WorldWideScience

Sample records for human genome sequences

  1. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  2. The characterization of twenty sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Kimberly Pelak

    2010-09-01

    Full Text Available We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.

  3. Mapping and Sequencing the Human Genome

    Science.gov (United States)

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  4. [Mapping and human genome sequence program].

    Science.gov (United States)

    Weissenbach, J

    1997-03-01

    Until recently, human genome programs focused primarily on establishing maps that would provide signposts to researchers seeking to identify genes responsible for inherited diseases, as well as a basis for genome sequencing studies. Preestablished gene mapping goals have been reached. The over 7,000 microsatellite markers identified to date provide a map of sufficient density to allow localization of the gene of a monogenic disease with a precision of 1 to 2 million base pairs. The physical map, based on systematically arranged overlapping sets of artificial yeast chromosomes (YACs), has also made considerable headway during the last few years. The most recently published map covers more than 90% of the genome. However, currently available physical maps cannot be used for sequencing studies because multiple rearrangements occur in YACs. The recently developed sets of radioinduced hybrids are extremely useful for incorporating genes into existing maps. A network of American and European laboratories has successfully used these radioinduced hybrids to map 15,000 gene tags from large-scale cDNA library sequencing programs. There are increasingly pressing reasons for initiating large scale human genome sequencing studies.

  5. Building the sequence map of the human pan-genome

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Zheng, Hancheng

    2010-01-01

    Here we integrate the de novo assembly of an Asian and an African genome with the NCBI reference human genome, as a step toward constructing the human pan-genome. We identified approximately 5 Mb of novel sequences not present in the reference genome in each of these assemblies. Most novel...... analysis of predicted genes indicated that the novel sequences contain potentially functional coding regions. We estimate that a complete human pan-genome would contain approximately 19-40 Mb of novel sequence not present in the extant reference genome. The extensive amount of novel sequence contributing...... to the genetic variation of the pan-genome indicates the importance of using complete genome sequencing and de novo assembly....

  6. Initial sequencing and analysis of the human genome.

    Science.gov (United States)

    Lander, E S; Linton, L M; Birren, B; Nusbaum, C; Zody, M C; Baldwin, J; Devon, K; Dewar, K; Doyle, M; FitzHugh, W; Funke, R; Gage, D; Harris, K; Heaford, A; Howland, J; Kann, L; Lehoczky, J; LeVine, R; McEwan, P; McKernan, K; Meldrim, J; Mesirov, J P; Miranda, C; Morris, W; Naylor, J; Raymond, C; Rosetti, M; Santos, R; Sheridan, A; Sougnez, C; Stange-Thomann, Y; Stojanovic, N; Subramanian, A; Wyman, D; Rogers, J; Sulston, J; Ainscough, R; Beck, S; Bentley, D; Burton, J; Clee, C; Carter, N; Coulson, A; Deadman, R; Deloukas, P; Dunham, A; Dunham, I; Durbin, R; French, L; Grafham, D; Gregory, S; Hubbard, T; Humphray, S; Hunt, A; Jones, M; Lloyd, C; McMurray, A; Matthews, L; Mercer, S; Milne, S; Mullikin, J C; Mungall, A; Plumb, R; Ross, M; Shownkeen, R; Sims, S; Waterston, R H; Wilson, R K; Hillier, L W; McPherson, J D; Marra, M A; Mardis, E R; Fulton, L A; Chinwalla, A T; Pepin, K H; Gish, W R; Chissoe, S L; Wendl, M C; Delehaunty, K D; Miner, T L; Delehaunty, A; Kramer, J B; Cook, L L; Fulton, R S; Johnson, D L; Minx, P J; Clifton, S W; Hawkins, T; Branscomb, E; Predki, P; Richardson, P; Wenning, S; Slezak, T; Doggett, N; Cheng, J F; Olsen, A; Lucas, S; Elkin, C; Uberbacher, E; Frazier, M; Gibbs, R A; Muzny, D M; Scherer, S E; Bouck, J B; Sodergren, E J; Worley, K C; Rives, C M; Gorrell, J H; Metzker, M L; Naylor, S L; Kucherlapati, R S; Nelson, D L; Weinstock, G M; Sakaki, Y; Fujiyama, A; Hattori, M; Yada, T; Toyoda, A; Itoh, T; Kawagoe, C; Watanabe, H; Totoki, Y; Taylor, T; Weissenbach, J; Heilig, R; Saurin, W; Artiguenave, F; Brottier, P; Bruls, T; Pelletier, E; Robert, C; Wincker, P; Smith, D R; Doucette-Stamm, L; Rubenfield, M; Weinstock, K; Lee, H M; Dubois, J; Rosenthal, A; Platzer, M; Nyakatura, G; Taudien, S; Rump, A; Yang, H; Yu, J; Wang, J; Huang, G; Gu, J; Hood, L; Rowen, L; Madan, A; Qin, S; Davis, R W; Federspiel, N A; Abola, A P; Proctor, M J; Myers, R M; Schmutz, J; Dickson, M; Grimwood, J; Cox, D R; Olson, M V; Kaul, R; Raymond, C; Shimizu, N; Kawasaki, K; Minoshima, S; Evans, G A; Athanasiou, M; Schultz, R; Roe, B A; Chen, F; Pan, H; Ramser, J; Lehrach, H; Reinhardt, R; McCombie, W R; de la Bastide, M; Dedhia, N; Blöcker, H; Hornischer, K; Nordsiek, G; Agarwala, R; Aravind, L; Bailey, J A; Bateman, A; Batzoglou, S; Birney, E; Bork, P; Brown, D G; Burge, C B; Cerutti, L; Chen, H C; Church, D; Clamp, M; Copley, R R; Doerks, T; Eddy, S R; Eichler, E E; Furey, T S; Galagan, J; Gilbert, J G; Harmon, C; Hayashizaki, Y; Haussler, D; Hermjakob, H; Hokamp, K; Jang, W; Johnson, L S; Jones, T A; Kasif, S; Kaspryzk, A; Kennedy, S; Kent, W J; Kitts, P; Koonin, E V; Korf, I; Kulp, D; Lancet, D; Lowe, T M; McLysaght, A; Mikkelsen, T; Moran, J V; Mulder, N; Pollara, V J; Ponting, C P; Schuler, G; Schultz, J; Slater, G; Smit, A F; Stupka, E; Szustakowki, J; Thierry-Mieg, D; Thierry-Mieg, J; Wagner, L; Wallis, J; Wheeler, R; Williams, A; Wolf, Y I; Wolfe, K H; Yang, S P; Yeh, R F; Collins, F; Guyer, M S; Peterson, J; Felsenfeld, A; Wetterstrand, K A; Patrinos, A; Morgan, M J; de Jong, P; Catanese, J J; Osoegawa, K; Shizuya, H; Choi, S; Chen, Y J; Szustakowki, J

    2001-02-15

    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

  7. Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis

    DEFF Research Database (Denmark)

    Travis, Anthony J.; Kelly, Denise; Flint, Harry J;

    2015-01-01

    We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183(T) (= DSM 16839(T) = NCIMB 14029(T)), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host-...

  8. Ancient Human Genome Sequence of an Extinct Palaeo-Eskimo

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Li, Yingrui; Lindgreen, Stinus;

    2010-01-01

    We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome, an...... for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit....

  9. Sequencing and analysis of an Irish human genome.

    LENUS (Irish Health Repository)

    Tong, Pin

    2010-01-01

    Recent studies generating complete human sequences from Asian, African and European subgroups have revealed population-specific variation and disease susceptibility loci. Here, choosing a DNA sample from a population of interest due to its relative geographical isolation and genetic impact on further populations, we extend the above studies through the generation of 11-fold coverage of the first Irish human genome sequence.

  10. Triplex-forming oligonucleotide target sequences in the human genome

    OpenAIRE

    Goñi, J Ramon; de la Cruz, Xavier; Orozco, Modesto

    2004-01-01

    The existence of sequences in the human genome which can be a target for triplex formation, and accordingly are candidates for anti-gene therapies, has been studied by using bioinformatics tools. It was found that the population of triplex-forming oligonucleotide target sequences (TTS) is much more abundant than that expected from simple random models. The population of TTS is large in all the genome, without major differences between chromosomes. A wide analysis along annotated regions of th...

  11. Combining two technologies for full genome sequencing of human.

    Science.gov (United States)

    Skryabin, K G; Prokhortchouk, E B; Mazur, A M; Boulygina, E S; Tsygankova, S V; Nedoluzhko, A V; Rastorguev, S M; Matveev, V B; Chekanov, N N; D A, Goranskaya; Teslyuk, A B; Gruzdeva, N M; Velikhov, V E; Zaridze, D G; Kovalchuk, M V

    2009-10-01

    At present, the new technologies of DNA sequencing are rapidly developing allowing quick and efficient characterisation of organisms at the level of the genome structure. In this study, the whole genome sequencing of a human (Russian man) was performed using two technologies currently present on the market - Sequencing by Oligonucleotide Ligation and Detection (SOLiD™) (Applied Biosystems) and sequencing technologies of molecular clusters using fluorescently labeled precursors (Illumina). The total number of generated data resulted in 108.3 billion base pairs (60.2 billion from Illumina technology and 48.1 billion from SOLiD technology). Statistics performed on reads generated by GAII and SOLiD showed that they covered 75% and 96% of the genome respectively. Short polymorphic regions were detected with comparable accuracy however, the absolute amount of them revealed by SOLiD was several times less than by GAII. Optimal algorithm for using the latest methods of sequencing was established for the analysis of individual human genomes. The study is the first Russian effort towards whole human genome sequencing.

  12. The diploid genome sequence of an individual human.

    Directory of Open Access Journals (Sweden)

    Samuel Levy

    2007-09-01

    Full Text Available Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel included 3,213,401 single nucleotide polymorphisms (SNPs, 53,823 block substitutions (2-206 bp, 292,102 heterozygous insertion/deletion events (indels(1-571 bp, 559,473 homozygous indels (1-82,711 bp, 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.

  13. Templated sequence insertion polymorphisms in the human genome

    Science.gov (United States)

    Onozawa, Masahiro; Aplan, Peter

    2016-11-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.

  14. Standardized metadata for human pathogen/vector genomic sequences.

    Directory of Open Access Journals (Sweden)

    Vivien G Dugan

    Full Text Available High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs, the Bioinformatics Resource Centers (BRCs for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID, part of the National Institutes of Health (NIH, informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium's minimal information (MIxS and NCBI's BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI. The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will

  15. Complete genome sequence of human astrovirus genotype 6

    Directory of Open Access Journals (Sweden)

    Vernet Guy

    2010-02-01

    Full Text Available Abstract Background Human astroviruses (HAstVs are one of the important causes of acute gastroenteritis in children. Currently, eight HAstV genotypes have been identified and all but two (HAstV-6 and HAstV-7 have been fully sequenced. We here sequenced and analyzed the complete genome of a HAstV-6 strain (192-BJ07, which was identified in Beijing, China. Results The genome of 192-BJ07 consists of 6745 nucleotides. The 192-BJ07 strain displays a 77.2-78.0% nucleotide sequence identity with other HAstV genotypes and exhibits amino acid sequence identities of 86.5-87.4%, 94.2-95.1%, and 65.5-74.8% in the ORF1a, ORF1b, and ORF2 regions, respectively. Homological analysis of ORF2 shows that 192-BJ07 is 96.3% identical to the documented HAstV-6 strain. Further, phylogenetic analysis indicates that different genomic regions are likely undergoing different evolutionary and selective pressures. No recombination event was observed in HAstV-6 in this study. Conclusion The completely sequenced and characterized genome of HAstV-6 (192-BJ07 provides further insight into the genetics of astroviruses and aids in the surveillance and control of HAstV gastroenteritis.

  16. MIR retrotransposon sequences provide insulators to the human genome.

    Science.gov (United States)

    Wang, Jianrong; Vicente-García, Cristina; Seruggia, Davide; Moltó, Eduardo; Fernandez-Miñán, Ana; Neto, Ana; Lee, Elbert; Gómez-Skarmeta, José Luis; Montoliu, Lluís; Lunyak, Victoria V; Jordan, I King

    2015-08-11

    Insulators are regulatory elements that help to organize eukaryotic chromatin via enhancer-blocking and chromatin barrier activity. Although there are several examples of transposable element (TE)-derived insulators, the contribution of TEs to human insulators has not been systematically explored. Mammalian-wide interspersed repeats (MIRs) are a conserved family of TEs that have substantial regulatory capacity and share sequence characteristics with tRNA-related insulators. We sought to evaluate whether MIRs can serve as insulators in the human genome. We applied a bioinformatic screen using genome sequence and functional genomic data from CD4(+) T cells to identify a set of 1,178 predicted MIR insulators genome-wide. These predicted MIR insulators were computationally tested to serve as chromatin barriers and regulators of gene expression in CD4(+) T cells. The activity of predicted MIR insulators was experimentally validated using in vitro and in vivo enhancer-blocking assays. MIR insulators are enriched around genes of the T-cell receptor pathway and reside at T-cell-specific boundaries of repressive and active chromatin. A total of 58% of the MIR insulators predicted here show evidence of T-cell-specific chromatin barrier and gene regulatory activity. MIR insulators appear to be CCCTC-binding factor (CTCF) independent and show a distinct local chromatin environment with marked peaks for RNA Pol III and a number of histone modifications, suggesting that MIR insulators recruit transcriptional complexes and chromatin modifying enzymes in situ to help establish chromatin and regulatory domains in the human genome. The provisioning of insulators by MIRs across the human genome suggests a specific mechanism by which TE sequences can be used to modulate gene regulatory networks.

  17. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite

    Science.gov (United States)

    2011-01-01

    Background Blastocystis is a highly prevalent anaerobic eukaryotic parasite of humans and animals that is associated with various gastrointestinal and extraintestinal disorders. Epidemiological studies have identified different subtypes but no one subtype has been definitively correlated with disease. Results Here we report the 18.8 Mb genome sequence of a Blastocystis subtype 7 isolate, which is the smallest stramenopile genome sequenced to date. The genome is highly compact and contains intriguing rearrangements. Comparisons with other available stramenopile genomes (plant pathogenic oomycete and diatom genomes) revealed effector proteins potentially involved in the adaptation to the intestinal environment, which were likely acquired via horizontal gene transfer. Moreover, Blastocystis living in anaerobic conditions harbors mitochondria-like organelles. An incomplete oxidative phosphorylation chain, a partial Krebs cycle, amino acid and fatty acid metabolisms and an iron-sulfur cluster assembly are all predicted to occur in these organelles. Predicted secretory proteins possess putative activities that may alter host physiology, such as proteases, protease-inhibitors, immunophilins and glycosyltransferases. This parasite also possesses the enzymatic machinery to tolerate oxidative bursts resulting from its own metabolism or induced by the host immune system. Conclusions This study provides insights into the genome architecture of this unusual stramenopile. It also proposes candidate genes with which to study the physiopathology of this parasite and thus may lead to further investigations into Blastocystis-host interactions. PMID:21439036

  18. Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences

    Directory of Open Access Journals (Sweden)

    Shade Larry L

    2006-06-01

    Full Text Available Abstract Background Approximately 11 Mb of finished high quality genomic sequences were sampled from cattle, dog and human to estimate genomic divergences and their regional variation among these lineages. Results Optimal three-way multi-species global sequence alignments for 84 cattle clones or loci (each >50 kb of genomic sequence were constructed using the human and dog genome assemblies as references. Genomic divergences and substitution rates were examined for each clone and for various sequence classes under different functional constraints. Analysis of these alignments revealed that the overall genomic divergences are relatively constant (0.32–0.37 change/site for pairwise comparisons among cattle, dog and human; however substitution rates vary across genomic regions and among different sequence classes. A neutral mutation rate (2.0–2.2 × 10(-9 change/site/year was derived from ancestral repetitive sequences, whereas the substitution rate in coding sequences (1.1 × 10(-9 change/site/year was approximately half of the overall rate (1.9–2.0 × 10(-9 change/site/year. Relative rate tests also indicated that cattle have a significantly faster rate of substitution as compared to dog and that this difference is about 6%. Conclusion This analysis provides a large-scale and unbiased assessment of genomic divergences and regional variation of substitution rates among cattle, dog and human. It is expected that these data will serve as a baseline for future mammalian molecular evolution studies.

  19. Sequencing and annotated analysis of an Estonian human genome.

    Science.gov (United States)

    Lilleoja, Rutt; Sarapik, Aili; Reimann, Ene; Reemann, Paula; Jaakma, Ülle; Vasar, Eero; Kõks, Sulev

    2012-02-01

    In present study we describe the sequencing and annotated analysis of the individual genome of Estonian. Using SOLID technology we generated 2,449,441,916 of 50-bp reads. The Bioscope version 1.3 was used for mapping and pairing of reads to the NCBI human genome reference (build 36, hg18). Bioscope enables also the annotation of the results of variant (tertiary) analysis. The average mapping of reads was 75.5% with total coverage of 107.72 Gb. resulting in mean fold coverage of 34.6. We found 3,482,975 SNPs out of which 352,492 were novel. 21,222 SNPs were in coding region: 10,649 were synonymous SNPs, 10,360 were nonsynonymous missense SNPs, 155 were nonsynonymous nonsense SNPs and 58 were nonsynonymous frameshifts. We identified 219 CNVs with total base pair coverage of 37,326,300 bp and 87,451 large insertion/deletion polymorphisms covering 10,152,256 bp of the genome. In addition, we found 285,864 small size insertion/deletion polymorphisms out of which 133,969 were novel. Finally, we identified 53 inversions, 19 overlapped genes and 2 overlapped exons. Interestingly, we found the region in chromosome 6 to be enriched with the coding SNPs and CNVs. This study confirms previous findings, that our genomes are more complex and variable as thought before. Therefore, sequencing of the personal genomes followed by annotation would improve the analysis of heritability of phenotypes and our understandings on the functions of genome.

  20. Complete Genome Sequence of Human Respiratory Syncytial Virus from Lanzhou, China

    OpenAIRE

    Zhu, Chuanfeng; Fu, Shengfang; Zhou, Xv; Yu, Li

    2017-01-01

    ABSTRACT A complete genome of human respiratory syncytial virus was sequenced and analyzed. Phylogenetic analysis showed that the full-length human respiratory syncytial virus (HRSV) genome sequence belongs to gene type NA1. We sequenced the genome in order to create the full-length cDNA infectious clone and develop vaccines against HRSV.

  1. New complete genome sequences of human rhinoviruses shed light on their phylogeny and genomic features

    Directory of Open Access Journals (Sweden)

    Zdobnov Evgeny M

    2007-07-01

    Full Text Available Abstract Background Human rhinoviruses (HRV, the most frequent cause of respiratory infections, include 99 different serotypes segregating into two species, A and B. Rhinoviruses share extensive genomic sequence similarity with enteroviruses and both are part of the picornavirus family. Nevertheless they differ significantly at the phenotypic level. The lack of HRV full-length genome sequences and the absence of analysis comparing picornaviruses at the whole genome level limit our knowledge of the genomic features supporting these differences. Results Here we report complete genome sequences of 12 HRV-A and HRV-B serotypes, more than doubling the current number of available HRV sequences. The whole-genome maximum-likelihood phylogenetic analysis suggests that HRV-B and human enteroviruses (HEV diverged from the last common ancestor after their separation from HRV-A. On the other hand, compared to HEV, HRV-B are more related to HRV-A in the capsid and 3B-C regions. We also identified the presence of a 2C cis-acting replication element (cre in HRV-B that is not present in HRV-A, and that had been previously characterized only in HEV. In contrast to HEV viruses, HRV-A and HRV-B share also markedly lower GC content along the whole genome length. Conclusion Our findings provide basis to speculate about both the biological similarities and the differences (e.g. tissue tropism, temperature adaptation or acid lability of these three groups of viruses.

  2. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  3. A high-resolution radiation hybrid map of the human genome draft sequence.

    Science.gov (United States)

    Olivier, M; Aggarwal, A; Allen, J; Almendras, A A; Bajorek, E S; Beasley, E M; Brady, S D; Bushard, J M; Bustos, V I; Chu, A; Chung, T R; De Witte, A; Denys, M E; Dominguez, R; Fang, N Y; Foster, B D; Freudenberg, R W; Hadley, D; Hamilton, L R; Jeffrey, T J; Kelly, L; Lazzeroni, L; Levy, M R; Lewis, S C; Liu, X; Lopez, F J; Louie, B; Marquis, J P; Martinez, R A; Matsuura, M K; Misherghi, N S; Norton, J A; Olshen, A; Perkins, S M; Perou, A J; Piercy, C; Piercy, M; Qin, F; Reif, T; Sheppard, K; Shokoohi, V; Smick, G A; Sun, W L; Stewart, E A; Fernando, J; Tejeda; Tran, N M; Trejo, T; Vo, N T; Yan, S C; Zierten, D L; Zhao, S; Sachidanandam, R; Trask, B J; Myers, R M; Cox, D R

    2001-02-16

    We have constructed a physical map of the human genome by using a panel of 90 whole-genome radiation hybrids (the TNG panel) in conjunction with 40,322 sequence-tagged sites (STSs) derived from random genomic sequences as well as expressed sequences. Of 36,678 STSs on the TNG radiation hybrid map, only 3604 (9.8%) were absent from the unassembled draft sequence of the human genome. Of 20,030 STSs ordered on the TNG map as well as the assembled human genome draft sequence and the Celera assembled human genome sequence, 36% of the STSs had a discrepant order between the working draft sequence and the Celera sequence. The TNG map order was identical to one of the two sequence orders in 60% of these discrepant cases.

  4. Computational Comparison of Human Genomic Sequence Assemblies for a Region of Chromosome 4

    OpenAIRE

    Semple, Colin; Stewart W. Morris; Porteous, David J.; Evans, Kathryn L.

    2002-01-01

    Much of the available human genomic sequence data exist in a fragmentary draft state following the completion of the initial high-volume sequencing performed by the International Human Genome Sequencing Consortium (IHGSC) and Celera Genomics (CG). We compared six draft genome assemblies over a region of chromosome 4p (D4S394–D4S403), two consecutive releases by the IHGSC at University of California, Santa Cruz (UCSC), two consecutive releases from the National Centre for Biotechnology Informa...

  5. A hybrid approach for de novo human genome sequence assembly and phasing.

    Science.gov (United States)

    Mostovoy, Yulia; Levy-Sakin, Michal; Lam, Jessica; Lam, Ernest T; Hastie, Alex R; Marks, Patrick; Lee, Joyce; Chu, Catherine; Lin, Chin; Džakula, Željko; Cao, Han; Schlebusch, Stephen A; Giorda, Kristina; Schnall-Levin, Michael; Wall, Jeffrey D; Kwok, Pui-Yan

    2016-07-01

    Despite tremendous progress in genome sequencing, the basic goal of producing a phased (haplotype-resolved) genome sequence with end-to-end contiguity for each chromosome at reasonable cost and effort is still unrealized. In this study, we describe an approach to performing de novo genome assembly and experimental phasing by integrating the data from Illumina short-read sequencing, 10X Genomics linked-read sequencing, and BioNano Genomics genome mapping to yield a high-quality, phased, de novo assembled human genome.

  6. The zebrafish reference genome sequence and its relationship to the human genome.

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  7. The zebrafish reference genome sequence and its relationship to the human genome

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  8. Global genomic diversity of human papillomavirus 6 based on 724 isolates and 190 complete genome sequences.

    Science.gov (United States)

    Jelen, Mateja M; Chen, Zigui; Kocjan, Boštjan J; Burt, Felicity J; Chan, Paul K S; Chouhy, Diego; Combrinck, Catharina E; Coutlée, François; Estrade, Christine; Ferenczy, Alex; Fiander, Alison; Franco, Eduardo L; Garland, Suzanne M; Giri, Adriana A; González, Joaquín Víctor; Gröning, Arndt; Heidrich, Kerstin; Hibbitts, Sam; Hošnjak, Lea; Luk, Tommy N M; Marinic, Karina; Matsukura, Toshihiko; Neumann, Anna; Oštrbenk, Anja; Picconi, Maria Alejandra; Richardson, Harriet; Sagadin, Martin; Sahli, Roland; Seedat, Riaz Y; Seme, Katja; Severini, Alberto; Sinchi, Jessica L; Smahelova, Jana; Tabrizi, Sepehr N; Tachezy, Ruth; Tohme, Sarah; Uloza, Virgilijus; Vitkauskiene, Astra; Wong, Yong Wee; Zidovec Lepej, Snježana; Burk, Robert D; Poljak, Mario

    2014-07-01

    Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.8%) HPV6-positive samples collected for this study. Among them, 130 exhibited at least one single nucleotide polymorphism (SNP), indel, or amino acid change in the E5a-E5b-L1-LCR fragment and were sequenced in full. A global alignment and maximum likelihood tree of 190 complete HPV6 genomes (130 fully sequenced in this study and 60 obtained from sequence repositories) revealed two variant lineages, A and B, and five B sublineages: B1, B2, B3, B4, and B5. HPV6 (sub)lineage-specific SNPs and a 960-bp representative region for whole-genome-based phylogenetic clustering within the L2 open reading frame were identified. Multivariate logistic regression analysis revealed that lineage B predominated globally. Sublineage B3 was more common in Africa and North and South America, and lineage A was more common in Asia. Sublineages B1 and B3 were associated with anogenital infections, indicating a potential lesion-specific predilection of some HPV6 sublineages. Females had higher odds for infection with sublineage B3 than males. In conclusion, a global HPV6 phylogenetic analysis revealed the existence of two variant lineages and five sublineages, showing some degree of ethnogeographic, gender, and/or disease predilection in their distribution. This study established the largest database of globally circulating HPV6 genomic variants and contributed a total of 130 new, complete HPV6 genome sequences to available sequence repositories. Two HPV6 variant lineages

  9. Genome sequence of the human pathogen Vibrio cholerae Amazonia.

    NARCIS (Netherlands)

    Thompson, C.C.; Marin, M.A.; Dias, G.M.; Dutilh, B.E.; Edwards, R.A.; Iida, T.; Thompson, F.L.; Vicente, A.C.

    2011-01-01

    Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis rev

  10. Genome sequence of the human pathogen Vibrio cholerae Amazonia.

    NARCIS (Netherlands)

    Thompson, C.C.; Marin, M.A.; Dias, G.M.; Dutilh, B.E.; Edwards, R.A.; Iida, T.; Thompson, F.L.; Vicente, A.C.

    2011-01-01

    Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis

  11. Genome Sequences of 11 Human Vaginal Actinobacteria Strains

    Science.gov (United States)

    Deitzler, Grace E.; Ruiz, Maria J.; Weimer, Cory; Park, SoEun; Robinson, Lloyd S.; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The composition of the vaginal microbiota is an important health determinant. Several members of the phylum Actinobacteria have been implicated in bacterial vaginosis, a condition associated with many negative health outcomes. Here, we present 11 strains of vaginal Actinobacteria (now available through BEI Resources) along with draft genome sequences. PMID:27688328

  12. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome.

    Science.gov (United States)

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-10-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. De novo assembly of human genomes with massively parallel short read sequencing

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Zhu, Hongmei; Ruan, Jue

    2010-01-01

    genomes from short read sequences. We successfully assembled both the Asian and African human genome sequences, achieving an N50 contig size of 7.4 and 5.9 kilobases (kb) and scaffold of 446.3 and 61.9 kb, respectively. The development of this de novo short read assembly method creates new opportunities...... for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way....

  14. A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control.

    Science.gov (United States)

    Bartha, István; Carlson, Jonathan M; Brumme, Chanson J; McLaren, Paul J; Brumme, Zabrina L; John, Mina; Haas, David W; Martinez-Picado, Javier; Dalmau, Judith; López-Galíndez, Cecilio; Casado, Concepción; Rauch, Andri; Günthard, Huldrych F; Bernasconi, Enos; Vernazza, Pietro; Klimkait, Thomas; Yerly, Sabine; O'Brien, Stephen J; Listgarten, Jennifer; Pfeifer, Nico; Lippert, Christoph; Fusi, Nicolo; Kutalik, Zoltán; Allen, Todd M; Müller, Viktor; Harrigan, P Richard; Heckerman, David; Telenti, Amalio; Fellay, Jacques

    2013-10-29

    HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (pgenome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host-pathogen interaction. DOI:http://dx.doi.org/10.7554/eLife.01123.001.

  15. Countering Gattaca: Efficient and Secure Testing of Fully-Sequenced Human Genomes

    CERN Document Server

    Baldi, Pierre; De Cristofaro, Emiliano; Gasti, Paolo; Tsudik, Gene

    2011-01-01

    Recent advances in DNA sequencing technologies have put ubiquitous availability of fully sequenced human genomes within reach. It is no longer hard to imagine the day when everyone will have the means to obtain and store one's own DNA sequence. Widespread and affordable availability of fully sequenced genomes immediately opens up important opportunities in a number of health-related fields. In particular, common genomic applications and tests performed in vitro today will soon be conducted computationally, using digitized genomes. New applications will be developed as genome-enabled medicine becomes increasingly preventive and personalized. However, this progress also prompts significant privacy challenges associated with potential loss, theft, or misuse of genomic data. In this paper, we begin to address genomic privacy by focusing on three important applications: Paternity Tests, Personalized Medicine, and Genetic Compatibility Tests. After carefully analyzing these applications and their privacy requiremen...

  16. Identification of transcribed sequences in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, K.

    1992-12-01

    The workshop was held at the National Institutes of Mental Health, Bethesda, Maryland, on October 4 and 5, 1991. Twenty-four investigators attended from England, Germany and the United States. The topics discussed included: Genome sequence analysis using computer assisted detection of open reading frames, splice sites and hexamer patterns, direct exon identification using trapping of internal and 3' exons, and a recombination based system, cDNA library construction and screening, including the use of normalization and subtraction procedures, Alu and splice donor site PCR from hybrid cell lines, and microdissection clones as probes, use of labeled CDNAS as probes to screen lambda and cosmid libraries, and sequencing of random cDNAs.

  17. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  18. Draft Genome Sequence of Ochroconis constricta UM 578, Isolated from Human Skin Scraping.

    Science.gov (United States)

    Chan, Chai Ling; Yew, Su Mei; Na, Shiang Ling; Tan, Yung-Chie; Lee, Kok Wei; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2014-04-17

    Ochroconis constricta is a soilborne dematiaceous fungus that has never been reported to be associated with human infection. Here we report the first draft genome sequence of strain UM 578, isolated from human skin scraping. The genomic information revealed will contribute to a better understanding of this species.

  19. Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microti†

    Science.gov (United States)

    Cornillot, Emmanuel; Hadj-Kaddour, Kamel; Dassouli, Amina; Noel, Benjamin; Ranwez, Vincent; Vacherie, Benoît; Augagneur, Yoann; Brès, Virginie; Duclos, Aurelie; Randazzo, Sylvie; Carcy, Bernard; Debierre-Grockiego, Françoise; Delbecq, Stéphane; Moubri-Ménage, Karina; Shams-Eldin, Hosam; Usmani-Brown, Sahar; Bringaud, Frédéric; Wincker, Patrick; Vivarès, Christian P.; Schwarz, Ralph T.; Schetters, Theo P.; Krause, Peter J.; Gorenflot, André; Berry, Vincent; Barbe, Valérie; Ben Mamoun, Choukri

    2012-01-01

    We have sequenced the genome of the emerging human pathogen Babesia microti and compared it with that of other protozoa. B. microti has the smallest nuclear genome among all Apicomplexan parasites sequenced to date with three chromosomes encoding ∼3500 polypeptides, several of which are species specific. Genome-wide phylogenetic analyses indicate that B. microti is significantly distant from all species of Babesidae and Theileridae and defines a new clade in the phylum Apicomplexa. Furthermore, unlike all other Apicomplexa, its mitochondrial genome is circular. Genome-scale reconstruction of functional networks revealed that B. microti has the minimal metabolic requirement for intraerythrocytic protozoan parasitism. B. microti multigene families differ from those of other protozoa in both the copy number and organization. Two lateral transfer events with significant metabolic implications occurred during the evolution of this parasite. The genomic sequencing of B. microti identified several targets suitable for the development of diagnostic assays and novel therapies for human babesiosis. PMID:22833609

  20. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available Copy-number variations (CNV, loss of heterozygosity (LOH, and uniparental disomy (UPD are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS, is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs. In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  1. Identifying Human Genome-Wide CNV, LOH and UPD by Targeted Sequencing of Selected Regions.

    Science.gov (United States)

    Wang, Yu; Li, Wei; Xia, Yingying; Wang, Chongzhi; Tang, Y Tom; Guo, Wenying; Li, Jinliang; Zhao, Xia; Sun, Yepeng; Hu, Juan; Zhen, Hefu; Zhang, Xiandong; Chen, Chao; Shi, Yujian; Li, Lin; Cao, Hongzhi; Du, Hongli; Li, Jian

    2014-01-01

    Copy-number variations (CNV), loss of heterozygosity (LOH), and uniparental disomy (UPD) are large genomic aberrations leading to many common inherited diseases, cancers, and other complex diseases. An integrated tool to identify these aberrations is essential in understanding diseases and in designing clinical interventions. Previous discovery methods based on whole-genome sequencing (WGS) require very high depth of coverage on the whole genome scale, and are cost-wise inefficient. Another approach, whole exome genome sequencing (WEGS), is limited to discovering variations within exons. Thus, we are lacking efficient methods to detect genomic aberrations on the whole genome scale using next-generation sequencing technology. Here we present a method to identify genome-wide CNV, LOH and UPD for the human genome via selectively sequencing a small portion of genome termed Selected Target Regions (SeTRs). In our experiments, the SeTRs are covered by 99.73%~99.95% with sufficient depth. Our developed bioinformatics pipeline calls genome-wide CNVs with high confidence, revealing 8 credible events of LOH and 3 UPD events larger than 5M from 15 individual samples. We demonstrate that genome-wide CNV, LOH and UPD can be detected using a cost-effective SeTRs sequencing approach, and that LOH and UPD can be identified using just a sample grouping technique, without using a matched sample or familial information.

  2. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae

    NARCIS (Netherlands)

    Tettelin, H; Masignani, [No Value; Cieslewicz, MJ; Eisen, JA; Peterson, S; Paulsen, IT; Nelson, KE; Margarit, [No Value; Read, TD; Madoff, LC; Beanan, MJ; Brinkac, LM; Daugherty, SC; DeBoy, RT; Durkin, AS; Kolonay, JF; Madupu, R; Lewis, MR; Radune, D; Fedorova, NB; Scanlan, D; Khouri, H; Mulligan, S; Carty, HA; Cline, RT; Van Aken, SE; Gill, J; Scarselli, M; Mora, M; Iacobini, ET; Brettoni, C; Galli, G; Mariani, M; Vegni, F; Maione, D; Rinaudo, D; Rappuoli, R; Telford, JL; Kasper, DL; Grandi, G; Fraser, CM

    2002-01-01

    The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the oth

  3. Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae

    NARCIS (Netherlands)

    Tettelin, H; Masignani, [No Value; Cieslewicz, MJ; Eisen, JA; Peterson, S; Paulsen, IT; Nelson, KE; Margarit, [No Value; Read, TD; Madoff, LC; Beanan, MJ; Brinkac, LM; Daugherty, SC; DeBoy, RT; Durkin, AS; Kolonay, JF; Madupu, R; Lewis, MR; Radune, D; Fedorova, NB; Scanlan, D; Khouri, H; Mulligan, S; Carty, HA; Cline, RT; Van Aken, SE; Gill, J; Scarselli, M; Mora, M; Iacobini, ET; Brettoni, C; Galli, G; Mariani, M; Vegni, F; Maione, D; Rinaudo, D; Rappuoli, R; Telford, JL; Kasper, DL; Grandi, G; Fraser, CM

    2002-01-01

    The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the

  4. Draft Genome Sequence of Veillonella parvula HSIVP1, Isolated from the Human Small Intestine

    NARCIS (Netherlands)

    Bogert, B. van den; Boekhorst, J.; Smid, E.J.; Zoetendal, E.G.; Kleerebezem, M.

    2013-01-01

    Veillonella species are frequently encountered commensals in the human small intestine. Here, we report the draft genome sequence of the first cultured representative from this ecosystem, Veillonella parvula strain HSIVP1. The genome is predicted to encode all the necessary enzymes required for the

  5. Extensive sequencing of seven human genomes to characterize benchmark reference materials.

    Science.gov (United States)

    Zook, Justin M; Catoe, David; McDaniel, Jennifer; Vang, Lindsay; Spies, Noah; Sidow, Arend; Weng, Ziming; Liu, Yuling; Mason, Christopher E; Alexander, Noah; Henaff, Elizabeth; McIntyre, Alexa B R; Chandramohan, Dhruva; Chen, Feng; Jaeger, Erich; Moshrefi, Ali; Pham, Khoa; Stedman, William; Liang, Tiffany; Saghbini, Michael; Dzakula, Zeljko; Hastie, Alex; Cao, Han; Deikus, Gintaras; Schadt, Eric; Sebra, Robert; Bashir, Ali; Truty, Rebecca M; Chang, Christopher C; Gulbahce, Natali; Zhao, Keyan; Ghosh, Srinka; Hyland, Fiona; Fu, Yutao; Chaisson, Mark; Xiao, Chunlin; Trow, Jonathan; Sherry, Stephen T; Zaranek, Alexander W; Ball, Madeleine; Bobe, Jason; Estep, Preston; Church, George M; Marks, Patrick; Kyriazopoulou-Panagiotopoulou, Sofia; Zheng, Grace X Y; Schnall-Levin, Michael; Ordonez, Heather S; Mudivarti, Patrice A; Giorda, Kristina; Sheng, Ying; Rypdal, Karoline Bjarnesdatter; Salit, Marc

    2016-06-07

    The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCode WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly.

  6. A fast divide-and-conquer algorithm for indexing human genome sequences

    CERN Document Server

    Loh, Woong-Kee; Lee, Wookey

    2010-01-01

    Since the release of human genome sequences, one of the most important research issues is about indexing the genome sequences, and the suffix tree is most widely adopted for that purpose. The traditional suffix tree construction algorithms have severe performance degradation due to the memory bottleneck problem. The recent disk-based algorithms also have limited performance improvement due to random disk accesses. Moreover, they do not fully utilize the recent CPUs with multiple cores. In this paper, we propose a fast algorithm based on 'divide-and-conquer' strategy for indexing the human genome sequences. Our algorithm almost eliminates random disk accesses by accessing the disk in the unit of contiguous chunks. In addition, our algorithm fully utilizes the multi-core CPUs by dividing the genome sequences into multiple partitions and then assigning each partition to a different core for parallel processing. Experimental results show that our algorithm outperforms the previous fastest DIGEST algorithm by up t...

  7. Draft genome sequence of the first human isolate of the ruminant pathogen Mycoplasma capricolum subsp. capricolum

    DEFF Research Database (Denmark)

    Seersholm, Frederik Valeur; Fischer, Anne; Heller, Martin

    2015-01-01

    Mycoplasma capricolum subsp. capricolum is a well-known pathogen of small ruminants. A recent human case of septicemia involving this agent raised the question of its potential pathogenicity to humans. We present the first draft genome sequence of a human Mycoplasma capricolum subsp. capricolum...

  8. The complete genome sequence and analysis of the human pathogen Campylobacter lari

    DEFF Research Database (Denmark)

    Miller, WG; Wang, G; Binnewies, Tim Terence

    2008-01-01

    Campylobacter lari is a member of the epsilon subdivision of the Proteobacteria and is part of the thermotolerant Campylobacter group, a clade that includes the human pathogen C. jejuni. Here we present the complete genome sequence of the human clinical isolate, C. lari RM2100. The genome of strain...... RM2100 is approximately 1.53 Mb and includes the 46 kb megaplasmid pCL2100. Also present within the strain RM2100 genome is a 36 kb putative prophage, termed CLIE1, which is similar to CJIE4, a putative prophage present within the C. jejuni RM1221 genome. Nearly all (90%) of the gene content...... in strain RM2100 is similar to genes present in the genomes of other characterized thermotolerant campylobacters. However, several genes involved in amino acid biosynthesis and energy metabolism, identified previously in other Campylobacter genomes, are absent from the C. lari RM2100 genome. Therefore, C...

  9. Anchored pseudo-de novo assembly of human genomes identifies extensive sequence variation from unmapped sequence reads.

    Science.gov (United States)

    Faber-Hammond, Joshua J; Brown, Kim H

    2016-07-01

    The human genome reference (HGR) completion marked the genomics era beginning, yet despite its utility universal application is limited by the small number of individuals used in its development. This is highlighted by the presence of high-quality sequence reads failing to map within the HGR. Sequences failing to map generally represent 2-5 % of total reads, which may harbor regions that would enhance our understanding of population variation, evolution, and disease. Alternatively, complete de novo assemblies can be created, but these effectively ignore the groundwork of the HGR. In an effort to find a middle ground, we developed a bioinformatic pipeline that maps paired-end reads to the HGR as separate single reads, exports unmappable reads, de novo assembles these reads per individual and then combines assemblies into a secondary reference assembly used for comparative analysis. Using 45 diverse 1000 Genomes Project individuals, we identified 351,361 contigs covering 195.5 Mb of sequence unincorporated in GRCh38. 30,879 contigs are represented in multiple individuals with ~40 % showing high sequence complexity. Genomic coordinates were generated for 99.9 %, with 52.5 % exhibiting high-quality mapping scores. Comparative genomic analyses with archaic humans and primates revealed significant sequence alignments and comparisons with model organism RefSeq gene datasets identified novel human genes. If incorporated, these sequences will expand the HGR, but more importantly our data highlight that with this method low coverage (~10-20×) next-generation sequencing can still be used to identify novel unmapped sequences to explore biological functions contributing to human phenotypic variation, disease and functionality for personal genomic medicine.

  10. Leveraging human genomic information to identify nonhuman primate sequences for expression array development

    Directory of Open Access Journals (Sweden)

    Boyle Nicholas F

    2005-11-01

    Full Text Available Abstract Background Nonhuman primates (NHPs are essential for biomedical research due to their similarities to humans. The utility of NHPs will be greatly increased by the application of genomics-based approaches such as gene expression profiling. Sequence information from the 3' end of genes is the key resource needed to create oligonucleotide expression arrays. Results We have developed the algorithms and procedures necessary to quickly acquire sequence information from the 3' end of nonhuman primate orthologs of human genes. To accomplish this, we identified terminal exons of over 15,000 human genes by aligning mRNA sequences with genomic sequence. We found the mean length of complete last exons to be approximately 1,400 bp, significantly longer than previous estimates. We designed primers to amplify genomic DNA, which included at least 300 bp of the terminal exon. We cloned and sequenced the PCR products representing over 5,500 Macaca mulatta (rhesus monkey orthologs of human genes. This sequence information has been used to select probes for rhesus gene expression profiling. We have also tested 10 sets of primers with genomic DNA from Macaca fascicularis (Cynomolgus monkey, Papio hamadryas (Baboon, and Chlorocebus aethiops (African green monkey, vervet. The results indicate that the primers developed for this study will be useful for acquiring sequence from the 3' end of genes for other nonhuman primate species. Conclusion This study demonstrates that human genomic DNA sequence can be leveraged to obtain sequence from the 3' end of NHP orthologs and that this sequence can then be used to generate NHP oligonucleotide microarrays. Affymetrix and Agilent used sequences obtained with this approach in the design of their rhesus macaque oligonucleotide microarrays.

  11. Classifying Genomic Sequences by Sequence Feature Analysis

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hua Liu; Dian Jiao; Xiao Sun

    2005-01-01

    Traditional sequence analysis depends on sequence alignment. In this study, we analyzed various functional regions of the human genome based on sequence features, including word frequency, dinucleotide relative abundance, and base-base correlation. We analyzed the human chromosome 22 and classified the upstream,exon, intron, downstream, and intergenic regions by principal component analysis and discriminant analysis of these features. The results show that we could classify the functional regions of genome based on sequence feature and discriminant analysis.

  12. CaPSID: A bioinformatics platform for computational pathogen sequence identification in human genomes and transcriptomes

    Directory of Open Access Journals (Sweden)

    Borozan Ivan

    2012-08-01

    Full Text Available Abstract Background It is now well established that nearly 20% of human cancers are caused by infectious agents, and the list of human oncogenic pathogens will grow in the future for a variety of cancer types. Whole tumor transcriptome and genome sequencing by next-generation sequencing technologies presents an unparalleled opportunity for pathogen detection and discovery in human tissues but requires development of new genome-wide bioinformatics tools. Results Here we present CaPSID (Computational Pathogen Sequence IDentification, a comprehensive bioinformatics platform for identifying, querying and visualizing both exogenous and endogenous pathogen nucleotide sequences in tumor genomes and transcriptomes. CaPSID includes a scalable, high performance database for data storage and a web application that integrates the genome browser JBrowse. CaPSID also provides useful metrics for sequence analysis of pre-aligned BAM files, such as gene and genome coverage, and is optimized to run efficiently on multiprocessor computers with low memory usage. Conclusions To demonstrate the usefulness and efficiency of CaPSID, we carried out a comprehensive analysis of both a simulated dataset and transcriptome samples from ovarian cancer. CaPSID correctly identified all of the human and pathogen sequences in the simulated dataset, while in the ovarian dataset CaPSID’s predictions were successfully validated in vitro.

  13. Comparison of whole genome sequences from human and non-human Escherichia coli O26 strains

    Directory of Open Access Journals (Sweden)

    Keri N Norman

    2015-03-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC O26 is the second leading E. coli serogroup responsible for human illness outbreaks behind E. coli O157:H7. Recent outbreaks have been linked to emerging pathogenic O26:H11 strains harboring stx2 only. Cattle have been recognized as an important reservoir of O26 strains harboring stx1; however the reservoir of these emerging stx2 strains is unknown. The objective of this study was to identify nucleotide polymorphisms in human and cattle-derived strains in order to compare differences in polymorphism derived genotypes and virulence gene profiles between the two host species. Whole genome sequencing was performed on 182 epidemiologically unrelated O26 strains, including 109 human-derived strains and 73 non-human-derived strains. A panel of 289 O26 strains (241 STEC and 48 non-STEC was subsequently genotyped using a set of 283 polymorphisms identified by whole genome sequencing, resulting in 64 unique genotypes. Phylogenetic analyses identified seven clusters within the O26 strains. The seven clusters did not distinguish between isolates originating from humans or cattle; however, clusters did correspond with particular virulence gene profiles. Human and non-human-derived strains harboring stx1 clustered separately from strains harboring stx2, strains harboring eae, and non-STEC strains. Strains harboring stx2 were more closely related to non-STEC strains and strains harboring eae than to strains harboring stx1. The finding of human and cattle-derived strains with the same polymorphism derived genotypes and similar virulence gene profiles, provides evidence that similar strains are found in cattle and humans and transmission between the two species may occur.

  14. Resolving the complexity of the human genome using single-molecule sequencing.

    Science.gov (United States)

    Chaisson, Mark J P; Huddleston, John; Dennis, Megan Y; Sudmant, Peter H; Malig, Maika; Hormozdiari, Fereydoun; Antonacci, Francesca; Surti, Urvashi; Sandstrom, Richard; Boitano, Matthew; Landolin, Jane M; Stamatoyannopoulos, John A; Hunkapiller, Michael W; Korlach, Jonas; Eichler, Evan E

    2015-01-29

    The human genome is arguably the most complete mammalian reference assembly, yet more than 160 euchromatic gaps remain and aspects of its structural variation remain poorly understood ten years after its completion. To identify missing sequence and genetic variation, here we sequence and analyse a haploid human genome (CHM1) using single-molecule, real-time DNA sequencing. We close or extend 55% of the remaining interstitial gaps in the human GRCh37 reference genome--78% of which carried long runs of degenerate short tandem repeats, often several kilobases in length, embedded within (G+C)-rich genomic regions. We resolve the complete sequence of 26,079 euchromatic structural variants at the base-pair level, including inversions, complex insertions and long tracts of tandem repeats. Most have not been previously reported, with the greatest increases in sensitivity occurring for events less than 5 kilobases in size. Compared to the human reference, we find a significant insertional bias (3:1) in regions corresponding to complex insertions and long short tandem repeats. Our results suggest a greater complexity of the human genome in the form of variation of longer and more complex repetitive DNA that can now be largely resolved with the application of this longer-read sequencing technology.

  15. Accelerated Evolution of Conserved Noncoding Sequences in theHuman Genome

    Energy Technology Data Exchange (ETDEWEB)

    Prambhakar, Shyam; Noonan, James P.; Paabo, Svante; Rubin, EdwardM.

    2006-07-06

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detect"cryptic" functional elements, which are too weakly conserved amongmammals to distinguish from nonfunctional DNA. To address this problem,we explored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  16. The "most wanted" taxa from the human microbiome for whole genome sequencing.

    Directory of Open Access Journals (Sweden)

    Anthony A Fodor

    Full Text Available The goal of the Human Microbiome Project (HMP is to generate a comprehensive catalog of human-associated microorganisms including reference genomes representing the most common species. Toward this goal, the HMP has characterized the microbial communities at 18 body habitats in a cohort of over 200 healthy volunteers using 16S rRNA gene (16S sequencing and has generated nearly 1,000 reference genomes from human-associated microorganisms. To determine how well current reference genome collections capture the diversity observed among the healthy microbiome and to guide isolation and future sequencing of microbiome members, we compared the HMP's 16S data sets to several reference 16S collections to create a 'most wanted' list of taxa for sequencing. Our analysis revealed that the diversity of commonly occurring taxa within the HMP cohort microbiome is relatively modest, few novel taxa are represented by these OTUs and many common taxa among HMP volunteers recur across different populations of healthy humans. Taken together, these results suggest that it should be possible to perform whole-genome sequencing on a large fraction of the human microbiome, including the 'most wanted', and that these sequences should serve to support microbiome studies across multiple cohorts. Also, in stark contrast to other taxa, the 'most wanted' organisms are poorly represented among culture collections suggesting that novel culture- and single-cell-based methods will be required to isolate these organisms for sequencing.

  17. Triangulation of the human, chimpanzee, and Neanderthal genome sequences identifies potentially compensated mutations

    DEFF Research Database (Denmark)

    Zhang, Guojie; Pei, Zhang; Krawczak, Michael;

    2010-01-01

    Triangulation of the human, chimpanzee, and Neanderthal genome sequences with respect to 44,348 disease-causing or disease-associated missense mutations and 1,712 putative regulatory mutations listed in the Human Gene Mutation Database was employed to identify genetic variants that are apparently...

  18. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples

    Directory of Open Access Journals (Sweden)

    Maley Carlo C

    2008-10-01

    Full Text Available Abstract Background Genomes store information for building and maintaining organisms. Complete sequencing of many genomes provides the opportunity to study and compare global information properties of those genomes. Results We have analyzed aspects of the information content of Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, and Escherichia coli (K-12 genomes. Virtually all possible (> 98% 12 bp oligomers appear in vertebrate genomes while 98% to D. melanogaster (12–17 bp, C. elegans (11–17 bp, A. thaliana (11–17 bp, S. cerevisiae (10–16 bp and E. coli (9–15 bp. Frequencies of unique oligomers in the genomes follow similar patterns. We identified a set of 2.6 M 15-mers that are more than 1 nucleotide different from all 15-mers in the human genome and so could be used as probes to detect microbes in human samples. In a human sample, these probes would detect 100% of the 433 currently fully sequenced prokaryotes and 75% of the 3065 fully sequenced viruses. The human genome is significantly more compact in sequence space than a random genome. We identified the most frequent 5- to 20-mers in the human genome, which may prove useful as PCR primers. We also identified a bacterium, Anaeromyxobacter dehalogenans, which has an exceptionally low diversity of oligomers given the size of its genome and its GC content. The entropy of coding regions in the human genome is significantly higher than non-coding regions and chromosomes. However chromosomes 1, 2, 9, 12 and 14 have a relatively high proportion of coding DNA without high entropy, and chromosome 20 is the opposite with a low frequency of coding regions but relatively high entropy. Conclusion Measures of the frequency of oligomers are useful for designing PCR assays and for identifying chromosomes and organisms with hidden structure that had not been previously recognized. This information may be used to detect

  19. Next-generation sequencing of human mitochondrial reference genomes uncovers high heteroplasmy frequency.

    Directory of Open Access Journals (Sweden)

    Maria Ximena Sosa

    Full Text Available We describe methods for rapid sequencing of the entire human mitochondrial genome (mtgenome, which involve long-range PCR for specific amplification of the mtgenome, pyrosequencing, quantitative mapping of sequence reads to identify sequence variants and heteroplasmy, as well as de novo sequence assembly. These methods have been used to study 40 publicly available HapMap samples of European (CEU and African (YRI ancestry to demonstrate a sequencing error rate <5.63×10(-4, nucleotide diversity of 1.6×10(-3 for CEU and 3.7×10(-3 for YRI, patterns of sequence variation consistent with earlier studies, but a higher rate of heteroplasmy varying between 10% and 50%. These results demonstrate that next-generation sequencing technologies allow interrogation of the mitochondrial genome in greater depth than previously possible which may be of value in biology and medicine.

  20. AluScan: a method for genome-wide scanning of sequence and structure variations in the human genome

    Directory of Open Access Journals (Sweden)

    Mei Lingling

    2011-11-01

    Full Text Available Abstract Background To complement next-generation sequencing technologies, there is a pressing need for efficient pre-sequencing capture methods with reduced costs and DNA requirement. The Alu family of short interspersed nucleotide elements is the most abundant type of transposable elements in the human genome and a recognized source of genome instability. With over one million Alu elements distributed throughout the genome, they are well positioned to facilitate genome-wide sequence amplification and capture of regions likely to harbor genetic variation hotspots of biological relevance. Results Here we report on the use of inter-Alu PCR with an enhanced range of amplicons in conjunction with next-generation sequencing to generate an Alu-anchored scan, or 'AluScan', of DNA sequences between Alu transposons, where Alu consensus sequence-based 'H-type' PCR primers that elongate outward from the head of an Alu element are combined with 'T-type' primers elongating from the poly-A containing tail to achieve huge amplicon range. To illustrate the method, glioma DNA was compared with white blood cell control DNA of the same patient by means of AluScan. The over 10 Mb sequences obtained, derived from more than 8,000 genes spread over all the chromosomes, revealed a highly reproducible capture of genomic sequences enriched in genic sequences and cancer candidate gene regions. Requiring only sub-micrograms of sample DNA, the power of AluScan as a discovery tool for genetic variations was demonstrated by the identification of 357 instances of loss of heterozygosity, 341 somatic indels, 274 somatic SNVs, and seven potential somatic SNV hotspots between control and glioma DNA. Conclusions AluScan, implemented with just a small number of H-type and T-type inter-Alu PCR primers, provides an effective capture of a diversity of genome-wide sequences for analysis. The method, by enabling an examination of gene-enriched regions containing exons, introns, and

  1. Sequence to Medical Phenotypes: A Framework for Interpretation of Human Whole Genome DNA Sequence Data.

    Directory of Open Access Journals (Sweden)

    Frederick E Dewey

    2015-10-01

    Full Text Available High throughput sequencing has facilitated a precipitous drop in the cost of genomic sequencing, prompting predictions of a revolution in medicine via genetic personalization of diagnostic and therapeutic strategies. There are significant barriers to realizing this goal that are related to the difficult task of interpreting personal genetic variation. A comprehensive, widely accessible application for interpretation of whole genome sequence data is needed. Here, we present a series of methods for identification of genetic variants and genotypes with clinical associations, phasing genetic data and using Mendelian inheritance for quality control, and providing predictive genetic information about risk for rare disease phenotypes and response to pharmacological therapy in single individuals and father-mother-child trios. We demonstrate application of these methods for disease and drug response prognostication in whole genome sequence data from twelve unrelated adults, and for disease gene discovery in one father-mother-child trio with apparently simplex congenital ventricular arrhythmia. In doing so we identify clinically actionable inherited disease risk and drug response genotypes in pre-symptomatic individuals. We also nominate a new candidate gene in congenital arrhythmia, ATP2B4, and provide experimental evidence of a regulatory role for variants discovered using this framework.

  2. Heteroplasmy in the mitochondrial genomes of human lice and ticks revealed by high throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Haoyu Xiong

    Full Text Available The typical mitochondrial (mt genomes of bilateral animals consist of 37 genes on a single circular chromosome. The mt genomes of the human body louse, Pediculus humanus, and the human head louse, Pediculus capitis, however, are extensively fragmented and contain 20 minichromosomes, with one to three genes on each minichromosome. Heteroplasmy, i.e. nucleotide polymorphisms in the mt genome within individuals, has been shown to be significantly higher in the mt cox1 gene of human lice than in humans and other animals that have the typical mt genomes. To understand whether the extent of heteroplasmy in human lice is associated with mt genome fragmentation, we sequenced the entire coding regions of all of the mt minichromosomes of six human body lice and six human head lice from Ethiopia, China and France with an Illumina HiSeq platform. For comparison, we also sequenced the entire coding regions of the mt genomes of seven species of ticks, which have the typical mitochondrial genome organization of bilateral animals. We found that the level of heteroplasmy varies significantly both among the human lice and among the ticks. The human lice from Ethiopia have significantly higher level of heteroplasmy than those from China and France (Pt<0.05. The tick, Amblyomma cajennense, has significantly higher level of heteroplasmy than other ticks (Pt<0.05. Our results indicate that heteroplasmy level can be substantially variable within a species and among closely related species, and does not appear to be determined by single factors such as genome fragmentation.

  3. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    KAUST Repository

    Otto, Thomas D.

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching.

  4. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts.

    Science.gov (United States)

    Otto, Thomas D; Rayner, Julian C; Böhme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, François; Thomas, Alan W; Prugnolle, Franck; Conway, David J; Newbold, Chris; Berriman, Matthew

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host-parasite interface may have mediated host switching.

  5. Rare and common regulatory variation in population-scale sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Stephen B Montgomery

    2011-07-01

    Full Text Available Population-scale genome sequencing allows the characterization of functional effects of a broad spectrum of genetic variants underlying human phenotypic variation. Here, we investigate the influence of rare and common genetic variants on gene expression patterns, using variants identified from sequencing data from the 1000 genomes project in an African and European population sample and gene expression data from lymphoblastoid cell lines. We detect comparable numbers of expression quantitative trait loci (eQTLs when compared to genotypes obtained from HapMap 3, but as many as 80% of the top expression quantitative trait variants (eQTVs discovered from 1000 genomes data are novel. The properties of the newly discovered variants suggest that mapping common causal regulatory variants is challenging even with full resequencing data; however, we observe significant enrichment of regulatory effects in splice-site and nonsense variants. Using RNA sequencing data, we show that 46.2% of nonsynonymous variants are differentially expressed in at least one individual in our sample, creating widespread potential for interactions between functional protein-coding and regulatory variants. We also use allele-specific expression to identify putative rare causal regulatory variants. Furthermore, we demonstrate that outlier expression values can be due to rare variant effects, and we approximate the number of such effects harboured in an individual by effect size. Our results demonstrate that integration of genomic and RNA sequencing analyses allows for the joint assessment of genome sequence and genome function.

  6. Complete Genome Sequence of Treponema paraluiscuniculi, Strain Cuniculi A: The Loss of Infectivity to Humans Is Associated with Genome Decay

    Science.gov (United States)

    Šmajs, David; Zobaníková, Marie; Strouhal, Michal; Čejková, Darina; Dugan-Rocha, Shannon; Pospíšilová, Petra; Norris, Steven J.; Albert, Tom; Qin, Xiang; Hallsworth-Pepin, Kym; Buhay, Christian; Muzny, Donna M.; Chen, Lei; Gibbs, Richard A.; Weinstock, George M.

    2011-01-01

    Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp), arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51). In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84) affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9%) of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits) during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies. PMID:21655244

  7. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay.

    Directory of Open Access Journals (Sweden)

    David Šmajs

    Full Text Available Treponema paraluiscuniculi is the causative agent of rabbit venereal spirochetosis. It is not infectious to humans, although its genome structure is very closely related to other pathogenic Treponema species including Treponema pallidum subspecies pallidum, the etiological agent of syphilis. In this study, the genome sequence of Treponema paraluiscuniculi, strain Cuniculi A, was determined by a combination of several high-throughput sequencing strategies. Whereas the overall size (1,133,390 bp, arrangement, and gene content of the Cuniculi A genome closely resembled those of the T. pallidum genome, the T. paraluiscuniculi genome contained a markedly higher number of pseudogenes and gene fragments (51. In addition to pseudogenes, 33 divergent genes were also found in the T. paraluiscuniculi genome. A set of 32 (out of 84 affected genes encoded proteins of known or predicted function in the Nichols genome. These proteins included virulence factors, gene regulators and components of DNA repair and recombination. The majority (52 or 61.9% of the Cuniculi A pseudogenes and divergent genes were of unknown function. Our results indicate that T. paraluiscuniculi has evolved from a T. pallidum-like ancestor and adapted to a specialized host-associated niche (rabbits during loss of infectivity to humans. The genes that are inactivated or altered in T. paraluiscuniculi are candidates for virulence factors important in the infectivity and pathogenesis of T. pallidum subspecies.

  8. Triangulation of the human, chimpanzee and Neanderthal genome sequences identifies potentially compensated mutations

    OpenAIRE

    Zhang, Guojie; Zhang,Pei; Krawczak, Michael; Ball, Edward V.; Mort, Matthew; Kehrer-Sawatzki, Hildegard; Cooper, David N.

    2010-01-01

    Abstract Triangulation of the human, chimpanzee and Neanderthal genome sequences with respect to 44,348 disease-causing or disease-associated missense mutations and 1,712 putative regulatory mutations listed in the Human Gene Mutation Database was employed to identify genetic variants that are apparently pathogenic in humans but which may represent a `compensated? wild-type state in at least one of the other two species. Of 122 such `potentially compensated mutations? (PCMs) identi...

  9. Sequence and annotation of the apicoplast genome of the human pathogen Babesia microti.

    Directory of Open Access Journals (Sweden)

    Aprajita Garg

    Full Text Available The apicomplexan intraerythrocytic parasite Babesia microti is an emerging human pathogen and the primary cause of human babesiosis, a malaria-like illness endemic in the United States. The pathogen is transmitted to humans by the tick vector, Ixodes scapularis, and by transfusion of blood from asymptomatic B. microti-infected donors. Whereas the nuclear and mitochondrial genomes of this parasite have been sequenced, assembled and annotated, its apicoplast genome remained incomplete, mainly due to its low representation and high A+T content. Here we report the complete sequence and annotation of the apicoplast genome of the B. microti R1 isolate. The genome consists of a 28.7 kb circular molecule encoding primarily functions important for maintenance of the apicoplast DNA, transcription, translation and maturation of organellar proteins. Genome analysis and annotation revealed a unique gene structure and organization of the B. microti apicoplast genome and suggest that all metabolic and non-housekeeping functions in this organelle are nuclear-encoded. B. microti apicoplast functions are significantly different from those of the host, suggesting that they might be useful as targets for development of potent and safe therapies for the treatment of human babesiosis.

  10. Draft Genome Sequences of Historical Listeria monocytogenes from Human Listeriosis, 1933

    Science.gov (United States)

    We report here the draft genome sequences of two Listeria monocytogenes strains from some of the earliest reported cases of human listeriosis in North America. The strains were isolated in 1933 from patients in Massachusetts and Connecticut, USA, and belong to the widely disseminated hypervirulent c...

  11. Draft Genome Sequences of Two Historical Listeria monocytogenes Strains from Human Listeriosis Cases in 1933

    Science.gov (United States)

    Lee, Sangmi; Ward, Todd J.; Orwig, Nathane; Altermann, Eric; Jima, Dereje; Parsons, Cameron; Kathariou, Sophia

    2016-01-01

    We report here the draft genome sequences of two Listeria monocytogenes strains from some of the earliest reported cases of human listeriosis in North America. The strains were isolated in 1933 from patients in Massachusetts and Connecticut, USA, and belong to the widely disseminated hypervirulent clonal complex 1 (CC1) and CC2. PMID:27932656

  12. Draft Genome Sequence of the Animal and Human Pathogen Malassezia pachydermatis Strain CBS 1879

    NARCIS (Netherlands)

    Triana, Sergio; González, Andrés; Ohm, Robin A|info:eu-repo/dai/nl/304837628; Wosten, Han|info:eu-repo/dai/nl/120693186; de Cock, Hans|info:eu-repo/dai/nl/087737116; Restrepo, Silvia; Celis, Adriana

    2015-01-01

    Malassezia pachydermatis is a basidiomycetous yeast that causes infections in humans and animals. Here, we report the genome sequence of Malassezia pachydermatis strain CBS 1879, which will facilitate the study of mechanisms underlying pathogenicity of the only non-lipid-dependent Malasezzia

  13. Draft Genome Sequence of the Animal and Human Pathogen Malassezia pachydermatis Strain CBS 1879.

    Science.gov (United States)

    Triana, Sergio; González, Andrés; Ohm, Robin A; Wösten, Han A B; de Cock, Hans; Restrepo, Silvia; Celis, Adriana

    2015-10-15

    Malassezia pachydermatis is a basidiomycetous yeast that causes infections in humans and animals. Here, we report the genome sequence of Malassezia pachydermatis strain CBS 1879, which will facilitate the study of mechanisms underlying pathogenicity of the only non-lipid-dependent Malasezzia species. Copyright © 2015 Triana et al.

  14. Complete Genome Sequences of Four Different Bordetella sp. Isolates Causing Human Respiratory Infections

    Science.gov (United States)

    Peng, Yanhui; Loparev, Vladimir; Batra, Dhwani; Bowden, Katherine E.; Cassiday, Pamela K.; Davis, Jamie K.; Johnson, Taccara; Juieng, Phalasy; Miner, Christine E.; Rowe, Lori; Sheth, Mili; Tondella, M. Lucia; Williams, Margaret M.

    2016-01-01

    Species of the genus Bordetella associate with various animal hosts, frequently causing respiratory disease. Bordetella pertussis is the primary agent of whooping cough and other Bordetella species can cause similar cough illness. Here, we report four complete genome sequences from isolates of different Bordetella species recovered from human respiratory infections.

  15. Modelling human regulatory variation in mouse: finding the function in genome-wide association studies and whole-genome sequencing.

    Directory of Open Access Journals (Sweden)

    Jean-François Schmouth

    Full Text Available An increasing body of literature from genome-wide association studies and human whole-genome sequencing highlights the identification of large numbers of candidate regulatory variants of potential therapeutic interest in numerous diseases. Our relatively poor understanding of the functions of non-coding genomic sequence, and the slow and laborious process of experimental validation of the functional significance of human regulatory variants, limits our ability to fully benefit from this information in our efforts to comprehend human disease. Humanized mouse models (HuMMs, in which human genes are introduced into the mouse, suggest an approach to this problem. In the past, HuMMs have been used successfully to study human disease variants; e.g., the complex genetic condition arising from Down syndrome, common monogenic disorders such as Huntington disease and β-thalassemia, and cancer susceptibility genes such as BRCA1. In this commentary, we highlight a novel method for high-throughput single-copy site-specific generation of HuMMs entitled High-throughput Human Genes on the X Chromosome (HuGX. This method can be applied to most human genes for which a bacterial artificial chromosome (BAC construct can be derived and a mouse-null allele exists. This strategy comprises (1 the use of recombineering technology to create a human variant-harbouring BAC, (2 knock-in of this BAC into the mouse genome using Hprt docking technology, and (3 allele comparison by interspecies complementation. We demonstrate the throughput of the HuGX method by generating a series of seven different alleles for the human NR2E1 gene at Hprt. In future challenges, we consider the current limitations of experimental approaches and call for a concerted effort by the genetics community, for both human and mouse, to solve the challenge of the functional analysis of human regulatory variation.

  16. Genome sequences and comparative genomics of two Lactobacillus ruminis strains from the bovine and human intestinal tracts

    LENUS (Irish Health Repository)

    2011-08-30

    Abstract Background The genus Lactobacillus is characterized by an extraordinary degree of phenotypic and genotypic diversity, which recent genomic analyses have further highlighted. However, the choice of species for sequencing has been non-random and unequal in distribution, with only a single representative genome from the L. salivarius clade available to date. Furthermore, there is no data to facilitate a functional genomic analysis of motility in the lactobacilli, a trait that is restricted to the L. salivarius clade. Results The 2.06 Mb genome of the bovine isolate Lactobacillus ruminis ATCC 27782 comprises a single circular chromosome, and has a G+C content of 44.4%. In silico analysis identified 1901 coding sequences, including genes for a pediocin-like bacteriocin, a single large exopolysaccharide-related cluster, two sortase enzymes, two CRISPR loci and numerous IS elements and pseudogenes. A cluster of genes related to a putative pilin was identified, and shown to be transcribed in vitro. A high quality draft assembly of the genome of a second L. ruminis strain, ATCC 25644 isolated from humans, suggested a slightly larger genome of 2.138 Mb, that exhibited a high degree of synteny with the ATCC 27782 genome. In contrast, comparative analysis of L. ruminis and L. salivarius identified a lack of long-range synteny between these closely related species. Comparison of the L. salivarius clade core proteins with those of nine other Lactobacillus species distributed across 4 major phylogenetic groups identified the set of shared proteins, and proteins unique to each group. Conclusions The genome of L. ruminis provides a comparative tool for directing functional analyses of other members of the L. salivarius clade, and it increases understanding of the divergence of this distinct Lactobacillus lineage from other commensal lactobacilli. The genome sequence provides a definitive resource to facilitate investigation of the genetics, biochemistry and host

  17. Genome sequencing of idiopathic pulmonary fibrosis in conjunction with a medical school human anatomy course.

    Science.gov (United States)

    Kumar, Akash; Dougherty, Max; Findlay, Gregory M; Geisheker, Madeleine; Klein, Jason; Lazar, John; Machkovech, Heather; Resnick, Jesse; Resnick, Rebecca; Salter, Alexander I; Talebi-Liasi, Faezeh; Arakawa, Christopher; Baudin, Jacob; Bogaard, Andrew; Salesky, Rebecca; Zhou, Qian; Smith, Kelly; Clark, John I; Shendure, Jay; Horwitz, Marshall S

    2014-01-01

    Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF). Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP), as opposed to IPF per se. Variants in genes causing Mendelian disorders predisposing to IPF were not detected. However, whole genome sequencing identified several common variants associated with IPF, including a single nucleotide polymorphism (SNP), rs35705950, located in the promoter region of the gene encoding mucin glycoprotein MUC5B. The MUC5B promoter polymorphism was recently found to markedly elevate risk for IPF, though a particular association with NSIP has not been previously reported, nor has its contribution to disease risk previously been evaluated in the genome-wide context of all genetic variants. We did not identify additional predicted functional variants in a region of linkage disequilibrium (LD) adjacent to MUC5B, nor did we discover other likely risk-contributing variants elsewhere in the genome. Whole genome sequencing thus corroborates the association of rs35705950 with MUC5B dysregulation and interstitial lung disease. This novel exercise additionally served a unique mission in bridging clinical and basic science education.

  18. Genome sequencing of idiopathic pulmonary fibrosis in conjunction with a medical school human anatomy course.

    Directory of Open Access Journals (Sweden)

    Akash Kumar

    Full Text Available Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF. Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP, as opposed to IPF per se. Variants in genes causing Mendelian disorders predisposing to IPF were not detected. However, whole genome sequencing identified several common variants associated with IPF, including a single nucleotide polymorphism (SNP, rs35705950, located in the promoter region of the gene encoding mucin glycoprotein MUC5B. The MUC5B promoter polymorphism was recently found to markedly elevate risk for IPF, though a particular association with NSIP has not been previously reported, nor has its contribution to disease risk previously been evaluated in the genome-wide context of all genetic variants. We did not identify additional predicted functional variants in a region of linkage disequilibrium (LD adjacent to MUC5B, nor did we discover other likely risk-contributing variants elsewhere in the genome. Whole genome sequencing thus corroborates the association of rs35705950 with MUC5B dysregulation and interstitial lung disease. This novel exercise additionally served a unique mission in bridging clinical and basic science education.

  19. Topological Pressure and Coding Sequence Density Estimation in the Human Genome

    CERN Document Server

    Koslicki, David

    2011-01-01

    Inspired by concepts from ergodic theory, we give new insight into coding sequence (CDS) density estimation for the human genome. Our approach is based on the introduction and study of topological pressure: a numerical quantity assigned to any finite sequence based on an appropriate notion of `weighted information content'. For human DNA sequences, each codon is assigned a suitable weight, and using a window size of approximately 60,000bp, we obtain a very strong positive correlation between CDS density and topological pressure. The weights are selected by an optimization procedure, and can be interpreted as quantitative data on the relative importance of different codons for the density estimation of coding sequences. This gives new insight into codon usage bias which is an important subject where long standing questions remain open. Inspired again by ergodic theory, we use the weightings on the codons to define a probability measure on finite sequences. We demonstrate that this measure is effective in disti...

  20. Genomic and Functional Characteristics of Human Cytomegalovirus Revealed by Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Steven Sijmons

    2014-03-01

    Full Text Available The complete genome of human cytomegalovirus (HCMV was elucidated almost 25 years ago using a traditional cloning and Sanger sequencing approach. Analysis of the genetic content of additional laboratory and clinical isolates has lead to a better, albeit still incomplete, definition of the coding potential and diversity of wild-type HCMV strains. The introduction of a new generation of massively parallel sequencing technologies, collectively called next-generation sequencing, has profoundly increased the throughput and resolution of the genomics field. These increased possibilities are already leading to a better understanding of the circulating diversity of HCMV clinical isolates. The higher resolution of next-generation sequencing provides new opportunities in the study of intrahost viral population structures. Furthermore, deep sequencing enables novel diagnostic applications for sensitive drug resistance mutation detection. RNA-seq applications have changed the picture of the HCMV transcriptome, which resulted in proof of a vast amount of splicing events and alternative transcripts. This review discusses the application of next-generation sequencing technologies, which has provided a clearer picture of the intricate nature of the HCMV genome. The continuing development and application of novel sequencing technologies will further augment our understanding of this ubiquitous, but elusive, herpesvirus.

  1. Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure

    DEFF Research Database (Denmark)

    Torarinsson, Elfar; Sawera, Milena; Havgaard, Jakob Hull

    2006-01-01

    been investigated. Owing to the limitations in computational methods, comparative genomics has been lacking the ability to compare such nonconserved sequence regions for conserved structural RNA elements. We have investigated the presence of structural RNA elements by conducting a local structural...... alignment, using FOLDALIGN, on a subset of these 100,000 corresponding regions and estimate that 1800 contain common RNA structures. Comparing our results with the recent mapping of transcribed fragments (transfrags) in human, we find that high-scoring candidates are twice as likely to be found in regions...... expressed non-coding RNA sequences not alignable in primary sequence....

  2. Cynomolgus monkey testicular cDNAs for discovery of novel human genes in the human genome sequence

    Directory of Open Access Journals (Sweden)

    Terao Keiji

    2002-12-01

    Full Text Available Abstract Background In order to contribute to the establishment of a complete map of transcribed regions of the human genome, we constructed a testicular cDNA library for the cynomolgus monkey, and attempted to find novel transcripts for identification of their human homologues. Result The full-insert sequences of 512 cDNA clones were determined. Ultimately we found 302 non-redundant cDNAs carrying open reading frames of 300 bp-length or longer. Among them, 89 cDNAs were found not to be annotated previously in the Ensembl human database. After searching against the Ensembl mouse database, we also found 69 putative coding sequences have no homologous cDNAs in the annotated human and mouse genome sequences in Ensembl. We subsequently designed a DNA microarray including 396 non-redundant cDNAs (with and without open reading frames to examine the expression of the full-sequenced genes. With the testicular probe and a mixture of probes of 10 other tissues, 316 of 332 effective spots showed intense hybridized signals and 75 cDNAs were shown to be expressed very highly in the cynomolgus monkey testis, but not ubiquitously. Conclusions In this report, we determined 302 full-insert sequences of cynomolgus monkey cDNAs with enough length of open reading frames to discover novel transcripts as human homologues. Among 302 cDNA sequences, human homologues of 89 cDNAs have not been predicted in the annotated human genome sequence in the Ensembl. Additionally, we identified 75 dominantly expressed genes in testis among the full-sequenced clones by using a DNA microarray. Our cDNA clones and analytical results will be valuable resources for future functional genomic studies.

  3. Holliday Junctions Are Associated with Transposable Element Sequences in the Human Genome.

    Science.gov (United States)

    Ladias, Paris; Markopoulos, Georgios; Lazaros, Leandros; Markoula, Sofia; Tzavaras, Theodore; Georgiou, Ioannis

    2016-02-13

    Holliday junctions (HJs) constitute important intermediate structures for many cell functions such as DNA recombination and DNA repair. They derive from a 10-nt degenerate sequence, with a 3-nt core motif. In this study, we explored the human genome whether the HJ degenerate sequence associates with transposable elements (TEs) and mainly with those of the active and inactive ALU, LINE, SVA and HERV families. We identified six different forms of the HJ sequence motif, and we located the genomic coordinates of sequences containing both HJs and TEs. From 2982 total HJs, a significant number of 1319 TE-associated HJs were found, with a median distribution of 1 per 2.4 Mb. The HJs with higher GC content were observed more frequently at the genome. A high percentage of HJs were associated with all main TE families, with specificity for particular active or inactive elements: DNA elements and the retroelements ALUs, LINEs and HERVs up to 41.94%, 72.72%, 42.94% and 84.5%, respectively. Phylogenetic analysis revealed that HJs occur in both active and inactive TEs. Furthermore, the TE-associated HJs were almost exclusively found within a distance less than 1 Mb from human genes, while only 23 were not associated with any genes. This is the first report associating human HJs, with mobile elements. Our data pinpoint that particular HJ forms show preference for specific active retrotransposon families of ALUs and LINEs, suggesting that retrotransposon-incorporated HJs may relocate or replicate in the genome through retrotransposition, contributing to recombination, genome plasticity and DNA repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Draft Genome Sequence of "Terrisporobacter othiniensis" Isolated from a Blood Culture from a Human Patient

    DEFF Research Database (Denmark)

    Lund, Lars Christian; Sydenham, Thomas Vognbjerg; Høgh, Silje Vermedal

    2015-01-01

    "Terrisporobacter othiniensis" (proposed species) was isolated from a blood culture. Genomic DNA was sequenced using a MiSeq benchtop sequencer (Illumina) and assembled using the SPAdes genome assembler. This resulted in a draft genome sequence comprising 3,980,019 bp in 167 contigs containing 3...

  5. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    KAUST Repository

    Dalgleish, Raymond

    2010-04-15

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  6. DNA sequence comparative analysis of the 3pter-p26 region of human genome

    Institute of Scientific and Technical Information of China (English)

    LUO; Chunqing; LI; Yan; ZHANG; Xiaowei; ZHANG; Yilin; ZHAN

    2005-01-01

    Most proterminal regions of human chromosomes are GC-rich and gene-rich. Chromosome 3p is an exception. Its proterminal region is GC-poor, and likely to lose heterozygosity, thus causing a number of fatal diseases. Except one gap left in the telomeric position, the proterminal region of human chromosome 3p has been completely sequenced. The detailed sequence analysis showed: (i) the GC content of this region was 38.5%, being the lowest among all the human proterminal regions; (ii) this region contained 20 known genes and 22 predicted genes, with an average gene size of 97.5 kb. The previously mapped gene Cntn3 was not found in this region, but instead located in the 74 Mb position of human chromosome 3p; (iii) the interspersed repeats of this region were more active than the average level of the whole human genome, especially (TA)n, the content of which was twice the genome average; (iv) this region had a conserved synteny extending from 104.1 Mb to 112.4 Mb on the mouse chromosome 6, which was 8% larger in size, not in accordance with the whole genome comparison, probably because the 3pter-p26 region was more likely to lose neocleitides and its mouse synteny had more active interspersed repeats.

  7. The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity.

    Directory of Open Access Journals (Sweden)

    Marco Ventura

    2009-12-01

    Full Text Available Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria. However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium Bd1, a strain isolated from dental caries, was sequenced to completion to uncover a single circular 2,636,368 base pair chromosome with 2,143 predicted open reading frames. Annotation of the genome sequence revealed multiple ways in which B. dentium has adapted to the oral environment through specialized nutrient acquisition, defences against antimicrobials, and gene products that increase fitness and competitiveness within the oral niche. B. dentium Bd1 was shown to metabolize a wide variety of carbohydrates, consistent with genome-based predictions, while colonization and persistence factors implicated in tissue adhesion, acid tolerance, and the metabolism of human saliva-derived compounds were also identified. Global transcriptome analysis demonstrated that many of the genes encoding these predicted traits are highly expressed under relevant physiological conditions. This is the first report to identify, through various genomic approaches, specific genetic adaptations of a Bifidobacterium taxon, Bifidobacterium dentium Bd1, to a lifestyle as a cariogenic microorganism in the oral cavity. In silico analysis and comparative genomic hybridization experiments clearly reveal a high level of genome conservation among various B. dentium strains. The data indicate that the genome of this opportunistic cariogen has evolved through a very limited number of horizontal gene acquisition events, highlighting the narrow boundaries that separate commensals from

  8. Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes.

    Science.gov (United States)

    Weingarten-Gabbay, Shira; Elias-Kirma, Shani; Nir, Ronit; Gritsenko, Alexey A; Stern-Ginossar, Noam; Yakhini, Zohar; Weinberger, Adina; Segal, Eran

    2016-01-15

    To investigate gene specificity at the level of translation in both the human genome and viruses, we devised a high-throughput bicistronic assay to quantify cap-independent translation. We uncovered thousands of novel cap-independent translation sequences, and we provide insights on the landscape of translational regulation in both humans and viruses. We find extensive translational elements in the 3' untranslated region of human transcripts and the polyprotein region of uncapped RNA viruses. Through the characterization of regulatory elements underlying cap-independent translation activity, we identify potential mechanisms of secondary structure, short sequence motif, and base pairing with the 18S ribosomal RNA (rRNA). Furthermore, we systematically map the 18S rRNA regions for which reverse complementarity enhances translation. Thus, we make available insights into the mechanisms of translational control in humans and viruses.

  9. Sequencing and analyses of all known human rhinovirus genomes reveal structure and evolution.

    Science.gov (United States)

    Palmenberg, Ann C; Spiro, David; Kuzmickas, Ryan; Wang, Shiliang; Djikeng, Appolinaire; Rathe, Jennifer A; Fraser-Liggett, Claire M; Liggett, Stephen B

    2009-04-03

    Infection by human rhinovirus (HRV) is a major cause of upper and lower respiratory tract disease worldwide and displays considerable phenotypic variation. We examined diversity by completing the genome sequences for all known serotypes (n = 99). Superimposition of capsid crystal structure and optimal-energy RNA configurations established alignments and phylogeny. These revealed conserved motifs; clade-specific diversity, including a potential newly identified species (HRV-D); mutations in field isolates; and recombination. In analogy with poliovirus, a hypervariable 5' untranslated region tract may affect virulence. A configuration consistent with nonscanning internal ribosome entry was found in all HRVs and may account for rapid translation. The data density from complete sequences of the reference HRVs provided high resolution for this degree of modeling and serves as a platform for full genome-based epidemiologic studies and antiviral or vaccine development.

  10. Information on a Major New Initiative: Mapping and Sequencing the Human Genome (1986 DOE Memorandum)

    Science.gov (United States)

    DeLisi, Charles (Associate Director, Health and Environmental Research, DOE Office of Energy Research)

    1986-05-06

    In the history of the Human Genome Program, Dr. Charles DeLisi and Dr. Alvin Trivelpiece of the Department of Energy (DOE) were instrumental in moving the seeds of the program forward. This May 1986 memo from DeLisi to Trivelpiece, Director of DOE's Office of Energy Research, documents this fact. Following the March 1986 Santa Fe workshop on the subject of mapping and sequencing the human genome, DeLisi's memo outlines workshop conclusions, explains the relevance of this project to DOE and the importance of the Department's laboratories and capabilities, notes the critical experience of DOE in managing projects of this scale and potential magnitude, and recognizes the fact that the project will impact biomedical science in ways which could not be fully anticipated at the time. Subsequently, program guidance was further sought from the DOE Health Effects Research Advisory Committee (HERAC) and the April 1987 HERAC report recommended that DOE and the nation commit to a large, multidisciplinary, scientific and technological undertaking to map and sequence the human genome.

  11. Genomic sequences of human infection of avian-origin influenza A(H7N9) virus in Zhejiang province

    Institute of Scientific and Technical Information of China (English)

    陈寅

    2013-01-01

    Objective To analyze the etiology and genomic sequences of human infection of avian-origin influenza A (H7N9) virus from Zhejiang province.Methods Viral RNA was extracted from patients of suspected H7N9

  12. Genome Sequence of "Candidatus Methanomassiliicoccus intestinalis" Issoire-Mx1, a Third Thermoplasmatales-Related Methanogenic Archaeon from Human Feces.

    Science.gov (United States)

    Borrel, Guillaume; Harris, Hugh M B; Parisot, Nicolas; Gaci, Nadia; Tottey, William; Mihajlovski, Agnès; Deane, Jennifer; Gribaldo, Simonetta; Bardot, Olivier; Peyretaillade, Eric; Peyret, Pierre; O'Toole, Paul W; Brugère, Jean-François

    2013-07-11

    "Candidatus Methanomassiliicoccus intestinalis" Issoire-Mx1 is a methanogenic archaeon found in the human gut and is a representative of the novel order of methanogens related to Thermoplasmatales. Its complete genome sequence is presented here.

  13. The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease.

    Science.gov (United States)

    Peng, Xinxia; Alföldi, Jessica; Gori, Kevin; Eisfeld, Amie J; Tyler, Scott R; Tisoncik-Go, Jennifer; Brawand, David; Law, G Lynn; Skunca, Nives; Hatta, Masato; Gasper, David J; Kelly, Sara M; Chang, Jean; Thomas, Matthew J; Johnson, Jeremy; Berlin, Aaron M; Lara, Marcia; Russell, Pamela; Swofford, Ross; Turner-Maier, Jason; Young, Sarah; Hourlier, Thibaut; Aken, Bronwen; Searle, Steve; Sun, Xingshen; Yi, Yaling; Suresh, M; Tumpey, Terrence M; Siepel, Adam; Wisely, Samantha M; Dessimoz, Christophe; Kawaoka, Yoshihiro; Birren, Bruce W; Lindblad-Toh, Kerstin; Di Palma, Federica; Engelhardt, John F; Palermo, Robert E; Katze, Michael G

    2014-12-01

    The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.

  14. Mapping and sequencing the human genome: Science, ethics, and public policy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, J.D.

    1993-03-31

    Development of Mapping and Sequencing the Human Genome: Science, Ethics, and Public Policy followed the standard process of curriculum development at the Biological Sciences Curriculum Study (BSCS), the process is described. The production of this module was a collaborative effort between BSCS and the American Medical Association (AMA). Appendix A contains a copy of the module. Copies of reports sent to the Department of Energy (DOE) during the development process are contained in Appendix B; all reports should be on file at DOE. Appendix B also contains copies of status reports submitted to the BSCS Board of Directors.

  15. Complete, closed genome sequences of 10 Salmonella enterica subsp. enterica serovar Typhimurium strains isolated from human and bovine sources

    Science.gov (United States)

    Salmonella enterica are a leading cause of enterocolitis for humans and animals. S. enterica serovar Typhimurium infects a broad range of hosts. To facilitate genomic comparisons among isolates from different sources, we present the complete genome sequences of ten S. Typhimurium strains, five each...

  16. Genome Sequence of Madurella mycetomatis mm55, Isolated from a Human Mycetoma Case in Sudan

    NARCIS (Netherlands)

    Smit, S.; Derks, M.F.L.; Bervoets, Sander; Fahal, Ahmed; Leeuwen, van Willem; Belkum, van Alex; Sande, van de Wendy W.J.

    2016-01-01

    We present the first genome sequence for a strain of the main mycetoma causative agent, Madurella mycetomatis. This 36.7-Mb genome sequence will offer new insights into the pathogenesis of mycetoma, and it will contribute to the development of better therapies for this neglected tropical disease.

  17. Genome sequence of Madurella mycetomatis mm55, isolated from a human mycetoma case in Sudan

    NARCIS (Netherlands)

    Smit, S. (Sandra); Derks, M.F.L. (Martijn F.L.); Bervoets, S. (Sander); A.H. Fahal (Ahmed); W.B. van Leeuwen (Willem); A.F. van Belkum (Alex); W.W.J. van de Sande (Wendy)

    2016-01-01

    textabstractWe present the first genome sequence for a strain of the main mycetoma causative agent, Madurella mycetomatis. This 36.7-Mb genome sequence will offer new insights into the pathogenesis of mycetoma, and it will contribute to the development of better therapies for this neglected tropical

  18. Whole-exome/genome sequencing and genomics.

    Science.gov (United States)

    Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne

    2013-12-01

    As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.

  19. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  20. Dragon polya spotter: Predictor of poly(A) motifs within human genomic DNA sequences

    KAUST Repository

    Kalkatawi, Manal Matoq Saeed

    2011-11-15

    Motivation: Recognition of poly(A) signals in mRNA is relatively straightforward due to the presence of easily recognizable polyadenylic acid tail. However, the task of identifying poly(A) motifs in the primary genomic DNA sequence that correspond to poly(A) signals in mRNA is a far more challenging problem. Recognition of poly(A) signals is important for better gene annotation and understanding of the gene regulation mechanisms. In this work, we present one such poly(A) motif prediction method based on properties of human genomic DNA sequence surrounding a poly(A) motif. These properties include thermodynamic, physico-chemical and statistical characteristics. For predictions, we developed Artificial Neural Network and Random Forest models. These models are trained to recognize 12 most common poly(A) motifs in human DNA. Our predictors are available as a free web-based tool accessible at http://cbrc.kaust.edu.sa/dps. Compared with other reported predictors, our models achieve higher sensitivity and specificity and furthermore provide a consistent level of accuracy for 12 poly(A) motif variants. The Author(s) 2011. Published by Oxford University Press. All rights reserved.

  1. Genome Sequences of 14 Firmicutes Strains Isolated from the Human Vagina

    Science.gov (United States)

    Deitzler, Grace E.; Ruiz, Maria J.; Weimer, Cory; Park, SoEun; Robinson, Lloyd; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    Research on vaginal infections is currently limited by a lack of available fully sequenced bacterial reference strains. Here, we present strains (now available through BEI Resources) and genome sequences for a set of 14 vaginal isolates from the phylum Firmicutes. These genome sequences provide a valuable resource for future research in understanding the role of Gram-positive bacteria in vaginal health and disease. PMID:27688329

  2. A 1463 gene cattle-human comparative map with anchor points defined by human genome sequence coordinates.

    Science.gov (United States)

    Everts-van der Wind, Annelie; Kata, Srinivas R; Band, Mark R; Rebeiz, Mark; Larkin, Denis M; Everts, Robin E; Green, Cheryl A; Liu, Lei; Natarajan, Shreedhar; Goldammer, Tom; Lee, Jun Heon; McKay, Stephanie; Womack, James E; Lewin, Harris A

    2004-07-01

    A second-generation 5000 rad radiation hybrid (RH) map of the cattle genome was constructed primarily using cattle ESTs that were targeted to gaps in the existing cattle-human comparative map, as well as to sparsely populated map intervals. A total of 870 targeted markers were added, bringing the number of markers mapped on the RH(5000) panel to 1913. Of these, 1463 have significant BLASTN hits (E genes) were identified between the cattle and human genomes, of which 31 are newly discovered and 34 were extended singletons on the first-generation map. The new map represents an improvement of 20% genome-wide comparative coverage compared with the first-generation map. Analysis of gene content within human genome regions where there are gaps in the comparative map revealed gaps with both significantly greater and significantly lower gene content. The new, more detailed cattle-human comparative map provides an improved resource for the analysis of mammalian chromosome evolution, the identification of candidate genes for economically important traits, and for proper alignment of sequence contigs on cattle chromosomes. Copyright 2004 Cold Spring Harbor Laboratory Press ISSN

  3. Complete Genome Sequences of Two Methicillin-Sensitive Staphylococcus aureus Isolates Representing a Population Subset Highly Prevalent in Human Colonization

    Science.gov (United States)

    Weber, Robert E.; Layer, Franziska; Fuchs, Stephan; Bender, Jennifer K.; Fiedler, Stefan; Werner, Guido

    2016-01-01

    Here, we report the high-quality draft genome sequences of two methicillin-susceptible Staphylococcus aureus isolates, 08-02119 and 08-02300. Belonging to sequence type 582 (ST582) and ST7, both isolates are representatives of clonal lineages often associated with asymptomatic colonization of humans. PMID:27469954

  4. Complete Genome Sequence of Streptococcus salivarius HSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract.

    Science.gov (United States)

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-02-04

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides. Copyright © 2016 Mignolet et al.

  5. Complete genome sequence of Streptococcus salivarius HSISS4, a human commensal bacterium highly prevalent in the digestive tract

    OpenAIRE

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides.

  6. Complete Genome Sequence ofStreptococcus salivariusHSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract

    OpenAIRE

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides.

  7. Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human

    Science.gov (United States)

    Wu, Chengchao; Yao, Shixin; Li, Xinghao; Chen, Chujia; Hu, Xuehai

    2017-01-01

    DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species predictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the experimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation. PMID:28212312

  8. Partial Sequence Analysis of the Genome of Human Herpesvirus 7 YY5 Isolated from Saliva Samples

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To isolate and identify Nanjing local strains of Human Herpesvirus 7 (HH-V-7), and to analyze their partia l genome characteristic. Methods The saliva specimens were collected from 2 healthy adults and 5 children with kidney disease. After treatment with antibiotics and filtering. they were inoculated on to the phytohemagglutin stimulated umbilical cord blood mononuclear cells ( CBMCs). When the infected cells presented the typical ballooning and polykaryotic cytopathic effects (CPE), we identified them by transvnission electron microscopy and polymerase chain reaction.PCR product was also sequenced. Results Four strains were isolated from the seven saliva specimens. The 186-base-pair fragment of the isolated strain YY5 PCR products was sequenced, which encoded part of the HHV-7 U10 gene. The DNA sequence revealed an identity of 57. 5% and 36.0%, respectively with HHV-6 and human cytomegalovirus ( HCMV). At the amino acid level, the similarity of 51.6% was found between HHV-7 and HHV-6, and that of 25.8% between HHV-7and HCMV. Conclusion The isolated viruses were HHV-7, and 186 bp fragments revealed an identity with HHV-7 RK and Jl of 100%.

  9. Chromosome conformation capture uncovers potential genome-wide interactions between human conserved non-coding sequences.

    Directory of Open Access Journals (Sweden)

    Daniel Robyr

    Full Text Available Comparative analyses of various mammalian genomes have identified numerous conserved non-coding (CNC DNA elements that display striking conservation among species, suggesting that they have maintained specific functions throughout evolution. CNC function remains poorly understood, although recent studies have identified a role in gene regulation. We hypothesized that the identification of genomic loci that interact physically with CNCs would provide information on their functions. We have used circular chromosome conformation capture (4C to characterize interactions of 10 CNCs from human chromosome 21 in K562 cells. The data provide evidence that CNCs are capable of interacting with loci that are enriched for CNCs. The number of trans interactions varies among CNCs; some show interactions with many loci, while others interact with few. Some of the tested CNCs are capable of driving the expression of a reporter gene in the mouse embryo, and associate with the oligodendrocyte genes OLIG1 and OLIG2. Our results underscore the power of chromosome conformation capture for the identification of targets of functional DNA elements and raise the possibility that CNCs exert their functions by physical association with defined genomic regions enriched in CNCs. These CNC-CNC interactions may in part explain their stringent conservation as a group of regulatory sequences.

  10. SeqMule: automated pipeline for analysis of human exome/genome sequencing data.

    Science.gov (United States)

    Guo, Yunfei; Ding, Xiaolei; Shen, Yufeng; Lyon, Gholson J; Wang, Kai

    2015-09-18

    Next-generation sequencing (NGS) technology has greatly helped us identify disease-contributory variants for Mendelian diseases. However, users are often faced with issues such as software compatibility, complicated configuration, and no access to high-performance computing facility. Discrepancies exist among aligners and variant callers. We developed a computational pipeline, SeqMule, to perform automated variant calling from NGS data on human genomes and exomes. SeqMule integrates computational-cluster-free parallelization capability built on top of the variant callers, and facilitates normalization/intersection of variant calls to generate consensus set with high confidence. SeqMule integrates 5 alignment tools, 5 variant calling algorithms and accepts various combinations all by one-line command, therefore allowing highly flexible yet fully automated variant calling. In a modern machine (2 Intel Xeon X5650 CPUs, 48 GB memory), when fast turn-around is needed, SeqMule generates annotated VCF files in a day from a 30X whole-genome sequencing data set; when more accurate calling is needed, SeqMule generates consensus call set that improves over single callers, as measured by both Mendelian error rate and consistency. SeqMule supports Sun Grid Engine for parallel processing, offers turn-key solution for deployment on Amazon Web Services, allows quality check, Mendelian error check, consistency evaluation, HTML-based reports. SeqMule is available at http://seqmule.openbioinformatics.org.

  11. All about the Human Genome Project (HGP)

    Science.gov (United States)

    ... Genome Resources Access to the full human sequence All About The Human Genome Project (HGP) The Human ... an international research effort to sequence and map all of the genes - together known as the genome - ...

  12. Investigating Salmonella Eko from Various Sources in Nigeria by Whole Genome Sequencing to Identify the Source of Human Infections.

    Directory of Open Access Journals (Sweden)

    Pimlapas Leekitcharoenphon

    Full Text Available Twenty-six Salmonella enterica serovar Eko isolated from various sources in Nigeria were investigated by whole genome sequencing to identify the source of human infections. Diversity among the isolates was observed and camel and cattle were identified as the primary reservoirs and the most likely source of the human infections.

  13. Draft Genome Sequence of Herpotrichiellaceae sp. UM 238 Isolated from Human Skin Scraping.

    Science.gov (United States)

    Ng, Kee Peng; Yew, Su Mei; Chan, Chai Ling; Tan, Ruixin; Soo-Hoo, Tuck Soon; Na, Shiang Ling; Hassan, Hamimah; Ngeow, Yun Fong; Hoh, Chee-Choong; Lee, Kok Wei; Yee, Wai-Yan

    2013-01-01

    Herpotrichiellaceae spp. are known to be opportunistic human pathogens. Here, we report the ~28.46-Mb draft genome of Herpotrichiellaceae sp. UM 238, isolated from human skin scraping. The UM 238 genome was found to contain many classes of protective genes that are responsible for fungal adaptation under adverse environmental conditions.

  14. Malaria Genome Sequencing Project

    Science.gov (United States)

    2004-01-01

    million cases and up to 2.7 million A whole chromosome shotgun sequencing strategy was used to deaths from malaria each year. The mortality levels are...deaths from malaria each year. The mortality levels are greatest in determine the genome sequence of P. falciparum clone 3D7. This sub-Saharan Africa...aminolevulinic acid dehydratase. Cura . Genet. 40, 391-398 (2002). 15. Lasonder, E. et al Analysis of the Plasmodium falciparum proteome by high-accuracy mass

  15. Genome sequencing conference II

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    Genome Sequencing Conference 2 was held September 30 to October 30, 1990. 26 speaker abstracts and 33 poster presentations were included in the program report. New and improved methods for DNA sequencing and genetic mapping were presented. Many of the papers were concerned with accuracy and speed of acquisition of data with computers and automation playing an increasing role. Individual papers have been processed separately for inclusion on the database.

  16. Recombination analysis of intermediate human adenovirus type 53 in Japan by complete genome sequence.

    Science.gov (United States)

    Kaneko, Hisatoshi; Aoki, Koki; Ishida, Susumu; Ohno, Shigeaki; Kitaichi, Nobuyoshi; Ishiko, Hiroaki; Fujimoto, Tsuguto; Ikeda, Yoshifumi; Nakamura, Masako; Gonzalez, Gabriel; Koyanagi, Kanako O; Watanabe, Hidemi; Suzutani, Tatsuo

    2011-06-01

    Human adenovirus type 53 (HAdV-53) has commonly been detected in samples from epidemic keratoconjunctivitis (EKC) patients in Japan since 1996. HAdV-53 is an intermediate virus, containing hexon-chimeric, penton base and fiber structures similar to HAdV-22 and -37, HAdV-37 and HAdV-8, respectively. HAdV-53-like intermediate strains were first isolated from EKC samples in Japan in the 1980s. Here, the complete genome sequences of three such HAdV-53-like intermediate strains (870006C, 880249C and 890357C) and four HAdV-53 strains were determined, and their relationships were analysed. The seven HAdV strains were classified into three groups, 870006C/880249C, 890357C and the four HAdV-53 strains, on the basis of phylogenetic analyses of the partial and complete genome sequences. HAdV strains within the same group showed the highest nucleotide identities (99.87-100.00 %). Like HAdV-53, the hexon loop 1 and 2 regions of 870006C, 880249C and 890357C showed the highest identity with HAdV-22. However, these strains did not show a hexon-chimeric structure similar to HAdV-22 and -37, or a penton base similar to HAdV-37. The fiber genes of 870006C and 880249C were identical to that of HAdV-37, but not HAdV-8. Thus, the three intermediate HAdVs isolated in the 1980s were similar to each other but not to HAdV-53. The recombination breakpoints were inferred by the Recombination Detection Program (rdp) using whole-genome sequences of these seven HAdV and of 12 HAdV-D strains from GenBank. HAdV-53 may have evolved from intermediate HAdVs circulating in the 1980s, and from HAdV-8, -22 and -37, by recombination of sections cut at the putative breakpoints.

  17. The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.

    Science.gov (United States)

    Murray, Vincent; Chen, Jon K; Tanaka, Mark M

    2016-07-01

    The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.

  18. Draft Genome Sequence of Lactobacillus plantarum CMPG5300, a Human Vaginal Isolate

    NARCIS (Netherlands)

    Malik, S.; Siezen, R.J.; Renckens, B.; Vaneechoutte, M.; Vanderleyden, J.; Lebeer, S.

    2014-01-01

    The draft genome of a highly auto-aggregating Lactobacillus plantarum strain isolated from a human vagina is reported. The peculiar phenotype also provides an adhesive and co-aggregative potential with various pathogens, which could be of significance in the vaginal niche. Detailed genome analysis c

  19. Draft Genome Sequence of Lactobacillus plantarum CMPG5300, a Human Vaginal Isolate

    NARCIS (Netherlands)

    Malik, S.; Siezen, R.J.; Renckens, B.; Vaneechoutte, M.; Vanderleyden, J.; Lebeer, S.

    2014-01-01

    The draft genome of a highly auto-aggregating Lactobacillus plantarum strain isolated from a human vagina is reported. The peculiar phenotype also provides an adhesive and co-aggregative potential with various pathogens, which could be of significance in the vaginal niche. Detailed genome analysis c

  20. Draft Genome Sequence of Lactobacillus plantarum CMPG5300, a Human Vaginal Isolate

    NARCIS (Netherlands)

    Malik, S.; Siezen, R.J.; Renckens, B.; Vaneechoutte, M.; Vanderleyden, J.; Lebeer, S.

    2014-01-01

    The draft genome of a highly auto-aggregating Lactobacillus plantarum strain isolated from a human vagina is reported. The peculiar phenotype also provides an adhesive and co-aggregative potential with various pathogens, which could be of significance in the vaginal niche. Detailed genome analysis

  1. Microbial genomics: from sequence to function.

    OpenAIRE

    Schwartz, I

    2000-01-01

    The era of genomics (the study of genes and their function) began a scant dozen years ago with a suggestion by James Watson that the complete DNA sequence of the human genome be determined. Since that time, the human genome project has attracted a great deal of attention in the scientific world and the general media; the scope of the sequencing effort, and the extraordinary value that it will provide, has served to mask the enormous progress in sequencing other genomes. Microbial genome seque...

  2. Sequencing the maize genome.

    Science.gov (United States)

    Martienssen, Robert A; Rabinowicz, Pablo D; O'Shaughnessy, Andrew; McCombie, W Richard

    2004-04-01

    Sequencing of complex genomes can be accomplished by enriching shotgun libraries for genes. In maize, gene-enrichment by copy-number normalization (high C(0)t) and methylation filtration (MF) have been used to generate up to two-fold coverage of the gene-space with less than 1 million sequencing reads. Simulations using sequenced bacterial artificial chromosome (BAC) clones predict that 5x coverage of gene-rich regions, accompanied by less than 1x coverage of subclones from BAC contigs, will generate high-quality mapped sequence that meets the needs of geneticists while accommodating unusually high levels of structural polymorphism. By sequencing several inbred strains, we propose a strategy for capturing this polymorphism to investigate hybrid vigor or heterosis.

  3. Analyzing Somatic Genome Rearrangements in Human Cancers by Using Whole-Exome Sequencing | Office of Cancer Genomics

    Science.gov (United States)

    Although exome sequencing data are generated primarily to detect single-nucleotide variants and indels, they can also be used to identify a subset of genomic rearrangements whose breakpoints are located in or near exons. Using >4,600 tumor and normal pairs across 15 cancer types, we identified over 9,000 high confidence somatic rearrangements, including a large number of gene fusions.

  4. Draft Genome Sequences of Two Propionibacterium acnes Strains Isolated from Progressive Macular Hypomelanosis Lesions of Human Skin

    DEFF Research Database (Denmark)

    Petersen, Rolf; Lomholt, Hans B.; Scholz, Christian F. P.;

    2015-01-01

    Propionibacterium acnes is a Gram-positive bacterium that is prevalent on human skin. It has been associated with skin disorders such as acne vulgaris and progressive macular hypomelanosis (PMH). Here, we report draft genome sequences of two type III P. acnes strains, PMH5 and PMH7, isolated from...

  5. Draft Genome Sequences of Salmonella enterica Isolates Containing Incompatibility Group I1 Plasmids from Swine, Poultry, and Human Sources.

    Science.gov (United States)

    Kaldhone, Pravin R; Khajanchi, Bijay K; Han, Jing; Nayak, Rajesh; Ricke, Steven C; Foley, Steven L

    2017-09-28

    The draft genome sequences of eight Salmonella enterica isolates from various sources were evaluated for the influence of incompatibility group I1 (IncI1) plasmids on virulence. Strains SE142, SE143, SE144, and SE146 originated from swine, SE36N and SE89N from poultry-related sources, and SE991 and SE1148 from human patients.

  6. Draft Genome Sequences of Two Propionibacterium acnes Strains Isolated from Progressive Macular Hypomelanosis Lesions of Human Skin

    DEFF Research Database (Denmark)

    Petersen, Rolf; Lomholt, Hans B.; Scholz, Christian F. P.

    2015-01-01

    Propionibacterium acnes is a Gram-positive bacterium that is prevalent on human skin. It has been associated with skin disorders such as acne vulgaris and progressive macular hypomelanosis (PMH). Here, we report draft genome sequences of two type III P. acnes strains, PMH5 and PMH7, isolated from...

  7. Investigating Salmonella Eko from Various Sources in Nigeria by Whole Genome Sequencing to Identify the Source of Human Infections

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas; Raufu, Ibrahim; Thorup Nielsen, Mette

    2016-01-01

    Twenty-six Salmonella enterica serovar Eko isolated from various sources in Nigeria were investigated by whole genome sequencing to identify the source of human infections. Diversity among the isolates was observed and camel and cattle were identified as the primary reservoirs and the most likely...

  8. Complete genome sequence of Streptococcus salivarius HSISS4, a human commensal bacterium highly prevalent in the digestive tract

    NARCIS (Netherlands)

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular

  9. Complete Genome Sequence of Lactobacillus oris J-1, a Potential Probiotic Isolated from the Human Oral Microbiome

    Science.gov (United States)

    2016-01-01

    Lactobacilli can exert health-promoting effects in the human oral microbiome through many mechanisms, including pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Here, we present the complete genome sequence of a potential probiotic, Lactobacillus oris J-1, that was isolated from the oral cavity of a health child. PMID:27634996

  10. whole-genome sequence of livestock-associated st398 methicillin-resistant staphylococcus aureus Isolated from Humans in Canada.

    Science.gov (United States)

    Golding, George R; Bryden, Louis; Levett, Paul N; McDonald, Ryan R; Wong, Alice; Graham, Morag R; Tyler, Shaun; Van Domselaar, Gary; Mabon, Philip; Kent, Heather; Butaye, Patrick; Smith, Tara C; Kadlec, Kristina; Schwarz, Stefan; Weese, Scott J; Mulvey, Michael R

    2012-12-01

    Despite reports of high colonization rates of ST398 livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) among pigs and pig farmers, the incidence of LA-MRSA infection in the general population in Canada appears to be rare in comparison to that in some European countries. In this study, the complete genome sequence of a Canadian representative LA-MRSA isolate (08BA02176) from a human postoperative surgical site infection was acquired and compared to the sequenced genome of an LA-MRSA isolate (S0385) from Europe to identify genetic traits that may explain differences in the success of these particular strains in some locales.

  11. Sequence-based Methods in Human Microbial Ecology: A The 2nd HumanGenome Comes of Age

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Li; Rubin, Edward M.; Bristow, James

    2005-06-01

    Ecologists studying microbial life in the environment have recognized the enormous complexity of microbial diversity for more than a decade (Whitman et al. 1998). The development of a variety of culture-independent methods, many of them coupled with high-throughput DNA sequencing, has allowed this diversity to be explored in ever greater detail (Handelsman 2004; Harris et al. 2004; Hugenholtz et al. 1998; Moreira and Lopez-Garcia 2002; Rappe and Giovannoni 2003). Despite the widespread application of these new techniques to the characterization of uncultivated microbes and microbial communities in the environment, their application to human health and disease has lagged behind. Because these techniques now allow not only cataloging of microbial diversity, but also insight into microbial functions, it is time for clinical microbiologists to apply these tools to the microbial communities that abound on and within us, in what has been aptly called ''the second Human Genome Project'' (Relman and Falkow 2001). In this review we will discuss the sequence-based methods for microbial analysis that are currently available and their application to identify novel human pathogens, improve diagnosis and treatment of known infectious diseases, and finally to advance understanding of our relationship with microbial communities that normally reside in and on the human body.

  12. Validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification: a revision based on the New Human Genome Reference Sequence (GRCh37).

    Science.gov (United States)

    Ramos, Amanda; Santos, Cristina; Barbena, Elena; Mateiu, Ligia; Alvarez, Luis; Nogués, Ramon; Aluja, Maria Pilar

    2011-03-01

    A new human genome reference sequence--GRCh37--was recently generated and made available by the Genome Reference Consortium. Since the prior disposable human reference sequence--hg18--was previously used for the mitochondrial DNA primer BLAST validation, a revision of those previously published primer pairs is required. Thus, the aim of this Short Communication is to perform an in silico BLAST test of the published disposable nine primer pairs using the new human reference sequence and to report the pertinent modifications. The new analysis showed that one of the tested primer pairs requires a revision. Therefore, a new validated primer pair, which specifically amplifies the mitochondrial region located between positions 6520 and 9184, is presented.

  13. Draft Genome Sequence of Human-Pathogenic Lactococcus garvieae LG-ilsanpaik-gs201105 That Caused Acute Acalculous Cholecystitis.

    Science.gov (United States)

    Kim, Ji Hyung; Kang, Do-Hyung; Park, Se Chang

    2015-06-04

    Lactococcus garvieae, which is generally known as a marine and freshwater fish pathogen, is now considered to be an emerging zoonotic pathogen in both human and veterinary medicine. In recent years, we have reported the infection of L. garvieae LG-ilsanpaik-gs201105 in the gallbladder of an old fisherman. In this study, we present the draft genome sequence of L. garvieae LG-ilsanpaik-gs201105, with a total genome size of 1,960,261 bp in 53 contigs and a 38.1% average G+C content. Interestingly, the capsule gene cluster, which was known as one of the crucial virulence factors in L. garvieae, was not detected in our isolate. This is the first genome sequence of human-pathogenic L. garvieae, which caused acute acalculous cholecystitis.

  14. Core Genome Multilocus Sequence Typing Scheme for Stable, Comparative Analyses of Campylobacter jejuni and C. coli Human Disease Isolates

    Science.gov (United States)

    Bray, James E.; Jolley, Keith A.; McCarthy, Noel D.

    2017-01-01

    ABSTRACT Human campylobacteriosis, caused by Campylobacter jejuni and C. coli, remains a leading cause of bacterial gastroenteritis in many countries, but the epidemiology of campylobacteriosis outbreaks remains poorly defined, largely due to limitations in the resolution and comparability of isolate characterization methods. Whole-genome sequencing (WGS) data enable the improvement of sequence-based typing approaches, such as multilocus sequence typing (MLST), by substantially increasing the number of loci examined. A core genome MLST (cgMLST) scheme defines a comprehensive set of those loci present in most members of a bacterial group, balancing very high resolution with comparability across the diversity of the group. Here we propose a set of 1,343 loci as a human campylobacteriosis cgMLST scheme (v1.0), the allelic profiles of which can be assigned to core genome sequence types. The 1,343 loci chosen were a subset of the 1,643 loci identified in the reannotation of the genome sequence of C. jejuni isolate NCTC 11168, chosen as being present in >95% of draft genomes of 2,472 representative United Kingdom campylobacteriosis isolates, comprising 2,207 (89.3%) C. jejuni isolates and 265 (10.7%) C. coli isolates. Validation of the cgMLST scheme was undertaken with 1,478 further high-quality draft genomes, containing 150 or fewer contiguous sequences, from disease isolate collections: 99.5% of these isolates contained ≥95% of the 1,343 cgMLST loci. In addition to the rapid and effective high-resolution analysis of large numbers of diverse isolates, the cgMLST scheme enabled the efficient identification of very closely related isolates from a well-defined single-source campylobacteriosis outbreak. PMID:28446571

  15. A sequence of 'factishes': the media-metaphorical knowledge dynamics structuring the German press coverage of the human genome.

    Science.gov (United States)

    Doring, Martin

    2005-12-01

    This article deals with the cultural framing of the near sequencing of the human genome and its impact on the media coverage in Germany. It investigates in particular the way in which the weekly journal Die Zeit and the daily newspaper Frankfurter Rundschau reported this media event and its aftermath between June 2000 and June 2001. Both newspapers are quality papers that played an essential role in framing the human genome debate--alongside the Frankfurter Allgemeine Zeitung--which became the most prominent genomic forum. The decoding of the human genome prompted a huge controversy concerning the ethics of human engineering, research on stem cells and Preimplantation Genetic Diagnosis. The main aim of this article is to show how this controversy was structured by metaphor. The media coverage of the genome generated DNA-factishes--a neologism designating the ambivalence of something as fact (fait) and as a fetish (fetiche)--that mostly propagated images of a new DNA-scienticism or biological determinism. Mediated by cultural experiences, the human genome became a highly artificial and social construct of a 'NatureCulture'.

  16. Fungal genome sequencing: basic biology to biotechnology.

    Science.gov (United States)

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  17. Draft genome sequencing of giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species?

    Directory of Open Access Journals (Sweden)

    Oscar Franzén

    2009-08-01

    Full Text Available Giardia intestinalis is a major cause of diarrheal disease worldwide and two major Giardia genotypes, assemblages A and B, infect humans. The genome of assemblage A parasite WB was recently sequenced, and the structurally compact 11.7 Mbp genome contains simplified basic cellular machineries and metabolism. We here performed 454 sequencing to 16x coverage of the assemblage B isolate GS, the only Giardia isolate successfully used to experimentally infect animals and humans. The two genomes show 77% nucleotide and 78% amino-acid identity in protein coding regions. Comparative analysis identified 28 unique GS and 3 unique WB protein coding genes, and the variable surface protein (VSP repertoires of the two isolates are completely different. The promoters of several enzymes involved in the synthesis of the cyst-wall lack binding sites for encystation-specific transcription factors in GS. Several synteny-breaks were detected and verified. The tetraploid GS genome shows higher levels of overall allelic sequence polymorphism (0.5 versus <0.01% in WB. The genomic differences between WB and GS may explain some of the observed biological and clinical differences between the two isolates, and it suggests that assemblage A and B Giardia can be two different species.

  18. Genome Sequence of Lactobacillus rhamnosus ATCC 8530

    OpenAIRE

    Pittet, Vanessa; Ewen, Emily; Bushell, Barry R.; Ziola, Barry

    2012-01-01

    Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences.

  19. Whole-Genome Sequence of Hafnia alvei HUMV-5920, a Human Isolate

    Science.gov (United States)

    Lázaro-Díez, María; Redondo-Salvo, Santiago; Arboleya-Agudo, Aroa; Ocejo-Vinyals, Javier Gonzalo; Chapartegui-González, Itziar; Ocampo-Sosa, Alain A.; Acosta, Felix; Martínez-Martínez, Luis

    2016-01-01

    A clinical isolate of Hafnia alvei (strain HUMV-5920) was obtained from a urine sample from an adult patient. We report here its complete genome assembly using PacBio single-molecule real-time (SMRT) sequencing, which resulted in a chromosome with 4.5 Mb and a circular contig of 87 kb. About 4,146 protein-coding genes are predicted from this assembly. PMID:27313299

  20. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  1. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  2. Draft Genome Sequence of Fonsecaea nubica Strain CBS 269.64, Causative Agent of Human Chromoblastomycosis.

    Science.gov (United States)

    Costa, Flávia F; de Hoog, Sybren; Raittz, Roberto T; Weiss, Vinicius A; Leão, Aniele C R; Bombassaro, Amanda; Sun, Jiufeng; Moreno, Leandro F; Souza, Emanuel M; Pedrosa, Fabio O; Steffens, Maria Berenice R; Baura, Valter; Tadra-Sfeir, Michele Z; Balsanelli, Eduardo; Najafzadeh, M Javad; Gomes, Renata R; Felipe, Maria S; Teixeira, Marcus; Santos, Germana D; Xi, Liyan; Alves de Castro, Mauro Antônio; Vicente, Vânia A

    2016-08-04

    On the basis of multilocus phylogenetic data, Fonsecaea nubica was described in 2010 as a molecular sibling of F. monophora, an established agent of the human skin disease chomoblastomycosis in tropical zones. Genome analysis of these pathogens is mandatory to identify genes involved in the interaction with host and virulence. Copyright © 2016 Costa et al.

  3. Analysis of The Cancer Genome Atlas sequencing data reveals novel properties of the human papillomavirus 16 genome in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Nulton, Tara J; Olex, Amy L; Dozmorov, Mikhail; Morgan, Iain M; Windle, Brad

    2017-03-14

    Human papillomavirus (HPV) DNA is detected in up to 80% of oropharyngeal carcinomas (OPC) and this HPV positive disease has reached epidemic proportions. To increase our understanding of the disease, we investigated the status of the HPV16 genome in HPV-positive head and neck cancers (HNC). Raw RNA-Seq and Whole Genome Sequence data from The Cancer Genome Atlas HNC samples were analyzed to gain a full understanding of the HPV genome status for these tumors. Several remarkable and novel observations were made following this analysis. Firstly, there are three main HPV genome states in these tumors that are split relatively evenly: An episomal only state, an integrated state, and a state in which the viral genome exists as a hybrid episome with human DNA. Secondly, none of the tumors expressed high levels of E6; E6*I is the dominant variant expressed in all tumors. The most striking conclusion from this study is that around three quarters of HPV16 positive HNC contain episomal versions of the viral genome that are likely replicating in an E1-E2 dependent manner. The clinical and therapeutic implications of these observations are discussed.

  4. Complete genome sequence of Streptococcus salivarius PS4, a strain isolated from human milk.

    Science.gov (United States)

    Martín, Virginia; Maldonado-Barragán, Antonio; Jiménez, Esther; Ruas-Madiedo, Patricia; Fernández, Leónides; Rodríguez, Juan M

    2012-08-01

    Streptococcus salivarius is a commensal species commonly found in the human oropharyngeal tract. Some strains of this species have been developed for use as oral probiotics, while others have been associated with a variety of opportunistic human infections. Here, we report the complete sequence of strain PS4, which was isolated from breast milk of a healthy woman.

  5. Proceedings of the relevance of mass spectrometry to DNA sequence determination: Research needs for the Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, C.G.; Smith, R.D. (Pacific Northwest Lab., Richland, WA (USA)); Smith, L.M. (Wisconsin Univ., Madison, WI (USA))

    1990-11-01

    A workshop was sponsored for the US Department of Energy (DOE), Office of Health and Environmental Research by Pacific Northwest Laboratory, April 4--5, 1990, in Seattle, Washington, to examine the potential role of mass spectrometry in the joint DOE/National Institutes of Health (NIH) Human Genome Program. The workshop was occasioned by recent developments in mass spectrometry that are providing new levels for selectivity, sensitivity, and, in particular, new methods of ionization appropriate for large biopolymers such as DNA. During discussions, three general mass spectrometric approaches to the determination of DNA sequence were considered: (1) the mass spectrometric detection of isotopic labels from DNA sequencing mixtures separated using gel electrophoresis, (2) the direct mass spectrometric analysis from direct ionization of unfractionated sequencing mixtures where the measured mass of the constituents functions to identify and order the base sequence (replacing separation by gel electrophoresis), and (3) an approach in which a single highly charged molecular ion of a large DNA segment produced is rapidly sequenced in an ion cyclotron resonance ion trap. The consensus of the workshop was that, on the basis of the new developments, mass spectrometry has the potential to provide the substantial increases in sequencing speed required for the Human Genome Program. 66 refs., 3 tabs.

  6. Proceedings of the relevance of mass spectrometry to DNA sequence determination: Research needs for the Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, C.G.; Smith, R.D. (Pacific Northwest Lab., Richland, WA (USA)); Smith, L.M. (Wisconsin Univ., Madison, WI (USA))

    1990-11-01

    A workshop was sponsored for the US Department of Energy (DOE), Office of Health and Environmental Research by Pacific Northwest Laboratory, April 4--5, 1990, in Seattle, Washington, to examine the potential role of mass spectrometry in the joint DOE/National Institutes of Health (NIH) Human Genome Program. The workshop was occasioned by recent developments in mass spectrometry that are providing new levels for selectivity, sensitivity, and, in particular, new methods of ionization appropriate for large biopolymers such as DNA. During discussions, three general mass spectrometric approaches to the determination of DNA sequence were considered: (1) the mass spectrometric detection of isotopic labels from DNA sequencing mixtures separated using gel electrophoresis, (2) the direct mass spectrometric analysis from direct ionization of unfractionated sequencing mixtures where the measured mass of the constituents functions to identify and order the base sequence (replacing separation by gel electrophoresis), and (3) an approach in which a single highly charged molecular ion of a large DNA segment produced is rapidly sequenced in an ion cyclotron resonance ion trap. The consensus of the workshop was that, on the basis of the new developments, mass spectrometry has the potential to provide the substantial increases in sequencing speed required for the Human Genome Program. 66 refs., 3 tabs.

  7. Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations

    Directory of Open Access Journals (Sweden)

    Zhang Guojie

    2011-07-01

    Full Text Available Abstract The recent publication of the draft genome sequences of the Neanderthal and a ~50,000-year-old archaic hominin from Denisova Cave in southern Siberia has ushered in a new age in molecular archaeology. We previously cross-compared the human, chimpanzee and Neanderthal genome sequences with respect to a set of disease-causing/disease-associated missense and regulatory mutations (Human Gene Mutation Database and succeeded in identifying genetic variants which, although apparently pathogenic in humans, may represent a 'compensated' wild-type state in at least one of the other two species. Here, in an attempt to identify further 'potentially compensated mutations' (PCMs of interest, we have compared our dataset of disease-causing/disease-associated mutations with their corresponding nucleotide positions in the Denisovan hominin, Neanderthal and chimpanzee genomes. Of the 15 human putatively disease-causing mutations that were found to be compensated in chimpanzee, Denisovan or Neanderthal, only a solitary F5 variant (Val1736Met was specific to the Denisovan. In humans, this missense mutation is associated with activated protein C resistance and an increased risk of thromboembolism and recurrent miscarriage. It is unclear at this juncture whether this variant was indeed a PCM in the Denisovan or whether it could instead have been associated with disease in this ancient hominin.

  8. Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations.

    Science.gov (United States)

    Zhang, Guojie; Pei, Zhang; Ball, Edward V; Mort, Matthew; Kehrer-Sawatzki, Hildegard; Cooper, David N

    2011-07-01

    The recent publication of the draft genome sequences of the Neanderthal and a ∼50,000-year-old archaic hominin from Denisova Cave in southern Siberia has ushered in a new age in molecular archaeology. We previously cross-compared the human, chimpanzee and Neanderthal genome sequences with respect to a set of disease-causing/disease-associated missense and regulatory mutations (Human Gene Mutation Database) and succeeded in identifying genetic variants which, although apparently pathogenic in humans, may represent a 'compensated' wild-type state in at least one of the other two species. Here, in an attempt to identify further 'potentially compensated mutations' (PCMs) of interest, we have compared our dataset of disease-causing/disease-associated mutations with their corresponding nucleotide positions in the Denisovan hominin, Neanderthal and chimpanzee genomes. Of the 15 human putatively disease-causing mutations that were found to be compensated in chimpanzee, Denisovan or Neanderthal, only a solitary F5 variant (Val1736Met) was specific to the Denisovan. In humans, this missense mutation is associated with activated protein C resistance and an increased risk of thromboembolism and recurrent miscarriage. It is unclear at this juncture whether this variant was indeed a PCM in the Denisovan or whether it could instead have been associated with disease in this ancient hominin.

  9. The developmental brain gene NPAS3 contains the largest number of accelerated regulatory sequences in the human genome.

    Science.gov (United States)

    Kamm, Gretel B; Pisciottano, Francisco; Kliger, Rafi; Franchini, Lucía F

    2013-05-01

    To identify the evolutionary genetic novelties that contributed to shape human-specific traits such as the use of a complex language, long-term planning and exceptional learning abilities is one of the ultimate frontiers of modern biology. Evolutionary signatures of functional shifts could be detected by comparing noncoding regions that are highly conserved across mammals or primates and rapidly accumulated nucleotide substitutions only in the lineage leading to humans. As gene loci densely populated with human-accelerated elements (HAEs) are more likely to have contributed to human-specific novelties, we sought to identify the transcriptional units and genomic 1 Mb intervals of the entire human genome carrying the highest number of HAEs. To this end, we took advantage of four available data sets of human genomic accelerated regions obtained through different comparisons and algorithms and performed a meta-analysis of the combined data. We found that the brain developmental transcription factor neuronal PAS domain-containing protein 3 (NPAS3) contains the largest cluster of noncoding-accelerated regions in the human genome with up to 14 elements that are highly conserved in mammals, including primates, but carry human-specific nucleotide substitutions. We then tested the ability of the 14 HAEs identified at the NPAS3 locus to act as transcriptional regulatory sequences in a reporter expression assay performed in transgenic zebrafish. We found that 11 out of the 14 HAEs present in NPAS3 act as transcriptional enhancers during development, particularly within the nervous system. As NPAS3 is known to play a crucial role during mammalian brain development, our results indicate that the high density of HAEs present in the human NPAS3 locus could have modified the spatiotemporal expression pattern of NPAS3 in the developing human brain and, therefore, contributed to human brain evolution.

  10. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  11. Transmission of Staphylococcus aureus from Humans to Green Monkeys in The Gambia as Revealed by Whole-Genome Sequencing

    Science.gov (United States)

    Senghore, Madikay; Bayliss, Sion C.; Kwambana-Adams, Brenda A.; Foster-Nyarko, Ebenezer; Manneh, Jainaba; Dione, Michel; Badji, Henry; Ebruke, Chinelo; Doughty, Emma L.; Thorpe, Harry A.; Jasinska, Anna J.; Schmitt, Christopher A.; Cramer, Jennifer D.; Turner, Trudy R.; Weinstock, George; Freimer, Nelson B.; Feil, Edward J.; Antonio, Martin

    2016-01-01

    ABSTRACT Staphylococcus aureus is an important pathogen of humans and animals. We genome sequenced 90 S. aureus isolates from The Gambia: 46 isolates from invasive disease in humans, 13 human carriage isolates, and 31 monkey carriage isolates. We inferred multiple anthroponotic transmissions of S. aureus from humans to green monkeys (Chlorocebus sabaeus) in The Gambia over different time scales. We report a novel monkey-associated clade of S. aureus that emerged from a human-to-monkey switch estimated to have occurred 2,700 years ago. Adaptation of this lineage to the monkey host is accompanied by the loss of phage-carrying genes that are known to play an important role in human colonization. We also report recent anthroponotic transmission of the well-characterized human lineages sequence type 6 (ST6) and ST15 to monkeys, probably because of steadily increasing encroachment of humans into the monkeys' habitat. Although we have found no evidence of transmission of S. aureus from monkeys to humans, as the two species come into ever-closer contact, there might be an increased risk of additional interspecies exchanges of potential pathogens. IMPORTANCE The population structures of Staphylococcus aureus in humans and monkeys in sub-Saharan Africa have been previously described using multilocus sequence typing (MLST). However, these data lack the power to accurately infer details regarding the origin and maintenance of new adaptive lineages. Here, we describe the use of whole-genome sequencing to detect transmission of S. aureus between humans and nonhuman primates and to document the genetic changes accompanying host adaptation. We note that human-to-monkey switches tend to be more common than the reverse and that a novel monkey-associated clade is likely to have emerged from such a switch approximately 2,700 years ago. Moreover, analysis of the accessory genome provides important clues as to the genetic changes underpinning host adaptation and, in particular, shows

  12. Full genome sequences and molecular characterization of tick-borne encephalitis virus strains isolated from human patients.

    Science.gov (United States)

    Formanová, Petra; Černý, Jiří; Bolfíková, Barbora Černá; Valdés, James J; Kozlova, Irina; Dzhioev, Yuri; Růžek, Daniel

    2015-02-01

    Tick-borne encephalitis virus (TBEV) causes tick-borne encephalitis (TBE), one of the most important human neuroinfections across Eurasia. Up to date, only three full genome sequences of human European TBEV isolates are available, mostly due to difficulties with isolation of the virus from human patients. Here we present full genome characterization of an additional five low-passage TBEV strains isolated from human patients with severe forms of TBE. These strains were isolated in 1953 within Central Bohemia in the former Czechoslovakia, and belong to the historically oldest human TBEV isolates in Europe. We demonstrate here that all analyzed isolates are distantly phylogenetically related, indicating that the emergence of TBE in Central Europe was not caused by one predominant strain, but rather a pool of distantly related TBEV strains. Nucleotide identity between individual sequenced TBEV strains ranged from 97.5% to 99.6% and all strains shared large deletions in the 3' non-coding region, which has been recently suggested to be an important determinant of virulence. The number of unique amino acid substitutions varied from 3 to 9 in individual isolates, but no characteristic amino acid substitution typical exclusively for all human TBEV isolates was identified when compared to the isolates from ticks. We did, however, correlate that the exploration of the TBEV envelope glycoprotein by specific antibodies were in close proximity to these unique amino acid substitutions. Taken together, we report here the largest number of patient-derived European TBEV full genome sequences to date and provide a platform for further studies on evolution of TBEV since the first emergence of human TBE in Europe.

  13. Genome sequence of Candidatus Riesia pediculischaeffi, endosymbiont of chimpanzee lice, and genomic comparison of recently acquired endosymbionts from human and chimpanzee lice.

    Science.gov (United States)

    Boyd, Bret M; Allen, Julie M; de Crécy-Lagard, Valérie; Reed, David L

    2014-09-11

    The obligate-heritable endosymbionts of insects possess some of the smallest known bacterial genomes. This is likely due to loss of genomic material during symbiosis. The mode and rate of this erosion may change over evolutionary time: faster in newly formed associations and slower in long-established ones. The endosymbionts of human and anthropoid primate lice present a unique opportunity to study genome erosion in newly established (or young) symbionts. This is because we have a detailed phylogenetic history of these endosymbionts with divergence dates for closely related species. This allows for genome evolution to be studied in detail and rates of change to be estimated in a phylogenetic framework. Here, we sequenced the genome of the chimpanzee louse endosymbiont (Candidatus Riesia pediculischaeffi) and compared it with the closely related genome of the human body louse endosymbiont. From this comparison, we found evidence for recent genome erosion leading to gene loss in these endosymbionts. Although gene loss was detected, it was not significantly greater than in older endosymbionts from aphids and ants. Additionally, we searched for genes associated with B-vitamin synthesis in the two louse endosymbiont genomes because these endosymbionts are believed to synthesize essential B vitamins absent in the louse's diet. All of the expected genes were present, except those involved in thiamin synthesis. We failed to find genes encoding for proteins involved in the biosynthesis of thiamin or any complete exogenous means of salvaging thiamin, suggesting there is an undescribed mechanism for the salvage of thiamin. Finally, genes encoding for the pantothenate de novo biosynthesis pathway were located on a plasmid in both taxa along with a heat shock protein. Movement of these genes onto a plasmid may be functionally and evolutionarily significant, potentially increasing production and guarding against the deleterious effects of mutation. These data add to a growing

  14. Distribution of trinucleotide microsatellites in different categories of mammalian genomic sequence: Implications for human genetic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Stallings, R.L. (Univ. of Pittsburgh, PA (United States))

    1994-05-01

    The distribution of all trinucleotide microsatellite sequences in the GenBank database was surveyed to provide insight into human genetic disease syndromes that result from expansion of microsatellites. The microsatellite motif (CAG)[sub n] is one of the most abundant microsatellite motifs in human GenBank DNA sequences and is the most abundant microsatellite found in exons. This fact may explain why (CAG)[sub n] repeats are thus far the predominant microsatellites expanded in human genetic diseases. Surprisingly, (CAG)[sub n] microsatellites are excluded from intronic regions in a strand-specific fashion, possibly because of similarity to the 3[prime] consensus splice site, CAGG. A comparison of the positions of microsatellites in human vs rodent homologous sequences indicates that some arrays are not extensively conserved for long periods of time, even when they form parts of protein coding sequences. The general lack of conservation of trinucleotide repeat loci in diverse mammals indicates that animal models for some human microsatellite expansion syndromes may be difficult to find. 20 refs., 5 tabs.

  15. The diploid genome sequence of an Asian individual

    DEFF Research Database (Denmark)

    Wang, Jun; Wang, Wei; Li, Ruiqiang

    2008-01-01

    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we...

  16. Identification of transcribed sequences in the human genome. Final report, September 15, 1991--September 14, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, K.

    1992-12-01

    The workshop was held at the National Institutes of Mental Health, Bethesda, Maryland, on October 4 and 5, 1991. Twenty-four investigators attended from England, Germany and the United States. The topics discussed included: Genome sequence analysis using computer assisted detection of open reading frames, splice sites and hexamer patterns, direct exon identification using trapping of internal and 3` exons, and a recombination based system, cDNA library construction and screening, including the use of normalization and subtraction procedures, Alu and splice donor site PCR from hybrid cell lines, and microdissection clones as probes, use of labeled CDNAS as probes to screen lambda and cosmid libraries, and sequencing of random cDNAs.

  17. Isolation and full-genome sequences of Japanese encephalitis virus genotype I strains from Cambodian human patients, mosquitoes and pigs.

    Science.gov (United States)

    Duong, Veasna; Choeung, Rithy; Gorman, Christopher; Laurent, Denis; Crabol, Yoann; Mey, Channa; Peng, Borin; Di Francesco, Juliette; Hul, Vibol; Sothy, Heng; Santy, Ky; Richner, Beat; Pommier, Jean-David; Sorn, San; Chevalier, Véronique; Buchy, Philippe; de Lamballerie, Xavier; Cappelle, Julien; Horwood, Paul Francis; Dussart, Philippe

    2017-09-01

    Japanese encephalitis remains the most important cause of viral encephalitis in humans in several southeast Asian countries, including Cambodia, causing at least 65 000 cases of encephalitis per year. This vector-borne viral zoonosis - caused by Japanese encephalitis virus (JEV) - is considered to be a rural disease and is transmitted by mosquitoes, with birds and pigs being the natural reservoirs, while humans are accidental hosts. In this study we report the first two JEV isolations in Cambodia from human encephalitis cases from two studies on the aetiology of central nervous system disease, conducted at the two major paediatric hospitals in the country. We also report JEV isolation from Culextritaeniorhynchus mosquitoes and from pig samples collected in two farms, located in peri-urban and rural areas. Out of 11 reverse-transcription polymerase chain reaction-positive original samples, we generated full-genome sequences from 5 JEV isolates. Five additional partial sequences of the JEV NS3 gene from viruses detected in five pigs and one complete coding sequence of the envelope gene of a strain identified in a pig were generated. Phylogenetic analyses revealed that JEV detected in Cambodia belonged to genotype I and clustered in two clades: genotype I-a, mainly comprising strains from Thailand, and genotype I-b, comprising strains from Vietnam that dispersed northwards to China. Finally, in this study, we provide proof that the sequenced JEV strains circulate between pigs, Culex tritaeniorhynchus and humans in the Phnom Penh vicinity.

  18. Genomic library screening for viruses from the human dental plaque revealed pathogen-specific lytic phage sequences.

    Science.gov (United States)

    Al-Jarbou, Ahmed Nasser

    2012-01-01

    Bacterial pathogenesis presents an astounding arsenal of virulence factors that allow them to conquer many different niches throughout the course of infection. Principally fascinating is the fact that some bacterial species are able to induce different diseases by expression of different combinations of virulence factors. Nevertheless, studies aiming at screening for the presence of bacteriophages in humans have been limited. Such screening procedures would eventually lead to identification of phage-encoded properties that impart increased bacterial fitness and/or virulence in a particular niche, and hence, would potentially be used to reverse the course of bacterial infections. As the human oral cavity represents a rich and dynamic ecosystem for several upper respiratory tract pathogens. However, little is known about virus diversity in human dental plaque which is an important reservoir. We applied the culture-independent approach to characterize virus diversity in human dental plaque making a library from a virus DNA fraction amplified using a multiple displacement method and sequenced 80 clones. The resulting sequence showed 44% significant identities to GenBank databases by TBLASTX analysis. TBLAST homology comparisons showed that 66% was viral; 18% eukarya; 10% bacterial; 6% mobile elements. These sequences were sorted into 6 contigs and 45 single sequences in which 4 contigs and a single sequence showed significant identity to a small region of a putative prophage in the Corynebacterium diphtheria genome. These findings interestingly highlight the uniqueness of over half of the sequences, whilst the dominance of a pathogen-specific prophage sequences imply their role in virulence.

  19. Noncontiguous finished genome sequence and description of Fusobacterium massiliense sp. nov. isolated from human duodenum

    Directory of Open Access Journals (Sweden)

    M. Mailhe

    2017-03-01

    Full Text Available The strain Marseille-P2749T (= CSUR P2749=DSM 103085 was isolated as part of culturomics study from a liquid duodenum sample from a French man. Bacterial cells were Gram-negative bacilli, fusiform shaped and non–spore forming, and they grew in microaerophilic and anaerobic atmosphere. Its genome is 1 809 169 bp long and contains 1646 protein-coding genes. The DNA G+C content was 27.33 mol%. This strain exhibited a 95.9% sequence similarity with Fusobacterium periodonticum, the phylogenetically closest species with standing in nomenclature. Strain Marseille-P2749T is suggested to be a novel species belonging to the genus Fusobacterium, for which the name Fusobacterium massiliense sp. nov. is proposed.

  20. Genomic sequencing of Pleistocene cave bears

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, James P.; Hofreiter, Michael; Smith, Doug; Priest, JamesR.; Rohland, Nadin; Rabeder, Gernot; Krause, Johannes; Detter, J. Chris; Paabo, Svante; Rubin, Edward M.

    2005-04-01

    Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome, the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.

  1. Short Interspersed Nuclear Element (SINE) Sequences in the Genome of the Human Pathogenic Fungus Aspergillus fumigatus Af293.

    Science.gov (United States)

    Kanhayuwa, Lakkhana; Coutts, Robert H A

    2016-01-01

    Novel families of short interspersed nuclear element (SINE) sequences in the human pathogenic fungus Aspergillus fumigatus, clinical isolate Af293, were identified and categorised into tRNA-related and 5S rRNA-related SINEs. Eight predicted tRNA-related SINE families originating from different tRNAs, and nominated as AfuSINE2 sequences, contained target site duplications of short direct repeat sequences (4-14 bp) flanking the elements, an extended tRNA-unrelated region and typical features of RNA polymerase III promoter sequences. The elements ranged in size from 140-493 bp and were present in low copy number in the genome and five out of eight were actively transcribed. One putative tRNAArg-derived sequence, AfuSINE2-1a possessed a unique feature of repeated trinucleotide ACT residues at its 3'-terminus. This element was similar in sequence to the I-4_AO element found in A. oryzae and an I-1_AF long nuclear interspersed element-like sequence identified in A. fumigatus Af293. Families of 5S rRNA-related SINE sequences, nominated as AfuSINE3, were also identified and their 5'-5S rRNA-related regions show 50-65% and 60-75% similarity to respectively A. fumigatus 5S rRNAs and SINE3-1_AO found in A. oryzae. A. fumigatus Af293 contains five copies of AfuSINE3 sequences ranging in size from 259-343 bp and two out of five AfuSINE3 sequences were actively transcribed. Investigations on AfuSINE distribution in the fungal genome revealed that the elements are enriched in pericentromeric and subtelomeric regions and inserted within gene-rich regions. We also demonstrated that some, but not all, AfuSINE sequences are targeted by host RNA silencing mechanisms. Finally, we demonstrated that infection of the fungus with mycoviruses had no apparent effects on SINE activity.

  2. A new biophysical metric for interrogating the information content in human genome sequence variation: Proof of concept.

    Science.gov (United States)

    Lindesay, James; Mason, Tshela E; Ricks-Santi, Luisel; Hercules, William; Kurian, Philip; Dunston, Georgia M

    2012-02-01

    The 21(st) century emergence of genomic medicine is shifting the paradigm in biomedical science from the population phenotype to the individual genotype. In characterizing the biology of disease and health disparities in population genetics, human populations are often defined by the most common alleles in the group. This definition poses difficulties when categorizing individuals in the population who do not have the most common allele(s). Various epidemiological studies have shown an association between common genomic variation, such as single nucleotide polymorphisms (SNPs), and common diseases. We hypothesize that information encoded in the structure of SNP haploblock variation in the human leukocyte antigen-disease related (HLA-DR) region of the genome illumines molecular pathways and cellular mechanisms involved in the regulation of host adaptation to the environment. In this paper we describe the development and application of the normalized information content (NIC) as a novel metric based on SNP haploblock variation. The NIC facilitates translation of biochemical DNA sequence variation into a biophysical quantity derived from Boltzmann's canonical ensemble in statistical physics and used widely in information theory. Our normalization of this information metric allows for comparisons of unlike, or even unrelated, regions of the genome. We report here NIC values calculated for HLA-DR SNP haploblocks constructed by Haploview, a product of the International Haplotype Map Project. These haploblocks were scanned for potential regulatory elements using ConSite and miRBase, publicly available bioinformatics tools. We found that all of the haploblocks with statistically low NIC values contained putative transcription factor binding sites and microRNA motifs, suggesting correlation with genomic regulation. Thus, we were able to relate a mathematical measure of information content in HLA-DR SNP haploblocks to biologically relevant functional knowledge embedded in

  3. Interspecies hybridization on DNA resequencing microarrays: efficiency of sequence recovery and accuracy of SNP detection in human, ape, and codfish mitochondrial DNA genomes sequenced on a human-specific MitoChip

    Directory of Open Access Journals (Sweden)

    Carr Steven M

    2007-09-01

    Full Text Available Abstract Background Iterative DNA "resequencing" on oligonucleotide microarrays offers a high-throughput method to measure intraspecific biodiversity, one that is especially suited to SNP-dense gene regions such as vertebrate mitochondrial (mtDNA genomes. However, costs of single-species design and microarray fabrication are prohibitive. A cost-effective, multi-species strategy is to hybridize experimental DNAs from diverse species to a common microarray that is tiled with oligonucleotide sets from multiple, homologous reference genomes. Such a strategy requires that cross-hybridization between the experimental DNAs and reference oligos from the different species not interfere with the accurate recovery of species-specific data. To determine the pattern and limits of such interspecific hybridization, we compared the efficiency of sequence recovery and accuracy of SNP identification by a 15,452-base human-specific microarray challenged with human, chimpanzee, gorilla, and codfish mtDNA genomes. Results In the human genome, 99.67% of the sequence was recovered with 100.0% accuracy. Accuracy of SNP identification declines log-linearly with sequence divergence from the reference, from 0.067 to 0.247 errors per SNP in the chimpanzee and gorilla genomes, respectively. Efficiency of sequence recovery declines with the increase of the number of interspecific SNPs in the 25b interval tiled by the reference oligonucleotides. In the gorilla genome, which differs from the human reference by 10%, and in which 46% of these 25b regions contain 3 or more SNP differences from the reference, only 88% of the sequence is recoverable. In the codfish genome, which differs from the reference by > 30%, less than 4% of the sequence is recoverable, in short islands ≥ 12b that are conserved between primates and fish. Conclusion Experimental DNAs bind inefficiently to homologous reference oligonucleotide sets on a re-sequencing microarray when their sequences differ by

  4. Extensive sequence-influenced DNA methylation polymorphism in the human genome

    Directory of Open Access Journals (Sweden)

    Hellman Asaf

    2010-05-01

    Full Text Available Abstract Background Epigenetic polymorphisms are a potential source of human diversity, but their frequency and relationship to genetic polymorphisms are unclear. DNA methylation, an epigenetic mark that is a covalent modification of the DNA itself, plays an important role in the regulation of gene expression. Most studies of DNA methylation in mammalian cells have focused on CpG methylation present in CpG islands (areas of concentrated CpGs often found near promoters, but there are also interesting patterns of CpG methylation found outside of CpG islands. Results We compared DNA methylation patterns on both alleles between many pairs (and larger groups of related and unrelated individuals. Direct observation and simulation experiments revealed that around 10% of common single nucleotide polymorphisms (SNPs reside in regions with differences in the propensity for local DNA methylation between the two alleles. We further showed that for the most common form of SNP, a polymorphism at a CpG dinucleotide, the presence of the CpG at the SNP positively affected local DNA methylation in cis. Conclusions Taken together with the known effect of DNA methylation on mutation rate, our results suggest an interesting interdependence between genetics and epigenetics underlying diversity in the human genome.

  5. Reconstructing the demographic history of the human lineage using whole-genome sequences from human and three great apes.

    Science.gov (United States)

    Hara, Yuichiro; Imanishi, Tadashi; Satta, Yoko

    2012-01-01

    The demographic history of human would provide helpful information for identifying the evolutionary events that shaped the humanity but remains controversial even in the genomic era. To settle the controversies, we inferred the speciation times (T) and ancestral population sizes (N) in the lineage leading to human and great apes based on whole-genome alignment. A coalescence simulation determined the sizes of alignment blocks and intervals between them required to obtain recombination-free blocks with a high frequency. This simulation revealed that the size of the block strongly affects the parameter inference, indicating that recombination is an important factor for achieving optimum parameter inference. From the whole genome alignments (1.9 giga-bases) of human (H), chimpanzee (C), gorilla (G), and orangutan, 100-bp alignment blocks separated by ≥5-kb intervals were sampled and subjected to estimate τ = μT and θ = 4μgN using the Markov chain Monte Carlo method, where μ is the mutation rate and g is the generation time. Although the estimated τ(HC) differed across chromosomes, τ(HC) and τ(HCG) were strongly correlated across chromosomes, indicating that variation in τ is subject to variation in μ, rather than T, and thus, all chromosomes share a single speciation time. Subsequently, we estimated Ts of the human lineage from chimpanzee, gorilla, and orangutan to be 6.0-7.6, 7.6-9.7, and 15-19 Ma, respectively, assuming variable μ across lineages and chromosomes. These speciation times were consistent with the fossil records. We conclude that the speciation times in our recombination-free analysis would be conclusive and the speciation between human and chimpanzee was a single event.

  6. Complete Genome Sequence of Human Adenovirus Type 55 Associated with Acute Respiratory Disease, Isolated from a Military Base in the Republic of Korea

    Science.gov (United States)

    Gu, Se Hun; Song, Dong Hyun; Lee, Daesang; Huh, Kyungmin; Yoo, Hongseok; Oh, Hong Sang; Jung, Jaehun; Woo, Koung In; Kim, Mirang; Seog, Woong; Hwang, Il-Ung

    2017-01-01

    ABSTRACT Human adenovirus (HAdV) (genus Mastadenovirus; family Adenoviridae) serotype 55 is a reemerging pathogen associated with acute respiratory disease. Here, we report the complete genome sequence of HAdV-55 strain AFMC 16-0011, isolated from a military recruit, using next-generation sequencing technology. PMID:28280019

  7. Transcribed sequences in the human genome to be held in San Francisco, November 7 and 8, 1992. Final report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, K.

    1993-11-01

    The Second International Workshop on the Identification of Transcribed Sequences was held in San Francisco on November 7--8, 1992. The purpose of the workshop was to discuss and evaluate techniques for developing a complete transcriptional map of the human genome. Such a map requires the positions, sequences, and expression patterns of all genes. This goal is being approached from two different directions, each with strengths and weaknesses. One method is to identify the transcribed sequences from genomic DNA of a given region; the other is to systematically sequence and map cDNAs. The cDNA approach yields sequence information rapidly, but mapping each cDNA is a technical challenge. In the first approach, the map locations of genomic sequences are known at the outset, and the challenge is to identify exons. The efficient construction of a transcriptional map will require a diverse array of techniques.

  8. A Draft Sequence of the Neandertal Genome

    Science.gov (United States)

    Green, Richard E.; Li, Heng; Zhai, Weiwei; Fritz, Markus Hsi-Yang; Hansen, Nancy F.; Durand, Eric Y.; Malaspinas, Anna-Sapfo; Jensen, Jeffrey D.; Marques-Bonet, Tomas; Alkan, Can; Prüfer, Kay; Meyer, Matthias; Burbano, Hernán A.; Good, Jeffrey M.; Schultz, Rigo; Aximu-Petri, Ayinuer; Butthof, Anne; Höber, Barbara; Höffner, Barbara; Siegemund, Madlen; Weihmann, Antje; Nusbaum, Chad; Lander, Eric S.; Russ, Carsten; Novod, Nathaniel; Affourtit, Jason; Egholm, Michael; Verna, Christine; Rudan, Pavao; Brajkovic, Dejana; Kucan, Željko; Gušic, Ivan; Doronichev, Vladimir B.; Golovanova, Liubov V.; Lalueza-Fox, Carles; de la Rasilla, Marco; Fortea, Javier; Rosas, Antonio; Schmitz, Ralf W.; Johnson, Philip L. F.; Eichler, Evan E.; Falush, Daniel; Birney, Ewan; Mullikin, James C.; Slatkin, Montgomery; Nielsen, Rasmus; Kelso, Janet; Lachmann, Michael; Reich, David; Pääbo, Svante

    2016-01-01

    Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other. PMID:20448178

  9. "Beijing Region" (3pter-D3S3397) of the Human Genome: Complete sequence and analysis

    Institute of Scientific and Technical Information of China (English)

    The; Chinese; Human; Genome; Sequencing; Consortium

    2005-01-01

    The goal of the Human Genome Project (HGP) is to determine a complete and high-quality sequence of the human genome. China, as one of the six member states, takes a region between 3pter and D3S3397 of the human chromosome 3 as its share of this historic project, referred as "Beijing Region". The complete sequence of this region comprises of 17.4 megabasepairs (Mb) with an average GC content of 42% and an average recombination rate of 2.14 cM/Mb. Within Beijing Region, 122 known and 20 novel genes are identified, as well as 42607 single nucleotide polymorphisms (SNPs). Comprehensive analyses also reveal: (i) gene density and GC-content of Beijing Region are in agreement with human cytogenetic maps, i.e. G-minus bands are GC-rich and of a high gene density, whereas G-plus bands are GC-poor and of a relatively low gene density; (ii) the average recombination rate within Beijing Region is relatively high compared with other regions of chromosome 3, with the highest recombination rate of 6.06 cM/Mb in the subtelomeric area; (iii) it is most likely that a large gene, associated with the mammary gland, may reside in the 1.1 Mb gene-poor area near the telomere; (iv) many disease-related genes are genetically mapped to Beijing Region, including those associated with cancers and metabolic syndromes. All make Beijing Region an important target for in-depth molecular investigations with a purpose of medical applications.

  10. Colorectal Cancer and the Human Gut Microbiome: Reproducibility with Whole-Genome Shotgun Sequencing.

    Directory of Open Access Journals (Sweden)

    Emily Vogtmann

    Full Text Available Accumulating evidence indicates that the gut microbiota affects colorectal cancer development, but previous studies have varied in population, technical methods, and associations with cancer. Understanding these variations is needed for comparisons and for potential pooling across studies. Therefore, we performed whole-genome shotgun sequencing on fecal samples from 52 pre-treatment colorectal cancer cases and 52 matched controls from Washington, DC. We compared findings from a previously published 16S rRNA study to the metagenomics-derived taxonomy within the same population. In addition, metagenome-predicted genes, modules, and pathways in the Washington, DC cases and controls were compared to cases and controls recruited in France whose specimens were processed using the same platform. Associations between the presence of fecal Fusobacteria, Fusobacterium, and Porphyromonas with colorectal cancer detected by 16S rRNA were reproduced by metagenomics, whereas higher relative abundance of Clostridia in cancer cases based on 16S rRNA was merely borderline based on metagenomics. This demonstrated that within the same sample set, most, but not all taxonomic associations were seen with both methods. Considering significant cancer associations with the relative abundance of genes, modules, and pathways in a recently published French metagenomics dataset, statistically significant associations in the Washington, DC population were detected for four out of 10 genes, three out of nine modules, and seven out of 17 pathways. In total, colorectal cancer status in the Washington, DC study was associated with 39% of the metagenome-predicted genes, modules, and pathways identified in the French study. More within and between population comparisons are needed to identify sources of variation and disease associations that can be reproduced despite these variations. Future studies should have larger sample sizes or pool data across studies to have sufficient

  11. Whole genome sequencing and evolutionary analysis of human respiratory syncytial virus A and B from Milwaukee, WI 1998-2010.

    Directory of Open Access Journals (Sweden)

    Cecilia Rebuffo-Scheer

    Full Text Available BACKGROUND: Respiratory Syncytial Virus (RSV is the leading cause of lower respiratory-tract infections in infants and young children worldwide. Despite this, only six complete genome sequences of original strains have been previously published, the most recent of which dates back 35 and 26 years for RSV group A and group B respectively. METHODOLOGY/PRINCIPAL FINDINGS: We present a semi-automated sequencing method allowing for the sequencing of four RSV whole genomes simultaneously. We were able to sequence the complete coding sequences of 13 RSV A and 4 RSV B strains from Milwaukee collected from 1998-2010. Another 12 RSV A and 5 RSV B strains sequenced in this study cover the majority of the genome. All RSV A and RSV B sequences were analyzed by neighbor-joining, maximum parsimony and Bayesian phylogeny methods. Genetic diversity was high among RSV A viruses in Milwaukee including the circulation of multiple genotypes (GA1, GA2, GA5, GA7 with GA2 persisting throughout the 13 years of the study. However, RSV B genomes showed little variation with all belonging to the BA genotype. For RSV A, the same evolutionary patterns and clades were seen consistently across the whole genome including all intergenic, coding, and non-coding regions sequences. CONCLUSIONS/SIGNIFICANCE: The sequencing strategy presented in this work allows for RSV A and B genomes to be sequenced simultaneously in two working days and with a low cost. We have significantly increased the amount of genomic data that is available for both RSV A and B, providing the basic molecular characteristics of RSV strains circulating in Milwaukee over the last 13 years. This information can be used for comparative analysis with strains circulating in other communities around the world which should also help with the development of new strategies for control of RSV, specifically vaccine development and improvement of RSV diagnostics.

  12. Genetic characterization of human herpesvirus type 1: Full-length genome sequence of strain obtained from an encephalitis case from India

    Directory of Open Access Journals (Sweden)

    Vijay P Bondre

    2016-01-01

    Interpretation & conclusions: Our results showed that the full-length genome sequence generated from an Indian HSV-1 isolate shared close genetic relationship with the American KOS and Chinese CR38 strains which belonged to the Asian genetic lineage. Recombination analysis of Indian isolate demonstrated multiple recombination crossover points throughout the genome. This full-length genome sequence amplified from the Indian isolate would be helpful to study HSV evolution, genetic basis of differential pathogenesis, host-virus interactions and viral factors contributing towards differential clinical outcome in human infections.

  13. Complete and closed genome sequences of 10 Salmonella enterica subsp. enterica serovar Anatum isolated from human and bovine sources

    Science.gov (United States)

    Salmonella enterica is an important pathogen transmitted by numerous vectors. Genomic comparisons of Salmonella from disparate hosts have the potential to further our understanding of mechanisms underlying host specificities and virulence. Here, we present closed genome and plasmid sequences of 10...

  14. Genomic Sequence Variation Markup Language (GSVML).

    Science.gov (United States)

    Nakaya, Jun; Kimura, Michio; Hiroi, Kaei; Ido, Keisuke; Yang, Woosung; Tanaka, Hiroshi

    2010-02-01

    With the aim of making good use of internationally accumulated genomic sequence variation data, which is increasing rapidly due to the explosive amount of genomic research at present, the development of an interoperable data exchange format and its international standardization are necessary. Genomic Sequence Variation Markup Language (GSVML) will focus on genomic sequence variation data and human health applications, such as gene based medicine or pharmacogenomics. We developed GSVML through eight steps, based on case analysis and domain investigations. By focusing on the design scope to human health applications and genomic sequence variation, we attempted to eliminate ambiguity and to ensure practicability. We intended to satisfy the requirements derived from the use case analysis of human-based clinical genomic applications. Based on database investigations, we attempted to minimize the redundancy of the data format, while maximizing the data covering range. We also attempted to ensure communication and interface ability with other Markup Languages, for exchange of omics data among various omics researchers or facilities. The interface ability with developing clinical standards, such as the Health Level Seven Genotype Information model, was analyzed. We developed the human health-oriented GSVML comprising variation data, direct annotation, and indirect annotation categories; the variation data category is required, while the direct and indirect annotation categories are optional. The annotation categories contain omics and clinical information, and have internal relationships. For designing, we examined 6 cases for three criteria as human health application and 15 data elements for three criteria as data formats for genomic sequence variation data exchange. The data format of five international SNP databases and six Markup Languages and the interface ability to the Health Level Seven Genotype Model in terms of 317 items were investigated. GSVML was developed as

  15. Sequencing and comparative analysis of the gorilla MHC genomic sequence.

    Science.gov (United States)

    Wilming, Laurens G; Hart, Elizabeth A; Coggill, Penny C; Horton, Roger; Gilbert, James G R; Clee, Chris; Jones, Matt; Lloyd, Christine; Palmer, Sophie; Sims, Sarah; Whitehead, Siobhan; Wiley, David; Beck, Stephan; Harrow, Jennifer L

    2013-01-01

    Major histocompatibility complex (MHC) genes play a critical role in vertebrate immune response and because the MHC is linked to a significant number of auto-immune and other diseases it is of great medical interest. Here we describe the clone-based sequencing and subsequent annotation of the MHC region of the gorilla genome. Because the MHC is subject to extensive variation, both structural and sequence-wise, it is not readily amenable to study in whole genome shotgun sequence such as the recently published gorilla genome. The variation of the MHC also makes it of evolutionary interest and therefore we analyse the sequence in the context of human and chimpanzee. In our comparisons with human and re-annotated chimpanzee MHC sequence we find that gorilla has a trimodular RCCX cluster, versus the reference human bimodular cluster, and additional copies of Class I (pseudo)genes between Gogo-K and Gogo-A (the orthologues of HLA-K and -A). We also find that Gogo-H (and Patr-H) is coding versus the HLA-H pseudogene and, conversely, there is a Gogo-DQB2 pseudogene versus the HLA-DQB2 coding gene. Our analysis, which is freely available through the VEGA genome browser, provides the research community with a comprehensive dataset for comparative and evolutionary research of the MHC.

  16. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease.

    Science.gov (United States)

    Cooper, David N; Bacolla, Albino; Férec, Claude; Vasquez, Karen M; Kehrer-Sawatzki, Hildegard; Chen, Jian-Min

    2011-10-01

    Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain "pervasive architectural flaws" in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease. © 2011 Wiley-Liss, Inc.

  17. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  18. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis

    DEFF Research Database (Denmark)

    Carlton, Jane M.; Hirt, Robert P.; Silva, Joana C.

    2007-01-01

    We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the approximately 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion...

  19. Whole-Genome Bisulfite Sequencing of Human Pancreatic Islets Reveals Novel Differentially Methylated Regions in Type 2 Diabetes Pathogenesis.

    Science.gov (United States)

    Volkov, Petr; Bacos, Karl; Ofori, Jones K; Esguerra, Jonathan Lou S; Eliasson, Lena; Rönn, Tina; Ling, Charlotte

    2017-04-01

    Current knowledge about the role of epigenetics in type 2 diabetes (T2D) remains limited. Only a few studies have investigated DNA methylation of selected candidate genes or a very small fraction of genomic CpG sites in human pancreatic islets, the tissue of primary pathogenic importance for diabetes. Our aim was to characterize the whole-genome DNA methylation landscape in human pancreatic islets, to identify differentially methylated regions (DMRs) in diabetic islets, and to investigate the function of DMRs in islet biology. Here, we performed whole-genome bisulfite sequencing, which is a comprehensive and unbiased method to study DNA methylation throughout the genome at a single nucleotide resolution, in pancreatic islets from donors with T2D and control subjects without diabetes. We identified 25,820 DMRs in islets from individuals with T2D. These DMRs cover loci with known islet function, e.g., PDX1, TCF7L2, and ADCY5 Importantly, binding sites previously identified by ChIP-seq for islet-specific transcription factors, enhancer regions, and different histone marks were enriched in the T2D-associated DMRs. We also identified 457 genes, including NR4A3, PARK2, PID1, SLC2A2, and SOCS2, that had both DMRs and significant expression changes in T2D islets. To mimic the situation in T2D islets, candidate genes were overexpressed or silenced in cultured β-cells. This resulted in impaired insulin secretion, thereby connecting differential methylation to islet dysfunction. We further explored the islet methylome and found a strong link between methylation levels and histone marks. Additionally, DNA methylation in different genomic regions and of different transcript types (i.e., protein coding, noncoding, and pseudogenes) was associated with islet expression levels. Our study provides a comprehensive picture of the islet DNA methylome in individuals with and without diabetes and highlights the importance of epigenetic dysregulation in pancreatic islets and T2D

  20. New sequence-based data on the relative DNA contents of chromosomes in the normal male and female human diploid genomes for radiation molecular cytogenetics

    Directory of Open Access Journals (Sweden)

    Repin Mikhail V

    2009-06-01

    Full Text Available Abstract Background The objective of this work is to obtain the correct relative DNA contents of chromosomes in the normal male and female human diploid genomes for the use at FISH analysis of radiation-induced chromosome aberrations. Results The relative DNA contents of chromosomes in the male and female human diploid genomes have been calculated from the publicly available international Human Genome Project data. New sequence-based data on the relative DNA contents of human chromosomes were compared with the data recommended by the International Atomic Energy Agency in 2001. The differences in the values of the relative DNA contents of chromosomes obtained by using different approaches for 15 human chromosomes, mainly for large chromosomes, were below 2%. For the chromosomes 13, 17, 20 and 22 the differences were above 5%. Conclusion New sequence-based data on the relative DNA contents of chromosomes in the normal male and female human diploid genomes were obtained. This approach, based on the genome sequence, can be recommended for the use in radiation molecular cytogenetics.

  1. Pig genome sequence - analysis and publication strategy

    NARCIS (Netherlands)

    Archibald, A.L.; Bolund, L.; Churcher, C.; Fredholm, M.; Groenen, M.A.M.; Harlizius, B.

    2010-01-01

    Background - The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing. Results - Assemblies of the B

  2. Hotspots of homologous recombination in the human genome: not all homologous sequences are equal.

    Science.gov (United States)

    Lupski, James R

    2004-01-01

    Homologous recombination between alleles or non-allelic paralogous sequences does not occur uniformly but is concentrated in 'hotspots' with high recombination rates. Recent studies of these hotspots show that they do not share common sequence motifs, but they do have other features in common.

  3. Hotspots of homologous recombination in the human genome: not all homologous sequences are equal

    OpenAIRE

    Lupski, James R

    2004-01-01

    Homologous recombination between alleles or non-allelic paralogous sequences does not occur uniformly but is concentrated in 'hotspots' with high recombination rates. Recent studies of these hotspots show that they do not share common sequence motifs, but they do have other features in common.

  4. Draft genome sequence of Staphylococcus hominis strain Hudgins isolated from human skin implicates metabolic versatility and several virulence determinants

    Directory of Open Access Journals (Sweden)

    Shelby Calkins

    2016-12-01

    Full Text Available Staphylococcus hominis is a predominant member of the human skin microbiome. We here report on the genomic analysis of Staphylococcus hominis strain Hudgins that was isolated from the wrist area of human skin. The partial genome assembly of S. hominis Hudgins consists of 2,211,863 bp of DNA with 2174 protein-coding genes and 90 RNA genes. Based on the genomic analysis of KEGG pathways, the organism is expected to be a versatile heterotroph potentially capable of hydrolyzing the sugars glucose, fructose, mannose, and the amino acids alanine, aspartate, glutamate, glycine, threonine, cysteine, methionine, valine, isoleucine, leucine, lysine, arginine, phenylalanine, tyrosine, and tryptophan for energy production through aerobic respiration, with occasional lactate and acetate fermentation. Evidence for poly-gamma glutamate capsule and type IV Com system pili were identified in the genome. Based on COG analysis, the genome of S. hominis Hudgins clusters away from the previously published S. hominis genome ZBW5.

  5. Single-Cell, Genome-wide Sequencing Identifies Clonal Somatic Copy-Number Variation in the Human Brain

    Directory of Open Access Journals (Sweden)

    Xuyu Cai

    2014-09-01

    Full Text Available De novo copy-number variants (CNVs can cause neuropsychiatric disease, but the degree to which they occur somatically, and during development, is unknown. Single-cell whole-genome sequencing (WGS in >200 single cells, including >160 neurons from three normal and two pathological human brains, sensitively identified germline trisomy of chromosome 18 but found most (≥95% neurons in normal brain tissue to be euploid. Analysis of a patient with hemimegalencephaly (HMG due to a somatic CNV of chromosome 1q found unexpected tetrasomy 1q in ∼20% of neurons, suggesting that CNVs in a minority of cells can cause widespread brain dysfunction. Single-cell analysis identified large (>1 Mb clonal CNVs in lymphoblasts and in single neurons from normal human brain tissue, suggesting that some CNVs occur during neurogenesis. Many neurons contained one or more large candidate private CNVs, including one at chromosome 15q13.2-13.3, a site of duplication in neuropsychiatric conditions. Large private and clonal somatic CNVs occur in normal and diseased human brains.

  6. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain.

    Science.gov (United States)

    Cai, Xuyu; Evrony, Gilad D; Lehmann, Hillel S; Elhosary, Princess C; Mehta, Bhaven K; Poduri, Annapurna; Walsh, Christopher A

    2014-09-11

    De novo copy-number variants (CNVs) can cause neuropsychiatric disease, but the degree to which they occur somatically, and during development, is unknown. Single-cell whole-genome sequencing (WGS) in >200 single cells, including >160 neurons from three normal and two pathological human brains, sensitively identified germline trisomy of chromosome 18 but found most (≥ 95%) neurons in normal brain tissue to be euploid. Analysis of a patient with hemimegalencephaly (HMG) due to a somatic CNV of chromosome 1q found unexpected tetrasomy 1q in ∼ 20% of neurons, suggesting that CNVs in a minority of cells can cause widespread brain dysfunction. Single-cell analysis identified large (>1 Mb) clonal CNVs in lymphoblasts and in single neurons from normal human brain tissue, suggesting that some CNVs occur during neurogenesis. Many neurons contained one or more large candidate private CNVs, including one at chromosome 15q13.2-13.3, a site of duplication in neuropsychiatric conditions. Large private and clonal somatic CNVs occur in normal and diseased human brains. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans

    DEFF Research Database (Denmark)

    Song, Yajun; Tong, Zongzhong; Wang, Jin;

    2004-01-01

    -Microtus brandti. The genome of strain 91001 consists of one chromosome and four plasmids (pPCP1, pCD1, pMT1 and pCRY). The 9609-bp pPCP1 plasmid of strain 91001 is almost identical to the counterparts from reference strains (CO92 and KIM). There are 98 genes in the 70,159-bp range of plasmid pCD1. The 106,642-bp...

  8. Sequence-specific flexibility organization of splicing flanking sequence and prediction of splice sites in the human genome.

    Science.gov (United States)

    Zuo, Yongchun; Zhang, Pengfei; Liu, Li; Li, Tao; Peng, Yong; Li, Guangpeng; Li, Qianzhong

    2014-09-01

    More and more reported results of nucleosome positioning and histone modifications showed that DNA structure play a well-established role in splicing. In this study, a set of DNA geometric flexibility parameters originated from molecular dynamics (MD) simulations were introduced to discuss the structure organization around splice sites at the DNA level. The obtained profiles of specific flexibility/stiffness around splice sites indicated that the DNA physical-geometry deformation could be used as an alternative way to describe the splicing junction region. In combination with structural flexibility as discriminatory parameter, we developed a hybrid computational model for predicting potential splicing sites. And the better prediction performance was achieved when the benchmark dataset evaluated. Our results showed that the mechanical deformability character of a splice junction is closely correlated with both the splice site strength and structural information in its flanking sequences.

  9. The DNA sequence, annotation and analysis of human chromosome 3

    DEFF Research Database (Denmark)

    Muzny, Donna M; Scherer, Steven E; Kaul, Rajinder

    2006-01-01

    After the completion of a draft human genome sequence, the International Human Genome Sequencing Consortium has proceeded to finish and annotate each of the 24 chromosomes comprising the human genome. Here we describe the sequencing and analysis of human chromosome 3, one of the largest human chr...

  10. Correlation between sequence conservation and structural thermodynamics of microRNA precursors from human, mouse, and chicken genomes

    Directory of Open Access Journals (Sweden)

    Wang Shengqi

    2010-10-01

    Full Text Available Abstract Background Previous studies have shown that microRNA precursors (pre-miRNAs have considerably more stable secondary structures than other native RNAs (tRNA, rRNA, and mRNA and artificial RNA sequences. However, pre-miRNAs with ultra stable secondary structures have not been investigated. It is not known if there is a tendency in pre-miRNA sequences towards or against ultra stable structures? Furthermore, the relationship between the structural thermodynamic stability of pre-miRNA and their evolution remains unclear. Results We investigated the correlation between pre-miRNA sequence conservation and structural stability as measured by adjusted minimum folding free energies in pre-miRNAs isolated from human, mouse, and chicken. The analysis revealed that conserved and non-conserved pre-miRNA sequences had structures with similar average stabilities. However, the relatively ultra stable and unstable pre-miRNAs were more likely to be non-conserved than pre-miRNAs with moderate stability. Non-conserved pre-miRNAs had more G+C than A+U nucleotides, while conserved pre-miRNAs contained more A+U nucleotides. Notably, the U content of conserved pre-miRNAs was especially higher than that of non-conserved pre-miRNAs. Further investigations showed that conserved and non-conserved pre-miRNAs exhibited different structural element features, even though they had comparable levels of stability. Conclusions We proposed that there is a correlation between structural thermodynamic stability and sequence conservation for pre-miRNAs from human, mouse, and chicken genomes. Our analyses suggested that pre-miRNAs with relatively ultra stable or unstable structures were less favoured by natural selection than those with moderately stable structures. Comparison of nucleotide compositions between non-conserved and conserved pre-miRNAs indicated the importance of U nucleotides in the pre-miRNA evolutionary process. Several characteristic structural elements were

  11. Analysis of the genomic sequence of a human metapneumovirus (hMPV).

    NARCIS (Netherlands)

    B.G. van den Hoogen (Bernadette); T.M. Bestebroer (Theo); A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron)

    2002-01-01

    textabstractWe recently described the isolation of a novel paramyxovirus from children with respiratory tract disease in The Netherlands. Based on biological properties and limited sequence information the virus was provisionally classified as the first nonavian member of the Metapneumovirus genus a

  12. LLNL's Big Science Capabilities Help Spur Over $796 Billion in U.S. Economic Activity Sequencing the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Jeffrey S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-07-28

    LLNL’s successful history of taking on big science projects spans beyond national security and has helped create billions of dollars per year in new economic activity. One example is LLNL’s role in helping sequence the human genome. Over $796 billion in new economic activity in over half a dozen fields has been documented since LLNL successfully completed this Grand Challenge.

  13. Complete genome sequence of Pseudoalteromononas piscicida strain DE2-B, a bacterium with broad inhibitory activity toward human and fish pathogens

    Science.gov (United States)

    Pseudoalteromonas piscicida strain DE2-B is a halophilic bacterium which has broad inhibitory activity toward vibrios and other human and fish pathogens. We report the first closed genome sequence for this species which consists of two chromosomes (4,128,210 and 1,188,838 bp). Annotation revealed ...

  14. Human genome. 1993 Program report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  15. Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure

    DEFF Research Database (Denmark)

    Torarinsson, Elfar; Sawera, Milena; Havgaard, Jakob Hull

    2006-01-01

    overlapped by transfrags than regions that are not overlapped by transfrags. To verify the coexpression between predicted candidates in human and mouse, we conducted expression studies by RT-PCR and Northern blotting on mouse candidates, which overlap with transfrags on human chromosome 20. RT-PCR results...... confirmed expression of 32 out of 36 candidates, whereas Northern blots confirmed four out of 12 candidates. Furthermore, many RT-PCR results indicate differential expression in different tissues. Hence, our findings suggest that there are corresponding regions between human and mouse, which contain...

  16. Pig genome sequence - analysis and publication strategy

    DEFF Research Database (Denmark)

    Archibald, Alan L.; Bolund, Lars; Churcher, Carol;

    2010-01-01

    BACKGROUND: The pig genome is being sequenced and characterised under the auspices of the Swine Genome Sequencing Consortium. The sequencing strategy followed a hybrid approach combining hierarchical shotgun sequencing of BAC clones and whole genome shotgun sequencing. RESULTS: Assemblies......) is under construction and will incorporate whole genome shotgun sequence (WGS) data providing > 30x genome coverage. The WGS sequence, most of which comprise short Illumina/Solexa reads, were generated from DNA from the same single Duroc sow as the source of the BAC library from which clones were...

  17. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome

    Science.gov (United States)

    The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the last two decades. This global resurgence is likely linked to increased international travel and commerce and widespread insecticide resistance. Analyses of the C. le...

  18. Genomic studies of envelope gene sequences from mosquito and human samples from Bangkok, Thailand.

    Science.gov (United States)

    Pitaksajjakul, Pannamthip; Benjathummarak, Surachet; Son, Hyun Ngoc; Thongrungkiat, Supatra; Ramasoota, Pongrama

    2016-01-01

    Dengue virus (DENV) is an RNA virus showing a high degree of genetic variation as a consequence of its proofreading inability. This variation plays an important role in virus evolution and pathogenesis. Although levels of within-host genetic variation are similar following equilibrium, variation among different hosts is frequently different. To identify dengue quasispecies present among two hosts, we collected patient samples from six acute DENV cases and two pools of Aedes aegypti mosquitoes and analyzed the genetic variation of regions of the viral envelope gene. Among human and mosquito samples, we found three major clusters originating from two subpopulations. Although several shared lineages were observed in the two hosts, only one lineage showing evidence of neutral selection was observed among two hosts. Taken together, our data provide evidence for the existence of a DENV quasispecies, with less genetic variation observed in mosquitoes than humans and with circulating lineages found in both host types.

  19. Extensive sequence-influenced DNA methylation polymorphism in the human genome

    OpenAIRE

    Hellman Asaf; Chess Andrew

    2010-01-01

    Abstract Background Epigenetic polymorphisms are a potential source of human diversity, but their frequency and relationship to genetic polymorphisms are unclear. DNA methylation, an epigenetic mark that is a covalent modification of the DNA itself, plays an important role in the regulation of gene expression. Most studies of DNA methylation in mammalian cells have focused on CpG methylation present in CpG islands (areas of concentrated CpGs often found near promoters), but there are also int...

  20. Genome Sequences of Eight Morphologically Diverse Alphaproteobacteria▿

    OpenAIRE

    Brown, Pamela J.B.; Kysela, David T.; Buechlein, Aaron; Hemmerich, Chris; Brun, Yves V

    2011-01-01

    The Alphaproteobacteriacomprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium.

  1. Genome sequences of eight morphologically diverse Alphaproteobacteria.

    Science.gov (United States)

    Brown, Pamela J B; Kysela, David T; Buechlein, Aaron; Hemmerich, Chris; Brun, Yves V

    2011-09-01

    The Alphaproteobacteria comprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium.

  2. Genome Sequences of Eight Morphologically Diverse Alphaproteobacteria▿

    Science.gov (United States)

    Brown, Pamela J. B.; Kysela, David T.; Buechlein, Aaron; Hemmerich, Chris; Brun, Yves V.

    2011-01-01

    The Alphaproteobacteriacomprise morphologically diverse bacteria, including many species of stalked bacteria. Here we announce the genome sequences of eight alphaproteobacteria, including the first genome sequences of species belonging to the genera Asticcacaulis, Hirschia, Hyphomicrobium, and Rhodomicrobium. PMID:21705585

  3. Genome Sequence of Mycobacteriophage Momo.

    Science.gov (United States)

    Pope, Welkin H; Bina, Elizabeth A; Brahme, Indraneel S; Hill, Amy B; Himmelstein, Philip H; Hunsicker, Sara M; Ish, Amanda R; Le, Tinh S; Martin, Mary M; Moscinski, Catherine N; Shetty, Sameer A; Swierzewski, Tomasz; Iyengar, Varun B; Kim, Hannah; Schafer, Claire E; Grubb, Sarah R; Warner, Marcie H; Bowman, Charles A; Russell, Daniel A; Hatfull, Graham F

    2015-06-18

    Momo is a newly discovered phage of Mycobacterium smegmatis mc(2)155. Momo has a double-stranded DNA genome 154,553 bp in length, with 233 predicted protein-encoding genes, 34 tRNA genes, and one transfer-messenger RNA (tmRNA) gene. Momo has a myoviral morphology and shares extensive nucleotide sequence similarity with subcluster C1 mycobacteriophages. Copyright © 2015 Pope et al.

  4. Draft Genome Sequence of Parabacteroides goldsteinii with Putative Novel Metallo-β-Lactamases Isolated from a Blood Culture from a Human Patient

    DEFF Research Database (Denmark)

    Krogh, Thøger Jensen; Agergaard, Charlotte Nielsen; Møller-Jensen, Jakob;

    2015-01-01

    Parabacteroides goldsteinii was isolated from a blood culture. Genomic DNA was sequenced using a MiSeq sequencer and assembled using the SPAdes genome assembler. The draft genome sequence was 6,851,868 bp, spanning 282 contigs of 5,253 coding sequences, 66 tRNAs, and 5 rRNAs. Several putative novel...

  5. Human-mouse comparative genomics: successes and failures to reveal functional regions of the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Baroukh, Nadine; Rubin, Edward M.

    2003-05-15

    Deciphering the genetic code embedded within the human genome remains a significant challenge despite the human genome consortium's recent success at defining its linear sequence (Lander et al. 2001; Venter et al. 2001). While useful strategies exist to identify a large percentage of protein encoding regions, efforts to accurately define functional sequences in the remaining {approx}97 percent of the genome lag. Our primary interest has been to utilize the evolutionary relationship and the universal nature of genomic sequence information in vertebrates to reveal functional elements in the human genome. This has been achieved through the combined use of vertebrate comparative genomics to pinpoint highly conserved sequences as candidates for biological activity and transgenic mouse studies to address the functionality of defined human DNA fragments. Accordingly, we describe strategies and insights into functional sequences in the human genome through the use of comparative genomics coupled wit h functional studies in the mouse.

  6. Improved genome sequencing using an engineered transposase.

    Science.gov (United States)

    Kia, Amirali; Gloeckner, Christian; Osothprarop, Trina; Gormley, Niall; Bomati, Erin; Stephenson, Michelle; Goryshin, Igor; He, Molly Min

    2017-01-17

    Next-generation sequencing (NGS) has transformed genomic research by reducing turnaround time and cost. However, no major breakthrough has been made in the upstream library preparation methods until the transposase-based Nextera method was invented. Nextera combines DNA fragmentation and barcoding in a single tube reaction and therefore enables a very fast workflow to sequencing-ready DNA libraries within a couple of hours. When compared to the traditional ligation-based methods, transposed-based Nextera has a slight insertion bias. Here we present the discovery of a mutant transposase (Tn5-059) with a lowered GC insertion bias through protein engineering. We demonstrate Tn5-059 reduces AT dropout and increases uniformity of genome coverage in both bacterial genomes and human genome. We also observe higher library diversity generated by Tn5-059 when compared to Nextera v2 for human exomes, which leads to less sequencing and lower cost per genome. In addition, when used for human exomes, Tn5-059 delivers consistent library insert size over a range of input DNA, allowing up to a tenfold variance from the 50 ng input recommendation. Enhanced DNA input tolerance of Tn5-059 can translate to flexibility and robustness of workflow. DNA input tolerance together with superior uniformity of coverage and lower AT dropouts extend the applications of transposase based library preps. We discuss possible mechanisms of improvements in Tn5-059, and potential advantages of using the new mutant in varieties of applications including microbiome sequencing and chromatin profiling.

  7. Whole-genome bisulfite sequencing maps from multiple human tissues reveal novel CpG islands associated with tissue-specific regulation.

    Science.gov (United States)

    Mendizabal, Isabel; Yi, Soojin V

    2016-01-01

    CpG islands (CGIs) are one of the most widely studied regulatory features of the human genome, with critical roles in development and disease. Despite such significance and the original epigenetic definition, currently used CGI sets are typically predicted from DNA sequence characteristics. Although CGIs are deeply implicated in practical analyses of DNA methylation, recent studies have shown that such computational annotations suffer from inaccuracies. Here we used whole-genome bisulfite sequencing from 10 diverse human tissues to identify a comprehensive, experimentally obtained, single-base resolution CGI catalog. In addition to the unparalleled annotation precision, our method is free from potential bias due to arbitrary sequence features or probe affinity differences. In addition to clarifying substantial false positives in the widely used University of California Santa Cruz (UCSC) annotations, our study identifies numerous novel epigenetic loci. In particular, we reveal significant impact of transposable elements on the epigenetic regulatory landscape of the human genome and demonstrate ubiquitous presence of transcription initiation at CGIs, including alternative promoters in gene bodies and non-coding RNAs in intergenic regions. Moreover, coordinated DNA methylation and chromatin modifications mark tissue-specific enhancers at novel CGIs. Enrichment of specific transcription factor binding from ChIP-seq supports mechanistic roles of CGIs on the regulation of tissue-specific transcription. The new CGI catalog provides a comprehensive and integrated list of genomic hotspots of epigenetic regulation. © The Author 2015. Published by Oxford University Press.

  8. Whole-Genome Sequences of 26 Vibrio cholerae Isolates

    Science.gov (United States)

    Watve, Samit S.; Chande, Aroon T.; Rishishwar, Lavanya; Jordan, I. King

    2016-01-01

    The human pathogen Vibrio cholerae employs several adaptive mechanisms for environmental persistence, including natural transformation and type VI secretion, creating a reservoir for the spread of disease. Here, we report whole-genome sequences of 26 diverse V. cholerae isolates, significantly increasing the sequence diversity of publicly available V. cholerae genomes. PMID:28007852

  9. Complete Genome Sequences of Two Human Oral Microbiome Commensals, Streptococcus salivarius ATCC 25975 and S. salivarius ATCC 27945.

    Science.gov (United States)

    Butler, Robert R; Soomer-James, Jahna T A; Frenette, Michel; Pombert, Jean-François

    2017-06-15

    Streptococcus salivarius strains are significant contributors to the human oral microbiome. Some possess unique fimbriae that give them the ability to coaggregate and colonize particular oral structures. We present here the complete genomes of Streptococcus salivarius Lancefield K(-)/K(+) strains ATCC 25975 and ATCC 27945, which can and cannot, respectively, produce fimbriae. Copyright © 2017 Butler et al.

  10. Complete Genome Sequences of Two Human Oral Microbiome Commensals: Streptococcus salivarius ATCC 25975 and S. salivarius ATCC 27945

    OpenAIRE

    Butler, Robert R.; Soomer-James, Jahna T. A.; Frenette, Michel; Pombert, Jean-François

    2017-01-01

    ABSTRACT Streptococcus salivarius strains are significant contributors to the human oral microbiome. Some possess unique fimbriae that give them the ability to coaggregate and colonize particular oral structures. We present here the complete genomes of Streptococcus salivarius Lancefield K?/K+ strains ATCC 25975 and ATCC 27945, which can and cannot, respectively, produce fimbriae.

  11. Insights from Human/Mouse genome comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  12. Translational genomics for plant breeding with the genome sequence explosion.

    Science.gov (United States)

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.

  13. National Human Genome Research Institute

    Science.gov (United States)

    ... the Director Organization Reports & Publications Español The National Human Genome Research Institute conducts genetic and genomic research, funds ... Landscape Social Media Videos Image Gallery Fact Sheets Human Genome Project Clinical Studies Genomic Careers DNA Day Calendar ...

  14. Sequencing intractable DNA to close microbial genomes.

    Science.gov (United States)

    Hurt, Richard A; Brown, Steven D; Podar, Mircea; Palumbo, Anthony V; Elias, Dwayne A

    2012-01-01

    Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  15. Sequencing intractable DNA to close microbial genomes.

    Directory of Open Access Journals (Sweden)

    Richard A Hurt

    Full Text Available Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps and the Desulfovibrio africanus genome (1 intractable gap. The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.

  16. Value of a newly sequenced bacterial genome

    DEFF Research Database (Denmark)

    Barbosa, Eudes; Aburjaile, Flavia F; Ramos, Rommel Tj

    2014-01-01

    and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses...

  17. Analysis of complete genome sequences of G9P[19] rotavirus strains from human and piglet with diarrhea provides evidence for whole-genome interspecies transmission of nonreassorted porcine rotavirus.

    Science.gov (United States)

    Yodmeeklin, Arpaporn; Khamrin, Pattara; Chuchaona, Watchaporn; Kumthip, Kattareeya; Kongkaew, Aphisek; Vachirachewin, Ratchaya; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2017-01-01

    Whole genomes of G9P[19] human (RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19]) and porcine (RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19]) rotaviruses concurrently detected in the same geographical area in northern Thailand were sequenced and analyzed for their genetic relationships using bioinformatic tools. The complete genome sequence of human rotavirus RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] was most closely related to those of porcine rotavirus RVA/Pig-wt/THA/CMP-015-12/2012/G9P[19] and to those of porcine-like human and porcine rotaviruses reference strains than to those of human rotavirus reference strains. The genotype constellation of G9P[19] detected in human and piglet were identical and displayed as the G9-P[19]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genotypes with the nucleotide sequence identities of VP7, VP4, VP6, VP1, VP2, VP3, NSP1, NSP2, NSP3, NSP4, and NSP5 at 99.0%, 99.5%, 93.2%, 97.7%, 97.7%, 85.6%, 89.5%, 93.2%, 92.9%, 94.0%, and 98.1%, respectively. The findings indicate that human rotavirus strain RVA/Human-wt/THA/CMH-S070-13/2013/G9P[19] containing the genome segments of porcine genetic backbone is most likely a human rotavirus of porcine origin. Our data provide an evidence of interspecies transmission and whole-genome transmission of nonreassorted G9P[19] porcine RVA to human occurring in nature in northern Thailand. Copyright © 2016. Published by Elsevier B.V.

  18. Reconstructing cancer genomes from paired-end sequencing data

    Directory of Open Access Journals (Sweden)

    Oesper Layla

    2012-04-01

    Full Text Available Abstract Background A cancer genome is derived from the germline genome through a series of somatic mutations. Somatic structural variants - including duplications, deletions, inversions, translocations, and other rearrangements - result in a cancer genome that is a scrambling of intervals, or "blocks" of the germline genome sequence. We present an efficient algorithm for reconstructing the block organization of a cancer genome from paired-end DNA sequencing data. Results By aligning paired reads from a cancer genome - and a matched germline genome, if available - to the human reference genome, we derive: (i a partition of the reference genome into intervals; (ii adjacencies between these intervals in the cancer genome; (iii an estimated copy number for each interval. We formulate the Copy Number and Adjacency Genome Reconstruction Problem of determining the cancer genome as a sequence of the derived intervals that is consistent with the measured adjacencies and copy numbers. We design an efficient algorithm, called Paired-end Reconstruction of Genome Organization (PREGO, to solve this problem by reducing it to an optimization problem on an interval-adjacency graph constructed from the data. The solution to the optimization problem results in an Eulerian graph, containing an alternating Eulerian tour that corresponds to a cancer genome that is consistent with the sequencing data. We apply our algorithm to five ovarian cancer genomes that were sequenced as part of The Cancer Genome Atlas. We identify numerous rearrangements, or structural variants, in these genomes, analyze reciprocal vs. non-reciprocal rearrangements, and identify rearrangements consistent with known mechanisms of duplication such as tandem duplications and breakage/fusion/bridge (B/F/B cycles. Conclusions We demonstrate that PREGO efficiently identifies complex and biologically relevant rearrangements in cancer genome sequencing data. An implementation of the PREGO algorithm is

  19. Evolutionarily conserved sequences on human chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Kelly A.; Sheehan, John B.; Stokowski, Renee P.; Chen, Xiyin; Hosseini, Roya; Cheng, Jan-Fang; Fodor, Stephen P.A.; Cox, David R.; Patil, Nila

    2001-09-01

    Comparison of human sequences with the DNA of other mammals is an excellent means of identifying functional elements in the human genome. Here we describe the utility of high-density oligonucleotide arrays as a rapid approach for comparing human sequences with the DNA of multiple species whose sequences are not presently available. High-density arrays representing approximately 22.5 Mb of nonrepetitive human chromosome 21 sequence were synthesized and then hybridized with mouse and dog DNA to identify sequences conserved between humans and mice (human-mouse elements) and between humans and dogs (human-dog elements). Our data show that sequence comparison of multiple species provides a powerful empiric method for identifying actively conserved elements in the human genome. A large fraction of these evolutionarily conserved elements are present in regions on chromosome 21 that do not encode known genes.

  20. Draft Genome Sequence of Lactobacillus rhamnosus 2166.

    OpenAIRE

    Karlyshev, Andrey V.; Melnikov, Vyacheslav G.; Kosarev, Igor V.; Abramov, Vyacheslav M.

    2014-01-01

    In this report, we present a draft sequence of the genome of Lactobacillus rhamnosus strain 2166, a potential novel probiotic. Genome annotation and read mapping onto a reference genome of L. rhamnosus strain GG allowed for the identification of the differences and similarities in the genomic contents and gene arrangements of these strains.

  1. Draft Genome Sequence of Lactobacillus rhamnosus 2166.

    OpenAIRE

    Karlyshev, Andrey V.; Melnikov, Vyacheslav G.; Kosarev, Igor V.; Abramov, Vyacheslav M.

    2014-01-01

    In this report, we present a draft sequence of the genome of Lactobacillus rhamnosus strain 2166, a potential novel probiotic. Genome annotation and read mapping onto a reference genome of L. rhamnosus strain GG allowed for the identification of the differences and similarities in the genomic contents and gene arrangements of these strains.

  2. Value of a newly sequenced bacterial genome

    Institute of Scientific and Technical Information of China (English)

    Eudes; GV; Barbosa; Flavia; F; Aburjaile; Rommel; TJ; Ramos; Adriana; R; Carneiro; Yves; Le; Loir; Jan; Baumbach; Anderson; Miyoshi; Artur; Silva; Vasco; Azevedo

    2014-01-01

    Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft(partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.

  3. Sequence-Based Characterization of Tn5801-Like Genomic Islands in Tetracycline-Resistant Staphylococcus pseudintermedius and Other Gram-positive Bacteria from Humans and Animals

    DEFF Research Database (Denmark)

    de Vries, Lisbeth Elvira; Hasman, Henrik; Jurado Rabadán, Sonia

    2016-01-01

    Antibiotic resistance in pathogens is often associated with mobile genetic elements, such as genomic islands (GI) including integrative and conjugative elements (ICEs). These can transfer resistance genes within and between bacteria from humans and/or animals. The aim of this study...... was to investigate whether Tn5801-like GIs carrying the tetracycline resistance gene, tet(M), are common in Staphylococcus pseudintermedius from pets, and to do an overall sequences-based characterization of Tn5801-like GIs detected in Gram-positive bacteria from humans and animals. A total of 27 tetracycline...... types were detected among the porcine E. faecium and human S. aureus isolates (Tn6014 and GI6288). Tn5801-like GIs were detected in GenBank-sequences from Gram-positive bacteria of human, animal or food origin worldwide. Known Tn5801-like GIs were divided into seven types. The results showed that Tn5801...

  4. Genomic organization, complete sequence, and chromosomal location of the gene for human eotaxin (SCYA11), an eosinophil-specific CC chemokine

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Zepeda, E.A.; Sarafi, M.N.; Luster, A.D. [Massachusetts General Hospital, Charlestown, MA (United States)]|[Harvard Medical School, Boston, MA (United States)] [and others

    1997-05-01

    Eotaxin is a CC chemokine that is a specific chemoattractant for eosinophils and is implicated in the pathogenesis of eosinophilic inflammatory diseases, such as asthma. We describe the genomic organization, complete sequence, including 1354 bp 5{prime} of the RNA initiation site, and chromosomal localization of the human eotaxin gene. Fluorescence in situ hybridization analysis localized eotaxin to human chromosome 17, in the region q21.1-q21.2, and the human gene name SCYA11 was assigned. We also present the 5{prime} flanking sequence of the mouse eotaxin gene and have identified several regulatory elements that are conserved between the murine and the human promoters. In particular, the presence of elements such as NF-{Kappa}B, interferon-{gamma} response element, and glucocorticoid response element may explain the observed regulation of the eotaxin gene by cytokines and glucocorticoids. 17 refs., 4 figs., 1 tab.

  5. Complete genome sequence of Gordonia bronchialis type strain (3410T)

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Jando, Marlen [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J C [U.S. Department of Energy, Joint Genome Institute; Brettin, Thomas S [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2010-01-01

    Gordonia bronchialis Tsukamura 1971 is the type species of the genus. G. bronchialis is a human-pathogenic organism that has been isolated from a large variety of human tissues. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of the family Gordoniaceae. The 5,290,012 bp long genome with its 4,944 protein-coding and 55 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  6. Noncontiguous finished genome sequence and description of Virgibacillus massiliensis sp. nov., a moderately halophilic bacterium isolated from human gut

    Directory of Open Access Journals (Sweden)

    S. Khelaifia

    2015-11-01

    Full Text Available Strain Vm-5T was isolated from the stool specimen of a 10-year-old Amazonian boy. This bacterium is a Gram-positive, strictly aerobic rod, motile by a polar flagellum. Here we describe its phenotypic characteristics and complete genome sequence. The 4 353 177 bp long genome exhibits a G + C content of 36.87% and contains 4394 protein-coding and 125 predicted RNA genes. Phylogenetically and genetically, strain Vm-c is a member of the genus Virgibacillus but is distinct enough to be classified as a new species. We propose the creation of V. massiliensis sp. nov., whose type strain is strain Vm-5T (CSUR P971 = DSM 28587.

  7. Complete Genome Sequence of Mycobacterium phlei Type Strain RIVM601174

    KAUST Repository

    Abdallah, A. M.

    2012-05-24

    Mycobacterium phlei is a rapidly growing nontuberculous Mycobacterium species that is typically nonpathogenic, with few reported cases of human disease. Here we report the whole genome sequence of M. phlei type strain RIVM601174.

  8. Draft Genome Sequence of Coprobacter fastidiosus NSB1T

    Science.gov (United States)

    Chaplin, A. V.; Efimov, B. A.; Khokhlova, E. V.; Kafarskaia, L. I.; Tupikin, A. E.; Kabilov, M. R.

    2014-01-01

    Coprobacter fastidiosus is a Gram-negative obligate anaerobic bacterium belonging to the phylum Bacteroidetes. In this work, we report the draft genome sequence of C. fastidiosus strain NSB1T isolated from human infant feces. PMID:24604645

  9. Genome sequence and description of Actinomyces polynesiensis str. MS2 sp. nov. isolated from the human gut

    Directory of Open Access Journals (Sweden)

    T. Cimmino

    2016-07-01

    Full Text Available Actinomyces polynesiensis strain MS2 gen. nov., sp. nov. is a newly proposed genus within the family Actinomycetaceae, isolated from the stools of a healthy individual in Raiatea Island (French Polynesia, South Pacific. Actinomyces massiliensis is an anaerobic, Gram-positive organism. Here we describe the features of this organism, together with the complete genome sequence and annotation—2 943 271 bp with a 70.80% G+C content, assembled into 15 scaffolds and containing 2080 genes.

  10. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing.

    Science.gov (United States)

    Veres, Adrian; Gosis, Bridget S; Ding, Qiurong; Collins, Ryan; Ragavendran, Ashok; Brand, Harrison; Erdin, Serkan; Cowan, Chad A; Talkowski, Michael E; Musunuru, Kiran

    2014-07-03

    Genome editing has attracted wide interest for the generation of cellular models of disease using human pluripotent stem cells and other cell types. CRISPR-Cas systems and TALENs can target desired genomic sites with high efficiency in human cells, but recent publications have led to concern about the extent to which these tools may cause off-target mutagenic effects that could potentially confound disease-modeling studies. Using CRISPR-Cas9 and TALEN targeted human pluripotent stem cell clones, we performed whole-genome sequencing at high coverage in order to assess the degree of mutagenesis across the entire genome. In both types of clones, we found that off-target mutations attributable to the nucleases were very rare. From this analysis, we suggest that, although some cell types may be at risk for off-target mutations, the incidence of such effects in human pluripotent stem cells may be sufficiently low and thus not a significant concern for disease modeling and other applications.

  11. Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Fortson, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Joyce, G. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Kimble, H. J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Max, C. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Prince, T. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, P. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Woodin, W. H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  12. Haplotype-resolved genome sequencing of a Gujarati Indian individual.

    Science.gov (United States)

    Kitzman, Jacob O; Mackenzie, Alexandra P; Adey, Andrew; Hiatt, Joseph B; Patwardhan, Rupali P; Sudmant, Peter H; Ng, Sarah B; Alkan, Can; Qiu, Ruolan; Eichler, Evan E; Shendure, Jay

    2011-01-01

    Haplotype information is essential to the complete description and interpretation of genomes, genetic diversity and genetic ancestry. Although individual human genome sequencing is increasingly routine, nearly all such genomes are unresolved with respect to haplotype. Here we combine the throughput of massively parallel sequencing with the contiguity information provided by large-insert cloning to experimentally determine the haplotype-resolved genome of a South Asian individual. A single fosmid library was split into a modest number of pools, each providing ∼3% physical coverage of the diploid genome. Sequencing of each pool yielded reads overwhelmingly derived from only one homologous chromosome at any given location. These data were combined with whole-genome shotgun sequence to directly phase 94% of ascertained heterozygous single nucleotide polymorphisms (SNPs) into long haplotype blocks (N50 of 386 kilobases (kbp)). This method also facilitates the analysis of structural variation, for example, to anchor novel insertions to specific locations and haplotypes.

  13. Identification of ancient remains through genomic sequencing

    Science.gov (United States)

    Blow, Matthew J.; Zhang, Tao; Woyke, Tanja; Speller, Camilla F.; Krivoshapkin, Andrei; Yang, Dongya Y.; Derevianko, Anatoly; Rubin, Edward M.

    2008-01-01

    Studies of ancient DNA have been hindered by the preciousness of remains, the small quantities of undamaged DNA accessible, and the limitations associated with conventional PCR amplification. In these studies, we developed and applied a genomewide adapter-mediated emulsion PCR amplification protocol for ancient mammalian samples estimated to be between 45,000 and 69,000 yr old. Using 454 Life Sciences (Roche) and Illumina sequencing (formerly Solexa sequencing) technologies, we examined over 100 megabases of DNA from amplified extracts, revealing unbiased sequence coverage with substantial amounts of nonredundant nuclear sequences from the sample sources and negligible levels of human contamination. We consistently recorded over 500-fold increases, such that nanogram quantities of starting material could be amplified to microgram quantities. Application of our protocol to a 50,000-yr-old uncharacterized bone sample that was unsuccessful in mitochondrial PCR provided sufficient nuclear sequences for comparison with extant mammals and subsequent phylogenetic classification of the remains. The combined use of emulsion PCR amplification and high-throughput sequencing allows for the generation of large quantities of DNA sequence data from ancient remains. Using such techniques, even small amounts of ancient remains with low levels of endogenous DNA preservation may yield substantial quantities of nuclear DNA, enabling novel applications of ancient DNA genomics to the investigation of extinct phyla. PMID:18426903

  14. Bioinformatics Assisted Gene Discovery and Annotation of Human Genome

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the sequencing stage of human genome project is near the end, the work has begun for discovering novel genes from genome sequences and annotating their biological functions. Here are reviewed current major bioinformatics tools and technologies available for large scale gene discovery and annotation from human genome sequences. Some ideas about possible future development are also provided.

  15. Genome Project Standards in a New Era of Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    GSC Consortia; HMP Jumpstart Consortia; Chain, P. S. G.; Grafham, D. V.; Fulton, R. S.; FitzGerald, M. G.; Hostetler, J.; Muzny, D.; Detter, J. C.; Ali, J.; Birren, B.; Bruce, D. C.; Buhay, C.; Cole, J. R.; Ding, Y.; Dugan, S.; Field, D.; Garrity, G. M.; Gibbs, R.; Graves, T.; Han, C. S.; Harrison, S. H.; Highlander, S.; Hugenholtz, P.; Khouri, H. M.; Kodira, C. D.; Kolker, E.; Kyrpides, N. C.; Lang, D.; Lapidus, A.; Malfatti, S. A.; Markowitz, V.; Metha, T.; Nelson, K. E.; Parkhill, J.; Pitluck, S.; Qin, X.; Read, T. D.; Schmutz, J.; Sozhamannan, S.; Strausberg, R.; Sutton, G.; Thomson, N. R.; Tiedje, J. M.; Weinstock, G.; Wollam, A.

    2009-06-01

    For over a decade, genome 43 sequences have adhered to only two standards that are relied on for purposes of sequence analysis by interested third parties (1, 2). However, ongoing developments in revolutionary sequencing technologies have resulted in a redefinition of traditional whole genome sequencing that requires a careful reevaluation of such standards. With commercially available 454 pyrosequencing (followed by Illumina, SOLiD, and now Helicos), there has been an explosion of genomes sequenced under the moniker 'draft', however these can be very poor quality genomes (due to inherent errors in the sequencing technologies, and the inability of assembly programs to fully address these errors). Further, one can only infer that such draft genomes may be of poor quality by navigating through the databases to find the number and type of reads deposited in sequence trace repositories (and not all genomes have this available), or to identify the number of contigs or genome fragments deposited to the database. The difficulty in assessing the quality of such deposited genomes has created some havoc for genome analysis pipelines and contributed to many wasted hours of (mis)interpretation. These same novel sequencing technologies have also brought an exponential leap in raw sequencing capability, and at greatly reduced prices that have further skewed the time- and cost-ratios of draft data generation versus the painstaking process of improving and finishing a genome. The resulting effect is an ever-widening gap between drafted and finished genomes that only promises to continue (Figure 1), hence there is an urgent need to distinguish good and poor datasets. The sequencing institutes in the authorship, along with the NIH's Human Microbiome Project Jumpstart Consortium (3), strongly believe that a new set of standards is required for genome sequences. The following represents a set of six community-defined categories of genome sequence standards that better

  16. Genome sequences of Human Adenovirus 14 isolates from mild respiratory cases and a fatal pneumonia, isolated during 2006-2007 epidemics in North America

    Directory of Open Access Journals (Sweden)

    Houng Huo-Shu H

    2010-08-01

    Full Text Available Abstract Background Human adenovirus 14 (HAdV-14 is a recognized causative agent of epidemic febrile respiratory illness (FRI. Last reported in Eurasia in 1963, this virus has since been conspicuously absent in broad surveys, and was never isolated in North America despite inclusion of specific tests for this serotype in surveillance methods. In 2006 and 2007, this virus suddenly emerged in North America, causing high attack rate epidemics of FRI and, in some cases, severe pneumonias and occasional fatalities. Some outbreaks have been relatively mild, with low rates of progression beyond uncomplicated FRI, while other outbreaks have involved high rates of more serious outcomes. Methodology and Findings In this paper we present the complete genomic sequence of this emerging pathogen, and compare genomic sequences of isolates from both mild and severe outbreaks. We also compare the genome sequences of the recent isolates with those of the prototype HAdV-14 that circulated in Eurasia 30 years ago and the closely related sequence of HAdV-11a, which has been circulating in southeast Asia. Conclusions The data suggest that the currently circulating strain of HAdV-14 is closely related to the historically recognized prototype throughout its genome, though it does display a couple of potentially functional mutations in the fiber knob and E1A genes. There are no polymorphisms that suggest an obvious explanation for the divergence in severity between outbreak events, suggesting that differences in outcome are more likely environmental or host determined rather than viral genetics.

  17. Genome sequences of Listeria monocytogenes strains with resistance to arsenic

    Science.gov (United States)

    Listeria monocytogenes frequently exhibits resistance to arsenic. We report here the draft genome sequences of eight genetically diverse arsenic-resistant L. monocytogenes strains from human listeriosis and food-associated environments. Availability of these genomes would help to elucidate the role ...

  18. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis

    NARCIS (Netherlands)

    Carlton, Jane M.; Hirt, Robert P.; Silva, Joana C.; Delcher, Arthur L.; Schatz, Michael; Zhao, Qi; Wortman, Jennifer R.; Bidwell, Shelby L.; Alsmark, U. Cecilia M.; Besteiro, Sebastien; Sicheritz-Ponten, Thomas; Noel, Christophe J.; Dacks, Joel B.; Foster, Peter G.; Simillion, Cedric; Van de Peer, Yves; Miranda-Saavedra, Diego; Barton, Geoffrey J.; Westrop, Gareth D.; Mueller, Sylke; Dessi, Daniele; Fiori, Pier Luigi; Ren, Qinghu; Paulsen, Ian; Zhang, Hanbang; Bastida-Corcuera, Felix D.; Simoes-Barbosa, Augusto; Brown, Mark T.; Hayes, Richard D.; Mukherjee, Mandira; Okumura, Cheryl Y.; Schneider, Rachel; Smith, Alias J.; Vanacova, Stepanka; Villalvazo, Maria; Haas, Brian J.; Pertea, Mihaela; Feldblyum, Tamara V.; Utterback, Terry R.; Shu, Chung-Li; Osoegawa, Kazutoyo; de Jong, Pieter J.; Hrdy, Ivan; Horvathova, Lenka; Zubacova, Zuzana; Dolezal, Pavel; Malik, Shehre-Banoo; Logsdon, John M.; Henze, Katrin; Gupta, Arti; Wang, Ching C.; Dunne, Rebecca L.; Upcroft, Jacqueline A.; Upcroft, Peter; White, Owen; Salzberg, Steven L.; Tang, Petrus; Chiu, Cheng-Hsun; Lee, Ying-Shiung; Embley, T. Martin; Coombs, Graham H.; Mottram, Jeremy C.; Tachezy, Jan; Fraser-Liggett, Claire M.; Johnson, Patricia J.

    2007-01-01

    We describe the genome sequence of the protist Trichomonas vaginalis, a sexually transmitted human pathogen. Repeats and transposable elements comprise about two-thirds of the similar to 160-megabase genome, reflecting a recent massive expansion of genetic material. This expansion, in conjunction wi

  19. The PRC2-binding long non-coding RNAs in human and mouse genomes are associated with predictive sequence features

    Science.gov (United States)

    Tu, Shiqi; Yuan, Guo-Cheng; Shao, Zhen

    2017-01-01

    Recently, long non-coding RNAs (lncRNAs) have emerged as an important class of molecules involved in many cellular processes. One of their primary functions is to shape epigenetic landscape through interactions with chromatin modifying proteins. However, mechanisms contributing to the specificity of such interactions remain poorly understood. Here we took the human and mouse lncRNAs that were experimentally determined to have physical interactions with Polycomb repressive complex 2 (PRC2), and systematically investigated the sequence features of these lncRNAs by developing a new computational pipeline for sequences composition analysis, in which each sequence is considered as a series of transitions between adjacent nucleotides. Through that, PRC2-binding lncRNAs were found to be associated with a set of distinctive and evolutionarily conserved sequence features, which can be utilized to distinguish them from the others with considerable accuracy. We further identified fragments of PRC2-binding lncRNAs that are enriched with these sequence features, and found they show strong PRC2-binding signals and are more highly conserved across species than the other parts, implying their functional importance.

  20. DNA sequencing leads to genomics progress in China

    Institute of Scientific and Technical Information of China (English)

    WU JiaYan; XIAO JingFa; ZHANG RuoSi; YU Jun

    2011-01-01

    1 Science in the large-scale sequencing era Ten years ago,the first draft sequence assembly of the human genome was completed [1],bringing biomedical research one-step closer toward the goal of revolutionizing diagnosis,prevention,and treatment of human diseases.Recently,journalists from the journal Nature surveyed more than 1000 life scientists regarding this laudable aim [2],obtaining substantially negative responses [3].However,almost all of those surveyed had been influenced,in one way or another,by the availability of the human genome sequence,and they also agreed with the notion that the "sequence is the start." The complexity of genome biology and almost every aspect of human biology is far greater than previously thought [4].

  1. Maize genome sequencing by methylation filtration.

    Science.gov (United States)

    Palmer, Lance E; Rabinowicz, Pablo D; O'Shaughnessy, Andrew L; Balija, Vivekanand S; Nascimento, Lidia U; Dike, Sujit; de la Bastide, Melissa; Martienssen, Robert A; McCombie, W Richard

    2003-12-19

    Gene enrichment strategies offer an alternative to sequencing large and repetitive genomes such as that of maize. We report the generation and analysis of nearly 100,000 undermethylated (or methylation filtration) maize sequences. Comparison with the rice genome reveals that methylation filtration results in a more comprehensive representation of maize genes than those that result from expressed sequence tags or transposon insertion sites sequences. About 7% of the repetitive DNA is unmethylated and thus selected in our libraries, but potentially active transposons and unmethylated organelle genomes can be identified. Reverse transcription polymerase chain reaction can be used to finish the maize transcriptome.

  2. The evolution of the human genome.

    Science.gov (United States)

    Simonti, Corinne N; Capra, John A

    2015-12-01

    Human genomes hold a record of the evolutionary forces that have shaped our species. Advances in DNA sequencing, functional genomics, and population genetic modeling have deepened our understanding of human demographic history, natural selection, and many other long-studied topics. These advances have also revealed many previously underappreciated factors that influence the evolution of the human genome, including functional modifications to DNA and histones, conserved 3D topological chromatin domains, structural variation, and heterogeneous mutation patterns along the genome. Using evolutionary theory as a lens to study these phenomena will lead to significant breakthroughs in understanding what makes us human and why we get sick.

  3. Human social genomics.

    Directory of Open Access Journals (Sweden)

    Steven W Cole

    2014-08-01

    Full Text Available A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural "social signal transduction" pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.

  4. Combining DGE and RNA-sequencing data to identify new polyA+ non-coding transcripts in the human genome.

    Science.gov (United States)

    Philippe, Nicolas; Bou Samra, Elias; Boureux, Anthony; Mancheron, Alban; Rufflé, Florence; Bai, Qiang; De Vos, John; Rivals, Eric; Commes, Thérèse

    2014-03-01

    Recent sequencing technologies that allow massive parallel production of short reads are the method of choice for transcriptome analysis. Particularly, digital gene expression (DGE) technologies produce a large dynamic range of expression data by generating short tag signatures for each cell transcript. These tags can be mapped back to a reference genome to identify new transcribed regions that can be further covered by RNA-sequencing (RNA-Seq) reads. Here, we applied an integrated bioinformatics approach that combines DGE tags, RNA-Seq, tiling array expression data and species-comparison to explore new transcriptional regions and their specific biological features, particularly tissue expression or conservation. We analysed tags from a large DGE data set (designated as 'TranscriRef'). We then annotated 750,000 tags that were uniquely mapped to the human genome according to Ensembl. We retained transcripts originating from both DNA strands and categorized tags corresponding to protein-coding genes, antisense, intronic- or intergenic-transcribed regions and computed their overlap with annotated non-coding transcripts. Using this bioinformatics approach, we identified ∼34,000 novel transcribed regions located outside the boundaries of known protein-coding genes. As demonstrated using sequencing data from human pluripotent stem cells for biological validation, the method could be easily applied for the selection of tissue-specific candidate transcripts. DigitagCT is available at http://cractools.gforge.inria.fr/softwares/digitagct.

  5. The genome sequence of parrot bornavirus 5.

    Science.gov (United States)

    Guo, Jianhua; Tizard, Ian

    2015-12-01

    Although several new avian bornaviruses have recently been described, information on their evolution, virulence, and sequence are often limited. Here we report the complete genome sequence of parrot bornavirus 5 (PaBV-5) isolated from a case of proventricular dilatation disease in a Palm cockatoo (Probosciger aterrimus). The complete genome consists of 8842 nucleotides with distinct 5' and 3' end sequences. This virus shares nucleotide sequence identities of 69-74 % with other bornaviruses in the genomic regions excluding the 5' and 3' terminal sequences. Phylogenetic analysis based on the genomic regions demonstrated this new isolate is an isolated branch within the clade that includes the aquatic bird bornaviruses and the passerine bornaviruses. Based on phylogenetic analyses and its low nucleotide sequence identities with other bornavirus, we support the proposal that PaBV-5 be assigned to a new bornavirus species:- Psittaciform 2 bornavirus.

  6. Sequence analysis of the E3 region and fiber gene of human adenovirus genome type 7h.

    Science.gov (United States)

    Kajon, A E; Wadell, G

    1996-01-15

    Adenovirus type 7h is currently the predominant virulent genome type of serotype 7 isolated in Argentina, Chile, and Uruguay in association with severe infantile pneumonia. In order to characterize possible molecular determinants of pathogenicity, the nucleotide sequence of a 5904-bp fragment (76 to 93 mu) containing the entire E3 region and the fiber gene of Ad7h was established. The organization of the ORFs within the E3 region was similar to that reported for the prototype strains of Ad7 and Ad3. A comparison of the nucleotide and amino acid sequences of all ORFs revealed a higher homology between Ad7h and Ad7p than between Ad7h and Ad3 for 12.0K and 16.1K, whereas the 15.3K ORF and the adjacent fiber gene were strikingly more homologous to those of Ad3 (99.5 vs 81.1% and 98.2 vs 66.6%, respectively). The equivalent to ORF 7.7K in Ad7p was missing in Ad7h due to a deletion and a mutation affecting the start codon (ATG-->ATT). Although the hemagglutinin of the Ad7h fiber could not be characterized due to its lack of activity on monkey erythrocytes, our results indicate that Ad7h is an intermediate strain 7-3.

  7. Sequence-based characterization of Tn5801-like genomic islands in tetracycline-resistant Staphylococcus pseudintermedius and other Gram-positive bacteria from humans and animals

    Directory of Open Access Journals (Sweden)

    Lisbeth Elvira De Vries

    2016-04-01

    Full Text Available Antibiotic resistance in pathogens is often associated with mobile genetic elements, such as genomic islands (GI including integrative and conjugative elements (ICEs. These can transfer resistance genes within and between bacteria from humans and/or animals. The aim of this study was to investigate whether Tn5801-like GIs carrying the tetracycline resistance gene, tet(M, are common in Staphylococcus pseudintermedius from pets, and to do an overall sequences-based characterization of Tn5801-like GIs detected in Gram-positive bacteria from humans and animals. A total of 27 tetracycline-resistant S. pseudintermedius isolates from Danish pets (1998-2005 were screened for tet(M by PCR. Selected isolates (13 were screened for GI- or ICE-specific genes (intTn5801 or xisTn916 and their tet(M gene was sequenced (Sanger-method. Long-range PCR mappings and whole-genome-sequencing (Illumina were performed for selected S. pseudintermedius-isolates (7 and 3 isolates, respectively as well as for human Staphylococcus aureus isolates (7 and 1 isolates, respectively and one porcine Enterococcus faecium isolate known to carry Tn5801-like GIs. All 27 S. pseudintermedius were positive for tet(M. Out of 13 selected isolates, 7 contained Tn5801-like GIs and 6 contained Tn916-like ICEs. Two different Tn5801-like GI types were detected among S. pseudintermedius (Tn5801 and GI6287 - both showed high similarity compared to GenBank sequences from human pathogens. Two distinct Tn5801-like GI types were detected among the porcine E. faecium and human S. aureus isolates (Tn6014 and GI6288. Tn5801-like GIs were detected in GenBank-sequences from Gram-positive bacteria of human, animal or food origin worldwide. Known Tn5801-like GIs were divided into 7 types. The results showed that Tn5801-like GIs appear to be relatively common in tetracycline-resistant S. pseudintermedius in Denmark. Almost identical Tn5801-like GIs were identified in different Gram-positive species of pet

  8. Sequence-Based Characterization of Tn5801-Like Genomic Islands in Tetracycline-Resistant Staphylococcus pseudintermedius and Other Gram-positive Bacteria from Humans and Animals.

    Science.gov (United States)

    de Vries, Lisbeth E; Hasman, Henrik; Jurado Rabadán, Sonia; Agersø, Yvonne

    2016-01-01

    Antibiotic resistance in pathogens is often associated with mobile genetic elements, such as genomic islands (GI) including integrative and conjugative elements (ICEs). These can transfer resistance genes within and between bacteria from humans and/or animals. The aim of this study was to investigate whether Tn5801-like GIs carrying the tetracycline resistance gene, tet(M), are common in Staphylococcus pseudintermedius from pets, and to do an overall sequences-based characterization of Tn5801-like GIs detected in Gram-positive bacteria from humans and animals. A total of 27 tetracycline-resistant S. pseudintermedius isolates from Danish pets (1998-2005) were screened for tet(M) by PCR. Selected isolates (13) were screened for GI- or ICE-specific genes (int Tn5801 or xis Tn916 ) and their tet(M) gene was sequenced (Sanger-method). Long-range PCR mappings and whole-genome-sequencing (Illumina) were performed for selected S. pseudintermedius-isolates (seven and three isolates, respectively) as well as for human S. aureus isolates (seven and one isolates, respectively) and one porcine Enterococcus faecium isolate known to carry Tn5801-like GIs. All 27 S. pseudintermedius were positive for tet(M). Out of 13 selected isolates, seven contained Tn5801-like GIs and six contained Tn916-like ICEs. Two different Tn5801-like GI types were detected among S. pseudintermedius (Tn5801 and GI6287) - both showed high similarity compared to GenBank sequences from human pathogens. Two distinct Tn5801-like GI types were detected among the porcine E. faecium and human S. aureus isolates (Tn6014 and GI6288). Tn5801-like GIs were detected in GenBank-sequences from Gram-positive bacteria of human, animal or food origin worldwide. Known Tn5801-like GIs were divided into seven types. The results showed that Tn5801-like GIs appear to be relatively common in tetracycline-resistant S. pseudintermedius in Denmark. Almost identical Tn5801-like GIs were identified in different Gram-positive species

  9. MIPS: a database for genomes and protein sequences.

    Science.gov (United States)

    Mewes, H W; Frishman, D; Güldener, U; Mannhaupt, G; Mayer, K; Mokrejs, M; Morgenstern, B; Münsterkötter, M; Rudd, S; Weil, B

    2002-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) continues to provide genome-related information in a systematic way. MIPS supports both national and European sequencing and functional analysis projects, develops and maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences, and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the databases for the comprehensive set of genomes (PEDANT genomes), the database of annotated human EST clusters (HIB), the database of complete cDNAs from the DHGP (German Human Genome Project), as well as the project specific databases for the GABI (Genome Analysis in Plants) and HNB (Helmholtz-Netzwerk Bioinformatik) networks. The Arabidospsis thaliana database (MATDB), the database of mitochondrial proteins (MITOP) and our contribution to the PIR International Protein Sequence Database have been described elsewhere [Schoof et al. (2002) Nucleic Acids Res., 30, 91-93; Scharfe et al. (2000) Nucleic Acids Res., 28, 155-158; Barker et al. (2001) Nucleic Acids Res., 29, 29-32]. All databases described, the protein analysis tools provided and the detailed descriptions of our projects can be accessed through the MIPS World Wide Web server (http://mips.gsf.de).

  10. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

    Science.gov (United States)

    Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi

    2017-07-01

    PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.

  11. The human genome project and the future of medical practice ...

    African Journals Online (AJOL)

    The human genome project and the future of medical practice. ... the planning stages of the human genome project, the technology and sequence data ... the quality of healthcare available in the resource-rich and the resource-poor countries.

  12. Helicobacter pylori from Peruvian Amerindians: Traces of Human Migrations in Strains from Remote Amazon, and Genome Sequence of an Amerind Strain

    Science.gov (United States)

    Kersulyte, Dangeruta; Kalia, Awdhesh; Gilman, Robert H.; Mendez, Melissa; Herrera, Phabiola; Cabrera, Lilia; Velapatiño, Billie; Balqui, Jacqueline; Paredes Puente de la Vega, Freddy; Rodriguez Ulloa, Carlos A.; Cok, Jaime; Hooper, Catherine C.; Dailide, Giedrius; Tamma, Sravya; Berg, Douglas E.

    2010-01-01

    Background The gastric pathogen Helicobacter pylori is extraordinary in its genetic diversity, the differences between strains from well-separated human populations, and the range of diseases that infection promotes. Principal Findings Housekeeping gene sequences from H. pylori from residents of an Amerindian village in the Peruvian Amazon, Shimaa, were related to, but not intermingled with, those from Asia. This suggests descent of Shimaa strains from H. pylori that had infected the people who migrated from Asia into The Americas some 15,000+ years ago. In contrast, European type sequences predominated in strains from Amerindian Lima shantytown residents, but with some 12% Amerindian or East Asian-like admixture, which indicates displacement of ancestral purely Amerindian strains by those of hybrid or European ancestry. The genome of one Shimaa village strain, Shi470, was sequenced completely. Its SNP pattern was more Asian- than European-like genome-wide, indicating a purely Amerind ancestry. Among its unusual features were two cagA virulence genes, each distinct from those known from elsewhere; and a novel allele of gene hp0519, whose encoded protein is postulated to interact with host tissue. More generally, however, the Shi470 genome is similar in gene content and organization to those of strains from industrialized countries. Conclusions Our data indicate that Shimaa village H. pylori descend from Asian strains brought to The Americas many millennia ago; and that Amerind strains are less fit than, and were substantially displaced by, hybrid or European strains in less isolated communities. Genome comparisons of H. pylori from Amerindian and other communities should help elucidate evolutionary forces that have shaped pathogen populations in The Americas and worldwide. PMID:21124785

  13. Helicobacter pylori from Peruvian amerindians: traces of human migrations in strains from remote Amazon, and genome sequence of an Amerind strain.

    Directory of Open Access Journals (Sweden)

    Dangeruta Kersulyte

    Full Text Available BACKGROUND: The gastric pathogen Helicobacter pylori is extraordinary in its genetic diversity, the differences between strains from well-separated human populations, and the range of diseases that infection promotes. PRINCIPAL FINDINGS: Housekeeping gene sequences from H. pylori from residents of an Amerindian village in the Peruvian Amazon, Shimaa, were related to, but not intermingled with, those from Asia. This suggests descent of Shimaa strains from H. pylori that had infected the people who migrated from Asia into The Americas some 15,000+ years ago. In contrast, European type sequences predominated in strains from Amerindian Lima shantytown residents, but with some 12% Amerindian or East Asian-like admixture, which indicates displacement of ancestral purely Amerindian strains by those of hybrid or European ancestry. The genome of one Shimaa village strain, Shi470, was sequenced completely. Its SNP pattern was more Asian- than European-like genome-wide, indicating a purely Amerind ancestry. Among its unusual features were two cagA virulence genes, each distinct from those known from elsewhere; and a novel allele of gene hp0519, whose encoded protein is postulated to interact with host tissue. More generally, however, the Shi470 genome is similar in gene content and organization to those of strains from industrialized countries. CONCLUSIONS: Our data indicate that Shimaa village H. pylori descend from Asian strains brought to The Americas many millennia ago; and that Amerind strains are less fit than, and were substantially displaced by, hybrid or European strains in less isolated communities. Genome comparisons of H. pylori from Amerindian and other communities should help elucidate evolutionary forces that have shaped pathogen populations in The Americas and worldwide.

  14. Draft Genome Sequence of Lactobacillus fermentum NB-22

    Science.gov (United States)

    Shkoporov, A. N.; Efimov, B. A.; Pikina, A. P.; Borisova, O. Y.; Gladko, I. A.; Postnikova, E. A.; Lordkipanidze, A. E.; Kafarskaia, L. I.

    2015-01-01

    We announce here a draft genome sequence of Lactobacillus fermentum NB-22, a strain isolated from human vaginal microbiota. The assembled sequence consists of 190 contigs, joined into 137 scaffolds, and the total size is 2.01 Mb. PMID:26272572

  15. Strategies for complete plastid genome sequencing.

    Science.gov (United States)

    Twyford, Alex D; Ness, Rob W

    2016-10-28

    Plastid sequencing is an essential tool in the study of plant evolution. This high-copy organelle is one of the most technically accessible regions of the genome, and its sequence conservation makes it a valuable region for comparative genome evolution, phylogenetic analysis and population studies. Here, we discuss recent innovations and approaches for de novo plastid assembly that harness genomic tools. We focus on technical developments including low-cost sequence library preparation approaches for genome skimming, enrichment via hybrid baits and methylation-sensitive capture, sequence platforms with higher read outputs and longer read lengths, and automated tools for assembly. These developments allow for a much more streamlined assembly than via conventional short-range PCR. Although newer methods make complete plastid sequencing possible for any land plant or green alga, there are still challenges for producing finished plastomes particularly from herbarium material or from structurally divergent plastids such as those of parasitic plants.

  16. A New Biophysical Metric for Interrogating the Information Content in Human Genome Sequence Variation: Proof of Concept

    CERN Document Server

    Lindesay, James; Ricks-Santi, Luisel; Hercules, William; Kurian, Philip; Dunston, Georgia M

    2011-01-01

    Various studies have shown an association between single nucleotide polymorphisms (SNPs) and common disease. We hypothesize that information encoded in the structure of SNP haploblock variation illumines molecular pathways and cellular mechanisms involved in the regulation of host adaptation to the environment. We developed and utilized the normalized information content (NIC), a novel metric based on SNP haploblock variation. We found that all SNP haploblocks with statistically low information content contained putative transcription factor binding sites and microRNA motifs. We were able to translate a biophysical, mathematical measure of common variants into a deeper understanding of the life sciences through analysis of biochemical patterns associated with SNP haploblock variation. We submit that this new metric, NIC, may be useful in decoding the functional significance of common variation in the human genome and in analyzing the regulation of molecular pathways involved in host adaptation to environmenta...

  17. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  18. Oxford Nanopore MinION Sequencing and Genome Assembly

    Institute of Scientific and Technical Information of China (English)

    Hengyun Lu; Francesca Giordano; Zemin Ning

    2016-01-01

    The revolution of genome sequencing is continuing after the successful second-generation sequencing (SGS) technology. The third-generation sequencing (TGS) technology, led by Pacific Biosciences (PacBio), is progressing rapidly, moving from a technology once only capable of providing data for small genome analysis, or for performing targeted screening, to one that pro-mises high quality de novo assembly and structural variation detection for human-sized genomes. In 2014, the MinION, the first commercial sequencer using nanopore technology, was released by Oxford Nanopore Technologies (ONT). MinION identifies DNA bases by measuring the changes in electrical conductivity generated as DNA strands pass through a biological pore. Its portability, affordability, and speed in data production makes it suitable for real-time applications, the release of the long read sequencer MinION has thus generated much excitement and interest in the geno-mics community. While de novo genome assemblies can be cheaply produced from SGS data, assem-bly continuity is often relatively poor, due to the limited ability of short reads to handle long repeats. Assembly quality can be greatly improved by using TGS long reads, since repetitive regions can be easily expanded into using longer sequencing lengths, despite having higher error rates at the base level. The potential of nanopore sequencing has been demonstrated by various studies in gen-ome surveillance at locations where rapid and reliable sequencing is needed, but where resources are limited.

  19. 76 FR 35223 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, Sequencing Centers...D, Scientific Review Officer, Scientific Review Branch, National Human Genome Research...

  20. Complete genome sequence of Cellulomonas flavigena type strain (134T)

    Energy Technology Data Exchange (ETDEWEB)

    Abt, Birte [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Foster, Brian [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Clum, Alicia [U.S. Department of Energy, Joint Genome Institute; Sun, Hui [U.S. Department of Energy, Joint Genome Institute; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2010-01-01

    Cellulomonas flavigena (Kellerman and McBeth 1912) Bergey et al. 1923 is the type species of the genus Cellulomonas of the actinobacterial family Cellulomonadaceae. Members of the genus Cellulomonas are of special interest for their ability to degrade cellulose and hemicellulose, particularly with regard to the use of biomass as an alternative energy source. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the genus Cellulomonas, and next to the human pathogen Tropheryma whipplei the second complete genome sequence within the actinobacterial family Cellulomonadaceae. The 4,123,179 bp long single replicon genome with its 3,735 protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  1. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lijin [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); Goedegebuure, Peter [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Mardis, Elaine R. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); The Genome Institute at Washington University School of Medicine, St. Louis, MO 63108 (United States); Ellis, Matthew J.C. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 (United States); Zhang, Xiuli; Herndon, John M. [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); Fleming, Timothy P. [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Carreno, Beatriz M. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110 (United States); Hansen, Ted H. [The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States); Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Gillanders, William E., E-mail: gillandersw@wudosis.wustl.edu [Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110 (United States); The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 (United States)

    2011-11-25

    New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines.

  2. Cancer Genome Sequencing and Its Implications for Personalized Cancer Vaccines

    Directory of Open Access Journals (Sweden)

    William E. Gillanders

    2011-11-01

    Full Text Available New DNA sequencing platforms have revolutionized human genome sequencing. The dramatic advances in genome sequencing technologies predict that the $1,000 genome will become a reality within the next few years. Applied to cancer, the availability of cancer genome sequences permits real-time decision-making with the potential to affect diagnosis, prognosis, and treatment, and has opened the door towards personalized medicine. A promising strategy is the identification of mutated tumor antigens, and the design of personalized cancer vaccines. Supporting this notion are preliminary analyses of the epitope landscape in breast cancer suggesting that individual tumors express significant numbers of novel antigens to the immune system that can be specifically targeted through cancer vaccines.

  3. Microbial species delineation using whole genome sequences

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos; Mukherjee, Supratim; Ivanova, Natalia; Mavrommatics, Kostas; Pati, Amrita; Konstantinidis, Konstantinos

    2014-10-20

    Species assignments in prokaryotes use a manual, poly-phasic approach utilizing both phenotypic traits and sequence information of phylogenetic marker genes. With thousands of genomes being sequenced every year, an automated, uniform and scalable approach exploiting the rich genomic information in whole genome sequences is desired, at least for the initial assignment of species to an organism. We have evaluated pairwise genome-wide Average Nucleotide Identity (gANI) values and alignment fractions (AFs) for nearly 13,000 genomes using our fast implementation of the computation, identifying robust and widely applicable hard cut-offs for species assignments based on AF and gANI. Using these cutoffs, we generated stable species-level clusters of organisms, which enabled the identification of several species mis-assignments and facilitated the assignment of species for organisms without species definitions.

  4. Genomic Prediction from Whole Genome Sequence in Livestock: The 1000 Bull Genomes Project

    DEFF Research Database (Denmark)

    Hayes, Benjamin J; MacLeod, Iona M; Daetwyler, Hans D

    Advantages of using whole genome sequence data to predict genomic estimated breeding values (GEBV) include better persistence of accuracy of GEBV across generations and more accurate GEBV across breeds. The 1000 Bull Genomes Project provides a database of whole genome sequenced key ancestor bulls...

  5. Genomic prediction using QTL derived from whole genome sequence data

    DEFF Research Database (Denmark)

    Brøndum, Rasmus Froberg; Su, Guosheng; Janss, Luc

    This study investigated the gain in accuracy of genomic prediction when a small number of significant variants from single marker analysis based on whole genome sequence data were added to the regular 54k SNP data. Analyses were performed for Nordic Holstein and Danish Jersey animals, using eithe...

  6. Multilocus Sequence Typing of Total-Genome-Sequenced Bacteria

    DEFF Research Database (Denmark)

    Larsen, Mette Voldby; Cosentino, Salvatore; Rasmussen, Simon

    2012-01-01

    Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the "gold standard" of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS...... the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56...... MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types...

  7. Plasmodium knowlesi genome sequences from clinical isolates reveal extensive genomic dimorphism.

    Directory of Open Access Journals (Sweden)

    Miguel M Pinheiro

    Full Text Available Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and

  8. De Novo Assembly of Human Herpes Virus Type 1 (HHV-1) Genome, Mining of Non-Canonical Structures and Detection of Novel Drug-Resistance Mutations Using Short- and Long-Read Next Generation Sequencing Technologies.

    Science.gov (United States)

    Karamitros, Timokratis; Harrison, Ian; Piorkowska, Renata; Katzourakis, Aris; Magiorkinis, Gkikas; Mbisa, Jean Lutamyo

    2016-01-01

    Human herpesvirus type 1 (HHV-1) has a large double-stranded DNA genome of approximately 152 kbp that is structurally complex and GC-rich. This makes the assembly of HHV-1 whole genomes from short-read sequencing data technically challenging. To improve the assembly of HHV-1 genomes we have employed a hybrid genome assembly protocol using data from two sequencing technologies: the short-read Roche 454 and the long-read Oxford Nanopore MinION sequencers. We sequenced 18 HHV-1 cell culture-isolated clinical specimens collected from immunocompromised patients undergoing antiviral therapy. The susceptibility of the samples to several antivirals was determined by plaque reduction assay. Hybrid genome assembly resulted in a decrease in the number of contigs in 6 out of 7 samples and an increase in N(G)50 and N(G)75 of all 7 samples sequenced by both technologies. The approach also enhanced the detection of non-canonical contigs including a rearrangement between the unique (UL) and repeat (T/IRL) sequence regions of one sample that was not detectable by assembly of 454 reads alone. We detected several known and novel resistance-associated mutations in UL23 and UL30 genes. Genome-wide genetic variability ranged from assembly of accurate, full-length HHV-1 genomes will be useful in determining genetic determinants of drug resistance, virulence, pathogenesis and viral evolution. The numerous, complex repeat regions of the HHV-1 genome currently remain a barrier towards this goal.

  9. The bonobo genome compared with the chimpanzee and human genomes

    Science.gov (United States)

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R.; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R.; Mullikin, James C.; Meader, Stephen J.; Ponting, Chris P.; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E.; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M.; Fischer, Anne; Ptak, Susan E.; Lachmann, Michael; Symer, David E.; Mailund, Thomas; Schierup, Mikkel H.; Andrés, Aida M.; Kelso, Janet; Pääbo, Svante

    2012-01-01

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours1–4, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other. PMID:22722832

  10. The bonobo genome compared with the chimpanzee and human genomes.

    Science.gov (United States)

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R; Mullikin, James C; Meader, Stephen J; Ponting, Chris P; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M; Fischer, Anne; Ptak, Susan E; Lachmann, Michael; Symer, David E; Mailund, Thomas; Schierup, Mikkel H; Andrés, Aida M; Kelso, Janet; Pääbo, Svante

    2012-06-28

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.

  11. [Determination and analysis of the primary structure of a genomic sequence adjacent to the 3'-end of the human tissue plasminogen activator gene].

    Science.gov (United States)

    Sarafanov, A G; Timofeeva, M Ia; Bannikov, V M; Zakhar'ev, V M; Mamaeva, O K; Tikhomirova, T I; Baev, A A

    1995-01-01

    Primary structure was determined for the recently cloned f1/BglII-fragment [19] containing 2102 b.p. of the human tissue plasminogen activator (tPA) gene 3' end and adjacent DNA region. Computer analysis has revealed an Alu-repeat 820 b.p. downstream the tPA gene; the sequence proved to have a considerable homology (86-88%) with the Alus from the 3'-untranslated regions (3'UTRs) of cytochrome P-450, lysozyme and p53 protein human mRNAs. The same homology was estimated for this Alu in reversed orientation and Alus from the 3'UTRs of some other human mRNAs. In contrast, the homology between this 3' end tPA gene flanking Alu-repeat and other Alus dispersed throughout the gene introns either direct or reversed, was less than 70%. The polyadenylation signal AATAAA downstream the Alu and two nearby signals CACAG and GTGTT resembling consensus sequences CACAG and YGTGTTYY, respectively, were also detected. The two latter motifs located close to the 3' ends in most mammalian genes are likely to regulate mature mRNA formation. The comparison of the sequenced spaser flank adjacent to the tPA gene with short homologous sequence from the same genomic region primary structure reported previously has revealed discrepancies (substitutions, deletions or insertions) in 21 nucleotide positions. The nucleotide sequence of E. coli uvrB gene fragment (980 b.p.) is also reported. This E. coli gene fragment was cloned accidentally within the f1/BglII-fragment being an artifact of the host-vector system used.

  12. Genome Sequence of Herpes Simplex Virus 1 Strain SC16

    Science.gov (United States)

    Rastrojo, Alberto; López-Muñoz, Alberto Domingo

    2017-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1), also known as Human herpesvirus 1, is a highly prevalent human neurotropic pathogen that causes a variety of diseases, including lethal encephalitis. Here, we report the genome sequence of the HSV-1 strain SC16. PMID:28126930

  13. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  14. Genome sequence and analysis of Lactobacillus helveticus

    Directory of Open Access Journals (Sweden)

    Paola eCremonesi

    2013-01-01

    Full Text Available The microbiological characterization of lactobacilli is historically well developed, but the genomic analysis is recent. Because of the widespread use of L. helveticus in cheese technology, information concerning the heterogeneity in this species is accumulating rapidly. Recently, the genome of five L. helveticus strains was sequenced to completion and compared with other genomically characterized lactobacilli. The genomic analysis of the first sequenced strain, L. helveticus DPC 4571, isolated from cheese and selected for its characteristics of rapid lysis and high proteolytic activity, has revealed a plethora of genes with industrial potential including those responsible for key metabolic functions such as proteolysis, lipolysis, and cell lysis. These genes and their derived enzymes can facilitate the production of cheese and cheese derivatives with potential for use as ingredients in consumer foods. In addition, L. helveticus has the potential to produce peptides with a biological function, such as angiotensin converting enzyme (ACE inhibitory activity, in fermented dairy products, demonstrating the therapeutic value of this species. A most intriguing feature of the genome of L. helveticus is the remarkable similarity in gene content with many intestinal lactobacilli. Comparative genomics has allowed the identification of key gene sets that facilitate a variety of lifestyles including adaptation to food matrices or the gastrointestinal tract.As genome sequence and functional genomic information continues to explode, key features of the genomes of L. helveticus strains continue to be discovered, answering many questions but also raising many new ones.

  15. Sequencing and comparing whole mitochondrial genomes ofanimals

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  16. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.

    Science.gov (United States)

    Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi

    2015-11-20

    The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.

  17. Intra-species sequence comparisons for annotating genomes

    Energy Technology Data Exchange (ETDEWEB)

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  18. The Release 6 reference sequence of the Drosophila melanogaster genome

    Science.gov (United States)

    Carlson, Joseph W.; Wan, Kenneth H.; Park, Soo; Mendez, Ivonne; Galle, Samuel E.; Booth, Benjamin W.; Pfeiffer, Barret D.; George, Reed A.; Svirskas, Robert; Krzywinski, Martin; Schein, Jacqueline; Accardo, Maria Carmela; Damia, Elisabetta; Messina, Giovanni; Méndez-Lago, María; de Pablos, Beatriz; Demakova, Olga V.; Andreyeva, Evgeniya N.; Boldyreva, Lidiya V.; Marra, Marco; Carvalho, A. Bernardo; Dimitri, Patrizio; Villasante, Alfredo; Zhimulev, Igor F.; Rubin, Gerald M.; Karpen, Gary H.

    2015-01-01

    Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy and middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. Further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads. PMID:25589440

  19. Complete genome sequence of arracacha mottle virus.

    Science.gov (United States)

    Orílio, Anelise F; Lucinda, Natalia; Dusi, André N; Nagata, Tatsuya; Inoue-Nagata, Alice K

    2013-01-01

    Arracacha mottle virus (AMoV) is the only potyvirus reported to infect arracacha (Arracacia xanthorrhiza) in Brazil. Here, the complete genome sequence of an isolate of AMoV was determined to be 9,630 nucleotides in length, excluding the 3' poly-A tail, and encoding a polyprotein of 3,135 amino acids and a putative P3N-PIPO protein. Its genomic organization is typical of a member of the genus Potyvirus, containing all conserved motifs. Its full genome sequence shared 56.2 % nucleotide identity with sunflower chlorotic mottle virus and verbena virus Y, the most closely related viruses.

  20. Capturing one of the human gut microbiome’s most wanted: reconstructing the genome of a novel butyrate-producing, clostridial scavenger from metagenomic sequence data

    Directory of Open Access Journals (Sweden)

    Patricio eJeraldo

    2016-05-01

    Full Text Available The role of the microbiome in health and disease is attracting great attention, yet we still know little about some of the most prevalent microorganisms inside our bodies. Several years ago, Human Microbiome Project (HMP researchers generated a list of most wanted taxa: bacteria both prevalent among healthy volunteers and distantly related to any sequenced organisms. Unfortunately, the challenge of assembling high-quality genomes from a tangle of metagenomic reads has slowed progress in learning about these uncultured bacteria. Here, we describe how recent advances in sequencing and analysis allowed us to assemble most wanted genomes from metagenomic data collected from four stool samples. Using a combination of both de novo and guided assembly methods, we assembled and binned over 100 genomes from an initial data set of over 1,300 Gbp. One of these genome bins, which met HMP’s criteria for a most wanted taxa, contained three essentially complete genomes belonging to a previously uncultivated species. This species is most closely related to Eubacterium desmolans and the clostridial cluster IV/Clostridium leptum subgroup species Butyricicoccus pullicaecorum (71–76% average nucleotide identity. Gene function analysis indicates that the species is an obligate anaerobe, forms spores, and produces the anti-inflammatory short-chain fatty acids acetate and butyrate. It also appears to take up metabolically costly molecules such as cobalamin, methionine, and branch-chained amino acids from the environment, and to lack virulence genes. Thus, the evidence is consistent with a secondary degrader that occupies a host-dependent, nutrient-scavenging niche within the gut; its ability to produce butyrate, which is thought to play an anti-inflammatory role, makes it intriguing for the study of diseases such as colon cancer and inflammatory bowel disease. In conclusion, we have assembled essentially complete genomes from stool metagenomic data, yielding

  1. Simple sequence repeats in mycobacterial genomes

    Indian Academy of Sciences (India)

    Vattipally B Sreenu; Pankaj Kumar; Javaregowda Nagaraju; Hampapathalu A Nagarajaram

    2007-01-01

    Simple sequence repeats (SSRs) or microsatellites are the repetitive nucleotide sequences of motifs of length 1–6 bp. They are scattered throughout the genomes of all the known organisms ranging from viruses to eukaryotes. Microsatellites undergo mutations in the form of insertions and deletions (INDELS) of their repeat units with some bias towards insertions that lead to microsatellite tract expansion. Although prokaryotic genomes derive some plasticity due to microsatellite mutations they have in-built mechanisms to arrest undue expansions of microsatellites and one such mechanism is constituted by post-replicative DNA repair enzymes MutL, MutH and MutS. The mycobacterial genomes lack these enzymes and as a null hypothesis one could expect these genomes to harbour many long tracts. It is therefore interesting to analyse the mycobacterial genomes for distribution and abundance of microsatellites tracts and to look for potentially polymorphic microsatellites. Available mycobacterial genomes, Mycobacterium avium, M. leprae, M. bovis and the two strains of M. tuberculosis (CDC1551 and H37Rv) were analysed for frequencies and abundance of SSRs. Our analysis revealed that the SSRs are distributed throughout the mycobacterial genomes at an average of 220–230 SSR tracts per kb. All the mycobacterial genomes contain few regions that are conspicuously denser or poorer in microsatellites compared to their expected genome averages. The genomes distinctly show scarcity of long microsatellites despite the absence of a post-replicative DNA repair system. Such severe scarcity of long microsatellites could arise as a result of strong selection pressures operating against long and unstable sequences although influence of GC-content and role of point mutations in arresting microsatellite expansions can not be ruled out. Nonetheless, the long tracts occasionally found in coding as well as non-coding regions may account for limited genome plasticity in these genomes.

  2. Biased distribution of DNA uptake sequences towards genome maintenance genes

    DEFF Research Database (Denmark)

    Davidsen, T.; Rodland, E.A.; Lagesen, K.

    2004-01-01

    coding regions are the DNA uptake sequences (DUS) required for natural genetic transformation. More importantly, we found a significantly higher density of DUS within genes involved in DNA repair, recombination, restriction-modification and replication than in any other annotated gene group......Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9-10mers residing within...

  3. Coelacanth genome sequence reveals the evolutionary history of vertebrate genes.

    Science.gov (United States)

    Noonan, James P; Grimwood, Jane; Danke, Joshua; Schmutz, Jeremy; Dickson, Mark; Amemiya, Chris T; Myers, Richard M

    2004-12-01

    The coelacanth is one of the nearest living relatives of tetrapods. However, a teleost species such as zebrafish or Fugu is typically used as the outgroup in current tetrapod comparative sequence analyses. Such studies are complicated by the fact that teleost genomes have undergone a whole-genome duplication event, as well as individual gene-duplication events. Here, we demonstrate the value of coelacanth genome sequence by complete sequencing and analysis of the protocadherin gene cluster of the Indonesian coelacanth, Latimeria menadoensis. We found that coelacanth has 49 protocadherin cluster genes organized in the same three ordered subclusters, alpha, beta, and gamma, as the 54 protocadherin cluster genes in human. In contrast, whole-genome and tandem duplications have generated two zebrafish protocadherin clusters comprised of at least 97 genes. Additionally, zebrafish protocadherins are far more prone to homogenizing gene conversion events than coelacanth protocadherins, suggesting that recombination- and duplication-driven plasticity may be a feature of teleost genomes. Our results indicate that coelacanth provides the ideal outgroup sequence against which tetrapod genomes can be measured. We therefore present L. menadoensis as a candidate for whole-genome sequencing.

  4. New genome sequence data and molecular tools promote the use of photosynthetic and edible cyanobacteria in bioregenerative systems to support human space exploration.

    Science.gov (United States)

    Leys, Natalie; Morin, Nicolas; Janssen, Paul; Mergeay, Max

    Cyanobacteria are daily used as nutritional supplements (e.g. Spirulina) and are considered for promising applications beyond Earth, in space, where they can play a crucial role in closed miniaturised biological waste recycling systems that are currently developed to support future long-term space missions. Cyanobacteria can be cultured with artificial light in controllable photobioreactors, and used for the efficient removal of CO2 from and production of O2 in the at-mosphere of the confined spacecraft, for removal of nitrate from waste water that is recycled to potable water, and as complementary food source. In this context, the filamentous cyanobac-terium Arthrospira sp. PCC 8005 was selected as part of the bio-regenerative life-support system MELiSSA from the European Space Agency. For bioprocess control and optimisation, the access to its genetic information and the development of molecular tools is crucial. Here we report on our efforts to determine the full genome of the cyanobacterium Arthrospira sp. PCC 8005. The obtained sequence data were analysed in detail to gain a better insight in the photosynthetic, nutritive, or potential toxic potential of this strain. In addition, the sensitivity of PCC 8005 to ionizing radiation was investigated because prolonged exposure of PCC 8005 to cosmic radiation in space might have a deleterious effect on its metabolism and oxygenic properties. To our knowledge, of the 6 different research groups across the globe trying to sequence Arthrospira strains, none of them, including us, were yet able to obtain a complete genome sequence. For Arthrospira sp. strain PCC 8005, we obtained 119 contigs (assembled in 16 scaffolds), representing 6,3 Mb, with 5,856 predicted protein-coding sequences (CDSs) and 176 genes encoding RNA. The PCC 8005 genome displays an unusual high number of large repeated sequences, covering around 8% of the genome, which likely hampered the sequenc-ing. The PCC 8005 genome is also ridden by mobile

  5. Tracing isolates from domestic human Campylobacter jejuni infections to chicken slaughter batches and swimming water using whole-genome multilocus sequence typing.

    Science.gov (United States)

    Kovanen, Sara; Kivistö, Rauni; Llarena, Ann-Katrin; Zhang, Ji; Kärkkäinen, Ulla-Maija; Tuuminen, Tamara; Uksila, Jaakko; Hakkinen, Marjaana; Rossi, Mirko; Hänninen, Marja-Liisa

    2016-06-02

    Campylobacter jejuni is the leading cause of bacterial gastroenteritis and chicken is considered a major reservoir and source of human campylobacteriosis. In this study, we investigated temporally related Finnish human (n=95), chicken (n=83) and swimming water (n=20) C. jejuni isolates collected during the seasonal peak in 2012 using multilocus sequence typing (MLST) and whole-genome MLST (wgMLST). Our objective was to trace domestic human C. jejuni infections to C. jejuni isolates from chicken slaughter batches and swimming water. At MLST level, 79% of the sequence types (STs) of the human isolates overlapped with chicken STs suggesting chicken as an important reservoir. Four STs, the ST-45, ST-230, ST-267 and ST-677, covered 75% of the human and 64% of the chicken isolates. In addition, 50% of the swimming water isolates comprised ST-45, ST-230 and ST-677. Further wgMLST analysis of the isolates within STs, accounting their temporal relationship, revealed that 22 of the human isolates (24%) were traceable back to C. jejuni positive chicken slaughter batches. None of the human isolates were traced back to swimming water, which was rather sporadically sampled. The highly discriminatory wgMLST, together with the patient background information and temporal relationship data with possible sources, offers a new, accurate approach to trace back the origin of domestic campylobacteriosis. Our results suggest that potentially a substantial proportion of campylobacteriosis cases during the seasonal peak most probably are due to other sources than chicken meat consumption. These findings warrant further wgMLST-based studies to reassess the role of other reservoirs in the Campylobacter epidemiology both in Finland and elsewhere.

  6. Sequencing the Cotton Genomes-Gossypium spp.

    Institute of Scientific and Technical Information of China (English)

    PATERSON Andrew H

    2008-01-01

    @@ The genomes of most major crops,including cotton,will be fully sequenced in the next fewyears.Cotton is unusual,although not unique,in that we will need to sequence not only cultivated(tetraploid) genotypes but their diploid progenitors,to understand how elite cottons have surpassedthe productivity and quality of their progenitors.

  7. High-Quality Draft Genome Sequence of Babesia divergens, the Etiological Agent of Cattle and Human Babesiosis

    Science.gov (United States)

    Cuesta, Isabel; González, Luis M.; Estrada, Karel; Grande, Ricardo; Zaballos, Ángel; Lobo, Cheryl A.; Barrera, Jorge

    2014-01-01

    Babesia divergens causes significant morbidity and mortality in cattle and splenectomized or immunocompromised individuals. Here, we present a 10.7-Mb high-quality draft genome of this parasite close to chromosome resolution that will enable comparative genome analyses and synteny studies among related parasites. PMID:25395649

  8. Draft Genome Sequences of Five Pseudomonas fluorescens Subclade I and II Strains, Isolated from Human Respiratory Samples.

    Science.gov (United States)

    Scales, Brittan S; Erb-Downward, John R; LiPuma, John J; Huffnagle, Gary B

    2015-07-30

    We report the draft genomes of five Pseudomonas fluorescens strains, isolated from clinical samples. Phylogenetic analysis places three in subclade I and two in subclade II of the P. fluorescens species complex. The average G+C content and genomic size are 63% and 7.1 Mbp (subclade I) and 59.6% and 6.14 Mbp (subclade II), respectively.

  9. Complete Genome Sequence of Streptococcus agalactiae CNCTC 10/84, a Hypervirulent Sequence Type 26 Strain

    OpenAIRE

    Hooven, Thomas A.; Randis, Tara M.; Daugherty, Sean C.; Narechania, Apurva; Planet, Paul J.; Tettelin, Hervé; Ratner, Adam J.

    2014-01-01

    Streptococcus agalactiae (group B Streptococcus [GBS]) is a human pathogen with a propensity to cause neonatal infections. We report the complete genome sequence of GBS strain CNCTC 10/84, a hypervirulent clinical isolate frequently used to study GBS pathogenesis. Comparative analysis of this sequence may shed light on novel pathogenic mechanisms.

  10. Whole-genome sequencing for comparative genomics and de novo genome assembly.

    Science.gov (United States)

    Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C

    2015-01-01

    Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).

  11. Long-read sequence assembly of the gorilla genome

    Science.gov (United States)

    Gordon, David; Huddleston, John; Chaisson, Mark J. P.; Hill, Christopher M.; Kronenberg, Zev N.; Munson, Katherine M.; Malig, Maika; Raja, Archana; Fiddes, Ian; Hillier, LaDeana W.; Dunn, Christopher; Baker, Carl; Armstrong, Joel; Diekhans, Mark; Paten, Benedict; Shendure, Jay; Wilson, Richard K.; Haussler, David; Chin, Chen-Shan; Eichler, Evan E.

    2016-01-01

    Accurate sequence and assembly of genomes is a critical first step for studies of genetic variation. We generated a high-quality assembly of the gorilla genome using single-molecule, real-time sequence technology and a string graph de novo assembly algorithm. The new assembly improves contiguity by two to three orders of magnitude with respect to previously released assemblies, recovering 87% of missing reference exons and incomplete gene models. Although regions of large, high-identity segmental duplications remain largely unresolved, this comprehensive assembly provides new biological insight into genetic diversity, structural variation, gene loss, and representation of repeat structures within the gorilla genome. The approach provides a path forward for the routine assembly of mammalian genomes at a level approaching that of the current quality of the human genome. PMID:27034376

  12. A universal genome sequencing method for rotavirus A from human fecal samples which identifies segment reassortment and multi-genotype mixed infection

    National Research Council Canada - National Science Library

    Tran Thi Ngoc Dung; Pham Thanh Duy; October M Sessions; Uma K Sangumathi; Voong Vinh Phat; Pham Thi Thanh Tam; Nguyen Thi Nguyen To; Tran My Phuc; Tran Thi Hong Chau; Nguyen Ngoc Minh Chau; Ngoc Nguyen Minh; Guy E Thwaites; Maia A Rabaa; Stephen Baker

    2017-01-01

    Background Genomic characterization of rotavirus (RoV) has not been adopted at large-scale due to the complexity of obtaining sequences for all 11 segments, particularly when feces are used as starting material...

  13. Intermittency as a universal characteristic of the complete chromosome DNA sequences of eukaryotes: From protozoa to human genomes

    Science.gov (United States)

    Rybalko, S.; Larionov, S.; Poptsova, M.; Loskutov, A.

    2011-10-01

    Large-scale dynamical properties of complete chromosome DNA sequences of eukaryotes are considered. Using the proposed deterministic models with intermittency and symbolic dynamics we describe a wide spectrum of large-scale patterns inherent in these sequences, such as segmental duplications, tandem repeats, and other complex sequence structures. It is shown that the recently discovered gene number balance on the strands is not of a random nature, and certain subsystems of a complete chromosome DNA sequence exhibit the properties of deterministic chaos.

  14. Genomics of human longevity.

    Science.gov (United States)

    Slagboom, P E; Beekman, M; Passtoors, W M; Deelen, J; Vaarhorst, A A M; Boer, J M; van den Akker, E B; van Heemst, D; de Craen, A J M; Maier, A B; Rozing, M; Mooijaart, S P; Heijmans, B T; Westendorp, R G J

    2011-01-12

    In animal models, single-gene mutations in genes involved in insulin/IGF and target of rapamycin signalling pathways extend lifespan to a considerable extent. The genetic, genomic and epigenetic influences on human longevity are expected to be much more complex. Strikingly however, beneficial metabolic and cellular features of long-lived families resemble those in animals for whom the lifespan is extended by applying genetic manipulation and, especially, dietary restriction. Candidate gene studies in humans support the notion that human orthologues from longevity genes identified in lower species do contribute to longevity but that the influence of the genetic variants involved is small. Here we discuss how an integration of novel study designs, labour-intensive biobanking, deep phenotyping and genomic research may provide insights into the mechanisms that drive human longevity and healthy ageing, beyond the associations usually provided by molecular and genetic epidemiology. Although prospective studies of humans from the cradle to the grave have never been performed, it is feasible to extract life histories from different cohorts jointly covering the molecular changes that occur with age from early development all the way up to the age at death. By the integration of research in different study cohorts, and with research in animal models, biological research into human longevity is thus making considerable progress.

  15. Genome-wide sequence variations among Mycobacterium avium subspecies paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Chung-Yi eHsu

    2011-12-01

    Full Text Available Mycobacterium avium subspecies paratuberculosis (M. ap, the causative agent of Johne’s disease (JD, infects many farmed ruminants, wildlife animals and humans. To better understand the molecular pathogenesis of these infections, we analyzed the whole genome sequences of several M. ap and M. avium subspecies avium (M. avium strains isolated from various hosts and environments. Using Next-generation sequencing technology, all 6 M. ap isolates showed a high percentage of homology (98% to the reference genome sequence of M. ap K-10 isolated from cattle. However, 2 M. avium isolates (DT 78 and Env 77 showed significant sequence diversity from the reference strain M. avium 104. The genomes of M. avium isolates DT 78 and Env 77 exhibited only 87% and 40% homology, respectively, to the M. avium 104 reference genome. Within the M. ap isolates, genomic rearrangements (insertions/deletions, Indels were not detected, and only unique single nucleotide polymorphisms (SNPs were observed among the 6 M. ap strains. While most of the SNPs (~100 in M. ap genomes were non-synonymous, a total of ~ 6000 SNPs were detected among M. avium genomes, most of them were synonymous suggesting a differential selective pressure between M. ap and M. avium isolates. In addition, SNPs-based phylo-genomic analysis showed that isolates from goat and Oryx are closely related to the cattle (K-10 strain while the human isolate (M. ap 4B is closely related to the environmental strains, indicating environmental source to human infections. Overall, SNPs were the most common variations among M. ap isolates while SNPs in addition to Indels were prevalent among M. avium isolates. Genomic variations will be useful in designing host-specific markers for the analysis of mycobacterial evolution and for developing novel diagnostics directed against Johne’s disease in animals.

  16. Mapping the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, Charles R.

    1989-06-01

    The following pages aim to lay a foundation for understanding the excitement surrounding the ''human genome project,'' as well as to convey a flavor of the ongoing efforts and plans at the Human Genome Center at the Lawrence Berkeley Laboratory. Our own work, of course, is only part of a broad international effort that will dramatically enhance our understanding of human molecular genetics before the end of this century. In this country, the bulk of the effort will be carried out under the auspices of the Department of Energy and the National Institutes of Health, but significant contributions have already been made both by nonprofit private foundations and by private corporation. The respective roles of the DOE and the NIH are being coordinated by an inter-agency committee, the aims of which are to emphasize the strengths of each agency, to facilitate cooperation, and to avoid unnecessary duplication of effort. The NIH, for example, will continue its crucial work in medical genetics and in mapping the genomes of nonhuman species. The DOE, on the other hand, has unique experience in managing large projects, and its national laboratories are repositories of expertise in physics, engineering, and computer science, as well as the life sciences. The tools and techniques the project will ultimately rely on are thus likely to be developed in multidisciplinary efforts at laboratories like LBL. Accordingly, we at LBL take great pride in this enterprise -- an enterprise that will eventually transform our understanding of ourselves.

  17. Genome Sequence of the Palaeopolyploid soybean

    Energy Technology Data Exchange (ETDEWEB)

    Schmutz, Jeremy; Cannon, Steven B.; Schlueter, Jessica; Ma, Jianxin; Mitros, Therese; Nelson, William; Hyten, David L.; Song, Qijian; Thelen, Jay J.; Cheng, Jianlin; Xu, Dong; Hellsten, Uffe; May, Gregory D.; Yu, Yeisoo; Sakura, Tetsuya; Umezawa, Taishi; Bhattacharyya, Madan K.; Sandhu, Devinder; Valliyodan, Babu; Lindquist, Erika; Peto, Myron; Grant, David; Shu, Shengqiang; Goodstein, David; Barry, Kerrie; Futrell-Griggs, Montona; Abernathy, Brian; Du, Jianchang; Tian, Zhixi; Zhu, Liucun; Gill, Navdeep; Joshi, Trupti; Libault, Marc; Sethuraman, Anand; Zhang, Xue-Cheng; Shinozaki, Kazuo; Nguyen, Henry T.; Wing, Rod A.; Cregan, Perry; Specht, James; Grimwood, Jane; Rokhsar, Dan; Stacey, Gary; Shoemaker, Randy C.; Jackson, Scott A.

    2009-08-03

    Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70percent more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78percent of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75percent of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.

  18. Complete genome sequence of Aggregatibacter (Haemophilus) aphrophilus NJ8700.

    Science.gov (United States)

    Di Bonaventura, Maria Pia; DeSalle, Rob; Pop, Mihai; Nagarajan, Niranjan; Figurski, David H; Fine, Daniel H; Kaplan, Jeffrey B; Planet, Paul J

    2009-07-01

    We report the finished and annotated genome sequence of Aggregatibacter aphrophilus strain NJ8700, a strain isolated from the oral flora of a healthy individual, and discuss characteristics that may affect its dual roles in human health and disease. This strain has a rough appearance, and its genome contains genes encoding a type VI secretion system and several factors that may participate in host colonization.

  19. Complete Genome Sequence of Aggregatibacter (Haemophilus) aphrophilus NJ8700▿

    Science.gov (United States)

    Di Bonaventura, Maria Pia; DeSalle, Rob; Pop, Mihai; Nagarajan, Niranjan; Figurski, David H.; Fine, Daniel H.; Kaplan, Jeffrey B.; Planet, Paul J.

    2009-01-01

    We report the finished and annotated genome sequence of Aggregatibacter aphrophilus strain NJ8700, a strain isolated from the oral flora of a healthy individual, and discuss characteristics that may affect its dual roles in human health and disease. This strain has a rough appearance, and its genome contains genes encoding a type VI secretion system and several factors that may participate in host colonization. PMID:19447908

  20. Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii genome.

    Directory of Open Access Journals (Sweden)

    Byrappa Venkatesh

    2007-04-01

    Full Text Available Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4x coverage and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element-like and long interspersed element-like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes.

  1. Survey Sequencing and Comparative Analysis of the Elephant Shark (Callorhinchus milii) Genome

    Science.gov (United States)

    Venkatesh, Byrappa; Kirkness, Ewen F; Loh, Yong-Hwee; Halpern, Aaron L; Lee, Alison P; Johnson, Justin; Dandona, Nidhi; Viswanathan, Lakshmi D; Tay, Alice; Venter, J. Craig; Strausberg, Robert L; Brenner, Sydney

    2007-01-01

    Owing to their phylogenetic position, cartilaginous fishes (sharks, rays, skates, and chimaeras) provide a critical reference for our understanding of vertebrate genome evolution. The relatively small genome of the elephant shark, Callorhinchus milii, a chimaera, makes it an attractive model cartilaginous fish genome for whole-genome sequencing and comparative analysis. Here, the authors describe survey sequencing (1.4× coverage) and comparative analysis of the elephant shark genome, one of the first cartilaginous fish genomes to be sequenced to this depth. Repetitive sequences, represented mainly by a novel family of short interspersed element–like and long interspersed element–like sequences, account for about 28% of the elephant shark genome. Fragments of approximately 15,000 elephant shark genes reveal specific examples of genes that have been lost differentially during the evolution of tetrapod and teleost fish lineages. Interestingly, the degree of conserved synteny and conserved sequences between the human and elephant shark genomes are higher than that between human and teleost fish genomes. Elephant shark contains putative four Hox clusters indicating that, unlike teleost fish genomes, the elephant shark genome has not experienced an additional whole-genome duplication. These findings underscore the importance of the elephant shark as a critical reference vertebrate genome for comparative analysis of the human and other vertebrate genomes. This study also demonstrates that a survey-sequencing approach can be applied productively for comparative analysis of distantly related vertebrate genomes. PMID:17407382

  2. Viral genome sequencing by random priming methods

    Directory of Open Access Journals (Sweden)

    Zhang Xinsheng

    2008-01-01

    Full Text Available Abstract Background Most emerging health threats are of zoonotic origin. For the overwhelming majority, their causative agents are RNA viruses which include but are not limited to HIV, Influenza, SARS, Ebola, Dengue, and Hantavirus. Of increasing importance therefore is a better understanding of global viral diversity to enable better surveillance and prediction of pandemic threats; this will require rapid and flexible methods for complete viral genome sequencing. Results We have adapted the SISPA methodology 123 to genome sequencing of RNA and DNA viruses. We have demonstrated the utility of the method on various types and sources of viruses, obtaining near complete genome sequence of viruses ranging in size from 3,000–15,000 kb with a median depth of coverage of 14.33. We used this technique to generate full viral genome sequence in the presence of host contaminants, using viral preparations from cell culture supernatant, allantoic fluid and fecal matter. Conclusion The method described is of great utility in generating whole genome assemblies for viruses with little or no available sequence information, viruses from greatly divergent families, previously uncharacterized viruses, or to more fully describe mixed viral infections.

  3. Whole-Genome Sequencing Analysis of Salmonella enterica Serovar Enteritidis Isolates in Chile Provides Insights into Possible Transmission between Gulls, Poultry, and Humans

    Science.gov (United States)

    Ayers, Sherry; Barreto, Marlen; Allard, Marc; Brown, Eric W.

    2016-01-01

    ABSTRACT Salmonella enterica subsp. enterica serotype Enteritidis is a major cause of human salmonellosis worldwide; however, little is known about the genetic relationships between S. Enteritidis clinical strains and S. Enteritidis strains from other sources in Chile. We compared the whole genomes of 30 S. Enteritidis strains isolated from gulls, domestic chicken eggs, and humans in Chile, to investigate their phylogenetic relationships and to establish their relatedness to international strains. Core genome multilocus sequence typing (cgMLST) analysis showed that only 246/4,065 shared loci differed among these Chilean strains, separating them into two clusters (I and II), with cluster II being further divided into five subclusters. One subcluster (subcluster 2) contained strains from all surveyed sources that differed at 1 to 18 loci (of 4,065 loci) with 1 to 18 single-nucleotide polymorphisms (SNPs), suggesting interspecies transmission of S. Enteritidis in Chile. Moreover, clusters were formed by strains that were distant geographically, which could imply that gulls might be spreading the pathogen throughout the country. Our cgMLST analysis, using other S. Enteritidis genomes available in the National Center for Biotechnology Information (NCBI) database, showed that S. Enteritidis strains from Chile and the United States belonged to different lineages, which suggests that S. Enteritidis regional markers might exist and could be used for trace-back investigations. IMPORTANCE This study highlights the importance of gulls in the spread of Salmonella Enteritidis in Chile. We revealed a close genetic relationship between some human and gull S. Enteritidis strains (with as few as 2 of 4,065 genes being different), and we also found that gull strains were present in clusters formed by strains isolated from other sources or distant locations. Together with previously published evidence, this suggests that gulls might be spreading this pathogen between different regions

  4. Rhipicephalus (Boophilus) microplus strain Deutsch, whole genome shotgun sequencing project first submission of genome sequence

    Science.gov (United States)

    The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...

  5. Understanding the Human Genome Project -- A Fact Sheet

    Science.gov (United States)

    ... that contribute to human disease. In 1953, James Watson and Francis Crick described the double helix structure ... of sequencing whole exomes or genomes, groundbreaking comparative genomic studies are now identifiying the causes of rare ...

  6. De novo assembly of a haplotype-resolved human genome.

    Science.gov (United States)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang; Huang, Shujia; Sun, Yuhui; Tong, Xin; Xie, Yinlong; Liu, Binghang; Yang, Hailong; Zheng, Hancheng; Li, Jian; Li, Bo; Wang, Yu; Yang, Fang; Sun, Peng; Liu, Siyang; Gao, Peng; Huang, Haodong; Sun, Jing; Chen, Dan; He, Guangzhu; Huang, Weihua; Huang, Zheng; Li, Yue; Tellier, Laurent C A M; Liu, Xiao; Feng, Qiang; Xu, Xun; Zhang, Xiuqing; Bolund, Lars; Krogh, Anders; Kristiansen, Karsten; Drmanac, Radoje; Drmanac, Snezana; Nielsen, Rasmus; Li, Songgang; Wang, Jian; Yang, Huanming; Li, Yingrui; Wong, Gane Ka-Shu; Wang, Jun

    2015-06-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.

  7. De novo assembly of a haplotype-resolved human genome

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang

    2015-01-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome...... of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should...... shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb...

  8. First fungal genome sequence from Africa: A preliminary analysis

    Directory of Open Access Journals (Sweden)

    Rene Sutherland

    2012-01-01

    Full Text Available Some of the most significant breakthroughs in the biological sciences this century will emerge from the development of next generation sequencing technologies. The ease of availability of DNA sequence made possible through these new technologies has given researchers opportunities to study organisms in a manner that was not possible with Sanger sequencing. Scientists will, therefore, need to embrace genomics, as well as develop and nurture the human capacity to sequence genomes and utilise the ’tsunami‘ of data that emerge from genome sequencing. In response to these challenges, we sequenced the genome of Fusarium circinatum, a fungal pathogen of pine that causes pitch canker, a disease of great concern to the South African forestry industry. The sequencing work was conducted in South Africa, making F. circinatum the first eukaryotic organism for which the complete genome has been sequenced locally. Here we report on the process that was followed to sequence, assemble and perform a preliminary characterisation of the genome. Furthermore, details of the computer annotation and manual curation of this genome are presented. The F. circinatum genome was found to be nearly 44 million bases in size, which is similar to that of four other Fusarium genomes that have been sequenced elsewhere. The genome contains just over 15 000 open reading frames, which is less than that of the related species, Fusarium oxysporum, but more than that for Fusarium verticillioides. Amongst the various putative gene clusters identified in F. circinatum, those encoding the secondary metabolites fumosin and fusarin appeared to harbour evidence of gene translocation. It is anticipated that similar comparisons of other loci will provide insights into the genetic basis for pathogenicity of the pitch canker pathogen. Perhaps more importantly, this project has engaged a relatively large group of scientists

  9. Complete Genome Sequences of Two Staphylococcus aureus Sequence Type 5 Isolates from California, USA

    Science.gov (United States)

    Hau, Samantha J.; Bayles, Darrell O.; Alt, David P.

    2017-01-01

    ABSTRACT Staphylococcus aureus causes a variety of human diseases ranging in severity. The pathogenicity of S. aureus can be partially attributed to the acquisition of mobile genetic elements. In this report, we provide two complete genome sequences from human clinical S. aureus isolates. PMID:28360167

  10. Draft Genome Sequence of Streptococcus pyogenes Strain 06BA18369, a Human Pathogen Associated with Skin and Soft Tissue Infections in Northern Canada.

    Science.gov (United States)

    McDonald, Ryan R; Golding, George R; Irvine, James; Graham, Morag R; Tyler, Shaun; Mulvey, Michael R; Levett, Paul N

    2013-06-27

    We report the draft sequence of Streptococcus pyogenes 06BA18369 (emm type 41.2, sequence type 579 [ST579]), isolated from a skin and soft tissue infection (SSTI) mixed with Staphylococcus aureus. This genome provides insight into the genetic composition of S. pyogenes strains associated with mixed SSTIs.

  11. Sequencing and Analysis of a Genomic Fragment Provide an Insight into the Dunaliella viridis Genomic Sequence

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ming SUN; Yuan-Ping TANG; Xiang-Zong MENG; Wen-Wen ZHANG; Shan LI; Zhi-Rui DENG; Zheng-Kai XU; Ren-Tao SONG

    2006-01-01

    Dunaliella is a genus of wall-less unicellular eukaryotic green alga. Its exceptional resistances to salt and various other stresses have made it an ideal model for stress tolerance study. However, very little is known about its genome and genomic sequences. In this study, we sequenced and analyzed a 29,268 bp genomic fragment from Dunaliella viridis. The fragment showed low sequence homology to the GenBank database. At the nucleotide level, only a segment with significant sequence homology to 18S rRNA was found. The fragment contained six putative genes, but only one gene showed significant homology at the protein level to GenBank database. The average GC content of this sequence was 51.1%, which was much lower than that of close related green algae Chlamydomonas (65.7%). Significant segmental duplications were found within this fragment. The duplicated sequences accounted for about 35.7% of the entire region. Large amounts of simple sequence repeats (microsatellites) were found, with strong bias towards (AC)n type (76%). Analysis of other Dunaliella genomic sequences in the GenBank database (total 25,749 bp) was in agreement with these findings. These sequence features made it difficult to sequence Dunaliella genomic sequences. Further investigation should be made to reveal the biological significance of these unique sequence features.

  12. Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient

    Science.gov (United States)

    2012-01-01

    Background Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100 was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen. Results The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the 28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W) gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance to tetracycline, doxycycline, and minocycline in vitro. Conclusions The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle and virulence functions of this newly recognized

  13. Sorghum genome sequencing by methylation filtration.

    Directory of Open Access Journals (Sweden)

    Joseph A Bedell

    2005-01-01

    Full Text Available Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis.

  14. Sorghum genome sequencing by methylation filtration.

    Science.gov (United States)

    Bedell, Joseph A; Budiman, Muhammad A; Nunberg, Andrew; Citek, Robert W; Robbins, Dan; Jones, Joshua; Flick, Elizabeth; Rholfing, Theresa; Fries, Jason; Bradford, Kourtney; McMenamy, Jennifer; Smith, Michael; Holeman, Heather; Roe, Bruce A; Wiley, Graham; Korf, Ian F; Rabinowicz, Pablo D; Lakey, Nathan; McCombie, W Richard; Jeddeloh, Jeffrey A; Martienssen, Robert A

    2005-01-01

    Sorghum bicolor is a close relative of maize and is a staple crop in Africa and much of the developing world because of its superior tolerance of arid growth conditions. We have generated sequence from the hypomethylated portion of the sorghum genome by applying methylation filtration (MF) technology. The evidence suggests that 96% of the genes have been sequence tagged, with an average coverage of 65% across their length. Remarkably, this level of gene discovery was accomplished after generating a raw coverage of less than 300 megabases of the 735-megabase genome. MF preferentially captures exons and introns, promoters, microRNAs, and simple sequence repeats, and minimizes interspersed repeats, thus providing a robust view of the functional parts of the genome. The sorghum MF sequence set is beneficial to research on sorghum and is also a powerful resource for comparative genomics among the grasses and across the entire plant kingdom. Thousands of hypothetical gene predictions in rice and Arabidopsis are supported by the sorghum dataset, and genomic similarities highlight evolutionarily conserved regions that will lead to a better understanding of rice and Arabidopsis.

  15. Draft Genome Sequence of Lactobacillus gorillae Strain KZ01T, Isolated from a Western Lowland Gorilla

    OpenAIRE

    TSUCHIDA, Sayaka; Nezuo, Maiko; Tsukahara, Masatoshi; Ogura, Yoshitoshi; Hayashi, Tetsuya; Ushida, Kazunari

    2015-01-01

    Here, we report the draft genome sequence of Lactobacillus gorillae strain KZ01T isolated from a western lowland gorilla (Gorilla gorilla gorilla). This genome sequence will be helpful for the comparative genomics between human and nonhuman primate-associated Lactobacillus.

  16. Draft Genome Sequences of Seven Pseudomonas fluorescens Subclade III Strains Isolated from Cystic Fibrosis Patients.

    Science.gov (United States)

    Scales, Brittan S; Erb-Downward, John R; Huffnagle, Ian M; LiPuma, John J; Huffnagle, Gary B

    2015-01-29

    We report here the first draft genome sequences of Pseudomonas fluorescens strains that have been isolated from humans. The seven assembled draft genomes contained an average of 60.1% G+C content, were an average genomic size of 6.3 Mbp, and mapped by multilocus sequence analysis to subclade III.

  17. Complete Genome Sequence of Mycobacterium vaccae Type Strain ATCC 25954

    KAUST Repository

    Ho, Y. S.

    2012-10-26

    Mycobacterium vaccae is a rapidly growing, nontuberculous Mycobacterium species that is generally not considered a human pathogen and is of major pharmaceutical interest as an immunotherapeutic agent. We report here the annotated genome sequence of the M. vaccae type strain, ATCC 25954.

  18. Complete Genome Sequence of Canine Papillomavirus Type 16

    OpenAIRE

    Luff, Jennifer; Mader, Michelle; Britton, Monica; Fass, Joseph; Rowland, Peter; Orr, Carolyn; Schlegel, Richard; Yuan, Hang

    2015-01-01

    Papillomaviruses are epitheliotropic, circular, double-stranded DNA viruses within the family Papillomaviridae that are associated with benign and malignant tumors in humans and animals. We report the complete genome sequence of canine papillomavirus type 16 identified within multiple pigmented cutaneous plaques and squamous cell carcinoma from an intact female Basenji dog.

  19. Complete Genome Sequence of Neisseria weaveri Strain NCTC13585

    Science.gov (United States)

    Fazal, Mohammed-Abbas; Burnett, Edward; Deheer-Graham, Ana; Oliver, Karen; Holroyd, Nancy; Russell, Julie E.

    2016-01-01

    Neisseria weaveri is a commensal organism of the canine oral cavity and an occasional opportunistic human pathogen which is associated with dog bite wounds. Here we report the first complete genomic sequence of the N. weaveri NCTC13585 (CCUG30381) strain, which was originally isolated from a patient with a canine bite wound. PMID:27563039

  20. Genome sequence of Kingella kingae septic arthritis isolate PYKK081.

    Science.gov (United States)

    Kaplan, Jeffrey B; Lo, Chienchi; Xie, Gary; Johnson, Shannon L; Chain, Patrick S G; Donnelly, Robert; Kachlany, Scott C; Balashova, Nataliya V

    2012-06-01

    Kingella kingae is a human oral bacterium that can cause infections of the skeletal system in children. The bacterium is also a cardiovascular pathogen causing infective endocarditis in children and adults. We report herein the draft genome sequence of septic arthritis K. kingae strain PYKK081.

  1. Genome Sequence of Kingella kingae Septic Arthritis Isolate PYKK081

    OpenAIRE

    Kaplan, Jeffrey B.; Lo, Chienchi; Xie, Gary; Johnson, Shannon L.; Chain, Patrick S.G.; Donnelly, Robert; Kachlany, Scott C.; Balashova, Nataliya V.

    2012-01-01

    Kingella kingae is a human oral bacterium that can cause infections of the skeletal system in children. The bacterium is also a cardiovascular pathogen causing infective endocarditis in children and adults. We report herein the draft genome sequence of septic arthritis K. kingae strain PYKK081.

  2. Genome Sequences of Nine Gram-Negative Vaginal Bacterial Isolates

    Science.gov (United States)

    Deitzler, Grace E.; Ruiz, Maria J.; Lu, Wendy; Weimer, Cory; Park, SoEun; Robinson, Lloyd S.; Hallsworth-Pepin, Kymberlie; Wollam, Aye; Mitreva, Makedonka

    2016-01-01

    The vagina is home to a wide variety of bacteria that have great potential to impact human health. Here, we announce reference strains (now available through BEI Resources) and draft genome sequences for 9 Gram-negative vaginal isolates from the taxa Citrobacter, Klebsiella, Fusobacterium, Proteus, and Prevotella. PMID:27688330

  3. First Complete Genome Sequence of Haemophilus influenzae Serotype a

    Science.gov (United States)

    Hayden, Kristy

    2017-01-01

    ABSTRACT Haemophilus influenzae is an important human pathogen that primarily infects small children. In recent years, H. influenzae serotype a has emerged as a significant cause of invasive disease among indigenous populations. Here, we present the first complete whole-genome sequence of H. influenzae serotype a. PMID:28104664

  4. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-25

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human genome variations: 1) HapMap Data (1,417 individuals) (http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-08_phaseII+III/forward/), 2) HGDP (Human Genome Diversity Project) Data (940 individuals) (http://www.hagsc.org/hgdp/files.html), 3) 1000 genomes Data (2,504 individuals) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ If we can integrate all three data into a single volume of data, we should be able to conduct a more detailed analysis of human genome variations for a total number of 4,861 individuals (= 1,417+940+2,504 individuals). In fact, we successfully integrated these three data sets by use of information on the reference human genome sequence, and we conducted the big data analysis. In particular, we constructed a phylogenetic tree of about 5,000 human individuals at the genome level. As a result, we were able to identify clusters of ethnic groups, with detectable admixture, that were not possible by an analysis of each of the three data sets. Here, we report the outcome of this kind of big data analyses and discuss evolutionary significance of human genomic variations. Note that the present study was conducted in collaboration with Katsuhiko Mineta and Kosuke Goto at KAUST.

  5. Draft Genome Sequence of Corynebacterium diphtheriae Biovar Intermedius NCTC 5011

    OpenAIRE

    Sangal, Vartul; Nicholas P Tucker; Burkovski, Andreas; Hoskisson, Paul A.

    2012-01-01

    We report an annotated draft genome of the human pathogen Corynebacterium diphtheriae bv. intermedius NCTC 5011. This strain is the first C. diphtheriae bv. intermedius strain to be sequenced, and our results provide a useful comparison to the other primary disease-causing biovars, C. diphtheriae bv. gravis and C. diphtheriae bv. mitis. The sequence has been deposited at DDBJ/EMBL/GenBank with the accession number AJVH01000000.

  6. Draft genome sequence of Corynebacterium diphtheriae biovar intermedius NCTC 5011.

    Science.gov (United States)

    Sangal, Vartul; Tucker, Nicholas P; Burkovski, Andreas; Hoskisson, Paul A

    2012-09-01

    We report an annotated draft genome of the human pathogen Corynebacterium diphtheriae bv. intermedius NCTC 5011. This strain is the first C. diphtheriae bv. intermedius strain to be sequenced, and our results provide a useful comparison to the other primary disease-causing biovars, C. diphtheriae bv. gravis and C. diphtheriae bv. mitis. The sequence has been deposited at DDBJ/EMBL/GenBank with the accession number AJVH01000000.

  7. Sequence Determination from Overlapping Fragments: A Simple Model of Whole-Genome Shotgun Sequencing

    Science.gov (United States)

    Derrida, Bernard; Fink, Thomas M.

    2002-02-01

    Assembling fragments randomly sampled from along a sequence is the basis of whole-genome shotgun sequencing, a technique used to map the DNA of the human and other genomes. We calculate the probability that a random sequence can be recovered from a collection of overlapping fragments. We provide an exact solution for an infinite alphabet and in the case of constant overlaps. For the general problem we apply two assembly strategies and give the probability that the assembly puzzle can be solved in the limit of infinitely many fragments.

  8. Cactus: Algorithms for genome multiple sequence alignment

    OpenAIRE

    Paten, Benedict; Earl, Dent; Nguyen, Ngan; Diekhans, Mark; Zerbino, Daniel; Haussler, David

    2011-01-01

    Much attention has been given to the problem of creating reliable multiple sequence alignments in a model incorporating substitutions, insertions, and deletions. Far less attention has been paid to the problem of optimizing alignments in the presence of more general rearrangement and copy number variation. Using Cactus graphs, recently introduced for representing sequence alignments, we describe two complementary algorithms for creating genomic alignments. We have implemented these algorithms...

  9. Complete genome sequence of Tsukamurella paurometabola type strain (no. 33).

    Science.gov (United States)

    Munk, A Christine; Lapidus, Alla; Lucas, Susan; Nolan, Matt; Tice, Hope; Cheng, Jan-Fang; Del Rio, Tijana Glavina; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Huntemann, Marcel; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Tapia, Roxanne; Han, Cliff; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D; Brettin, Thomas; Yasawong, Montri; Brambilla, Evelyne-Marie; Rohde, Manfred; Sikorski, Johannes; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2011-07-01

    Tsukamurella paurometabola corrig. (Steinhaus 1941) Collins et al. 1988 is the type species of the genus Tsukamurella, which is the type genus to the family Tsukamurellaceae. The species is not only of interest because of its isolated phylogenetic location, but also because it is a human opportunistic pathogen with some strains of the species reported to cause lung infection, lethal meningitis, and necrotizing tenosynovitis. This is the first completed genome sequence of a member of the genus Tsukamurella and the first genome sequence of a member of the family Tsukamurellaceae. The 4,479,724 bp long genome contains a 99,806 bp long plasmid and a total of 4,335 protein-coding and 56 RNA genes, and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  10. Using the NCBI Map Viewer to browse genomic sequence data.

    Science.gov (United States)

    Wolfsberg, Tyra G

    2011-04-01

    This unit includes a basic protocol with an introduction to the Map Viewer, describing how to perform a simple text-based search of genome annotations to view the genomic context of a gene, navigate along a chromosome, zoom in and out, and change the displayed maps to hide and show information. It also describes some of NCBI's sequence-analysis tools, which are provided as links from the Map Viewer. The alternate protocols describe different ways to query the genome sequence, and also illustrate additional features of the Map Viewer. Alternate Protocol 1 shows how to perform and interpret the results of a BLAST search against the human genome. Alternate Protocol 2 demonstrates how to retrieve a list of all genes between two STS markers. Finally, Alternate Protocol 3 shows how to find all annotated members of a gene family.

  11. Effective Normalization for Copy Number Variation Detection from Whole Genome Sequencing

    NARCIS (Netherlands)

    Janevski, A.; Varadan, V.; Kamalakaran, S.; Banerjee, N.; Dimitrova, D.

    2012-01-01

    Background Whole genome sequencing enables a high resolution view ofthe human genome and provides unique insights into genome structureat an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools while validatedalso include a number of parame

  12. Genome-wide linkage and sequence analysis challenge CCDC66 as a human retinal dystrophy candidate gene and support a distinct NMNAT1-related fundus phenotype.

    Science.gov (United States)

    Khan, A O; Budde, B S; Nürnberg, P; Kawalia, A; Lenzner, S; Bolz, H J

    2017-03-30

    To uncover the genotype underlying early-onset cone-rod dystrophy and central nummular macular atrophic lesion in 2 siblings from an endogamous Arab family, we performed targeted next-generation sequencing (NGS) of 44 retinal dystrophy genes, whole-exome sequencing (WES) and genome-wide linkage analysis. Targeted NGS and WES in the index patient highlighted 2 homozygous variants, a CCDC66 frameshift deletion and a novel missense NMNAT1 variant, c.500G>A (p.Asn167Ser). Linkage and segregation analysis excluded the CCDC66 variant and confirmed the NMNAT1 mutation. Biallelic NMNAT1 mutations cause Leber congenital amaurosis with a central nummular macular atrophic lesion (LCA9). The NMNAT1 mutation reported here underlied cone-rod dystrophy rather than LCA but the fundus lesion was compatible with that of LCA9 patients, highlighting that such a fundus appearance should raise suspicion for biallelic mutations in NMNAT1 when in the context of any retinal dystrophy. Although Ccdc66 mutations have been proposed to cause retinal disease in dogs, our results and public databases challenge CCDC66 as a candidate gene for human retinal dystrophy. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Human evolution: a tale from ancient genomes.

    Science.gov (United States)

    Llamas, Bastien; Willerslev, Eske; Orlando, Ludovic

    2017-02-05

    The field of human ancient DNA (aDNA) has moved from mitochondrial sequencing that suffered from contamination and provided limited biological insights, to become a fully genomic discipline that is changing our conception of human history. Recent successes include the sequencing of extinct hominins, and true population genomic studies of Bronze Age populations. Among the emerging areas of aDNA research, the analysis of past epigenomes is set to provide more new insights into human adaptation and disease susceptibility through time. Starting as a mere curiosity, ancient human genetics has become a major player in the understanding of our evolutionary history.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.

  14. Genome sequence of Lactobacillus farciminis KCTC 3681.

    Science.gov (United States)

    Nam, Seong-Hyeuk; Choi, Sang-Haeng; Kang, Aram; Kim, Dong-Wook; Kim, Ryong Nam; Kim, Aeri; Kim, Dae-Soo; Park, Hong-Seog

    2011-04-01

    Lactobacillus farciminis is one of the most prevalent lactic acid bacterial species present during the manufacturing process of kimchi, the best-known traditional Korean dish. Here, we present the draft genome sequence of the type strain Lactobacillus farciminis KCTC 3681 (2,498,309 bp, with a G+C content of 36.4%), which consists of 5 scaffolds.

  15. Segmenting the Human Genome into Isochores.

    Science.gov (United States)

    Cozzi, Paolo; Milanesi, Luciano; Bernardi, Giorgio

    2015-01-01

    The human genome is a mosaic of isochores, which are long (>200 kb) DNA sequences that are fairly homogeneous in base composition and can be assigned to five families comprising 33%-59% of GC composition. Although the compartmentalized organization of the mammalian genome has been investigated for more than 40 years, no satisfactory automatic procedure for segmenting the genome into isochores is available so far. We present a critical discussion of the currently available methods and a new approach called isoSegmenter which allows segmenting the genome into isochores in a fast and completely automatic manner. This approach relies on two types of experimentally defined parameters, the compositional boundaries of isochore families and an optimal window size of 100 kb. The approach represents an improvement over the existing methods, is ideally suited for investigating long-range features of sequenced and assembled genomes, and is publicly available at https://github.com/bunop/isoSegmenter.

  16. Comparison of methods for genomic localization of gene trap sequences

    Directory of Open Access Journals (Sweden)

    Ferrin Thomas E

    2006-09-01

    Full Text Available Abstract Background Gene knockouts in a model organism such as mouse provide a valuable resource for the study of basic biology and human disease. Determining which gene has been inactivated by an untargeted gene trapping event poses a challenging annotation problem because gene trap sequence tags, which represent sequence near the vector insertion site of a trapped gene, are typically short and often contain unresolved residues. To understand better the localization of these sequences on the mouse genome, we compared stand-alone versions of the alignment programs BLAT, SSAHA, and MegaBLAST. A set of 3,369 sequence tags was aligned to build 34 of the mouse genome using default parameters for each algorithm. Known genome coordinates for the cognate set of full-length genes (1,659 sequences were used to evaluate localization results. Results In general, all three programs performed well in terms of localizing sequences to a general region of the genome, with only relatively subtle errors identified for a small proportion of the sequence tags. However, large differences in performance were noted with regard to correctly identifying exon boundaries. BLAT correctly identified the vast majority of exon boundaries, while SSAHA and MegaBLAST missed the majority of exon boundaries. SSAHA consistently reported the fewest false positives and is the fastest algorithm. MegaBLAST was comparable to BLAT in speed, but was the most susceptible to localizing sequence tags incorrectly to pseudogenes. Conclusion The differences in performance for sequence tags and full-length reference sequences were surprisingly small. Characteristic variations in localization results for each program were noted that affect the localization of sequence at exon boundaries, in particular.

  17. Child Development and Structural Variation in the Human Genome

    Science.gov (United States)

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  18. Child Development and Structural Variation in the Human Genome

    Science.gov (United States)

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  19. Extracellular superoxide dismutase (SOD3): Tissue-specific expression, genomic characterization, and computer-assisted sequence analysis of the human EC SOD gene

    Energy Technology Data Exchange (ETDEWEB)

    Folz, R.J.; Crapo, J.D. [Duke Univ. Medical Center, Durham, NC (United States)

    1994-07-01

    The authors have isolated and characterized over 10,000 bp of the human EC SOD gene (SOD3 or EC 1.15.1.1) and its 5{prime}- and 3{prime}-flanking regions. Human genomic Southern blot analysis supports the existence of a single gene, without evidence for pseudogenes. The human EC SOD gene spans approximately 5900 bp. The gene can be divided into 3 exons and 2 introns. The 720-bp coding region is uninterrupted and located within exon 3. The 560 bp 5{prime} to the transcription start site were sequenced. No obvious TATA box was identified. A variety of conserved cis elements were identified by database searching. Exon 3 is surrounded by an Alu-J repetitive element in reverse orientation at the 5{prime} and by an Alu-Sx repetitive element in the 3{prime}-flanking DNA. The relative levels of EC SOD tissue-specific expression were determined by RNA gel blot analysis. Adult heart, placenta, pancreas, and lung had the most expression, followed by kidney, skeletal muscle, and liver. Little EC SOD message was found in the brain. A second unique mRNA, approximately 4.2 kb in length, was highly expressed in skeletal muscle. When tissue enzyme activity is compared to relative mRNA levels, there is a marked disparity in the brain, pancreas, and lung, suggesting that these tissues have enhanced affinity for circulating EC SOD or translate the EC SOD message more efficiently than other tissues. These results indicate that the EC SOD gene contains unique transcriptional regulatory elements and that its expression may be regulated at the post-transcriptional or post-translational level. The characterization of the human EC SOD gene should now allow the development of further insights into its biology and provide the basis for studies of its role in human heritable disorders. 68 refs., 5 figs., 1 tab.

  20. Initial genomics of the human nucleolus.

    Directory of Open Access Journals (Sweden)

    Attila Németh

    2010-03-01

    Full Text Available We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD-localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD-specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture.

  1. The genome sequence of Schizosaccharomyces pombe.

    Science.gov (United States)

    Wood, V; Gwilliam, R; Rajandream, M-A; Lyne, M; Lyne, R; Stewart, A; Sgouros, J; Peat, N; Hayles, J; Baker, S; Basham, D; Bowman, S; Brooks, K; Brown, D; Brown, S; Chillingworth, T; Churcher, C; Collins, M; Connor, R; Cronin, A; Davis, P; Feltwell, T; Fraser, A; Gentles, S; Goble, A; Hamlin, N; Harris, D; Hidalgo, J; Hodgson, G; Holroyd, S; Hornsby, T; Howarth, S; Huckle, E J; Hunt, S; Jagels, K; James, K; Jones, L; Jones, M; Leather, S; McDonald, S; McLean, J; Mooney, P; Moule, S; Mungall, K; Murphy, L; Niblett, D; Odell, C; Oliver, K; O'Neil, S; Pearson, D; Quail, M A; Rabbinowitsch, E; Rutherford, K; Rutter, S; Saunders, D; Seeger, K; Sharp, S; Skelton, J; Simmonds, M; Squares, R; Squares, S; Stevens, K; Taylor, K; Taylor, R G; Tivey, A; Walsh, S; Warren, T; Whitehead, S; Woodward, J; Volckaert, G; Aert, R; Robben, J; Grymonprez, B; Weltjens, I; Vanstreels, E; Rieger, M; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Düsterhöft, A; Fritzc, C; Holzer, E; Moestl, D; Hilbert, H; Borzym, K; Langer, I; Beck, A; Lehrach, H; Reinhardt, R; Pohl, T M; Eger, P; Zimmermann, W; Wedler, H; Wambutt, R; Purnelle, B; Goffeau, A; Cadieu, E; Dréano, S; Gloux, S; Lelaure, V; Mottier, S; Galibert, F; Aves, S J; Xiang, Z; Hunt, C; Moore, K; Hurst, S M; Lucas, M; Rochet, M; Gaillardin, C; Tallada, V A; Garzon, A; Thode, G; Daga, R R; Cruzado, L; Jimenez, J; Sánchez, M; del Rey, F; Benito, J; Domínguez, A; Revuelta, J L; Moreno, S; Armstrong, J; Forsburg, S L; Cerutti, L; Lowe, T; McCombie, W R; Paulsen, I; Potashkin, J; Shpakovski, G V; Ussery, D; Barrell, B G; Nurse, P; Cerrutti, L

    2002-02-21

    We have sequenced and annotated the genome of fission yeast (Schizosaccharomyces pombe), which contains the smallest number of protein-coding genes yet recorded for a eukaryote: 4,824. The centromeres are between 35 and 110 kilobases (kb) and contain related repeats including a highly conserved 1.8-kb element. Regions upstream of genes are longer than in budding yeast (Saccharomyces cerevisiae), possibly reflecting more-extended control regions. Some 43% of the genes contain introns, of which there are 4,730. Fifty genes have significant similarity with human disease genes; half of these are cancer related. We identify highly conserved genes important for eukaryotic cell organization including those required for the cytoskeleton, compartmentation, cell-cycle control, proteolysis, protein phosphorylation and RNA splicing. These genes may have originated with the appearance of eukaryotic life. Few similarly conserved genes that are important for multicellular organization were identified, suggesting that the transition from prokaryotes to eukaryotes required more new genes than did the transition from unicellular to multicellular organization.

  2. Sequence modelling and an extensible data model for genomic database

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peter Wei-Der [California Univ., San Francisco, CA (United States)]|[Lawrence Berkeley Lab., CA (United States)

    1992-01-01

    The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS`s do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the ``Extensible Object Model``, to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

  3. Sequence modelling and an extensible data model for genomic database

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peter Wei-Der (California Univ., San Francisco, CA (United States) Lawrence Berkeley Lab., CA (United States))

    1992-01-01

    The Human Genome Project (HGP) plans to sequence the human genome by the beginning of the next century. It will generate DNA sequences of more than 10 billion bases and complex marker sequences (maps) of more than 100 million markers. All of these information will be stored in database management systems (DBMSs). However, existing data models do not have the abstraction mechanism for modelling sequences and existing DBMS's do not have operations for complex sequences. This work addresses the problem of sequence modelling in the context of the HGP and the more general problem of an extensible object data model that can incorporate the sequence model as well as existing and future data constructs and operators. First, we proposed a general sequence model that is application and implementation independent. This model is used to capture the sequence information found in the HGP at the conceptual level. In addition, abstract and biological sequence operators are defined for manipulating the modelled sequences. Second, we combined many features of semantic and object oriented data models into an extensible framework, which we called the Extensible Object Model'', to address the need of a modelling framework for incorporating the sequence data model with other types of data constructs and operators. This framework is based on the conceptual separation between constructors and constraints. We then used this modelling framework to integrate the constructs for the conceptual sequence model. The Extensible Object Model is also defined with a graphical representation, which is useful as a tool for database designers. Finally, we defined a query language to support this model and implement the query processor to demonstrate the feasibility of the extensible framework and the usefulness of the conceptual sequence model.

  4. RSSsite: a reference database and prediction tool for the identification of cryptic Recombination Signal Sequences in human and murine genomes

    OpenAIRE

    Merelli, Ivan; Guffanti, Alessandro; Fabbri, Marco; Cocito, Andrea; Furia, Laura; Grazini, Ursula; Bonnal, Raoul J.; Milanesi, Luciano; McBlane, Fraser

    2010-01-01

    Recombination signal sequences (RSSs) flanking V, D and J gene segments are recognized and cut by the VDJ recombinase during development of B and T lymphocytes. All RSSs are composed of seven conserved nucleotides, followed by a spacer (containing either 12 ± 1 or 23 ± 1 poorly conserved nucleotides) and a conserved nonamer. Errors in V(D)J recombination, including cleavage of cryptic RSS outside the immunoglobulin and T cell receptor loci, are associated with oncogenic translocations observe...

  5. Human myoblast genome therapy

    Institute of Scientific and Technical Information of China (English)

    Peter K Law; Leo A Bockeria; Choong-Chin Liew; Danlin M Law; Ping Lu; Eugene KW Sim; Khawja H Haider; Lei Ye; Xun Li; Margarita N Vakhromeeva; Ilia I Berishvili

    2006-01-01

    Human Myoblast Genome Therapy (HMGT) is a platform technology of cell transplantation, nuclear transfer, and tissue engineering. Unlike stem cells, myoblasts are differentiated, immature cells destined to become muscles. Myoblasts cultured from satellite cells of adult muscle biopsies survive, develop, and function to revitalize degenerative muscles upon transplantation. Injection injury activates regeneration of host myofibers that fuse with the engrafted myoblasts, sharing their nuclei in a common gene pool of the syncytium. Thus, through nuclear transfer and complementation, the normal human genome can be transferred into muscles of patients with genetic disorders to achieve phenotype repair or disease prevention. Myoblasts are safe and efficient gene transfer vehicles endogenous to muscles that constitute 50% of body weight. Results of over 280 HMGT procedures on Duchenne Muscular Dystrophy (DMD) subjects in the past 15 years demonstrated absolute safety. Myoblast-injected DMD muscles showed improved histology.Strength increase at 18 months post-operatively averaged 123%. In another application of HMGT on ischemic cardiomyopathy, the first human myoblast transfer into porcine myocardium revealed that it was safe and effective. Clinical trials on approximately 220 severe cardiomyopathy patients in 15 countries showed a <10% mortality. Most subjects received autologous cells implanted on the epicardial surface during coronory artery bypass graft, or injected on the endomyocardial surface percutaneously through guiding catheters. Significant increases in left ventricular ejection fraction, wall thickness, and wall motion have been reported, with reduction in perfusion defective areas, angina, and shortness of breath. As a new modality of treatment for disease in the skeletal muscle or myocardium, HMGT emerged as safe and effective. Large randomized multi-center trials are under way to confirm these preliminary results. The future of HMGT is bright and exciting

  6. RSSsite: a reference database and prediction tool for the identification of cryptic Recombination Signal Sequences in human and murine genomes.

    Science.gov (United States)

    Merelli, Ivan; Guffanti, Alessandro; Fabbri, Marco; Cocito, Andrea; Furia, Laura; Grazini, Ursula; Bonnal, Raoul J; Milanesi, Luciano; McBlane, Fraser

    2010-07-01

    Recombination signal sequences (RSSs) flanking V, D and J gene segments are recognized and cut by the VDJ recombinase during development of B and T lymphocytes. All RSSs are composed of seven conserved nucleotides, followed by a spacer (containing either 12 +/- 1 or 23 +/- 1 poorly conserved nucleotides) and a conserved nonamer. Errors in V(D)J recombination, including cleavage of cryptic RSS outside the immunoglobulin and T cell receptor loci, are associated with oncogenic translocations observed in some lymphoid malignancies. We present in this paper the RSSsite web server, which is available from the address http://www.itb.cnr.it/rss. RSSsite consists of a web-accessible database, RSSdb, for the identification of pre-computed potential RSSs, and of the related search tool, DnaGrab, which allows the scoring of potential RSSs in user-supplied sequences. This latter algorithm makes use of probability models, which can be recasted to Bayesian network, taking into account correlations between groups of positions of a sequence, developed starting from specific reference sets of RSSs. In validation laboratory experiments, we selected 33 predicted cryptic RSSs (cRSSs) from 11 chromosomal regions outside the immunoglobulin and TCR loci for functional testing.

  7. SEXCMD: Development and validation of sex marker sequences for whole-exome/genome and RNA sequencing.

    Science.gov (United States)

    Jeong, Seongmun; Kim, Jiwoong; Park, Won; Jeon, Hongmin; Kim, Namshin

    2017-01-01

    Over the last decade, a large number of nucleotide sequences have been generated by next-generation sequencing technologies and deposited to public databases. However, most of these datasets do not specify the sex of individuals sampled because researchers typically ignore or hide this information. Male and female genomes in many species have distinctive sex chromosomes, XX/XY and ZW/ZZ, and expression levels of many sex-related genes differ between the sexes. Herein, we describe how to develop sex marker sequences from syntenic regions of sex chromosomes and use them to quickly identify the sex of individuals being analyzed. Array-based technologies routinely use either known sex markers or the B-allele frequency of X or Z chromosomes to deduce the sex of an individual. The same strategy has been used with whole-exome/genome sequence data; however, all reads must be aligned onto a reference genome to determine the B-allele frequency of the X or Z chromosomes. SEXCMD is a pipeline that can extract sex marker sequences from reference sex chromosomes and rapidly identify the sex of individuals from whole-exome/genome and RNA sequencing after training with a known dataset through a simple machine learning approach. The pipeline counts total numbers of hits from sex-specific marker sequences and identifies the sex of the individuals sampled based on the fact that XX/ZZ samples do not have Y or W chromosome hits. We have successfully validated our pipeline with mammalian (Homo sapiens; XY) and avian (Gallus gallus; ZW) genomes. Typical calculation time when applying SEXCMD to human whole-exome or RNA sequencing datasets is a few minutes, and analyzing human whole-genome datasets takes about 10 minutes. Another important application of SEXCMD is as a quality control measure to avoid mixing samples before bioinformatics analysis. SEXCMD comprises simple Python and R scripts and is freely available at https://github.com/lovemun/SEXCMD.

  8. BSMAP: whole genome bisulfite sequence MAPping program

    Directory of Open Access Journals (Sweden)

    Li Wei

    2009-07-01

    Full Text Available Abstract Background Bisulfite sequencing is a powerful technique to study DNA cytosine methylation. Bisulfite treatment followed by PCR amplification specifically converts unmethylated cytosines to thymine. Coupled with next generation sequencing technology, it is able to detect the methylation status of every cytosine in the genome. However, mapping high-throughput bisulfite reads to the reference genome remains a great challenge due to the increased searching space, reduced complexity of bisulfite sequence, asymmetric cytosine to thymine alignments, and multiple CpG heterogeneous methylation. Results We developed an efficient bisulfite reads mapping algorithm BSMAP to address the above issues. BSMAP combines genome hashing and bitwise masking to achieve fast and accurate bisulfite mapping. Compared with existing bisulfite mapping approaches, BSMAP is faster, more sensitive and more flexible. Conclusion BSMAP is the first general-purpose bisulfite mapping software. It is able to map high-throughput bisulfite reads at whole genome level with feasible memory and CPU usage. It is freely available under GPL v3 license at http://code.google.com/p/bsmap/.

  9. Agaricus bisporus genome sequence: a commentary.

    Science.gov (United States)

    Kerrigan, Richard W; Challen, Michael P; Burton, Kerry S

    2013-06-01

    The genomes of two isolates of Agaricus bisporus have been sequenced recently. This soil-inhabiting fungus has a wide geographical distribution in nature and it is also cultivated in an industrialized indoor process ($4.7bn annual worldwide value) to produce edible mushrooms. Previously this lignocellulosic fungus has resisted precise econutritional classification, i.e. into white- or brown-rot decomposers. The generation of the genome sequence and transcriptomic analyses has revealed a new classification, 'humicolous', for species adapted to grow in humic-rich, partially decomposed leaf material. The Agaricus biporus genomes contain a collection of polysaccharide and lignin-degrading genes and more interestingly an expanded number of genes (relative to other lignocellulosic fungi) that enhance degradation of lignin derivatives, i.e. heme-thiolate peroxidases and β-etherases. A motif that is hypothesized to be a promoter element in the humicolous adaptation suite is present in a large number of genes specifically up-regulated when the mycelium is grown on humic-rich substrate. The genome sequence of A. bisporus offers a platform to explore fungal biology in carbon-rich soil environments and terrestrial cycling of carbon, nitrogen, phosphorus and potassium.

  10. Synaptotagmin gene content of the sequenced genomes

    Directory of Open Access Journals (Sweden)

    Craxton Molly

    2004-07-01

    Full Text Available Abstract Background Synaptotagmins exist as a large gene family in mammals. There is much interest in the function of certain family members which act crucially in the regulated synaptic vesicle exocytosis required for efficient neurotransmission. Knowledge of the functions of other family members is relatively poor and the presence of Synaptotagmin genes in plants indicates a role for the family as a whole which is wider than neurotransmission. Identification of the Synaptotagmin genes within completely sequenced genomes can provide the entire Synaptotagmin gene complement of each sequenced organism. Defining the detailed structures of all the Synaptotagmin genes and their encoded products can provide a useful resource for functional studies and a deeper understanding of the evolution of the gene family. The current rapid increase in the number of sequenced genomes from different branches of the tree of life, together with the public deposition of evolutionarily diverse transcript sequences make such studies worthwhile. Results I have compiled a detailed list of the Synaptotagmin genes of Caenorhabditis, Anopheles, Drosophila, Ciona, Danio, Fugu, Mus, Homo, Arabidopsis and Oryza by examining genomic and transcript sequences from public sequence databases together with some transcript sequences obtained by cDNA library screening and RT-PCR. I have compared all of the genes and investigated the relationship between plant Synaptotagmins and their non-Synaptotagmin counterparts. Conclusions I have identified and compared 98 Synaptotagmin genes from 10 sequenced genomes. Detailed comparison of transcript sequences reveals abundant and complex variation in Synaptotagmin gene expression and indicates the presence of Synaptotagmin genes in all animals and land plants. Amino acid sequence comparisons indicate patterns of conservation and diversity in function. Phylogenetic analysis shows the origin of Synaptotagmins in multicellular eukaryotes and their

  11. Suite of tools for statistical N-gram language modeling for pattern mining in whole genome sequences.

    Science.gov (United States)

    Ganapathiraju, Madhavi K; Mitchell, Asia D; Thahir, Mohamed; Motwani, Kamiya; Ananthasubramanian, Seshan

    2012-12-01

    Genome sequences contain a number of patterns that have biomedical significance. Repetitive sequences of various kinds are a primary component of most of the genomic sequence patterns. We extended the suffix-array based Biological Language Modeling Toolkit to compute n-gram frequencies as well as n-gram language-model based perplexity in windows over the whole genome sequence to find biologically relevant patterns. We present the suite of tools and their application for analysis on whole human genome sequence.

  12. An integrated semiconductor device enabling non-optical genome sequencing.

    Science.gov (United States)

    Rothberg, Jonathan M; Hinz, Wolfgang; Rearick, Todd M; Schultz, Jonathan; Mileski, William; Davey, Mel; Leamon, John H; Johnson, Kim; Milgrew, Mark J; Edwards, Matthew; Hoon, Jeremy; Simons, Jan F; Marran, David; Myers, Jason W; Davidson, John F; Branting, Annika; Nobile, John R; Puc, Bernard P; Light, David; Clark, Travis A; Huber, Martin; Branciforte, Jeffrey T; Stoner, Isaac B; Cawley, Simon E; Lyons, Michael; Fu, Yutao; Homer, Nils; Sedova, Marina; Miao, Xin; Reed, Brian; Sabina, Jeffrey; Feierstein, Erika; Schorn, Michelle; Alanjary, Mohammad; Dimalanta, Eileen; Dressman, Devin; Kasinskas, Rachel; Sokolsky, Tanya; Fidanza, Jacqueline A; Namsaraev, Eugeni; McKernan, Kevin J; Williams, Alan; Roth, G Thomas; Bustillo, James

    2011-07-20

    The seminal importance of DNA sequencing to the life sciences, biotechnology and medicine has driven the search for more scalable and lower-cost solutions. Here we describe a DNA sequencing technology in which scalable, low-cost semiconductor manufacturing techniques are used to make an integrated circuit able to directly perform non-optical DNA sequencing of genomes. Sequence data are obtained by directly sensing the ions produced by template-directed DNA polymerase synthesis using all-natural nucleotides on this massively parallel semiconductor-sensing device or ion chip. The ion chip contains ion-sensitive, field-effect transistor-based sensors in perfect register with 1.2 million wells, which provide confinement and allow parallel, simultaneous detection of independent sequencing reactions. Use of the most widely used technology for constructing integrated circuits, the complementary metal-oxide semiconductor (CMOS) process, allows for low-cost, large-scale production and scaling of the device to higher densities and larger array sizes. We show the performance of the system by sequencing three bacterial genomes, its robustness and scalability by producing ion chips with up to 10 times as many sensors and sequencing a human genome.

  13. The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus).

    Science.gov (United States)

    Miller, Webb; Drautz, Daniela I; Janecka, Jan E; Lesk, Arthur M; Ratan, Aakrosh; Tomsho, Lynn P; Packard, Mike; Zhang, Yeting; McClellan, Lindsay R; Qi, Ji; Zhao, Fangqing; Gilbert, M Thomas P; Dalén, Love; Arsuaga, Juan Luis; Ericson, Per G P; Huson, Daniel H; Helgen, Kristofer M; Murphy, William J; Götherström, Anders; Schuster, Stephan C

    2009-02-01

    We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support for the thylacine's basal position in Dasyuromorphia, aided by mitochondrial genome sequence that we generated from the extant numbat (Myrmecobius fasciatus). Surprisingly, both of our thylacine sequences differ by 11%-15% from putative thylacine mitochondrial genes in GenBank, with one of our samples originating from a direct offspring of the previously sequenced individual. Our data sample each mitochondrial nucleotide an average of 50 times, thereby providing the first high-fidelity reference sequence for thylacine population genetics. Our two sequences differ in only five nucleotides out of 15,452, hinting at a very low genetic diversity shortly before extinction. Despite the samples' heavy contamination with bacterial and human DNA and their temperate storage history, we estimate that as much as one-third of the total DNA in each sample is from the thylacine. The microbial content of the two thylacine samples was subjected to metagenomic analysis, and showed striking differences between a wild-captured individual and a born-in-captivity one. This study therefore adds to the growing evidence that extensive sequencing of museum collections is both feasible and desirable, and can yield complete genomes.

  14. A universal genome sequencing method for rotavirus A from human fecal samples which identifies segment reassortment and multi-genotype mixed infection.

    Science.gov (United States)

    Dung, Tran Thi Ngoc; Duy, Pham Thanh; Sessions, October M; Sangumathi, Uma K; Phat, Voong Vinh; Tam, Pham Thi Thanh; To, Nguyen Thi Nguyen; Phuc, Tran My; Hong Chau, Tran Thi; Chau, Nguyen Ngoc Minh; Minh, Ngoc Nguyen; Thwaites, Guy E; Rabaa, Maia A; Baker, Stephen

    2017-04-24

    Genomic characterization of rotavirus (RoV) has not been adopted at large-scale due to the complexity of obtaining sequences for all 11 segments, particularly when feces are used as starting material. To overcome these limitations, we developed a novel RoV capture and genome sequencing method combining commercial enzyme immunoassay plates and a set of routinely used reagents. Our approach had a 100% success rate, producing >90% genome coverage for diverse RoV present in fecal samples (Ct RoV characterization and could be scaled-up for use in global RoV surveillance systems. Current Controlled Trials ISRCTN88101063 . Date of registration: 14/06/2012.

  15. Identifying driver mutations in sequenced cancer genomes

    DEFF Research Database (Denmark)

    Raphael, Benjamin J; Dobson, Jason R; Oesper, Layla

    2014-01-01

    High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise......, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations. First, we describe approaches to detect somatic mutations from high-throughput DNA...... sequencing data, particularly for tumor samples that comprise heterogeneous populations of cells. Next, we review computational approaches that aim to predict driver mutations according to their frequency of occurrence in a cohort of samples, or according to their predicted functional impact on protein...

  16. The Past, Present, and Future of Human Centromere Genomics

    Directory of Open Access Journals (Sweden)

    Megan E. Aldrup-MacDonald

    2014-01-01

    Full Text Available The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function.

  17. Exome sequencing and CRISPR/Cas genome editing identify mutations of ZAK as a cause of limb defects in humans and mice

    NARCIS (Netherlands)

    Spielmann, M.; Kakar, N.; Tayebi, N.; Leettola, C.; Nurnberg, G.; Sowada, N.; Lupianez, D.G.; Harabula, I.; Flottmann, R.; Horn, D.; Chan, W.L.; Wittler, L.; Yilmaz, R.; Altmuller, J.; Thiele, H.; Bokhoven, H. van; Schwartz, C.E.; Nurnberg, P.; Bowie, J.U.; Ahmad, J.; Kubisch, C.; Mundlos, S.; Borck, G.

    2016-01-01

    The CRISPR/Cas technology enables targeted genome editing and the rapid generation of transgenic animal models for the study of human genetic disorders. Here we describe an autosomal recessive human disease in two unrelated families characterized by a split-foot defect, nail abnormalities of the

  18. Whole genome sequence analysis of Mycobacterium suricattae

    KAUST Repository

    Dippenaar, Anzaan

    2015-10-21

    Tuberculosis occurs in various mammalian hosts and is caused by a range of different lineages of the Mycobacterium tuberculosis complex (MTBC). A recently described member, Mycobacterium suricattae, causes tuberculosis in meerkats (Suricata suricatta) in Southern Africa and preliminary genetic analysis showed this organism to be closely related to an MTBC pathogen of rock hyraxes (Procavia capensis), the dassie bacillus. Here we make use of whole genome sequencing to describe the evolution of the genome of M. suricattae, including known and novel regions of difference, SNPs and IS6110 insertion sites. We used genome-wide phylogenetic analysis to show that M. suricattae clusters with the chimpanzee bacillus, previously isolated from a chimpanzee (Pan troglodytes) in West Africa. We propose an evolutionary scenario for the Mycobacterium africanum lineage 6 complex, showing the evolutionary relationship of M. africanum and chimpanzee bacillus, and the closely related members M. suricattae, dassie bacillus and Mycobacterium mungi.

  19. Draft Genome Sequence of Rubrivivax gelatinosus CBS

    Energy Technology Data Exchange (ETDEWEB)

    Hu, P. S.; Lang, J.; Wawrousek, K.; Yu, J. P.; Maness, P. C.; Chen, J.

    2012-06-01

    Rubrivivax gelatinosus CBS, a purple nonsulfur photosynthetic bacterium, can grow photosynthetically using CO and N{sub 2} as the sole carbon and nitrogen nutrients, respectively. R. gelatinosus CBS is of particular interest due to its ability to metabolize CO and yield H{sub 2}. We present the 5-Mb draft genome sequence of R. gelatinosus CBS with the goal of providing genetic insight into the metabolic properties of this bacterium.

  20. Research on Text Data Mining on Human Genome Sequence Analysis%人类基因组测序文本数据挖掘研究

    Institute of Scientific and Technical Information of China (English)

    于跃; 潘玮; 王丽伟; 王伟

    2012-01-01

    对PubMed数据库中2001年1月1日-2011年5月11日的人类基因组测序相关文献进行检索,对其题录信息进行提取并进行共词聚类分析,提取高频主题词,生成词篇矩阵、共现聚阵、共词聚类,认为文本数据挖掘技术能够很好地反映学科发展状况及研究热点,从而为研究人员提供有价值的信息。%Retrieving the literatures on human genome sequence analysis from PubMed published from 2001.1.1 to 2011.5.11,extracts bibliographic information and carries out co - word analysis,high frequency subject headings are extracted,word matrix,co - occurrence matrix,co - word clustering are formulated.It clarifies that data mining is a good way to reflect development status and research hotspots,so as to provide valuable information to researchers.

  1. Genome sequence of Psychrobacter cibarius strain W1

    DEFF Research Database (Denmark)

    Raghupathi, Prem Krishnan; Herschend, Jakob; Røder, Henriette Lyng

    2016-01-01

    Here, we report the draft genome sequence of Psychrobacter cibarius strain W1, which was isolated at a slaughterhouse in Denmark. The 3.63-Mb genome sequence was assembled into 241 contigs.......Here, we report the draft genome sequence of Psychrobacter cibarius strain W1, which was isolated at a slaughterhouse in Denmark. The 3.63-Mb genome sequence was assembled into 241 contigs....

  2. Draft genome sequence of an aflatoxigenic Aspergillus species, A. bombycis

    Science.gov (United States)

    The genome of the A. bombycis Type strain was sequenced using a Personal Genome Machine, followed by annotation of its predicted genes. The genome size for A. bombycis was found to be approximately 37 Mb and contained 12,266 genes. This announcement introduces a sequenced genome for an aflatoxigenic...

  3. What Will We Do with a Cotton Genome Sequence?

    Institute of Scientific and Technical Information of China (English)

    BRUBAKER Curt

    2008-01-01

    @@ With the publication of "Toward Sequencing Cotton (Gossypium) Genomes" [Chen et al.PlantPhysiology,2007,145:1303-1310-] a clear consensus emerged from the cotton genomics community not only that cotton genome sequences were a critical resource for research and commercial innovationin cotton genomics,but that there was a logical means of achieving this goal.

  4. Sequencing of a Cultivated Diploid Cotton Genome-Gossypium arboreum

    Institute of Scientific and Technical Information of China (English)

    WILKINS; Thea; A

    2008-01-01

    Sequencing the genomes of crop species and model systems contributes significantly to our understanding of the organization,structure and function of plant genomes.In a `white paper' published in 2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated upland cotton that initially targets less complex diploid genomes.This strategy banks on the high degree

  5. Unusual assortment of segments in 2 rare human rotavirus genomes.

    Science.gov (United States)

    De Grazia, Simona; Giammanco, Giovanni M; Potgieter, Christiaan A; Matthijnssens, Jelle; Banyai, Krisztian; Platia, Maria A; Colomba, Claudia; Martella, Vito

    2010-05-01

    Using full-length genome sequence analysis, we investigated 2 rare G3P[9] human rotavirus strains isolated from children with diarrhea. The genomes were recognized as assortments of genes closely related to rotaviruses originating from cats, ruminants, and humans. Results suggest multiple transmissions of genes from animal to human strains of rotaviruses.

  6. Enhanced Dynamic Algorithm of Genome Sequence Alignments

    Directory of Open Access Journals (Sweden)

    Arabi E. keshk

    2014-05-01

    Full Text Available The merging of biology and computer science has created a new field called computational biology that explore the capacities of computers to gain knowledge from biological data, bioinformatics. Computational biology is rooted in life sciences as well as computers, information sciences, and technologies. The main problem in computational biology is sequence alignment that is a way of arranging the sequences of DNA, RNA or protein to identify the region of similarity and relationship between sequences. This paper introduces an enhancement of dynamic algorithm of genome sequence alignment, which called EDAGSA. It is filling the three main diagonals without filling the entire matrix by the unused data. It gets the optimal solution with decreasing the execution time and therefore the performance is increased. To illustrate the effectiveness of optimizing the performance of the proposed algorithm, it is compared with the traditional methods such as Needleman-Wunsch, Smith-Waterman and longest common subsequence algorithms. Also, database is implemented for using the algorithm in multi-sequence alignments for searching the optimal sequence that matches the given sequence.

  7. Genetic variation and the de novo assembly of human genomes.

    Science.gov (United States)

    Chaisson, Mark J P; Wilson, Richard K; Eichler, Evan E

    2015-11-01

    The discovery of genetic variation and the assembly of genome sequences are both inextricably linked to advances in DNA-sequencing technology. Short-read massively parallel sequencing has revolutionized our ability to discover genetic variation but is insufficient to generate high-quality genome assemblies or resolve most structural variation. Full resolution of variation is only guaranteed by complete de novo assembly of a genome. Here, we review approaches to genome assembly, the nature of gaps or missing sequences, and biases in the assembly process. We describe the challenges of generating a complete de novo genome assembly using current technologies and the impact that being able to perfectly sequence the genome would have on understanding human disease and evolution. Finally, we summarize recent technological advances that improve both contiguity and accuracy and emphasize the importance of complete de novo assembly as opposed to read mapping as the primary means to understanding the full range of human genetic variation.

  8. Co-barcoded sequence reads from long DNA fragments: A cost-effective solution for Perfect Genome sequencing

    Directory of Open Access Journals (Sweden)

    Brock A Peters

    2015-01-01

    Full Text Available Next generation sequencing (NGS technologies, primarily based on massively parallel sequencing (MPS, have touched and radically changed almost all aspects of research worldwide. These technologies have allowed for the rapid analysis, to date, of the genomes of more than 2,000 different species. In humans, NGS has arguably had the largest impact. Over 100,000 genomes of individual humans (based on various estimates have been sequenced allowing for deep insights into what makes individuals and families unique and what causes disease in each of us. Despite all of this progress, the current state of the art in sequence technology is far from generating a perfect genome sequence and much remains to be understood in the biology of human and other organisms’ genomes. In the article that follows we outline, why the perfect genome in humans is important, what is lacking from current human whole genome sequences, and a potential strategy for achieving the perfect genome in a cost effective manner.

  9. The impact of next-generation sequencing on genomics

    Institute of Scientific and Technical Information of China (English)

    Jun Zhang; Rod Chiodini; Ahmed Badr; Genfa Zhang

    2011-01-01

    This article reviews basic concepts,general applications,and the potential impact of next-generation sequencing(NGS)technologies on genomics,with particular reference to currently available and possible future platforms and bioinformatics.NGS technologies have demonstrated the capacity to sequence DNA at unprecedented speed,thereby enabling previously unimaginable scientific achievements and novel biological applications.But,the massive data produced by NGS also presents a significant challenge for data storage,analyses,and management solutions.Advanced bioinformatic tools are essential for the successful application of NGS technology.As evidenced throughout this review,NGS technologies will have a striking impact on genomic research and the entire biological field.With its ability to tackle the unsolved challenges unconquered by previous genomic technologies,NGS is likely to unravel the complexity of the human genome in terms of genetic variations,some of which may be confined to susceptible loci for some common human conditions.The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come.

  10. It's more than stamp collecting: how genome sequencing can unify biological research.

    Science.gov (United States)

    Richards, Stephen

    2015-07-01

    The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, while the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to 'big science' survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. It’s More Than Stamp Collecting: How Genome Sequencing Can Unify Biological Research

    Science.gov (United States)

    Richards, Stephen

    2015-01-01

    The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, whilst the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to “Big Science” survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. PMID:26003218

  12. Expression of a chimeric human/salmon calcitonin gene integrated into the Saccharomyces cerevisiae genome using rDNA sequences as recombination sites.

    Science.gov (United States)

    Sun, Hengyi; Zang, Xiaonan; Liu, Yuantao; Cao, Xiaofei; Wu, Fei; Huang, Xiaoyun; Jiang, Minjie; Zhang, Xuecheng

    2015-12-01

    Calcitonin participates in controlling homeostasis of calcium and phosphorus and plays an important role in bone metabolism. The aim of this study was to endow an industrial strain of Saccharomyces cerevisiae with the ability to express chimeric human/salmon calcitonin (hsCT) without the use of antibiotics. To do so, a homologous recombination plasmid pUC18-rDNA2-ura3-P pgk -5hsCT-rDNA1 was constructed, which contains two segments of ribosomal DNA of 1.1 kb (rDNA1) and 1.4 kb (rDNA2), to integrate the heterologous gene into host rDNA. A DNA fragment containing five copies of a chimeric human/salmon calcitonin gene (5hsCT) under the control of the promoter for phosphoglycerate kinase (P pgk ) was constructed to express 5hsCT in S. cerevisiae using ura3 as a selectable auxotrophic marker gene. After digestion by restriction endonuclease HpaI, a linear fragment, rDNA2-ura3-P pgk -5hsCT-rDNA1, was obtained and transformed into the △ura3 mutant of S. cerevisiae by the lithium acetate method. The ura3-P pgk -5hsCT sequence was introduced into the genome at rDNA sites by homologous recombination, and the recombinant strain YS-5hsCT was obtained. Southern blot analysis revealed that the 5hsCT had been integrated successfully into the genome of S. cerevisiae. The results of Western blot and ELISA confirmed that the 5hsCT protein had been expressed in the recombinant strain YS-5hsCT. The expression level reached 2.04 % of total proteins. S. cerevisiae YS-5hsCT decreased serum calcium in mice by oral administration and even 0.01 g lyophilized S. cerevisiae YS-5hsCT/kg decreased serum calcium by 0.498 mM. This work has produced a commercial yeast strain potentially useful for the treatment of osteoporosis.

  13. Transforming clinical microbiology with bacterial genome sequencing.

    Science.gov (United States)

    Didelot, Xavier; Bowden, Rory; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W

    2012-09-01

    Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.

  14. Molecular characterization of human T-cell lymphotropic virus type 1 full and partial genomes by Illumina massively parallel sequencing technology.

    Directory of Open Access Journals (Sweden)

    Rodrigo Pessôa

    Full Text Available BACKGROUND: Here, we report on the partial and full-length genomic (FLG variability of HTLV-1 sequences from 90 well-characterized subjects, including 48 HTLV-1 asymptomatic carriers (ACs, 35 HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP and 7 adult T-cell leukemia/lymphoma (ATLL patients, using an Illumina paired-end protocol. METHODS: Blood samples were collected from 90 individuals, and DNA was extracted from the PBMCs to measure the proviral load and to amplify the HTLV-1 FLG from two overlapping fragments. The amplified PCR products were subjected to deep sequencing. The sequencing data were assembled, aligned, and mapped against the HTLV-1 genome with sufficient genetic resemblance and utilized for further phylogenetic analysis. RESULTS: A high-throughput sequencing-by-synthesis instrument was used to obtain an average of 3210- and 5200-fold coverage of the partial (n = 14 and FLG (n = 76 data from the HTLV-1 strains, respectively. The results based on the phylogenetic trees of consensus sequences from partial and FLGs revealed that 86 (95.5% individuals were infected with the transcontinental sub-subtypes of the cosmopolitan subtype (aA and that 4 individuals (4.5% were infected with the Japanese sub-subtypes (aB. A comparison of the nucleotide and amino acids of the FLG between the three clinical settings yielded no correlation between the sequenced genotype and clinical outcomes. The evolutionary relationships among the HTLV sequences were inferred from nucleotide sequence, and the results are consistent with the hypothesis that there were multiple introductions of the transcontinental subtype in Brazil. CONCLUSIONS: This study has increased the number of subtype aA full-length genomes from 8 to 81 and HTLV-1 aB from 2 to 5 sequences. The overall data confirmed that the cosmopolitan transcontinental sub-subtypes were the most prevalent in the Brazilian population. It is hoped that this valuable genomic data

  15. Brucella microti: the genome sequence of an emerging pathogen

    Directory of Open Access Journals (Sweden)

    Scholz Holger C

    2009-08-01

    Full Text Available Abstract Background Using a combination of pyrosequencing and conventional Sanger sequencing, the complete genome sequence of the recently described novel Brucella species, Brucella microti, was determined. B. microti is a member of the genus Brucella within the Alphaproteobacteria, which consists of medically important highly pathogenic facultative intracellular bacteria. In contrast to all other Brucella species, B. microti is a fast growing and biochemically very active microorganism with a phenotype more similar to that of Ochrobactrum, a facultative human pathogen. The atypical phenotype of B. microti prompted us to look for genomic differences compared to other Brucella species and to look for similarities with Ochrobactrum. Results The genome is composed of two circular chromosomes of 2,117,050 and 1,220,319 base pairs. Unexpectedly, we found that the genome sequence of B. microti is almost identical to that of Brucella suis 1330 with an overall sequence identity of 99.84% in aligned regions. The most significant structural difference between the two genomes is a bacteriophage-related 11,742 base pairs insert only present in B. microti. However, this insert is unlikely to have any phenotypical consequence. Only four protein coding genes are shared between B. microti and Ochrobactrum anthropi but impaired in other sequenced Brucella. The most noticeable difference between B. microti and other Brucella species was found in the sequence of the 23S ribosomal RNA gene. This unusual variation could have pleiotropic effects and explain the fast growth of B. microti. Conclusion Contrary to expectations from the phenotypic analysis, the genome sequence of B. microti is highly similar to that of known Brucella species, and is remotely related to the one of O. anthropi. How the few differences in gene content between B. microti and B. suis 1330 could result in vastly different phenotypes remains to be elucidated. This unexpected finding will

  16. Complete Genome Sequence of Mycobacterium xenopi Type Strain RIVM700367

    KAUST Repository

    Abdallah, A. M.

    2012-05-24

    Mycobacterium xenopi is a slow-growing, thermophilic, water-related Mycobacterium species. Like other nontuberculous mycobacteria, M. xenopi more commonly infects humans with altered immune function, such as chronic obstructive pulmonary disease patients. It is considered clinically relevant in a significant proportion of the patients from whom it is isolated. We report here the whole genome sequence of M. xenopi type strain RIVM700367.

  17. Genome Sequences of Three Novel Bacillus cereus Bacteriophages

    OpenAIRE

    Julianne H Grose; Jensen, Jordan D.; Merrill, Bryan D.; Fisher, Joshua N. B.; Burnett, Sandra H.; Breakwell, Donald P

    2014-01-01

    The Bacillus cereus group is an assemblage of highly related firmicute bacteria that cause a variety of diseases in animals, including insects and humans. We announce three high-quality, complete genome sequences of bacteriophages we isolated from soil samples taken at the bases of fruit trees in Utah County, Utah. While two of the phages (Shanette and JL) are highly related myoviruses, the bacteriophage Basilisk is a siphovirus.

  18. Detecting overlapping coding sequences in virus genomes

    Directory of Open Access Journals (Sweden)

    Brown Chris M

    2006-02-01

    Full Text Available Abstract Background Detecting new coding sequences (CDSs in viral genomes can be difficult for several reasons. The typically compact genomes often contain a number of overlapping coding and non-coding functional elements, which can result in unusual patterns of codon usage; conservation between related sequences can be difficult to interpret – especially within overlapping genes; and viruses often employ non-canonical translational mechanisms – e.g. frameshifting, stop codon read-through, leaky-scanning and internal ribosome entry sites – which can conceal potentially coding open reading frames (ORFs. Results In a previous paper we introduced a new statistic – MLOGD (Maximum Likelihood Overlapping Gene Detector – for detecting and analysing overlapping CDSs. Here we present (a an improved MLOGD statistic, (b a greatly extended suite of software using MLOGD, (c a database of results for 640 virus sequence alignments, and (d a web-interface to the software and database. Tests show that, from an alignment with just 20 mutations, MLOGD can discriminate non-overlapping CDSs from non-coding ORFs with a typical accuracy of up to 98%, and can detect CDSs overlapping known CDSs with a typical accuracy of 90%. In addition, the software produces a variety of statistics and graphics, useful for analysing an input multiple sequence alignment. Conclusion MLOGD is an easy-to-use tool for virus genome annotation, detecting new CDSs – in particular overlapping or short CDSs – and for analysing overlapping CDSs following frameshift sites. The software, web-server, database and supplementary material are available at http://guinevere.otago.ac.nz/mlogd.html.

  19. "Krüppeling" erythropoiesis : An unexpected broad spectrum of human red blood cell disorders due to KLF1 variants unveiled by genomic sequencing

    NARCIS (Netherlands)

    A. Perkins (Andrew); X. Xu (Xiangmin); D.R. Higgs (Douglas); G.P. Patrinos (George); A. Lionel, A. (Arnaud); J. Bieker (James); J.N.J. Philipsen (Sjaak)

    2016-01-01

    textabstractUntil recently our approach to the analysis of human genetic diseases has been to accurately phenotype patients and sequence the genes known to be associated with those phenotypes; for example, analysing the globin loci in cases of thalassemia. As sequencing has become increasingly acces

  20. "Krüppeling" erythropoiesis : An unexpected broad spectrum of human red blood cell disorders due to KLF1 variants unveiled by genomic sequencing

    NARCIS (Netherlands)

    A. Perkins (Andrew); X. Xu (Xiangmin); D.R. Higgs (Douglas); G.P. Patrinos (George); A. Lionel, A. (Arnaud); J. Bieker (James); J.N.J. Philipsen (Sjaak)

    2016-01-01

    textabstractUntil recently our approach to the analysis of human genetic diseases has been to accurately phenotype patients and sequence the genes known to be associated with those phenotypes; for example, analysing the globin loci in cases of thalassemia. As sequencing has become increasingly acces

  1. Rhipicephalus microplus strain Deutsch, whole genome shotgun sequencing project Version 2

    Science.gov (United States)

    The cattle tick, Rhipicephalus (Boophilus) microplus, has a genome over 2.4 times the size of the human genome, and with over 70% of repetitive DNA, this genome would prove very costly to sequence at today's prices and difficult to assemble and analyze. Cot filtration/selection techniques were used ...

  2. Human genome: proto-oncogenes and proretroviruses.

    Science.gov (United States)

    Kisselev, L L; Chumakov, I M; Zabarovsky, E R; Prassolov, V S; Mett, V L; Berditchevsky, F B; Tret'yakov, L D

    1985-01-01

    A brief review of the studies undertaken at the Laboratory for Molecular Bases of Oncogenesis (Institute of Molecular Biology, Moscow) till middle of 1984 is presented. The human genome contains multiple dispersed nucleotide sequences related to the proto-oncogene mos and to proretroviral sequences in tight juxtaposition to each other. From sequencing appropriate cloned fragments of human DNA in phage and plasmid vectors it follows that one of these regions, NV-1, is a pseudogene of proto-mos with partial duplications and two Alu elements intervening its coding sequence, and the other, CL-1, seems to be also a mos-related gene with a deletion of the internal part of the structural gene. CL-1 is flanked by a proretroviral-like sequence including tRNAiMet binding site and U5 (part of the long terminal repeat). The proretroviral-like sequences are transcribed in 21-35S poly(A)+RNA abundant in normal and malignant human cells. Two hypotheses are proposed: endogenous retroviruses take part in amplification of at least some proto-oncogenes; proto-oncogenes are inactivated via insertion of movable genetic elements and conversion into pseudogenes. Potential oncogenicity of a normal human genome undergoes two controversial influences: it increases due to proto-oncogene amplification and decreases due to inactivation of some of them.

  3. Draft genome sequence of the intestinal parasite Blastocystis subtype 4-isolate WR1

    Directory of Open Access Journals (Sweden)

    Ivan Wawrzyniak

    2015-06-01

    Full Text Available The intestinal protistan parasite Blastocystis is characterized by an extensive genetic variability with 17 subtypes (ST1–ST17 described to date. Only the whole genome of a human ST7 isolate was previously sequenced. Here we report the draft genome sequence of Blastocystis ST4-WR1 isolated from a laboratory rodent at Singapore.

  4. Whole genome sequence of the emerging oomycete pathogen Pythium insidiosum strain CDC-B5653 isolated from an infected human in the USA

    Directory of Open Access Journals (Sweden)

    Marina S. Ascunce

    2016-03-01

    Full Text Available Pythium insidiosum ATCC 200269 strain CDC-B5653, an isolate from necrotizing lesions on the mouth and eye of a 2-year-old boy in Memphis, Tennessee, USA, was sequenced using a combination of Illumina MiSeq (300 bp paired-end, 14 millions reads and PacBio (10  Kb fragment library, 356,001 reads. The sequencing data were assembled using SPAdes version 3.1.0, yielding a total genome size of 45.6 Mb contained in 8992 contigs, N50 of 13 Kb, 57% G + C content, and 17,867 putative protein-coding genes. This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession JRHR00000000.

  5. An evaluation of Comparative Genome Sequencing (CGS by comparing two previously-sequenced bacterial genomes

    Directory of Open Access Journals (Sweden)

    Herring Christopher D

    2007-08-01

    Full Text Available Abstract Background With the development of new technology, it has recently become practical to resequence the genome of a bacterium after experimental manipulation. It is critical though to know the accuracy of the technique used, and to establish confidence that all of the mutations were detected. Results In order to evaluate the accuracy of genome resequencing using the microarray-based Comparative Genome Sequencing service provided by Nimblegen Systems Inc., we resequenced the E. coli strain W3110 Kohara using MG1655 as a reference, both of which have been completely sequenced using traditional sequencing methods. CGS detected 7 of 8 small sequence differences, one large deletion, and 9 of 12 IS element insertions present in W3110, but did not detect a large chromosomal inversion. In addition, we confirmed that CGS also detected 2 SNPs, one deletion and 7 IS element insertions that are not present in the genome sequence, which we attribute to changes that occurred after the creation of the W3110 lambda clone library. The false positive rate for SNPs was one per 244 Kb of genome sequence. Conclusion CGS is an effective way to detect multiple mutations present in one bacterium relative to another, and while highly cost-effective, is prone to certain errors. Mutations occurring in repeated sequences or in sequences with a high degree of secondary structure may go undetected. It is also critical to follow up on regions of interest in which SNPs were not called because they often indicate deletions or IS element insertions.

  6. Inconsistencies in Neanderthal genomic DNA sequences.

    Directory of Open Access Journals (Sweden)

    Jeffrey D Wall

    2007-10-01

    Full Text Available Two recently published papers describe nuclear DNA sequences that were obtained from the same Neanderthal fossil. Our reanalyses of the data from these studies show that they are not consistent with each other and point to serious problems with the data quality in one of the studies, possibly due to modern human DNA contaminants and/or a high rate of sequencing errors.

  7. Why Assembling Plant Genome Sequences Is So Challenging

    Directory of Open Access Journals (Sweden)

    Pedro Seoane

    2012-09-01

    Full Text Available In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed.

  8. Why Assembling Plant Genome Sequences Is So Challenging

    Science.gov (United States)

    Claros, Manuel Gonzalo; Bautista, Rocío; Guerrero-Fernández, Darío; Benzerki, Hicham; Seoane, Pedro; Fernández-Pozo, Noé

    2012-01-01

    In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233

  9. ReRep: Computational detection of repetitive sequences in genome survey sequences (GSS

    Directory of Open Access Journals (Sweden)

    Alves-Ferreira Marcelo

    2008-09-01

    Full Text Available Abstract Background Genome survey sequences (GSS offer a preliminary global view of a genome since, unlike ESTs, they cover coding as well as non-coding DNA and include repetitive regions of the genome. A more precise estimation of the nature, quantity and variability of repetitive sequences very early in a genome sequencing project is of considerable importance, as such data strongly influence the estimation of genome coverage, library quality and progress in scaffold construction. Also, the elimination of repetitive sequences from the initial assembly process is important to avoid errors and unnecessary complexity. Repetitive sequences are also of interest in a variety of other studies, for instance as molecular markers. Results We designed and implemented a straightforward pipeline called ReRep, which combines bioinformatics tools for identifying repetitive structures in a GSS dataset. In a case study, we first applied the pipeline to a set of 970 GSSs, sequenced in our laboratory from the human pathogen Leishmania braziliensis, the causative agent of leishmaniosis, an important public health problem in Brazil. We also verified the applicability of ReRep to new sequencing technologies using a set of 454-reads of an Escheria coli. The behaviour of several parameters in the algorithm is evaluated and suggestions are made for tuning of the analysis. Conclusion The ReRep approach for identification of repetitive elements in GSS datasets proved to be straightforward and efficient. Several potential repetitive sequences were found in a L. braziliensis GSS dataset generated in our laboratory, and further validated by the analysis of a more complete genomic dataset from the EMBL and Sanger Centre databases. ReRep also identified most of the E. coli K12 repeats prior to assembly in an example dataset obtained by automated sequencing using 454 technology. The parameters controlling the algorithm behaved consistently and may be tuned to the properties

  10. An overview of the human genome project

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.

    1994-01-01

    The human genome project is one of the most ambitious scientific projects to date, with the ultimate goal being a nucleotide sequence for all four billion bases of human DNA. In the process of determining the nucleotide sequence for each base, the location, function, and regulatory regions from the estimated 100,000 human genes will be identified. The genome project itself relies upon maps of the human genetic code derived from several different levels of resolution. Genetic linkage analysis provides a low resolution genome map. The information for genetic linkage maps is derived from the analysis of chromosome specific markers such as Sequence Tagged Sites (STSs), Variable Number of Tandem Repeats (VNTRs) or other polymorphic (highly informative) loci in a number of different-families. Using this information the location of an unknown disease gene can be limited to a region comprised of one million base pairs of DNA or less. After this point, one must construct or have access to a physical map of the region of interest. Physical mapping involves the construction of an ordered overlapping (contiguous) set of recombinant DNA clones. These clones may be derived from a number of different vectors including cosmids, Bacterial Artificial Chromosomes (BACs), P1 derived Artificial Chromosomes (PACs), somatic cell hybrids, or Yeast Artificial Chromosomes (YACs). The ultimate goal for physical mapping is to establish a completely overlapping (contiguous) set of clones for the entire genome. After a gene or region of interest has been localized using physical mapping the nucleotide sequence is determined. The overlap between genetic mapping, physical mapping and DNA sequencing has proven to be a powerful tool for the isolation of disease genes through positional cloning.

  11. Whole genome sequence-based serogrouping of Listeria monocytogenes isolates.

    Science.gov (United States)

    Hyden, Patrick; Pietzka, Ariane; Lennkh, Anna; Murer, Andrea; Springer, Burkhard; Blaschitz, Marion; Indra, Alexander; Huhulescu, Steliana; Allerberger, Franz; Ruppitsch, Werner; Sensen, Christoph W

    2016-10-10

    Whole genome sequencing (WGS) is currently becoming the method of choice for characterization of Listeria monocytogenes isolates in national reference laboratories (NRLs). WGS is superior with regards to accuracy, resolution and analysis speed in comparison to several other methods including serotyping, PCR, pulsed field gel electrophoresis (PFGE), multilocus sequence typing (MLST), multilocus variable number tandem repeat analysis (MLVA), and multivirulence-locus sequence typing (MVLST), which have been used thus far for the characterization of bacterial isolates (and are still important tools in reference laboratories today) to control and prevent listeriosis, one of the major sources of foodborne diseases for humans. Backward compatibility of WGS to former methods can be maintained by extraction of the respective information from WGS data. Serotyping was the first subtyping method for L. monocytogenes capable of differentiating 12 serovars and national reference laboratories still perform serotyping and PCR-based serogrouping as a first level classification method for Listeria monocytogenes surveillance. Whole genome sequence based core genome MLST analysis of a L. monocytogenes collection comprising 172 isolates spanning all 12 serotypes was performed for serogroup determination. These isolates clustered according to their serotypes and it was possible to group them either into the IIa, IIc, IVb or IIb clusters, respectively, which were generated by minimum spanning tree (MST) and neighbor joining (NJ) tree data analysis, demonstrating the power of the new approach. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Detecting long tandem duplications in genomic sequences

    Directory of Open Access Journals (Sweden)

    Audemard Eric

    2012-05-01

    Full Text Available Abstract Background Detecting duplication segments within completely sequenced genomes provides valuable information to address genome evolution and in particular the important question of the emergence of novel functions. The usual approach to gene duplication detection, based on all-pairs protein gene comparisons, provides only a restricted view of duplication. Results In this paper, we introduce ReD Tandem, a software using a flow based chaining algorithm targeted at detecting tandem duplication arrays of moderate to longer length regions, with possibly locally weak similarities, directly at the DNA level. On the A. thaliana genome, using a reference set of tandem duplicated genes built using TAIR,a we show that ReD Tandem is able to predict a large fraction of recently duplicated genes (dS  Conclusions ReD Tandem allows to identify large tandem duplications without any annotation, leading to agnostic identification of tandem duplications. This approach nicely complements the usual protein gene based which ignores duplications involving non coding regions. It is however inherently restricted to relatively recent duplications. By recovering otherwise ignored events, ReD Tandem gives a more comprehensive view of existing evolutionary processes and may also allow to improve existing annotations.

  13. Whole genome sequence analysis of the TALLYHO/Jng mouse.

    Science.gov (United States)

    Denvir, James; Boskovic, Goran; Fan, Jun; Primerano, Donald A; Parkman, Jacaline K; Kim, Jung Han

    2016-11-11

    The TALLYHO/Jng (TH) mouse is a polygenic model for obesity and type 2 diabetes first described in the literature in 2001. The origin of the TH strain is an outbred colony of the Theiler Original strain and mice derived from this source were selectively bred for male hyperglycemia establishing an inbred strain at The Jackson Laboratory. TH mice manifest many of the disease phenotypes observed in human obesity and type 2 diabetes. We sequenced the whole genome of TH mice maintained at Marshall University to a depth of approximately 64.8X coverage using data from three next generation sequencing runs. Genome-wide, we found approximately 4.31 million homozygous single nucleotide polymorphisms (SNPs) and 1.10 million homozygous small insertions and deletions (indels) of which 98,899 SNPs and 163,720 indels were unique to the TH strain compared to 28 previously sequenced inbred mouse strains. In order to identify potentially clinically-relevant genes, we intersected our list of SNP and indel variants with human orthologous genes in which variants were associated in GWAS studies with obesity, diabetes, and metabolic syndrome, and with genes previously shown to confer a monogenic obesity phenotype in humans, and found several candidate variants that could be functionally tested using TH mice. Further, we filtered our list of variants to those occurring in an obesity quantitative trait locus, tabw2, identified in TH mice and found a missense polymorphism in the Cidec gene and characterized this variant's effect on protein function. We generated a complete catalog of variants in TH mice using the data from whole genome sequencing. Our findings will facilitate the identification of causal variants that underlie metabolic diseases in TH mice and will enable identification of candidate susceptibility genes for complex human obesity and type 2 diabetes.

  14. Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome

    Directory of Open Access Journals (Sweden)

    Crooijmans Richard PMA

    2009-08-01

    Full Text Available Abstract Background Although the Illumina 1 G Genome Analyzer generates billions of base pairs of sequence data, challenges arise in sequence selection due to the varying sequence quality. Therefore, in the framework of the International Porcine SNP Chip Consortium, this pilot study aimed to evaluate the impact of the quality level of the sequenced bases on mapping quality and identification of true SNPs on a large scale. Results DNA pooled from five animals from a commercial boar line was digested with DraI; 150–250-bp fragments were isolated and end-sequenced using the Illumina 1 G Genome Analyzer, yielding 70,348,064 sequences 36-bp long. Rules were developed to select sequences, which were then aligned to unique positions in a reference genome. Sequences were selected based on quality, and three thresholds of sequence quality (SQ were compared. The highest threshold of SQ allowed identification of a larger number of SNPs (17,489, distributed widely across the pig genome. In total, 3,142 SNPs were validated with a success rate of 96%. The correlation between estimated minor allele frequency (MAF and genotyped MAF was moderate, and SNPs were highly polymorphic in other pig breeds. Lowering the SQ threshold and maintaining the same criteria for SNP identification resulted in the discovery of fewer SNPs (16,768, of which 259 were not identified using higher SQ levels. Validation of SNPs found exclusively in the lower SQ threshold had a success rate of 94% and a low correlation between estimated MAF and genotyped MAF. Base change analysis suggested that the rate of transitions in the pig genome is likely to be similar to that observed in humans. Chromosome X showed reduced nucleotide diversity relative to autosomes, as observed for other species. Conclusion Large numbers of SNPs can be identified reliably by creating strict rules for sequence selection, which simultaneously decreases sequence ambiguity. Selection of sequences using a higher SQ

  15. Emergence and Evolution of Hominidae-Specific Coding and Noncoding Genomic Sequences

    OpenAIRE

    Saber, Morteza Mahmoudi; Adeyemi Babarinde, Isaac; Hettiarachchi, Nilmini; Saitou, Naruya

    2016-01-01

    Family Hominidae, which includes humans and great apes, is recognized for unique complex social behavior and intellectual abilities. Despite the increasing genome data, however, the genomic origin of its phenotypic uniqueness has remained elusive. Clade-specific genes and highly conserved noncoding sequences (HCNSs) are among the high-potential evolutionary candidates involved in driving clade-specific characters and phenotypes. On this premise, we analyzed whole genome sequences along with g...

  16. Complete genome sequence of a sapovirus from a child in Zhejiang, China.

    Science.gov (United States)

    Zhou, Xiaohong; Sun, Yi; Shang, Xiaochun; Gao, Jian; Zhao, Xueqin; Shuai, Huiqun; Zhang, Rui; Zhang, Yanjun

    2016-10-01

    Although Sapovirus (Caliciviridae) has been accepted as one of the causes of acute gastroenteritis worldwide, little is known about the genetic characteristics of the whole genome of sapoviruses in China, especially those that infect humans. Here we report the complete genome sequence of a sapovirus strain, Human/Zhejiang1/2015/China, obtained from a child with acute gastroenteritis in Hangzhou, Zhejiang Province, China. Samples were collected and delivered to the CDC laboratories and were detected by RT-PCR. Sanger sequencing was used to obtain the full genome and molecular characterization of the genome was determined. A phylogenetic analysis of the genome was also performed. The results indicated that Human/Zhejiang1/2015/China belongs to Genogroup I. No recombination events were detected. This is the first complete sequence from a child to be reported in China. The sequence information is important for surveillance of this emerging gastrointestinal infection.

  17. Genome sequence of the brown Norway rat yields insights into mammalian evolution

    Energy Technology Data Exchange (ETDEWEB)

    Gibbs, Richard A.; Weinstock, George M.; Metzker, Michael L.; Muzny, Donna M.; Sodergren, Erica J.; Scherer, Steven; Scott, Graham; Steffen, David; Worley, Kim C.; Burch, Paula E.; Okwuonu, Geoffrey; Hines, Sandra; Lewis, Lora; DeRamo, Christine; Delgado, Oliver; Dugan-Rocha, Shannon; Miner, George; Morgan, Margaret; Hawes, Alicia; Gill, Rachel; Holt, Robert A.; Adams, Mark D.; Amanatides, Peter G.; Baden-Tillson, Holly; Barnstead, Mary; Chin, Soo; Evans, Cheryl A.; Ferriera, Steven; Fosler, Carl; Glodek, Anna; Gu, Zhiping; Jennings, Don; Kraft, Cheryl L.; Nguyen, Trixie; Pfannkoch, Cynthia M.; Sitter, Cynthia; Sutton, Granger G.; Venter, J. Craig; Woodage, Trevor; Smith, Douglas; Lee, Hong-Maei; Gustafson, Erik; Cahill, Patrick; Kana, Arnold; Doucette-Stamm, Lynn; Weinstock, Keith; Fechtel, Kim; Weiss, Robert B.; Dunn, Diane M.; Green, Eric D.; Blakesley, Robert W.; Bouffard, Gerard G.; de Jong, Pieter J.; Osoegawa, Kazutoyo; Zhu, Baoli; Marra, Marco; Schein, Jacqueline; Bosdet, Ian; Fjell, Chris; Jones, Steven; Krzywinski, Martin; Mathewson, Carrie; Siddiqui, Asim; Wye, Natasja; McPherson, John; Zhao, Shaying; Fraser, Claire M.; Shetty, Jyoti; Shatsman, Sofiya; Geer, Keita; Chen, Yixin; Abramzon, Sofyia; Nierman, William C.; Havlak, Paul H.; Chen, Rui; Durbin, K. James; Egan, Amy; Ren, Yanru; Song, Xing-Zhi; Li, Bingshan; Liu, Yue; Qin, Xiang; Cawley, Simon; Cooney, A.J.; D' Souza, Lisa M.; Martin, Kirt; Wu, Jia Qian; Gonzalez-Garay, Manuel L.; Jackson, Andrew R.; Kalafus, Kenneth J.; McLeod, Michael P.; Milosavljevic, Aleksandar; Virk, Davinder; Volkov, Andrei; Wheeler, David A.; Zhang, Zhengdong; Bailey, Jeffrey A.; Eichler, Evan E.; Tuzun, Eray; Birney, Ewan; Mongin, Emmanuel; Ureta-Vidal, Abel; Woodwark, Cara; Zdobnov, Evgeny; Bork, Peer; Suyama, Mikita; Torrents, David; Alexandersson, Marina; Trask, Barbara J.; Young, Janet M.; et al.

    2004-02-02

    The laboratory rat (Rattus norvegicus) is an indispensable tool in experimental medicine and drug development, having made inestimable contributions to human health. We report here the genome sequence of the Brown Norway (BN) rat strain. The sequence represents a high-quality 'draft' covering over 90 percent of the genome. The BN rat sequence is the third complete mammalian genome to be deciphered, and three-way comparisons with the human and mouse genomes resolve details of mammalian evolution. This first comprehensive analysis includes genes and proteins and their relation to human disease, repeated sequences, comparative genome-wide studies of mammalian orthologous chromosomal regions and rearrangement breakpoints, reconstruction of ancestral karyotypes and the events leading to existing species, rates of variation, and lineage-specific and lineage-independent evolutionary events such as expansion of gene families, orthology relations and protein evolution.

  18. Population genetic analysis of shotgun assemblies of genomic sequences from multiple individuals

    DEFF Research Database (Denmark)

    Hellmann, Ines; Mang, Yuan; Gu, Zhiping

    2008-01-01

    for individual reads. Applying this method to data from the Celera human genome sequencing and SNP discovery project, we obtain estimates of nucleotide diversity in windows spanning the human genome and show that the diversity to divergence ratio is reduced in regions of low recombination. Furthermore, we show...

  19. Rapid whole genome sequencing and precision neonatology.

    Science.gov (United States)

    Petrikin, Joshua E; Willig, Laurel K; Smith, Laurie D; Kingsmore, Stephen F

    2015-12-01

    Traditionally, genetic testing has been too slow or perceived to be impractical to initial management of the critically ill neonate. Technological advances have led to the ability to sequence and interpret the entire genome of a neonate in as little as 26 h. As the cost and speed of testing decreases, the utility of whole genome sequencing (WGS) of neonates for acute and latent genetic illness increases. Analyzing the entire genome allows for concomitant evaluation of the currently identified 5588 single gene diseases. When applied to a select population of ill infants in a level IV neonatal intensive care unit, WGS yielded a diagnosis of a causative genetic disease in 57% of patients. These diagnoses may lead to clinical management changes ranging from transition to palliative care for uniformly lethal conditions for alteration or initiation of medical or surgical therapy to improve outcomes in others. Thus, institution of 2-day WGS at time of acute presentation opens the possibility of early implementation of precision medicine. This implementation may create opportunities for early interventional, frequently novel or off-label therapies that may alter disease trajectory in infants with what would otherwise be fatal disease. Widespread deployment of rapid WGS and precision medicine will raise ethical issues pertaining to interpretation of variants of unknown significance, discovery of incidental findings related to adult onset conditions and carrier status, and implementation of medical therapies for which little is known in terms of risks and benefits. Despite these challenges, precision neonatology has significant potential both to decrease infant mortality related to genetic diseases with onset in newborns and to facilitate parental decision making regarding transition to palliative care.

  20. Genomic Sequence Comparisons, 1987-2003 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    George M. Church

    2004-07-29

    This project was to develop new DNA sequencing and RNA and protein quantitation methods and related genome annotation tools. The project began in 1987 with the development of multiplex sequencing (published in Science in 1988), and one of the first automated sequencing methods. This lead to the first commercial genome sequence in 1994 and to the establishment of the main commercial participants (GTC then Agencourt) in the public DOE/NIH genome project. In collaboration with GTC we contributed to one of the first complete DOE genome sequences, in 1997, that of Methanobacterium thermoautotropicum, a species of great relevance to energy-rich gas production.

  1. Genome sequence and analysis of the tuber crop potato

    DEFF Research Database (Denmark)

    Xu, X.; Pan, S.; Cheng, S.

    2011-01-01

    and assemble 86% of the 844-megabase genome. We predict 39,031 protein-coding genes and present evidence for at least two genome duplication events indicative of a palaeopolyploid origin. As the first genome sequence of an asterid, the potato genome reveals 2,642 genes specific to this large angiosperm clade...

  2. About human genome Acerca del genoma humano

    Directory of Open Access Journals (Sweden)

    Mojica Tobias

    2000-12-01

    Full Text Available The sequence ofthe human genome, an undertaking ofadvanced countries, is nearly complete. In fact The Human Genome Project has around 85% ofthe genome sequenced 4 times on the average, with an accuracy of roughly 1 in 1000 nucleotides. Celera Genomics, on the other hand, has 99% of the sequence of one person, with an accuracy of slightly less than 1 in 100. The Human Genome project trives to produce a physical map for public consumption following a step by step strategy, in which the researcher sequences short DNA fragments belonging to Iarger fragments of known relative
    position. Celera Genomics wants to have very rapidly a physical map which can be quickly used to develop genetic tests and drugs, which can be later sold. We feel that the sequence ofthe human genome is something, which will widen the gap between advanced and backward countries.En este artículo se revisan los eventos, alrededor del secuenciamiento del genoma humano, que han llevado a tanta excitación en los medios noticiosos y académicos en meses recientes. Se explican las estrategias que han llevado a que tengamos dos borradores diferentes pero complementarios, la estrategia llevada a cabo con el dinero
    de los contribuyentes que consiste en establecer el orden de fragmentos grandes de DNA antes de ser secuenciados y la estrategia llevada a cabo con dineros aportados por la industria privada, con la intención de explotar gananciosamente el conocimiento derivado del genoma humano. El genoma humano a mediados del año 2000 es
    un borrador incompleto que cubre aliededor del 85% de la secuencia con una precisión de un error en 1000 y el 99% de la secuencia con una precisión menor de 1 en 100 nucleótidos, También se discuten algunas de las posibles avenidas

  3. The sequence and analysis of a Chinese pig genome

    Directory of Open Access Journals (Sweden)

    Fang Xiaodong

    2012-11-01

    Full Text Available Abstract Background The pig is an economically important food source, amounting to approximately 40% of all meat consumed worldwide. Pigs also serve as an important model organism because of their similarity to humans at the anatomical, physiological and genetic level, making them very useful for studying a variety of human diseases. A pig strain of particular interest is the miniature pig, specifically the Wuzhishan pig (WZSP, as it has been extensively inbred. Its high level of homozygosity offers increased ease for selective breeding for specific traits and a more straightforward understanding of the genetic changes that underlie its biological characteristics. WZSP also serves as a promising means for applications in surgery, tissue engineering, and xenotransplantation. Here, we report the sequencing and analysis of an inbreeding WZSP genome. Results Our results reveal some unique genomic features, including a relatively high level of homozygosity in the diploid genome, an unusual distribution of heterozygosity, an over-representation of tRNA-derived transposable elements, a small amount of porcine endogenous retrovirus, and a lack of type C retroviruses. In addition, we carried out systematic research on gene evolution, together with a detailed investigation of the counterparts of human drug target genes. Conclusion Our results provide the opportunity to more clearly define the genomic character of pig, which could enhance our ability to create more useful pig models.

  4. Pigs in sequence space: A 0.66X coverage pig genome survey based on shotgun sequencing

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Schierup, M.H.; Jorgensen, F.G.

    2005-01-01

    efficient in pig compared to human, but not as efficient as in mouse, and pig seems to have an isochore structure most similar to the structure in human. Conclusion: The addition of the pig to the set of species sequenced at low coverage adds to the understanding of selective pressures that have acted...... sequences (0.66X coverage) from the pig genome. The data are hereby released (NCBI Trace repository with center name "SDJVP", and project name "Sino-Danish Pig Genome Project") together with an initial evolutionary analysis. The non-repetitive fraction of the sequences was aligned to the UCSC human......-mouse alignment and the resulting three-species alignments were annotated using the human genome annotation. Ultra-conserved elements and miRNAs were identified. The results show that for each of these types of orthologous data, pig is much closer to human than mouse is. Purifying selection has been more...

  5. Two genome sequences of the same bacterial strain, Gluconacetobacter diazotrophicus PAl 5, suggest a new standard in genome sequence submission.

    Science.gov (United States)

    Giongo, Adriana; Tyler, Heather L; Zipperer, Ursula N; Triplett, Eric W

    2010-06-15

    Gluconacetobacter diazotrophicus PAl 5 is of agricultural significance due to its ability to provide fixed nitrogen to plants. Consequently, its genome sequence has been eagerly anticipated to enhance understanding of endophytic nitrogen fixation. Two groups have sequenced the PAl 5 genome from the same source (ATCC 49037), though the resulting sequences contain a surprisingly high number of differences. Therefore, an optical map of PAl 5 was constructed in order to determine which genome assembly more closely resembles the chromosomal DNA by aligning each sequence against a physical map of the genome. While one sequence aligned very well, over 98% of the second sequence contained numerous rearrangements. The many differences observed between these two genome sequences could be owing to either assembly errors or rapid evolutionary divergence. The extent of the differences derived from sequence assembly errors could be assessed if the raw sequencing reads were provided by both genome centers at the time of genome sequence submission. Hence, a new genome sequence standard is proposed whereby the investigator supplies the raw reads along with the closed sequence so that the community can make more accurate judgments on whether differences observed in a single stain may be of biological origin or are simply caused by differences in genome assembly procedures.

  6. Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Kitcher, P.

    1998-11-01

    The Human Genome Project (HGP), launched in 1991, aims to map and sequence the human genome by 2006. During the fifteen-year life of the project, it is projected that $3 billion in federal funds will be allocated to it. The ultimate aims of spending this money are to analyze the structure of human DNA, to identify all human genes, to recognize the functions of those genes, and to prepare for the biology and medicine of the twenty-first century. The following summary examines some of the implications of the program, concentrating on its scientific import and on the ethical and social problems that it raises. Its aim is to expose principles that might be used in applying the information which the HGP will generate. There is no attempt here to translate the principles into detailed proposals for legislation. Arguments and discussion can be found in the full report, but, like this summary, that report does not contain any legislative proposals.

  7. Genome Sequence of Stachybotrys chartarum Strain 51-11

    OpenAIRE

    Betancourt, Doris A.; Dean, Timothy R.; Kim, Jean; Levy, Josh

    2015-01-01

    The Stachybotrys chartarum strain 51-11 genome was sequenced by shotgun sequencing utilizing Illumina HiSeq 2000 and PacBio technologies. Since S. chartarum has been implicated as having health impacts within water-damaged buildings, any information extracted from the genomic sequence data relating to toxins or the metabolism of the fungus might be useful.

  8. Complete Genome Sequence of Rift Valley Fever Virus Strain Lunyo.

    Science.gov (United States)

    Lumley, Sarah; Horton, Daniel L; Marston, Denise A; Johnson, Nicholas; Ellis, Richard J; Fooks, Anthony R; Hewson, Roger

    2016-04-14

    Using next-generation sequencing technologies, the first complete genome sequence of Rift Valley fever virus strain Lunyo is reported here. Originally reported as an attenuated antigenic variant strain from Uganda, genomic sequence analysis shows that Lunyo clusters together with other Ugandan isolates.

  9. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly

    NARCIS (Netherlands)

    Scheinin, I.; Sie, D.; Bengtsson, H.; Wiel, M.A. van de; Olshen, A.B.; Thuijl, H.F. van; Essen, H.F. van; Eijk, P.P.; Rustenburg, F.; Meijer, G.A.; Reijneveld, J.C.; Wesseling, P.; Pinkel, D.; Albertson, D.G.; Ylstra, B.

    2014-01-01

    Detection of DNA copy number aberrations by shallow whole-genome sequencing (WGS) faces many challenges, including lack of completion and errors in the human reference genome, repetitive sequences, polymorphisms, variable sample quality, and biases in the sequencing procedures. Formalin-fixed paraff

  10. Helminth genomics: The implications for human health.

    Directory of Open Access Journals (Sweden)

    Paul J Brindley

    Full Text Available More than two billion people (one-third of humanity are infected with parasitic roundworms or flatworms, collectively known as helminth parasites. These infections cause diseases that are responsible for enormous levels of morbidity and mortality, delays in the physical development of children, loss of productivity among the workforce, and maintenance of poverty. Genomes of the major helminth species that affect humans, and many others of agricultural and veterinary significance, are now the subject of intensive genome sequencing and annotation. Draft genome sequences of the filarial worm Brugia malayi and two of the human schistosomes, Schistosoma japonicum and S. mansoni, are now available, among others. These genome data will provide the basis for a comprehensive understanding of the molecular mechanisms involved in helminth nutrition and metabolism, host-dependent development and maturation, immune evasion, and evolution. They are likely also to predict new potential vaccine candidates and drug targets. In this review, we present an overview of these efforts and emphasize the potential impact and importance of these new findings.

  11. Prospects for the Chinese Human Genome Project (HGP)at the beginning of next century

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chinese Human Genome Project (CHGP) as part of the international human genome research has achieved significant progress and created a solid foundation for further development. While participating in the human genome sequencing and gene discovery, the emphasis of CHGP in the next century will be laid on functional genomics. The strategy, resources and some policy issues will be addressed.

  12. Draft Genome Sequences of Eight Nontypeable Haemophilus influenzae Strains Previously Characterized Using an Electrophoretic Typing Scheme.

    Science.gov (United States)

    Mussa, Huda J; VanWagoner, Timothy M; Morton, Daniel J; Seale, Thomas W; Whitby, Paul W; Stull, Terrence L

    2015-11-25

    Nontypeable Haemophilus influenzae is an important cause of human disease. Strains were selected for genome sequencing to represent the breadth of nontypeable strains within the species, as previously defined by the electrophoretic mobility of 16 metabolic enzymes.

  13. Exome sequencing of a multigenerational human pedigree.

    Directory of Open Access Journals (Sweden)

    Dale J Hedges

    Full Text Available Over the next few years, the efficient use of next-generation sequencing (NGS in human genetics research will depend heavily upon the effective mechanisms for the selective enrichment of genomic regions of interest. Recently, comprehensive exome capture arrays have become available for targeting approximately 33 Mb or approximately 180,000 coding exons across the human genome. Selective genomic enrichment of the human exome offers an attractive option for new experimental designs aiming to quickly identify potential disease-associated genetic variants, especially in family-based studies. We have evaluated a 2.1 M feature human exome capture array on eight individuals from a three-generation family pedigree. We were able to cover up to 98% of the targeted bases at a long-read sequence read depth of > or = 3, 86% at a read depth of > or = 10, and over 50% of all targets were covered with > or = 20 reads. We identified up to 14,284 SNPs and small indels per individual exome, with up to 1,679 of these representing putative novel polymorphisms. Applying the conservative genotype calling approach HCDiff, the average rate of detection of a variant allele based on Illumina 1 M BeadChips genotypes was 95.2% at > or = 10x sequence. Further, we propose an advantageous genotype calling strategy for low covered targets that empirically determines cut-off thresholds at a given coverage depth based on existing genotype data. Application of this method was able to detect >99% of SNPs covered > or = 8x. Our results offer guidance for "real-world" applications in human genetics and provide further evidence that microarray-based exome capture is an efficient and reliable method to enrich for chromosomal regions of interest in next-generation sequencing experiments.

  14. Exome sequencing of a multigenerational human pedigree.

    Science.gov (United States)

    Hedges, Dale J; Hedges, Dale; Burges, Dan; Powell, Eric; Almonte, Cherylyn; Huang, Jia; Young, Stuart; Boese, Benjamin; Schmidt, Mike; Pericak-Vance, Margaret A; Martin, Eden; Zhang, Xinmin; Harkins, Timothy T; Züchner, Stephan

    2009-12-14

    Over the next few years, the efficient use of next-generation sequencing (NGS) in human genetics research will depend heavily upon the effective mechanisms for the selective enrichment of genomic regions of interest. Recently, comprehensive exome capture arrays have become available for targeting approximately 33 Mb or approximately 180,000 coding exons across the human genome. Selective genomic enrichment of the human exome offers an attractive option for new experimental designs aiming to quickly identify potential disease-associated genetic variants, especially in family-based studies. We have evaluated a 2.1 M feature human exome capture array on eight individuals from a three-generation family pedigree. We were able to cover up to 98% of the targeted bases at a long-read sequence read depth of > or = 3, 86% at a read depth of > or = 10, and over 50% of all targets were covered with > or = 20 reads. We identified up to 14,284 SNPs and small indels per individual exome, with up to 1,679 of these representing putative novel polymorphisms. Applying the conservative genotype calling approach HCDiff, the average rate of detection of a variant allele based on Illumina 1 M BeadChips genotypes was 95.2% at > or = 10x sequence. Further, we propose an advantageous genotype calling strategy for low covered targets that empirically determines cut-off thresholds at a given coverage depth based on existing genotype data. Application of this method was able to detect >99% of SNPs covered > or = 8x. Our results offer guidance for "real-world" applications in human genetics and provide further evidence that microarray-based exome capture is an efficient and reliable method to enrich for chromosomal regions of interest in next-generation sequencing experiments.

  15. Coevolution between simple sequence repeats (SSRs and virus genome size

    Directory of Open Access Journals (Sweden)

    Zhao Xiangyan

    2012-08-01

    Full Text Available Abstract Background Relationship between the level of repetitiveness in genomic sequence and genome size has been investigated by making use of complete prokaryotic and eukaryotic genomes, but relevant studies have been rarely made in virus genomes. Results In this study, a total of 257 viruses were examined, which cover 90% of genera. The results showed that simple sequence repeats (SSRs is strongly, positively and significantly correlated with genome size. Certain repeat class is distributed in a certain range of genome sequence length. Mono-, di- and tri- repeats are widely distributed in all virus genomes, tetra- SSRs as a common component consist in genomes which more than 100 kb in size; in the range of genome  Conclusions We conducted this research standing on the height of the whole virus. We concluded that genome size is an important factor in affecting the occurrence of SSRs; hosts are also responsible for the variances of SSRs content to a certain degree.

  16. Draft Genome Sequences of Klebsiella variicola Plant Isolates.

    Science.gov (United States)

    Martínez-Romero, Esperanza; Silva-Sanchez, Jesús; Barrios, Humberto; Rodríguez-Medina, Nadia; Martínez-Barnetche, Jesús; Téllez-Sosa, Juan; Gómez-Barreto, Rosa Elena; Garza-Ramos, Ulises

    2015-09-10

    Three endophytic Klebsiella variicola isolates-T29A, 3, and 6A2, obtained from sugar cane stem, maize shoots, and banana leaves, respectively-were used for whole-genome sequencing. Here, we report the draft genome sequences of circular chromosomes and plasmids. The genomes contain plant colonization and cellulases genes. This study will help toward understanding the genomic basis of K. variicola interaction with plant hosts.

  17. Linking yeast genetics to mammalian genomes: Identification and mapping of the human homolog of CDC27 via the expressed sequence tag (EST) data base

    Energy Technology Data Exchange (ETDEWEB)

    Tugendreich, S.; Hieter, P. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)); Boguski, M.S. (National Institute of Health, Bethesda, MD (United States)); Seldin, M.S. (Duke Univ. Medical Center, Durham, NC (United States))

    1993-11-15

    The authors describe a strategy for quickly identifying and positionally mapping human homologs of yeast genes to cross-reference the biological and genetic information known about yeast genes to mammalian chromosomal maps. Optimized computer search methods have been developed to scan the rapidly expanding expressed sequence tag (EST) data base to find human open reading frames related to yeast protein sequence queries. These methods take advantage of the newly developed BLOSUM scoring matrices and the query masking function SEG. The corresponding human cDNA is then used to obtain a high-resolution map position on human and mouse chromosomes, providing the links between yeast genetic analysis and mapped mammalian loci. By using these methods, a human homolog of Saccharomyces cerevisiae CDC27 has been identified and mapped to human chromosome 17 and mouse chromosome 11 between the Pkca and Erbb-2 genes. Human CDC27 encodes an 823-aa protein with global similarity to its fungal homologs CDC27, nuc2+, and BimA. Comprehensive cross-referencing of genes and mutant phenotypes described in humans, mice, and yeast should accelerate the study of normal eukaryotic biology and human disease states.

  18. Next-generation sequencing strategies for characterizing the turkey genome.

    Science.gov (United States)

    Dalloul, Rami A; Zimin, Aleksey V; Settlage, Robert E; Kim, Sungwon; Reed, Kent M

    2014-02-01

    The turkey genome sequencing project was initiated in 2008 and has relied primarily on next-generation sequencing (NGS) technologies. Our first efforts used a synergistic combination of 2 NGS platforms (Roche/454 and Illumina GAII), detailed bacterial artificial chromosome (BAC) maps, and unique assembly tools to sequence and assemble the genome of the domesticated turkey, Meleagris gallopavo. Since the first release in 2010, efforts to improve the genome assembly, gene annotation, and genomic analyses continue. The initial assembly build (2.01) represented about 89% of the genome sequence with 17X coverage depth (931 Mb). Sequence contigs were assigned to 30 of the 40 chromosomes with approximately 10% of the assembled sequence corresponding to unassigned chromosomes (ChrUn). The sequence has been refined through both genome-wide and area-focused sequencing, including shotgun and paired-end sequencing, and targeted sequencing of chromosomal regions with low or incomplete coverage. These additional efforts have improved the sequence assembly resulting in 2 subsequent genome builds of higher genome coverage (25X/Build3.0 and 30X/Build4.0) with a current sequence totaling 1,010 Mb. Further, BAC with end sequences assigned to the Z/W and MG18 (MHC) chromosomes, ChrUn, or not placed in the previous build were isolated, deeply sequenced (Hi-Seq), and incorporated into the latest build (5.0). To aid in the annotation and to generate a gene expression atlas of major tissues, a comprehensive set of RNA samples was collected at various developmental stages of female and male turkeys. Transcriptome sequencing data (using Illumina Hi-Seq) will provide information to enhance the final assembly and ultimately improve sequence annotation. The most current sequence covers more than 95% of the turkey genome and should yield a much improved gene level of annotation, making it a valuable resource for studying genetic variations underlying economically important traits in poultry.

  19. Gender And The Human Genome

    Directory of Open Access Journals (Sweden)

    Chadwick Ruth

    2009-01-01

    Full Text Available Gender issues arise in relation to the human genome across a number of dimensions: the level of attention given to the nuclear genome as opposed to the mitochondrial; the level of basic scientific research; decision-making in the clinic related to both reproductive decision-making on the one hand, and diagnostic and predictive testing on the other; and wider societal implications. Feminist bioethics offers a useful perspective for addressing these issues.

  20. Next-generation sequencing and large genome assemblies

    OpenAIRE

    Henson, Joseph; Tischler, German; Ning, Zemin

    2012-01-01

    The next-generation sequencing (NGS) revolution has drastically reduced time and cost requirements for sequencing of large genomes, and also qualitatively changed the problem of assembly. This article reviews the state of the art in de novo genome assembly, paying particular attention to mammalian-sized genomes. The strengths and weaknesses of the main sequencing platforms are highlighted, leading to a discussion of assembly and the new challenges associated with NGS data. Current approaches ...

  1. Genome sequencing and annotation of Morganella sp. SA36

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Morganella sp. Strain SA36, isolated from water spring in Aljouf region, Saudi Arabia. The draft genome size is 2,564,439 bp with a G + C content of 51.1% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDNQ00000000.

  2. Genome sequencing and annotation of Stenotrophomonas sp. SAM8

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Stenotrophomonas sp. strain SAM8, isolated from environmental water. The draft genome size is 3,665,538 bp with a G + C content of 67.2% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDAV00000000.

  3. Genome sequencing and annotation of Proteus sp. SAS71

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2015-12-01

    Full Text Available We report draft genome sequence of Proteus sp. strain SAS71, isolated from water spring in Aljouf region, Saudi Arabia. The draft genome size is 3,037,704 bp with a G + C content of 39.3% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDIU00000000.

  4. Complete Genome Sequence of Corynebacterium pseudotuberculosis Viscerotropic Strain N1

    Science.gov (United States)

    Portela, Ricardo W.; Sousa, Thiago J.; Rocha, Flávia; Pereira, Felipe L.; Dorella, Fernanda A.; Carvalho, Alex F.; Menezes, Nildo; Macedo, Eduardo S.; Moura-Costa, Lilia F.; Meyer, Roberto; Leal, Carlos A. G.; Figueiredo, Henrique C.; Azevedo, Vasco

    2016-01-01

    We present the complete genome sequence of Corynebacterium pseudotuberculosis strain N1. The sequencing was performed with the Ion Torrent Personal Genome Machine system. The genome is a circular chromosome with 2,337,845 bp, a G+C content of 52.85%, and a total of 2,045 coding sequences, 12 rRNAs, 49 tRNAs, and 58 pseudogenes. PMID:26823597

  5. Insights from 20 years of bacterial genome sequencing

    DEFF Research Database (Denmark)

    Land, Miriam; Hauser, Loren; Jun, Se-Ran

    2015-01-01

    the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative...... (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident...

  6. Integrating sequencing technologies in personal genomics: optimal low cost reconstruction of structural variants.

    Directory of Open Access Journals (Sweden)

    Jiang Du

    2009-07-01

    Full Text Available The goal of human genome re-sequencing is obtaining an accurate assembly of an individual's genome. Recently, there has been great excitement in the development of many technologies for this (e.g. medium and short read sequencing from companies such as 454 and SOLiD, and high-density oligo-arrays from Affymetrix and NimbelGen, with even more expected to appear. The costs and sensitivities of these technologies differ considerably from each other. As an important goal of personal genomics is to reduce the cost of re-sequencing to an affordable point, it is worthwhile to consider optimally integrating technologies. Here, we build a simulation toolbox that will help us optimally combine different technologies for genome re-sequencing, especially in reconstructing large structural variants (SVs. SV reconstruction is considered the most challenging step in human genome re-sequencing. (It is sometimes even harder than de novo assembly of small genomes because of the duplications and repetitive sequences in the human genome. To this end, we formulate canonical problems that are representative of issues in reconstruction and are of small enough scale to be computationally tractable and simulatable. Using semi-realistic simulations, we show how we can combine different technologies to optimally solve the assembly at low cost. With mapability maps, our simulations efficiently handle the inhomogeneous repeat-containing structure of the human genome and the computational complexity of practical assembly algorithms. They quantitatively show how combining different read lengths is more cost-effective than using one length, how an optimal mixed sequencing strategy for reconstructing large novel SVs usually also gives accurate detection of SNPs/indels, how paired-end reads can improve reconstruction efficiency, and how adding in arrays is more efficient than just sequencing for disentangling some complex SVs. Our strategy should facilitate the sequencing of

  7. Draft Genome Sequences of Mycobacterium bovis BZ 31150 and Mycobacterium bovis B2 7505, Pathogenic Bacteria Isolated from Archived Captive Animal Bronchial Washes and Human Sputum Samples in Uganda.

    Science.gov (United States)

    Wanzala, Sylvia I; Nakavuma, Jesca; Travis, Dominic A; Kia, Praiscillia; Ogwang, Sam; Sreevatsan, Srinand

    2015-10-08

    Bovine tuberculosis (BTB), a zoonotic infection of cattle caused by Mycobacterium bovis, results in losses of $3 billion to the global agricultural industry and represents the fourth most important livestock disease worldwide. M. bovis as a source of human infection is likely underreported due to the culture medium conditions used to isolate the organism from sputum or other sample sources. We report here the draft genome sequences of M. bovis BZ 31150, isolated from a bronchial washing from a captive chimpanzee, and M. bovis B2 7505, isolated from a human sputum sample in Uganda.

  8. Genome evolution and meiotic maps by massively parallel DNA sequencing: spotted gar, an outgroup for the teleost genome duplication.

    Science.gov (United States)

    Amores, Angel; Catchen, Julian; Ferrara, Allyse; Fontenot, Quenton; Postlethwait, John H

    2011-08-01

    Genomic resources for hundreds of species of evolutionary, agricultural, economic, and medical importance are unavailable due to the expense of well-assembled genome sequences and difficulties with multigenerational studies. Teleost fish provide many models for human disease but possess anciently duplicated genomes that sometimes obfuscate connectivity. Genomic information representing a fish lineage that diverged before the teleost genome duplication (TGD) would provide an outgroup for exploring the mechanisms of evolution after whole-genome duplication. We exploited massively parallel DNA sequencing to develop meiotic maps with thrift and speed by genotyping F(1) offspring of a single female and a single male spotted gar (Lepisosteus oculatus) collected directly from nature utilizing only polymorphisms existing in these two wild individuals. Using Stacks, software that automates the calling of genotypes from polymorphisms assayed by Illumina sequencing, we constructed a map containing 8406 markers. RNA-seq on two map-cross larvae provided a reference transcriptome that identified nearly 1000 mapped protein-coding markers and allowed genome-wide analysis of conserved synteny. Results showed that the gar lineage diverged from teleosts before the TGD and its genome is organized more similarly to that of humans than teleosts. Thus, spotted gar provides a critical link between medical models in teleost fish, to which gar is biologically similar, and humans, to which gar is genomically similar. Application of our F(1) dense mapping strategy to species with no prior genome information promises to facilitate comparative genomics and provide a scaffold for ordering the numerous contigs arising from next generation genome sequencing.

  9. Functional noncoding sequences derived from SINEs in the mammalian genome.

    Science.gov (United States)

    Nishihara, Hidenori; Smit, Arian F A; Okada, Norihiro

    2006-07-01

    Recent comparative analyses of mammalian sequences have revealed that a large number of nonprotein-coding genomic regions are under strong selective constraint. Here, we report that some of these loci have been derived from a newly defined family of ancient SINEs (short interspersed repetitive elements). This is a surprising result, as SINEs and other transposable elements are commonly thought to be genomic parasites. We named the ancient SINE family AmnSINE1, for Amniota SINE1, because we found it to be present in mammals as well as in birds, and some copies predate the mammalian-bird split 310 million years ago (Mya). AmnSINE1 has a chimeric structure of a 5S rRNA and a tRNA-derived SINE, and is related to five tRNA-derived SINE families that we characterized here in the coelacanth, dogfish shark, hagfish, and amphioxus genomes. All of the newly described SINE families have a common central domain that is also shared by zebrafish SINE3, and we collectively name them the DeuSINE (Deuterostomia SINE) superfamily. Notably, of the approximately 1000 still identifiable copies of AmnSINE1 in the human genome, 105 correspond to loci phylogenetically highly conserved among mammalian orthologs. The conservation is strongest over the central domain. Thus, AmnSINE1 appears to be the best example of a transposable element of which a significant fraction of the copies have acquired genomic functionality.

  10. Whole genome sequencing analysis of Plasmodium vivax using whole genome capture

    Directory of Open Access Journals (Sweden)

    Bright A

    2012-06-01

    Full Text Available Abstract Background Malaria caused by Plasmodium vivax is an experimentally neglected severe disease with a substantial burden on human health. Because of technical limitations, little is known about the biology of this important human pathogen. Whole genome analysis methods on patient-derived material are thus likely to have a substantial impact on our understanding of P. vivax pathogenesis and epidemiology. For example, it will allow study of the evolution and population biology of the parasite, allow parasite transmission patterns to be characterized, and may facilitate the identification of new drug resistance genes. Because parasitemias are typically low and the parasite cannot be readily cultured, on-site leukocyte depletion of blood samples is typically needed to remove human DNA that may be 1000X more abundant than parasite DNA. These features have precluded the analysis of archived blood samples and require the presence of laboratories in close proximity to the collection of field samples for optimal pre-cryopreservation sample preparation. Results Here we show that in-solution hybridization capture can be used to extract P. vivax DNA from human contaminating DNA in the laboratory without the need for on-site leukocyte filtration. Using a whole genome capture method, we were able to enrich P. vivax DNA from bulk genomic DNA from less than 0.5% to a median of 55% (range 20%-80%. This level of enrichment allows for efficient analysis of the samples by whole genome sequencing and does not introduce any gross biases into the data. With this method, we obtained greater than 5X coverage across 93% of the P. vivax genome for four P. vivax strains from Iquitos, Peru, which is similar to our results using leukocyte filtration (greater than 5X coverage across 96% . Conclusion The whole genome capture technique will enable more efficient whole genome analysis of P. vivax from a larger geographic region and from valuable archived sample collections.

  11. Complete Genome Sequence of the Campylobacter ureolyticus Clinical Isolate RIGS 9880

    DEFF Research Database (Denmark)

    Miller, William G; Yee, Emma; On, Stephen L W;

    2015-01-01

    The emerging pathogen Campylobacter ureolyticus has been isolated from human and animal genital infections, human periodontal disease, domestic and food animals, and from cases of human gastroenteritis. We report the whole-genome sequence of the human clinical isolate RIGS 9880, which is the first...

  12. Complete Genome Sequence of a Human-Invasive Salmonella enterica Serovar Typhimurium Strain of the Emerging Sequence Type 213 Harboring a Multidrug Resistance IncA/C Plasmid and a blaCMY-2-Carrying IncF Plasmid.

    Science.gov (United States)

    Silva, Claudia; Calva, Edmundo; Calva, Juan J; Wiesner, Magdalena; Fernández-Mora, Marcos; Puente, José L; Vinuesa, Pablo

    2015-11-12

    Salmonella enterica subsp. enterica serovar Typhimurium strain 33676 was isolated in Mexico City, Mexico, from a patient with a systemic infection, and its complete genome sequence was determined using PacBio single-molecule real-time technology. Strain 33676 harbors an IncF plasmid carrying the extended-spectrum cephalosporin gene blaCMY-2 and a multidrug resistance IncA/C plasmid. Copyright © 2015 Silva et al.

  13. ChickVD: a sequence variation database for the chicken genome

    DEFF Research Database (Denmark)

    Wang, Jing; He, Ximiao; Ruan, Jue

    2005-01-01

    Working in parallel with the efforts to sequence the chicken (Gallus gallus) genome, the Beijing Genomics Institute led an international team of scientists from China, USA, UK, Sweden, The Netherlands and Germany to map extensive DNA sequence variation throughout the chicken genome by sampling DNA...... from domestic breeds. Using the Red Jungle Fowl genome sequence as a reference, we identified 3.1 million non-redundant DNA sequence variants. To facilitate the application of our data to avian genetics and to provide a foundation for functional and evolutionary studies, we created the 'Chicken...... Variation Database' (ChickVD). A graphical MapView shows variants mapped onto the chicken genome in the context of gene annotations and other features, including genetic markers, trait loci, cDNAs, chicken orthologs of human disease genes and raw sequence traces. ChickVD also stores information...

  14. A taste of pineapple evolution through genome sequencing.

    Science.gov (United States)

    Xu, Qing; Liu, Zhong-Jian

    2015-12-01

    The genome sequence assembly of the highly heterozygous Ananas comosus and its varieties is an impressive technical achievement. The sequence opens the door to a greater understanding of pineapple morphology and evolution.

  15. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing.

    Science.gov (United States)

    Berlin, Konstantin; Koren, Sergey; Chin, Chen-Shan; Drake, James P; Landolin, Jane M; Phillippy, Adam M

    2015-06-01

    Long-read, single-molecule real-time (SMRT) sequencing is routinely used to finish microbial genomes, but available assembly methods have not scaled well to larger genomes. We introduce the MinHash Alignment Process (MHAP) for overlapping noisy, long reads using probabilistic, locality-sensitive hashing. Integrating MHAP with the Celera Assembler enabled reference-grade de novo assemblies of Saccharomyces cerevisiae, Arabidopsis thaliana, Drosophila melanogaster and a human hydatidiform mole cell line (CHM1) from SMRT sequencing. The resulting assemblies are highly continuous, include fully resolved chromosome arms and close persistent gaps in these reference genomes. Our assembly of D. melanogaster revealed previously unknown heterochromatic and telomeric transition sequences, and we assembled low-complexity sequences from CHM1 that fill gaps in the human GRCh38 reference. Using MHAP and the Celera Assembler, single-molecule sequencing can produce de novo near-complete eukaryotic assemblies that are 99.99% accurate when compared with available reference genomes.

  16. A Snapshot of the Emerging Tomato Genome Sequence

    Directory of Open Access Journals (Sweden)

    Lukas A. Mueller

    2009-03-01

    Full Text Available The genome of tomato ( L. is being sequenced by an international consortium of 10 countries (Korea, China, the United Kingdom, India, the Netherlands, France, Japan, Spain, Italy, and the United States as part of the larger “International Solanaceae Genome Project (SOL: Systems Approach to Diversity and Adaptation” initiative. The tomato genome sequencing project uses an ordered bacterial artificial chromosome (BAC approach to generate a high-quality tomato euchromatic genome sequence for use as a reference genome for the Solanaceae and euasterids. Sequence is deposited at GenBank and at the SOL Genomics Network (SGN. Currently, there are around 1000 BACs finished or in progress, representing more than a third of the projected euchromatic portion of the genome. An annotation effort is also underway by the International Tomato Annotation Group. The expected number of genes in the euchromatin is ∼40,000, based on an estimate from a preliminary annotation of 11% of finished sequence. Here, we present this first snapshot of the emerging tomato genome and its annotation, a short comparison with potato ( L. sequence data, and the tools available for the researchers to exploit this new resource are also presented. In the future, whole-genome shotgun techniques will be combined with the BAC-by-BAC approach to cover the entire tomato genome. The high-quality reference euchromatic tomato sequence is expected to be near completion by 2010.

  17. Whole-Genome Sequence Assembly for Mammalian Genomes: Arachne 2

    OpenAIRE

    Jaffe, David B.; Butler, Jonathan; Gnerre, Sante; Mauceli, Evan; Lindblad-Toh, Kerstin; Jill P. Mesirov; Michael C Zody; Lander, Eric S.

    2003-01-01

    We previously described the whole-genome assembly program Arachne, presenting assemblies of simulated data for small to mid-sized genomes. Here we describe algorithmic adaptations to the program, allowing for assembly of mammalian-size genomes, and also improving the assembly of smaller genomes. Three principal changes were simultaneously made and applied to the assembly of the mouse genome, during a six-month period of development: (1) Supercontigs (scaffolds) were iteratively broken and rej...

  18. Insights from twenty years of bacterial genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jun, Se Ran [ORNL; Nookaew, Intawat [ORNL; Leuze, Michael Rex [ORNL; Ahn, Tae-Hyuk [ORNL; Karpinets, Tatiana V [ORNL; Lund, Ole [Technical University of Denmark; Kora, Guruprasad H [ORNL; Wassenaar, Trudy [Molecular Microbiology & Genomics Consultants, Zotzenheim, Germany; Poudel, Suresh [ORNL; Ussery, David W [ORNL

    2015-01-01

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date, there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome

  19. Sequence and expression analysis of gaps in human chromosome 20

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Seemann, Stefan; Mang, Yuan;

    2012-01-01

    The finished human genome-assemblies comprise several hundred un-sequenced euchromatic gaps, which may be rich in long polypurine/polypyrimidine stretches. Human chromosome 20 (chr 20) currently has three unfinished gaps remaining on its q-arm. All three gaps are within gene-dense regions and....../or overlap disease-associated loci, including the DLGAP4 locus. In this study, we sequenced ~99% of all three unfinished gaps on human chr 20, determined their complete genomic sizes and assessed epigenetic profiles using a combination of Sanger sequencing, mate pair paired-end high-throughput sequencing...... and chromatin, methylation and expression analyses. We found histone 3 trimethylated at Lysine 27 to be distributed across all three gaps in immortalized B-lymphocytes. In one gap, five novel CpG islands were predominantly hypermethylated in genomic DNA from peripheral blood lymphocytes and human cerebellum...

  20. Report on the Human Genome Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, I.; Cahill, G.; Cantor, C.; Caskey, T.; Dulbecco, R.; Engelhardt, D. L.; Hood, L.; Lerman, L. S.; Mendelsohn, M. L.; Sinsheimer, R. L.; Smith, T.; Soll, D.; Stormo, G.; White, R. L.

    1987-04-01

    The report urges DOE and the Nation to commit to a large. multi-year. multidisciplinary. technological undertaking to order and sequence the human genome. This effort will first require significant innovation in general capability to manipulate DNA. major new analytical methods for ordering and sequencing. theoretical developments in computer science and mathematical biology, and great expansions in our ability to store and manipulate the information and to interface it with other large and diverse genetic databases. The actual ordering and sequencing involves the coordinated processing of some 3 billion bases from a reference human genome. Science is poised on the rudimentary edge of being able to read and understand human genes. A concerted. broadly based. scientific effort to provide new methods of sufficient power and scale should transform this activity from an inefficient one-gene-at-a-time. single laboratory effort into a coordinated. worldwide. comprehensive reading of "the book of man". The effort will be extraordinary in scope and magnitude. but so will be the benefit to biological understanding. new technology and the diagnosis and treatment of human disease.

  1. Nullomers and High Order Nullomers in Genomic Sequences

    Science.gov (United States)

    Vergni, Davide; Santoni, Daniele

    2016-01-01

    A nullomer is an oligomer that does not occur as a subsequence in a given DNA sequence, i.e. it is an absent word of that sequence. The importance of nullomers in several applications, from drug discovery to forensic practice, is now debated in the literature. Here, we investigated the nature of nullomers, whether their absence in genomes has just a statistical explanation or it is a peculiar feature of genomic sequences. We introduced an extension of the notion of nullomer, namely high order nullomers, which are nullomers whose mutated sequences are still nullomers. We studied different aspects of them: comparison with nullomers of random sequences, CpG distribution and mean helical rise. In agreement with previous results we found that the number of nullomers in the human genome is much larger than expected by chance. Nevertheless antithetical results were found when considering a random DNA sequence preserving dinucleotide frequencies. The analysis of CpG frequencies in nullomers and high order nullomers revealed, as expected, a high CpG content but it also highlighted a strong dependence of CpG frequencies on the dinucleotide position, suggesting that nullomers have their own peculiar structure and are not simply sequences whose CpG frequency is biased. Furthermore, phylogenetic trees were built on eleven species based on both the similarities between the dinucleotide frequencies and the number of nullomers two species share, showing that nullomers are fairly conserved among close species. Finally the study of mean helical rise of nullomers sequences revealed significantly high mean rise values, reinforcing the hypothesis that those sequences have some peculiar structural features. The obtained results show that nullomers are the consequence of the peculiar structure of DNA (also including biased CpG frequency and CpGs islands), so that the hypermutability model, also taking into account CpG islands, seems to be not sufficient to explain nullomer phenomenon

  2. Analysis of chimpanzee history based on genome sequence alignments.

    Directory of Open Access Journals (Sweden)

    Jennifer L Caswell

    2008-04-01

    Full Text Available Population geneticists often study small numbers of carefully chosen loci, but it has become possible to obtain orders of magnitude for more data from overlaps of genome sequences. Here, we generate tens of millions of base pairs of multiple sequence alignments from combinations of three western chimpanzees, three central chimpanzees, an eastern chimpanzee, a bonobo, a human, an orangutan, and a macaque. Analysis provides a more precise understanding of demographic history than was previously available. We show that bonobos and common chimpanzees were separated approximately 1,290,000 years ago, western and other common chimpanzees approximately 510,000 years ago, and eastern and central chimpanzees at least 50,000 years ago. We infer that the central chimpanzee population size increased by at least a factor of 4 since its separation from western chimpanzees, while the western chimpanzee effective population size decreased. Surprisingly, in about one percent of the genome, the genetic relationships between humans, chimpanzees, and bonobos appear to be different from the species relationships. We used PCR-based resequencing to confirm 11 regions where chimpanzees and bonobos are not most closely related. Study of such loci should provide information about the period of time 5-7 million years ago when the ancestors of humans separated from those of the chimpanzees.

  3. Human cellular protein patterns and their link to genome DNA sequence data: usefulness of two-dimensional gel electrophoresis and microsequencing

    DEFF Research Database (Denmark)

    Celis, J E; Rasmussen, H H; Leffers, H

    1991-01-01

    Analysis of cellular protein patterns by computer-aided 2-dimensional gel electrophoresis together with recent advances in protein sequence analysis have made possible the establishment of comprehensive 2-dimensional gel protein databases that may link protein and DNA information and that offer...... a global approach to the study of the cell. Using the integrated approach offered by 2-dimensional gel protein databases it is now possible to reveal phenotype specific protein (or proteins), to microsequence them, to search for homology with previously identified proteins, to clone the cDNAs, to assign...... partial protein sequence to genes for which the full DNA sequence and the chromosome location is known, and to study the regulatory properties and function of groups of proteins that are coordinately expressed in a given biological process. Human 2-dimensional gel protein databases are becoming...

  4. Sequence imputation of HPV16 genomes for genetic association studies.

    Directory of Open Access Journals (Sweden)

    Benjamin Smith

    Full Text Available BACKGROUND: Human Papillomavirus type 16 (HPV16 causes over half of all cervical cancer and some HPV16 variants are more oncogenic than others. The genetic basis for the extraordinary oncogenic properties of HPV16 compared to other HPVs is unknown. In addition, we neither know which nucleotides vary across and within HPV types and lineages, nor which of the single nucleotide polymorphisms (SNPs determine oncogenicity. METHODS: A reference set of 62 HPV16 complete genome sequences was established and used to examine patterns of evolutionary relatedness amongst variants using a pairwise identity heatmap and HPV16 phylogeny. A BLAST-based algorithm was developed to impute complete genome data from partial sequence information using the reference database. To interrogate the oncogenic risk of determined and imputed HPV16 SNPs, odds-ratios for each SNP were calculated in a case-control viral genome-wide association study (VWAS using biopsy confirmed high-grade cervix neoplasia and self-limited HPV16 infections from Guanacaste, Costa Rica. RESULTS: HPV16 variants display evolutionarily stable lineages that contain conserved diagnostic SNPs. The imputation algorithm indicated that an average of 97.5±1.03% of SNPs could be accurately imputed. The VWAS revealed specific HPV16 viral SNPs associated with variant lineages and elevated odds ratios; however, individual causal SNPs could not be distinguished with certainty due to the nature of HPV evolution. CONCLUSIONS: Conserved and lineage-specific SNPs can be imputed with a high degree of accuracy from limited viral polymorphic data due to the lack of recombination and the stochastic mechanism of variation accumulation in the HPV genome. However, to determine the role of novel variants or non-lineage-specific SNPs by VWAS will require direct sequence analysis. The investigation of patterns of genetic variation and the identification of diagnostic SNPs for lineages of HPV16 variants provides a valuable

  5. The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081.

    Directory of Open Access Journals (Sweden)

    Nicholas R Thomson

    2006-12-01

    Full Text Available The human enteropathogen, Yersinia enterocolitica, is a significant link in the range of Yersinia pathologies extending from mild gastroenteritis to bubonic plague. Comparison at the genomic level is a key step in our understanding of the genetic basis for this pathogenicity spectrum. Here we report the genome of Y. enterocolitica strain 8081 (serotype 0:8; biotype 1B and extensive microarray data relating to the genetic diversity of the Y. enterocolitica species. Our analysis reveals that the genome of Y. enterocolitica strain 8081 is a patchwork of horizontally acquired genetic loci, including a plasticity zone of 199 kb containing an extraordinarily high density of virulence genes. Microarray analysis has provided insights into species-specific Y. enterocolitica gene functions and the intraspecies differences between the high, low, and nonpathogenic Y. enterocolitica biotypes. Through comparative genome sequence analysis we provide new information on the evolution of the Yersinia. We identify numerous loci that represent ancestral clusters of genes potentially important in enteric survival and pathogenesis, which have been lost or are in the process of being lost, in the other sequenced Yersinia lineages. Our analysis also highlights large metabolic operons in Y. enterocolitica that are absent in the related enteropathogen, Yersinia pseudotuberculosis, indicating major differences in niche and nutrients used within the mammalian gut. These include clusters directing, the production of hydrogenases, tetrathionate respiration, cobalamin synthesis, and propanediol utilisation. Along with ancestral gene clusters, the genome of Y. enterocolitica has revealed species-specific and enteropathogen-specific loci. This has provided important insights into the pathology of this bacterium and, more broadly, into the evolution of the genus. Moreover, wider investigations looking at the patterns of gene loss and gain in the Yersinia have highlighted common

  6. Dissecting the human microbiome with single-cell genomics.

    Science.gov (United States)

    Tolonen, Andrew C; Xavier, Ramnik J

    2017-06-14

    Recent advances in genome sequencing of single microbial cells enable the assignment of functional roles to members of the human microbiome that cannot currently be cultured. This approach can reveal the genomic basis of phenotypic variation between closely related strains and can be applied to the targeted study of immunogenic bacteria in disease.

  7. Sequence determinants of human microsatellite variability

    Directory of Open Access Journals (Sweden)

    Jakobsson Mattias

    2009-12-01

    Full Text Available Abstract Background Microsatellite loci are frequently used in genomic studies of DNA sequence repeats and in population studies of genetic variability. To investigate the effect of sequence properties of microsatellites on their level of variability we have analyzed genotypes at 627 microsatellite loci in 1,048 worldwide individuals from the HGDP-CEPH cell line panel together with the DNA sequences of these microsatellites in the human RefSeq database. Results Calibrating PCR fragment lengths in individual genotypes by using the RefSeq sequence enabled us to infer repeat number in the HGDP-CEPH dataset and to calculate the mean number of repeats (as opposed to the mean PCR fragment length, under the assumption that differences in PCR fragment length reflect differences in the numbers of repeats in the embedded repeat sequences. We find the mean and maximum numbers of repeats across individuals to be positively correlated with heterozygosity. The size and composition of the repeat unit of a microsatellite are also important factors in predicting heterozygosity, with tetra-nucleotide repeat units high in G/C content leading to higher heterozygosity. Finally, we find that microsatellites containing more separate sets of repeated motifs generally have higher heterozygosity. Conclusions These results suggest that sequence properties of microsatellites have a significant impact in determining the features of human microsatellite variability.

  8. Draft Genome Sequence of a Diarrheagenic Morganella morganii Isolate.

    Science.gov (United States)

    Singh, Pallavi; Mosci, Rebekah; Rudrik, James T; Manning, Shannon D

    2015-10-08

    This is a report of the whole-genome draft sequence of a diarrheagenic Morganella morganii isolate from a patient in Michigan, USA. This genome represents an important addition to the limited number of pathogenic M. morganii genomes available.

  9. Complete genome sequence of ‘Candidatus Liberibacter africanus’

    Science.gov (United States)

    The complete genome sequence of ‘Candidatus Liberibacter africanus’ (Laf), strain ptsapsy, was obtained by an Illumina HiSeq 2000. The Laf genome comprises 1,192,232 nucleotides, 34.5% GC content, 1,141 predicted coding sequences, 44 tRNAs, 3 complete copies of ribosomal RNA genes (16S, 23S and 5S) ...

  10. Genome sequencing and annotation of Cellulomonas sp. HZM

    Directory of Open Access Journals (Sweden)

    Patric Chua

    2015-09-01

    Full Text Available We report the draft genome sequence of Cellulomonas sp. HZM, isolated from a tropical peat swamp forest. The draft genome size is 3,559,280 bp with a G + C content of 73% and contains 3 rRNA sequences (single copies of 5S, 16S and 23S rRNA.

  11. Complete Genome Sequence of Staphylococcus pseudintermedius Type Strain LMG 22219

    Science.gov (United States)

    Abouelkhair, Mohamed A.; Riley, Matthew C.; Bemis, David A.

    2017-01-01

    ABSTRACT We report the first complete genome sequence of LMG 22219 (=ON 86T = CCUG 49543T), the Staphylococcus pseudintermedius type strain isolated from feline lung tissue. This sequence information will facilitate phylogenetic comparisons of staphylococcal species and other bacteria at the genome level. PMID:28209834

  12. Genome sequence of Kocuria palustris strain W4

    DEFF Research Database (Denmark)

    Herschend, Jakob; Raghupathi, Prem Krishnan; Røder, Henriette Lyng;

    2016-01-01

    We report the 3.09 Mb draft genome sequence ofKocuria palustrisW4, isolated from a slaughterhouse in Denmark.......We report the 3.09 Mb draft genome sequence ofKocuria palustrisW4, isolated from a slaughterhouse in Denmark....

  13. Genome sequence of Kocuria palustris strain W4

    DEFF Research Database (Denmark)

    Herschend, Jakob; Raghupathi, Prem Krishnan; Røder, Henriette Lyng

    2016-01-01

    We report the 3.09 Mb draft genome sequence ofKocuria palustrisW4, isolated from a slaughterhouse in Denmark.......We report the 3.09 Mb draft genome sequence ofKocuria palustrisW4, isolated from a slaughterhouse in Denmark....

  14. Nearly Complete Genome Sequence of Lactobacillus plantarum Strain NIZO2877

    NARCIS (Netherlands)

    Martino, M.E.; Bayjanov, J.R.; Joncour, P.; Hughes, S.; Gillet, B.; Kleerebezem, M; Siezen, R.; Hijum, S.A.F.T. van; Leulier, F.

    2015-01-01

    Lactobacillus plantarum is a versatile bacterial species that is isolated mostly from foods. Here, we present the first genome sequence of L. plantarum strain NIZO2877 isolated from a hot dog in Vietnam. Its two contigs represent a nearly complete genome sequence.

  15. Investigation of genome sequences within the family Pasteurellaceae

    DEFF Research Database (Denmark)

    Angen, Øystein; Ussery, David

    . The homology between genomes ranged from 47.2% to 94.1%. The number of genes found increased steadily for each sequence added to the analysis and the pan-genome of all 20 sequences consisted of around 8500 genes. On the other hand, the number of genes found in all strains steadily decreased when adding...

  16. Full Genome Sequence of Giant Panda Rotavirus Strain CH-1

    Science.gov (United States)

    Guo, Ling; Yang, Shaolin; Wang, Chengdong; Chen, Shijie; Yang, Xiaonong; Hou, Rong; Quan, Zifang; Hao, Zhongxiang

    2013-01-01

    We report here the complete genomic sequence of the giant panda rotavirus strain CH-1. This work is the first to document the complete genomic sequence (segments 1 to 11) of the CH-1 strain, which offers an effective platform for providing authentic research experiences to novice scientists. PMID:23469354

  17. Complete genome sequence of Enterobacter aerogenes KCTC 2190.

    Science.gov (United States)

    Shin, Sang Heum; Kim, Sewhan; Kim, Jae Young; Lee, Soojin; Um, Youngsoon; Oh, Min-Kyu; Kim, Young-Rok; Lee, Jinwon; Yang, Kap-Seok

    2012-05-01

    This is the first complete genome sequence of the Enterobacter aerogenes species. Here we present the genome sequence of E. aerogenes KCTC 2190, which contains 5,280,350 bp with a G + C content of 54.8 mol%, 4,912 protein-coding genes, and 109 structural RNAs.

  18. Draft Genome Sequence of Enterococcus mundtii CRL1656

    OpenAIRE

    2012-01-01

    We report the draft genome sequence of Enterococcus mundtii CRL1656, which was isolated from the stripping milk of a clinically healthy adult Holstein dairy cow from a dairy farm of the northwestern region of Tucumán (Argentina). The 3.10-Mb genome sequence consists of 450 large contigs and contains 2,741 predicted protein-coding genes.

  19. A gapless genome sequence of the fungus Botrytis cinerea

    NARCIS (Netherlands)

    Kan, Van Jan A.L.; Stassen, Joost H.M.; Mosbach, Andreas; Lee, Van Der Theo A.J.; Faino, Luigi; Farmer, Andrew D.; Papasotiriou, Dimitrios G.; Zhou, Shiguo; Seidl, Michael F.; Cottam, Eleanor; Edel, Dominique; Hahn, Matthias; Schwartz, David C.; Dietrich, Robert A.; Widdison, Stephanie; Scalliet, Gabriel

    2016-01-01

    Following earlier incomplete and fragmented versions of a genome sequence for the grey mould Botrytis cinerea, a gapless, near-finished genome sequence for B. cinerea strain B05.10 is reported. The assembly comprised 18 chromosomes and was confirmed by an optical map and a genetic map based on ap

  20. Draft Genome Sequence of Raoultella planticola, Isolated from River Water.

    Science.gov (United States)

    Jothikumar, Narayanan; Kahler, Amy; Strockbine, Nancy; Gladney, Lori; Hill, Vincent R

    2014-10-16

    We isolated Raoultella planticola from a river water sample, which was phenotypically indistinguishable from Escherichia coli on MI agar. The genome sequence of R. planticola was determined to gain information about its metabolic functions contributing to its false positive appearance of E. coli on MI agar. We report the first whole genome sequence of Raoultella planticola.

  1. Genome sequence of the Chlamydophila abortus variant strain LLG.

    Science.gov (United States)

    Sait, Michelle; Clark, Ewan M; Wheelhouse, Nick; Livingstone, Morag; Spalding, Lucy; Siarkou, Victoria I; Vretou, Evangelia; Smith, David G E; Lainson, F Alex; Longbottom, David

    2011-08-01

    Chlamydophila abortus is a common cause of ruminant abortion. Here we report the genome sequence of strain LLG, which differs genotypically and phenotypically from the wild-type strain S26/3. Genome sequencing revealed differences between LLG and S26/3 to occur in pseudogene content, in transmembrane head/inc family proteins, and in biotin biosynthesis genes.

  2. Draft Genome Sequence of Tannerella forsythia Type Strain ATCC 43037.

    Science.gov (United States)

    Friedrich, Valentin; Pabinger, Stephan; Chen, Tsute; Messner, Paul; Dewhirst, Floyd E; Schäffer, Christina

    2015-06-11

    Tannerella forsythia is an oral pathogen implicated in the development of periodontitis. Here, we report the draft genome sequence of the Tannerella forsythia strain ATCC 43037. The previously available genome of this designation (NCBI reference sequence NC_016610.1) was discovered to be derived from a different strain, FDC 92A2 (= ATCC BAA-2717).

  3. Draft Genome Sequence of Tannerella forsythia Type Strain ATCC 43037

    OpenAIRE

    Friedrich, Valentin; Pabinger, Stephan; Chen, Tsute; Messner, Paul; Dewhirst, Floyd E.; Schäffer, Christina

    2015-01-01

    Tannerella forsythia is an oral pathogen implicated in the development of periodontitis. Here, we report the draft genome sequence of the Tannerella forsythia strain ATCC 43037. The previously available genome of this designation (NCBI reference sequence NC_016610.1) was discovered to be derived from a different strain, FDC 92A2 (= ATCC BAA-2717).

  4. Nearly Complete Genome Sequence of Lactobacillus plantarum Strain NIZO2877

    NARCIS (Netherlands)

    Martino, M.E.; Bayjanov, J.R.; Joncour, P.; Hughes, S.; Gillet, B.; Kleerebezem, M; Siezen, R.; Hijum, S.A.F.T. van; Leulier, F.

    2015-01-01

    Lactobacillus plantarum is a versatile bacterial species that is isolated mostly from foods. Here, we present the first genome sequence of L. plantarum strain NIZO2877 isolated from a hot dog in Vietnam. Its two contigs represent a nearly complete genome sequence.

  5. Complete Genome Sequence of Lactobacillus plantarum CGMCC 8198

    Science.gov (United States)

    Dong, Qing-Qing; Hu, Hai-Jie; Wang, Qiu-Tong; Gu, Xiang-Chao; Zhou, Hao; Zhou, Wen-Juan; Ni, Xiao-Meng

    2017-01-01

    ABSTRACT We report the complete genome sequence of Lactobacillus plantarum CGMCC 8198, a novel probiotic strain isolated from fermented herbage. We have determined the complete genome sequence of strain L. plantarum CGMCC 8198, which consists of genes that are likely to be involved in dairy fermentation and that have probiotic qualities. PMID:28183756

  6. Sequencing of a Cultivated Diploid CottonGenome-Gossypium arboreum

    Institute of Scientific and Technical Information of China (English)

    WILKINS Thea A

    2008-01-01

    @@ Sequencing the genomes of crop species and model systems contributes significantly to our under-standing of the organization,structure and function of plant genomes.In a "white paper" published in2007,the cotton community set forth a strategic plan for sequencing the AD genome of cultivated up-land cotton that initially targets less complex diploid genomes.This strategy banks on the high degreeof conservation between diploid progenitors and AD species that will allow information derived fromdiploid genomes to be directly applied to the tetraploids.

  7. Comparison of 61 Sequenced Escherichia coli Genomes

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Wassenaar, T. M.; Ussery, David

    2010-01-01

    MLST was performed, many of the various strains appear jumbled and less well resolved. The predicted pan-genome comprises 15,741 gene families, and only 993 (6%) of the families are represented in every genome, comprising the core genome. The variable or 'accessory' genes thus make up more than 90......% of the pan-genome and about 80% of a typical genome; some of these variable genes tend to be co-localized on genomic islands. The diversity within the species E. coli, and the overlap in gene content between this and related species, suggests a continuum rather than sharp species borders in this group...

  8. Unexpected cross-species contamination in genome sequencing projects

    Directory of Open Access Journals (Sweden)

    Samier Merchant

    2014-11-01

    Full Text Available The raw data from a genome sequencing project sometimes contains DNA from contaminating organisms, which may be introduced during sample collection or sequence preparation. In some instances, these contaminants remain in the sequence even after assembly and deposition of the genome into public databases. As a result, searches of these databases may yield erroneous and confusing results. We used efficient microbiome analysis software to scan the draft assembly of domestic cow, Bos taurus, and identify 173 small contigs that appeared to derive from microbial contaminants. In the course of verifying these findings, we discovered that one genome, Neisseria gonorrhoeae TCDC-NG08107, although putatively a complete genome, contained multiple sequences that actually derived from the cow and sheep genomes. Our findings illustrate the need to carefully validate findings of anomalous DNA that rely on comparisons to either draft or finished genomes.

  9. Second generation sequencing of the mesothelioma tumor genome.

    Directory of Open Access Journals (Sweden)

    Raphael Bueno

    Full Text Available The current paradigm for elucidating the molecular etiology of cancers relies on the interrogation of small numbers of genes, which limits the scope of investigation. Emerging second-generation massively parallel DNA sequencing technologies have enabled more precise definition of the cancer genome on a global scale. We examined the genome of a human primary malignant pleural mesothelioma (MPM tumor and matched normal tissue by using a combination of sequencing-by-synthesis and pyrosequencing methodologies to a 9.6X depth of coverage. Read density analysis uncovered significant aneuploidy and numerous rearrangements. Method-dependent informatics rules, which combined the results of different sequencing platforms, were developed to identify and validate candidate mutations of multiple types. Many more tumor-specific rearrangements than point mutations were uncovered at this depth of sequencing, resulting in novel, large-scale, inter- and intra-chromosomal deletions, inversions, and translocations. Nearly all candidate point mutations appeared to be previously unknown SNPs. Thirty tumor-specific fusions/translocations were independently validated with PCR and Sanger sequencing. Of these, 15 represented disrupted gene-encoding regions, including kinases, transcription factors, and growth factors. One large deletion in DPP10 resulted in altered transcription and expression of DPP10 transcripts in a set of 53 additional MPM tumors correlated with survival. Additionally, three point mutations were observed in the coding regions of NKX6-2, a transcription regulator, and NFRKB, a DNA-binding protein involved in modulating NFKB1. Several regions containing genes such as PCBD2 and DHFR, which are involved in growth factor signaling and nucleotide synthesis, respectively, were selectively amplified in the tumor. Second-generation sequencing uncovered all types of mutations in this MPM tumor, with DNA rearrangements representing the dominant type.

  10. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    DEFF Research Database (Denmark)

    de Souza, S J; Camargo, A A; Briones, M R;

    2000-01-01

    by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48......Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central...... coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1, 181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes...

  11. Complete genome sequence of Campylobacter jejuni YH001 from beef liver which contains a novel plasmid

    Science.gov (United States)

    Campylobacter jejuni is an important foodborne pathogen that causes gastroenteritis in humans and is commonly found in poultry and meat products. Here, we report the complete genome sequence of a Campylobacter jejuni strain recently isolated from retail beef liver. The genome size was 1,712,361 bp, ...

  12. Sequencing and de novo assembly of 150 genomes from Denmark as a population reference

    DEFF Research Database (Denmark)

    Maretty, Lasse; Jensen, Jacob Malte; Petersen, Bent

    2017-01-01

    Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome ...

  13. Genome Sequence of the "Indian Bison Type" Biotype of Mycobacterium avium subsp. paratuberculosis Strain S5.

    Science.gov (United States)

    Singh, Shoor Vir; Kumar, Naveen; Singh, Shree Narayan; Bhattacharya, Tapas; Sohal, Jagdip Singh; Singh, Pravin Kumar; Singh, Ajay Vir; Singh, Brajesh; Chaubey, Kundan Kumar; Gupta, Saurabh; Sharma, Nitu; Kumar, Shailesh; Raghava, Gajendra Pal Singh

    2013-01-01

    We report the 4.79-Mb genome sequence of the "Indian Bison Type" biotype of Mycobacterium avium subsp. paratuberculosis strain S5, isolated from a terminally sick Jamunapari goat at the CIRG (Central Institute for Research on Goats) farm in India. This draft genome will help in studying novelties of this biotype, which is widely distributed in animals and human beings in India.

  14. Draft Genome Sequence of Exophiala mesophila, a Black Yeast with High Bioremediation Potential

    OpenAIRE

    2015-01-01

    The fungal genus Exophiala comprises both pathogen species, which cause severe infections in humans, and environmental species, which are able to degrade alkylbenzene compounds. The draft genome sequence of Exophiala mesophila presented here is the first genome assembly of an alkylbenzene-degrading organism belonging to the genus Exophiala.

  15. Draft Genome Sequence of Dematiaceous Coelomycete Pyrenochaeta sp. Strain UM 256, Isolated from Skin Scraping.

    Science.gov (United States)

    Yew, Su Mei; Chan, Chai Ling; Soo-Hoo, Tuck Soon; Na, Shiang Ling; Ong, Seong Siang; Hassan, Hamimah; Ngeow, Yun Fong; Hoh, Chee Choong; Lee, Kok Wei; Yee, Wai Yan; Ng, Kee Peng

    2013-05-30

    Pyrenochaeta, classified under the order Pleosporales, is known to cause diseases in plants and humans. Here, we report a draft genome sequence of a Pyrenochaeta sp. isolated from a skin scraping, with an estimated genome size of 39.4 Mb. Genes associated with the synthesis of proteases, toxins, plant cell wall degradation, and multidrug resistance were found.

  16. Draft Genome Sequence of the Probiotic Yeast Kluyveromyces marxianus fragilis B0399.

    Science.gov (United States)

    Quarella, Sara; Lovrovich, Paola; Scalabrin, Simone; Campedelli, Ilenia; Backovic, Ana; Gatto, Veronica; Cattonaro, Federica; Turello, Alessandro; Torriani, Sandra; Felis, Giovanna E

    2016-09-01

    Here, we report the draft genome sequence of Kluyveromyces marxianus fragilis B0399, the first yeast approved as a probiotic for human consumption not belonging to the genus Saccharomyces The genome is composed of 8 chromosomes, with a total size of 11.44 Mb, including mitochondrial DNA.

  17. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  18. Draft sequences of the radish (Raphanus sativus L.) genome.

    Science.gov (United States)

    Kitashiba, Hiroyasu; Li, Feng; Hirakawa, Hideki; Kawanabe, Takahiro; Zou, Zhongwei; Hasegawa, Yoichi; Tonosaki, Kaoru; Shirasawa, Sachiko; Fukushima, Aki; Yokoi, Shuji; Takahata, Yoshihito; Kakizaki, Tomohiro; Ishida, Masahiko; Okamoto, Shunsuke; Sakamoto, Koji; Shirasawa, Kenta; Tabata, Satoshi; Nishio, Takeshi

    2014-10-01

    Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ≥ 300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified.

  19. Complete genome sequence of Anaerococcus prevotii type strain (PC1T)

    Energy Technology Data Exchange (ETDEWEB)

    LaButti, Kurt [U.S. Department of Energy, Joint Genome Institute; Pukall, Rudiger [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Steenblock, Katja [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Chen, Feng [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chain, Patrick S. G. [Lawrence Livermore National Laboratory (LLNL); Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Brettin, Tom [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute

    2009-01-01

    Anaerococcus prevotii (Foubert and Douglas 1948) Ezaki et al. 2001 is the type species of the genus, and is of phylogenetic interest because of its arguable assignment to the provisionally arranged family Peptostreptococcaceae . A. prevotii is an obligate anaerobic coccus, usually arranged in clumps or tetrads. The strain, whose genome is described here, was originally isolated from human plasma; other strains of the species were also isolated from clinical specimen. Here we describe the features of this organism, together with the complete genome sequence and annotation. This is the first completed genome sequence of a member of the genus. Next to Finegoldia magna, A. prevotii is only the second species from the family Peptostreptococcaceae for which a complete genome sequence is described. The 1,998,633 bp long genome (chromosome and one plasmid) with its 1852 protein-coding and 61 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  20. A decade of pig genome sequencing: a window on pig domestication and evolution.

    Science.gov (United States)

    Groenen, Martien A M

    2016-03-29

    Insight into how genomes change and adapt due to selection addresses key questions in evolutionary biology and in domestication of animals and plants by humans. In that regard, the pig and its close relatives found in Africa and Eurasia represent an excellent group of species that enables studies of the effect of both natural and human-mediated selection on the genome. The recent completion of the draft genome sequence of a domestic pig and the development of next-generation sequencing technology during the past decade have created unprecedented possibilities to address these questions in great detail. In this paper, I review recent whole-genome sequencing studies in the pig and closely-related species that provide insight into the demography, admixture and selection of these species and, in particular, how domestication and subsequent selection of Sus scrofa have shaped the genomes of these animals.

  1. Minimal absent words in four human genome assemblies.

    Directory of Open Access Journals (Sweden)

    Sara P Garcia

    Full Text Available Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we aim to contribute to the catalogue of human genomic variation by investigating the variation in number and content of minimal absent words within a species, using four human genome assemblies. We compare the reference human genome GRCh37 assembly, the HuRef assembly of the genome of Craig Venter, the NA12878 assembly from cell line GM12878, and the YH assembly of the genome of a Han Chinese individual. We find the variation in number and content of minimal absent words between assemblies more significant for large and very large minimal absent words, where the biases of sequencing and assembly methodologies become more pronounced. Moreover, we find generally greater similarity between the human genome assemblies sequenced with capillary-based technologies (GRCh37 and HuRef than between the human genome assemblies sequenced with massively parallel technologies (NA12878 and YH. Finally, as expected, we find the overall variation in number and content of minimal absent words within a species to be generally smaller than the variation between species.

  2. Minimal absent words in four human genome assemblies.

    Science.gov (United States)

    Garcia, Sara P; Pinho, Armando J

    2011-01-01

    Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we aim to contribute to the catalogue of human genomic variation by investigating the variation in number and content of minimal absent words within a species, using four human genome assemblies. We compare the reference human genome GRCh37 assembly, the HuRef assembly of the genome of Craig Venter, the NA12878 assembly from cell line GM12878, and the YH assembly of the genome of a Han Chinese individual. We find the variation in number and content of minimal absent words between assemblies more significant for large and very large minimal absent words, where the biases of sequencing and assembly methodologies become more pronounced. Moreover, we find generally greater similarity between the human genome assemblies sequenced with capillary-based technologies (GRCh37 and HuRef) than between the human genome assemblies sequenced with massively parallel technologies (NA12878 and YH). Finally, as expected, we find the overall variation in number and content of minimal absent words within a species to be generally smaller than the variation between species.

  3. Whole-Genome Sequences of Thirteen Isolates of Borrelia burgdorferi

    Energy Technology Data Exchange (ETDEWEB)

    Schutzer S. E.; Dunn J.; Fraser-Liggett, C. M.; Casjens, S. R.; Qiu, W.-G.; Mongodin, E. F.; Luft, B. J.

    2011-02-01

    Borrelia burgdorferi is a causative agent of Lyme disease in North America and Eurasia. The first complete genome sequence of B. burgdorferi strain 31, available for more than a decade, has assisted research on the pathogenesis of Lyme disease. Because a single genome sequence is not sufficient to understand the relationship between genotypic and geographic variation and disease phenotype, we determined the whole-genome sequences of 13 additional B. burgdorferi isolates that span the range of natural variation. These sequences should allow improved understanding of pathogenesis and provide a foundation for novel detection, diagnosis, and prevention strategies.

  4. Scrutinizing virus genome termini by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Shasha Li

    Full Text Available Analysis of genomic terminal sequences has been a major step in studies on viral DNA replication and packaging mechanisms. However, traditional methods to study genome termini are challenging due to the time-consuming protocols and their inefficiency where critical details are lost easily. Recent advances in next generation sequencing (NGS have enabled it to be a powerful tool to study genome termini. In this study, using NGS we sequenced one iridovirus genome and twenty phage genomes and confirmed for the first time that the high frequency sequences (HFSs found in the NGS reads are indeed the terminal sequences of viral genomes. Further, we established a criterion to distinguish the type of termini and the viral packaging mode. We also obtained additional terminal details such as terminal repeats, multi-termini, asymmetric termini. With this approach, we were able to simultaneously detect details of the genome termini as well as obtain the complete sequence of bacteriophage genomes. Theoretically, this application can be further extended to analyze larger and more complicated genomes of plant and animal viruses. This study proposed a novel and efficient method for research on viral replication, packaging, terminase activity, transcription regulation, and metabolism of the host cell.

  5. Generation of Physical Map Contig-Specific Sequences Useful for Whole Genome Sequence Scaffolding

    Science.gov (United States)

    Jiang, Yanliang; Ninwichian, Parichart; Liu, Shikai; Zhang, Jiaren; Kucuktas, Huseyin; Sun, Fanyue; Kaltenboeck, Ludmilla; Sun, Luyang; Bao, Lisui; Liu, Zhanjiang

    2013-01-01

    Along with the rapid advances of the nextgen sequencing technologies, more and more species are added to the list of organisms whose whole genomes are sequenced. However, the assembled draft genome of many organisms consists of numerous small contigs, due to the short length of the reads generated by nextgen sequencing platforms. In order to improve the assembly and bring the genome contigs together, more genome resources are needed. In this study, we developed a strategy to generate a valuable genome resource, physical map contig-specific sequences, which are randomly distributed genome sequences in each physical contig. Two-dimensional tagging method was used to create specific tags for 1,824 physical contigs, in which the cost was dramatically reduced. A total of 94,111,841 100-bp reads and 315,277 assembled contigs are identified containing physical map contig-specific tags. The physical map contig-specific sequences along with the currently available BAC end sequences were then used to anchor the catfish draft genome contigs. A total of 156,457 genome contigs (~79% of whole genome sequencing assembly) were anchored and grouped into 1,824 pools, in which 16,680 unique genes were annotated. The physical map contig-specific sequences are valuable resources to link physical map, genetic linkage map and draft whole genome sequences, consequently have the capability to improve the whole genome sequences assembly and scaffolding, and improve the genome-wide comparative analysis as well. The strategy developed in this study could also be adopted in other species whose whole genome assembly is still facing a challenge. PMID:24205335

  6. Generation of physical map contig-specific sequences useful for whole genome sequence scaffolding.

    Directory of Open Access Journals (Sweden)

    Yanliang Jiang

    Full Text Available Along with the rapid advances of the nextgen sequencing technologies, more and more species are added to the list of organisms whose whole genomes are sequenced. However, the assembled draft genome of many organisms consists of numerous small contigs, due to the short length of the reads generated by nextgen sequencing platforms. In order to improve the assembly and bring the genome contigs together, more genome resources are needed. In this study, we developed a strategy to generate a valuable genome resource, physical map contig-specific sequences, which are randomly distributed genome sequences in each physical contig. Two-dimensional tagging method was used to create specific tags for 1,824 physical contigs, in which the cost was dramatically reduced. A total of 94,111,841 100-bp reads and 315,277 assembled contigs are identified containing physical map contig-specific tags. The physical map contig-specific sequences along with the currently available BAC end sequences were then used to anchor the catfish draft genome contigs. A total of 156,457 genome contigs (~79% of whole genome sequencing assembly were anchored and grouped into 1,824 pools, in which 16,680 unique genes were annotated. The physical map contig-specific sequences are valuable resources to link physical map, genetic linkage map and draft whole genome sequences, consequently have the capability to improve the whole genome sequences assembly and scaffolding, and improve the genome-wide comparative analysis as well. The strategy developed in this study could also be adopted in other species whose whole genome assembly is still facing a challenge.

  7. Bioinformatics pipelines for targeted resequencing and whole-exome sequencing of human and mouse genomes: a virtual appliance approach for instant deployment.

    Directory of Open Access Journals (Sweden)

    Jason Li

    Full Text Available Targeted resequencing by massively parallel sequencing has become an effective and affordable way to survey small to large portions of the genome for genetic variation. Despite the rapid development in open source software for analysis of such data, the practical implementation of these tools through construction of sequencing analysis pipelines still remains a challenging and laborious activity, and a major hurdle for many small research and clinical laboratories. We developed TREVA (Targeted REsequencing Virtual Appliance, making pre-built pipelines immediately available as a virtual appliance. Based on virtual machine technologies, TREVA is a solution for rapid and efficient deployment of complex bioinformatics pipelines to laboratories of all sizes, enabling reproducible results. The analyses that are supported in TREVA include: somatic and germline single-nucleotide and insertion/deletion variant calling, copy number analysis, and cohort-based analyses such as pathway and significantly mutated genes analyses. TREVA is flexible and easy to use, and can be customised by Linux-based extensions if required. TREVA can also be deployed on the cloud (cloud computing, enabling instant access without investment overheads for additional hardware. TREVA is available at http://bioinformatics.petermac.org/treva/.

  8. The minimum information about a genome sequence (MIGS) specification

    DEFF Research Database (Denmark)

    Field, D; Garrity, G; Gray, T;

    2008-01-01

    the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources...... that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases....

  9. Genomic libraries: II. Subcloning, sequencing, and assembling large-insert genomic DNA clones.

    Science.gov (United States)

    Quail, Mike A; Matthews, Lucy; Sims, Sarah; Lloyd, Christine; Beasley, Helen; Baxter, Simon W

    2011-01-01

    Sequencing large insert clones to completion is useful for characterizing specific genomic regions, identifying haplotypes, and closing gaps in whole genome sequencing projects. Despite being a standard technique in molecular laboratories, DNA sequencing using the Sanger method can be highly problematic when complex secondary structures or sequence repeats are encountered in genomic clones. Here, we describe methods to isolate DNA from a large insert clone (fosmid or BAC), subclone the sample, and sequence the region to the highest industry standard. Troubleshooting solutions for sequencing difficult templates are discussed.

  10. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  11. The complete genome sequence of a Neanderthal from the Altai Mountains.

    Science.gov (United States)

    Prüfer, Kay; Racimo, Fernando; Patterson, Nick; Jay, Flora; Sankararaman, Sriram; Sawyer, Susanna; Heinze, Anja; Renaud, Gabriel; Sudmant, Peter H; de Filippo, Cesare; Li, Heng; Mallick, Swapan; Dannemann, Michael; Fu, Qiaomei; Kircher, Martin; Kuhlwilm, Martin; Lachmann, Michael; Meyer, Matthias; Ongyerth, Matthias; Siebauer, Michael; Theunert, Christoph; Tandon, Arti; Moorjani, Priya; Pickrell, Joseph; Mullikin, James C; Vohr, Samuel H; Green, Richard E; Hellmann, Ines; Johnson, Philip L F; Blanche, Hélène; Cann, Howard; Kitzman, Jacob O; Shendure, Jay; Eichler, Evan E; Lein, Ed S; Bakken, Trygve E; Golovanova, Liubov V; Doronichev, Vladimir B; Shunkov, Michael V; Derevianko, Anatoli P; Viola, Bence; Slatkin, Montgomery; Reich, David; Kelso, Janet; Pääbo, Svante

    2014-01-02

    We present a high-quality genome sequence of a Neanderthal woman from Siberia. We show that her parents were related at the level of half-siblings and that mating among close relatives was common among her recent ancestors. We also sequenced the genome of a Neanderthal from the Caucasus to low coverage. An analysis of the relationships and population history of available archaic genomes and 25 present-day human genomes shows that several gene flow events occurred among Neanderthals, Denisovans and early modern humans, possibly including gene flow into Denisovans from an unknown archaic group. Thus, interbreeding, albeit of low magnitude, occurred among many hominin groups in the Late Pleistocene. In addition, the high-quality Neanderthal genome allows us to establish a definitive list of substitutions that became fixed in modern humans after their separation from the ancestors of Neanderthals and Denisovans.

  12. Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes

    Energy Technology Data Exchange (ETDEWEB)

    McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.; Kuehl, Jennifer V.; Boore, Jeffrey L.; dePamphilis, Claude W.

    2005-08-26

    Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. A minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.

  13. Genome-Wide Association Study of HIV Whole Genome Sequences Validated using Drug Resistance

    Science.gov (United States)

    Power, Robert A.; Davaniah, Siva; Derache, Anne; Wilkinson, Eduan; Tanser, Frank; Pillay, Deenan; de Oliveira, Tulio

    2016-01-01

    Background Genome-wide association studies (GWAS) have considerably advanced our understanding of human traits and diseases. With the increasing availability of whole genome sequences (WGS) for pathogens, it is important to establish whether GWAS of viral genomes could reveal important biological insights. Here we perform the first proof of concept viral GWAS examining drug resistance (DR), a phenotype with well understood genetics. Method We performed a GWAS of DR in a sample of 343 HIV subtype C patients failing 1st line antiretroviral treatment in rural KwaZulu-Natal, South Africa. The majority and minority variants within each sequence were called using PILON, and GWAS was performed within PLINK. HIV WGS from patients failing on different antiretroviral treatments were compared to sequences derived from individuals naïve to the respective treatment. Results GWAS methodology was validated by identifying five associations on a genetic level that led to amino acid changes known to cause DR. Further, we highlighted the ability of GWAS to identify epistatic effects, identifying two replicable variants within amino acid 68 of the reverse transcriptase protein previously described as potential fitness compensatory mutations. A possible additional DR variant within amino acid 91 of the matrix region of the Gag protein was associated with tenofovir failure, highlighting GWAS’s ability to identify variants outside classical candidate genes. Our results also suggest a polygenic component to DR. Conclusions These results validate the applicability of GWAS to HIV WGS data even in relative small samples, and emphasise how high throughput sequencing can provide novel and clinically relevant insights. Further they suggested that for viruses like HIV, population structure was only minor concern compared to that seen in bacteria or parasite GWAS. Given the small genome length and reduced burden for multiple testing, this makes HIV an ideal candidate for GWAS. PMID:27677172

  14. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

    Science.gov (United States)

    Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay

    2013-01-01

    Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.

  15. A Probabilistic Genome-Wide Gene Reading Frame Sequence Model

    DEFF Research Database (Denmark)

    Have, Christian Theil; Mørk, Søren

    We introduce a new type of probabilistic sequence model, that model the sequential composition of reading frames of genes in a genome. Our approach extends gene finders with a model of the sequential composition of genes at the genome-level -- effectively producing a sequential genome annotation...... and are evaluated by the effect on prediction performance. Since bacterial gene finding to a large extent is a solved problem it forms an ideal proving ground for evaluating the explicit modeling of larger scale gene sequence composition of genomes. We conclude that the sequential composition of gene reading frames...... as output. The model can be used to obtain the most probable genome annotation based on a combination of i: a gene finder score of each gene candidate and ii: the sequence of the reading frames of gene candidates through a genome. The model --- as well as a higher order variant --- is developed and tested...

  16. Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion.

    Science.gov (United States)

    Xi, Ruibin; Hadjipanayis, Angela G; Luquette, Lovelace J; Kim, Tae-Min; Lee, Eunjung; Zhang, Jianhua; Johnson, Mark D; Muzny, Donna M; Wheeler, David A; Gibbs, Richard A; Kucherlapati, Raju; Park, Peter J

    2011-11-15

    DNA copy number variations (CNVs) play an important role in the pathogenesis and progression of cancer and confer susceptibility to a variety of human disorders. Array comparative genomic hybridization has been used widely to identify CNVs genome wide, but the next-generation sequencing technology provides an opportunity to characterize CNVs genome wide with unprecedented resolution. In this study, we developed an algorithm to detect CNVs from whole-genome sequencing data and applied it to a newly sequenced glioblastoma genome with a matched control. This read-depth algorithm, called BIC-seq, can accurately and efficiently identify CNVs via minimizing the Bayesian information criterion. Using BIC-seq, we identified hundreds of CNVs as small as 40 bp in the cancer genome sequenced at 10× coverage, whereas we could only detect large CNVs (> 15 kb) in the array comparative genomic hybridization profiles for the same genome. Eighty percent (14/16) of the small variants tested (110 bp to 14 kb) were experimentally validated by quantitative PCR, demonstrating high sensitivity and true positive rate of the algorithm. We also extended the algorithm to detect recurrent CNVs in multiple samples as well as deriving error bars for breakpoints using a Gibbs sampling approach. We propose this statistical approach as a principled yet practical and efficient method to estimate CNVs in whole-genome sequencing data.

  17. Marsupial Genome Sequences: Providing Insight into Evolution and Disease

    Directory of Open Access Journals (Sweden)

    Janine E. Deakin

    2012-01-01

    Full Text Available Marsupials (metatherians, with their position in vertebrate phylogeny and their unique biological features, have been studied for many years by a dedicated group of researchers, but it has only been since the sequencing of the first marsupial genome that their value has been more widely recognised. We now have genome sequences for three distantly related marsupial species (the grey short-tailed opossum, the tammar wallaby, and Tasmanian devil, with the promise of many more genomes to be sequenced in the near future, making this a particularly exciting time in marsupial genomics. The emergence of a transmissible cancer, which is obliterating the Tasmanian devil population, has increased the importance of obtaining and analysing marsupial genome sequence for understanding such diseases as well as for conservation efforts. In addition, these genome sequences have facilitated studies aimed at answering questions regarding gene and genome evolution and provided insight into the evolution of epigenetic mechanisms. Here I highlight the major advances in our understanding of evolution and disease, facilitated by marsupial genome projects, and speculate on the future contributions to be made by such sequences.

  18. Whole genome multilocus sequence typing as an epidemiologic tool for Yersinia pestis.

    Science.gov (United States)

    Kingry, Luke C; Rowe, Lori A; Respicio-Kingry, Laurel B; Beard, Charles B; Schriefer, Martin E; Petersen, Jeannine M

    2016-04-01

    Human plague is a severe and often fatal zoonotic disease caused by Yersinia pestis. For public health investigations of human cases, nonintensive whole genome molecular typing tools, capable of defining epidemiologic relationships, are advantageous. Whole genome multilocus sequence typing (wgMLST) is a recently developed methodology that simplifies genomic analyses by transforming millions of base pairs of sequence into character data for each gene. We sequenced 13 US Y. pestis isolates with known epidemiologic relationships. Sequences were assembled de novo, and multilocus sequence typing alleles were assigned by comparison against 3979 open reading frames from the reference strain CO92. Allele-based cluster analysis accurately grouped the 13 isolates, as well as 9 publicly available Y. pestis isolates, by their epidemiologic relationships. Our findings indicate wgMLST is a simplified, sensitive, and scalable tool for epidemiologic analysis of Y. pestis strains.

  19. Sequence determinants in human polyadenylation site selection

    Directory of Open Access Journals (Sweden)

    Gautheret Daniel

    2003-02-01

    Full Text Available Abstract Background Differential polyadenylation is a widespread mechanism in higher eukaryotes producing mRNAs with different 3' ends in different contexts. This involves several alternative polyadenylation sites in the 3' UTR, each with its specific strength. Here, we analyze the vicinity of human polyadenylation signals in search of patterns that would help discriminate strong and weak polyadenylation sites, or true sites from randomly occurring signals. Results We used human genomic sequences to retrieve the region downstream of polyadenylation signals, usually absent from cDNA or mRNA databases. Analyzing 4956 EST-validated polyadenylation sites and their -300/+300 nt flanking regions, we clearly visualized the upstream (USE and downstream (DSE sequence elements, both characterized by U-rich (not GU-rich segments. The presence of a USE and a DSE is the main feature distinguishing true polyadenylation sites from randomly occurring A(A/UUAAA hexamers. While USEs are indifferently associated with strong and weak poly(A sites, DSEs are more conspicuous near strong poly(A sites. We then used the region encompassing the hexamer and DSE as a training set for poly(A site identification by the ERPIN program and achieved a prediction specificity of 69 to 85% for a sensitivity of 56%. Conclusion The availability of complete genomes and large EST sequence databases now permit large-scale observation of polyadenylation sites. Both U-rich sequences flanking both sides of poly(A signals contribute to the definition of "true" sites. However, the downstream U-rich sequences may also play an enhancing role. Based on this information, poly(A site prediction accuracy was moderately but consistently improved compared to the best previously available algorithm.

  20. Deep sequencing extends the diversity of human papillomaviruses in human skin.

    OpenAIRE

    Bzhalava, Davit; Mühr, Laila Sara Arroyo; Lagheden, Camilla; Ekström, Johanna; Forslund, Ola; Dillner, Joakim; Hultin, Emilie

    2014-01-01

    Most viruses in human skin are known to be human papillomaviruses (HPVs). Previous sequencing of skin samples has identified 273 different cutaneous HPV types, including 47 previously unknown types. In the present study, we wished to extend prior studies using deeper sequencing. This deeper sequencing without prior PCR of a pool of 142 whole genome amplified skin lesions identified 23 known HPV types, 3 novel putative HPV types and 4 non-HPV viruses. The complete sequence was obtained for one...