning should remain legal in the United States. Given that this may be the 'first real global and simultaneous news story on biotechnology' (Einsiedel et al., 2002, p.313), nations around the world have struggled with the implications of this newly viable scientific technology, which is often also referred to as somatic cell nuclear transfer. Since the successful cloning of Dolly the sheep in 1997, and with increasing media attention paid to the likelihood of a successful human reproductive clone coupled with research suggesting the medical potential of therapeutic cloning in humans, members of the scientific community and Christian fundamentalist leaders have become increasingly vocal in the debate over U.S. policy decisions regarding human cloning (Wilmut, 2000). Yet despite a surfeit of public opinion polls and widespread opining in the news media on the topic of human cloning, there have been no empirical studies comparing the views of scientists and Christian fundamentalists in this debate (see Evans, 2002a for a recent study of opinion polls assessing religion and attitudes toward cloning). In order to further investigate the values that underlie scientists' and Christian fundamentalist leader's understanding of human cloning, as well as their differential use of language in communicating about this issue, we conducted an open-ended, exploratory survey of practicing scientists in the field of molecular biology and Christian fundamentalist pastors. We then analyzed the responses from this survey using qualitative discourse analysis. While this was not necessarily a representative sample (in quantitative terms, see Gaskell & Bauer, 2000) of each of the groups and the response rate was limited, this approach was informative in identifying both commonalities between the two groups, such as a focus on ethical concerns about reproductive cloning and the use of scientific terminology, as well

  7. Differentiation of human B lymphocyte subpopulations induced by an alloreactive helper T-cell clone

    International Nuclear Information System (INIS)

    Anderson, S.J.; Hummell, D.S.; Lawton, A.R.

    1988-01-01

    We have used cloned alloreactive helper T cells to determine if direct T cell-B cell interaction can induce differentiation of human peripheral blood B cells which do not respond to pokeweed mitogen (PWM). T-cell clone 2F8 was derived from a one-way mixed lymphocyte reaction. 2F8 cells are T3+T4+T8-IL-2R+ and proliferate in response to irradiated stimulator cells, but not autologous cells, in the absence of exogenous interleukin-2. 2F8 cells provide allospecific help for polyclonal proliferation and differentiation of B cells in the absence of any other stimulus. The magnitude of this response is comparable to that of the response of the same B cells to PWM and fresh autologous T cells. 2F8 cells could also provide nonspecific help for unrelated donor B cells in the presence of PWM, with no requirement for costimulation by irradiated stimulator cells. Allospecific stimulation of B cells was completely inhibited by antibodies to class II major histocompatibility complex (MHC) framework determinants and was abrogated by 1000-rad irradiation. Cloned 2F8 T cells stimulated differentiation of both small, high-density B cells and larger B cells, generating up to 30% plasma cells with either fraction. B cells forming rosettes with mouse erythrocytes were also induced to differentiate by the helper T cell clone. As found previously, neither small, high-density B cells nor mouse rosette+ B cells responded well to PWM. Direct interaction with allospecific T cells induces differentiation of a broader spectrum of B cells than soluble growth and differentiation factors in conjunction with polyclonal activators such as PWM and protein A containing staphylococci

  8. Genomic features of human limb specific enhancers.

    Science.gov (United States)

    Ali, Shahid; Amina, Bibi; Anwar, Saneela; Minhas, Rashid; Parveen, Nazia; Nawaz, Uzma; Azam, Syed Sikandar; Abbasi, Amir Ali

    2016-10-01

    To elucidate important cellular and molecular interactions that regulate patterning and skeletal development, vertebrate limbs served as a model organ. A growing body of evidence from detailed studies on a subset of limb regulators like the HOXD cluster or SHH, reveals the importance of enhancers in limb related developmental and disease processes. Exploiting the recent genome-wide availability of functionally confirmed enhancer dataset, this study establishes regulatory interactions for dozens of human limb developmental genes. From these data, it appears that the long-range regulatory interactions are fairly common during limb development. This observation highlights the significance of chromosomal breaks/translocations in human limb deformities. Transcriptional factor (TF) analysis predicts that the differentiation of early nascent limb-bud into future territories entail distinct TF interaction networks. Conclusively, an important motivation for annotating the human limb specific regulatory networks is to pave way for the systematic exploration of their role in disease and evolution. Copyright © 2016. Published by Elsevier Inc.

  9. Forces shaping the fastest evolving regions in the human genome

    DEFF Research Database (Denmark)

    Pollard, Katherine S; Salama, Sofie R; King, Bryan

    2006-01-01

    Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202...... genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements...... contributed to accelerated evolution of the fastest evolving elements in the human genome....

  10. Genome Architecture and Its Roles in Human Copy Number Variation

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-12-01

    Full Text Available Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs, are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.

  11. cDNA cloning of rat and human medium chain acyl-CoA dehydrogenase (MCAD)

    International Nuclear Information System (INIS)

    Matsubara, Y.; Kraus, J.P.; Rosenberg, L.E.; Tanaka, K.

    1986-01-01

    MCAD is one of three mitochondrial flavoenzymes which catalyze the first step in the β-oxidation of straight chain fatty acids. It is a tetramer with a subunit Mr of 45 kDa. MCAD is synthesized in the cytosol as a 49 kDa precursor polypeptide (pMCAD), imported into mitochondria, and cleaved to the mature form. Genetic deficiency of MCAD causes recurrent episodes of hypoglycemic coma accompanied by medium chain dicarboxylic aciduria. Employing a novel approach, the authors now report isolation of partial rat and human cDNA clones encoding pMCAD. mRNA encoding pMCAD was purified to near homogeneity by polysome immunoadsorption using polyclonal monospecific antibody. Single-stranded [ 32 P]labeled cDNA probe was synthesized using the enriched mRNA as template, and was used to screen directly 16,000 colonies from a total rat liver cDNA library constructed in pBR322. One clone (600 bp) was detected by in situ hybridization. Hybrid-selected translation with this cDNA yielded a 49 kDa polypeptide indistinguishable in size from rat pMCAD and immunoprecipitable with anti-MCAD antibody. Using the rat cDNA as probe, 43,000 colonies from a human liver cDNA library were screened. Four identical positive clones (400 bp) were isolated and positively identified by hybrid-selected translation and immunoprecipitation. The sizes of rat and human mRNAs encoding pMCAD were 2.2 kb and 2.4 kb, respectively, as determined by Northern blotting

  12. Molecular cloning of a cDNA and chromosomal localization of a human theta-class glutathione S-transferase gene (GSTT2) to chromosome 22

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K.L.; Baker, R.T.; Board, P.G. [Australian National Univ., Canberra (Australia)] [and others

    1995-01-20

    Until recently the Theta-class glutathione S-transferases (GSTs) were largely overlooked due to their low activity with the model substrate 1-chloro-2,4-dinitrobenzene (CDNB) and their failure to bind to immobilized glutathione affinity matrices. Little is known about the number of genes in this class. Recently, Pemble et al. reported the cDNA cloning of a human Theta-class GST, termed GSTT1. In this study, we describe the molecular cloning of a cDNA encoding a second human Theta-class GST (GSTT2) from a {lambda}gt11 human liver 5{prime}-stretch cDNA library. The encoded protein contains 244 amino acids and has 78.3% sequence identity with the rat subunit 12 and only 55.0% identity with human GSTT1. GSTT2 has been mapped to chromosome 22 by somatic cell hybrid analysis. The precise position of the gene was localized to subband 22q11.2 by in situ hybridization. The absence of other regions of hybridization suggests that there are no closely related sequences (e.g., reverse transcribed pseudogenes) scattered throughout the genome and that if there are closely related genes, they must be clustered near GSTT2. Southern blot analysis of human DNA digested with BamHI shows that the size of the GSTT2 gene is relatively small, as the coding sequence falls within a 3.6-kb BamHI fragment. 35 refs., 6 figs.

  13. The Human Genome Project: An Imperative for International Collaboration.

    Science.gov (United States)

    Allende, J. E.

    1989-01-01

    Discussed is the Human Genome Project which aims to decipher the totality of the human genetic information. The historical background, the objectives, international cooperation, ethical discussion, and the role of UNESCO are included. (KR)

  14. Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis

    DEFF Research Database (Denmark)

    Travis, Anthony J.; Kelly, Denise; Flint, Harry J

    2015-01-01

    We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183(T) (= DSM 16839(T) = NCIMB 14029(T)), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host...

  15. Child Development and Structural Variation in the Human Genome

    Science.gov (United States)

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  16. Widespread of horizontal gene transfer in the human genome.

    Science.gov (United States)

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-04-04

    A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. From the pair-wise alignments between human genome and 53 vertebrate genomes, 1,467 human genome regions (2.6 M bases) from all chromosomes were found to be more conserved with non-mammals than with most mammals. These human genome regions involve 642 known genes, which are enriched with ion binding. Compared to known horizontal gene transfer regions in the human genome, there were few overlapping regions, which indicated horizontal gene transfer is more common than we expected in the human genome. Horizontal gene transfer impacts hundreds of human genes and this study provided insight into potential mechanisms of HGT in the human genome.

  17. What does it mean to be genomically literate?: National Human Genome Research Institute Meeting Report.

    Science.gov (United States)

    Hurle, Belen; Citrin, Toby; Jenkins, Jean F; Kaphingst, Kimberly A; Lamb, Neil; Roseman, Jo Ellen; Bonham, Vence L

    2013-08-01

    Genomic discoveries will increasingly advance the science of medicine. Limited genomic literacy may adversely impact the public's understanding and use of the power of genetics and genomics in health care and public health. In November 2011, a meeting was held by the National Human Genome Research Institute to examine the challenge of achieving genomic literacy for the general public, from kindergarten to grade 12 to adult education. The role of the media in disseminating scientific messages and in perpetuating or reducing misconceptions was also discussed. Workshop participants agreed that genomic literacy will be achieved only through active engagement between genomics experts and the varied constituencies that comprise the public. This report summarizes the background, content, and outcomes from this meeting, including recommendations for a research agenda to inform decisions about how to advance genomic literacy in our society.

  18. Human somatic cell nuclear transfer and reproductive cloning: an Ethics Committee opinion.

    Science.gov (United States)

    2016-04-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer and cloning," last published in Fertil Steril 2012;98:804-7. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. A clone-free, single molecule map of the domestic cow (Bos taurus) genome.

    Science.gov (United States)

    Zhou, Shiguo; Goldstein, Steve; Place, Michael; Bechner, Michael; Patino, Diego; Potamousis, Konstantinos; Ravindran, Prabu; Pape, Louise; Rincon, Gonzalo; Hernandez-Ortiz, Juan; Medrano, Juan F; Schwartz, David C

    2015-08-28

    The cattle (Bos taurus) genome was originally selected for sequencing due to its economic importance and unique biology as a model organism for understanding other ruminants, or mammals. Currently, there are two cattle genome sequence assemblies (UMD3.1 and Btau4.6) from groups using dissimilar assembly algorithms, which were complemented by genetic and physical map resources. However, past comparisons between these assemblies revealed substantial differences. Consequently, such discordances have engendered ambiguities when using reference sequence data, impacting genomic studies in cattle and motivating construction of a new optical map resource--BtOM1.0--to guide comparisons and improvements to the current sequence builds. Accordingly, our comprehensive comparisons of BtOM1.0 against the UMD3.1 and Btau4.6 sequence builds tabulate large-to-immediate scale discordances requiring mediation. The optical map, BtOM1.0, spanning the B. taurus genome (Hereford breed, L1 Dominette 01449) was assembled from an optical map dataset consisting of 2,973,315 (439 X; raw dataset size before assembly) single molecule optical maps (Rmaps; 1 Rmap = 1 restriction mapped DNA molecule) generated by the Optical Mapping System. The BamHI map spans 2,575.30 Mb and comprises 78 optical contigs assembled by a combination of iterative (using the reference sequence: UMD3.1) and de novo assembly techniques. BtOM1.0 is a high-resolution physical map featuring an average restriction fragment size of 8.91 Kb. Comparisons of BtOM1.0 vs. UMD3.1, or Btau4.6, revealed that Btau4.6 presented far more discordances (7,463) vs. UMD3.1 (4,754). Overall, we found that Btau4.6 presented almost double the number of discordances than UMD3.1 across most of the 6 categories of sequence vs. map discrepancies, which are: COMPLEX (misassembly), DELs (extraneous sequences), INSs (missing sequences), ITs (Inverted/Translocated sequences), ECs (extra restriction cuts) and MCs (missing restriction cuts

  20. Isolation and characterization of human cDNA clones encoding the α and the α' subunits of casein kinase II

    International Nuclear Information System (INIS)

    Lozeman, F.J.; Litchfield, D.W.; Piening, C.; Takio, Koji; Walsh, K.A.; Krebs, E.G.

    1990-01-01

    Casein kinase II is a widely distributed protein serine/threonine kinase. The holoenzyme appears to be a tetramer, containing two α or α' subunits (or one of each) and two β subunits. Complementary DNA clones encoding the subunits of casein kinase II were isolated from a human T-cell λgt 10 library using cDNA clones isolated from Drosophila melanogasten. One of the human cDNA clones (hT4.1) was 2.2 kb long, including a coding region of 1176 bp preceded by 156 bp (5' untranslated region) and followed by 871 bp (3' untranslated region). The hT4.1 close was nearly identical in size and sequence with a cDNA clone from HepG2 human hepatoma cultured cells. Another of the human T-cell cDNA clones (hT9.1) was 1.8 kb long, containing a coding region of 1053 bp preceded by 171 by (5' untranslated region) and followed by 550 bp (3' untranslated region). Amino acid sequences deduced from these two cDNA clones were about 85% identical. Most of the difference between the two encoded polypeptides was in the carboxy-terminal region, but heterogeneity was distributed throughout the molecules. Partial amino acid sequence was determined in a mixture of α and α' subunits from bovine lung casein kinase II. The bovine sequences aligned with the 2 human cDNA-encoded polypeptides with only 2 discrepancies out of 535 amino acid positions. This confirmed that the two human T-cell cDNA clones encoded the α and α' subunits of casein kinase II. These studies show that there are two distinct catalytic subunits for casein II (α and α') and that the sequence of these subunits is largely conserved between the bovine and the human

  1. Human catechol-O-methyltransferase: Cloning and expression of the membrane-associated form

    International Nuclear Information System (INIS)

    Bertocci, B.; Miggiano, V.; Da Prada, M.; Dembic, Z.; Lahm, H.W.; Malherbe, P.

    1991-01-01

    A cDNA clone for human catechol-O-methyltransferase was isolated from a human hepatoma cell line (Hep G2) cDNA library by hybridization screening with a porcine cDNA probe. The cDNA clone was sequenced and found to have an insert of 1226 nucleotides. The deduced primary structure of hCOMT is composed of 271 amino acid residues with the predicted molecular mass of 30 kDa. At its N terminus it has a hydrophobic segment of 21 amino acid residues that may be responsible for insertion of hCOMT into the endoplasmic reticulum membrane. The primary structure of hCOMT exhibits high homology to the porcine partial cDNA sequence (93%). The deduced amino acid sequence contains two tryptic peptide sequences (T-22, T-33) found in porcine liver catechol-O-methyltransferase (CEMT). The coding region of hCOMT cDNA was placed under the control of the cytomegalovirus promoter to transfect human kidney 293 cells. The recombinant hCOMT was shown by immunoblot analysis to be mainly associated with the membrane fraction. RNA blot analysis revealed one COMT mRNA transcript of 1.4 kilobases in Hep G2 poly(A) + RNA

  2. cDNA, genomic sequence cloning and overexpression of ribosomal protein S25 gene (RPS25) from the Giant Panda.

    Science.gov (United States)

    Hao, Yan-Zhe; Hou, Wan-Ru; Hou, Yi-Ling; Du, Yu-Jie; Zhang, Tian; Peng, Zheng-Song

    2009-11-01

    RPS25 is a component of the 40S small ribosomal subunit encoded by RPS25 gene, which is specific to eukaryotes. Studies in reference to RPS25 gene from animals were handful. The Giant Panda (Ailuropoda melanoleuca), known as a "living fossil", are increasingly concerned by the world community. Studies on RPS25 of the Giant Panda could provide scientific data for inquiring into the hereditary traits of the gene and formulating the protective strategy for the Giant Panda. The cDNA of the RPS25 cloned from Giant Panda is 436 bp in size, containing an open reading frame of 378 bp encoding 125 amino acids. The length of the genomic sequence is 1,992 bp, which was found to possess four exons and three introns. Alignment analysis indicated that the nucleotide sequence of the coding sequence shows a high homology to those of Homo sapiens, Bos taurus, Mus musculus and Rattus norvegicus as determined by Blast analysis, 92.6, 94.4, 89.2 and 91.5%, respectively. Primary structure analysis revealed that the molecular weight of the putative RPS25 protein is 13.7421 kDa with a theoretical pI 10.12. Topology prediction showed there is one N-glycosylation site, one cAMP and cGMP-dependent protein kinase phosphorylation site, two Protein kinase C phosphorylation sites and one Tyrosine kinase phosphorylation site in the RPS25 protein of the Giant Panda. The RPS25 gene was overexpressed in E. coli BL21 and Western Blotting of the RPS25 protein was also done. The results indicated that the RPS25 gene can be really expressed in E. coli and the RPS25 protein fusioned with the N-terminally his-tagged form gave rise to the accumulation of an expected 17.4 kDa polypeptide. The cDNA and the genomic sequence of RPS25 were cloned successfully for the first time from the Giant Panda using RT-PCR technology and Touchdown-PCR, respectively, which were both sequenced and analyzed preliminarily; then the cDNA of the RPS25 gene was overexpressed in E. coli BL21 and immunoblotted, which is the first

  3. Genomic instability induced by 60Co γ ray radiation in normal human liver cells

    International Nuclear Information System (INIS)

    Gen Xiaohua; Guo Xianhua; Zuo Yahui; Wang Xiaoli; Wang Zhongwen

    2007-01-01

    Objective: To explore the genomic instability induced by 60 Co γ rays. Methods: The cloning efficiency and micronucleus efficiency of normal human liver cell irradiated by 60 Co γ rays were detected, and the method of single cell gel electrophoresis (SCGE) was carried out to measure DNA chains damage. The fast-growing cells were divided into different dose-groups and then irradiated by 60 Co γ rays. After 40 populations doubling, the progenies were secondly irradiated with 2 Gy 60 Co γ rays. Results: The cloning efficiency decreased with the increase of doses after the initial irradiation. After the survival cells were given second irradiation, both results of SCGE and micronucleus frequency showed that the second damage was correlated with the original irradiation doses. Conclusions: 60 Co γ rays can not only induce the immediate biological effects in liver cells, but also lead to the genomic instability in the descendants that leads to an enhanced frequency of genetic changes occurring among the progeny of the original irradiated cell. The expanding effect of second event helps to study the genomic instability. (authors)

  4. Intraclonal Genome Stability of the Metallo-β-lactamase SPM-1-producing Pseudomonas aeruginosa ST277, an Endemic Clone Disseminated in Brazilian Hospitals

    Directory of Open Access Journals (Sweden)

    Ana Paula Barbosa Nascimento

    2016-12-01

    Full Text Available Carbapenems represent the mainstay therapy for the treatment of serious P. aeruginosa infections. However, the emergence of carbapenem resistance has jeopardized the clinical use of this important class of compounds. The production of SPM-1 metallo-β-lactamase has been the most common mechanism of carbapenem resistance identified in P. aeruginosa isolated from Brazilian medical centres. Interestingly, a single SPM-1-producing P. aeruginosa clone belonging to the ST277 has been widely spread within the Brazilian territory. In the current study, we performed a next-generation sequencing of six SPM-1-producing P. aeruginosa ST277 isolates. The core genome contains 5 899 coding genes relative to the reference strain P. aeruginosa PAO1. A total of 26 genomic islands were detected in these isolates. We identified remarkable elements inside these genomic islands, such as copies of the blaSPM-1 gene conferring resistance to carbapenems and a type I-C CRISPR-Cas system, which is involved in protection of the chromosome against foreign DNA. In addition, we identified single nucleotide polymorphisms causing amino acid changes in antimicrobial resistance and virulence-related genes. Together, these factors could contribute to the marked resistance and persistence of the SPM-1-producing P. aeruginosa ST277 clone. A comparison of the SPM-1-producing P. aeruginosa ST277 genomes showed that their core genome has a high level nucleotide similarity and synteny conservation. The variability observed was mainly due to acquisition of genomic islands carrying several antibiotic resistance genes.

  5. Intraclonal Genome Stability of the Metallo-β-lactamase SPM-1-producing Pseudomonas aeruginosa ST277, an Endemic Clone Disseminated in Brazilian Hospitals.

    Science.gov (United States)

    Nascimento, Ana P B; Ortiz, Mauro F; Martins, Willames M B S; Morais, Guilherme L; Fehlberg, Lorena C C; Almeida, Luiz G P; Ciapina, Luciane P; Gales, Ana C; Vasconcelos, Ana T R

    2016-01-01

    Carbapenems represent the mainstay therapy for the treatment of serious P. aeruginosa infections. However, the emergence of carbapenem resistance has jeopardized the clinical use of this important class of compounds. The production of SPM-1 metallo-β-lactamase has been the most common mechanism of carbapenem resistance identified in P. aeruginosa isolated from Brazilian medical centers. Interestingly, a single SPM-1-producing P. aeruginosa clone belonging to the ST277 has been widely spread within the Brazilian territory. In the current study, we performed a next-generation sequencing of six SPM-1-producing P. aeruginosa ST277 isolates. The core genome contains 5899 coding genes relative to the reference strain P. aeruginos a PAO1. A total of 26 genomic islands were detected in these isolates. We identified remarkable elements inside these genomic islands, such as copies of the bla SPM-1 gene conferring resistance to carbapenems and a type I-C CRISPR-Cas system, which is involved in protection of the chromosome against foreign DNA. In addition, we identified single nucleotide polymorphisms causing amino acid changes in antimicrobial resistance and virulence-related genes. Together, these factors could contribute to the marked resistance and persistence of the SPM-1-producing P. aeruginosa ST277 clone. A comparison of the SPM-1-producing P. aeruginosa ST277 genomes showed that their core genome has a high level nucleotide similarity and synteny conservation. The variability observed was mainly due to acquisition of genomic islands carrying several antibiotic resistance genes.

  6. Laser Stimulated Genomic Exchange in Stem Cells. Laser Non-cloning Techniques

    Science.gov (United States)

    Stefan, V. Alexander

    2012-02-01

    I propose a novel technique for a pluripotent stem cell generation. Genomic exchange is stimulated by the beat-wave free electron laser, (B-W FEL), frequency matching with the frequencies of the DNAootnotetextJ.D. Watson and F. H. C. Crick, Nature, 171, 737-738 (1953). eigen-oscillations. B-W FEL-1ootnotetextV. Stefan, B.I.Cohen, C. Joshi Science, 243,4890, (Jan 27,1989); Stefan, et al., Bull. APS. 32, No. 9, 1713 (1987); Stefan, APS March-2011, #S1.143; APS- March-2009, #K1.276. scans entire stem cell; B-W FEL-2 probes the chromosomes. The scanning and probing lasers: 300-500nm and 100-300nm, respectively; irradiances: the order-of-10s mW/cm^2 (above the threshold value for a particular gene structure); repetition rate of few-100s Hz. A variety of genetic-matching conditions can be arranged. Genomic glitches, (the cell nucleus transferootnotetextScott Noggle et al. Nature, 478, 70-75 (06 October 2011).), can be hedged by the use of lasers.

  7. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system.

    Science.gov (United States)

    Horii, Takuro; Tamura, Daiki; Morita, Sumiyo; Kimura, Mika; Hatada, Izuho

    2013-09-30

    Genome manipulation of human induced pluripotent stem (iPS) cells is essential to achieve their full potential as tools for regenerative medicine. To date, however, gene targeting in human pluripotent stem cells (hPSCs) has proven to be extremely difficult. Recently, an efficient genome manipulation technology using the RNA-guided DNase Cas9, the clustered regularly interspaced short palindromic repeats (CRISPR) system, has been developed. Here we report the efficient generation of an iPS cell model for immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF) syndrome using the CRISPR system. We obtained iPS cells with mutations in both alleles of DNA methyltransferase 3B (DNMT3B) in 63% of transfected clones. Our data suggest that the CRISPR system is highly efficient and useful for genome engineering of human iPS cells.

  8. Generation of an ICF Syndrome Model by Efficient Genome Editing of Human Induced Pluripotent Stem Cells Using the CRISPR System

    Directory of Open Access Journals (Sweden)

    Izuho Hatada

    2013-09-01

    Full Text Available Genome manipulation of human induced pluripotent stem (iPS cells is essential to achieve their full potential as tools for regenerative medicine. To date, however, gene targeting in human pluripotent stem cells (hPSCs has proven to be extremely difficult. Recently, an efficient genome manipulation technology using the RNA-guided DNase Cas9, the clustered regularly interspaced short palindromic repeats (CRISPR system, has been developed. Here we report the efficient generation of an iPS cell model for immunodeficiency, centromeric region instability, facial anomalies syndrome (ICF syndrome using the CRISPR system. We obtained iPS cells with mutations in both alleles of DNA methyltransferase 3B (DNMT3B in 63% of transfected clones. Our data suggest that the CRISPR system is highly efficient and useful for genome engineering of human iPS cells.

  9. Tempo and mode of genomic mutations unveil human evolutionary history.

    Science.gov (United States)

    Hara, Yuichiro

    2015-01-01

    Mutations that have occurred in human genomes provide insight into various aspects of evolutionary history such as speciation events and degrees of natural selection. Comparing genome sequences between human and great apes or among humans is a feasible approach for inferring human evolutionary history. Recent advances in high-throughput or so-called 'next-generation' DNA sequencing technologies have enabled the sequencing of thousands of individual human genomes, as well as a variety of reference genomes of hominids, many of which are publicly available. These sequence data can help to unveil the detailed demographic history of the lineage leading to humans as well as the explosion of modern human population size in the last several thousand years. In addition, high-throughput sequencing illustrates the tempo and mode of de novo mutations, which are producing human genetic variation at this moment. Pedigree-based human genome sequencing has shown that mutation rates vary significantly across the human genome. These studies have also provided an improved timescale of human evolution, because the mutation rate estimated from pedigree analysis is half that estimated from traditional analyses based on molecular phylogeny. Because of the dramatic reduction in sequencing cost, sequencing on-demand samples designed for specific studies is now also becoming popular. To produce data of sufficient quality to meet the requirements of the study, it is necessary to set an explicit sequencing plan that includes the choice of sample collection methods, sequencing platforms, and number of sequence reads.

  10. Genomic Evolution Of The Mdr Serotype O12 Pseudomonas Aeruginosa Clone

    DEFF Research Database (Denmark)

    Thrane, Sandra Wingaard; Taylor, Véronique L.; Freschi, Luca

    2015-01-01

    that serotype switching in combination with an antibiotic resistance determinant contributed to the dissemination of the O12 serotype in the clinic. This selective advantage coincides with the introduction of fluoroquinolones in the clinic. With the PAst program isolates can be serotyped using WGS data......Introduction: Since the 1980’s the serotype O12 of Pseudomonas aeruginosa has emerged as the predominant serotype in clinical settings and in epidemic outbreaks. These serotype O12 isolates exhibit high levels of resistance to various classes of antibiotics.Methods: In this study, we explore how......).Results: While most serotypes were closely linked to the core genome phylogeny we observed horizontal exchange of LPS genes among distinct P. aeruginosa strains. Specifically, we identified a ‘serotype island’ containing the P. aeruginosa O12 LPS gene cluster and an antibiotic resistance determinant (gyrAC248T...

  11. Accurate Dna Assembly And Direct Genome Integration With Optimized Uracil Excision Cloning To Facilitate Engineering Of Escherichia Coli As A Cell Factory

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Kim, Se Hyeuk; Nørholm, Morten

    2015-01-01

    Plants produce a vast diversity of valuable compounds with medical properties, but these are often difficult to purify from the natural source or produce by organic synthesis. An alternative is to transfer the biosynthetic pathways to an efficient production host like the bacterium Escherichia co......-excision-based cloning and combining it with a genome-engineering approach to allow direct integration of whole metabolic pathways into the genome of E. coli, to facilitate the advanced engineering of cell factories........ Cloning and heterologous gene expression are major bottlenecks in the metabolic engineering field. We are working on standardizing DNA vector design processes to promote automation and collaborations in early phase metabolic engineering projects. Here, we focus on optimizing the already established uracil...

  12. Molecular cloning and protein structure of a human blood group Rh polypeptide

    International Nuclear Information System (INIS)

    Cherif-Zahar, B.; Bloy, C.; Le Van Kim, C.; Blanchard, D.; Bailly, P.; Hermand, P.; Salmon, C.; Cartron, J.P.; Colin, Y.

    1990-01-01

    cDNA clones encoding a human blood group Rh polypeptide were isolated from a human bone marrow cDNA library by using a polymerase chain reaction-amplified DNA fragment encoding the known common N-terminal region of the Rh proteins. The entire primary structure of the Rh polypeptide has been deduced from the nucleotide sequence of a 1384-base-pair-long cDNA clone. Translation of the open reading frame indicates that the Rh protein is composed of 417 amino acids, including the initiator methionine, which is removed in the mature protein, lacks a cleavable N-terminal sequence, and has no consensus site for potential N-glycosylation. The predicted molecular mass of the protein is 45,500, while that estimated for the Rh protein analyzed in NaDodSO 4 /polyacrylamide gels is in the range of 30,000-32,000. These findings suggest either that the hydrophobic Rh protein behaves abnormally on NaDodSO 4 gels or that the Rh mRNA may encode a precursor protein, which is further matured by a proteolytic cleavage of the C-terminal region of the polypeptide. Hydropathy analysis and secondary structure predictions suggest the presence of 13 membrane-spanning domains, indicating that the Rh polypeptide is highly hydrophobic and deeply buried within the phospholipid bilayer. These results suggest that the expression of the Rh gene(s) might be restricted to tissues or cell lines expressing erythroid characters

  13. Cloning of Soluble Human Stem Cell Factor in pET-26b(+ Vector

    Directory of Open Access Journals (Sweden)

    Salman Asghari

    2014-03-01

    Full Text Available Purpose: Stem cell factor (SCF plays an important role in the survival, proliferation and differentiation of hematopoietic stem cells and progenitor cells. Potential therapeutic applications of SCF include hematopoietic stem cell mobilization, exvivo stem/progenitor cell expansion, gene therapy, and immunotherapy. Considering the cost and problem in accessibility of this product in Iran, clears the importance of indigenizing production of rhSCF. In the present work, we describe the construction of the soluble rhSCF expression vector in pET-26b (+ with periplasmic localization potential. Methods: Following PCR amplification of human SCF ORF, it is cloned in pET-26b (+ vector in NcoI and XhoI sites. The recombinant construct was transformed into BL21 (DE3 Ecoli strains. Results: The construction of recombinant vector was verified by colony PCR and sequence analysis of pET26b-hSCF vector. Sequence analyses proved that human SCF ORF has been inserted into NcoI and XhoI site with correct orientation downstream of strong T7 promotor and showed no nucleotide errors. Conclusion: The SCF ORF was successfully cloned in pET-26b (+ expression vector and is ready for future production of SCF protein.

  14. Cloning of Soluble Human Stem Cell Factor in pET-26b(+) Vector.

    Science.gov (United States)

    Asghari, Salman; Shekari Khaniani, Mahmoud; Darabi, Masood; Mansoori Derakhshan, Sima

    2014-01-01

    Stem cell factor (SCF) plays an important role in the survival, proliferation and differentiation of hematopoietic stem cells and progenitor cells. Potential therapeutic applications of SCF include hematopoietic stem cell mobilization, exvivo stem/progenitor cell expansion, gene therapy, and immunotherapy. Considering the cost and problem in accessibility of this product in Iran, clears the importance of indigenizing production of rhSCF. In the present work, we describe the construction of the soluble rhSCF expression vector in pET-26b (+) with periplasmic localization potential. Following PCR amplification of human SCF ORF, it is cloned in pET-26b (+) vector in NcoI and XhoI sites. The recombinant construct was transformed into BL21 (DE3) Ecoli strains. The construction of recombinant vector was verified by colony PCR and sequence analysis of pET26b-hSCF vector. Sequence analyses proved that human SCF ORF has been inserted into NcoI and XhoI site with correct orientation downstream of strong T7 promotor and showed no nucleotide errors. The SCF ORF was successfully cloned in pET-26b (+) expression vector and is ready for future production of SCF protein.

  15. A xylanase gene directly cloned from the genomic DNA of alkaline wastewater sludge showing application potential in the paper industry.

    Science.gov (United States)

    Zhao, Yanyu; Luo, Huiying; Meng, Kun; Shi, Pengjun; Wang, Guozeng; Yang, Peilong; Yuan, Tiezheng; Yao, Bin

    2011-09-01

    A xylanase gene, aws-2x, was directly cloned from the genomic DNA of the alkaline wastewater sludge using degenerated PCR and modified TAIL-PCR. The deduced amino acid sequence of AWS-2x shared the highest identity (60%) with the xylanase from Chryseobacterium gleum belonging to the glycosyl hydrolase GH family 10. Recombinant AWS-2x was expressed in Escherichia coli BL21 (DE3) and purified to electrophoretic homogeneity. The enzyme showed maximal activity at pH 7.5 and 55 °C, maintained more than 50% of maximal activity when assayed at pH 9.0, and was stable over a wide pH range from 4.0 to 11.0. The specific activity of AWS-2x towards hardwood xylan (beechwood and birchwood xylan) was significantly higher than that to cereal xylan (oat spelt xylan and wheat arabinoxylan). These properties make AWS-2x a potential candidate for application in the pulp and paper industry.

  16. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone

    International Nuclear Information System (INIS)

    Adachi, A.; Gendelman, H.E.; Koenig, S.; Folks, T.; Willey, R.; Rabson, A.; Martin, M.A.

    1986-01-01

    The authors considered an infectious molecular clone of acquired immunodeficiency syndrome-associated retrovirus. Upon transfection, this clone directed the production of infectious virus particles in a wide variety of cells in addition to human T4 cells. The progeny, infectious virions, were synthesized in mouse, mink, monkey, and several human non-T cell lines, indicating the absence of any intracellular obstacle to viral RNA or protein production or assembly. During the course of these studies, a human colon carcinoma cell line, exquisitely sensitive to DNA transfection, was identified

  17. Genomics: The Science and Technology Behind the Human Genome Project (by Charles R. Cantor and Cassandra L. Smith)

    Science.gov (United States)

    Serra, Reviewed By Martin J.

    2000-01-01

    Genomics is one of the most rapidly expanding areas of science. This book is an outgrowth of a series of lectures given by one of the former heads (CRC) of the Human Genome Initiative. The book is designed to reach a wide audience, from biologists with little chemical or physical science background through engineers, computer scientists, and physicists with little current exposure to the chemical or biological principles of genetics. The text starts with a basic review of the chemical and biological properties of DNA. However, without either a biochemistry background or a supplemental biochemistry text, this chapter and much of the rest of the text would be difficult to digest. The second chapter is designed to put DNA into the context of the larger chromosomal unit. Specialized chromosomal structures and sequences (centromeres, telomeres) are introduced, leading to a section on chromosome organization and purification. The next 4 chapters cover the physical (hybridization, electrophoresis), chemical (polymerase chain reaction), and biological (genetic) techniques that provide the backbone of genomic analysis. These chapters cover in significant detail the fundamental principles underlying each technique and provide a firm background for the remainder of the text. Chapters 7­9 consider the need and methods for the development of physical maps. Chapter 7 primarily discusses chromosomal localization techniques, including in situ hybridization, FISH, and chromosome paintings. The next two chapters focus on the development of libraries and clones. In particular, Chapter 9 considers the limitations of current mapping and clone production. The current state and future of DNA sequencing is covered in the next three chapters. The first considers the current methods of DNA sequencing - especially gel-based methods of analysis, although other possible approaches (mass spectrometry) are introduced. Much of the chapter addresses the limitations of current methods, including

  18. The Past, Present, and Future of Human Centromere Genomics

    Directory of Open Access Journals (Sweden)

    Megan E. Aldrup-MacDonald

    2014-01-01

    Full Text Available The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function.

  19. Cloning and sequencing of the gene for human β-casein

    International Nuclear Information System (INIS)

    Loennerdal, B.; Bergstroem, S.; Andersson, Y.; Hialmarsson, K.; Sundgyist, A.; Hernell, O.

    1990-01-01

    Human β-casein is a major protein in human milk. This protein is part of the casein micelle and has been suggested to have several physiological functions in the newborn. Since there is limited information on βcasein and the factors that affect its concentration in human milk, the authors have isolated and sequenced the gene for this protein. A human mammary gland cDNA library (Clontech) in gt 11 was screened by plaque hy-hybridization using a 42-mer synthetic 32 p-labelled oligo-nucleotide. Positive clones were identified and isolated, DNA was prepared and the gene isolated by cleavage with EcoR1. Following subcloning (PUC18), restriction mapping and Southern blotting, DNA for sequencing was prepared. The gene was sequenced by the dideoxy method. Human β-casein has 212 amino acids and the amino acid sequence deducted from the nucleotide sequence is to 91% identical to the published sequence for human β-casein show a high degree of conservation at the leader peptide and the highly phosphorylated sequences, but also deletions and divergence at several positions. These results provide insight into the structure of the human β-casein gene and will facilitate studies on factors affecting its expression

  20. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan

    2014-01-01

    mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost......-effective genome mapping technology to comprehensively discover genome-wide SVs and characterize complex regions of the YH genome using long single molecules (>150 kb) in a global fashion. RESULTS: Utilizing nanochannel-based genome mapping technology, we obtained 708 insertions/deletions and 17 inversions larger...... fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides...

  1. CRISPR-Cas9-Based Genome Editing of Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Giacalone, Joseph C; Sharma, Tasneem P; Burnight, Erin R; Fingert, John F; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2018-02-28

    Human induced pluripotent stem cells (hiPSCs) are the ideal cell source for autologous cell replacement. However, for patients with Mendelian diseases, genetic correction of the original disease-causing mutation is likely required prior to cellular differentiation and transplantation. The emergence of the CRISPR-Cas9 system has revolutionized the field of genome editing. By introducing inexpensive reagents that are relatively straightforward to design and validate, it is now possible to correct genetic variants or insert desired sequences at any location within the genome. CRISPR-based genome editing of patient-specific iPSCs shows great promise for future autologous cell replacement therapies. One caveat, however, is that hiPSCs are notoriously difficult to transfect, and optimized experimental design considerations are often necessary. This unit describes design strategies and methods for efficient CRISPR-based genome editing of patient- specific iPSCs. Additionally, it details a flexible approach that utilizes positive selection to generate clones with a desired genomic modification, Cre-lox recombination to remove the integrated selection cassette, and negative selection to eliminate residual hiPSCs with intact selection cassettes. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  2. [Cloning goat producing human lactoferrin with genetically modified donor cells selected by single or dual markers].

    Science.gov (United States)

    An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong

    2012-12-01

    We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.

  3. Comprehensive molecular, genomic and phenotypic analysis of a major clone of Enterococcus faecalis MLST ST40

    DEFF Research Database (Denmark)

    Zischka, Melanie; Kuenne, Carsten T.; Blom, Jochen

    2015-01-01

    strain type of this species, distributed worldwide and originating from various sources (animal, human, environmental) and different conditions (colonisation/infection). Since enterococci are known to be highly recombinogenic we determined to analyse the microevolution and niche adaptation of this highly...

  4. Comparative Genomic Analysis of Globally Dominant ST131 Clone with Other Epidemiologically Successful Extraintestinal Pathogenic Escherichia coli (ExPEC Lineages

    Directory of Open Access Journals (Sweden)

    Sabiha Shaik

    2017-10-01

    Full Text Available Escherichia coli sequence type 131 (ST131, a pandemic clone responsible for the high incidence of extraintestinal pathogenic E. coli (ExPEC infections, has been known widely for its contribution to the worldwide dissemination of multidrug resistance. Although other ExPEC-associated and extended-spectrum-β-lactamase (ESBL-producing E. coli clones, such as ST38, ST405, and ST648 have been studied widely, no comparative genomic data with respect to other genotypes exist for ST131. In this study, comparative genomic analysis was performed for 99 ST131 E. coli strains with 40 genomes from three other STs, including ST38 (n = 12, ST405 (n = 10, and ST648 (n = 18, and functional studies were performed on five in-house strains corresponding to the four STs. Phylogenomic analysis results from this study corroborated with the sequence type-specific clonality. Results from the genome-wide resistance profiling confirmed that all strains were inherently multidrug resistant. ST131 genomes showed unique virulence profiles, and analysis of mobile genetic elements and their associated methyltransferases (MTases has revealed that several of them were missing from the majority of the non-ST131 strains. Despite the fact that non-ST131 strains lacked few essential genes belonging to the serum resistome, the in-house strains representing all four STs demonstrated similar resistance levels to serum antibactericidal activity. Core genome analysis data revealed that non-ST131 strains usually lacked several ST131-defined genomic coordinates, and a significant number of genes were missing from the core of the ST131 genomes. Data from this study reinforce adaptive diversification of E. coli strains belonging to the ST131 lineage and provide new insights into the molecular mechanisms underlying clonal diversification of the ST131 lineage.

  5. Genomic heterogeneity among human and nonhuman strains of hepatitis A virus

    International Nuclear Information System (INIS)

    Lemon, S.M.; Chao, S.F.; Jansen, R.W.; Binn, L.N.; LeDuc, J.W.

    1987-01-01

    Cloned cDNA probes derived from the P1 and P2 regions of the genome of HM175 virus, a reference strain of human hepatitis A virus (HAV), failed to hybridize under standard stringency criteria with RNA from PA21 and PA33 viruses, two epizootiologically related HAV strains recovered from naturally infected New World owl monkeys. Hybridization of these probes to PA21 RNA was only evident under reduced stringency conditions. However, cDNA representing the 5' nontranslated region of the MH175 genome hybridized equally to HM175 and PA21 RNA under standard stringency conditions, while a probe derived from the 3', 1400 bases of the genome yielded a reduced hybridization signal with PA21 RNA. In contrast, no differences could be discerned between HM175 virus and three other HAV strains of human origin (GR8, LV374, and MS1) in any region of the genome, unless increased stringency conditions were used. These results suggest that PA21 and PA33 are unique among HAV isolates and may represent a virus native to the owl monkey. Despite extremely poor homology within the P1 region, which encodes capsid polypeptides, monoclonal antibody analysis confirmed that the immunodominant neutralization epitopes of HAV were highly conserved between HM175 and PA21 viruses. These data provide molecular evidence for the existence of HAV strains unique to nonhuman species and indicate that strict conservation of antigenic function may accompany substantial genetic divergence in HAV

  6. Cloning Mice.

    Science.gov (United States)

    Ogura, Atsuo

    2017-08-01

    Viable and fertile mice can be generated by somatic nuclear transfer into enucleated oocytes, presumably because the transplanted somatic cell genome becomes reprogrammed by factors in the oocyte. The first somatic cloned offspring of mice were obtained by directly injecting donor nuclei into recipient enucleated oocytes. When this method is used (the so-called Honolulu method of somatic cell nuclear transfer [SCNT]), the donor nuclei readily and completely condense within the enucleated metaphase II-arrested oocytes, which contain high levels of M-phase-promoting factor (MPF). It is believed that the condensation of the donor chromosomes promotes complete reprogramming of the donor genome within the mouse oocytes. Another key to the success of mouse cloning is the use of blunt micropipettes attached to a piezo impact-driving micromanipulation device. This system saves a significant amount of time during the micromanipulation of oocytes and thus minimizes the loss of oocyte viability in vitro. For example, a group of 20 oocytes can be enucleated within 10 min by an experienced operator. This protocol is composed of seven parts: (1) preparing micropipettes, (2) setting up the enucleation and injection micropipettes, (3) collecting and enucleating oocytes, (4) preparing nucleus donor cells, (5) injecting donor nuclei, (6) activating embryos and culturing, and (7) transferring cloned embryos. © 2017 Cold Spring Harbor Laboratory Press.

  7. Cloning and analysis of an HMG gene from the lamprey Lampetra fluviatilis

    DEFF Research Database (Denmark)

    Sharman, A C; Hay-Schmidt, Anders; Holland, P W

    1997-01-01

    Evolution has shaped the organisation of vertebrate genomes, including the human genome. To shed further light on genome history, we have cloned and analysed an HMG gene from lamprey, representing one of the earliest vertebrate lineages. Genes of the HMG1/2 family encode chromosomal proteins...

  8. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis

    DEFF Research Database (Denmark)

    Roldan, A.L.; Cubellis, M.V.; Masucci, M.T.

    1990-01-01

    , and therefore the capacity of cells to migrate and invade neighboring tissues. We have isolated a 1.4 kb cDNA clone coding for the entire human uPAR. An oligonucleotide synthesized on the basis of the N-terminal sequence of the purified protein was used to screen a cDNA library made from SV40 transformed human......, a size very close to that of the cloned cDNA. Expression of the uPAR cDNA in mouse cells confirms that the clone is complete and expresses a functional uPA binding protein, located on the cell surface and with properties similar to the human uPAR. Caseinolytic plaque assay, immunofluorescence analysis......The surface receptor for urokinase plasminogen activator (uPAR) has been recognized in recent years as a key molecule in regulating plasminogen mediated extracellular proteolysis. Surface plasminogen activation controls the connections between cells, basement membrane and extracellular matrix...

  9. Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula.

    Science.gov (United States)

    Demissie, Zerihun A; Cella, Monica A; Sarker, Lukman S; Thompson, Travis J; Rheault, Mark R; Mahmoud, Soheil S

    2012-07-01

    Several members of the genus Lavandula produce valuable essential oils (EOs) that are primarily constituted of the low molecular weight isoprenoids, particularly monoterpenes. We isolated over 8,000 ESTs from the glandular trichomes of L. x intermedia flowers (where bulk of the EO is synthesized) to facilitate the discovery of genes that control the biosynthesis of EO constituents. The expression profile of these ESTs in L. x intermedia and its parents L. angustifolia and L. latifolia was established using microarrays. The resulting data highlighted a differentially expressed, previously uncharacterized cDNA with strong homology to known 1,8-cineole synthase (CINS) genes. The ORF, excluding the transit peptide, of this cDNA was expressed in E. coli, purified by Ni-NTA agarose affinity chromatography and functionally characterized in vitro. The ca. 63 kDa bacterially produced recombinant protein, designated L. x intermedia CINS (LiCINS), converted geranyl diphosphate (the linear monoterpene precursor) primarily to 1,8-cineole with K ( m ) and k ( cat ) values of 5.75 μM and 8.8 × 10(-3) s(-1), respectively. The genomic DNA of CINS in the studied Lavandula species had identical exon-intron architecture and coding sequences, except for a single polymorphic nucleotide in the L. angustifolia ortholog which did not alter protein function. Additional nucleotide variations restricted to L. angustifolia introns were also observed, suggesting that LiCINS was most likely inherited from L. latifolia. The LiCINS mRNA levels paralleled the 1,8-cineole content in mature flowers of the three lavender species, and in developmental stages of L. x intermedia inflorescence indicating that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS.

  10. Recent and ongoing selection in the human genome

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Hellmann, Ines; Hubisz, Melissa

    2007-01-01

    The recent availability of genome-scale genotyping data has led to the identification of regions of the human genome that seem to have been targeted by selection. These findings have increased our understanding of the evolutionary forces that affect the human genome, have augmented our knowledge...... of gene function and promise to increase our understanding of the genetic basis of disease. However, inferences of selection are challenged by several confounding factors, especially the complex demographic history of human populations, and concordance between studies is variable. Although such studies...

  11. Explaining human uniqueness: genome interactions with environment, behaviour and culture.

    Science.gov (United States)

    Varki, Ajit; Geschwind, Daniel H; Eichler, Evan E

    2008-10-01

    What makes us human? Specialists in each discipline respond through the lens of their own expertise. In fact, 'anthropogeny' (explaining the origin of humans) requires a transdisciplinary approach that eschews such barriers. Here we take a genomic and genetic perspective towards molecular variation, explore systems analysis of gene expression and discuss an organ-systems approach. Rejecting any 'genes versus environment' dichotomy, we then consider genome interactions with environment, behaviour and culture, finally speculating that aspects of human uniqueness arose because of a primate evolutionary trend towards increasing and irreversible dependence on learned behaviours and culture - perhaps relaxing allowable thresholds for large-scale genomic diversity.

  12. Localizing recent adaptive evolution in the human genome

    DEFF Research Database (Denmark)

    Williamson, Scott H; Hubisz, Melissa J; Clark, Andrew G

    2007-01-01

    , clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome......-nucleotide polymorphism ascertainment, while also providing fine-scale estimates of the position of the selected site, we analyzed a genomic dataset of 1.2 million human single-nucleotide polymorphisms genotyped in African-American, European-American, and Chinese samples. We identify 101 regions of the human genome...

  13. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Directory of Open Access Journals (Sweden)

    Toub Omid

    2010-10-01

    Full Text Available Abstract Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS were predicted by in silico analysis of the grapevine (Vitis vinifera genome assembly 1. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information

  14. Transposable element activity, genome regulation and human health.

    Science.gov (United States)

    Wang, Lu; Jordan, I King

    2018-03-02

    A convergence of novel genome analysis technologies is enabling population genomic studies of human transposable elements (TEs). Population surveys of human genome sequences have uncovered thousands of individual TE insertions that segregate as common genetic variants, i.e. TE polymorphisms. These recent TE insertions provide an important source of naturally occurring human genetic variation. Investigators are beginning to leverage population genomic data sets to execute genome-scale association studies for assessing the phenotypic impact of human TE polymorphisms. For example, the expression quantitative trait loci (eQTL) analytical paradigm has recently been used to uncover hundreds of associations between human TE insertion variants and gene expression levels. These include population-specific gene regulatory effects as well as coordinated changes to gene regulatory networks. In addition, analyses of linkage disequilibrium patterns with previously characterized genome-wide association study (GWAS) trait variants have uncovered TE insertion polymorphisms that are likely causal variants for a variety of common complex diseases. Gene regulatory mechanisms that underlie specific disease phenotypes have been proposed for a number of these trait associated TE polymorphisms. These new population genomic approaches hold great promise for understanding how ongoing TE activity contributes to functionally relevant genetic variation within and between human populations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Analysis of human HPRT- deletion mutants by the microarray-CGH (comparative genomic hybridization)

    International Nuclear Information System (INIS)

    Kodaira, M.; Sasaki, K.; Tagawa, H.; Omine, H.; Kushiro, J.; Takahashi, N.; Katayama, H.

    2003-01-01

    We are trying to evaluate genetic effects of radiation on human using mutation frequency as an indicator. For the efficient detection of mutations, it is important to understand the mechanism and the characteristics of radiation-induced mutations. We have started the analysis of hypoxanthine-guanine phosphoribosyl transferase (HPRT) mutants induced by X-ray in order to clarify the deletion size and the mutation-distribution. We analyzed 39 human X-ray induced HPRT-deletion mutants by using the microarray-CGH. The array for this analysis contains 57 BAC clones covering as much as possible of the 4Mb of the 5' side and 10Mb of the 3' side of the HPRT gene based on the NCBI genome database. DNA from parent strain and each HPRT-mutant strain are labeled with Cy5 and Cy3 respectively, and were mixed and hybridized on the array. Fluorescent intensity ratio of the obtained spots was analyzed using software we developed to identify clones corresponding to the deletion region. The deletion in these strains ranged up to 3.5 Mb on the 5' side and 6 Mb on the 3' side of the HPRT gene. Deletions in 13 strains ended around BAC clones located at about 3 Mb on the 5' side. On the 3' side, deletions extended up to the specific clones located at 1.5 Mb in 11 strains. The mutations seem to be complex on the 3' end of deletion; some accompanied duplications with deletions and others could not be explained by one mutation event. We need to confirm these results, taking into account the experimental reproducibility and the accuracy of the published genetic map. The results of the research using the microarray-CGH help us to search the regions where deletions are easily induced and to identify the factors affecting the range of deletions

  16. Clonal chromosomal and genomic instability during human multipotent mesenchymal stromal cells long-term culture.

    Directory of Open Access Journals (Sweden)

    Victoria Nikitina

    Full Text Available Spontaneous mutagenesis often leads to appearance of genetic changes in cells. Although human multipotent mesenchymal stromal cells (hMSC are considered as genetically stable, there is a risk of genomic and structural chromosome instability and, therefore, side effects of cell therapy associated with long-term effects. In this study, the karyotype, genetic variability and clone formation analyses have been carried out in the long-term culture MSC from human gingival mucosa.The immunophenotype of MSC has been examined using flow cytofluorometry and short tandem repeat (STR analysis has been carried out for authentication. The karyotype has been examined using GTG staining and mFISH, while the assessment of the aneuploidy 8 frequency has been performed using centromere specific chromosome FISH probes in interphase cells.The immunophenotype and STR loci combination did not change during the process of cultivation. From passage 23 the proliferative activity of cultured MSCs was significantly reduced. From passage 12 of cultivation, clones of cells with stable chromosome aberrations have been identified and the biggest of these (12% are tetrasomy of chromosome 8. The random genetic and structural chromosomal aberrations and the spontaneous level of chromosomal aberrations in the hMSC long-term cultures were also described.The spectrum of spontaneous chromosomal aberrations in MSC long-term cultivation has been described. Clonal chromosomal aberrations have been identified. A clone of cells with tetrasomy 8 has been detected in passage 12 and has reached the maximum size by passage 18 before and decreased along with the reduction of proliferative activity of cell line by passage 26. At later passages, the MSC line exhibited a set of cells with structural variants of the karyotype with a preponderance of normal diploid cells. The results of our study strongly suggest a need for rigorous genetic analyses of the clone formation in cultured MSCs before

  17. Just another reproductive technology? The ethics of human reproductive cloning as an experimental medical procedure.

    Science.gov (United States)

    Elsner, D

    2006-10-01

    Human reproductive cloning (HRC) has not yet resulted in any live births. There has been widespread condemnation of the practice in both the scientific world and the public sphere, and many countries explicitly outlaw the practice. Concerns about the procedure range from uncertainties about its physical safety to questions about the psychological well-being of clones. Yet, key aspects such as the philosophical implications of harm to future entities and a comparison with established reproductive technologies such as in vitro fertilisation (IVF) are often overlooked in discussions about HRC. Furthermore, there are people who are willing to use the technology. Several scientists have been outspoken in their intent to pursue HRC. The importance of concerns about the physical safety of children created by HRC and comparisons with concerns about the safety of IVF are discussed. A model to be used to determine when it is acceptable to use HRC and other new assisted reproductive technologies, balancing reproductive freedom and safety concerns, is proposed. Justifications underpinning potential applications of HRC are discussed, and it is determined that these are highly analogous to rationalisations used to justify IVF treatment. It is concluded that people wishing to conceive using HRC should have a prima facie negative right to do so.

  18. Th1-like human T-cell clones recognizing Leishmania gp63 inhibit Leishmania major in human macrophages

    DEFF Research Database (Denmark)

    Kemp, M; Hey, A S; Bendtzen, K

    1994-01-01

    The major surface protease of Leishmania major, gp63, has been suggested as a vaccine candidate for cutaneous leishmaniasis. In this study gp63 was purified from L. major promastigotes. A panel of human T-cell clones recognizing this protein were generated from individuals who had previously had...... resembling Th1 cells. Autologous mononuclear cells and Epstein-Barr virus-transformed B cell lines were equally efficient in presenting the antigen to the T cells. The gp63 reactive T cells induced resistance to infection in cultured human macrophages by L. major. The data confirm that human CD4+ T cells...... recognizing gp63 can take part in the host defence against L. major infections....

  19. Peroxisomal monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions.

    Science.gov (United States)

    Leterrier, Marina; Corpas, Francisco J; Barroso, Juan B; Sandalio, Luisa M; del Río, Luis A

    2005-08-01

    In plant cells, ascorbate is a major antioxidant that is involved in the ascorbate-glutathione cycle. Monodehydroascorbate reductase (MDAR) is the enzymatic component of this cycle involved in the regeneration of reduced ascorbate. The identification of the intron-exon organization and the promoter region of the pea (Pisum sativum) MDAR 1 gene was achieved in pea leaves using the method of walking polymerase chain reaction on genomic DNA. The nuclear gene of MDAR 1 comprises nine exons and eight introns, giving a total length of 3,770 bp. The sequence of 544 bp upstream of the initiation codon, which contains the promoter and 5' untranslated region, and 190 bp downstream of the stop codon were also determined. The presence of different regulatory motifs in the promoter region of the gene might indicate distinct responses to various conditions. The expression analysis in different plant organs by northern blots showed that fruits had the highest level of MDAR. Confocal laser scanning microscopy analysis of pea leaves transformed with Agrobacterium tumefaciens having the binary vectors pGD, which contain the autofluorescent proteins enhanced green fluorescent protein and enhanced yellow fluorescent protein with the full-length cDNA for MDAR 1 and catalase, indicated that the MDAR 1 encoded the peroxisomal isoform. The functional analysis of MDAR by activity and protein expression was studied in pea plants grown under eight stress conditions, including continuous light, high light intensity, continuous dark, mechanical wounding, low and high temperature, cadmium, and the herbicide 2,4-dichlorophenoxyacetic acid. This functional analysis is representative of all the MDAR isoforms present in the different cell compartments. Results obtained showed a significant induction by high light intensity and cadmium. On the other hand, expression studies, performed by semiquantitative reverse transcription-polymerase chain reaction demonstrated differential expression patterns of

  20. Building the sequence map of the human pan-genome

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Zheng, Hancheng

    2010-01-01

    analysis of predicted genes indicated that the novel sequences contain potentially functional coding regions. We estimate that a complete human pan-genome would contain approximately 19-40 Mb of novel sequence not present in the extant reference genome. The extensive amount of novel sequence contributing...

  1. Genome Editing: A New Approach to Human Therapeutics.

    Science.gov (United States)

    Porteus, Matthew

    2016-01-01

    The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.

  2. Cloning-free CRISPR

    NARCIS (Netherlands)

    Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels; Sherwood, Richard I.

    2015-01-01

    We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each

  3. The human genome as public: Justifications and implications.

    Science.gov (United States)

    Bayefsky, Michelle J

    2017-03-01

    Since the human genome was decoded, great emphasis has been placed on the unique, personal nature of the genome, along with the benefits that personalized medicine can bring to individuals and the importance of safeguarding genetic privacy. As a result, an equally important aspect of the human genome - its common nature - has been underappreciated and underrepresented in the ethics literature and policy dialogue surrounding genetics and genomics. This article will argue that, just as the personal nature of the genome has been used to reinforce individual rights and justify important privacy protections, so too the common nature of the genome can be employed to support protections of the genome at a population level and policies designed to promote the public's wellbeing. In order for public health officials to have the authority to develop genetics policies for the sake of the public good, the genome must have not only a common, but also a public, dimension. This article contends that DNA carries a public dimension through the use of two conceptual frameworks: the common heritage (CH) framework and the common resource (CR) framework. Both frameworks establish a public interest in the human genome, but the CH framework can be used to justify policies aimed at preserving and protecting the genome, while the CR framework can be employed to justify policies for utilizing the genome for the public benefit. A variety of possible policy implications are discussed, with special attention paid to the use of large-scale genomics databases for public health research. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  4. Predicting Tissue-Specific Enhancers in the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  5. National human genome projects: an update and an agenda.

    Science.gov (United States)

    An, Joon Yong

    2017-01-01

    Population genetic and human genetic studies are being accelerated with genome technology and data sharing. Accordingly, in the past 10 years, several countries have initiated genetic research using genome technology and identified the genetic architecture of the ethnic groups living in the corresponding country or suggested the genetic foundation of a social phenomenon. Genetic research has been conducted from epidemiological studies that previously described the health or disease conditions in defined population. This perspective summarizes national genome projects conducted in the past 10 years and introduces case studies to utilize genomic data in genetic research.

  6. Cloning and functional analysis of human mTERFL encoding a novel mitochondrial transcription termination factor-like protein

    International Nuclear Information System (INIS)

    Chen Yao; Zhou Guangjin; Yu Min; He Yungang; Tang Wei; Lai Jianhua; He Jie; Liu Wanguo; Tan Deyong

    2005-01-01

    Serum plays an important role in the regulation of cell cycle and cell growth. To identify novel serum-inhibitory factors and study their roles in cell cycle regulation, we performed mRNA differential display analysis of U251 cells in the presence or absence of serum and cloned a novel gene encoding the human mitochondrial transcription termination factor-like protein (mTERFL). The full-length mTERFL cDNA has been isolated and the genomic structure determined. The mTERFL gene consists of three exons and encodes 385 amino acids with 52% sequence similarity to the human mitochondrial transcription termination factor (mTERF). However, mTERFL and mTERF have an opposite expression pattern in response to serum. The expression of mTERFL is dramatically inhibited by the addition of serum in serum-starved cells while the mTERF is rather induced. Northern blot analysis detected three mTERFL transcripts of 1.7, 3.2, and 3.5 kb. Besides the 3.2 kb transcript that is unique to skeletal muscle, other two transcripts express predominant in heart, liver, pancreas, and skeletal muscle. Expression of the GFP-mTERFL fusion protein in HeLa cells localized it to the mitochondria. Furthermore, ectopic expression of mTERFL suppresses cell growth and arrests cells in the G1 stage demonstrated by MTT and flow cytometry analysis. Collectively, our data suggest that mTERFL is a novel mTERF family member and a serum-inhibitory factor probably participating in the regulation of cell growth through the modulation of mitochondrial transcription

  7. Amino acid substitutions in genetic variants of human serum albumin and in sequences inferred from molecular cloning

    International Nuclear Information System (INIS)

    Takahashi, N.; Takahashi, Y.; Blumberg, B.S.; Putnam, F.W.

    1987-01-01

    The structural changes in four genetic variants of human serum albumin were analyzed by tandem high-pressure liquid chromatography (HPLC) of the tryptic peptides, HPLC mapping and isoelectric focusing of the CNBr fragments, and amino acid sequence analysis of the purified peptides. Lysine-372 of normal (common) albumin A was changed to glutamic acid both in albumin Naskapi, a widespread polymorphic variant of North American Indians, and in albumin Mersin found in Eti Turks. The two variants also exhibited anomalous migration in NaDodSO 4 /PAGE, which is attributed to a conformational change. The identity of albumins Naskapi and Mersin may have originated through descent from a common mid-Asiatic founder of the two migrating ethnic groups, or it may represent identical but independent mutations of the albumin gene. In albumin Adana, from Eti Turks, the substitution site was not identified but was localized to the region from positions 447 through 548. The substitution of aspartic acid-550 by glycine was found in albumin Mexico-2 from four individuals of the Pima tribe. Although only single-point substitutions have been found in these and in certain other genetic variants of human albumin, five differences exist in the amino acid sequences inferred from cDNA sequences by workers in three other laboratories. However, our results on albumin A and on 14 different genetic variants accord with the amino acid sequence of albumin deduced from the genomic sequence. The apparent amino acid substitutions inferred from comparison of individual cDNA sequences probably reflect artifacts in cloning or in cDNA sequence analysis rather than polymorphism of the coding sections of the albumin gene

  8. A decade of human genome project conclusion: Scientific diffusion about our genome knowledge.

    Science.gov (United States)

    Moraes, Fernanda; Góes, Andréa

    2016-05-06

    The Human Genome Project (HGP) was initiated in 1990 and completed in 2003. It aimed to sequence the whole human genome. Although it represented an advance in understanding the human genome and its complexity, many questions remained unanswered. Other projects were launched in order to unravel the mysteries of our genome, including the ENCyclopedia of DNA Elements (ENCODE). This review aims to analyze the evolution of scientific knowledge related to both the HGP and ENCODE projects. Data were retrieved from scientific articles published in 1990-2014, a period comprising the development and the 10 years following the HGP completion. The fact that only 20,000 genes are protein and RNA-coding is one of the most striking HGP results. A new concept about the organization of genome arose. The ENCODE project was initiated in 2003 and targeted to map the functional elements of the human genome. This project revealed that the human genome is pervasively transcribed. Therefore, it was determined that a large part of the non-protein coding regions are functional. Finally, a more sophisticated view of chromatin structure emerged. The mechanistic functioning of the genome has been redrafted, revealing a much more complex picture. Besides, a gene-centric conception of the organism has to be reviewed. A number of criticisms have emerged against the ENCODE project approaches, raising the question of whether non-conserved but biochemically active regions are truly functional. Thus, HGP and ENCODE projects accomplished a great map of the human genome, but the data generated still requires further in depth analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:215-223, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  9. Human genome and genetic sequencing research and informed consent

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi

    2003-01-01

    On March 29, 2001, the Ethical Guidelines for Human Genome and Genetic Sequencing Research were established. They have intended to serve as ethical guidelines for all human genome and genetic sequencing research practice, for the purpose of upholding respect for human dignity and rights and enforcing use of proper methods in the pursuit of human genome and genetic sequencing research, with the understanding and cooperation of the public. The RadGenomics Project has prepared a research protocol and informed consent document that follow these ethical guidelines. We have endeavored to protect the privacy of individual information, and have established a procedure for examination of research practices by an ethics committee. Here we report our procedure in order to offer this concept to the patients. (authors)

  10. Human · mouse genome analysis and radiation biology. Proceedings

    International Nuclear Information System (INIS)

    Hori, Tada-aki

    1994-03-01

    This issue is the collection of the papers presented at the 25th NIRS symposium on Human, Mouse Genome Analysis and Radiation Biology. The 14 of the presented papers are indexed individually. (J.P.N.)

  11. Molecular cloning and complete nucleotide sequence of a human ventricular myosin light chain 1

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, E; Shi, Q W; Floroff, M; Mickle, D A.G.; Wu, T W; Olley, P M; Jackowski, G

    1988-03-25

    Human ventricular plasmid library was constructed. The library was screened with the oligonucleotide probe (17-mer) corresponding to a conserve region of myosin light chain 1 near the carboxy terminal. Full length cDNA recombinant plasmid containing 1100 bp insert was isolated. RNA blot hybridization with this insert detected a message of approximately 1500 bp corresponding to the size of VLCl and mRNA. Complete nucleotide sequence of the coding region was determined in M13 subclones using dideoxy chain termination method. With the isolation of this clone (pCD HLVCl), the publication of the complete nucleotide sequence of HVLCl and the predicted secondary structure of this protein will aid in understanding of the biochemistry of myosin and its function in contraction, the evolution of myosin light genes and the genetic, developmental and physiological regulation of myosin genes.

  12. Phage display used for gene cloning of human recombinant antibody against the erythrocyte surface antigen, rhesus D

    DEFF Research Database (Denmark)

    Dziegiel, M; Nielsen, L K; Andersen, P S

    1995-01-01

    A novel phage display system has been developed for PCR amplification and cloning of the Fab fragments of human immunoglobulin genes. Using this system, we have cloned an antibody from a mouse-human hybridoma cell line directed against the erythrocyte antigen rhesus D. Intact erythrocytes were used...... for absorption of the Fab phages. Soluble Fab fragments produced from the cloned material showed identical performance to the parental antibody in agglutination assays. Gel filtration confirmed that the Fab fragment consists of a kappa-Fd heterodimer. The successful use of intact cells for selection of specific...... Fab phages demonstrates that it is possible to by-pass purification of the antigen of interest. Comparison with published germline sequences demonstrated that the immunoglobulin coding regions had the highest homology to the VH 1.9III and V kappa Hum kappa v325 germline genes, respectively....

  13. The Human Genome Project: big science transforms biology and medicine

    OpenAIRE

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and a...

  14. Crossed wires: 3D genome misfolding in human disease.

    Science.gov (United States)

    Norton, Heidi K; Phillips-Cremins, Jennifer E

    2017-11-06

    Mammalian genomes are folded into unique topological structures that undergo precise spatiotemporal restructuring during healthy development. Here, we highlight recent advances in our understanding of how the genome folds inside the 3D nucleus and how these folding patterns are miswired during the onset and progression of mammalian disease states. We discuss potential mechanisms underlying the link among genome misfolding, genome dysregulation, and aberrant cellular phenotypes. We also discuss cases in which the endogenous 3D genome configurations in healthy cells might be particularly susceptible to mutation or translocation. Together, these data support an emerging model in which genome folding and misfolding is critically linked to the onset and progression of a broad range of human diseases. © 2017 Norton and Phillips-Cremins.

  15. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  16. Ancient Human Genome Sequence of an Extinct Palaeo-Eskimo

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Li, Yingrui; Lindgreen, Stinus

    2010-01-01

    We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome...... possible phenotypic characteristics of the individual that belonged to a culture whose location has yielded only trace human remains. We compare the high-confidence SNPs to those of contemporary populations to find the populations most closely related to the individual. This provides evidence...

  17. Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy.

    Science.gov (United States)

    Majewski, Tadeusz; Lee, Sangkyou; Jeong, Joon; Yoon, Dong-Sup; Kram, Andrzej; Kim, Mi-Sook; Tuziak, Tomasz; Bondaruk, Jolanta; Lee, Sooyong; Park, Weon-Seo; Tang, Kuang S; Chung, Woonbok; Shen, Lanlan; Ahmed, Saira S; Johnston, Dennis A; Grossman, H Barton; Dinney, Colin P; Zhou, Jain-Hua; Harris, R Alan; Snyder, Carrie; Filipek, Slawomir; Narod, Steven A; Watson, Patrice; Lynch, Henry T; Gazdar, Adi; Bar-Eli, Menashe; Wu, Xifeng F; McConkey, David J; Baggerly, Keith; Issa, Jean-Pierre; Benedict, William F; Scherer, Steven E; Czerniak, Bogdan

    2008-07-01

    The search for the genomic sequences involved in human cancers can be greatly facilitated by maps of genomic imbalances identifying the involved chromosomal regions, particularly those that participate in the development of occult preneoplastic conditions that progress to clinically aggressive invasive cancer. The integration of such regions with human genome sequence variation may provide valuable clues about their overall structure and gene content. By extension, such knowledge may help us understand the underlying genetic components involved in the initiation and progression of these cancers. We describe the development of a genome-wide map of human bladder cancer that tracks its progression from in situ precursor conditions to invasive disease. Testing for allelic losses using a genome-wide panel of 787 microsatellite markers was performed on multiple DNA samples, extracted from the entire mucosal surface of the bladder and corresponding to normal urothelium, in situ preneoplastic lesions, and invasive carcinoma. Using this approach, we matched the clonal allelic losses in distinct chromosomal regions to specific phases of bladder neoplasia and produced a detailed genetic map of bladder cancer development. These analyses revealed three major waves of genetic changes associated with growth advantages of successive clones and reflecting a stepwise conversion of normal urothelial cells into cancer cells. The genetic changes map to six regions at 3q22-q24, 5q22-q31, 9q21-q22, 10q26, 13q14, and 17p13, which may represent critical hits driving the development of bladder cancer. Finally, we performed high-resolution mapping using single nucleotide polymorphism markers within one region on chromosome 13q14, containing the model tumor suppressor gene RB1, and defined a minimal deleted region associated with clonal expansion of in situ neoplasia. These analyses provided new insights on the involvement of several non-coding sequences mapping to the region and identified

  18. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    Science.gov (United States)

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480.

    Directory of Open Access Journals (Sweden)

    Akari Takaya

    Full Text Available Human cancer stem-like cells (CSCs/cancer-initiating cells (CICs can be isolated as side population (SP cells, aldehyde dehydrogenase high (ALDHhigh cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis.

  20. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480.

    Science.gov (United States)

    Takaya, Akari; Hirohashi, Yoshihiko; Murai, Aiko; Morita, Rena; Saijo, Hiroshi; Yamamoto, Eri; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Tamura, Yasuaki; Takemasa, Ichiro; Kondo, Toru; Sato, Noriyuki; Torigoe, Toshihiko

    2016-01-01

    Human cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) can be isolated as side population (SP) cells, aldehyde dehydrogenase high (ALDHhigh) cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP) cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis.

  1. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

    International Nuclear Information System (INIS)

    Li, YanHua; Li, AiHua; Yang, Z.Q.

    2016-01-01

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  2. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

    Energy Technology Data Exchange (ETDEWEB)

    Li, YanHua, E-mail: liyanhua.1982@aliyun.com [Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014 (China); Li, AiHua [Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing 404100 (China); Yang, Z.Q. [Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China)

    2016-09-09

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  3. Partial structure of the phylloxin gene from the giant monkey frog, Phyllomedusa bicolor: parallel cloning of precursor cDNA and genomic DNA from lyophilized skin secretion.

    Science.gov (United States)

    Chen, Tianbao; Gagliardo, Ron; Walker, Brian; Zhou, Mei; Shaw, Chris

    2005-12-01

    Phylloxin is a novel prototype antimicrobial peptide from the skin of Phyllomedusa bicolor. Here, we describe parallel identification and sequencing of phylloxin precursor transcript (mRNA) and partial gene structure (genomic DNA) from the same sample of lyophilized skin secretion using our recently-described cloning technique. The open-reading frame of the phylloxin precursor was identical in nucleotide sequence to that previously reported and alignment with the nucleotide sequence derived from genomic DNA indicated the presence of a 175 bp intron located in a near identical position to that found in the dermaseptins. The highly-conserved structural organization of skin secretion peptide genes in P. bicolor can thus be extended to include that encoding phylloxin (plx). These data further reinforce our assertion that application of the described methodology can provide robust genomic/transcriptomic/peptidomic data without the need for specimen sacrifice.

  4. Rabies virus-specific human T cell clones provide help for an in vitro antibody response against neutralizing antibody-inducing determinants of the viral glycoprotein.

    NARCIS (Netherlands)

    H. Bunschoten; R.J. Klapmuts; I.J.Th.M. Claassen (Ivo); S.D. Reijneveld; A.D.M.E. Osterhaus (Albert); F.G.C.M. Uytdehaag (Fons)

    1989-01-01

    textabstractHuman T cell clones were prepared from peripheral blood mononuclear cells from a vaccinated human donor and kept in culture in the presence of rabies virus antigen and growth factors. Phenotypic analysis of the T cell clones revealed expression of the CD3 and CD4 cell surface markers,

  5. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  6. Molecular cloning of human protein 4.2: A major component of the erythrocyte membrane

    International Nuclear Information System (INIS)

    Sung, L.A.; Chien, Shu; Lambert, K.; Chang, Longsheng; Bliss, S.A.; Bouhassira, E.E.; Nagel, R.L.; Schwartz, R.S.; Rybicki, A.C.

    1990-01-01

    Protein 4.2 (P4.2) comprises ∼5% of the protein mass of human erythrocyte (RBC) membranes. Anemia occurs in patients with RBCs deficient in P4.2, suggesting a role for this protein in maintaining RBC stability and integrity. The authors now report the molecular cloning and characterization of human RBC P4.2 cDNAs. By immunoscreening a human reticulocyte cDNA library and by using the polymerase chain reaction, two cDNA sequences of 2.4 and 2.5 kilobases (kb) were obtained. These cDNAs differ only by a 90-base-air insert in the longer isoform located three codons downstream from the putative initiation site. The 2.4- and 2.5-kb cDNAs predict proteins of ∼77 and ∼80 kDa, respectively, and the authenticity was confirmed by sequence identity with 46 amino acids of three cyanogen bromide-cleaved peptides of P4.2. Northern blot analysis detected a major 2.4-kb RNA species in reticulocytes. Isolation of two P4.2 cDNAs implies existence of specific regulation of P4.2 expression in human RBCs. Human RBC P4.2 has significant homology with human factor XIII subunit a and guinea pig liver transglutaminase. Sequence alignment of P4.2 with these two transglutaminases, however, revealed that P4.2 lacks the critical cysteine residue required for the enzymatic crosslinking of substrates

  7. Popular Theatre for Science Engagement: Audience Engagement with Human Cloning Following a Production of Caryl Churchill's "A Number"

    Science.gov (United States)

    Donkers, Martina; Orthia, Lindy A.

    2016-01-01

    Research into the role of fiction in engaging people with science is a growing area, but a little studied medium in this respect is "popular theatre," or non-pedagogic theatre that exists primarily as a work of art. This study investigated audience engagement with human cloning issues after seeing a performance of Caryl Churchill's 2002…

  8. Cloning and characterization of a human orphan family C G-protein coupled receptor GPRC5D

    DEFF Research Database (Denmark)

    Bräuner-Osborne, H; Jensen, A A; Sheppard, P O

    2001-01-01

    predicted to encode an additional subtype. The full length coding regions of mouse mGprc5d and human GPRC5D were cloned and shown to contain predicted open reading frames of 300 and 345 amino acids, respectively. GPRC5D has seven putative transmembrane segments and is expressed in the cell membrane...

  9. Cloning of the human carnitine-acylcarnitine carrier cDNA and identification of the molecular defect in a patient

    NARCIS (Netherlands)

    Huizing, M.; Iacobazzi, V.; IJlst, L.; Savelkoul, P.; Ruitenbeek, W.; van den Heuvel, L.; Indiveri, C.; Smeitink, J.; Trijbels, F.; Wanders, R.; Palmieri, F.

    1997-01-01

    The carnitine-acylcarnitine carrier (CAC) catalyzes the translocation of long-chain fatty acids across the inner mitochondrial membrane. We cloned and sequenced the human CAC cDNA, which has an open reading frame of 903 nucleotides. Northern blot studies revealed different expression levels of CAC

  10. Molecular cloning of the human eosinophil-derived neurotoxin: A member of the ribonuclease gene family

    International Nuclear Information System (INIS)

    Rosenberg, H.F.; Tenen, D.G.; Ackerman, S.J.

    1989-01-01

    The authors have isolated a 725-base-pair cDNA clone for human eosinophil-derived neurotoxin (EDN). EDN is a distinct cationic protein of the eosinophil's large specific granule known primarily for its ability to induce ataxia, paralysis, and central nervous system cellular degeneration in experimental animals (Gordon phenomenon). The open reading frame encodes a 134-amino acid mature polypeptide with a molecular mass of 15.5 kDa and a 27-residue amino-terminal hydrophobic leader sequence. The sequence of the mature polypeptide is identical to that reported for human urinary ribonuclease, and to the amino-terminal sequence of human liver ribonuclease; the cDNA encodes a tryptophan in position 7. Both EDN and the related granule protein, eosinophil cationic protein, have ribonucleolytic activity; sequence similarities among EDN, eosinophil cationic protein, ribonucleases from liver, urine, and pancreas, and angiogenin define a ribonuclease multigene family. mRNA encoding EDN was detected in uninduced HL-60 cells and was up-regulated in cells induced toward eosinophilic differentiation with B-cell growth factor 2/interleukin 5 and toward neutrophilic differentiation with dimethyl sulfoxide. EDN mRNA was detected in mature neutrophils even though EDN-like neurotoxic activity is not found neutrophil extracts. These results suggest that neutrophils contain a protein that is closely related or identical to EDN

  11. Regulating stem-cell research and human cloning in an Australian context: an exercise in protecting the status of the human subject.

    Science.gov (United States)

    Harvey, Olivia

    2005-01-01

    Over 12 months prior to the recent United Nations decision to defer a decision about what type of international treaty should be developed in the global stem-cell research and human cloning debate, the Federal Parliament of Australia passed two separate pieces of legislation relating to both these concerns. After a five-year long process of community consultation, media spectacle and parliamentary debate, reproductive cloning has been banned in Australia and only embryos considered to be excess to assisted reproductive technologies in existence on the 5th of April 2002 are currently valid research material. This paper argues that underpinning both pieces of legislation is a profound belief in the disruptive potential of all types of human cloning for the very nature and integrity of human species being. A belief, moreover, that is based on a presumption that it is apparently possible to conceptualise what being human even means for all Australians.

  12. Molecular and Biological Characterization of an Isolate of Cucumber mosaic virus from Glycine soja by Generating its Infectious Full-genome cDNA Clones

    Directory of Open Access Journals (Sweden)

    Mi Sa Vo Phan

    2014-06-01

    Full Text Available Molecular and biological characteristics of an isolate of Cucumber mosaic virus (CMV from Glycine soja (wild soybean, named as CMV-209, was examined in this study. Comparison of nucleotide sequences and phylogenetic analyses of CMV-209 with the other CMV strains revealed that CMV-209 belonged to CMV subgroup I. However, CMV-209 showed some genetic distance from the CMV strains assigned to subgroup IA or subgroup IB. Infectious full-genome cDNA clones of CMV-209 were generated under the control of the Cauliflower mosaic virus 35S promoter. Infectivity of the CMV-209 clones was evaluated in Nicotiana benthamiana and various legume species. Our assays revealed that CMV-209 could systemically infect Glycine soja (wild soybean and Pisum sativum (pea as well as N. benthamiana, but not the other legume species.

  13. Rhipicephalus (Boophilus) microplus strain Deutsch, 5 BAC clone sequencing, including two encoding Cytochrome P450s and one encoding CzEst9 carboxylesterase

    Science.gov (United States)

    The cattle tick, Rhipicephalus (Boophilus) microplus, has a genome over 2.4 times the size of the human genome, and with over 70% of repetitive DNA, this genome would prove very costly to sequence at today's prices and difficult to assemble and analyze. BAC clones give insight into the genome struct...

  14. Nucleotide sequence of cloned cDNA for human sphingolipid activator protein 1 precursor

    International Nuclear Information System (INIS)

    Dewji, N.N.; Wenger, D.A.; O'Brien, J.S.

    1987-01-01

    Two cDNA clones encoding prepro-sphingolipid activator protein 1 (SAP-1) were isolated from a λ gt11 human hepatoma expression library using polyclonal antibodies. These had inserts of ≅ 2 kilobases (λ-S-1.2 and λ-S-1.3) and both were both homologous with a previously isolated clone (λ-S-1.1) for mature SAP-1. The authors report here the nucleotide sequence of the longer two EcoRI fragments of S-1.2 and S-1.3 that were not the same and the derived amino acid sequences of mature SAP-1 and its prepro form. The open reading frame encodes 19 amino acids, which are colinear with the amino-terminal sequence of mature SAP-1, and extends far beyond the predicted carboxyl terminus of mature SAP-1, indicating extensive carboxyl-terminal processing. The nucleotide sequence of cDNA encoding prepro-SAP-1 includes 1449 bases from the assigned initiation codon ATG at base-pair 472 to the stop codon TGA at base-pair 1921. The first 23 amino acids coded after the initiation ATG are characteristic of a signal peptide. The calculated molecular mass for a polypeptide encoded by 1449 bases is ≅ 53 kDa, in keeping with the reported value for pro-SAP-1. The data indicate that after removal of the signal peptide mature SAP-1 is generated by removing an additional 7 amino acids from the amino terminus and ≅ 373 amino acids from the carboxyl terminus. One potential glycosylation site was previously found in mature SAP-1. Three additional potential glycosylation sites are present in the processed carboxyl-terminal polypeptide, which they designate as P-2

  15. Human genome project: revolutionizing biology through leveraging technology

    Science.gov (United States)

    Dahl, Carol A.; Strausberg, Robert L.

    1996-04-01

    The Human Genome Project (HGP) is an international project to develop genetic, physical, and sequence-based maps of the human genome. Since the inception of the HGP it has been clear that substantially improved technology would be required to meet the scientific goals, particularly in order to acquire the complete sequence of the human genome, and that these technologies coupled with the information forthcoming from the project would have a dramatic effect on the way biomedical research is performed in the future. In this paper, we discuss the state-of-the-art for genomic DNA sequencing, technological challenges that remain, and the potential technological paths that could yield substantially improved genomic sequencing technology. The impact of the technology developed from the HGP is broad-reaching and a discussion of other research and medical applications that are leveraging HGP-derived DNA analysis technologies is included. The multidisciplinary approach to the development of new technologies that has been successful for the HGP provides a paradigm for facilitating new genomic approaches toward understanding the biological role of functional elements and systems within the cell, including those encoded within genomic DNA and their molecular products.

  16. Defining functional DNA elements in the human genome

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  17. The human noncoding genome defined by genetic diversity.

    Science.gov (United States)

    di Iulio, Julia; Bartha, Istvan; Wong, Emily H M; Yu, Hung-Chun; Lavrenko, Victor; Yang, Dongchan; Jung, Inkyung; Hicks, Michael A; Shah, Naisha; Kirkness, Ewen F; Fabani, Martin M; Biggs, William H; Ren, Bing; Venter, J Craig; Telenti, Amalio

    2018-03-01

    Understanding the significance of genetic variants in the noncoding genome is emerging as the next challenge in human genomics. We used the power of 11,257 whole-genome sequences and 16,384 heptamers (7-nt motifs) to build a map of sequence constraint for the human species. This build differed substantially from traditional maps of interspecies conservation and identified regulatory elements among the most constrained regions of the genome. Using new Hi-C experimental data, we describe a strong pattern of coordination over 2 Mb where the most constrained regulatory elements associate with the most essential genes. Constrained regions of the noncoding genome are up to 52-fold enriched for known pathogenic variants as compared to unconstrained regions (21-fold when compared to the genome average). This map of sequence constraint across thousands of individuals is an asset to help interpret noncoding elements in the human genome, prioritize variants and reconsider gene units at a larger scale.

  18. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    OpenAIRE

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-01-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding t...

  19. Population genetic inference from personal genome data: impact of ancestry and admixture on human genomic variation.

    Science.gov (United States)

    Kidd, Jeffrey M; Gravel, Simon; Byrnes, Jake; Moreno-Estrada, Andres; Musharoff, Shaila; Bryc, Katarzyna; Degenhardt, Jeremiah D; Brisbin, Abra; Sheth, Vrunda; Chen, Rong; McLaughlin, Stephen F; Peckham, Heather E; Omberg, Larsson; Bormann Chung, Christina A; Stanley, Sarah; Pearlstein, Kevin; Levandowsky, Elizabeth; Acevedo-Acevedo, Suehelay; Auton, Adam; Keinan, Alon; Acuña-Alonzo, Victor; Barquera-Lozano, Rodrigo; Canizales-Quinteros, Samuel; Eng, Celeste; Burchard, Esteban G; Russell, Archie; Reynolds, Andy; Clark, Andrew G; Reese, Martin G; Lincoln, Stephen E; Butte, Atul J; De La Vega, Francisco M; Bustamante, Carlos D

    2012-10-05

    Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas-70% of the European ancestry in today's African Americans dates back to European gene flow happening only 7-8 generations ago. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. Megabase replication domains along the human genome: relation to chromatin structure and genome organisation.

    Science.gov (United States)

    Audit, Benjamin; Zaghloul, Lamia; Baker, Antoine; Arneodo, Alain; Chen, Chun-Long; d'Aubenton-Carafa, Yves; Thermes, Claude

    2013-01-01

    In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.

  1. Molecular cloning of a human gene that is a member of the nerve growth factor family

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.R.; Reichardt, L.F. (Howard Hughes Medical Institute, San Francisco, CA (USA))

    1990-10-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. The authors have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development.

  2. Zebrafish syntenic relationship to human/mouse genomes revealed by radiation hybrid mapping

    International Nuclear Information System (INIS)

    Samonte, Irene E.

    2007-01-01

    Zebrafish (Danio rerio) is an excellent model system for vertebrate developmental analysis and a new model for human disorders. In this study, however, zebrafish was used to determine its syntenic relationship to human/mouse genomes using the zebrafish-hamster radiation hybrid panel. The focus was on genes residing on chromosomes 6 and 17 of human and mouse, respectively, and some other genes of either immunologic or evolutionary importance. Gene sequences of interest and zebrafish expressed sequence tags deposited in the GenBank were used in identifying zebrafish homologs. Polymerase chain reaction (PCR) amplification, cloning and subcloning, sequencing, and phylogenetic analysis were done to confirm the homology of the candidate genes in zebrafish. The promising markers were then tested in the 94 zebrafish-hamster radiation hybrid panel cell lines and submitted for logarithm of the odds (LOD) score analysis to position genes on the zebrafish map. A total of 19 loci were successfully mapped to zebrafish linkage groups 1, 14, 15, 19, and 20. Four of these loci were positioned in linkage group 20, whereas, 3 more loci were added in linkage group 19, thus increasing to 34 loci the number of human genes syntenic to the group. With the sequencing of the zebrafish genome, about 20 more MHC genes were reported linked on the same group. (Author)

  3. Cloning and characterization of the human integrin β6 gene promoter.

    Directory of Open Access Journals (Sweden)

    Mingyan Xu

    Full Text Available The integrin β6 (ITGB6 gene, which encodes the limiting subunit of the integrin αvβ6 heterodimer, plays an important role in wound healing and carcinogenesis. The mechanism underlying ITGB6 regulation, including the identification of DNA elements and cognate transcription factors responsible for basic transcription of human ITGB6 gene, remains unknown. This report describes the cloning and characterization of the human ITGB6 promoter. Using 5'-RACE (rapid amplification of cDNA ends analysis, the transcriptional initiation site was identified. Promoter deletion analysis identified and functionally validated a TATA box located in the region -24 to -18 base pairs upstream of the ITGB6 promoter. The regulatory elements for transcription of the ITGB6 gene were predominantly located -289 to -150 from the ITGB6 promoter and contained putative binding sites for transcription factors such as STAT3 and C/EBPα. Using chromatin immunoprecipitation assays, this study has demonstrated, for the first time, that transcription factors STAT3 and C/EBPα are involved in the positive regulation of ITGB6 transcription in oral squamous cell carcinoma cells. These findings have important implications for unraveling the mechanism of abnormal ITGB6 activation in tissue remodeling and tumorigenesis.

  4. Cloning, enzyme characterization of recombinant human Eg5 and the development of a new inhibitor.

    Science.gov (United States)

    Yang, Lei; Jiang, Cheng; Liu, Fei; You, Qi-Dong; Wu, Wu-Tong

    2008-07-01

    The microtubule-dependent motor protein Eg5 is essential for the development and function of the mitotic spindle. Now it has become an anti-mitotic drug target in high throughput screening for anticancer dugs in vitro. Here is a protocol for cloning, expression and purification of a human Eg5 that codes for motor and linker domain in Escherichia coli BL21 (DE3) cells. The effects of temperature, pH, metal ions and DMSO on ATPase activity were investigated. A new compound CPUYL064 showed good inhibitory effect against Eg5 (IC(50) value, 100 nM). It inhibited the proliferation of human hepatocellular liver carcinoma cell line HepG2 in a dose- and time-dependent manner. CPUYL064 induced a clear G(2)/M phase arrest and caused the monastral spindle in HepG2 cells. Induction of apoptosis was further confirmed by changes in membrane phospholipids, changes in mitochondrial membrane potential and by detection of DNA fragmentation. These results indicate that CPUYL064 could be developed as a new, potent mitotic arrest compound.

  5. Cloning of human genes encoding novel G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, A.; Docherty, J.M.; Heiber, M. [Univ. of Toronto, (Canada)] [and others

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  6. Human genome and open source: balancing ethics and business.

    Science.gov (United States)

    Marturano, Antonio

    2011-01-01

    The Human Genome Project has been completed thanks to a massive use of computer techniques, as well as the adoption of the open-source business and research model by the scientists involved. This model won over the proprietary model and allowed a quick propagation and feedback of research results among peers. In this paper, the author will analyse some ethical and legal issues emerging by the use of such computer model in the Human Genome property rights. The author will argue that the Open Source is the best business model, as it is able to balance business and human rights perspectives.

  7. From hacking the human genome to editing organs.

    Science.gov (United States)

    Tobita, Takamasa; Guzman-Lepe, Jorge; Collin de l'Hortet, Alexandra

    2015-01-01

    In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies.

  8. Sequencing and analysis of an Irish human genome.

    LENUS (Irish Health Repository)

    Tong, Pin

    2010-01-01

    Recent studies generating complete human sequences from Asian, African and European subgroups have revealed population-specific variation and disease susceptibility loci. Here, choosing a DNA sample from a population of interest due to its relative geographical isolation and genetic impact on further populations, we extend the above studies through the generation of 11-fold coverage of the first Irish human genome sequence.

  9. The diploid genome sequence of an individual human.

    Directory of Open Access Journals (Sweden)

    Samuel Levy

    2007-09-01

    Full Text Available Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel included 3,213,401 single nucleotide polymorphisms (SNPs, 53,823 block substitutions (2-206 bp, 292,102 heterozygous insertion/deletion events (indels(1-571 bp, 559,473 homozygous indels (1-82,711 bp, 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.

  10. Learning about human population history from ancient and modern genomes.

    Science.gov (United States)

    Stoneking, Mark; Krause, Johannes

    2011-08-18

    Genome-wide data, both from SNP arrays and from complete genome sequencing, are becoming increasingly abundant and are now even available from extinct hominins. These data are providing new insights into population history; in particular, when combined with model-based analytical approaches, genome-wide data allow direct testing of hypotheses about population history. For example, genome-wide data from both contemporary populations and extinct hominins strongly support a single dispersal of modern humans from Africa, followed by two archaic admixture events: one with Neanderthals somewhere outside Africa and a second with Denisovans that (so far) has only been detected in New Guinea. These new developments promise to reveal new stories about human population history, without having to resort to storytelling.

  11. A periodic pattern of SNPs in the human genome

    DEFF Research Database (Denmark)

    Madsen, Bo Eskerod; Villesen, Palle; Wiuf, Carsten

    2007-01-01

    By surveying a filtered, high-quality set of SNPs in the human genome, we have found that SNPs positioned 1, 2, 4, 6, or 8 bp apart are more frequent than SNPs positioned 3, 5, 7, or 9 bp apart. The observed pattern is not restricted to genomic regions that are known to cause sequencing...... periodic DNA. Our results suggest that not all SNPs in the human genome are created by independent single nucleotide mutations, and that care should be taken in analysis of SNPs from periodic DNA. The latter may have important consequences for SNP and association studies....... or alignment errors, for example, transposable elements (SINE, LINE, and LTR), tandem repeats, and large duplicated regions. However, we found that the pattern is almost entirely confined to what we define as "periodic DNA." Periodic DNA is a genomic region with a high degree of periodicity in nucleotide usage...

  12. Molecular cloning of cDNAs of human liver and placenta NADH-cytochrome b5 reductase

    International Nuclear Information System (INIS)

    Yubisui, T.; Naitoh, Y.; Zenno, S.; Tamura, M.; Takeshita, M.; Sakaki, Y.

    1987-01-01

    A cDNA coding for human liver NADH-cytochrome b 5 reductase was cloned from a human liver cDNA library constructed in phage λgt11. The library was screened by using an affinity-purified rabbit antibody against NADH-cytochrome b 5 reductase of human erythrocytes. A cDNA about 1.3 kilobase pairs long was isolated. By using the cDNA as a probe, another cDNA (pb 5 R141) of 1817 base pairs was isolated that hybridized with a synthetic oligonucleotide encoding Pro-Asp-Ile-Lys-Tyr-Pro, derived from the amino acid sequence at the amino-terminal region of the enzyme from human erythrocytes. Furthermore, by using the pb 5 R141 as a probe, cDNA clones having more 5' sequence were isolated from a human placenta cDNA library. The amino acid sequences deduced from the nucleotide sequences of these cDNA clones overlapped each other and consisted of a sequence that completely coincides with that of human erythrocytes and a sequence of 19 amino acid residues extended at the amino-terminal side. The latter sequence closely resembles that of the membrane-binding domain of steer liver microsomal enzyme

  13. Cross-reactivity of human nickel-reactive T-lymphocyte clones with copper and palladium

    NARCIS (Netherlands)

    Pistoor, F. H.; Kapsenberg, M. L.; Bos, J. D.; Meinardi, M. M.; von Blomberg, M. E.; Scheper, R. J.

    1995-01-01

    Twenty Ni-reactive T-lymphocyte clones were obtained from eight different donors and analyzed for their ability to cross-react with other metals. All Ni-reactive T-lymphocyte clones were CD4+CD8- and recognized Ni in association with either HLA-DR or -DQ molecules. Based on the periodic table of the

  14. Cloned animal products in the human food chain: FDA should protect American consumers.

    Science.gov (United States)

    Butler, Jennifer E F

    2009-01-01

    Animal cloning is "complex process that lets one exactly copy the genetic, or inherited, traits of an animal." In 1997, Dolly the sheep was the first animal cloned and since then "scientists have used animal cloning to breed dairy cows, beef cattle, poultry, hogs and other species of livestock." Cloned animals are highly attractive to livestock breeders because "cloning essentially produces an identical copy of an animal with superior traits." The main purpose of cloning livestock is "more focused on efficiency and economic benefits of the producer rather than the overall effect of cloning on an animal's physical and mental welfare." The focus of this article is threefold. First, the science behind animal cloning is explained and some potential uses and risks of this technology are explored. Second, FDA's historical evolution, current regulatory authority, and limitations of that authority, is described. Lastly, a new regulatory vision recognizes the realities of 21st century global markets and the dynamic evolution of scientific discovery and technology.

  15. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  16. National human genome projects: an update and an agenda

    OpenAIRE

    An, Joon Yong

    2017-01-01

    Population genetic and human genetic studies are being accelerated with genome technology and data sharing. Accordingly, in the past 10 years, several countries have initiated genetic research using genome technology and identified the genetic architecture of the ethnic groups living in the corresponding country or suggested the genetic foundation of a social phenomenon. Genetic research has been conducted from epidemiological studies that previously described the health or disease conditions...

  17. Saccharomyces genome database informs human biology

    OpenAIRE

    Skrzypek, Marek S; Nash, Robert S; Wong, Edith D; MacPherson, Kevin A; Hellerstedt, Sage T; Engel, Stacia R; Karra, Kalpana; Weng, Shuai; Sheppard, Travis K; Binkley, Gail; Simison, Matt; Miyasato, Stuart R; Cherry, J Michael

    2017-01-01

    Abstract The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is an expertly curated database of literature-derived functional information for the model organism budding yeast, Saccharomyces cerevisiae. SGD constantly strives to synergize new types of experimental data and bioinformatics predictions with existing data, and to organize them into a comprehensive and up-to-date information resource. The primary mission of SGD is to facilitate research into the biology of yeast and...

  18. [Cloning and sequence analysis of the DHBV genome of the brown ducks in Guilin region and establishment of the quantitative method for detecting DHBV].

    Science.gov (United States)

    Su, He-Ling; Huang, Ri-Dong; He, Song-Qing; Xu, Qing; Zhu, Hua; Mo, Zhi-Jing; Liu, Qing-Bo; Liu, Yong-Ming

    2013-03-01

    Brown ducks carrying DHBV were widely used as hepatitis B animal model in the research of the activity and toxicity of anti-HBV dugs. Studies showed that the ratio of DHBV carriers in the brown ducks in Guilin region was relatively high. Nevertheless, the characters of the DHBV genome of Guilin brown duck remain unknown. Here we report the cloning of the genome of Guilin brown duck DHBV and the sequence analysis of the genome. The full length of the DHBV genome of Guilin brown duck was 3 027bp. Analysis using ORF finder found that there was an ORF for an unknown peptide other than S-ORF, PORF and C-ORF in the genome of the DHBV. Vector NTI 8. 0 analysis revealed that the unknown peptide contained a motif which binded to HLA * 0201. Aligning with the DHBV sequences from different countries and regions indicated that there were no obvious differences of regional distribution among the sequences. A fluorescence quantitative PCR for detecting DHBV was establishment based on the recombinant plasmid pGEM-DHBV-S constructed. This study laid the groundwork for using Guilin brown duck as a hepatitis B animal model.

  19. In the Beginning was the Genome: Genomics and the Bi-textuality of Human Existence.

    Science.gov (United States)

    Zwart, H A E Hub

    2018-04-01

    This paper addresses the cultural impact of genomics and the Human Genome Project (HGP) on human self-understanding. Notably, it addresses the claim made by Francis Collins (director of the HGP) that the genome is the language of God and the claim made by Max Delbrück (founding father of molecular life sciences research) that Aristotle must be credited with having predicted DNA as the soul that organises bio-matter. From a continental philosophical perspective I will argue that human existence results from a dialectical interaction between two types of texts: the language of molecular biology and the language of civilisation; the language of the genome and the language of our socio-cultural, symbolic ambiance. Whereas the former ultimately builds on the alphabets of genes and nucleotides, the latter is informed by primordial texts such as the Bible and the Quran. In applied bioethics deliberations on genomics, science is easily framed as liberating and progressive, religious world-views as conservative and restrictive (Zwart 1993). This paper focusses on the broader cultural ambiance of the debate to discern how the bi-textuality of human existence is currently undergoing a transition, as not only the physiological, but also the normative dimension is being reframed in biomolecular and terabyte terms.

  20. Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning.

    Science.gov (United States)

    Monzani, P S; Sangalli, J R; De Bem, T H C; Bressan, F F; Fantinato-Neto, P; Pimentel, J R V; Birgel-Junior, E H; Fontes, A M; Covas, D T; Meirelles, F V

    2013-02-28

    Recombinant coagulation factor IX must be produced in mammalian cells because FIX synthesis involves translational modifications. Human cell culture-based expression of human coagulation factor IX (hFIX) is expensive, and large-scale production capacity is limited. Transgenic animals may greatly increase the yield of therapeutic proteins and reduce costs. In this study, we used a lentiviral system to obtain transgenic cells and somatic cell nuclear transfer (SCNT) to produce transgenic animals. Lentiviral vectors carrying hFIX driven by 3 bovine β-casein promoters were constructed. Bovine epithelial mammary cells were transduced by lentivirus, selected with blasticidin, plated on extracellular matrix, and induced by lactogenic hormones; promoter activity was evaluated by quantitative PCR. Transcriptional activity of the 5.335-kb promoter was 6-fold higher than the 3.392- and 4.279-kb promoters, which did not significantly differ. Transgenic bovine fibroblasts were transduced with lentivirus carrying the 5.335-kb promoter and used as donor cells for SCNT. Cloned transgenic embryo production yielded development rates of 28.4%, similar to previous reports on cloned non-transgenic embryos. The embryos were transferred to recipient cows (N = 21) and 2 births of cloned transgenic cattle were obtained. These results suggest combination of the lentiviral system and cloning may be a good strategy for production of transgenic cattle.

  1. Genomic signatures of diet-related shifts during human origins.

    Science.gov (United States)

    Babbitt, Courtney C; Warner, Lisa R; Fedrigo, Olivier; Wall, Christine E; Wray, Gregory A

    2011-04-07

    There are numerous anthropological analyses concerning the importance of diet during human evolution. Diet is thought to have had a profound influence on the human phenotype, and dietary differences have been hypothesized to contribute to the dramatic morphological changes seen in modern humans as compared with non-human primates. Here, we attempt to integrate the results of new genomic studies within this well-developed anthropological context. We then review the current evidence for adaptation related to diet, both at the level of sequence changes and gene expression. Finally, we propose some ways in which new technologies can help identify specific genomic adaptations that have resulted in metabolic and morphological differences between humans and non-human primates.

  2. Beyond the human genome: Microbes, methaphors and what it means to be human in an interconnected post-genomic world

    NARCIS (Netherlands)

    Nerlich, B.; Hellsten, I.R.

    2009-01-01

    Four years after the completion of the Human Genome Project, the US National Institutes for Health launched the Human Microbiome Project on 19 December 2007. Using metaphor analysis, this article investigates reporting in English-language newspapers on advances in microbiomics from 2003 onwards,

  3. Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III

    Science.gov (United States)

    Aspinwall, Richard; Rothwell, Dominic G.; Roldan-Arjona, Teresa; Anselmino, Catherine; Ward, Christopher J.; Cheadle, Jeremy P.; Sampson, Julian R.; Lindahl, Tomas; Harris, Peter C.; Hickson, Ian D.

    1997-01-01

    Repair of oxidative damage to DNA bases is essential to prevent mutations and cell death. Endonuclease III is the major DNA glycosylase activity in Escherichia coli that catalyzes the excision of pyrimidines damaged by ring opening or ring saturation, and it also possesses an associated lyase activity that incises the DNA backbone adjacent to apurinic/apyrimidinic sites. During analysis of the area adjacent to the human tuberous sclerosis gene (TSC2) in chromosome region 16p13.3, we identified a gene, OCTS3, that encodes a 1-kb transcript. Analysis of OCTS3 cDNA clones revealed an open reading frame encoding a predicted protein of 34.3 kDa that shares extensive sequence similarity with E. coli endonuclease III and a related enzyme from Schizosaccharomyces pombe, including a conserved active site region and an iron/sulfur domain. The product of the OCTS3 gene was therefore designated hNTH1 (human endonuclease III homolog 1). The hNTH1 protein was overexpressed in E. coli and purified to apparent homogeneity. The recombinant protein had spectral properties indicative of the presence of an iron/sulfur cluster, and exhibited DNA glycosylase activity on double-stranded polydeoxyribonucleotides containing urea and thymine glycol residues, as well as an apurinic/apyrimidinic lyase activity. Our data indicate that hNTH1 is a structural and functional homolog of E. coli endonuclease III, and that this class of enzymes, for repair of oxidatively damaged pyrimidines in DNA, is highly conserved in evolution from microorganisms to human cells. PMID:8990169

  4. 78 FR 68856 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-11-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Nakamura, Ph.D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research...-402-0838. [[Page 68857

  5. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori

    International Nuclear Information System (INIS)

    Han Cong; Wang Qi; Dong Lei; Sun Haifang; Peng Shuying; Chen Jing; Yang Yiming; Yue Jianmin; Shen Xu; Jiang Hualiang

    2004-01-01

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K cat of 3.4 s -1 , K m of 1.7 mM, and K cat /K m of 2000 M -1 s -1 . HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 deg. C. The enzyme activity of Co 2+ -containing HpPDF is apparently higher than that of Zn 2+ -containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori

  6. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori.

    Science.gov (United States)

    Han, Cong; Wang, Qi; Dong, Lei; Sun, Haifang; Peng, Shuying; Chen, Jing; Yang, Yiming; Yue, Jianmin; Shen, Xu; Jiang, Hualiang

    2004-07-09

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K(cat) of 3.4s(-1), K(m) of 1.7 mM, and K(cat) / K(m) of 2000M(-1)s(-1). HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 degrees C. The enzyme activity of Co(2+)-containing HpPDF is apparently higher than that of Zn(2+)-containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori.

  7. Continued colonization of the human genome by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Miria Ricchetti

    2004-09-01

    Full Text Available Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4-6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA.

  8. Microbial genome-wide association studies: lessons from human GWAS.

    Science.gov (United States)

    Power, Robert A; Parkhill, Julian; de Oliveira, Tulio

    2017-01-01

    The reduced costs of sequencing have led to whole-genome sequences for a large number of microorganisms, enabling the application of microbial genome-wide association studies (GWAS). Given the successes of human GWAS in understanding disease aetiology and identifying potential drug targets, microbial GWAS are likely to further advance our understanding of infectious diseases. These advances include insights into pressing global health problems, such as antibiotic resistance and disease transmission. In this Review, we outline the methodologies of GWAS, the current state of the field of microbial GWAS, and how lessons from human GWAS can direct the future of the field.

  9. The human Genome project and the future of oncology

    International Nuclear Information System (INIS)

    Collins, Francis S.

    1996-01-01

    The Human Genome Project is an ambitious 15-year effort to devise maps and sequence of the 3-billion base pair human genome, including all 100,000 genes. The project is running ahead of schedule and under budget. Already the effects on progress in disease gene discovery have been dramatic, especially for cancer. The most appropriate uses of susceptibility testing for breast, ovarian, and colon cancer are being investigated in research protocols, and the need to prevent genetic discrimination in employment and health insurance is becoming more urgent. In the longer term, these gene discoveries are likely to usher in a new era of therapeutic molecular medicine

  10. Characterization of noncoding regulatory DNA in the human genome.

    Science.gov (United States)

    Elkon, Ran; Agami, Reuven

    2017-08-08

    Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.

  11. Human placental Na+, K+-ATPase α subunit: cDNA cloning, tissue expression, DNA polymorphism, and chromosomal localization

    International Nuclear Information System (INIS)

    Chehab, F.F.; Kan, Y.W.; Law, M.L.; Hartz, J.; Kao, F.T.; Blostein, R.

    1987-01-01

    A 2.2-kilobase clone comprising a major portion of the coding sequence of the Na + , K + -ATPase α subunit was cloned from human placenta and its sequence was identical to that encoding the α subunit of human kidney and HeLa cells. Transfer blot analysis of the mRNA products of the Na + , K + -ATPase gene from various human tissues and cell lines revealed only one band (≅ 4.7 kilobases) under low and high stringency washing conditions. The levels of expression in the tissues were intestine > placenta > liver > pancreas, and in the cell lines the levels were human erythroleukemia > butyrate-induced colon > colon > brain > HeLa cells. mRNA was undetectable in reticulocytes, consistent with the authors failure to detect positive clones in a size-selected ( > 2 kilobases) λgt11 reticulocyte cDNA library. DNA analysis revealed by a polymorphic EcoRI band and chromosome localization by flow sorting and in situ hybridization showed that the α subunit is on the short is on the short arm (band p11-p13) of chromosome 1

  12. Regulating (for the benefit of) future persons: a different perspective on the FDA's jurisdiction to regulate human reproductive cloning.

    Science.gov (United States)

    Javitt, Gail H; Hudson, Kathy

    2003-01-01

    The Food and Drug Administration (FDA) has taken the position that human reproductive cloning falls within its regulatory jurisdiction. This position has been subject to criticism on both procedural and substantive grounds. Some have contended that the FDA has failed to follow administrative law principles in asserting its jurisdiction, while others claim the FDA is ill suited to the task of addressing the ethical and social implications of human cloning. This Article argues, that, notwithstanding these criticisms, the FDA could plausibly assert jurisdiction over human cloning as a form of human gene therapy, an area in which the FDA is already regarded as having primary regulatory authority. Such an assertion would require that the FDA's jurisdiction extend to products affecting future persons, i.e., those not yet born. This Article demonstrates, for the first time, that such jurisdiction was implicit in the enactment of the 1962 Kefauver-Harris Amendments to the Federal Food, Drug, and Cosmetic Act and that the FDA has historically relied on such authority in promulgating regulations for drugs and devices.

  13. Asexual propagation of a virulent clone complex in a human and feline outbreak of sporotrichosis.

    Science.gov (United States)

    Teixeira, Marcus de Melo; Rodrigues, Anderson Messias; Tsui, Clement K M; de Almeida, Luiz Gonzaga Paulo; Van Diepeningen, Anne D; van den Ende, Bert Gerrits; Fernandes, Geisa Ferreira; Kano, Rui; Hamelin, Richard C; Lopes-Bezerra, Leila Maria; Vasconcelos, Ana Tereza Ribeiro; de Hoog, Sybren; de Camargo, Zoilo Pires; Felipe, Maria Sueli Soares

    2015-02-01

    Sporotrichosis is one of the most frequent subcutaneous fungal infections in humans and animals caused by members of the plant-associated, dimorphic genus Sporothrix. Three of the four medically important Sporothrix species found in Brazil have been considered asexual as no sexual stage has ever been reported in Sporothrix schenckii, Sporothrix brasiliensis, or Sporothrix globosa. We have identified the mating type (MAT) loci in the S. schenckii (strain 1099-18/ATCC MYA-4821) and S. brasiliensis (strain 5110/ATCC MYA-4823) genomes by using comparative genomic approaches to determine the mating type ratio in these pathogen populations. Our analysis revealed the presence of a MAT1-1 locus in S. schenckii while a MAT1-2 locus was found in S. brasiliensis representing genomic synteny to other Sordariomycetes. Furthermore, the components of the mitogen-activated protein kinase (MAPK)-pheromone pathway, pheromone processing enzymes, and meiotic regulators have also been identified in the two pathogens, suggesting the potential for sexual reproduction. The ratio of MAT1-1 to MAT1-2 was not significantly different from 1:1 for all three Sporothrix species, but the population of S. brasiliensis in the outbreaks originated from a single mating type. We also explored the population genetic structure of these pathogens using sequence data of two loci to improve our knowledge of the pattern of geographic distribution, genetic variation, and virulence phenotypes. Population genetics data showed significant population differentiation and clonality with a low level of haplotype diversity in S. brasiliensis isolates from different regions of sporotrichosis outbreaks in Brazil. In contrast, S. schenckii isolates demonstrated a high degree of genetic variability without significant geographic differentiation, indicating the presence of recombination. This study demonstrated that two species causing the same disease have contrasting reproductive strategies and genetic variability

  14. The role of international institutions in the formation of international bioethical law: UNESCO and the United Nations General Assembly attempt to govern human cloning.

    Science.gov (United States)

    Kuppuswamy, Chamundeeswari

    2007-01-01

    This article analyses the international governance of human reproductive cloning. Noting that bioethics is a new field of engagement for international lawyers, it recounts some of the institutional developments in bioethical law making. The role of UNESCO and the United Nations General Assembly is scrutinized and the author discusses the relative merits of the institutions' governance of human reproductive cloning. The author suggests that some international institutions and mechanisms are better suited than others for bioethical law making. The 2005 General Assembly resolution on human cloning is analysed in this context.

  15. Genomics and the Ark: an ecocentric perspective on human history.

    Science.gov (United States)

    Zwart, Hub; Penders, Bart

    2011-01-01

    Views of ourselves in relationship to the rest of the biosphere are changing. Theocentric and anthropocentric perspectives are giving way to more ecocentric views on the history, present, and future of humankind. Novel sciences, such as genomics, have deepened and broadened our understanding of the process of anthropogenesis, the coming into being of humans. Genomics suggests that early human history must be regarded as a complex narrative of evolving ecosystems, in which human evolution both influenced and was influenced by the evolution of companion species. During the agricultural revolution, human beings designed small-scale artificial ecosystems or evolutionary "Arks," in which networks of plants, animals, and microorganisms coevolved. Currently, our attitude towards this process seems subject to a paradoxical reversal. The boundaries of the Ark have dramatically broadened, and genomics is not only being used to increase our understanding of our ecological past, but may also help us to conserve, reconstruct, or even revivify species and ecosystems to whose degradation or (near) extinction we have contributed. This article explores the role of genomics in the elaboration of a more ecocentric view of ourselves with the help of two examples, namely the renaissance of Paleolithic diets and of Pleistocene parks. It argues that an understanding of the world in ecocentric terms requires new partnerships and mutually beneficial forms of collaboration and convergence between life sciences, social sciences, and the humanities.

  16. Forces shaping the fastest evolving regions in the human genome.

    Directory of Open Access Journals (Sweden)

    Katherine S Pollard

    2006-10-01

    Full Text Available Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202 genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements are dramatically changed in human but not in other primates, with seven times more substitutions in human than in chimp. The accelerated elements, and in particular the top five, show a strong bias for adenine and thymine to guanine and cytosine nucleotide changes and are disproportionately located in high recombination and high guanine and cytosine content environments near telomeres, suggesting either biased gene conversion or isochore selection. In addition, there is some evidence of directional selection in the regions containing the two most accelerated regions. A combination of evolutionary forces has contributed to accelerated evolution of the fastest evolving elements in the human genome.

  17. Data mining and the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, Henry [The MITRE Corporation, McLean, VA (US). JASON Program Office; Callan, Curtis [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, William [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, Freeman [The MITRE Corporation, McLean, VA (US). JASON Program Office; Hwa, Terence [The MITRE Corporation, McLean, VA (US). JASON Program Office; Koonin, Steven [The MITRE Corporation, McLean, VA (US). JASON Program Office; Levine, Herbert [The MITRE Corporation, McLean, VA (US). JASON Program Office; Rothaus, Oscar [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, Roy [The MITRE Corporation, McLean, VA (US). JASON Program Office; Stubbs, Christopher [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, Peter [The MITRE Corporation, McLean, VA (US). JASON Program Office

    2000-01-07

    As genomics research moves from an era of data acquisition to one of both acquisition and interpretation, new methods are required for organizing and prioritizing the data. These methods would allow an initial level of data analysis to be carried out before committing resources to a particular genetic locus. This JASON study sought to delineate the main problems that must be faced in bioinformatics and to identify information technologies that can help to overcome those problems. While the current influx of data greatly exceeds what biologists have experienced in the past, other scientific disciplines and the commercial sector have been handling much larger datasets for many years. Powerful datamining techniques have been developed in other fields that, with appropriate modification, could be applied to the biological sciences.

  18. Can mammalian cloning combined with embryonic stem cell technologies be used to treat human diseases?

    Science.gov (United States)

    Hadjantonakis, Anna-Katerina; Papaioannou, Virginia E

    2002-01-01

    Cloning is commonly perceived as a means of generating genetically identical individuals, but it can also be used to obtain genetically matched embryo-derived stem cells, which could potentially be used in the treatment of patients. A recent report offers the first 'proof of principle' of such cloning for therapeutic purposes, referred to as nuclear transplantation to produce stem cells for autologous transplantation. PMID:12186652

  19. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  20. Differential responses to radiation and hyperthermia of cloned cell lines derived from a single human melanoma xenograft

    International Nuclear Information System (INIS)

    Rofstad, E.K.; Brustad, T.

    1984-01-01

    One uncloned and five cloned cell lines were derived from a single human melanoma xenograft. Cells from passages 7-12 were exposed to either radiation or hyperthermia (42.5 0 C, pH = 7.4) under aerobic conditions and the colony forming ability of the cells was assayed in soft agar. The five cloned lines showed individual and characteristic responses to radiation as well as to hyperthermia. The variation in the response to radiation was mainly reflected in the size of the shoulders of the survival curves rather than in the D 0 -values. The variation in the response to hyperthermia was mainly reflected in the terminal slopes of the survival curves. The survival curve of cells from the uncloned line, both when exposed to radiation and hyperthermia, was positioned in the midst of those of the cloned lines. The response of the cloned lines to radiation did not correlate with the response to hyperthermia, indicating that tumor cell subpopulations which are resistant to radiation may respond well to hyperthermia

  1. Plasticity of marrow mesenchymal stem cells from human first-trimester fetus: from single-cell clone to neuronal differentiation.

    Science.gov (United States)

    Zhang, Yihua; Shen, Wenzheng; Sun, Bingjie; Lv, Changrong; Dou, Zhongying

    2011-02-01

    Recent results have shown that bone marrow mesenchymal stem cells (BMSCs) from human first-trimester abortus (hfBMSCs) are closer to embryonic stem cells and perform greater telomerase activity and faster propagation than mid- and late-prophase fetal and adult BMSCs. However, no research has been done on the plasticity of hfBMSCs into neuronal cells using single-cell cloned strains without cell contamination. In this study, we isolated five single cells from hfBMSCs and obtained five single-cell cloned strains, and investigated their biological property and neuronal differentiation potential. We found that four of the five strains showed similar expression profile of surface antigen markers to hfBMSCs, and most of them differentiated into neuron-like cells expressing Nestin, Pax6, Sox1, β-III Tubulin, NF-L, and NSE under induction. One strain showed different expression profile of surface antigen markers from the four strains and hfBMSCs, and did not differentiate toward neuronal cells. We demonstrated for the first time that some of single-cell cloned strains from hfBMSCs can differentiate into nerve tissue-like cell clusters under induction in vitro, and that the plasticity of each single-cell cloned strain into neuronal cells is different.

  2. Utilization of a cloned alphoid repeating sequence of human DNA in the study of polymorphism of chromosomal heterochromatin regions

    International Nuclear Information System (INIS)

    Kruminya, A.R.; Kroshkina, V.G.; Yurov, Yu.B.; Aleksandrov, I.A.; Mitkevich, S.P.; Gindilis, V.M.

    1988-01-01

    The chromosomal distribution of the cloned PHS05 fragment of human alphoid DNA was studied by in situ hybridization in 38 individuals. It was shown that this DNA fraction is primarily localized in the pericentric regions of practically all chromosomes of the set. Significant interchromosomal differences and a weakly expressed interindividual polymorphism were discovered in the copying ability of this class of repeating DNA sequences; associations were not found between the results of hybridization and the pattern of Q-polymorphism

  3. Successful application of FTA Classic Card technology and use of bacteriophage phi29 DNA polymerase for large-scale field sampling and cloning of complete maize streak virus genomes.

    Science.gov (United States)

    Owor, Betty E; Shepherd, Dionne N; Taylor, Nigel J; Edema, Richard; Monjane, Adérito L; Thomson, Jennifer A; Martin, Darren P; Varsani, Arvind

    2007-03-01

    Leaf samples from 155 maize streak virus (MSV)-infected maize plants were collected from 155 farmers' fields in 23 districts in Uganda in May/June 2005 by leaf-pressing infected samples onto FTA Classic Cards. Viral DNA was successfully extracted from cards stored at room temperature for 9 months. The diversity of 127 MSV isolates was analysed by PCR-generated RFLPs. Six representative isolates having different RFLP patterns and causing either severe, moderate or mild disease symptoms, were chosen for amplification from FTA cards by bacteriophage phi29 DNA polymerase using the TempliPhi system. Full-length genomes were inserted into a cloning vector using a unique restriction enzyme site, and sequenced. The 1.3-kb PCR product amplified directly from FTA-eluted DNA and used for RFLP analysis was also cloned and sequenced. Comparison of cloned whole genome sequences with those of the original PCR products indicated that the correct virus genome had been cloned and that no errors were introduced by the phi29 polymerase. This is the first successful large-scale application of FTA card technology to the field, and illustrates the ease with which large numbers of infected samples can be collected and stored for downstream molecular applications such as diversity analysis and cloning of potentially new virus genomes.

  4. Non-genomic effects of vitamin D in human spermatozoa

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Dissing, Steen

    2012-01-01

    The spectrum for vitamin D (VD) mediated effects has expanded in recent years. Activated VD (1,25(OH)(2)D(3)) binds to the VD receptor (VDR) and mediates non-genomic effects through the alternative ligand binding-pocket (VDR-ap) or regulates gene transcription through the genomic binding......-pocket. VDR and VD-metabolizing enzymes are expressed in human testis, male reproductive tract and mature spermatozoa, and VD is considered important for male reproduction. Expression of the VD-inactivating enzyme CYP24A1 at the annulus of human spermatozoa distinguish normal and infertile men with high...... specificity, and CYP24A1 expression is positively correlated with all semen variables and suggested as a marker for both semen quality and VD responsiveness. Moreover, spermatozoa are transcriptionally silent and are therefore a unique model to study non-genomic effects. 1,25(OH)(2)D(3) induced a rapid...

  5. Porcine ubiquitin-like 5 (UBL5) gene: genomic organization, polymorphisms, mRNA cloning, splicing variants and association study

    Czech Academy of Sciences Publication Activity Database

    Masopust, Martin; Weisz, Filip; Bartenschlager, H.; Knoll, A.; Vykoukalová, Z.; Geldermann, H.; Čepica, Stanislav

    2014-01-01

    Roč. 41, č. 4 (2014), s. 2353-2362 ISSN 0301-4851 R&D Projects: GA ČR GAP502/10/1216 Institutional support: RVO:67985904 Keywords : pig * UBL5 * PCR cloning Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.024, year: 2014

  6. Molecular cloning, genomic organization, and expression of a B-type (cricket-type) allatostatin preprohormone from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Williamson, M; Lenz, C; Winther, A M

    2001-01-01

    and nonamidated C terminus. We have previously reported the structure of an A-type allatostatin preprohormone from the fruitfly Drosophila melanogaster. Here we describe the molecular cloning of a B-type prepro-allatostatin from Drosophila (DAP-B). DAP-B is 211 amino acid residues long and contains one copy each...

  7. Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component of human α-ketoacid dehydrogenase complexes

    International Nuclear Information System (INIS)

    Pons, G.; Raefsky-Estrin, C.; Carothers, D.J.; Pepin, R.A.; Javed, A.A.; Jesse, B.W.; Ganapathi, M.K.; Samols, D.; Patel, M.S.

    1988-01-01

    cDNA clones comprising the entire coding region for human dihydrolipoamide dehydrogenase have been isolated from a human liver cDNA library. The cDNA sequence of the largest clone consisted of 2082 base pairs and contained a 1527-base open reading frame that encodes a precursor dihydrolipoamide dehydrogenase of 509 amino acid residues. The first 35-amino acid residues of the open reading frame probably correspond to a typical mitochondrial import leader sequence. The predicted amino acid sequence of the mature protein, starting at the residue number 36 of the open reading frame, is almost identical (>98% homology) with the known partial amino acid sequence of the pig heart dihydrolipoamide dehydrogenase. The cDNA clone also contains a 3' untranslated region of 505 bases with an unusual polyadenylylation signal (TATAAA) and a short poly(A) track. By blot-hybridization analysis with the cDNA as probe, two mRNAs, 2.2 and 2.4 kilobases in size, have been detected in human tissues and fibroblasts, whereas only one mRNA (2.4 kilobases) was detected in rat tissues

  8. Phylogeny, diversity and host specialization in the phylum Synergistetes with emphasis on strains and clones of human origin.

    Science.gov (United States)

    Marchandin, Hélène; Damay, Audrey; Roudière, Laurent; Teyssier, Corinne; Zorgniotti, Isabelle; Dechaud, Hervé; Jean-Pierre, Hélène; Jumas-Bilak, Estelle

    2010-03-01

    Members of the phylum Synergistetes have been demonstrated in several environmental ecosystems and mammalian microflorae by culture-independent methods. In the past few years, the clinical relevance of some uncultivated phylotypes has been demonstrated in endodontic infections, and uncultured Synergistetes have been demonstrated in human mouth, gut and skin microbiota. However, Synergistetes are rarely cultured from human samples, and only 17 isolates are currently reported. Twelve members of Synergistetes isolated in the course of various infectious processes, including 3 Jonquetella anthropi, 2 Cloacibacillus evryensis, 2 Pyramidobacter piscolens and 5 unidentified strains, as well as 56 clones obtained by specific PCR from the normal vaginal microflora, were studied. 16S rRNA gene-based phylogeny showed that the clones were grouped into 3 clusters, corresponding to the genus Jonquetella, P. piscolens and one novel Synergistetes taxon. The presence and diversity of Synergistetes were reported for the first time in the vaginal microflora. Synergistetes were found in healthy patients, suggesting that they could play a functional role in human microflorae, but may also act as opportunistic pathogens. Studying the phylogenetic relationships between environmental and mammalian strains and clones revealed clearly delineated independent lineages according to the origin of the sequences. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  9. Evolutionary forces shaping genomic islands of population differentiation in humans

    Directory of Open Access Journals (Sweden)

    Hofer Tamara

    2012-03-01

    Full Text Available Abstract Background Levels of differentiation among populations depend both on demographic and selective factors: genetic drift and local adaptation increase population differentiation, which is eroded by gene flow and balancing selection. We describe here the genomic distribution and the properties of genomic regions with unusually high and low levels of population differentiation in humans to assess the influence of selective and neutral processes on human genetic structure. Methods Individual SNPs of the Human Genome Diversity Panel (HGDP showing significantly high or low levels of population differentiation were detected under a hierarchical-island model (HIM. A Hidden Markov Model allowed us to detect genomic regions or islands of high or low population differentiation. Results Under the HIM, only 1.5% of all SNPs are significant at the 1% level, but their genomic spatial distribution is significantly non-random. We find evidence that local adaptation shaped high-differentiation islands, as they are enriched for non-synonymous SNPs and overlap with previously identified candidate regions for positive selection. Moreover there is a negative relationship between the size of islands and recombination rate, which is stronger for islands overlapping with genes. Gene ontology analysis supports the role of diet as a major selective pressure in those highly differentiated islands. Low-differentiation islands are also enriched for non-synonymous SNPs, and contain an overly high proportion of genes belonging to the 'Oncogenesis' biological process. Conclusions Even though selection seems to be acting in shaping islands of high population differentiation, neutral demographic processes might have promoted the appearance of some genomic islands since i as much as 20% of islands are in non-genic regions ii these non-genic islands are on average two times shorter than genic islands, suggesting a more rapid erosion by recombination, and iii most loci are

  10. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    Science.gov (United States)

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  11. Insights into Modern Human Prehistory Using Ancient Genomes.

    Science.gov (United States)

    Yang, Melinda A; Fu, Qiaomei

    2018-03-01

    The genetic relationship of past modern humans to today's populations and each other was largely unknown until recently, when advances in ancient DNA sequencing allowed for unprecedented analysis of the genomes of these early people. These ancient genomes reveal new insights into human prehistory not always observed studying present-day populations, including greater details on the genetic diversity, population structure, and gene flow that characterized past human populations, particularly in early Eurasia, as well as increased insight on the relationship between archaic and modern humans. Here, we review genetic studies on ∼45000- to 7500-year-old individuals associated with mainly preagricultural cultures found in Eurasia, the Americas, and Africa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of phasing strategies for whole human genomes.

    Science.gov (United States)

    Choi, Yongwook; Chan, Agnes P; Kirkness, Ewen; Telenti, Amalio; Schork, Nicholas J

    2018-04-01

    Humans are a diploid species that inherit one set of chromosomes paternally and one homologous set of chromosomes maternally. Unfortunately, most human sequencing initiatives ignore this fact in that they do not directly delineate the nucleotide content of the maternal and paternal copies of the 23 chromosomes individuals possess (i.e., they do not 'phase' the genome) often because of the costs and complexities of doing so. We compared 11 different widely-used approaches to phasing human genomes using the publicly available 'Genome-In-A-Bottle' (GIAB) phased version of the NA12878 genome as a gold standard. The phasing strategies we compared included laboratory-based assays that prepare DNA in unique ways to facilitate phasing as well as purely computational approaches that seek to reconstruct phase information from general sequencing reads and constructs or population-level haplotype frequency information obtained through a reference panel of haplotypes. To assess the performance of the 11 approaches, we used metrics that included, among others, switch error rates, haplotype block lengths, the proportion of fully phase-resolved genes, phasing accuracy and yield between pairs of SNVs. Our comparisons suggest that a hybrid or combined approach that leverages: 1. population-based phasing using the SHAPEIT software suite, 2. either genome-wide sequencing read data or parental genotypes, and 3. a large reference panel of variant and haplotype frequencies, provides a fast and efficient way to produce highly accurate phase-resolved individual human genomes. We found that for population-based approaches, phasing performance is enhanced with the addition of genome-wide read data; e.g., whole genome shotgun and/or RNA sequencing reads. Further, we found that the inclusion of parental genotype data within a population-based phasing strategy can provide as much as a ten-fold reduction in phasing errors. We also considered a majority voting scheme for the construction of a

  13. Homology of yeast photoreactivating gene fragment with human genomic digests

    International Nuclear Information System (INIS)

    Meechan, P.J.; Milam, K.M.; Cleaver, J.E.

    1984-01-01

    Enzymatic photoreactivation of UV-induced DNA lesions has been demonstrated for a variety of prokaryotic and eukaryotic organisms. Its presence in placental mammals, however, has not been clearly established. The authors attempted to resolve this question by assaying for the presence (or absence) of sequences in human DNA complimentary to a fragment of the photoreactivating gene from S. cerevisiae that has recently been cloned. In another study, DNA from human, chick E. coli and yeast cells was digested with either HindIII of BglII, electrophoresed on a 0.5% agarose gel, transferred (Southern blot) to a nylon membrane and probed for homology against a Sau3A restriction fragment from S. cerevisiae that compliments phr/sup -/ cells. Hybridization to human DNA digests was observed only under relatively non-stringent conditions indicating the gene is not conserved in placental mammals. These results are correlated with current literature data concerning photoreactivating enzymes

  14. DOE Human Genome Program contractor-grantee workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This volume contains the proceedings for the DOE Human Genome Program`s Contractor-Grantee Workshop V held in Sante Fe, New Mexico January 28, February 1, 1996. Presentations were divided into sessions entitled Sequencing; Mapping; Informatics; Ethical, Legal, and Social Issues; and Infrastructure. Reports of individual projects described herein are separately indexed and abstracted for the database.

  15. Human genome program report. Part 2, 1996 research abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  16. Reconsidering democracy. History of the Human Genome Project.

    NARCIS (Netherlands)

    Marli Huijer

    2003-01-01

    What options are open for people—citizens, politicians, and other nonscientists—to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  17. Human genome program report. Part 1, overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  18. The Human Genome Project: Biology, Computers, and Privacy.

    Science.gov (United States)

    Cutter, Mary Ann G.; Drexler, Edward; Gottesman, Kay S.; Goulding, Philip G.; McCullough, Laurence B.; McInerney, Joseph D.; Micikas, Lynda B.; Mural, Richard J.; Murray, Jeffrey C.; Zola, John

    This module, for high school teachers, is the second of two modules about the Human Genome Project (HGP) produced by the Biological Sciences Curriculum Study (BSCS). The first section of this module provides background information for teachers about the structure and objectives of the HGP, aspects of the science and technology that underlie the…

  19. The human genome; you gain some, you lose some

    NARCIS (Netherlands)

    Kriek, Marjolein

    2007-01-01

    Copy number variations (CNVs) in the human genome are inherent in both evolutionary progression as well as the etiology of disease. The introduction of this thesis will review CNVs that appear to be neutral as well as CNVs that appear to be related to a phenotypic trait. This will be followed by a

  20. Reconsidering democracy - History of the human genome project

    NARCIS (Netherlands)

    Huijer, M

    What options are open for people-citizens, politicians, and other nonscientists-to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of