WorldWideScience

Sample records for human genome reveals

  1. An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia

    OpenAIRE

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong; Lohmueller, Kirk E.; Rasmussen, Simon; Albrechtsen, Anders; Skotte, Line; Lindgreen, Stinus; Metspalu, Mait; Jombart, Thibaut; Kivisild, Toomas; Zhai, Weiwei; Eriksson, Anders; Manica, Andrea; Orlando, Ludovic

    2011-01-01

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to ...

  2. An Aboriginal Australian genome reveals separate human dispersals into Asia.

    Science.gov (United States)

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong; Lohmueller, Kirk E; Rasmussen, Simon; Albrechtsen, Anders; Skotte, Line; Lindgreen, Stinus; Metspalu, Mait; Jombart, Thibaut; Kivisild, Toomas; Zhai, Weiwei; Eriksson, Anders; Manica, Andrea; Orlando, Ludovic; De La Vega, Francisco M; Tridico, Silvana; Metspalu, Ene; Nielsen, Kasper; Ávila-Arcos, María C; Moreno-Mayar, J Víctor; Muller, Craig; Dortch, Joe; Gilbert, M Thomas P; Lund, Ole; Wesolowska, Agata; Karmin, Monika; Weinert, Lucy A; Wang, Bo; Li, Jun; Tai, Shuaishuai; Xiao, Fei; Hanihara, Tsunehiko; van Driem, George; Jha, Aashish R; Ricaut, François-Xavier; de Knijff, Peter; Migliano, Andrea B; Gallego Romero, Irene; Kristiansen, Karsten; Lambert, David M; Brunak, Søren; Forster, Peter; Brinkmann, Bernd; Nehlich, Olaf; Bunce, Michael; Richards, Michael; Gupta, Ramneek; Bustamante, Carlos D; Krogh, Anders; Foley, Robert A; Lahr, Marta M; Balloux, Francois; Sicheritz-Pontén, Thomas; Villems, Richard; Nielsen, Rasmus; Wang, Jun; Willerslev, Eske

    2011-10-07

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa.

  3. An Aboriginal Australian Genome Reveals Separate Human Dispersals into Asia

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong

    2011-01-01

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Abori......We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show...... that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves...... prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa....

  4. Genome-Wide RNAi Ionomics Screen Reveals New Genes and Regulation of Human Trace Element Metabolism

    OpenAIRE

    Malinouski, Mikalai; Hasan, Nesrin M.; Zhang, Yan; Seravalli, Javier; Lin, Jie; Avanesov, Andrei; Lutsenko, Svetlana; Gladyshev, Vadim N.

    2017-01-01

    Trace elements are essential for human metabolism and dysregulation of their homeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundam...

  5. Within-Host Variations of Human Papillomavirus Reveal APOBEC-Signature Mutagenesis in the Viral Genome.

    Science.gov (United States)

    Hirose, Yusuke; Onuki, Mamiko; Tenjimbayashi, Yuri; Mori, Seiichiro; Ishii, Yoshiyuki; Takeuchi, Takamasa; Tasaka, Nobutaka; Satoh, Toyomi; Morisada, Tohru; Iwata, Takashi; Miyamoto, Shingo; Matsumoto, Koji; Sekizawa, Akihiko; Kukimoto, Iwao

    2018-03-28

    Persistent infection with oncogenic human papillomaviruses (HPVs) causes cervical cancer, accompanied with the accumulation of somatic mutations into the host genome. There are concomitant genetic changes in the HPV genome during viral infection; however, their relevance to cervical carcinogenesis is poorly understood. Here we explored within-host genetic diversity of HPV by performing deep sequencing analyses of viral whole-genome sequences in clinical specimens. The whole genomes of HPV types 16, 52 and 58 were amplified by type-specific PCR from total cellular DNA of cervical exfoliated cells collected from patients with cervical intraepithelial neoplasia (CIN) and invasive cervical cancer (ICC), and were deep-sequenced. After constructing a reference vial genome sequence for each specimen, nucleotide positions showing changes with > 0.5% frequencies compared to the reference sequence were determined for individual samples. In total, 1,052 positions of nucleotide variations were detected in HPV genomes from 151 samples (CIN1, n = 56; CIN2/3, n = 68; ICC, n = 27), with varying numbers per sample. Overall, C-to-T and C-to-A substitutions were the dominant changes observed across all histological grades. While C-to-T transitions were predominantly detected in CIN1, their prevalence was decreased in CIN2/3 and fell below that of C-to-A transversions in ICC. Analysis of the tri-nucleotides context encompassing substituted bases revealed that Tp C pN, a preferred target sequence for cellular APOBEC cytosine deaminases, was a primary site for C-to-T substitutions in the HPV genome. These results strongly imply that the APOBEC proteins are drivers of HPV genome mutation, particularly in CIN1 lesions. IMPORTANCE HPVs exhibit surprisingly high levels of genetic diversity, including a large repertoire of minor genomic variants in each viral genotype. Here, by conducting deep sequencing analyses, we show for the first time a comprehensive snapshot of the "within

  6. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis

    Science.gov (United States)

    Bos, Kirsten I.; Harkins, Kelly M.; Herbig, Alexander; Coscolla, Mireia; Weber, Nico; Comas, Iñaki; Forrest, Stephen A.; Bryant, Josephine M.; Harris, Simon R.; Schuenemann, Verena J.; Campbell, Tessa J.; Majander, Kerrtu; Wilbur, Alicia K.; Guichon, Ricardo A.; Wolfe Steadman, Dawnie L.; Cook, Della Collins; Niemann, Stefan; Behr, Marcel A.; Zumarraga, Martin; Bastida, Ricardo; Huson, Daniel; Nieselt, Kay; Young, Douglas; Parkhill, Julian; Buikstra, Jane E.; Gagneux, Sebastien; Stone, Anne C.; Krause, Johannes

    2015-01-01

    Modern strains of Mycobacterium tuberculosis from the Americas are closely related to those from Europe, supporting the assumption that human tuberculosis was introduced post-contact1. This notion, however, is incompatible with archaeological evidence of pre-contact tuberculosis in the New World2. Comparative genomics of modern isolates suggests that M. tuberculosis attained its worldwide distribution following human dispersals out of Africa during the Pleistocene epoch3, although this has yet to be confirmed with ancient calibration points. Here we present three 1,000-year-old mycobacterial genomes from Peruvian human skeletons, revealing that a member of the M. tuberculosis complex caused human disease before contact. The ancient strains are distinct from known human-adapted forms and are most closely related to those adapted to seals and sea lions. Two independent dating approaches suggest a most recent common ancestor for the M. tuberculosis complex less than 6,000 years ago, which supports a Holocene dispersal of the disease. Our results implicate sea mammals as having played a role in transmitting the disease to humans across the ocean. PMID:25141181

  7. Genome editing reveals a role for OCT4 in human embryogenesis.

    Science.gov (United States)

    Fogarty, Norah M E; McCarthy, Afshan; Snijders, Kirsten E; Powell, Benjamin E; Kubikova, Nada; Blakeley, Paul; Lea, Rebecca; Elder, Kay; Wamaitha, Sissy E; Kim, Daesik; Maciulyte, Valdone; Kleinjung, Jens; Kim, Jin-Soo; Wells, Dagan; Vallier, Ludovic; Bertero, Alessandro; Turner, James M A; Niakan, Kathy K

    2017-10-05

    Despite their fundamental biological and clinical importance, the molecular mechanisms that regulate the first cell fate decisions in the human embryo are not well understood. Here we use CRISPR-Cas9-mediated genome editing to investigate the function of the pluripotency transcription factor OCT4 during human embryogenesis. We identified an efficient OCT4-targeting guide RNA using an inducible human embryonic stem cell-based system and microinjection of mouse zygotes. Using these refined methods, we efficiently and specifically targeted the gene encoding OCT4 (POU5F1) in diploid human zygotes and found that blastocyst development was compromised. Transcriptomics analysis revealed that, in POU5F1-null cells, gene expression was downregulated not only for extra-embryonic trophectoderm genes, such as CDX2, but also for regulators of the pluripotent epiblast, including NANOG. By contrast, Pou5f1-null mouse embryos maintained the expression of orthologous genes, and blastocyst development was established, but maintenance was compromised. We conclude that CRISPR-Cas9-mediated genome editing is a powerful method for investigating gene function in the context of human development.

  8. Complete genome sequence analysis of novel human bocavirus reveals genetic recombination between human bocavirus 2 and human bocavirus 4.

    Science.gov (United States)

    Khamrin, Pattara; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2013-07-01

    Epidemiological surveillance of human bocavirus (HBoV) was conducted on fecal specimens collected from hospitalized children with diarrhea in Chiang Mai, Thailand in 2011. By partial sequence analysis of VP1 gene, an unusual strain of HBoV (CMH-S011-11), was initially identified as HBoV4. The complete genome sequence of CMH-S011-11 was performed and analyzed further to clarify whether it was a recombinant strain or a new HBoV variant. Analysis of complete genome sequence revealed that the coding sequence starting from NS1, NP1 to VP1/VP2 was 4795 nucleotides long. Interestingly, the nucleotide sequence of NS1 gene of CMH-S011-11 was most closely related to the HBoV2 reference strains detected in Pakistan, which contradicted to the initial genotyping result of the partial VP1 region in the previous study. In addition, comparison of NP1 nucleotide sequence of CMH-S011-11 with those of other HBoV1-4 reference strains also revealed a high level of sequence identity with HBoV2. On the other hand, nucleotide sequence of VP1/VP2 gene of CMH-S011-11 was most closely related to those of HBoV4 reference strains detected in Nigeria. The overall full-length sequence analysis revealed that this CMH-S011-11 was grouped within HBoV4 species, but located in a separate branch from other HBoV4 prototype strains. Recombination analysis revealed that CMH-S011-11 was the result of recombination between HBoV2 and HBoV4 strains with the break point located near the start codon of VP2. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Genome-Wide RNAi Ionomics Screen Reveals New Genes and Regulation of Human Trace Element Metabolism

    Science.gov (United States)

    Malinouski, Mikalai; Hasan, Nesrin M.; Zhang, Yan; Seravalli, Javier; Lin, Jie; Avanesov, Andrei; Lutsenko, Svetlana; Gladyshev, Vadim N.

    2017-01-01

    Trace elements are essential for human metabolism and dysregulation of their homeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundamental differences in the regulation of different trace elements. Specifically, selenium levels are controlled through the selenocysteine machinery and expression of abundant selenoproteins; copper balance is affected by lipid metabolism and requires machinery involved in protein trafficking and posttranslational modifications; and the iron levels are influenced by iron import and expression of the iron/heme-containing enzymes. Our approach can be applied to a variety of disease models and/or nutritional conditions, and the generated dataset opens new directions for studies of human trace element metabolism. PMID:24522796

  10. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    KAUST Repository

    Otto, Thomas D.

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching.

  11. Parallel or convergent evolution in human population genomic data revealed by genotype networks

    OpenAIRE

    Vahdati, Ali R; Wagner, Andreas

    2016-01-01

    Background Genotype networks are representations of genetic variation data that are complementary to phylogenetic trees. A genotype network is a graph whose nodes are genotypes (DNA sequences) with the same broadly defined phenotype. Two nodes are connected if they differ in some minimal way, e.g., in a single nucleotide. Results We analyze human genome variation data from the 1,000 genomes project, and construct haploid genotype (haplotype) networks for 12,235 protein coding genes. The struc...

  12. The genome of a Mongolian individual reveals the genetic imprints of Mongolians on modern human populations.

    Science.gov (United States)

    Bai, Haihua; Guo, Xiaosen; Zhang, Dong; Narisu, Narisu; Bu, Junjie; Jirimutu, Jirimutu; Liang, Fan; Zhao, Xiang; Xing, Yanping; Wang, Dingzhu; Li, Tongda; Zhang, Yanru; Guan, Baozhu; Yang, Xukui; Yang, Zili; Shuangshan, Shuangshan; Su, Zhe; Wu, Huiguang; Li, Wenjing; Chen, Ming; Zhu, Shilin; Bayinnamula, Bayinnamula; Chang, Yuqi; Gao, Ying; Lan, Tianming; Suyalatu, Suyalatu; Huang, Hui; Su, Yan; Chen, Yujie; Li, Wenqi; Yang, Xu; Feng, Qiang; Wang, Jian; Yang, Huanming; Wang, Jun; Wu, Qizhu; Yin, Ye; Zhou, Huanmin

    2014-11-05

    Mongolians have played a significant role in modern human evolution, especially after the rise of Genghis Khan (1162[?]-1227). Although the social cultural impacts of Genghis Khan and the Mongolian population have been well documented, explorations of their genome structure and genetic imprints on other human populations have been lacking. We here present the genome of a Mongolian male individual. The genome was de novo assembled using a total of 130.8-fold genomic data produced from massively parallel whole-genome sequencing. We identified high-confidence variation sets, including 3.7 million single nucleotide polymorphisms (SNPs) and 756,234 short insertions and deletions. Functional SNP analysis predicted that the individual has a pathogenic risk for carnitine deficiency. We located the patrilineal inheritance of the Mongolian genome to the lineage D3a through Y haplogroup analysis and inferred that the individual has a common patrilineal ancestor with Tibeto-Burman populations and is likely to be the progeny of the earliest settlers in East Asia. We finally investigated the genetic imprints of Mongolians on other human populations using different approaches. We found varying degrees of gene flows between Mongolians and populations living in Europe, South/Central Asia, and the Indian subcontinent. The analyses demonstrate that the genetic impacts of Mongolians likely resulted from the expansion of the Mongolian Empire in the 13th century. The genome will be of great help in further explorations of modern human evolution and genetic causes of diseases/traits specific to Mongolians. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil

    DEFF Research Database (Denmark)

    Malaspinas, Anna-Sapfo; Lao, Oscar; Schroeder, Hannes

    2014-01-01

    Understanding the peopling of the Americas remains an important and challenging question. Here, we present 14C dates, and morphological, isotopic and genomic sequence data from two human skulls from the state of Minas Gerais, Brazil, part of one of the indigenous groups known as ‘Botocudos’. We...

  14. A high-quality human reference panel reveals the complexity and distribution of genomic structural variants

    NARCIS (Netherlands)

    Hehir-Kwa, J.Y.; Marschall, T.; Kloosterman, W.P.; Francioli, L.C.; Baaijens, J.A.; Dijkstra, L.J.; Abdellaoui, A.; Koval, V.; Thung, D.T.; Wardenaar, R.; Renkens, I.; Coe, B.P.; Deelen, P.; de Ligt, J.; Lameijer, E.W.; Dijk, F.; Hormozdiari, F.; Uitterlinden, A.G.; van Duijn, C.M.; Eichler, E.E.; Bakker, P.I.W.; Swertz, M.A.; Wijmenga, C.; van Ommen, G.J.B; Slagboom, P.E.; Boomsma, D.I.; Schönhuth, A.; Ye, K.; Guryev, V.

    2016-01-01

    Structural variation (SV) represents a major source of differences between individual human genomes and has been linked to disease phenotypes. However, the majority of studies provide neither a global view of the full spectrum of these variants nor integrate them into reference panels of genetic

  15. Comparative Genomics Analysis of Streptococcus Isolates from the Human Small Intestine Reveals their Adaptation to a Highly Dynamic Ecosystem

    Science.gov (United States)

    Van den Bogert, Bartholomeus; Boekhorst, Jos; Herrmann, Ruth; Smid, Eddy J.; Zoetendal, Erwin G.; Kleerebezem, Michiel

    2013-01-01

    The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine. PMID:24386196

  16. Zebrafish syntenic relationship to human/mouse genomes revealed by radiation hybrid mapping

    International Nuclear Information System (INIS)

    Samonte, Irene E.

    2007-01-01

    Zebrafish (Danio rerio) is an excellent model system for vertebrate developmental analysis and a new model for human disorders. In this study, however, zebrafish was used to determine its syntenic relationship to human/mouse genomes using the zebrafish-hamster radiation hybrid panel. The focus was on genes residing on chromosomes 6 and 17 of human and mouse, respectively, and some other genes of either immunologic or evolutionary importance. Gene sequences of interest and zebrafish expressed sequence tags deposited in the GenBank were used in identifying zebrafish homologs. Polymerase chain reaction (PCR) amplification, cloning and subcloning, sequencing, and phylogenetic analysis were done to confirm the homology of the candidate genes in zebrafish. The promising markers were then tested in the 94 zebrafish-hamster radiation hybrid panel cell lines and submitted for logarithm of the odds (LOD) score analysis to position genes on the zebrafish map. A total of 19 loci were successfully mapped to zebrafish linkage groups 1, 14, 15, 19, and 20. Four of these loci were positioned in linkage group 20, whereas, 3 more loci were added in linkage group 19, thus increasing to 34 loci the number of human genes syntenic to the group. With the sequencing of the zebrafish genome, about 20 more MHC genes were reported linked on the same group. (Author)

  17. Parallel or convergent evolution in human population genomic data revealed by genotype networks.

    Science.gov (United States)

    R Vahdati, Ali; Wagner, Andreas

    2016-08-02

    Genotype networks are representations of genetic variation data that are complementary to phylogenetic trees. A genotype network is a graph whose nodes are genotypes (DNA sequences) with the same broadly defined phenotype. Two nodes are connected if they differ in some minimal way, e.g., in a single nucleotide. We analyze human genome variation data from the 1,000 genomes project, and construct haploid genotype (haplotype) networks for 12,235 protein coding genes. The structure of these networks varies widely among genes, indicating different patterns of variation despite a shared evolutionary history. We focus on those genes whose genotype networks show many cycles, which can indicate homoplasy, i.e., parallel or convergent evolution, on the sequence level. For 42 genes, the observed number of cycles is so large that it cannot be explained by either chance homoplasy or recombination. When analyzing possible explanations, we discovered evidence for positive selection in 21 of these genes and, in addition, a potential role for constrained variation and purifying selection. Balancing selection plays at most a small role. The 42 genes with excess cycles are enriched in functions related to immunity and response to pathogens. Genotype networks are representations of genetic variation data that can help understand unusual patterns of genomic variation.

  18. Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution.

    Science.gov (United States)

    Denas, Olgert; Sandstrom, Richard; Cheng, Yong; Beal, Kathryn; Herrero, Javier; Hardison, Ross C; Taylor, James

    2015-02-14

    Because species-specific gene expression is driven by species-specific regulation, understanding the relationship between sequence and function of the regulatory regions in different species will help elucidate how differences among species arise. Despite active experimental and computational research, relationships among sequence, conservation, and function are still poorly understood. We compared transcription factor occupied segments (TFos) for 116 human and 35 mouse TFs in 546 human and 125 mouse cell types and tissues from the Human and the Mouse ENCODE projects. We based the map between human and mouse TFos on a one-to-one nucleotide cross-species mapper, bnMapper, that utilizes whole genome alignments (WGA). Our analysis shows that TFos are under evolutionary constraint, but a substantial portion (25.1% of mouse and 25.85% of human on average) of the TFos does not have a homologous sequence on the other species; this portion varies among cell types and TFs. Furthermore, 47.67% and 57.01% of the homologous TFos sequence shows binding activity on the other species for human and mouse respectively. However, 79.87% and 69.22% is repurposed such that it binds the same TF in different cells or different TFs in the same cells. Remarkably, within the set of repurposed TFos, the corresponding genome regions in the other species are preferred locations of novel TFos. These events suggest exaptation of some functional regulatory sequences into new function. Despite TFos repurposing, we did not find substantial changes in their predicted target genes, suggesting that CRMs buffer evolutionary events allowing little or no change in the TFos - target gene associations. Thus, the small portion of TFos with strictly conserved occupancy underestimates the degree of conservation of regulatory interactions. We mapped regulatory sequences from an extensive number of TFs and cell types between human and mouse using WGA. A comparative analysis of this correspondence unveiled the

  19. Genome-wide scans between two honeybee populations reveal putative signatures of human-mediated selection.

    Science.gov (United States)

    Parejo, M; Wragg, D; Henriques, D; Vignal, A; Neuditschko, M

    2017-12-01

    Human-mediated selection has left signatures in the genomes of many domesticated animals, including the European dark honeybee, Apis mellifera mellifera, which has been selected by apiculturists for centuries. Using whole-genome sequence information, we investigated selection signatures in spatially separated honeybee subpopulations (Switzerland, n = 39 and France, n = 17). Three different test statistics were calculated in windows of 2 kb (fixation index, cross-population extended haplotype homozygosity and cross-population composite likelihood ratio) and combined into a recently developed composite selection score. Applying a stringent false discovery rate of 0.01, we identified six significant selective sweeps distributed across five chromosomes covering eight genes. These genes are associated with multiple molecular and biological functions, including regulation of transcription, receptor binding and signal transduction. Of particular interest is a selection signature on chromosome 1, which corresponds to the WNT4 gene, the family of which is conserved across the animal kingdom with a variety of functions. In Drosophila melanogaster, WNT4 alleles have been associated with differential wing, cross vein and abdominal phenotypes. Defining phenotypic characteristics of different Apis mellifera ssp., which are typically used as selection criteria, include colour and wing venation pattern. This signal is therefore likely to be a good candidate for human mediated-selection arising from different applied breeding practices in the two managed populations. © 2017 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

  20. Comparative genome analysis of Megasphaera sp. reveals niche specialization and its potential role in the human gut.

    Directory of Open Access Journals (Sweden)

    Sudarshan Anand Shetty

    Full Text Available With increasing number of novel bacteria being isolated from the human gut ecosystem, there is a greater need to study their role in the gut ecosystem and their effect on the host health. In the present study, we carried out in silico genome-wide analysis of two novel Megasphaera sp. isolates NM10 (DSM25563 and BL7 (DSM25562, isolated from feces of two healthy individuals and validated the key features by in vitro studies. The analysis revealed the general metabolic potential, adaptive features and the potential effects of these isolates on the host. The comparative genome analysis of the two human gut isolates NM10 and BL7 with ruminal isolate Megasphaera elsdenii (DSM20460 highlighted the differential adaptive features for their survival in human gut. The key findings include features like bile resistance, presence of various sensory and regulatory systems, stress response systems, membrane transporters and resistance to antibiotics. Comparison of the "glycobiome" based on the genomes of the ruminal isolate with the human gut isolates NM10 and BL revealed the presence of diverse and unique sets of Carbohydrate-Active enzymes (CAZymes amongst these isolates, with a higher collection of CAZymes in the human gut isolates. This could be attributed to the difference in host diet and thereby the environment, consequently suggesting host specific adaptation in these isolates. In silico analysis of metabolic potential predicted the ability of these isolates to produce important metabolites like short chain fatty acids (butyrate, acetate, formate, and caproate, vitamins and essential amino acids, which was further validated by in vitro experiments. The ability of these isolates to produce important metabolites advocates for a potential healthy influence on the host. Further in vivo studies including transcriptomic and proteomic analysis will be required for better understanding the role and impact of these Megasphaera sp. isolates NM10 and BL7 on the

  1. Genome-wide and paternal diversity reveal a recent origin of human populations in North Africa.

    Directory of Open Access Journals (Sweden)

    Karima Fadhlaoui-Zid

    Full Text Available The geostrategic location of North Africa as a crossroad between three continents and as a stepping-stone outside Africa has evoked anthropological and genetic interest in this region. Numerous studies have described the genetic landscape of the human population in North Africa employing paternal, maternal, and biparental molecular markers. However, information from these markers which have different inheritance patterns has been mostly assessed independently, resulting in an incomplete description of the region. In this study, we analyze uniparental and genome-wide markers examining similarities or contrasts in the results and consequently provide a comprehensive description of the evolutionary history of North Africa populations. Our results show that both males and females in North Africa underwent a similar admixture history with slight differences in the proportions of admixture components. Consequently, genome-wide diversity show similar patterns with admixture tests suggesting North Africans are a mixture of ancestral populations related to current Africans and Eurasians with more affinity towards the out-of-Africa populations than to sub-Saharan Africans. We estimate from the paternal lineages that most North Africans emerged ∼15,000 years ago during the last glacial warming and that population splits started after the desiccation of the Sahara. Although most North Africans share a common admixture history, the Tunisian Berbers show long periods of genetic isolation and appear to have diverged from surrounding populations without subsequent mixture. On the other hand, continuous gene flow from the Middle East made Egyptians genetically closer to Eurasians than to other North Africans. We show that genetic diversity of today's North Africans mostly captures patterns from migrations post Last Glacial Maximum and therefore may be insufficient to inform on the initial population of the region during the Middle Paleolithic period.

  2. Genome-wide and paternal diversity reveal a recent origin of human populations in North Africa.

    Science.gov (United States)

    Fadhlaoui-Zid, Karima; Haber, Marc; Martínez-Cruz, Begoña; Zalloua, Pierre; Benammar Elgaaied, Amel; Comas, David

    2013-01-01

    The geostrategic location of North Africa as a crossroad between three continents and as a stepping-stone outside Africa has evoked anthropological and genetic interest in this region. Numerous studies have described the genetic landscape of the human population in North Africa employing paternal, maternal, and biparental molecular markers. However, information from these markers which have different inheritance patterns has been mostly assessed independently, resulting in an incomplete description of the region. In this study, we analyze uniparental and genome-wide markers examining similarities or contrasts in the results and consequently provide a comprehensive description of the evolutionary history of North Africa populations. Our results show that both males and females in North Africa underwent a similar admixture history with slight differences in the proportions of admixture components. Consequently, genome-wide diversity show similar patterns with admixture tests suggesting North Africans are a mixture of ancestral populations related to current Africans and Eurasians with more affinity towards the out-of-Africa populations than to sub-Saharan Africans. We estimate from the paternal lineages that most North Africans emerged ∼15,000 years ago during the last glacial warming and that population splits started after the desiccation of the Sahara. Although most North Africans share a common admixture history, the Tunisian Berbers show long periods of genetic isolation and appear to have diverged from surrounding populations without subsequent mixture. On the other hand, continuous gene flow from the Middle East made Egyptians genetically closer to Eurasians than to other North Africans. We show that genetic diversity of today's North Africans mostly captures patterns from migrations post Last Glacial Maximum and therefore may be insufficient to inform on the initial population of the region during the Middle Paleolithic period.

  3. Whole genome analysis of selected human and animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome reassortment events between human, bovine, caprine and porcine strains.

    Science.gov (United States)

    Bwogi, Josephine; Jere, Khuzwayo C; Karamagi, Charles; Byarugaba, Denis K; Namuwulya, Prossy; Baliraine, Frederick N; Desselberger, Ulrich; Iturriza-Gomara, Miren

    2017-01-01

    Rotaviruses of species A (RVA) are a common cause of diarrhoea in children and the young of various other mammals and birds worldwide. To investigate possible interspecies transmission of RVAs, whole genomes of 18 human and 6 domestic animal RVA strains identified in Uganda between 2012 and 2014 were sequenced using the Illumina HiSeq platform. The backbone of the human RVA strains had either a Wa- or a DS-1-like genetic constellation. One human strain was a Wa-like mono-reassortant containing a DS-1-like VP2 gene of possible animal origin. All eleven genes of one bovine RVA strain were closely related to those of human RVAs. One caprine strain had a mixed genotype backbone, suggesting that it emerged from multiple reassortment events involving different host species. The porcine RVA strains had mixed genotype backbones with possible multiple reassortant events with strains of human and bovine origin.Overall, whole genome characterisation of rotaviruses found in domestic animals in Uganda strongly suggested the presence of human-to animal RVA transmission, with concomitant circulation of multi-reassortant strains potentially derived from complex interspecies transmission events. However, whole genome data from the human RVA strains causing moderate and severe diarrhoea in under-fives in Uganda indicated that they were primarily transmitted from person-to-person.

  4. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    Science.gov (United States)

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  5. Targeted and genome-scale methylomics reveals gene body signatures in human cell lines

    Science.gov (United States)

    Ball, Madeleine Price; Li, Jin Billy; Gao, Yuan; Lee, Je-Hyuk; LeProust, Emily; Park, In-Hyun; Xie, Bin; Daley, George Q.; Church, George M.

    2012-01-01

    Cytosine methylation, an epigenetic modification of DNA, is a target of growing interest for developing high throughput profiling technologies. Here we introduce two new, complementary techniques for cytosine methylation profiling utilizing next generation sequencing technology: bisulfite padlock probes (BSPPs) and methyl sensitive cut counting (MSCC). In the first method, we designed a set of ~10,000 BSPPs distributed over the ENCODE pilot project regions to take advantage of existing expression and chromatin immunoprecipitation data. We observed a pattern of low promoter methylation coupled with high gene body methylation in highly expressed genes. Using the second method, MSCC, we gathered genome-scale data for 1.4 million HpaII sites and confirmed that gene body methylation in highly expressed genes is a consistent phenomenon over the entire genome. Our observations highlight the usefulness of techniques which are not inherently or intentionally biased in favor of only profiling particular subsets like CpG islands or promoter regions. PMID:19329998

  6. Chlamydiaceae Genomics Reveals Interspecies Admixture and the Recent Evolution of Chlamydia abortus Infecting Lower Mammalian Species and Humans

    OpenAIRE

    Joseph, Sandeep J.; Marti, Hanna; Didelot, Xavier; Castillo-Ramirez, Santiago; Read, Timothy D.; Dean, Deborah

    2015-01-01

    Chlamydiaceae are obligate intracellular bacteria that cause a diversity of severe infections among humans and livestock on a global scale. Identification of new species since 1989 and emergence of zoonotic infections, including abortion in women, underscore the need for genome sequencing of multiple strains of each species to advance our knowledge of evolutionary dynamics across Chlamydiaceae. Here, we genome sequenced isolates from avian, lower mammalian and human hosts. Based on core gene ...

  7. Genome-wide and paternal diversity reveal a recent origin of human populations in North Africa

    OpenAIRE

    Fadhlaoui-Zid, Karima; Haber, Marc, 1980-; Martínez Cruz, Begoña; Zalloua, Pierre A; Elgaaied, Amel Benammar; Comas, David, 1969-

    2013-01-01

    The geostrategic location of North Africa as a crossroad between three continents and as a stepping-stone outside Africa has evoked anthropological and genetic interest in this region. Numerous studies have described the genetic landscape of the human population in North Africa employing paternal, maternal, and biparental molecular markers. However, information from these markers which have different inheritance patterns has been mostly assessed independently, resulting in an incomplete descr...

  8. Analysis of The Cancer Genome Atlas sequencing data reveals novel properties of the human papillomavirus 16 genome in head and neck squamous cell carcinoma.

    Science.gov (United States)

    Nulton, Tara J; Olex, Amy L; Dozmorov, Mikhail; Morgan, Iain M; Windle, Brad

    2017-03-14

    Human papillomavirus (HPV) DNA is detected in up to 80% of oropharyngeal carcinomas (OPC) and this HPV positive disease has reached epidemic proportions. To increase our understanding of the disease, we investigated the status of the HPV16 genome in HPV-positive head and neck cancers (HNC). Raw RNA-Seq and Whole Genome Sequence data from The Cancer Genome Atlas HNC samples were analyzed to gain a full understanding of the HPV genome status for these tumors. Several remarkable and novel observations were made following this analysis. Firstly, there are three main HPV genome states in these tumors that are split relatively evenly: An episomal only state, an integrated state, and a state in which the viral genome exists as a hybrid episome with human DNA. Secondly, none of the tumors expressed high levels of E6; E6*I is the dominant variant expressed in all tumors. The most striking conclusion from this study is that around three quarters of HPV16 positive HNC contain episomal versions of the viral genome that are likely replicating in an E1-E2 dependent manner. The clinical and therapeutic implications of these observations are discussed.

  9. Comparative Genomic Hybridization of Human Malignant Gliomas Reveals Multiple Amplification Sites and Nonrandom Chromosomal Gains and Losses

    Science.gov (United States)

    Schròck, Evelin; Thiel, Gundula; Lozanova, Tanka; du Manoir, Stanislas; Meffert, Marie-Christine; Jauch, Anna; Speicher, Michael R.; Nürnberg, Peter; Vogel, Siegfried; Janisch, Werner; Donis-Keller, Helen; Ried, Thomas; Witkowski, Regine; Cremer, Thomas

    1994-01-01

    Nine human malignant gliomas (2 astrocytomas grade III and 7 glioblastomas) were analyzed using comparative genomic hybridization (CGH). In addition to the amplification of the EGFR gene at 7p12 in 4 of 9 cases, six new amplification sites were mapped to 1q32, 4q12, 7q21.1, 7q21.2-3, 12p, and 22q12. Nonrandom chromosomal gains and losses were identified with overrepresentation of chromosome 7 and underrepresentation of chromosome 10 as the most frequent events (1 of 2 astrocytomas, 7 of 7 glioblastomas). Gain of a part or the whole chromosome 19 and losses of chromosome bands 9pter-23 and 22q13 were detected each in five cases. Loss of chromosome band 17p13 and gain of chromosome 20 were revealed each in three cases. The validity of the CGH data was confirmed using interphase cytogenetics with YAC clones, chromosome painting in tumor metaphase spreads, and DNA fingerprinting. A comparison of CGH data with the results of chromosome banding analyses indicates that metaphase spreads accessible in primary tumor cell cultures may not represent the clones predominant in the tumor tissue ImagesFigure 1Figure 4Figure 6 PMID:8203461

  10. Comparative Genomics Analysis of Streptococcus Isolates from the Human Small Intestine Reveals their Adaptation to a Highly Dynamic Ecosystem

    NARCIS (Netherlands)

    Bogert, van den B.; Boekhorst, te J.; Herrmann, R.; Smid, E.J.; Zoetendal, E.G.; Kleerebezem, M.

    2013-01-01

    The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus

  11. Genome-wide, Single-Cell DNA Methylomics Reveals Increased Non-CpG Methylation during Human Oocyte Maturation

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2017-07-01

    Full Text Available The establishment of DNA methylation patterns in oocytes is a highly dynamic process marking gene-regulatory events during fertilization, embryonic development, and adulthood. However, after epigenetic reprogramming in primordial germ cells, how and when DNA methylation is re-established in developing human oocytes remains to be characterized. Here, using single-cell whole-genome bisulfite sequencing, we describe DNA methylation patterns in three different maturation stages of human oocytes. We found that while broad-scale patterns of CpG methylation have been largely established by the immature germinal vesicle stage, localized changes continue into later development. Non-CpG methylation, on the other hand, undergoes a large-scale, generalized remodeling through the final stage of maturation, with the net overall result being the accumulation of methylation as oocytes mature. The role of the genome-wide, non-CpG methylation remodeling in the final stage of oocyte maturation deserves further investigation.

  12. Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient population structure and recent recombination among host-specific subpopulations

    KAUST Repository

    Diez Benavente, Ernest

    2017-09-18

    The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.

  13. Analysis of nuclear and organellar genomes of Plasmodium knowlesi in humans reveals ancient population structure and recent recombination among host-specific subpopulations

    KAUST Repository

    Diez Benavente, Ernest; Florez de Sessions, Paola; Moon, Robert W.; Holder, Anthony A.; Blackman, Michael J.; Roper, Cally; Drakeley, Christopher J.; Pain, Arnab; Sutherland, Colin J.; Hibberd, Martin L.; Campino, Susana; Clark, Taane G.

    2017-01-01

    The macaque parasite Plasmodium knowlesi is a significant concern in Malaysia where cases of human infection are increasing. Parasites infecting humans originate from genetically distinct subpopulations associated with the long-tailed (Macaca fascicularis (Mf)) or pig-tailed macaques (Macaca nemestrina (Mn)). We used a new high-quality reference genome to re-evaluate previously described subpopulations among human and macaque isolates from Malaysian-Borneo and Peninsular-Malaysia. Nuclear genomes were dimorphic, as expected, but new evidence of chromosomal-segment exchanges between subpopulations was found. A large segment on chromosome 8 originating from the Mn subpopulation and containing genes encoding proteins expressed in mosquito-borne parasite stages, was found in Mf genotypes. By contrast, non-recombining organelle genomes partitioned into 3 deeply branched lineages, unlinked with nuclear genomic dimorphism. Subpopulations which diverged in isolation have re-connected, possibly due to deforestation and disruption of wild macaque habitats. The resulting genomic mosaics reveal traits selected by host-vector-parasite interactions in a setting of ecological transition.

  14. Complete genome sequence analysis of Nocardia brasiliensis HUJEG-1 reveals a saprobic lifestyle and the genes needed for human pathogenesis.

    Science.gov (United States)

    Vera-Cabrera, Lucio; Ortiz-Lopez, Rocio; Elizondo-Gonzalez, Ramiro; Ocampo-Candiani, Jorge

    2013-01-01

    Nocardia brasiliensis is an important etiologic agent of mycetoma. These bacteria live as a saprobe in soil or organic material and enter the tissue via minor trauma. Mycetoma is characterized by tumefaction and the production of fistula and abscesses, with no spontaneous cure. By using mass sequencing, we determined the complete genomic nucleotide sequence of the bacteria. According to our data, the genome is a circular chromosome 9,436,348-bp long with 68% G+C content that encodes 8,414 proteins. We observed orthologs for virulence factors, a higher number of genes involved in lipid biosynthesis and catabolism, and gene clusters for the synthesis of bioactive compounds, such as antibiotics, terpenes, and polyketides. An in silico analysis of the sequence supports the conclusion that the bacteria acquired diverse genes by horizontal transfer from other soil bacteria, even from eukaryotic organisms. The genome composition reflects the evolution of bacteria via the acquisition of a large amount of DNA, which allows it to survive in new ecological niches, including humans.

  15. Complete genome sequence analysis of Nocardia brasiliensis HUJEG-1 reveals a saprobic lifestyle and the genes needed for human pathogenesis.

    Directory of Open Access Journals (Sweden)

    Lucio Vera-Cabrera

    Full Text Available Nocardia brasiliensis is an important etiologic agent of mycetoma. These bacteria live as a saprobe in soil or organic material and enter the tissue via minor trauma. Mycetoma is characterized by tumefaction and the production of fistula and abscesses, with no spontaneous cure. By using mass sequencing, we determined the complete genomic nucleotide sequence of the bacteria. According to our data, the genome is a circular chromosome 9,436,348-bp long with 68% G+C content that encodes 8,414 proteins. We observed orthologs for virulence factors, a higher number of genes involved in lipid biosynthesis and catabolism, and gene clusters for the synthesis of bioactive compounds, such as antibiotics, terpenes, and polyketides. An in silico analysis of the sequence supports the conclusion that the bacteria acquired diverse genes by horizontal transfer from other soil bacteria, even from eukaryotic organisms. The genome composition reflects the evolution of bacteria via the acquisition of a large amount of DNA, which allows it to survive in new ecological niches, including humans.

  16. The human genome project

    International Nuclear Information System (INIS)

    Worton, R.

    1996-01-01

    The Human Genome Project is a massive international research project, costing 3 to 5 billion dollars and expected to take 15 years, which will identify the all the genes in the human genome - i.e. the complete sequence of bases in human DNA. The prize will be the ability to identify genes causing or predisposing to disease, and in some cases the development of gene therapy, but this new knowledge will raise important ethical issues

  17. Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Fortson, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Joyce, G. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Kimble, H. J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Max, C. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Prince, T. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, P. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Woodin, W. H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  18. Human genome I

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    An international conference, Human Genome I, was held Oct. 2-4, 1989 in San Diego, Calif. Selected speakers discussed: Current Status of the Genome Project; Technique Innovations; Interesting regions; Applications; and Organization - Different Views of Current and Future Science and Procedures. Posters, consisting of 119 presentations, were displayed during the sessions. 119 were indexed for inclusion to the Energy Data Base

  19. High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli.

    Science.gov (United States)

    van Koningsbruggen, Silvana; Gierlinski, Marek; Schofield, Pietá; Martin, David; Barton, Geoffey J; Ariyurek, Yavuz; den Dunnen, Johan T; Lamond, Angus I

    2010-11-01

    The nuclear space is mostly occupied by chromosome territories and nuclear bodies. Although this organization of chromosomes affects gene function, relatively little is known about the role of nuclear bodies in the organization of chromosomal regions. The nucleolus is the best-studied subnuclear structure and forms around the rRNA repeat gene clusters on the acrocentric chromosomes. In addition to rDNA, other chromatin sequences also surround the nucleolar surface and may even loop into the nucleolus. These additional nucleolar-associated domains (NADs) have not been well characterized. We present here a whole-genome, high-resolution analysis of chromatin endogenously associated with nucleoli. We have used a combination of three complementary approaches, namely fluorescence comparative genome hybridization, high-throughput deep DNA sequencing and photoactivation combined with time-lapse fluorescence microscopy. The data show that specific sequences from most human chromosomes, in addition to the rDNA repeat units, associate with nucleoli in a reproducible and heritable manner. NADs have in common a high density of AT-rich sequence elements, low gene density and a statistically significant enrichment in transcriptionally repressed genes. Unexpectedly, both the direct DNA sequencing and fluorescence photoactivation data show that certain chromatin loci can specifically associate with either the nucleolus, or the nuclear envelope.

  20. Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans.

    Directory of Open Access Journals (Sweden)

    Maxime Rotival

    2011-12-01

    Full Text Available One major expectation from the transcriptome in humans is to characterize the biological basis of associations identified by genome-wide association studies. So far, few cis expression quantitative trait loci (eQTLs have been reliably related to disease susceptibility. Trans-regulating mechanisms may play a more prominent role in disease susceptibility. We analyzed 12,808 genes detected in at least 5% of circulating monocyte samples from a population-based sample of 1,490 European unrelated subjects. We applied a method of extraction of expression patterns-independent component analysis-to identify sets of co-regulated genes. These patterns were then related to 675,350 SNPs to identify major trans-acting regulators. We detected three genomic regions significantly associated with co-regulated gene modules. Association of these loci with multiple expression traits was replicated in Cardiogenics, an independent study in which expression profiles of monocytes were available in 758 subjects. The locus 12q13 (lead SNP rs11171739, previously identified as a type 1 diabetes locus, was associated with a pattern including two cis eQTLs, RPS26 and SUOX, and 5 trans eQTLs, one of which (MADCAM1 is a potential candidate for mediating T1D susceptibility. The locus 12q24 (lead SNP rs653178, which has demonstrated extensive disease pleiotropy, including type 1 diabetes, hypertension, and celiac disease, was associated to a pattern strongly correlating to blood pressure level. The strongest trans eQTL in this pattern was CRIP1, a known marker of cellular proliferation in cancer. The locus 12q15 (lead SNP rs11177644 was associated with a pattern driven by two cis eQTLs, LYZ and YEATS4, and including 34 trans eQTLs, several of them tumor-related genes. This study shows that a method exploiting the structure of co-expressions among genes can help identify genomic regions involved in trans regulation of sets of genes and can provide clues for understanding the

  1. Chlamydiaceae Genomics Reveals Interspecies Admixture and the Recent Evolution of Chlamydia abortus Infecting Lower Mammalian Species and Humans.

    Science.gov (United States)

    Joseph, Sandeep J; Marti, Hanna; Didelot, Xavier; Castillo-Ramirez, Santiago; Read, Timothy D; Dean, Deborah

    2015-10-27

    Chlamydiaceae are obligate intracellular bacteria that cause a diversity of severe infections among humans and livestock on a global scale. Identification of new species since 1989 and emergence of zoonotic infections, including abortion in women, underscore the need for genome sequencing of multiple strains of each species to advance our knowledge of evolutionary dynamics across Chlamydiaceae. Here, we genome sequenced isolates from avian, lower mammalian and human hosts. Based on core gene phylogeny, five isolates previously classified as Chlamydia abortus were identified as members of Chlamydia psittaci and Chlamydia pecorum. Chlamydia abortus is the most recently emerged species and is a highly monomorphic group that lacks the conserved virulence-associated plasmid. Low-level recombination and evidence for adaptation to the placenta echo evolutionary processes seen in recently emerged, highly virulent niche-restricted pathogens, such as Bacillus anthracis. In contrast, gene flow occurred within C. psittaci and other Chlamydiaceae species. The C. psittaci strain RTH, isolated from a red-tailed hawk (Buteo jamaicensis), is an outlying strain with admixture of C. abortus, C. psittaci, and its own population markers. An average nucleotide identity of less than 94% compared with other Chlamydiaceae species suggests that RTH belongs to a new species intermediary between C. psittaci and C. abortus. Hawks, as scavengers and predators, have extensive opportunities to acquire multiple species in their intestinal tract. This could facilitate transformation and homologous recombination with the potential for new species emergence. Our findings indicate that incubator hosts such as birds-of-prey likely promote Chlamydiaceae evolution resulting in novel pathogenic lineages. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Genomic library screening for viruses from the human dental plaque revealed pathogen-specific lytic phage sequences.

    Science.gov (United States)

    Al-Jarbou, Ahmed Nasser

    2012-01-01

    Bacterial pathogenesis presents an astounding arsenal of virulence factors that allow them to conquer many different niches throughout the course of infection. Principally fascinating is the fact that some bacterial species are able to induce different diseases by expression of different combinations of virulence factors. Nevertheless, studies aiming at screening for the presence of bacteriophages in humans have been limited. Such screening procedures would eventually lead to identification of phage-encoded properties that impart increased bacterial fitness and/or virulence in a particular niche, and hence, would potentially be used to reverse the course of bacterial infections. As the human oral cavity represents a rich and dynamic ecosystem for several upper respiratory tract pathogens. However, little is known about virus diversity in human dental plaque which is an important reservoir. We applied the culture-independent approach to characterize virus diversity in human dental plaque making a library from a virus DNA fraction amplified using a multiple displacement method and sequenced 80 clones. The resulting sequence showed 44% significant identities to GenBank databases by TBLASTX analysis. TBLAST homology comparisons showed that 66% was viral; 18% eukarya; 10% bacterial; 6% mobile elements. These sequences were sorted into 6 contigs and 45 single sequences in which 4 contigs and a single sequence showed significant identity to a small region of a putative prophage in the Corynebacterium diphtheria genome. These findings interestingly highlight the uniqueness of over half of the sequences, whilst the dominance of a pathogen-specific prophage sequences imply their role in virulence.

  3. Human social genomics.

    Directory of Open Access Journals (Sweden)

    Steven W Cole

    2014-08-01

    Full Text Available A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural "social signal transduction" pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.

  4. Genome size analyses of Pucciniales reveal the largest fungal genomes.

    Science.gov (United States)

    Tavares, Sílvia; Ramos, Ana Paula; Pires, Ana Sofia; Azinheira, Helena G; Caldeirinha, Patrícia; Link, Tobias; Abranches, Rita; Silva, Maria do Céu; Voegele, Ralf T; Loureiro, João; Talhinhas, Pedro

    2014-01-01

    Rust fungi (Basidiomycota, Pucciniales) are biotrophic plant pathogens which exhibit diverse complexities in their life cycles and host ranges. The completion of genome sequencing of a few rust fungi has revealed the occurrence of large genomes. Sequencing efforts for other rust fungi have been hampered by uncertainty concerning their genome sizes. Flow cytometry was recently applied to estimate the genome size of a few rust fungi, and confirmed the occurrence of large genomes in this order (averaging 225.3 Mbp, while the average for Basidiomycota was 49.9 Mbp and was 37.7 Mbp for all fungi). In this work, we have used an innovative and simple approach to simultaneously isolate nuclei from the rust and its host plant in order to estimate the genome size of 30 rust species by flow cytometry. Genome sizes varied over 10-fold, from 70 to 893 Mbp, with an average genome size value of 380.2 Mbp. Compared to the genome sizes of over 1800 fungi, Gymnosporangium confusum possesses the largest fungal genome ever reported (893.2 Mbp). Moreover, even the smallest rust genome determined in this study is larger than the vast majority of fungal genomes (94%). The average genome size of the Pucciniales is now of 305.5 Mbp, while the average Basidiomycota genome size has shifted to 70.4 Mbp and the average for all fungi reached 44.2 Mbp. Despite the fact that no correlation could be drawn between the genome sizes, the phylogenomics or the life cycle of rust fungi, it is interesting to note that rusts with Fabaceae hosts present genomes clearly larger than those with Poaceae hosts. Although this study comprises only a small fraction of the more than 7000 rust species described, it seems already evident that the Pucciniales represent a group where genome size expansion could be a common characteristic. This is in sharp contrast to sister taxa, placing this order in a relevant position in fungal genomics research.

  5. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium.

    Science.gov (United States)

    Machado, Henrique; Gram, Lone

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur , amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.

  6. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome.

    Science.gov (United States)

    Yu, Shoukai; Lemos, Bernardo

    2016-12-31

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  8. Decoding the human genome

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Antonerakis, S E

    2002-01-01

    Decoding the Human genome is a very up-to-date topic, raising several questions besides purely scientific, in view of the two competing teams (public and private), the ethics of using the results, and the fact that the project went apparently faster and easier than expected. The lecture series will address the following chapters: Scientific basis and challenges. Ethical and social aspects of genomics.

  9. Human Germline Genome Editing

    OpenAIRE

    Ormond, Kelly E.; Mortlock, Douglas P.; Scholes, Derek T.; Bombard, Yvonne; Brody, Lawrence C.; Faucett, W. Andrew; Garrison, Nanibaa’ A.; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E.

    2017-01-01

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Gen...

  10. Genome-wide analysis reveals loci encoding anti-macrophage factors in the human pathogen Burkholderia pseudomallei K96243.

    Directory of Open Access Journals (Sweden)

    Andrea J Dowling

    2010-12-01

    Full Text Available Burkholderia pseudomallei is an important human pathogen whose infection biology is still poorly understood. The bacterium is endemic to tropical regions, including South East Asia and Northern Australia, where it causes melioidosis, a serious disease associated with both high mortality and antibiotic resistance. B. pseudomallei is a Gram-negative facultative intracellular pathogen that is able to replicate in macrophages. However despite the critical nature of its interaction with macrophages, few anti-macrophage factors have been characterized to date. Here we perform a genome-wide gain of function screen of B. pseudomallei strain K96243 to identify loci encoding factors with anti-macrophage activity. We identify a total of 113 such loci scattered across both chromosomes, with positive gene clusters encoding transporters and secretion systems, enzymes/toxins, secondary metabolite, biofilm, adhesion and signal response related factors. Further phenotypic analysis of four of these regions shows that the encoded factors cause striking cellular phenotypes relevant to infection biology, including apoptosis, formation of actin 'tails' and multi-nucleation within treated macrophages. The detailed analysis of the remaining host of loci will facilitate genetic dissection of the interaction of this important pathogen with host macrophages and thus further elucidate this critical part of its infection cycle.

  11. Whole-genome expression analyses of type 2 diabetes in human skin reveal altered immune function and burden of infection.

    Science.gov (United States)

    Wu, Chun; Chen, Xiaopan; Shu, Jing; Lee, Chun-Ting

    2017-05-23

    Skin disorders are among most common complications associated with type 2 diabetes mellitus (T2DM). Although T2DM patients are known to have increased risk of infections and other T2DM-related skin disorders, their molecular mechanisms are largely unknown. This study aims to identify dysregulated genes and gene networks that are associated with T2DM in human skin. We compared the expression profiles of 56,318 transcribed genes on 74 T2DM cases and 148 gender- age-, and race-matched non-diabetes controls from the Genotype-Tissue Expression (GTEx) database. RNA-Sequencing data indicates that diabetic skin is characterized by increased expression of genes that are related to immune responses (CCL20, CXCL9, CXCL10, CXCL11, CXCL13, and CCL18), JAK/STAT signaling pathway (JAK3, STAT1, and STAT2), tumor necrosis factor superfamily (TNFSF10 and TNFSF15), and infectious disease pathways (OAS1, OAS2, OAS3, and IFIH1). Genes in cell adhesion molecules pathway (NCAM1 and L1CAM) and collagen family (PCOLCE2 and COL9A3) are downregulated, suggesting structural changes in the skin of T2DM. For the first time, to the best of our knowledge, this pioneer analytic study reports comprehensive unbiased gene expression changes and dysregulated pathways in the non-diseased skin of T2DM patients. This comprehensive understanding derived from whole-genome expression profiles could advance our knowledge in determining molecular targets for the prevention and treatment of T2DM-associated skin disorders.

  12. Annotating individual human genomes.

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A; Topol, Eric J; Schork, Nicholas J

    2011-10-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. ANNOTATING INDIVIDUAL HUMAN GENOMES*

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A.; Topol, Eric J.; Schork, Nicholas J.

    2014-01-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely to amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. PMID:21839162

  14. Human Germline Genome Editing.

    Science.gov (United States)

    Ormond, Kelly E; Mortlock, Douglas P; Scholes, Derek T; Bombard, Yvonne; Brody, Lawrence C; Faucett, W Andrew; Garrison, Nanibaa' A; Hercher, Laura; Isasi, Rosario; Middleton, Anna; Musunuru, Kiran; Shriner, Daniel; Virani, Alice; Young, Caroline E

    2017-08-03

    With CRISPR/Cas9 and other genome-editing technologies, successful somatic and germline genome editing are becoming feasible. To respond, an American Society of Human Genetics (ASHG) workgroup developed this position statement, which was approved by the ASHG Board in March 2017. The workgroup included representatives from the UK Association of Genetic Nurses and Counsellors, Canadian Association of Genetic Counsellors, International Genetic Epidemiology Society, and US National Society of Genetic Counselors. These groups, as well as the American Society for Reproductive Medicine, Asia Pacific Society of Human Genetics, British Society for Genetic Medicine, Human Genetics Society of Australasia, Professional Society of Genetic Counselors in Asia, and Southern African Society for Human Genetics, endorsed the final statement. The statement includes the following positions. (1) At this time, given the nature and number of unanswered scientific, ethical, and policy questions, it is inappropriate to perform germline gene editing that culminates in human pregnancy. (2) Currently, there is no reason to prohibit in vitro germline genome editing on human embryos and gametes, with appropriate oversight and consent from donors, to facilitate research on the possible future clinical applications of gene editing. There should be no prohibition on making public funds available to support this research. (3) Future clinical application of human germline genome editing should not proceed unless, at a minimum, there is (a) a compelling medical rationale, (b) an evidence base that supports its clinical use, (c) an ethical justification, and (d) a transparent public process to solicit and incorporate stakeholder input. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  15. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset.

    Science.gov (United States)

    Ignatieva, Elena V; Levitsky, Victor G; Yudin, Nikolay S; Moshkin, Mikhail P; Kolchanov, Nikolay A

    2014-01-01

    The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors), which are activated by olfactory stimuli (ligands). Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter [a region of DNA about 100-1000 base pairs long located upstream of the transcription start site (TSS)]. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.). In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

  16. Genetic basis of olfactory cognition: extremely high level of DNA sequence polymorphism in promoter regions of the human olfactory receptor genes revealed using the 1000 Genomes Project dataset

    Directory of Open Access Journals (Sweden)

    Elena V. Ignatieva

    2014-03-01

    Full Text Available The molecular mechanism of olfactory cognition is very complicated. Olfactory cognition is initiated by olfactory receptor proteins (odorant receptors, which are activated by olfactory stimuli (ligands. Olfactory receptors are the initial player in the signal transduction cascade producing a nerve impulse, which is transmitted to the brain. The sensitivity to a particular ligand depends on the expression level of multiple proteins involved in the process of olfactory cognition: olfactory receptor proteins, proteins that participate in signal transduction cascade, etc. The expression level of each gene is controlled by its regulatory regions, and especially, by the promoter (a region of DNA about 100–1000 base pairs long located upstream of the transcription start site. We analyzed single nucleotide polymorphisms using human whole-genome data from the 1000 Genomes Project and revealed an extremely high level of single nucleotide polymorphisms in promoter regions of olfactory receptor genes and HLA genes. We hypothesized that the high level of polymorphisms in olfactory receptor promoters was responsible for the diversity in regulatory mechanisms controlling the expression levels of olfactory receptor proteins. Such diversity of regulatory mechanisms may cause the great variability of olfactory cognition of numerous environmental olfactory stimuli perceived by human beings (air pollutants, human body odors, odors in culinary etc.. In turn, this variability may provide a wide range of emotional and behavioral reactions related to the vast variety of olfactory stimuli.

  17. Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human growth plate to modulate height.

    Science.gov (United States)

    Lui, Julian C; Nilsson, Ola; Chan, Yingleong; Palmer, Cameron D; Andrade, Anenisia C; Hirschhorn, Joel N; Baron, Jeffrey

    2012-12-01

    Previous meta-analysis of genome-wide association (GWA) studies has identified 180 loci that influence adult height. However, each GWA locus typically comprises a set of contiguous genes, only one of which presumably modulates height. We reasoned that many of the causative genes within these loci influence height because they are expressed in and function in the growth plate, a cartilaginous structure that causes bone elongation and thus determines stature. Therefore, we used expression microarray studies of mouse and rat growth plate, human disease databases and a mouse knockout phenotype database to identify genes within the GWAS loci that are likely required for normal growth plate function. Each of these approaches identified significantly more genes within the GWA height loci than at random genomic locations (P analysis strongly implicates 78 genes in growth plate function, including multiple genes that participate in PTHrP-IHH, BMP and CNP signaling, and many genes that have not previously been implicated in the growth plate. Thus, this analysis reveals a large number of novel genes that regulate human growth plate chondrogenesis and thereby contribute to the normal variations in human adult height. The analytic approach developed for this study may be applied to GWA studies for other common polygenic traits and diseases, thus providing a new general strategy to identify causative genes within GWA loci and to translate genetic associations into mechanistic biological insights.

  18. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Science.gov (United States)

    Liang, Ping; Nair, Jayakumar R; Song, Lei; McGuire, John J; Dolnick, Bruce J

    2005-01-01

    Background The rTS gene (ENOSF1), first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS) mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis. PMID:16162288

  19. Genomic analysis of influenza A virus from captive wild boars in Brazil reveals a human-like H1N2 influenza virus.

    Science.gov (United States)

    Biondo, Natalha; Schaefer, Rejane; Gava, Danielle; Cantão, Mauricio E; Silveira, Simone; Mores, Marcos A Z; Ciacci-Zanella, Janice R; Barcellos, David E S N

    2014-01-10

    Influenza is a viral disease that affects human and several animal species. In Brazil, H1N1, H3N2 and 2009 pandemic H1N1 A(H1N1)pdm09 influenza A viruses (IAV) circulate in domestic swine herds. Wild boars are also susceptible to IAV infection but in Brazil until this moment there are no reports of IAV infection in wild boars or in captive wild boars populations. Herein the occurrence of IAV in captive wild boars with the presence of lung consolidation lesions during slaughter was investigated. Lung samples were screened by RT-PCR for IAV detection. IAV positive samples were further analyzed by quantitative real-time PCR (qRRT-PCR), virus isolation, genomic sequencing, histopathology and immunohistochemistry (IHC). Eleven out of 60 lungs (18.3%) were positive for IAV by RT-PCR and seven out of the eleven were also positive for A(H1N1)pdm09 by qRRT-PCR. Chronic diffuse bronchopneumonia was observed in all samples and IHC analysis was negative for influenza A antigen. Full genes segments of H1N2 IAV were sequenced using Illumina's genome analyzer platform (MiSeq). The genomic analysis revealed that the HA and NA genes clustered with IAVs of the human lineage and the six internal genes were derived from the H1N1pdm09 IAV. This is the first report of a reassortant human-like H1N2 influenza virus infection in captive wild boars in Brazil and indicates the need to monitor IAV evolution in Suidae populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Directory of Open Access Journals (Sweden)

    McGuire John J

    2005-09-01

    Full Text Available Abstract Background The rTS gene (ENOSF1, first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis.

  1. Discovering human germ cell mutagens with whole genome sequencing: Insights from power calculations reveal the importance of controlling for between-family variability.

    Science.gov (United States)

    Webster, R J; Williams, A; Marchetti, F; Yauk, C L

    2018-07-01

    Mutations in germ cells pose potential genetic risks to offspring. However, de novo mutations are rare events that are spread across the genome and are difficult to detect. Thus, studies in this area have generally been under-powered, and no human germ cell mutagen has been identified. Whole Genome Sequencing (WGS) of human pedigrees has been proposed as an approach to overcome these technical and statistical challenges. WGS enables analysis of a much wider breadth of the genome than traditional approaches. Here, we performed power analyses to determine the feasibility of using WGS in human families to identify germ cell mutagens. Different statistical models were compared in the power analyses (ANOVA and multiple regression for one-child families, and mixed effect model sampling between two to four siblings per family). Assumptions were made based on parameters from the existing literature, such as the mutation-by-paternal age effect. We explored two scenarios: a constant effect due to an exposure that occurred in the past, and an accumulating effect where the exposure is continuing. Our analysis revealed the importance of modeling inter-family variability of the mutation-by-paternal age effect. Statistical power was improved by models accounting for the family-to-family variability. Our power analyses suggest that sufficient statistical power can be attained with 4-28 four-sibling families per treatment group, when the increase in mutations ranges from 40 to 10% respectively. Modeling family variability using mixed effect models provided a reduction in sample size compared to a multiple regression approach. Much larger sample sizes were required to detect an interaction effect between environmental exposures and paternal age. These findings inform study design and statistical modeling approaches to improve power and reduce sequencing costs for future studies in this area. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  2. Genome-wide DNA methylation analyses in the brain reveal four differentially methylated regions between humans and non-human primates

    Directory of Open Access Journals (Sweden)

    Wang Jinkai

    2012-08-01

    Full Text Available Abstract Background The highly improved cognitive function is the most significant change in human evolutionary history. Recently, several large-scale studies reported the evolutionary roles of DNA methylation; however, the role of DNA methylation on brain evolution is largely unknown. Results To test if DNA methylation has contributed to the evolution of human brain, with the use of MeDIP-Chip and SEQUENOM MassARRAY, we conducted a genome-wide analysis to identify differentially methylated regions (DMRs in the brain between humans and rhesus macaques. We first identified a total of 150 candidate DMRs by the MeDIP-Chip method, among which 4 DMRs were confirmed by the MassARRAY analysis. All 4 DMRs are within or close to the CpG islands, and a MIR3 repeat element was identified in one DMR, but no repeat sequence was observed in the other 3 DMRs. For the 4 DMR genes, their proteins tend to be conserved and two genes have neural related functions. Bisulfite sequencing and phylogenetic comparison among human, chimpanzee, rhesus macaque and rat suggested several regions of lineage specific DNA methylation, including a human specific hypomethylated region in the promoter of K6IRS2 gene. Conclusions Our study provides a new angle of studying human brain evolution and understanding the evolutionary role of DNA methylation in the central nervous system. The results suggest that the patterns of DNA methylation in the brain are in general similar between humans and non-human primates, and only a few DMRs were identified.

  3. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens

    NARCIS (Netherlands)

    Xu, J.; Saunders, C.; Hu, P.; Grant, R.A.; Boekhout, T.; Kuramae, E.E.; Kronstad, J.W.; DeAngelis, Y.M.; Reeder, N.L.; Johnstone, K.R.; Leland, M.; Fieno, A.M.; Begley, W.M.; Sun, Y.; Lacey, M.P.; Chaudhary, T.; Keough, T.; Chu, L.; Sears, R.; Yuan, B.; Dawson Jr., T.L.

    2007-01-01

    Fungi in the genus Malassezia are ubiquitous skin residents of humans and other warm-blooded animals. Malassezia are involved in disorders including dandruff and seborrheic dermatitis, which together affect >50% of humans. Despite the importance of Malassezia in common skin diseases, remarkably

  4. Dandruff-associated Malassezia genomes reveal convergent and divergent virulence traits shared with plant and human fungal pathogens

    NARCIS (Netherlands)

    Xu, Jun; Saunders, Charles W.; Hu, Ping; Grant, Raymond A.; Boekhout, Teun; Kuramae, Eiko E.; Kronstad, James W.; DeAngelis, Yvonne M.; Reeder, Nancy L.; Johnstone, Kevin R.; Leland, Meredith; Fieno, Angela M.; Begley, William M.; Sun, Yiping; Lacey, Martin P.; Chaudhary, Tanuja; Keough, Thomas; Chu, Lien; Sears, Russell; Yuan, Bo; Dawson, Thomas L.

    2007-01-01

    Fungi in the genus Malassezia are ubiquitous skin residents of humans and other warm-blooded animals. Malassezia are involved in disorders including dandruff and seborrheic dermatitis, which together affect > 50% of humans. Despite the importance of Malassezia in common skin diseases, remarkably

  5. Comparative genomics reveals insights into avian genome evolution and adaptation

    Science.gov (United States)

    Zhang, Guojie; Li, Cai; Li, Qiye; Li, Bo; Larkin, Denis M.; Lee, Chul; Storz, Jay F.; Antunes, Agostinho; Greenwold, Matthew J.; Meredith, Robert W.; Ödeen, Anders; Cui, Jie; Zhou, Qi; Xu, Luohao; Pan, Hailin; Wang, Zongji; Jin, Lijun; Zhang, Pei; Hu, Haofu; Yang, Wei; Hu, Jiang; Xiao, Jin; Yang, Zhikai; Liu, Yang; Xie, Qiaolin; Yu, Hao; Lian, Jinmin; Wen, Ping; Zhang, Fang; Li, Hui; Zeng, Yongli; Xiong, Zijun; Liu, Shiping; Zhou, Long; Huang, Zhiyong; An, Na; Wang, Jie; Zheng, Qiumei; Xiong, Yingqi; Wang, Guangbiao; Wang, Bo; Wang, Jingjing; Fan, Yu; da Fonseca, Rute R.; Alfaro-Núñez, Alonzo; Schubert, Mikkel; Orlando, Ludovic; Mourier, Tobias; Howard, Jason T.; Ganapathy, Ganeshkumar; Pfenning, Andreas; Whitney, Osceola; Rivas, Miriam V.; Hara, Erina; Smith, Julia; Farré, Marta; Narayan, Jitendra; Slavov, Gancho; Romanov, Michael N; Borges, Rui; Machado, João Paulo; Khan, Imran; Springer, Mark S.; Gatesy, John; Hoffmann, Federico G.; Opazo, Juan C.; Håstad, Olle; Sawyer, Roger H.; Kim, Heebal; Kim, Kyu-Won; Kim, Hyeon Jeong; Cho, Seoae; Li, Ning; Huang, Yinhua; Bruford, Michael W.; Zhan, Xiangjiang; Dixon, Andrew; Bertelsen, Mads F.; Derryberry, Elizabeth; Warren, Wesley; Wilson, Richard K; Li, Shengbin; Ray, David A.; Green, Richard E.; O’Brien, Stephen J.; Griffin, Darren; Johnson, Warren E.; Haussler, David; Ryder, Oliver A.; Willerslev, Eske; Graves, Gary R.; Alström, Per; Fjeldså, Jon; Mindell, David P.; Edwards, Scott V.; Braun, Edward L.; Rahbek, Carsten; Burt, David W.; Houde, Peter; Zhang, Yong; Yang, Huanming; Wang, Jian; Jarvis, Erich D.; Gilbert, M. Thomas P.; Wang, Jun

    2015-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, which predominantly arose because of lineage-specific erosion of repetitive elements, large segmental deletions, and gene loss. Avian genomes furthermore show a remarkably high degree of evolutionary stasis at the levels of nucleotide sequence, gene synteny, and chromosomal structure. Despite this pattern of conservation, we detected many non-neutral evolutionary changes in protein-coding genes and noncoding regions. These analyses reveal that pan-avian genomic diversity covaries with adaptations to different lifestyles and convergent evolution of traits. PMID:25504712

  6. National Human Genome Research Institute

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  7. Genome-Wide Association Study Reveals Genetic Architecture of Eating Behaviors in Pigs and its Implications for Humans Obesity by Comparative Genome Mapping

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Strathe, Anders Bjerring; Ostersen, Tage

    2013-01-01

    per visit (TPV), mean feed intake per visit(FPV) and mean feed intake rate (FR) were available on 1130 boars. All boars weregenotyped using the Illumina Porcine SNP60 BeadChip. The association analyseswere performed using the GenABEL package in R. Sixteen SNPs had moderategenome-wide significant (p...... association with feeding behavior traits. Locus M1GA0016584 located close to theMSI2 gene on chromosome (SSC) 14 was very strongly associated with NVD (p =9.6E-07). Thirty six SNPs were located in genome regions where QTLs havepreviously been reported......, dephosphorylation and positive regulation of peptide secretiongenes were found highly significantly associated with feeding behavior traits byfunctional annotation. This is the first GWAS to identify genetic variants and biologicalmechanisms for feeding behavior in pigs and these results are important...

  8. Comparative genomics analysis of Streptococcus agalactiae reveals that isolates from cultured tilapia in China are closely related to the human strain A909.

    Science.gov (United States)

    Liu, Guangjin; Zhang, Wei; Lu, Chengping

    2013-11-11

    Streptococcus agalactiae, also referred to as Group B Streptococcus (GBS), is a frequent resident of the rectovaginal tract in humans, and a major cause of neonatal infection. In addition, S. agalactiae is a known fish pathogen, which compromises food safety and represents a zoonotic hazard. The complete genome sequence of the piscine S. agalactiae isolate GD201008-001 was compared with 14 other piscine, human and bovine strains to explore their virulence determinants, evolutionary relationships and the genetic basis of host tropism in S. agalactiae. The pan-genome of S. agalactiae is open and its size increases with the addition of newly sequenced genomes. The core genes shared by all isolates account for 50 ~ 70% of any single genome. The Chinese piscine isolates GD201008-001 and ZQ0910 are phylogenetically distinct from the Latin American piscine isolates SA20-06 and STIR-CD-17, but are closely related to the human strain A909, in the context of the clustered regularly interspaced short palindromic repeats (CRISPRs), prophage, virulence-associated genes and phylogenetic relationships. We identified a unique 10 kb gene locus in Chinese piscine strains. Isolates from cultured tilapia in China have a close genomic relationship with the human strain A909. Our findings provide insight into the pathogenesis and host-associated genome content of piscine S. agalactiae isolated in China.

  9. Integrated genomics of Mucorales reveals novel therapeutic targets

    Science.gov (United States)

    Mucormycosis is a life-threatening infection caused by Mucorales fungi. We sequenced 30 fungal genomes and performed transcriptomics with three representative Rhizopus and Mucor strains with human airway epithelial cells during fungal invasion to reveal key host and fungal determinants contributing ...

  10. Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease.

    Science.gov (United States)

    Baillie, J Kenneth; Bretherick, Andrew; Haley, Christopher S; Clohisey, Sara; Gray, Alan; Neyton, Lucile P A; Barrett, Jeffrey; Stahl, Eli A; Tenesa, Albert; Andersson, Robin; Brown, J Ben; Faulkner, Geoffrey J; Lizio, Marina; Schaefer, Ulf; Daub, Carsten; Itoh, Masayoshi; Kondo, Naoto; Lassmann, Timo; Kawai, Jun; Mole, Damian; Bajic, Vladimir B; Heutink, Peter; Rehli, Michael; Kawaji, Hideya; Sandelin, Albin; Suzuki, Harukazu; Satsangi, Jack; Wells, Christine A; Hacohen, Nir; Freeman, Thomas C; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Hume, David A

    2018-03-01

    Genetic variants underlying complex traits, including disease susceptibility, are enriched within the transcriptional regulatory elements, promoters and enhancers. There is emerging evidence that regulatory elements associated with particular traits or diseases share similar patterns of transcriptional activity. Accordingly, shared transcriptional activity (coexpression) may help prioritise loci associated with a given trait, and help to identify underlying biological processes. Using cap analysis of gene expression (CAGE) profiles of promoter- and enhancer-derived RNAs across 1824 human samples, we have analysed coexpression of RNAs originating from trait-associated regulatory regions using a novel quantitative method (network density analysis; NDA). For most traits studied, phenotype-associated variants in regulatory regions were linked to tightly-coexpressed networks that are likely to share important functional characteristics. Coexpression provides a new signal, independent of phenotype association, to enable fine mapping of causative variants. The NDA coexpression approach identifies new genetic variants associated with specific traits, including an association between the regulation of the OCT1 cation transporter and genetic variants underlying circulating cholesterol levels. NDA strongly implicates particular cell types and tissues in disease pathogenesis. For example, distinct groupings of disease-associated regulatory regions implicate two distinct biological processes in the pathogenesis of ulcerative colitis; a further two separate processes are implicated in Crohn's disease. Thus, our functional analysis of genetic predisposition to disease defines new distinct disease endotypes. We predict that patients with a preponderance of susceptibility variants in each group are likely to respond differently to pharmacological therapy. Together, these findings enable a deeper biological understanding of the causal basis of complex traits.

  11. Whole-Genome Sequencing of Human Clinical Klebsiella pneumoniae Isolates Reveals Misidentification and Misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae

    Science.gov (United States)

    Linson, Sarah E.; Ojeda Saavedra, Matthew; Cantu, Concepcion; Davis, James J.; Brettin, Thomas; Olsen, Randall J.

    2017-01-01

    ABSTRACT Klebsiella pneumoniae is a major threat to public health, causing significant morbidity and mortality worldwide. The emergence of highly drug-resistant strains is particularly concerning. There has been a recognition and division of Klebsiella pneumoniae into three distinct phylogenetic groups: Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. K. variicola and K. quasipneumoniae have often been described as opportunistic pathogens that have less virulence in humans than K. pneumoniae does. We recently sequenced the genomes of 1,777 extended-spectrum-beta-lactamase (ESBL)-producing K. pneumoniae isolates recovered from human infections and discovered that 28 strains were phylogenetically related to K. variicola and K. quasipneumoniae. Whole-genome sequencing of 95 additional non-ESBL-producing K. pneumoniae isolates recovered from patients found 12 K. quasipneumoniae strains. Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) analysis initially identified all patient isolates as K. pneumoniae, suggesting a potential pitfall in conventional clinical microbiology laboratory identification methods. Whole-genome sequence analysis revealed extensive sharing of core gene content and plasmid replicons among the Klebsiella species. For the first time, strains of both K. variicola and K. quasipneumoniae were found to carry the Klebsiella pneumoniae carbapenemase (KPC) gene, while another K. variicola strain was found to carry the New Delhi metallo-beta-lactamase 1 (NDM-1) gene. K. variicola and K. quasipneumoniae infections were not less virulent than K. pneumoniae infections, as assessed by in-hospital mortality and infection type. We also discovered evidence of homologous recombination in one K. variicola strain, as well as one strain from a novel Klebsiella species, which challenge the current understanding of interrelationships between clades of Klebsiella. IMPORTANCE Klebsiella

  12. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; Skoglund, Pontus; Graf, Kelly E.

    2014-01-01

    ,000-year-old individual (MA-1), from Mal'ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic......The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24...... that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans....

  13. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  14. Genomes of Fasciola hepatica from the Americas Reveal Colonization with Neorickettsia Endobacteria Related to the Agents of Potomac Horse and Human Sennetsu Fevers.

    Science.gov (United States)

    McNulty, Samantha N; Tort, Jose F; Rinaldi, Gabriel; Fischer, Kerstin; Rosa, Bruce A; Smircich, Pablo; Fontenla, Santiago; Choi, Young-Jun; Tyagi, Rahul; Hallsworth-Pepin, Kymberlie; Mann, Victoria H; Kammili, Lakshmi; Latham, Patricia S; Dell'Oca, Nicolas; Dominguez, Fernanda; Carmona, Carlos; Fischer, Peter U; Brindley, Paul J; Mitreva, Makedonka

    2017-01-01

    Food borne trematodes (FBTs) are an assemblage of platyhelminth parasites transmitted through the food chain, four of which are recognized as neglected tropical diseases (NTDs). Fascioliasis stands out among the other NTDs due to its broad and significant impact on both human and animal health, as Fasciola sp., are also considered major pathogens of domesticated ruminants. Here we present a reference genome sequence of the common liver fluke, Fasciola hepatica isolated from sheep, complementing previously reported isolate from cattle. A total of 14,642 genes were predicted from the 1.14 GB genome of the liver fluke. Comparative genomics indicated that F. hepatica Oregon and related food-borne trematodes are metabolically less constrained than schistosomes and cestodes, taking advantage of the richer millieux offered by the hepatobiliary organs. Protease families differentially expanded between diverse trematodes may facilitate migration and survival within the heterogeneous environments and niches within the mammalian host. Surprisingly, the sequencing of Oregon and Uruguay F. hepatica isolates led to the first discovery of an endobacteria in this species. Two contigs from the F. hepatica Oregon assembly were joined to complete the 859,205 bp genome of a novel Neorickettsia endobacterium (nFh) closely related to the etiological agents of human Sennetsu and Potomac horse fevers. Immunohistochemical studies targeting a Neorickettsia surface protein found nFh in specific organs and tissues of the adult trematode including the female reproductive tract, eggs, the Mehlis' gland, seminal vesicle, and oral suckers, suggesting putative routes for fluke-to-fluke and fluke-to-host transmission. The genomes of F. hepatica and nFh will serve as a resource for further exploration of the biology of F. hepatica, and specifically its newly discovered trans-kingdom interaction with nFh and the impact of both species on disease in ruminants and humans.

  15. Genomes of Fasciola hepatica from the Americas Reveal Colonization with Neorickettsia Endobacteria Related to the Agents of Potomac Horse and Human Sennetsu Fevers

    Science.gov (United States)

    McNulty, Samantha N.; Rosa, Bruce A.; Fontenla, Santiago; Choi, Young-Jun; Hallsworth-Pepin, Kymberlie; Kammili, Lakshmi; Latham, Patricia S.; Dell’Oca, Nicolas; Dominguez, Fernanda; Carmona, Carlos; Fischer, Peter U.; Mitreva, Makedonka

    2017-01-01

    Food borne trematodes (FBTs) are an assemblage of platyhelminth parasites transmitted through the food chain, four of which are recognized as neglected tropical diseases (NTDs). Fascioliasis stands out among the other NTDs due to its broad and significant impact on both human and animal health, as Fasciola sp., are also considered major pathogens of domesticated ruminants. Here we present a reference genome sequence of the common liver fluke, Fasciola hepatica isolated from sheep, complementing previously reported isolate from cattle. A total of 14,642 genes were predicted from the 1.14 GB genome of the liver fluke. Comparative genomics indicated that F. hepatica Oregon and related food-borne trematodes are metabolically less constrained than schistosomes and cestodes, taking advantage of the richer millieux offered by the hepatobiliary organs. Protease families differentially expanded between diverse trematodes may facilitate migration and survival within the heterogeneous environments and niches within the mammalian host. Surprisingly, the sequencing of Oregon and Uruguay F. hepatica isolates led to the first discovery of an endobacteria in this species. Two contigs from the F. hepatica Oregon assembly were joined to complete the 859,205 bp genome of a novel Neorickettsia endobacterium (nFh) closely related to the etiological agents of human Sennetsu and Potomac horse fevers. Immunohistochemical studies targeting a Neorickettsia surface protein found nFh in specific organs and tissues of the adult trematode including the female reproductive tract, eggs, the Mehlis’ gland, seminal vesicle, and oral suckers, suggesting putative routes for fluke-to-fluke and fluke-to-host transmission. The genomes of F. hepatica and nFh will serve as a resource for further exploration of the biology of F. hepatica, and specifically its newly discovered trans-kingdom interaction with nFh and the impact of both species on disease in ruminants and humans. PMID:28060841

  16. Genomes of Fasciola hepatica from the Americas Reveal Colonization with Neorickettsia Endobacteria Related to the Agents of Potomac Horse and Human Sennetsu Fevers.

    Directory of Open Access Journals (Sweden)

    Samantha N McNulty

    2017-01-01

    Full Text Available Food borne trematodes (FBTs are an assemblage of platyhelminth parasites transmitted through the food chain, four of which are recognized as neglected tropical diseases (NTDs. Fascioliasis stands out among the other NTDs due to its broad and significant impact on both human and animal health, as Fasciola sp., are also considered major pathogens of domesticated ruminants. Here we present a reference genome sequence of the common liver fluke, Fasciola hepatica isolated from sheep, complementing previously reported isolate from cattle. A total of 14,642 genes were predicted from the 1.14 GB genome of the liver fluke. Comparative genomics indicated that F. hepatica Oregon and related food-borne trematodes are metabolically less constrained than schistosomes and cestodes, taking advantage of the richer millieux offered by the hepatobiliary organs. Protease families differentially expanded between diverse trematodes may facilitate migration and survival within the heterogeneous environments and niches within the mammalian host. Surprisingly, the sequencing of Oregon and Uruguay F. hepatica isolates led to the first discovery of an endobacteria in this species. Two contigs from the F. hepatica Oregon assembly were joined to complete the 859,205 bp genome of a novel Neorickettsia endobacterium (nFh closely related to the etiological agents of human Sennetsu and Potomac horse fevers. Immunohistochemical studies targeting a Neorickettsia surface protein found nFh in specific organs and tissues of the adult trematode including the female reproductive tract, eggs, the Mehlis' gland, seminal vesicle, and oral suckers, suggesting putative routes for fluke-to-fluke and fluke-to-host transmission. The genomes of F. hepatica and nFh will serve as a resource for further exploration of the biology of F. hepatica, and specifically its newly discovered trans-kingdom interaction with nFh and the impact of both species on disease in ruminants and humans.

  17. Human genome. 1993 Program report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  18. Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species

    Science.gov (United States)

    Raymond, Frédéric; Boisvert, Sébastien; Roy, Gaétan; Ritt, Jean-François; Légaré, Danielle; Isnard, Amandine; Stanke, Mario; Olivier, Martin; Tremblay, Michel J.; Papadopoulou, Barbara; Ouellette, Marc; Corbeil, Jacques

    2012-01-01

    The Leishmania tarentolae Parrot-TarII strain genome sequence was resolved to an average 16-fold mean coverage by next-generation DNA sequencing technologies. This is the first non-pathogenic to humans kinetoplastid protozoan genome to be described thus providing an opportunity for comparison with the completed genomes of pathogenic Leishmania species. A high synteny was observed between all sequenced Leishmania species. A limited number of chromosomal regions diverged between L. tarentolae and L. infantum, while remaining syntenic to L. major. Globally, >90% of the L. tarentolae gene content was shared with the other Leishmania species. We identified 95 predicted coding sequences unique to L. tarentolae and 250 genes that were absent from L. tarentolae. Interestingly, many of the latter genes were expressed in the intracellular amastigote stage of pathogenic species. In addition, genes coding for products involved in antioxidant defence or participating in vesicular-mediated protein transport were underrepresented in L. tarentolae. In contrast to other Leishmania genomes, two gene families were expanded in L. tarentolae, namely the zinc metallo-peptidase surface glycoprotein GP63 and the promastigote surface antigen PSA31C. Overall, L. tarentolae's gene content appears better adapted to the promastigote insect stage rather than the amastigote mammalian stage. PMID:21998295

  19. Initial genomics of the human nucleolus.

    Directory of Open Access Journals (Sweden)

    Attila Németh

    2010-03-01

    Full Text Available We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD-localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD-specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture.

  20. Initial Genomics of the Human Nucleolus

    Science.gov (United States)

    Németh, Attila; Conesa, Ana; Santoyo-Lopez, Javier; Medina, Ignacio; Montaner, David; Péterfia, Bálint; Solovei, Irina; Cremer, Thomas; Dopazo, Joaquin; Längst, Gernot

    2010-01-01

    We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs) in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD–localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD–specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture. PMID:20361057

  1. A genome-wide screen in human embryonic stem cells reveals novel sites of allele-specific histone modification associated with known disease loci

    LENUS (Irish Health Repository)

    Prendergast, James G D

    2012-05-19

    AbstractBackgroundChromatin structure at a given site can differ between chromosome copies in a cell, and such imbalances in chromatin structure have been shown to be important in understanding the molecular mechanisms controlling several disease loci. Human genetic variation, DNA methylation, and disease have been intensely studied, uncovering many sites of allele-specific DNA methylation (ASM). However, little is known about the genome-wide occurrence of sites of allele-specific histone modification (ASHM) and their relationship to human disease. The aim of this study was to investigate the extent and characteristics of sites of ASHM in human embryonic stem cells (hESCs).ResultsUsing a statistically rigorous protocol, we investigated the genomic distribution of ASHM in hESCs, and their relationship to sites of allele-specific expression (ASE) and DNA methylation. We found that, although they were rare, sites of ASHM were substantially enriched at loci displaying ASE. Many were also found at known imprinted regions, hence sites of ASHM are likely to be better markers of imprinted regions than sites of ASM. We also found that sites of ASHM and ASE in hESCs colocalize at risk loci for developmental syndromes mediated by deletions, providing insights into the etiology of these disorders.ConclusionThese results demonstrate the potential importance of ASHM patterns in the interpretation of disease loci, and the protocol described provides a basis for similar studies of ASHM in other cell types to further our understanding of human disease susceptibility.

  2. Human Genome Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Richard Myers; Lane Conn

    2000-05-01

    The funds from the DOE Human Genome Program, for the project period 2/1/96 through 1/31/98, have provided major support for the curriculum development and field testing efforts for two high school level instructional units: Unit 1, ''Exploring Genetic Conditions: Genes, Culture and Choices''; and Unit 2, ''DNA Snapshots: Peaking at Your DNA''. In the original proposal, they requested DOE support for the partial salary and benefits of a Field Test Coordinator position to: (1) complete the field testing and revision of two high school curriculum units, and (2) initiate the education of teachers using these units. During the project period of this two-year DOE grant, a part-time Field-Test Coordinator was hired (Ms. Geraldine Horsma) and significant progress has been made in both of the original proposal objectives. Field testing for Unit 1 has occurred in over 12 schools (local and non-local sites with diverse student populations). Field testing for Unit 2 has occurred in over 15 schools (local and non-local sites) and will continue in 12-15 schools during the 96-97 school year. For both curricula, field-test sites and site teachers were selected for their interest in genetics education and in hands-on science education. Many of the site teachers had no previous experience with HGEP or the unit under development. Both of these first-year biology curriculum units, which contain genetics, biotechnology, societal, ethical and cultural issues related to HGP, are being implemented in many local and non-local schools (SF Bay Area, Southern California, Nebraska, Hawaii, and Texas) and in programs for teachers. These units will reach over 10,000 students in the SF Bay Area and continues to receive support from local corporate and private philanthropic organizations. Although HGEP unit development is nearing completion for both units, data is still being gathered and analyzed on unit effectiveness and student learning. The final field

  3. Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains.

    LENUS (Irish Health Repository)

    Arboleya, Silvia

    2018-01-08

    Bifidobacterium longum is a common member of the human gut microbiota and is frequently present at high numbers in the gut microbiota of humans throughout life, thus indicative of a close symbiotic host-microbe relationship. Different mechanisms may be responsible for the high competitiveness of this taxon in its human host to allow stable establishment in the complex and dynamic intestinal microbiota environment. The objective of this study was to assess the genetic and metabolic diversity in a set of 20 B. longum strains, most of which had previously been isolated from infants, by performing whole genome sequencing and comparative analysis, and to analyse their carbohydrate utilization abilities using a gene-trait matching approach.

  4. Human Genome Research: Decoding DNA

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Human Genome Research: Decoding DNA Resources with of the DNA double helix during April 2003. James D. Watson, Francis Crick, and Maurice Wilkins were company Celera announced the completion of a "working draft" reference DNA sequence of the human

  5. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium

    DEFF Research Database (Denmark)

    Machado, Henrique; Gram, Lone

    2017-01-01

    was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.......Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand...... the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur, amino-acid usage, ANI), which allowed us to identify two...

  6. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium

    OpenAIRE

    Henrique Machado; Henrique Machado; Lone Gram

    2017-01-01

    Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationship...

  7. Comparative genomics reveals insights into avian genome evolution and adaptation

    DEFF Research Database (Denmark)

    Zhang, Guojie; Li, Cai; Li, Qiye

    2014-01-01

    Birds are the most species-rich class of tetrapod vertebrates and have wide relevance across many research fields. We explored bird macroevolution using full genomes from 48 avian species representing all major extant clades. The avian genome is principally characterized by its constrained size, ...

  8. A genome-wide scan reveals important roles of DNA methylation in human longevity by regulating age-related disease genes.

    Directory of Open Access Journals (Sweden)

    Fu-Hui Xiao

    Full Text Available It is recognized that genetic factors contribute to human longevity. Besides the hypothesis of existence of longevity genes, another suggests that a lower frequency of risk alleles decreases the incidence of age-related diseases in the long-lived people. However, the latter finds no support from recent genetic studies. Considering the crucial role of epigenetic modification in gene regulation, we then hypothesize that suppressing disease-related genes in longevity individuals is likely achieved by epigenetic modification, e.g. DNA methylation. To test this hypothesis, we investigated the genome-wide methylation profile in 4 Chinese female centenarians and 4 middle-aged controls using methyl-DNA immunoprecipitation sequencing. 626 differentially methylated regions (DMRs were observed between both groups. Interestingly, genes with these DMRs were enriched in age-related diseases, including type-2 diabetes, cardiovascular disease, stroke and Alzheimer's disease. This pattern remains rather stable after including methylomes of two white individuals. Further analyses suggest that the observed DMRs likely have functional roles in regulating disease-associated gene expressions, with some genes [e.g. caspase 3 (CASP3] being down-regulated whereas the others [i.e. interleukin 1 receptor, type 2 (IL1R2] up-regulated. Therefore, our study suggests that suppressing the disease-related genes via epigenetic modification is an important contributor to human longevity.

  9. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-01

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human

  10. Genomics and the human genome project: implications for psychiatry

    OpenAIRE

    Kelsoe, J R

    2004-01-01

    In the past decade the Human Genome Project has made extraordinary strides in understanding of fundamental human genetics. The complete human genetic sequence has been determined, and the chromosomal location of almost all human genes identified. Presently, a large international consortium, the HapMap Project, is working to identify a large portion of genetic variation in different human populations and the structure and relationship of these variants to each other. The Human Genome Project h...

  11. "Orphan" retrogenes in the human genome.

    Science.gov (United States)

    Ciomborowska, Joanna; Rosikiewicz, Wojciech; Szklarczyk, Damian; Makałowski, Wojciech; Makałowska, Izabela

    2013-02-01

    Gene duplicates generated via retroposition were long thought to be pseudogenized and consequently decayed. However, a significant number of these genes escaped their evolutionary destiny and evolved into functional genes. Despite multiple studies, the number of functional retrogenes in human and other genomes remains unclear. We performed a comparative analysis of human, chicken, and worm genomes to identify "orphan" retrogenes, that is, retrogenes that have replaced their progenitors. We located 25 such candidates in the human genome. All of these genes were previously known, and the majority has been intensively studied. Despite this, they have never been recognized as retrogenes. Analysis revealed that the phenomenon of replacing parental genes with their retrocopies has been taking place over the entire span of animal evolution. This process was often species specific and contributed to interspecies differences. Surprisingly, these retrogenes, which should evolve in a more relaxed mode, are subject to a very strong purifying selection, which is, on average, two and a half times stronger than other human genes. Also, for retrogenes, they do not show a typical overall tendency for a testis-specific expression. Notably, seven of them are associated with human diseases. Recognizing them as "orphan" retrocopies, which have different regulatory machinery than their parents, is important for any disease studies in model organisms, especially when discoveries made in one species are transferred to humans.

  12. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response

    Science.gov (United States)

    Lipchina, Inna; Elkabetz, Yechiel; Hafner, Markus; Sheridan, Robert; Mihailovic, Aleksandra; Tuschl, Thomas; Sander, Chris; Studer, Lorenz; Betel, Doron

    2011-01-01

    MicroRNAs are important regulators in many cellular processes, including stem cell self-renewal. Recent studies demonstrated their function as pluripotency factors with the capacity for somatic cell reprogramming. However, their role in human embryonic stem (ES) cells (hESCs) remains poorly understood, partially due to the lack of genome-wide strategies to identify their targets. Here, we performed comprehensive microRNA profiling in hESCs and in purified neural and mesenchymal derivatives. Using a combination of AGO cross-linking and microRNA perturbation experiments, together with computational prediction, we identified the targets of the miR-302/367 cluster, the most abundant microRNAs in hESCs. Functional studies identified novel roles of miR-302/367 in maintaining pluripotency and regulating hESC differentiation. We show that in addition to its role in TGF-β signaling, miR-302/367 promotes bone morphogenetic protein (BMP) signaling by targeting BMP inhibitors TOB2, DAZAP2, and SLAIN1. This study broadens our understanding of microRNA function in hESCs and is a valuable resource for future studies in this area. PMID:22012620

  13. HGVA: the Human Genome Variation Archive

    OpenAIRE

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gr?f, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-01-01

    Abstract High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic...

  14. The Phaeodactylum genome reveals the evolutionary history of diatom genomes

    Czech Academy of Sciences Publication Activity Database

    Bowler, Ch.; Allen, A. E.; Badger, J. H.; Grimwood, J.; Jabbari, K.; Kuo, A.; Maheswari, U.; Martens, C.; Maumus, F.; Otillar, R. P.; Rayko, E.; Salamov, A.; Vandepoele, K.; Beszteri, B.; Gruber, A.; Heijde, M.; Katinka, M.; Mock, T.; Valentin, K.; Verret, F.; Berges, J. A.; Brownlee, C.; Cadoret, J.-P.; Chiovitti, A.; Choi, Ch. J.; Coesel, S.; De Martino, A.; Detter, J. Ch.; Durkin, C.; Falciatore, A.; Fournet, J.; Haruta, M.; Huysman, M. J. J.; Jenkins, B. D.; Jiroutová, Kateřina; Jorgensen, R. E.; Joubert, Y.; Kaplan, A.; Kröger, N.; Kroth, P. G.; La Roche, J.; Lindquist, E.; Lommer, M.; Martin–Jézéquel, V.; Lopez, P. J.; Lucas, S.; Mangogna, M.; McGinnis, K.; Medlin, L. K.; Montsant, A.; Oudot–Le Secq, M.-P.; Napoli, C.; Oborník, Miroslav; Schnitzler Parker, M.; Petit, J.-L.; Porcel, B. M.; Poulsen, N.; Robison, M.; Rychlewski, L.; Rynearson, T. A.; Schmutz, J.; Shapiro, H.; Siaut, M.; Stanley, M.; Sussman, M. R.; Taylor, A. R.; Vardi, A.; von Dassow, P.; Vyverman, W.; Willis, A.; Wyrwicz, L. S.; Rokhsar, D. S.; Weissenbach, J.; Armbrust, E. V.; Green, B. R.; Van de Peer, Y.; Grigoriev, I. V.

    2008-01-01

    Roč. 456, 13-11-2008 (2008), s. 239-244 ISSN 0028-0836 Institutional research plan: CEZ:AV0Z60220518 Keywords : Phaeodactylum * genome * evolution * diatom Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 31.434, year: 2008

  15. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  16. Chemical Genomic Screening of a Saccharomyces cerevisiae Genomewide Mutant Collection Reveals Genes Required for Defense against Four Antimicrobial Peptides Derived from Proteins Found in Human Saliva

    Science.gov (United States)

    Bhatt, Sanjay; Schoenly, Nathan E.; Lee, Anna Y.; Nislow, Corey; Bobek, Libuse A.

    2013-01-01

    To compare the effects of four antimicrobial peptides (MUC7 12-mer, histatin 12-mer, cathelicidin KR20, and a peptide containing lactoferricin amino acids 1 to 11) on the yeast Saccharomyces cerevisiae, we employed a genomewide fitness screen of combined collections of mutants with homozygous deletions of nonessential genes and heterozygous deletions of essential genes. When an arbitrary fitness score cutoffs of 1 (indicating a fitness defect, or hypersensitivity) and −1 (indicating a fitness gain, or resistance) was used, 425 of the 5,902 mutants tested exhibited altered fitness when treated with at least one peptide. Functional analysis of the 425 strains revealed enrichment among the identified deletions in gene groups associated with the Gene Ontology (GO) terms “ribosomal subunit,” “ribosome biogenesis,” “protein glycosylation,” “vacuolar transport,” “Golgi vesicle transport,” “negative regulation of transcription,” and others. Fitness profiles of all four tested peptides were highly similar, particularly among mutant strains exhibiting the greatest fitness defects. The latter group included deletions in several genes involved in induction of the RIM101 signaling pathway, including several components of the ESCRT sorting machinery. The RIM101 signaling regulates response of yeasts to alkaline and neutral pH and high salts, and our data indicate that this pathway also plays a prominent role in regulating protective measures against all four tested peptides. In summary, the results of the chemical genomic screens of S. cerevisiae mutant collection suggest that the four antimicrobial peptides, despite their differences in structure and physical properties, share many interactions with S. cerevisiae cells and consequently a high degree of similarity between their modes of action. PMID:23208710

  17. Genes but not genomes reveal bacterial domestication of Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Delphine Passerini

    Full Text Available BACKGROUND: The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE. METHODOLOGY/PRINCIPAL FINDINGS: The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST differing by up to 230 kb in genome size. CONCLUSION/SIGNIFICANCE: The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between "environmental" strains, the main contributors to the genetic diversity within the subspecies, and "domesticated" strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the "domesticated" strains essentially arose through substantial genomic flux within the dispensable

  18. The Human Genome Diversity Project

    Energy Technology Data Exchange (ETDEWEB)

    Cavalli-Sforza, L. [Stanford Univ., CA (United States)

    1994-12-31

    The Human Genome Diversity Project (HGD Project) is an international anthropology project that seeks to study the genetic richness of the entire human species. This kind of genetic information can add a unique thread to the tapestry knowledge of humanity. Culture, environment, history, and other factors are often more important, but humanity`s genetic heritage, when analyzed with recent technology, brings another type of evidence for understanding species` past and present. The Project will deepen the understanding of this genetic richness and show both humanity`s diversity and its deep and underlying unity. The HGD Project is still largely in its planning stages, seeking the best ways to reach its goals. The continuing discussions of the Project, throughout the world, should improve the plans for the Project and their implementation. The Project is as global as humanity itself; its implementation will require the kinds of partnerships among different nations and cultures that make the involvement of UNESCO and other international organizations particularly appropriate. The author will briefly discuss the Project`s history, describe the Project, set out the core principles of the Project, and demonstrate how the Project will help combat the scourge of racism.

  19. All about the Human Genome Project (HGP)

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  20. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses

    Directory of Open Access Journals (Sweden)

    Widad Dantoft

    2017-09-01

    Full Text Available Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1 and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1 roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity

  1. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses.

    Science.gov (United States)

    Dantoft, Widad; Martínez-Vicente, Pablo; Jafali, James; Pérez-Martínez, Lara; Martin, Kim; Kotzamanis, Konstantinos; Craigon, Marie; Auer, Manfred; Young, Neil T; Walsh, Paul; Marchant, Arnaud; Angulo, Ana; Forster, Thorsten; Ghazal, Peter

    2017-01-01

    Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These

  2. Human Contamination in Public Genome Assemblies.

    Science.gov (United States)

    Kryukov, Kirill; Imanishi, Tadashi

    2016-01-01

    Contamination in genome assembly can lead to wrong or confusing results when using such genome as reference in sequence comparison. Although bacterial contamination is well known, the problem of human-originated contamination received little attention. In this study we surveyed 45,735 available genome assemblies for evidence of human contamination. We used lineage specificity to distinguish between contamination and conservation. We found that 154 genome assemblies contain fragments that with high confidence originate as contamination from human DNA. Majority of contaminating human sequences were present in the reference human genome assembly for over a decade. We recommend that existing contaminated genomes should be revised to remove contaminated sequence, and that new assemblies should be thoroughly checked for presence of human DNA before submitting them to public databases.

  3. The bonobo genome compared with the chimpanzee and human genomes

    Science.gov (United States)

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R.; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R.; Mullikin, James C.; Meader, Stephen J.; Ponting, Chris P.; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E.; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M.; Fischer, Anne; Ptak, Susan E.; Lachmann, Michael; Symer, David E.; Mailund, Thomas; Schierup, Mikkel H.; Andrés, Aida M.; Kelso, Janet; Pääbo, Svante

    2012-01-01

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours1–4, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other. PMID:22722832

  4. Genome-wide association study reveals genetic architecture of eating behavior in pigs and its implications for humans obesity by comparative mapping

    DEFF Research Database (Denmark)

    Do, Duy Ngoc; Strathe, Anders Bjerring; Ostersen, Tage

    2013-01-01

    ), average duration of each visit (TPV), mean feed intake per visit (FPV) and mean feed intake rate (FR) were available for 1130 boars. All boars were genotyped using the Illumina Porcine SNP60 BeadChip. The association analyses were performed using the GenABEL package in the R program. Sixteen SNPs were...... found to have moderate genome-wide significance (passociation with feeding behavior traits. MSI2 gene on chromosome (SSC) 14 was very strongly associated with NVD. Thirty-six SNPs were located in genome regions where QTLs have previously been reported......1, PTPN4, MTMR4 and RNGTT) and positive regulation of peptide secretion genes (GHRH, NNAT and TCF7L2) were highly significantly associated with feeding behavior traits. This is the first GWAS to identify genetic variants and biological mechanisms for eating behavior in pigs and these results...

  5. Genomic and expression analyses of Tursiops truncatus T cell receptor gamma (TRG) and alpha/delta (TRA/TRD) loci reveal a similar basic public γδ repertoire in dolphin and human.

    Science.gov (United States)

    Linguiti, Giovanna; Antonacci, Rachele; Tasco, Gianluca; Grande, Francesco; Casadio, Rita; Massari, Serafina; Castelli, Vito; Consiglio, Arianna; Lefranc, Marie-Paule; Ciccarese, Salvatrice

    2016-08-15

    those of the so far examined artiodactyls, genomic results highlight in dolphin an unusually simple TRG locus. The cDNA analysis reveal productive TRA/TRD transcripts and unusual ratios of productive/unproductive TRG transcripts. Comparing multiple different individuals, evidence is found for a "public" gamma delta TCR repertoire thus suggesting that in dolphins as in human the gamma delta TCR repertoire is accompanied by selection for public gamma chain.

  6. Molecular cytogenetic and genomic analyses reveal new insights into the origin of the wheat B genome.

    Science.gov (United States)

    Zhang, Wei; Zhang, Mingyi; Zhu, Xianwen; Cao, Yaping; Sun, Qing; Ma, Guojia; Chao, Shiaoman; Yan, Changhui; Xu, Steven S; Cai, Xiwen

    2018-02-01

    This work pinpointed the goatgrass chromosomal segment in the wheat B genome using modern cytogenetic and genomic technologies, and provided novel insights into the origin of the wheat B genome. Wheat is a typical allopolyploid with three homoeologous subgenomes (A, B, and D). The donors of the subgenomes A and D had been identified, but not for the subgenome B. The goatgrass Aegilops speltoides (genome SS) has been controversially considered a possible candidate for the donor of the wheat B genome. However, the relationship of the Ae. speltoides S genome with the wheat B genome remains largely obscure. The present study assessed the homology of the B and S genomes using an integrative cytogenetic and genomic approach, and revealed the contribution of Ae. speltoides to the origin of the wheat B genome. We discovered noticeable homology between wheat chromosome 1B and Ae. speltoides chromosome 1S, but not between other chromosomes in the B and S genomes. An Ae. speltoides-originated segment spanning a genomic region of approximately 10.46 Mb was detected on the long arm of wheat chromosome 1B (1BL). The Ae. speltoides-originated segment on 1BL was found to co-evolve with the rest of the B genome. Evidently, Ae. speltoides had been involved in the origin of the wheat B genome, but should not be considered an exclusive donor of this genome. The wheat B genome might have a polyphyletic origin with multiple ancestors involved, including Ae. speltoides. These novel findings will facilitate genome studies in wheat and other polyploids.

  7. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  8. Sequencing and analysis of an Irish human genome.

    LENUS (Irish Health Repository)

    Tong, Pin

    2010-01-01

    Recent studies generating complete human sequences from Asian, African and European subgroups have revealed population-specific variation and disease susceptibility loci. Here, choosing a DNA sample from a population of interest due to its relative geographical isolation and genetic impact on further populations, we extend the above studies through the generation of 11-fold coverage of the first Irish human genome sequence.

  9. Integrative genomic and functional analysis of human oral squamous cell carcinoma cell lines reveals synergistic effects of FAT1 and CASP8 inactivation.

    Science.gov (United States)

    Hayes, Tyler F; Benaich, Nathan; Goldie, Stephen J; Sipilä, Kalle; Ames-Draycott, Ashley; Cai, Wenjun; Yin, Guangliang; Watt, Fiona M

    2016-12-01

    Oral squamous cell carcinoma (OSCC) is genetically highly heterogeneous, which contributes to the challenges of treatment. To create an in vitro model that accurately reflects this heterogeneity, we generated a panel of HPV-negative OSCC cell lines. By whole exome sequencing of the lines and matched patient blood samples, we demonstrate that the mutational spectrum of the lines is representative of primary OSCC in The Cancer Genome Atlas. We show that loss of function mutations in FAT1 (an atypical cadherin) and CASP8 (Caspase 8) frequently occur in the same tumour. OSCC cells with inactivating FAT1 mutations exhibited reduced intercellular adhesion. Knockdown of FAT1 and CASP8 individually or in combination in OSCC cells led to increased cell migration and clonal growth, resistance to Staurosporine-induced apoptosis and, in some cases, increased terminal differentiation. The OSCC lines thus represent a valuable resource for elucidating the impact of different mutations on tumour behaviour. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Genomic landscape of human diversity across Madagascar

    Science.gov (United States)

    Pierron, Denis; Heiske, Margit; Razafindrazaka, Harilanto; Rakoto, Ignace; Rabetokotany, Nelly; Ravololomanga, Bodo; Rakotozafy, Lucien M.-A.; Rakotomalala, Mireille Mialy; Razafiarivony, Michel; Rasoarifetra, Bako; Raharijesy, Miakabola Andriamampianina; Razafindralambo, Lolona; Ramilisonina; Fanony, Fulgence; Lejamble, Sendra; Thomas, Olivier; Mohamed Abdallah, Ahmed; Rocher, Christophe; Arachiche, Amal; Tonaso, Laure; Pereda-loth, Veronica; Schiavinato, Stéphanie; Brucato, Nicolas; Ricaut, Francois-Xavier; Kusuma, Pradiptajati; Sudoyo, Herawati; Ni, Shengyu; Boland, Anne; Deleuze, Jean-Francois; Beaujard, Philippe; Grange, Philippe; Adelaar, Sander; Stoneking, Mark; Rakotoarisoa, Jean-Aimé; Radimilahy, Chantal; Letellier, Thierry

    2017-01-01

    Although situated ∼400 km from the east coast of Africa, Madagascar exhibits cultural, linguistic, and genetic traits from both Southeast Asia and Eastern Africa. The settlement history remains contentious; we therefore used a grid-based approach to sample at high resolution the genomic diversity (including maternal lineages, paternal lineages, and genome-wide data) across 257 villages and 2,704 Malagasy individuals. We find a common Bantu and Austronesian descent for all Malagasy individuals with a limited paternal contribution from Europe and the Middle East. Admixture and demographic growth happened recently, suggesting a rapid settlement of Madagascar during the last millennium. However, the distribution of African and Asian ancestry across the island reveals that the admixture was sex biased and happened heterogeneously across Madagascar, suggesting independent colonization of Madagascar from Africa and Asia rather than settlement by an already admixed population. In addition, there are geographic influences on the present genomic diversity, independent of the admixture, showing that a few centuries is sufficient to produce detectable genetic structure in human populations. PMID:28716916

  11. A decade of human genome project conclusion: Scientific diffusion about our genome knowledge.

    Science.gov (United States)

    Moraes, Fernanda; Góes, Andréa

    2016-05-06

    The Human Genome Project (HGP) was initiated in 1990 and completed in 2003. It aimed to sequence the whole human genome. Although it represented an advance in understanding the human genome and its complexity, many questions remained unanswered. Other projects were launched in order to unravel the mysteries of our genome, including the ENCyclopedia of DNA Elements (ENCODE). This review aims to analyze the evolution of scientific knowledge related to both the HGP and ENCODE projects. Data were retrieved from scientific articles published in 1990-2014, a period comprising the development and the 10 years following the HGP completion. The fact that only 20,000 genes are protein and RNA-coding is one of the most striking HGP results. A new concept about the organization of genome arose. The ENCODE project was initiated in 2003 and targeted to map the functional elements of the human genome. This project revealed that the human genome is pervasively transcribed. Therefore, it was determined that a large part of the non-protein coding regions are functional. Finally, a more sophisticated view of chromatin structure emerged. The mechanistic functioning of the genome has been redrafted, revealing a much more complex picture. Besides, a gene-centric conception of the organism has to be reviewed. A number of criticisms have emerged against the ENCODE project approaches, raising the question of whether non-conserved but biochemically active regions are truly functional. Thus, HGP and ENCODE projects accomplished a great map of the human genome, but the data generated still requires further in depth analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:215-223, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  12. Simultaneous RNA quantification of human and retroviral genomes reveals intact interferon signaling in HTLV-1-infected CD4+ T cell lines

    Directory of Open Access Journals (Sweden)

    Moens Britta

    2012-08-01

    Full Text Available Abstract Background IFN-α contributes extensively to host immune response upon viral infection through antiviral, pro-apoptotic, antiproliferative and immunomodulatory activities. Although extensively documented in various types of human cancers and viral infections, controversy exists in the exact mechanism of action of IFN-α in human immunodeficiency virus type 1 (HIV-1 and human T-lymphotropic virus type 1 (HTLV-1 retroviral infections. Results IFN-α displayed strong anti-HIV-1 effects in HIV-1/HTLV-1 co-infected MT-4 cells in vitro, demonstrated by the dose-dependent inhibition of the HIV-1-induced cytopathic effect (IC50 = 83.5 IU/ml, p 50 = 1.2 IU/ml, p  Conclusions Taken together, our results indicate that both the absence of in vitro antiproliferative and pro-apoptotic activity as well as the modest post-transcriptional antiviral activity of IFN-α against HTLV-1, were not due to a cell-intrinsic defect in IFN-α signalisation, but rather represents a retrovirus-specific phenomenon, considering the strong HIV-1 inhibition in co-infected cells.

  13. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection.

    Directory of Open Access Journals (Sweden)

    Martin S Llewellyn

    2009-05-01

    Full Text Available Trypanosoma cruzi is the most important parasitic infection in Latin America and is also genetically highly diverse, with at least six discrete typing units (DTUs reported: Tc I, IIa, IIb, IIc, IId, and IIe. However, the current six-genotype classification is likely to be a poor reflection of the total genetic diversity present in this undeniably ancient parasite. To determine whether epidemiologically important information is "hidden" at the sub-DTU level, we developed a 48-marker panel of polymorphic microsatellite loci to investigate population structure among 135 samples from across the geographic distribution of TcI. This DTU is the major cause of resurgent human disease in northern South America but also occurs in silvatic triatomine vectors and mammalian reservoir hosts throughout the continent. Based on a total dataset of 12,329 alleles, we demonstrate that silvatic TcI populations are extraordinarily genetically diverse, show spatial structuring on a continental scale, and have undergone recent biogeographic expansion into the southern United States of America. Conversely, the majority of human strains sampled are restricted to two distinct groups characterised by a considerable reduction in genetic diversity with respect to isolates from silvatic sources. In Venezuela, most human isolates showed little identity with known local silvatic strains, despite frequent invasion of the domestic setting by infected adult vectors. Multilocus linkage indices indicate predominantly clonal parasite propagation among all populations. However, excess homozygosity among silvatic strains and raised heterozygosity among domestic populations suggest that some level of genetic recombination cannot be ruled out. The epidemiological significance of these findings is discussed.

  14. Camelid genomes reveal evolution and adaptation to desert environments.

    Science.gov (United States)

    Wu, Huiguang; Guang, Xuanmin; Al-Fageeh, Mohamed B; Cao, Junwei; Pan, Shengkai; Zhou, Huanmin; Zhang, Li; Abutarboush, Mohammed H; Xing, Yanping; Xie, Zhiyuan; Alshanqeeti, Ali S; Zhang, Yanru; Yao, Qiulin; Al-Shomrani, Badr M; Zhang, Dong; Li, Jiang; Manee, Manee M; Yang, Zili; Yang, Linfeng; Liu, Yiyi; Zhang, Jilin; Altammami, Musaad A; Wang, Shenyuan; Yu, Lili; Zhang, Wenbin; Liu, Sanyang; Ba, La; Liu, Chunxia; Yang, Xukui; Meng, Fanhua; Wang, Shaowei; Li, Lu; Li, Erli; Li, Xueqiong; Wu, Kaifeng; Zhang, Shu; Wang, Junyi; Yin, Ye; Yang, Huanming; Al-Swailem, Abdulaziz M; Wang, Jun

    2014-10-21

    Bactrian camel (Camelus bactrianus), dromedary (Camelus dromedarius) and alpaca (Vicugna pacos) are economically important livestock. Although the Bactrian camel and dromedary are large, typically arid-desert-adapted mammals, alpacas are adapted to plateaus. Here we present high-quality genome sequences of these three species. Our analysis reveals the demographic history of these species since the Tortonian Stage of the Miocene and uncovers a striking correlation between large fluctuations in population size and geological time boundaries. Comparative genomic analysis reveals complex features related to desert adaptations, including fat and water metabolism, stress responses to heat, aridity, intense ultraviolet radiation and choking dust. Transcriptomic analysis of Bactrian camels further reveals unique osmoregulation, osmoprotection and compensatory mechanisms for water reservation underpinned by high blood glucose levels. We hypothesize that these physiological mechanisms represent kidney evolutionary adaptations to the desert environment. This study advances our understanding of camelid evolution and the adaptation of camels to arid-desert environments.

  15. Insights from Human/Mouse genome comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  16. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-25

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human genome variations: 1) HapMap Data (1,417 individuals) (http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-08_phaseII+III/forward/), 2) HGDP (Human Genome Diversity Project) Data (940 individuals) (http://www.hagsc.org/hgdp/files.html), 3) 1000 genomes Data (2,504 individuals) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ If we can integrate all three data into a single volume of data, we should be able to conduct a more detailed analysis of human genome variations for a total number of 4,861 individuals (= 1,417+940+2,504 individuals). In fact, we successfully integrated these three data sets by use of information on the reference human genome sequence, and we conducted the big data analysis. In particular, we constructed a phylogenetic tree of about 5,000 human individuals at the genome level. As a result, we were able to identify clusters of ethnic groups, with detectable admixture, that were not possible by an analysis of each of the three data sets. Here, we report the outcome of this kind of big data analyses and discuss evolutionary significance of human genomic variations. Note that the present study was conducted in collaboration with Katsuhiko Mineta and Kosuke Goto at KAUST.

  17. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Melvin Anyasi Ambele

    2016-05-01

    Full Text Available We have undertaken an in-depth transcriptome analysis of adipogenesis in human adipose-derived stromal cells (ASCs induced to differentiate into adipocytes in vitro. Gene expression was assessed on days 1, 7, 14 and 21 post-induction and genes differentially expressed numbered 128, 218, 253 and 240 respectively. Up-regulated genes were associated with blood vessel development, leukocyte migration, as well as tumor growth, invasion and metastasis. They also shared common pathways with certain obesity-related pathophysiological conditions. Down-regulated genes were enriched for immune response processes. KLF15, LMO3, FOXO1 and ZBTB16 transcription factors were up-regulated throughout the differentiation process. CEBPA, PPARG, ZNF117, MLXIPL, MMP3 and RORB were up-regulated only on days 14 and 21, which coincide with the maturation of adipocytes and could possibly serve as candidates for controlling fat accumulation and the size of mature adipocytes. In summary, we have identified genes that were up-regulated only on days 1 and 7 or days 14 and 21 that could serve as potential early and late-stage differentiation markers.

  18. Novel human mutation and CRISPR/Cas genome-edited mice reveal the importance of C-terminal domain of MSX1 in tooth and palate development.

    Science.gov (United States)

    Mitsui, Silvia Naomi; Yasue, Akihiro; Masuda, Kiyoshi; Naruto, Takuya; Minegishi, Yoshiyuki; Oyadomari, Seiichi; Noji, Sumihare; Imoto, Issei; Tanaka, Eiji

    2016-12-05

    Several mutations, located mainly in the MSX1 homeodomain, have been identified in non-syndromic tooth agenesis predominantly affecting premolars and third molars. We identified a novel frameshift mutation of the highly conserved C-terminal domain of MSX1, known as Msx homology domain 6 (MH6), in a Japanese family with non-syndromic tooth agenesis. To investigate the importance of MH6 in tooth development, Msx1 was targeted in mice with CRISPR/Cas system. Although heterozygous MH6 disruption did not alter craniofacial development, homozygous mice exhibited agenesis of lower incisors with or without cleft palate at E16.5. In addition, agenesis of the upper third molars and the lower second and third molars were observed in 4-week-old mutant mice. Although the upper second molars were present, they were abnormally small. These results suggest that the C-terminal domain of MSX1 is important for tooth and palate development, and demonstrate that that CRISPR/Cas system can be used as a tool to assess causality of human disorders in vivo and to study the importance of conserved domains in genes.

  19. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute's genomic medicine portfolio.

    Science.gov (United States)

    Manolio, Teri A

    2016-10-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of "Genomic Medicine Meetings," under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. Published by Elsevier Ireland Ltd.

  20. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes

    Science.gov (United States)

    Liu, Shengyi; Liu, Yumei; Yang, Xinhua; Tong, Chaobo; Edwards, David; Parkin, Isobel A. P.; Zhao, Meixia; Ma, Jianxin; Yu, Jingyin; Huang, Shunmou; Wang, Xiyin; Wang, Junyi; Lu, Kun; Fang, Zhiyuan; Bancroft, Ian; Yang, Tae-Jin; Hu, Qiong; Wang, Xinfa; Yue, Zhen; Li, Haojie; Yang, Linfeng; Wu, Jian; Zhou, Qing; Wang, Wanxin; King, Graham J; Pires, J. Chris; Lu, Changxin; Wu, Zhangyan; Sampath, Perumal; Wang, Zhuo; Guo, Hui; Pan, Shengkai; Yang, Limei; Min, Jiumeng; Zhang, Dong; Jin, Dianchuan; Li, Wanshun; Belcram, Harry; Tu, Jinxing; Guan, Mei; Qi, Cunkou; Du, Dezhi; Li, Jiana; Jiang, Liangcai; Batley, Jacqueline; Sharpe, Andrew G; Park, Beom-Seok; Ruperao, Pradeep; Cheng, Feng; Waminal, Nomar Espinosa; Huang, Yin; Dong, Caihua; Wang, Li; Li, Jingping; Hu, Zhiyong; Zhuang, Mu; Huang, Yi; Huang, Junyan; Shi, Jiaqin; Mei, Desheng; Liu, Jing; Lee, Tae-Ho; Wang, Jinpeng; Jin, Huizhe; Li, Zaiyun; Li, Xun; Zhang, Jiefu; Xiao, Lu; Zhou, Yongming; Liu, Zhongsong; Liu, Xuequn; Qin, Rui; Tang, Xu; Liu, Wenbin; Wang, Yupeng; Zhang, Yangyong; Lee, Jonghoon; Kim, Hyun Hee; Denoeud, France; Xu, Xun; Liang, Xinming; Hua, Wei; Wang, Xiaowu; Wang, Jun; Chalhoub, Boulos; Paterson, Andrew H

    2014-01-01

    Polyploidization has provided much genetic variation for plant adaptive evolution, but the mechanisms by which the molecular evolution of polyploid genomes establishes genetic architecture underlying species differentiation are unclear. Brassica is an ideal model to increase knowledge of polyploid evolution. Here we describe a draft genome sequence of Brassica oleracea, comparing it with that of its sister species B. rapa to reveal numerous chromosome rearrangements and asymmetrical gene loss in duplicated genomic blocks, asymmetrical amplification of transposable elements, differential gene co-retention for specific pathways and variation in gene expression, including alternative splicing, among a large number of paralogous and orthologous genes. Genes related to the production of anticancer phytochemicals and morphological variations illustrate consequences of genome duplication and gene divergence, imparting biochemical and morphological variation to B. oleracea. This study provides insights into Brassica genome evolution and will underpin research into the many important crops in this genus. PMID:24852848

  1. Radiation-induced instability of human genome

    International Nuclear Information System (INIS)

    Ryabchenko, N.N.; Demina, Eh.A.

    2014-01-01

    A brief review is dedicated to the phenomenon of radiation-induced genomic instability where the increased level of genomic changes in the offspring of irradiated cells is characteristic. Particular attention is paid to the problems of genomic instability induced by the low-dose radiation, role of the bystander effect in formation of radiation-induced instability, and its relationship with individual radiosensitivity. We believe that in accordance with the paradigm of modern radiobiology the increased human individual radiosensitivity can be formed due to the genome instability onset and is a significant risk factor for radiation-induced cancer

  2. Comparative genomics analyses revealed two virulent Listeria monocytogenes strains isolated from ready-to-eat food.

    Science.gov (United States)

    Lim, Shu Yong; Yap, Kien-Pong; Thong, Kwai Lin

    2016-01-01

    Listeria monocytogenes is an important foodborne pathogen that causes considerable morbidity in humans with high mortality rates. In this study, we have sequenced the genomes and performed comparative genomics analyses on two strains, LM115 and LM41, isolated from ready-to-eat food in Malaysia. The genome size of LM115 and LM41 was 2,959,041 and 2,963,111 bp, respectively. These two strains shared approximately 90% homologous genes. Comparative genomics and phylogenomic analyses revealed that LM115 and LM41 were more closely related to the reference strains F2365 and EGD-e, respectively. Our virulence profiling indicated a total of 31 virulence genes shared by both analysed strains. These shared genes included those that encode for internalins and L. monocytogenes pathogenicity island 1 (LIPI-1). Both the Malaysian L. monocytogenes strains also harboured several genes associated with stress tolerance to counter the adverse conditions. Seven antibiotic and efflux pump related genes which may confer resistance against lincomycin, erythromycin, fosfomycin, quinolone, tetracycline, and penicillin, and macrolides were identified in the genomes of both strains. Whole genome sequencing and comparative genomics analyses revealed two virulent L. monocytogenes strains isolated from ready-to-eat foods in Malaysia. The identification of strains with pathogenic, persistent, and antibiotic resistant potentials from minimally processed food warrant close attention from both healthcare and food industry.

  3. Unexplored therapeutic opportunities in the human genome

    DEFF Research Database (Denmark)

    Oprea, Tudor I; Bologa, Cristian G; Brunak, Søren

    2018-01-01

    A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially d...... as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development....

  4. Body maps on the human genome.

    Science.gov (United States)

    Cherniak, Christopher; Rodriguez-Esteban, Raul

    2013-12-20

    Chromosomes have territories, or preferred locales, in the cell nucleus. When these sites are taken into account, some large-scale structure of the human genome emerges. The synoptic picture is that genes highly expressed in particular topologically compact tissues are not randomly distributed on the genome. Rather, such tissue-specific genes tend to map somatotopically onto the complete chromosome set. They seem to form a "genome homunculus": a multi-dimensional, genome-wide body representation extending across chromosome territories of the entire spermcell nucleus. The antero-posterior axis of the body significantly corresponds to the head-tail axis of the nucleus, and the dorso-ventral body axis to the central-peripheral nucleus axis. This large-scale genomic structure includes thousands of genes. One rationale for a homuncular genome structure would be to minimize connection costs in genetic networks. Somatotopic maps in cerebral cortex have been reported for over a century.

  5. The characterization of twenty sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Kimberly Pelak

    2010-09-01

    Full Text Available We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.

  6. Neolithic and Medieval virus genomes reveal complex evolution of Hepatitis B.

    Science.gov (United States)

    Krause-Kyora, Ben; Susat, Julian; Key, Felix M; Kühnert, Denise; Bosse, Esther; Immel, Alexander; Rinne, Christoph; Kornell, Sabin-Christin; Yepes, Diego; Franzenburg, Sören; Heyne, Henrike O; Meier, Thomas; Lösch, Sandra; Meller, Harald; Friederich, Susanne; Nicklisch, Nicole; Alt, Kurt W; Schreiber, Stefan; Tholey, Andreas; Herbig, Alexander; Nebel, Almut; Krause, Johannes

    2018-05-10

    The hepatitis B virus (HBV) is one of the most widespread human pathogens known today, yet its origin and evolutionary history are still unclear and controversial. Here, we report the analysis of three ancient HBV genomes recovered from human skeletons found at three different archaeological sites in Germany. We reconstructed two Neolithic and one medieval HBV genomes by de novo assembly from shotgun DNA sequencing data. Additionally, we observed HBV-specific peptides using paleo-proteomics. Our results show that HBV circulates in the European population for at least 7000 years. The Neolithic HBV genomes show a high genomic similarity to each other. In a phylogenetic network, they do not group with any human-associated HBV genome and are most closely related to those infecting African non-human primates. These ancient virus forms appear to represent distinct lineages that have no close relatives today and possibly went extinct. Our results reveal the great potential of ancient DNA from human skeletons in order to study the long-time evolution of blood borne viruses. © 2018, Krause-Kyora et al.

  7. Comparative Pan-Genome Analysis of Piscirickettsia salmonis Reveals Genomic Divergences within Genogroups

    Directory of Open Access Journals (Sweden)

    Guillermo Nourdin-Galindo

    2017-10-01

    Full Text Available Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, a disease that seriously affects the salmonid industry. Despite efforts to genomically characterize P. salmonis, functional information on the life cycle, pathogenesis mechanisms, diagnosis, treatment, and control of this fish pathogen remain lacking. To address this knowledge gap, the present study conducted an in silico pan-genome analysis of 19 P. salmonis strains from distinct geographic locations and genogroups. Results revealed an expected open pan-genome of 3,463 genes and a core-genome of 1,732 genes. Two marked genogroups were identified, as confirmed by phylogenetic and phylogenomic relationships to the LF-89 and EM-90 reference strains, as well as by assessments of genomic structures. Different structural configurations were found for the six identified copies of the ribosomal operon in the P. salmonis genome, indicating translocation throughout the genetic material. Chromosomal divergences in genomic localization and quantity of genetic cassettes were also found for the Dot/Icm type IVB secretion system. To determine divergences between core-genomes, additional pan-genome descriptions were compiled for the so-termed LF and EM genogroups. Open pan-genomes composed of 2,924 and 2,778 genes and core-genomes composed of 2,170 and 2,228 genes were respectively found for the LF and EM genogroups. The core-genomes were functionally annotated using the Gene Ontology, KEGG, and Virulence Factor databases, revealing the presence of several shared groups of genes related to basic function of intracellular survival and bacterial pathogenesis. Additionally, the specific pan-genomes for the LF and EM genogroups were defined, resulting in the identification of 148 and 273 exclusive proteins, respectively. Notably, specific virulence factors linked to adherence, colonization, invasion factors, and endotoxins were established. The obtained data suggest that these

  8. Learning about human population history from ancient and modern genomes.

    Science.gov (United States)

    Stoneking, Mark; Krause, Johannes

    2011-08-18

    Genome-wide data, both from SNP arrays and from complete genome sequencing, are becoming increasingly abundant and are now even available from extinct hominins. These data are providing new insights into population history; in particular, when combined with model-based analytical approaches, genome-wide data allow direct testing of hypotheses about population history. For example, genome-wide data from both contemporary populations and extinct hominins strongly support a single dispersal of modern humans from Africa, followed by two archaic admixture events: one with Neanderthals somewhere outside Africa and a second with Denisovans that (so far) has only been detected in New Guinea. These new developments promise to reveal new stories about human population history, without having to resort to storytelling.

  9. Origins of the Human Genome Project.

    Science.gov (United States)

    Watson, J D; Cook-Deegan, R M

    1991-01-01

    The Human Genome Project has become a reality. Building on a debate that dates back to 1985, several genome projects are now in full stride around the world, and more are likely to form in the next several years. Italy began its genome program in 1987, and the United Kingdom and U.S.S.R. in 1988. The European communities mounted several genome projects on yeast, bacteria, Drosophila, and Arabidospis thaliana (a rapidly growing plant with a small genome) in 1988, and in 1990 commenced a new 2-year program on the human genome. In the United States, we have completed the first year of operation of the National Center for Human Genome Research at the National Institutes of Health (NIH), now the largest single funding source for genome research in the world. There have been dedicated budgets focused on genome-scale research at NIH, the U.S. Department of Energy, and the Howard Hughes Medical Institute for several years, and results are beginning to accumulate. There were three annual meetings on genome mapping and sequencing at Cold Spring Harbor, New York, in the spring of 1988, 1989, and 1990; the talks have shifted from a discussion about how to approach problems to presenting results from experiments already performed. We have finally begun to work rather than merely talk. The purpose of genome projects is to assemble data on the structure of DNA in human chromosomes and those of other organisms. A second goal is to develop new technologies to perform mapping and sequencing. There have been impressive technical advances in the past 5 years since the debate about the human genome project began. We are on the verge of beginning pilot projects to test several approaches to sequencing long stretches of DNA, using both automation and manual methods. Ordered sets of yeast artificial chromosome and cosmid clones have been assembled to span more than 2 million base pairs of several human chromosomes, and a region of 10 million base pairs has been assembled for

  10. Defining functional DNA elements in the human genome

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  11. Genomic features of human limb specific enhancers.

    Science.gov (United States)

    Ali, Shahid; Amina, Bibi; Anwar, Saneela; Minhas, Rashid; Parveen, Nazia; Nawaz, Uzma; Azam, Syed Sikandar; Abbasi, Amir Ali

    2016-10-01

    To elucidate important cellular and molecular interactions that regulate patterning and skeletal development, vertebrate limbs served as a model organ. A growing body of evidence from detailed studies on a subset of limb regulators like the HOXD cluster or SHH, reveals the importance of enhancers in limb related developmental and disease processes. Exploiting the recent genome-wide availability of functionally confirmed enhancer dataset, this study establishes regulatory interactions for dozens of human limb developmental genes. From these data, it appears that the long-range regulatory interactions are fairly common during limb development. This observation highlights the significance of chromosomal breaks/translocations in human limb deformities. Transcriptional factor (TF) analysis predicts that the differentiation of early nascent limb-bud into future territories entail distinct TF interaction networks. Conclusively, an important motivation for annotating the human limb specific regulatory networks is to pave way for the systematic exploration of their role in disease and evolution. Copyright © 2016. Published by Elsevier Inc.

  12. Comprehensive Genomic Profiling of Esthesioneuroblastoma Reveals Additional Treatment Options.

    Science.gov (United States)

    Gay, Laurie M; Kim, Sungeun; Fedorchak, Kyle; Kundranda, Madappa; Odia, Yazmin; Nangia, Chaitali; Battiste, James; Colon-Otero, Gerardo; Powell, Steven; Russell, Jeffery; Elvin, Julia A; Vergilio, Jo-Anne; Suh, James; Ali, Siraj M; Stephens, Philip J; Miller, Vincent A; Ross, Jeffrey S

    2017-07-01

    Esthesioneuroblastoma (ENB), also known as olfactory neuroblastoma, is a rare malignant neoplasm of the olfactory mucosa. Despite surgical resection combined with radiotherapy and adjuvant chemotherapy, ENB often relapses with rapid progression. Current multimodality, nontargeted therapy for relapsed ENB is of limited clinical benefit. We queried whether comprehensive genomic profiling (CGP) of relapsed or refractory ENB can uncover genomic alterations (GA) that could identify potential targeted therapies for these patients. CGP was performed on formalin-fixed, paraffin-embedded sections from 41 consecutive clinical cases of ENBs using a hybrid-capture, adaptor ligation based next-generation sequencing assay to a mean coverage depth of 593X. The results were analyzed for base substitutions, insertions and deletions, select rearrangements, and copy number changes (amplifications and homozygous deletions). Clinically relevant GA (CRGA) were defined as GA linked to drugs on the market or under evaluation in clinical trials. A total of 28 ENBs harbored GA, with a mean of 1.5 GA per sample. Approximately half of the ENBs (21, 51%) featured at least one CRGA, with an average of 1 CRGA per sample. The most commonly altered gene was TP53 (17%), with GA in PIK3CA , NF1 , CDKN2A , and CDKN2C occurring in 7% of samples. We report comprehensive genomic profiles for 41 ENB tumors. CGP revealed potential new therapeutic targets, including targetable GA in the mTOR, CDK and growth factor signaling pathways, highlighting the clinical value of genomic profiling in ENB. Comprehensive genomic profiling of 41 relapsed or refractory ENBs reveals recurrent alterations or classes of mutation, including amplification of tyrosine kinases encoded on chromosome 5q and mutations affecting genes in the mTOR/PI3K pathway. Approximately half of the ENBs (21, 51%) featured at least one clinically relevant genomic alteration (CRGA), with an average of 1 CRGA per sample. The most commonly altered

  13. HGVA: the Human Genome Variation Archive.

    Science.gov (United States)

    Lopez, Javier; Coll, Jacobo; Haimel, Matthias; Kandasamy, Swaathi; Tarraga, Joaquin; Furio-Tari, Pedro; Bari, Wasim; Bleda, Marta; Rueda, Antonio; Gräf, Stefan; Rendon, Augusto; Dopazo, Joaquin; Medina, Ignacio

    2017-07-03

    High-profile genomic variation projects like the 1000 Genomes project or the Exome Aggregation Consortium, are generating a wealth of human genomic variation knowledge which can be used as an essential reference for identifying disease-causing genotypes. However, accessing these data, contrasting the various studies and integrating those data in downstream analyses remains cumbersome. The Human Genome Variation Archive (HGVA) tackles these challenges and facilitates access to genomic data for key reference projects in a clean, fast and integrated fashion. HGVA provides an efficient and intuitive web-interface for easy data mining, a comprehensive RESTful API and client libraries in Python, Java and JavaScript for fast programmatic access to its knowledge base. HGVA calculates population frequencies for these projects and enriches their data with variant annotation provided by CellBase, a rich and fast annotation solution. HGVA serves as a proof-of-concept of the genome analysis developments being carried out by the University of Cambridge together with UK's 100 000 genomes project and the National Institute for Health Research BioResource Rare-Diseases, in particular, deploying open-source for Computational Biology (OpenCB) software platform for storing and analyzing massive genomic datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Differential metabolism of Mycoplasma species as revealed by their genomes

    Directory of Open Access Journals (Sweden)

    Fabricio B.M. Arraes

    2007-01-01

    Full Text Available The annotation and comparative analyses of the genomes of Mycoplasma synoviae and Mycoplasma hyopneumonie, as well as of other Mollicutes (a group of bacteria devoid of a rigid cell wall, has set the grounds for a global understanding of their metabolism and infection mechanisms. According to the annotation data, M. synoviae and M. hyopneumoniae are able to perform glycolytic metabolism, but do not possess the enzymatic machinery for citrate and glyoxylate cycles, gluconeogenesis and the pentose phosphate pathway. Both can synthesize ATP by lactic fermentation, but only M. synoviae can convert acetaldehyde to acetate. Also, our genome analysis revealed that M. synoviae and M. hyopneumoniae are not expected to synthesize polysaccharides, but they can take up a variety of carbohydrates via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS. Our data showed that these two organisms are unable to synthesize purine and pyrimidine de novo, since they only possess the sequences which encode salvage pathway enzymes. Comparative analyses of M. synoviae and M. hyopneumoniae with other Mollicutes have revealed differential genes in the former two genomes coding for enzymes that participate in carbohydrate, amino acid and nucleotide metabolism and host-pathogen interaction. The identification of these metabolic pathways will provide a better understanding of the biology and pathogenicity of these organisms.

  15. Targeted Genome Sequencing Reveals Varicella-Zoster Virus Open Reading Frame 12 Deletion.

    Science.gov (United States)

    Cohrs, Randall J; Lee, Katherine S; Beach, Addilynn; Sanford, Bridget; Baird, Nicholas L; Como, Christina; Graybill, Chiharu; Jones, Dallas; Tekeste, Eden; Ballard, Mitchell; Chen, Xiaomi; Yalacki, David; Frietze, Seth; Jones, Kenneth; Lenac Rovis, Tihana; Jonjić, Stipan; Haas, Jürgen; Gilden, Don

    2017-10-15

    The neurotropic herpesvirus varicella-zoster virus (VZV) establishes a lifelong latent infection in humans following primary infection. The low abundance of VZV nucleic acids in human neurons has hindered an understanding of the mechanisms that regulate viral gene transcription during latency. To overcome this critical barrier, we optimized a targeted capture protocol to enrich VZV DNA and cDNA prior to whole-genome/transcriptome sequence analysis. Since the VZV genome is remarkably stable, it was surprising to detect that VZV32, a VZV laboratory strain with no discernible growth defect in tissue culture, contained a 2,158-bp deletion in open reading frame (ORF) 12. Consequently, ORF 12 and 13 protein expression was abolished and Akt phosphorylation was inhibited. The discovery of the ORF 12 deletion, revealed through targeted genome sequencing analysis, points to the need to authenticate the VZV genome when the virus is propagated in tissue culture. IMPORTANCE Viruses isolated from clinical samples often undergo genetic modifications when cultured in the laboratory. Historically, VZV is among the most genetically stable herpesviruses, a notion supported by more than 60 complete genome sequences from multiple isolates and following multiple in vitro passages. However, application of enrichment protocols to targeted genome sequencing revealed the unexpected deletion of a significant portion of VZV ORF 12 following propagation in cultured human fibroblast cells. While the enrichment protocol did not introduce bias in either the virus genome or transcriptome, the findings indicate the need for authentication of VZV by sequencing when the virus is propagated in tissue culture. Copyright © 2017 American Society for Microbiology.

  16. Human-specific HERV-K insertion causes genomic variations in the human genome.

    Directory of Open Access Journals (Sweden)

    Wonseok Shin

    Full Text Available Human endogenous retroviruses (HERV sequences account for about 8% of the human genome. Through comparative genomics and literature mining, we identified a total of 29 human-specific HERV-K insertions. We characterized them focusing on their structure and flanking sequence. The results showed that four of the human-specific HERV-K insertions deleted human genomic sequences via non-classical insertion mechanisms. Interestingly, two of the human-specific HERV-K insertion loci contained two HERV-K internals and three LTR elements, a pattern which could be explained by LTR-LTR ectopic recombination or template switching. In addition, we conducted a polymorphic test and observed that twelve out of the 29 elements are polymorphic in the human population. In conclusion, human-specific HERV-K elements have inserted into human genome since the divergence of human and chimpanzee, causing human genomic changes. Thus, we believe that human-specific HERV-K activity has contributed to the genomic divergence between humans and chimpanzees, as well as within the human population.

  17. Comparative Genomic Analysis of Clinical and Environmental Vibrio Vulnificus Isolates Revealed Biotype 3 Evolutionary Relationships

    Directory of Open Access Journals (Sweden)

    Yael eKotton

    2015-01-01

    Full Text Available In 1996 a common-source outbreak of severe soft tissue and bloodstream infections erupted among Israeli fish farmers and fish consumers due to changes in fish marketing policies. The causative pathogen was a new strain of Vibrio vulnificus, named biotype 3, which displayed a unique biochemical and genotypic profile. Initial observations suggested that the pathogen erupted as a result of genetic recombination between two distinct populations. We applied a whole genome shotgun sequencing approach using several V. vulnificus strains from Israel in order to study the pan genome of V. vulnificus and determine the phylogenetic relationship of biotype 3 with existing populations. The core genome of V. vulnificus based on 16 draft and complete genomes consisted of 3068 genes, representing between 59% and 78% of the whole genome of 16 strains. The accessory genome varied in size from 781 kbp to 2044 kbp. Phylogenetic analysis based on whole, core, and accessory genomes displayed similar clustering patterns with two main clusters, clinical (C and environmental (E, all biotype 3 strains formed a distinct group within the E cluster. Annotation of accessory genomic regions found in biotype 3 strains and absent from the core genome yielded 1732 genes, of which the vast majority encoded hypothetical proteins, phage-related proteins, and mobile element proteins. A total of 1916 proteins (including 713 hypothetical proteins were present in all human pathogenic strains (both biotype 3 and non-biotype 3 and absent from the environmental strains. Clustering analysis of the non-hypothetical proteins revealed 148 protein clusters shared by all human pathogenic strains; these included transcriptional regulators, arylsulfatases, methyl-accepting chemotaxis proteins, acetyltransferases, GGDEF family proteins, transposases, type IV secretory system (T4SS proteins, and integrases. Our study showed that V. vulnificus biotype 3 evolved from environmental populations and

  18. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper

    LENUS (Irish Health Repository)

    Potnis, Neha

    2011-03-11

    Abstract Background Bacterial spot of tomato and pepper is caused by four Xanthomonas species and is a major plant disease in warm humid climates. The four species are distinct from each other based on physiological and molecular characteristics. The genome sequence of strain 85-10, a member of one of the species, Xanthomonas euvesicatoria (Xcv) has been previously reported. To determine the relationship of the four species at the genome level and to investigate the molecular basis of their virulence and differing host ranges, draft genomic sequences of members of the other three species were determined and compared to strain 85-10. Results We sequenced the genomes of X. vesicatoria (Xv) strain 1111 (ATCC 35937), X. perforans (Xp) strain 91-118 and X. gardneri (Xg) strain 101 (ATCC 19865). The genomes were compared with each other and with the previously sequenced Xcv strain 85-10. In addition, the molecular features were predicted that may be required for pathogenicity including the type III secretion apparatus, type III effectors, other secretion systems, quorum sensing systems, adhesins, extracellular polysaccharide, and lipopolysaccharide determinants. Several novel type III effectors from Xg strain 101 and Xv strain 1111 genomes were computationally identified and their translocation was validated using a reporter gene assay. A homolog to Ax21, the elicitor of XA21-mediated resistance in rice, and a functional Ax21 sulfation system were identified in Xcv. Genes encoding proteins with functions mediated by type II and type IV secretion systems have also been compared, including enzymes involved in cell wall deconstruction, as contributors to pathogenicity. Conclusions Comparative genomic analyses revealed considerable diversity among bacterial spot pathogens, providing new insights into differences and similarities that may explain the diverse nature of these strains. Genes specific to pepper pathogens, such as the O-antigen of the lipopolysaccharide cluster

  19. Analysing human genomes at different scales

    DEFF Research Database (Denmark)

    Liu, Siyang

    The thriving of the Next-Generation sequencing (NGS) technologies in the past decade has dramatically revolutionized the field of human genetics. We are experiencing a wave of several large-scale whole genome sequencing studies of humans in the world. Those studies vary greatly regarding cohort...... will be reflected by the analysis of real data. This thesis covers studies in two human genome sequencing projects that distinctly differ in terms of studied population, sample size and sequencing depth. In the first project, we sequenced 150 Danish individuals from 50 trio families to 78x coverage....... The sophisticated experimental design enables high-quality de novo assembly of the genomes and provides a good opportunity for mapping the structural variations in the human population. We developed the AsmVar approach to discover, genotype and characterize the structural variations from the assemblies. Our...

  20. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa

    KAUST Repository

    Gallego Llorente, M.; Jones, E. R.; Eriksson, Anders; Siska, V.; Arthur, K. W.; Arthur, J. W.; Curtis, M. C.; Stock, J. T.; Coltorti, M.; Pieruccini, P.; Stretton, S.; Brock, F.; Higham, T.; Park, Y.; Hofreiter, M.; Bradley, D. G.; Bhak, J.; Pinhasi, R.; Manica, A.

    2015-01-01

    Characterizing genetic diversity in Africa is a crucial step for most analyses reconstructing the evolutionary history of anatomically modern humans. However, historic migrations from Eurasia into Africa have affected many contemporary populations, confounding inferences. Here, we present a 12.5×coverage ancient genome of an Ethiopian male ("Mota") who lived approximately 4500 years ago. We use this genome to demonstrate that the Eurasian backflow into Africa came from a population closely related to Early Neolithic farmers, who had colonized Europe 4000 years earlier. The extent of this backflow was much greater than previously reported, reaching all the way to Central, West, and Southern Africa, affecting even populations such as Yoruba and Mbuti, previously thought to be relatively unadmixed, who harbor 6 to 7% Eurasian ancestry.

  1. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa

    KAUST Repository

    Gallego Llorente, M.

    2015-10-09

    Characterizing genetic diversity in Africa is a crucial step for most analyses reconstructing the evolutionary history of anatomically modern humans. However, historic migrations from Eurasia into Africa have affected many contemporary populations, confounding inferences. Here, we present a 12.5×coverage ancient genome of an Ethiopian male ("Mota") who lived approximately 4500 years ago. We use this genome to demonstrate that the Eurasian backflow into Africa came from a population closely related to Early Neolithic farmers, who had colonized Europe 4000 years earlier. The extent of this backflow was much greater than previously reported, reaching all the way to Central, West, and Southern Africa, affecting even populations such as Yoruba and Mbuti, previously thought to be relatively unadmixed, who harbor 6 to 7% Eurasian ancestry.

  2. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR mediated by low-copy repeats (LCRs. Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ~1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR-mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease.

  3. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. (eds.)

    1992-01-01

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  4. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. [eds.

    1992-12-31

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  5. Inversion variants in human and primate genomes.

    Science.gov (United States)

    Catacchio, Claudia Rita; Maggiolini, Flavia Angela Maria; D'Addabbo, Pietro; Bitonto, Miriana; Capozzi, Oronzo; Signorile, Martina Lepore; Miroballo, Mattia; Archidiacono, Nicoletta; Eichler, Evan E; Ventura, Mario; Antonacci, Francesca

    2018-05-18

    For many years, inversions have been proposed to be a direct driving force in speciation since they suppress recombination when heterozygous. Inversions are the most common large-scale differences among humans and great apes. Nevertheless, they represent large events easily distinguishable by classical cytogenetics, whose resolution, however, is limited. Here, we performed a genome-wide comparison between human, great ape, and macaque genomes using the net alignments for the most recent releases of genome assemblies. We identified a total of 156 putative inversions, between 103 kb and 91 Mb, corresponding to 136 human loci. Combining literature, sequence, and experimental analyses, we analyzed 109 of these loci and found 67 regions inverted in one or multiple primates, including 28 newly identified inversions. These events overlap with 81 human genes at their breakpoints, and seven correspond to sites of recurrent rearrangements associated with human disease. This work doubles the number of validated primate inversions larger than 100 kb, beyond what was previously documented. We identified 74 sites of errors, where the sequence has been assembled in the wrong orientation, in the reference genomes analyzed. Our data serve two purposes: First, we generated a map of evolutionary inversions in these genomes representing a resource for interrogating differences among these species at a functional level; second, we provide a list of misassembled regions in these primate genomes, involving over 300 Mb of DNA and 1978 human genes. Accurately annotating these regions in the genome references has immediate applications for evolutionary and biomedical studies on primates. © 2018 Catacchio et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy

    DEFF Research Database (Denmark)

    Kaas, Christian Schrøder; Kristensen, Claus; Betenbaugh, Michael J.

    2015-01-01

    Background: The DHFR negative CHO DXB11 cell line (also known as DUX-B11 and DUKX) was historically the first CHO cell line to be used for large scale production of heterologous proteins and is still used for production of a number of complex proteins.  Results: Here we present the genomic sequence...... of the CHO DXB11 genome sequenced to a depth of 33x. Overall a significant genomic drift was seen favoring GC -> AT point mutations in line with the chemical mutagenesis strategy used for generation of the cell line. The sequencing depth for each gene in the genome revealed distinct peaks at sequencing...... in eight additional analyzed CHO genomes (15-20% haploidy) but not in the genome of the Chinese hamster. The dhfr gene is confirmed to be haploid in CHO DXB11; transcriptionally active and the remaining allele contains a G410C point mutation causing a Thr137Arg missense mutation. We find similar to 2...

  7. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes.

    Science.gov (United States)

    Thybert, David; Roller, Maša; Navarro, Fábio C P; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C; Laukaitis, Christina M; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M; Odom, Duncan T; Flicek, Paul

    2018-04-01

    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli , which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. © 2018 Thybert et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes

    Science.gov (United States)

    Thybert, David; Roller, Maša; Navarro, Fábio C.P.; Fiddes, Ian; Streeter, Ian; Feig, Christine; Martin-Galvez, David; Kolmogorov, Mikhail; Janoušek, Václav; Akanni, Wasiu; Aken, Bronwen; Aldridge, Sarah; Chakrapani, Varshith; Chow, William; Clarke, Laura; Cummins, Carla; Doran, Anthony; Dunn, Matthew; Goodstadt, Leo; Howe, Kerstin; Howell, Matthew; Josselin, Ambre-Aurore; Karn, Robert C.; Laukaitis, Christina M.; Jingtao, Lilue; Martin, Fergal; Muffato, Matthieu; Nachtweide, Stefanie; Quail, Michael A.; Sisu, Cristina; Stanke, Mario; Stefflova, Klara; Van Oosterhout, Cock; Veyrunes, Frederic; Ward, Ben; Yang, Fengtang; Yazdanifar, Golbahar; Zadissa, Amonida; Adams, David J.; Brazma, Alvis; Gerstein, Mark; Paten, Benedict; Pham, Son; Keane, Thomas M.; Odom, Duncan T.; Flicek, Paul

    2018-01-01

    Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology. PMID:29563166

  9. The diploid genome sequence of an individual human.

    Directory of Open Access Journals (Sweden)

    Samuel Levy

    2007-09-01

    Full Text Available Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel included 3,213,401 single nucleotide polymorphisms (SNPs, 53,823 block substitutions (2-206 bp, 292,102 heterozygous insertion/deletion events (indels(1-571 bp, 559,473 homozygous indels (1-82,711 bp, 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.

  10. Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences

    Directory of Open Access Journals (Sweden)

    Shade Larry L

    2006-06-01

    Full Text Available Abstract Background Approximately 11 Mb of finished high quality genomic sequences were sampled from cattle, dog and human to estimate genomic divergences and their regional variation among these lineages. Results Optimal three-way multi-species global sequence alignments for 84 cattle clones or loci (each >50 kb of genomic sequence were constructed using the human and dog genome assemblies as references. Genomic divergences and substitution rates were examined for each clone and for various sequence classes under different functional constraints. Analysis of these alignments revealed that the overall genomic divergences are relatively constant (0.32–0.37 change/site for pairwise comparisons among cattle, dog and human; however substitution rates vary across genomic regions and among different sequence classes. A neutral mutation rate (2.0–2.2 × 10(-9 change/site/year was derived from ancestral repetitive sequences, whereas the substitution rate in coding sequences (1.1 × 10(-9 change/site/year was approximately half of the overall rate (1.9–2.0 × 10(-9 change/site/year. Relative rate tests also indicated that cattle have a significantly faster rate of substitution as compared to dog and that this difference is about 6%. Conclusion This analysis provides a large-scale and unbiased assessment of genomic divergences and regional variation of substitution rates among cattle, dog and human. It is expected that these data will serve as a baseline for future mammalian molecular evolution studies.

  11. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  12. Human Genome Editing and Ethical Considerations.

    Science.gov (United States)

    Krishan, Kewal; Kanchan, Tanuj; Singh, Bahadur

    2016-04-01

    Editing human germline genes may act as boon in some genetic and other disorders. Recent editing of the genome of the human embryo with the CRISPR/Cas9 editing tool generated a debate amongst top scientists of the world for the ethical considerations regarding its effect on the future generations. It needs to be seen as to what transformation human gene editing brings to humankind in the times to come.

  13. Development and application of Human Genome Epidemiology

    Science.gov (United States)

    Xu, Jingwen

    2017-12-01

    Epidemiology is a science that studies distribution of diseases and health in population and its influencing factors, it also studies how to prevent and cure disease and promote health strategies and measures. Epidemiology has developed rapidly in recent years and it is an intercross subject with various other disciplines to form a series of branch disciplines such as Genetic epidemiology, molecular epidemiology, drug epidemiology and tumor epidemiology. With the implementation and completion of Human Genome Project (HGP), Human Genome Epidemiology (HuGE) has emerged at this historic moment. In this review, the development of Human Genome Epidemiology, research content, the construction and structure of relevant network, research standards, as well as the existing results and problems are briefly outlined.

  14. Upper Palaeolithic genomes reveal deep roots of modern Eurasians

    KAUST Repository

    Jones, Eppie R.

    2015-11-16

    We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.5-fold) male from Switzerland. While we detect Late Palaeolithic–Mesolithic genomic continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct ancient clade that split from western hunter-gatherers ~45 kya, shortly after the expansion of anatomically modern humans into Europe and from the ancestors of Neolithic farmers ~25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the Yamnaya steppe herders who migrated into Europe ~3,000 BC, supporting a formative Caucasus influence on this important Early Bronze age culture. CHG left their imprint on modern populations from the Caucasus and also central and south Asia possibly marking the arrival of Indo-Aryan languages.

  15. Upper Palaeolithic genomes reveal deep roots of modern Eurasians

    KAUST Repository

    Jones, Eppie R.; Gonzalez-Fortes, Gloria; Connell, Sarah; Siska, Veronika; Eriksson, Anders; Martiniano, Rui; McLaughlin, Russell L.; Gallego Llorente, Marcos; Cassidy, Lara M.; Gamba, Cristina; Meshveliani, Tengiz; Bar-Yosef, Ofer; Mü ller, Werner; Belfer-Cohen, Anna; Matskevich, Zinovi; Jakeli, Nino; Higham, Thomas F. G.; Currat, Mathias; Lordkipanidze, David; Hofreiter, Michael; Manica, Andrea; Pinhasi, Ron; Bradley, Daniel G.

    2015-01-01

    We extend the scope of European palaeogenomics by sequencing the genomes of Late Upper Palaeolithic (13,300 years old, 1.4-fold coverage) and Mesolithic (9,700 years old, 15.4-fold) males from western Georgia in the Caucasus and a Late Upper Palaeolithic (13,700 years old, 9.5-fold) male from Switzerland. While we detect Late Palaeolithic–Mesolithic genomic continuity in both regions, we find that Caucasus hunter-gatherers (CHG) belong to a distinct ancient clade that split from western hunter-gatherers ~45 kya, shortly after the expansion of anatomically modern humans into Europe and from the ancestors of Neolithic farmers ~25 kya, around the Last Glacial Maximum. CHG genomes significantly contributed to the Yamnaya steppe herders who migrated into Europe ~3,000 BC, supporting a formative Caucasus influence on this important Early Bronze age culture. CHG left their imprint on modern populations from the Caucasus and also central and south Asia possibly marking the arrival of Indo-Aryan languages.

  16. Genome Editing in Human Pluripotent Stem Cells.

    Science.gov (United States)

    Carlson-Stevermer, Jared; Saha, Krishanu

    2017-01-01

    Genome editing in human pluripotent stem cells (hPSCs) enables the generation of reporter lines and knockout cell lines. Zinc finger nucleases, transcription activator-like effector nucleases (TALENs), and CRISPR/Cas9 technology have recently increased the efficiency of proper gene editing by creating double strand breaks (DSB) at defined sequences in the human genome. These systems typically use plasmids to transiently transcribe nucleases within the cell. Here, we describe the process for preparing hPSCs for transient expression of nucleases via electroporation and subsequent analysis to create genetically modified stem cell lines.

  17. Human genomics projects and precision medicine.

    Science.gov (United States)

    Carrasco-Ramiro, F; Peiró-Pastor, R; Aguado, B

    2017-09-01

    The completion of the Human Genome Project (HGP) in 2001 opened the floodgates to a deeper understanding of medicine. There are dozens of HGP-like projects which involve from a few tens to several million genomes currently in progress, which vary from having specialized goals or a more general approach. However, data generation, storage, management and analysis in public and private cloud computing platforms have raised concerns about privacy and security. The knowledge gained from further research has changed the field of genomics and is now slowly permeating into clinical medicine. The new precision (personalized) medicine, where genome sequencing and data analysis are essential components, allows tailored diagnosis and treatment according to the information from the patient's own genome and specific environmental factors. P4 (predictive, preventive, personalized and participatory) medicine is introducing new concepts, challenges and opportunities. This review summarizes current sequencing technologies, concentrates on ongoing human genomics projects, and provides some examples in which precision medicine has already demonstrated clinical impact in diagnosis and/or treatment.

  18. Insights into Modern Human Prehistory Using Ancient Genomes.

    Science.gov (United States)

    Yang, Melinda A; Fu, Qiaomei

    2018-03-01

    The genetic relationship of past modern humans to today's populations and each other was largely unknown until recently, when advances in ancient DNA sequencing allowed for unprecedented analysis of the genomes of these early people. These ancient genomes reveal new insights into human prehistory not always observed studying present-day populations, including greater details on the genetic diversity, population structure, and gene flow that characterized past human populations, particularly in early Eurasia, as well as increased insight on the relationship between archaic and modern humans. Here, we review genetic studies on ∼45000- to 7500-year-old individuals associated with mainly preagricultural cultures found in Eurasia, the Americas, and Africa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Single-Cell (Meta-Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity

    Directory of Open Access Journals (Sweden)

    Beverly E. Flood

    2016-05-01

    Full Text Available The genus Thiomargarita includes the world’s largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria.Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence transposable elements and miniature inverted-repeat transposable elements (MITEs. In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsr

  20. Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Kitcher, P.

    1998-11-01

    The Human Genome Project (HGP), launched in 1991, aims to map and sequence the human genome by 2006. During the fifteen-year life of the project, it is projected that $3 billion in federal funds will be allocated to it. The ultimate aims of spending this money are to analyze the structure of human DNA, to identify all human genes, to recognize the functions of those genes, and to prepare for the biology and medicine of the twenty-first century. The following summary examines some of the implications of the program, concentrating on its scientific import and on the ethical and social problems that it raises. Its aim is to expose principles that might be used in applying the information which the HGP will generate. There is no attempt here to translate the principles into detailed proposals for legislation. Arguments and discussion can be found in the full report, but, like this summary, that report does not contain any legislative proposals.

  1. The Human Genome Project and Biology Education.

    Science.gov (United States)

    McInerney, Joseph D.

    1996-01-01

    Highlights the importance of the Human Genome Project in educating the public about genetics. Discusses four challenges that science educators must address: teaching for conceptual understanding, the nature of science, the personal and social impact of science and technology, and the principles of technology. Contains 45 references. (JRH)

  2. Attitudes towards the Human Genome Project.

    Science.gov (United States)

    Shahroudi, Julie; Shaw, Geraldine

    Attitudes concerning the Human Genome Project were reported by faculty (N=40) and students (N=66) from a liberal arts college. Positive attitudes toward the project involved privacy, insurance and health, economic purposes, reproductive purposes, genetic counseling, religion and overall opinions. Negative attitudes were expressed regarding…

  3. Unexplored therapeutic opportunities in the human genome.

    Science.gov (United States)

    Oprea, Tudor I; Bologa, Cristian G; Brunak, Søren; Campbell, Allen; Gan, Gregory N; Gaulton, Anna; Gomez, Shawn M; Guha, Rajarshi; Hersey, Anne; Holmes, Jayme; Jadhav, Ajit; Jensen, Lars Juhl; Johnson, Gary L; Karlson, Anneli; Leach, Andrew R; Ma'ayan, Avi; Malovannaya, Anna; Mani, Subramani; Mathias, Stephen L; McManus, Michael T; Meehan, Terrence F; von Mering, Christian; Muthas, Daniel; Nguyen, Dac-Trung; Overington, John P; Papadatos, George; Qin, Jun; Reich, Christian; Roth, Bryan L; Schürer, Stephan C; Simeonov, Anton; Sklar, Larry A; Southall, Noel; Tomita, Susumu; Tudose, Ilinca; Ursu, Oleg; Vidovic, Dušica; Waller, Anna; Westergaard, David; Yang, Jeremy J; Zahoránszky-Köhalmi, Gergely

    2018-05-01

    A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development.

  4. Comparative Genomic Analysis Reveals Ecological Differentiation in the Genus Carnobacterium.

    Science.gov (United States)

    Iskandar, Christelle F; Borges, Frédéric; Taminiau, Bernard; Daube, Georges; Zagorec, Monique; Remenant, Benoît; Leisner, Jørgen J; Hansen, Martin A; Sørensen, Søren J; Mangavel, Cécile; Cailliez-Grimal, Catherine; Revol-Junelles, Anne-Marie

    2017-01-01

    Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium .

  5. Genomic analysis of primordial dwarfism reveals novel disease genes.

    Science.gov (United States)

    Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S

    2014-02-01

    Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.

  6. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Bruce A.; Tanifuji, Goro; Burki, Fabien; Gruber, Ansgar; Irimia, Manuuel; Maruyama, Shinichiro; Arias, Maria C.; Ball, Steven G.; Gile, Gillian H.; Hirakawa, Yoshihisa; Hopkins, Julia F.; Kuo, Alan; Rensing, Stefan A.; Schmutz, Jeremy; Symeonidi, Aikaterini; Elias, Marek; Eveleigh, Robert J. M.; Herman, Emily K.; Klute, Mary J.; Nakayama, Takuro; Obornik, Miroslav; Reyes-Prieto, Adrian; Armbrust, E. Virginia; Aves, Stephen J.; Beiko, Robert G.; Coutinho, Pedro; Dacks, Joel B.; Durnford, Dion G.; Fast, Naomi M.; Green, Beverley R.; Grisdale, Cameron J.; Hempel, Franziska; Henrissat, Bernard; Hoppner, Marc P.; Ishida, Ken-Ichiro; Kim, Eunsoo; Koreny, Ludek; Kroth, Peter G.; Liu, Yuan; Malik, Shehre-Banoo; Maier, Uwe G.; McRose, Darcy; Mock, Thomas; Neilson, Jonathan A. D.; Onodera, Naoko T.; Poole, Anthony M.; Pritham, Ellen J.; Richards, Thomas A.; Rocap, Gabrielle; Roy, Scott W.; Sarai, Chihiro; Schaack, Sarah; Shirato, Shu; Slamovits, Claudio H.; Spencer, Davie F.; Suzuki, Shigekatsu; Worden, Alexandra Z.; Zauner, Stefan; Barry, Kerrie; Bell, Callum; Bharti, Arvind K.; Crow, John A.; Grimwood, Jane; Kramer, Robin; Lindquist, Erika; Lucas, Susan; Salamov, Asaf; McFadden, Geoffrey I.; Lane, Christopher E.; Keeling, Patrick J.; Gray, Michael W.; Grigoriev, Igor V.; Archibald, John M.

    2012-08-10

    Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have 21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.

  7. Wild tobacco genomes reveal the evolution of nicotine biosynthesis.

    Science.gov (United States)

    Xu, Shuqing; Brockmöller, Thomas; Navarro-Quezada, Aura; Kuhl, Heiner; Gase, Klaus; Ling, Zhihao; Zhou, Wenwu; Kreitzer, Christoph; Stanke, Mario; Tang, Haibao; Lyons, Eric; Pandey, Priyanka; Pandey, Shree P; Timmermann, Bernd; Gaquerel, Emmanuel; Baldwin, Ian T

    2017-06-06

    Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.

  8. Viral symbiosis and the holobiontic nature of the human genome.

    Science.gov (United States)

    Ryan, Francis Patrick

    2016-01-01

    The human genome is a holobiontic union of the mammalian nuclear genome, the mitochondrial genome and large numbers of endogenized retroviral genomes. This article defines and explores this symbiogenetic pattern of evolution, looking at the implications for human genetics, epigenetics, embryogenesis, physiology and the pathogenesis of inborn errors of metabolism and many other diseases. © 2016 APMIS. Published by John Wiley & Sons Ltd.

  9. The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.

    Science.gov (United States)

    Schwager, Evelyn E; Sharma, Prashant P; Clarke, Thomas; Leite, Daniel J; Wierschin, Torsten; Pechmann, Matthias; Akiyama-Oda, Yasuko; Esposito, Lauren; Bechsgaard, Jesper; Bilde, Trine; Buffry, Alexandra D; Chao, Hsu; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dugan, Shannon; Eibner, Cornelius; Extavour, Cassandra G; Funch, Peter; Garb, Jessica; Gonzalez, Luis B; Gonzalez, Vanessa L; Griffiths-Jones, Sam; Han, Yi; Hayashi, Cheryl; Hilbrant, Maarten; Hughes, Daniel S T; Janssen, Ralf; Lee, Sandra L; Maeso, Ignacio; Murali, Shwetha C; Muzny, Donna M; Nunes da Fonseca, Rodrigo; Paese, Christian L B; Qu, Jiaxin; Ronshaugen, Matthew; Schomburg, Christoph; Schönauer, Anna; Stollewerk, Angelika; Torres-Oliva, Montserrat; Turetzek, Natascha; Vanthournout, Bram; Werren, John H; Wolff, Carsten; Worley, Kim C; Bucher, Gregor; Gibbs, Richard A; Coddington, Jonathan; Oda, Hiroki; Stanke, Mario; Ayoub, Nadia A; Prpic, Nikola-Michael; Flot, Jean-François; Posnien, Nico; Richards, Stephen; McGregor, Alistair P

    2017-07-31

    The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.

  10. Linkage Disequilibrium between STRPs and SNPs across the Human Genome

    OpenAIRE

    Payseur, Bret A.; Place, Michael; Weber, James L.

    2008-01-01

    Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this i...

  11. Genomic uracil and human disease

    DEFF Research Database (Denmark)

    Hagen, Lars; Pena Diaz, Javier; Kavli, Bodil

    2006-01-01

    Uracil is present in small amounts in DNA due to spontaneous deamination of cytosine and incorporation of dUMP during replication. While deamination generates mutagenic U:G mismatches, incorporated dUMP results in U:A pairs that are not directly mutagenic, but may be cytotoxic. In most cells, mut...... retroviral infections. Ung(-/-) mice have a similar phenotype and develop B-cell lymphomas late in life. However, there is no evidence indicating that UNG deficiency causes lymphomas in humans....

  12. Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kyrpides, Nikos; Anderson, Iain; Rodriguez, Jason; Susanti, Dwi; Porat, Iris; Reich, Claudia; Ulrich, Luke E.; Elkins, James G.; Mavromatis, Kostas; Lykidis, Athanasios; Kim, Edwin; Thompson, Linda S.; Nolan, Matt; Land, Miriam; Copeland, Alex; Lapidus, Alla; Lucas, Susan; Detter, Chris; Zhulin, Igor B.; Olsen, Gary J.; Whitman, William; Mukhopadhyay, Biswarup; Bristow, James; Kyrpides, Nikos

    2008-01-01

    We report the complete genome of Thermofilum pendens, a deep-branching, hyperthermophilic member of the order Thermoproteales within the archaeal kingdom Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It is an extracellular commensal, requiring an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. In fact T. pendens has fewer biosynthetic enzymes than obligate intracellular parasites, although it does not display other features common among obligate parasites and thus does not appear to be in the process of becoming a parasite. It appears that T. pendens has adapted to life in an environment rich in nutrients. T. pendens was known to utilize peptides as an energy source, but the genome reveals substantial ability to grow on carbohydrates. T. pendens is the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotransferase system. In addition to fermentation, T. pendens may gain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogenlyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time this enzyme has been found outside of Methanosarcinales, and a presenilin-related protein. Predicted highly expressed proteins do not include housekeeping genes, and instead include ABC transporters for carbohydrates and peptides, and CRISPR-associated proteins.

  13. Research for genetic instability of human genome

    Energy Technology Data Exchange (ETDEWEB)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M. (National Inst. of Radiological Sciences, Chiba (Japan)); Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author).

  14. Helminth Genomics: The Implications for Human Health

    Science.gov (United States)

    Brindley, Paul J.; Mitreva, Makedonka; Ghedin, Elodie; Lustigman, Sara

    2009-01-01

    More than two billion people (one-third of humanity) are infected with parasitic roundworms or flatworms, collectively known as helminth parasites. These infections cause diseases that are responsible for enormous levels of morbidity and mortality, delays in the physical development of children, loss of productivity among the workforce, and maintenance of poverty. Genomes of the major helminth species that affect humans, and many others of agricultural and veterinary significance, are now the subject of intensive genome sequencing and annotation. Draft genome sequences of the filarial worm Brugia malayi and two of the human schistosomes, Schistosoma japonicum and S. mansoni, are now available, among others. These genome data will provide the basis for a comprehensive understanding of the molecular mechanisms involved in helminth nutrition and metabolism, host-dependent development and maturation, immune evasion, and evolution. They are likely also to predict new potential vaccine candidates and drug targets. In this review, we present an overview of these efforts and emphasize the potential impact and importance of these new findings. PMID:19855829

  15. Research for genetic instability of human genome

    International Nuclear Information System (INIS)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M.; Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author)

  16. Identification of endogenous retroviral reading frames in the human genome

    Directory of Open Access Journals (Sweden)

    Wiuf Carsten

    2004-10-01

    Full Text Available Abstract Background Human endogenous retroviruses (HERVs comprise a large class of repetitive retroelements. Most HERVs are ancient and invaded our genome at least 25 million years ago, except for the evolutionary young HERV-K group. The far majority of the encoded genes are degenerate due to mutational decay and only a few non-HERV-K loci are known to retain intact reading frames. Additional intact HERV genes may exist, since retroviral reading frames have not been systematically annotated on a genome-wide scale. Results By clustering of hits from multiple BLAST searches using known retroviral sequences we have mapped 1.1% of the human genome as retrovirus related. The coding potential of all identified HERV regions were analyzed by annotating viral open reading frames (vORFs and we report 7836 loci as verified by protein homology criteria. Among 59 intact or almost-intact viral polyproteins scattered around the human genome we have found 29 envelope genes including two novel gammaretroviral types. One encodes a protein similar to a recently discovered zebrafish retrovirus (ZFERV while another shows partial, C-terminal, homology to Syncytin (HERV-W/FRD. Conclusions This compilation of HERV sequences and their coding potential provide a useful tool for pursuing functional analysis such as RNA expression profiling and effects of viral proteins, which may, in turn, reveal a role for HERVs in human health and disease. All data are publicly available through a database at http://www.retrosearch.dk.

  17. About human genome Acerca del genoma humano

    Directory of Open Access Journals (Sweden)

    Mojica Tobias

    2000-12-01

    Full Text Available The sequence ofthe human genome, an undertaking ofadvanced countries, is nearly complete. In fact The Human Genome Project has around 85% ofthe genome sequenced 4 times on the average, with an accuracy of roughly 1 in 1000 nucleotides. Celera Genomics, on the other hand, has 99% of the sequence of one person, with an accuracy of slightly less than 1 in 100. The Human Genome project trives to produce a physical map for public consumption following a step by step strategy, in which the researcher sequences short DNA fragments belonging to Iarger fragments of known relative
    position. Celera Genomics wants to have very rapidly a physical map which can be quickly used to develop genetic tests and drugs, which can be later sold. We feel that the sequence ofthe human genome is something, which will widen the gap between advanced and backward countries.En este artículo se revisan los eventos, alrededor del secuenciamiento del genoma humano, que han llevado a tanta excitación en los medios noticiosos y académicos en meses recientes. Se explican las estrategias que han llevado a que tengamos dos borradores diferentes pero complementarios, la estrategia llevada a cabo con el dinero
    de los contribuyentes que consiste en establecer el orden de fragmentos grandes de DNA antes de ser secuenciados y la estrategia llevada a cabo con dineros aportados por la industria privada, con la intención de explotar gananciosamente el conocimiento derivado del genoma humano. El genoma humano a mediados del año 2000 es
    un borrador incompleto que cubre aliededor del 85% de la secuencia con una precisión de un error en 1000 y el 99% de la secuencia con una precisión menor de 1 en 100 nucleótidos, También se discuten algunas de las posibles avenidas

  18. A parts list for fungal cellulosomes revealed by comparative genomics

    Energy Technology Data Exchange (ETDEWEB)

    Haitjema, Charles H.; Gilmore, Sean P.; Henske, John K.; Solomon, Kevin V.; de Groot, Randall; Kuo, Alan; Mondo, Stephen J.; Salamov, Asaf A.; LaButti, Kurt; Zhao, Zhiying; Chiniquy, Jennifer; Barry, Kerrie; Brewer, Heather M.; Purvine, Samuel O.; Wright, Aaron T.; Hainaut, Matthieu; Boxma, Brigitte; van Alen, Theo; Hackstein, Johannes H. P.; Henrissat, Bernard; Baker, Scott E.; Grigoriev, Igor V.; O' Malley, Michelle A.

    2017-05-26

    Cellulosomes are large, multi-protein complexes that tether plant biomass degrading enzymes together for improved hydrolysis1. These complexes were first described in anaerobic bacteria where species specific dockerin domains mediate assembly of enzymes onto complementary cohesin motifs interspersed within non-catalytic protein scaffolds1. The versatile protein assembly mechanism conferred by the bacterial cohesin-dockerin interaction is now a standard design principle for synthetic protein-scale pathways2,3. For decades, analogous structures have been reported in the early branching anaerobic fungi, which are known to assemble by sequence divergent non-catalytic dockerin domains (NCDD)4. However, the enzyme components, modular assembly mechanism, and functional role of fungal cellulosomes remain unknown5,6. Here, we describe the comprehensive set of proteins critical to fungal cellulosome assembly, including novel, conserved scaffolding proteins unique to the Neocallimastigomycota. High quality genomes of the anaerobic fungi Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis were assembled with long-read, single molecule technology to overcome their repeat-richness and extremely low GC content. Genomic analysis coupled with proteomic validation revealed an average 320 NCDD-containing proteins per fungal strain that were overwhelmingly carbohydrate active enzymes (CAZymes), with 95 large fungal scaffoldins identified across 4 genera that contain a conserved amino acid sequence repeat that binds to NCDDs. Fungal dockerin and scaffoldin domains have no similarity to their bacterial counterparts, yet several catalytic domains originated via horizontal gene transfer with gut bacteria. Though many catalytic domains are shared with bacteria, the biocatalytic activity of anaerobic fungi is expanded by the inclusion of GH3, GH6, and GH45 enzymes in the enzyme complexes. Collectively, these findings suggest that the fungal cellulosome is an evolutionarily

  19. Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.

    Directory of Open Access Journals (Sweden)

    Gopala Krishnan S

    Full Text Available BACKGROUND: Rice is a major source of human food with a predominantly Asian production base. Domestication involved selection of traits that are desirable for agriculture and to human consumers. Wild relatives of crop plants are a source of useful variation which is of immense value for crop improvement. Australian wild rices have been isolated from the impacts of domestication in Asia and represents a source of novel diversity for global rice improvement. Oryza rufipogon is a perennial wild progenitor of cultivated rice. Oryza meridionalis is a related annual species in Australia. RESULTS: We have examined the sequence of the genomes of AA genome wild rices from Australia that are close relatives of cultivated rice through whole genome re-sequencing. Assembly of the resequencing data to the O. sativa ssp. japonica cv. Nipponbare shows that Australian wild rices possess 2.5 times more single nucleotide polymorphisms than in the Asian wild rice and cultivated O. sativa ssp. indica. Analysis of the genome of domesticated rice reveals regions of low diversity that show very little variation (polymorphism deserts. Both the perennial and annual wild rice from Australia show a high degree of conservation of sequence with that found in cultivated rice in the same 4.58 Mbp region on chromosome 5, which suggests that some of the 'polymorphism deserts' in this and other parts of the rice genome may have originated prior to domestication due to natural selection. CONCLUSIONS: Analysis of genes in the 'polymorphism deserts' indicates that this selection may have been due to biotic or abiotic stress in the environment of early rice relatives. Despite having closely related sequences in these genome regions, the Australian wild populations represent an invaluable source of diversity supporting rice food security.

  20. Australian wild rice reveals pre-domestication origin of polymorphism deserts in rice genome.

    Science.gov (United States)

    Krishnan S, Gopala; Waters, Daniel L E; Henry, Robert J

    2014-01-01

    Rice is a major source of human food with a predominantly Asian production base. Domestication involved selection of traits that are desirable for agriculture and to human consumers. Wild relatives of crop plants are a source of useful variation which is of immense value for crop improvement. Australian wild rices have been isolated from the impacts of domestication in Asia and represents a source of novel diversity for global rice improvement. Oryza rufipogon is a perennial wild progenitor of cultivated rice. Oryza meridionalis is a related annual species in Australia. We have examined the sequence of the genomes of AA genome wild rices from Australia that are close relatives of cultivated rice through whole genome re-sequencing. Assembly of the resequencing data to the O. sativa ssp. japonica cv. Nipponbare shows that Australian wild rices possess 2.5 times more single nucleotide polymorphisms than in the Asian wild rice and cultivated O. sativa ssp. indica. Analysis of the genome of domesticated rice reveals regions of low diversity that show very little variation (polymorphism deserts). Both the perennial and annual wild rice from Australia show a high degree of conservation of sequence with that found in cultivated rice in the same 4.58 Mbp region on chromosome 5, which suggests that some of the 'polymorphism deserts' in this and other parts of the rice genome may have originated prior to domestication due to natural selection. Analysis of genes in the 'polymorphism deserts' indicates that this selection may have been due to biotic or abiotic stress in the environment of early rice relatives. Despite having closely related sequences in these genome regions, the Australian wild populations represent an invaluable source of diversity supporting rice food security.

  1. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential

    Directory of Open Access Journals (Sweden)

    Siragusa Gregory R

    2011-06-01

    Full Text Available Abstract Background Because biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context, we sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricultural and human pathogen. Results Phage whole-genome tetra-nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. Comparisons of our phage genomes to 26 others revealed three shared COGs; of particular interest within this core genome was an endolysin (PF01520, an N-acetylmuramoyl-L-alanine amidase and a holin (PF04531. Comparative analyses of the evolutionary history and genomic context of these common phage proteins revealed two important results: 1 strongly significant host-specific sequence variation within the endolysin, and 2 a protein domain architecture apparently unique to our phage genomes in which the endolysin is located upstream of its associated holin. Endolysin sequences from our phages were one of two very distinct genotypes distinguished by variability within the putative enzymatically-active domain. The shared or core genome was comprised of genes with multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam families, including the holin genes, which were nearly identical. Conclusions Significant genomic diversity exists even among closely-related bacteriophages. Holins and endolysins represent conserved functions across divergent phage genomes and, as we demonstrate here, endolysins can have significant variability and host-specificity even among closely-related genomes. Endolysins in our phage genomes may be subject to different selective pressures than the rest of the genome. These findings may have important implications for potential biotechnological applications of phage gene products.

  2. Human genome-microbiome interaction: metagenomics frontiers for the aetiopathology of autoimmune diseases.

    Science.gov (United States)

    Gundogdu, Aycan; Nalbantoglu, Ufuk

    2017-04-01

    A short while ago, the human genome and microbiome were analysed simultaneously for the first time as a multi-omic approach. The analyses of heterogeneous population cohorts showed that microbiome components were associated with human genome variations. In-depth analysis of these results reveals that the majority of those relationships are between immune pathways and autoimmune disease-associated microbiome components. Thus, it can be hypothesized that autoimmunity may be associated with homeostatic disequilibrium of the human-microbiome interactome. Further analysis of human genome-human microbiome relationships in disease contexts with tailored systems biology approaches may yield insights into disease pathogenesis and prognosis.

  3. Diverse circovirus-like genome architectures revealed by environmental metagenomics.

    Science.gov (United States)

    Rosario, Karyna; Duffy, Siobain; Breitbart, Mya

    2009-10-01

    Single-stranded DNA (ssDNA) viruses with circular genomes are the smallest viruses known to infect eukaryotes. The present study identified 10 novel genomes similar to ssDNA circoviruses through data-mining of public viral metagenomes. The metagenomic libraries included samples from reclaimed water and three different marine environments (Chesapeake Bay, British Columbia coastal waters and Sargasso Sea). All the genomes have similarities to the replication (Rep) protein of circoviruses; however, only half have genomic features consistent with known circoviruses. Some of the genomes exhibit a mixture of genomic features associated with different families of ssDNA viruses (i.e. circoviruses, geminiviruses and parvoviruses). Unique genome architectures and phylogenetic analysis of the Rep protein suggest that these viruses belong to novel genera and/or families. Investigating the complex community of ssDNA viruses in the environment can lead to the discovery of divergent species and help elucidate evolutionary links between ssDNA viruses.

  4. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate.

    Directory of Open Access Journals (Sweden)

    Benjamin Georgi

    2014-03-01

    Full Text Available Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders.

  5. Genomic View of Bipolar Disorder Revealed by Whole Genome Sequencing in a Genetic Isolate

    Science.gov (United States)

    Georgi, Benjamin; Craig, David; Kember, Rachel L.; Liu, Wencheng; Lindquist, Ingrid; Nasser, Sara; Brown, Christopher; Egeland, Janice A.; Paul, Steven M.; Bućan, Maja

    2014-01-01

    Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders. PMID:24625924

  6. An overview of the human genome project

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.

    1994-01-01

    The human genome project is one of the most ambitious scientific projects to date, with the ultimate goal being a nucleotide sequence for all four billion bases of human DNA. In the process of determining the nucleotide sequence for each base, the location, function, and regulatory regions from the estimated 100,000 human genes will be identified. The genome project itself relies upon maps of the human genetic code derived from several different levels of resolution. Genetic linkage analysis provides a low resolution genome map. The information for genetic linkage maps is derived from the analysis of chromosome specific markers such as Sequence Tagged Sites (STSs), Variable Number of Tandem Repeats (VNTRs) or other polymorphic (highly informative) loci in a number of different-families. Using this information the location of an unknown disease gene can be limited to a region comprised of one million base pairs of DNA or less. After this point, one must construct or have access to a physical map of the region of interest. Physical mapping involves the construction of an ordered overlapping (contiguous) set of recombinant DNA clones. These clones may be derived from a number of different vectors including cosmids, Bacterial Artificial Chromosomes (BACs), P1 derived Artificial Chromosomes (PACs), somatic cell hybrids, or Yeast Artificial Chromosomes (YACs). The ultimate goal for physical mapping is to establish a completely overlapping (contiguous) set of clones for the entire genome. After a gene or region of interest has been localized using physical mapping the nucleotide sequence is determined. The overlap between genetic mapping, physical mapping and DNA sequencing has proven to be a powerful tool for the isolation of disease genes through positional cloning.

  7. Annotating the human genome with Disease Ontology

    Science.gov (United States)

    Osborne, John D; Flatow, Jared; Holko, Michelle; Lin, Simon M; Kibbe, Warren A; Zhu, Lihua (Julie); Danila, Maria I; Feng, Gang; Chisholm, Rex L

    2009-01-01

    Background The human genome has been extensively annotated with Gene Ontology for biological functions, but minimally computationally annotated for diseases. Results We used the Unified Medical Language System (UMLS) MetaMap Transfer tool (MMTx) to discover gene-disease relationships from the GeneRIF database. We utilized a comprehensive subset of UMLS, which is disease-focused and structured as a directed acyclic graph (the Disease Ontology), to filter and interpret results from MMTx. The results were validated against the Homayouni gene collection using recall and precision measurements. We compared our results with the widely used Online Mendelian Inheritance in Man (OMIM) annotations. Conclusion The validation data set suggests a 91% recall rate and 97% precision rate of disease annotation using GeneRIF, in contrast with a 22% recall and 98% precision using OMIM. Our thesaurus-based approach allows for comparisons to be made between disease containing databases and allows for increased accuracy in disease identification through synonym matching. The much higher recall rate of our approach demonstrates that annotating human genome with Disease Ontology and GeneRIF for diseases dramatically increases the coverage of the disease annotation of human genome. PMID:19594883

  8. De novo assembly of a haplotype-resolved human genome.

    Science.gov (United States)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang; Huang, Shujia; Sun, Yuhui; Tong, Xin; Xie, Yinlong; Liu, Binghang; Yang, Hailong; Zheng, Hancheng; Li, Jian; Li, Bo; Wang, Yu; Yang, Fang; Sun, Peng; Liu, Siyang; Gao, Peng; Huang, Haodong; Sun, Jing; Chen, Dan; He, Guangzhu; Huang, Weihua; Huang, Zheng; Li, Yue; Tellier, Laurent C A M; Liu, Xiao; Feng, Qiang; Xu, Xun; Zhang, Xiuqing; Bolund, Lars; Krogh, Anders; Kristiansen, Karsten; Drmanac, Radoje; Drmanac, Snezana; Nielsen, Rasmus; Li, Songgang; Wang, Jian; Yang, Huanming; Li, Yingrui; Wong, Gane Ka-Shu; Wang, Jun

    2015-06-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.

  9. Linkage disequilibrium between STRPs and SNPs across the human genome.

    Science.gov (United States)

    Payseur, Bret A; Place, Michael; Weber, James L

    2008-05-01

    Patterns of linkage disequilibrium (LD) reveal the action of evolutionary processes and provide crucial information for association mapping of disease genes. Although recent studies have described the landscape of LD among single nucleotide polymorphisms (SNPs) from across the human genome, associations involving other classes of molecular variation remain poorly understood. In addition to recombination and population history, mutation rate and process are expected to shape LD. To test this idea, we measured associations between short-tandem-repeat polymorphisms (STRPs), which can mutate rapidly and recurrently, and SNPs in 721 regions across the human genome. We directly compared STRP-SNP LD with SNP-SNP LD from the same genomic regions in the human HapMap populations. The intensity of STRP-SNP LD, measured by the average of D', was reduced, consistent with the action of recurrent mutation. Nevertheless, a higher fraction of STRP-SNP pairs than SNP-SNP pairs showed significant LD, on both short (up to 50 kb) and long (cM) scales. These results reveal the substantial effects of mutational processes on LD at STRPs and provide important measures of the potential of STRPs for association mapping of disease genes.

  10. Supplementary Material for: Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA; Vos, M. de; Louw, GE; Merwe, RG van der; Dippenaar, A.; Streicher, EM; Abdallah, AM; Sampson, SL; Victor, TC; Dolby, T.; Simpson, JA; Helden, PD van; Warren, RM; Pain, Arnab

    2015-01-01

    Abstract Background Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug

  11. Symbiodinium genomes reveal adaptive evolution of functions related to symbiosis

    KAUST Repository

    Liu, Huanle; Stephens, Timothy G.; Gonzá lez-Pech, Raú l; Beltran, Victor H.; Lapeyre, Bruno; Bongaerts, Pim; Cooke, Ira; Bourne, David G.; Forê t, Sylvain; Miller, David John; van Oppen, Madeleine J. H.; Voolstra, Christian R.; Ragan, Mark A.; Chan, Cheong Xin

    2017-01-01

    Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world's coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp), previously sequenced as strain CCMP2468, to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identified extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding Symbiodinium biology and the coral-algal symbiosis.

  12. Symbiodinium genomes reveal adaptive evolution of functions related to symbiosis

    KAUST Repository

    Liu, Huanle

    2017-10-06

    Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world\\'s coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp), previously sequenced as strain CCMP2468, to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identified extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding Symbiodinium biology and the coral-algal symbiosis.

  13. Genome-wide survey in African Americans demonstrates potential epistasis of fitness in the human genome.

    Science.gov (United States)

    Wang, Heming; Choi, Yoonha; Tayo, Bamidele; Wang, Xuefeng; Morris, Nathan; Zhang, Xiang; Broeckel, Uli; Hanis, Craig; Kardia, Sharon; Redline, Susan; Cooper, Richard S; Tang, Hua; Zhu, Xiaofeng

    2017-02-01

    The role played by epistasis between alleles at unlinked loci in shaping population fitness has been debated for many years and the existing evidence has been mainly accumulated from model organisms. In model organisms, fitness epistasis can be systematically inferred by detecting nonindependence of genotypic values between loci in a population and confirmed through examining the number of offspring produced in two-locus genotype groups. No systematic study has been conducted to detect epistasis of fitness in humans owing to experimental constraints. In this study, we developed a novel method to detect fitness epistasis by testing the correlation between local ancestries on different chromosomes in an admixed population. We inferred local ancestry across the genome in 16,252 unrelated African Americans and systematically examined the pairwise correlations between the genomic regions on different chromosomes. Our analysis revealed a pair of genomic regions on chromosomes 4 and 6 that show significant local ancestry correlation (P-value = 4.01 × 10 -8 ) that can be potentially attributed to fitness epistasis. However, we also observed substantial local ancestry correlation that cannot be explained by systemic ancestry inference bias. To our knowledge, this study is the first to systematically examine evidence of fitness epistasis across the human genome. © 2016 WILEY PERIODICALS, INC.

  14. The genome of Tetranychus urticae reveals herbivorous pest adaptations

    NARCIS (Netherlands)

    Grbić, M.; Van Leeuwen, T.; Clark, R.M.; Rombauts, S.; Grbić, V.; Osborne, E.J.; Dermauw, W.; Phuong, C.T.N.; Ortego, F.; Hernández-Crespo, P.; Diaz, I.; Martinez, M.; Navajas, M.; Sucena, E.; Magalhães, S.; Nagy, L.; Pace, R.M.; Djuranović, S.; Smagghe, G.; Iga, M.; Christiaens, O.; Veenstra, J.A.; Ewer, J.; Villalobos, R.M.; Hutter, J.L.; Hudson, S.D.; Velez, M.; Yi, S.V.; Zeng, J.; Pires-dasilva, A.; Roch, F.; Cazaux, M.; Navarro, M.; Zhurov, V.; Acevedo, G.; Bjelica, A.; Fawcett, J.A.; Bonnet, E.; Martens, C.; Baele, G.; Wissler, L.; Sanchez-Rodriguez, A.; Tirry, L.; Blais, C.; Demeestere, K.; Henz, S.R.; Gregory, T.R.; Mathieu, J.; Verdon, L.; Farinelli, L.; Schmutz, J.; Lindquist, E.; Feyereisen, R.; Van de Peer, Y.

    2011-01-01

    The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T.

  15. The Capsaspora genome reveals a complex unicellular prehistory of animals.

    Science.gov (United States)

    Suga, Hiroshi; Chen, Zehua; de Mendoza, Alex; Sebé-Pedrós, Arnau; Brown, Matthew W; Kramer, Eric; Carr, Martin; Kerner, Pierre; Vervoort, Michel; Sánchez-Pons, Núria; Torruella, Guifré; Derelle, Romain; Manning, Gerard; Lang, B Franz; Russ, Carsten; Haas, Brian J; Roger, Andrew J; Nusbaum, Chad; Ruiz-Trillo, Iñaki

    2013-01-01

    To reconstruct the evolutionary origin of multicellular animals from their unicellular ancestors, the genome sequences of diverse unicellular relatives are essential. However, only the genome of the choanoflagellate Monosiga brevicollis has been reported to date. Here we completely sequence the genome of the filasterean Capsaspora owczarzaki, the closest known unicellular relative of metazoans besides choanoflagellates. Analyses of this genome alter our understanding of the molecular complexity of metazoans' unicellular ancestors showing that they had a richer repertoire of proteins involved in cell adhesion and transcriptional regulation than previously inferred only with the choanoflagellate genome. Some of these proteins were secondarily lost in choanoflagellates. In contrast, most intercellular signalling systems controlling development evolved later concomitant with the emergence of the first metazoans. We propose that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans.

  16. Report on the Human Genome Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, I.; Cahill, G.; Cantor, C.; Caskey, T.; Dulbecco, R.; Engelhardt, D. L.; Hood, L.; Lerman, L. S.; Mendelsohn, M. L.; Sinsheimer, R. L.; Smith, T.; Soll, D.; Stormo, G.; White, R. L.

    1987-04-01

    The report urges DOE and the Nation to commit to a large. multi-year. multidisciplinary. technological undertaking to order and sequence the human genome. This effort will first require significant innovation in general capability to manipulate DNA. major new analytical methods for ordering and sequencing. theoretical developments in computer science and mathematical biology, and great expansions in our ability to store and manipulate the information and to interface it with other large and diverse genetic databases. The actual ordering and sequencing involves the coordinated processing of some 3 billion bases from a reference human genome. Science is poised on the rudimentary edge of being able to read and understand human genes. A concerted. broadly based. scientific effort to provide new methods of sufficient power and scale should transform this activity from an inefficient one-gene-at-a-time. single laboratory effort into a coordinated. worldwide. comprehensive reading of "the book of man". The effort will be extraordinary in scope and magnitude. but so will be the benefit to biological understanding. new technology and the diagnosis and treatment of human disease.

  17. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits.

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    2014-01-01

    Full Text Available Oleaginous microalgae are promising feedstock for biofuels, yet the genetic diversity, origin and evolution of oleaginous traits remain largely unknown. Here we present a detailed phylogenomic analysis of five oleaginous Nannochloropsis species (a total of six strains and one time-series transcriptome dataset for triacylglycerol (TAG synthesis on one representative strain. Despite small genome sizes, high coding potential and relative paucity of mobile elements, the genomes feature small cores of ca. 2,700 protein-coding genes and a large pan-genome of >38,000 genes. The six genomes share key oleaginous traits, such as the enrichment of selected lipid biosynthesis genes and certain glycoside hydrolase genes that potentially shift carbon flux from chrysolaminaran to TAG synthesis. The eleven type II diacylglycerol acyltransferase genes (DGAT-2 in every strain, each expressed during TAG synthesis, likely originated from three ancient genomes, including the secondary endosymbiosis host and the engulfed green and red algae. Horizontal gene transfers were inferred in most lipid synthesis nodes with expanded gene doses and many glycoside hydrolase genes. Thus multiple genome pooling and horizontal genetic exchange, together with selective inheritance of lipid synthesis genes and species-specific gene loss, have led to the enormous genetic apparatus for oleaginousness and the wide genomic divergence among present-day Nannochloropsis. These findings have important implications in the screening and genetic engineering of microalgae for biofuels.

  18. The Human Genome Project (HGP): dividends and challenges: a ...

    African Journals Online (AJOL)

    The Human Genome Project (HGP): dividends and challenges: a review. ... Genomic studies have given profound insights into the genetic organization of ... with it will be an essential part of modern medicine and biology for years to come.

  19. Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs

    Science.gov (United States)

    Green, Richard E; Braun, Edward L; Armstrong, Joel; Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Vandewege, Michael W; St John, John A; Capella-Gutiérrez, Salvador; Castoe, Todd A; Kern, Colin; Fujita, Matthew K; Opazo, Juan C; Jurka, Jerzy; Kojima, Kenji K; Caballero, Juan; Hubley, Robert M; Smit, Arian F; Platt, Roy N; Lavoie, Christine A; Ramakodi, Meganathan P; Finger, John W; Suh, Alexander; Isberg, Sally R; Miles, Lee; Chong, Amanda Y; Jaratlerdsiri, Weerachai; Gongora, Jaime; Moran, Christopher; Iriarte, Andrés; McCormack, John; Burgess, Shane C; Edwards, Scott V; Lyons, Eric; Williams, Christina; Breen, Matthew; Howard, Jason T; Gresham, Cathy R; Peterson, Daniel G; Schmitz, Jürgen; Pollock, David D; Haussler, David; Triplett, Eric W; Zhang, Guojie; Irie, Naoki; Jarvis, Erich D; Brochu, Christopher A; Schmidt, Carl J; McCarthy, Fiona M; Faircloth, Brant C; Hoffmann, Federico G; Glenn, Travis C; Gabaldón, Toni; Paten, Benedict; Ray, David A

    2015-01-01

    To provide context for the diversifications of archosaurs, the group that includes crocodilians, dinosaurs and birds, we generated draft genomes of three crocodilians, Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the relatively rapid evolution of bird genomes represents an autapomorphy within that clade. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these new data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs. PMID:25504731

  20. Comparative Genomics of Methanopyrus sp. SNP6 and KOL6 Revealing Genomic Regions of Plasticity Implicated in Extremely Thermophilic Profiles

    Directory of Open Access Journals (Sweden)

    Zhiliang Yu

    2017-07-01

    Full Text Available Methanopyrus spp. are usually isolated from harsh niches, such as high osmotic pressure and extreme temperature. However, the molecular mechanisms for their environmental adaption are poorly understood. Archaeal species is commonly considered as primitive organism. The evolutional placement of archaea is a fundamental and intriguing scientific question. We sequenced the genomes of Methanopyrus strains SNP6 and KOL6 isolated from the Atlantic and Iceland, respectively. Comparative genomic analysis revealed genetic diversity and instability implicated in niche adaption, including a number of transporter- and integrase/transposase-related genes. Pan-genome analysis also defined the gene pool of Methanopyrus spp., in addition of ~120-Kb genomic region of plasticity impacting cognate genomic architecture. We believe that Methanopyrus genomics could facilitate efficient investigation/recognition of archaeal phylogenetic diverse patterns, as well as improve understanding of biological roles and significance of these versatile microbes.

  1. Origins of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, Robert

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the US and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  2. Origins of the Human Genome Project

    Science.gov (United States)

    Cook-Deegan, Robert (Affiliation: Institute of Medicine, National Academy of Sciences)

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  3. Virtual Northern analysis of the human genome.

    Directory of Open Access Journals (Sweden)

    Evan H Hurowitz

    2007-05-01

    Full Text Available We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale.We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90% confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs tend to be longer or shorter than average; these functional classes were similar in both human and yeast.Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.

  4. Virtual Northern analysis of the human genome.

    Science.gov (United States)

    Hurowitz, Evan H; Drori, Iddo; Stodden, Victoria C; Donoho, David L; Brown, Patrick O

    2007-05-23

    We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA transcript lengths on a genome-wide scale. We used separation by gel electrophoresis followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at high (>90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases, we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes were similar in both human and yeast. Human transcript diversity is extensive and largely unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.

  5. The Human Genome Initiative of the Department of Energy

    Science.gov (United States)

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.

  6. Signatures of selection in tilapia revealed by whole genome resequencing.

    Science.gov (United States)

    Xia, Jun Hong; Bai, Zhiyi; Meng, Zining; Zhang, Yong; Wang, Le; Liu, Feng; Jing, Wu; Wan, Zi Yi; Li, Jiale; Lin, Haoran; Yue, Gen Hua

    2015-09-16

    Natural selection and selective breeding for genetic improvement have left detectable signatures within the genome of a species. Identification of selection signatures is important in evolutionary biology and for detecting genes that facilitate to accelerate genetic improvement. However, selection signatures, including artificial selection and natural selection, have only been identified at the whole genome level in several genetically improved fish species. Tilapia is one of the most important genetically improved fish species in the world. Using next-generation sequencing, we sequenced the genomes of 47 tilapia individuals. We identified a total of 1.43 million high-quality SNPs and found that the LD block sizes ranged from 10-100 kb in tilapia. We detected over a hundred putative selective sweep regions in each line of tilapia. Most selection signatures were located in non-coding regions of the tilapia genome. The Wnt signaling, gonadotropin-releasing hormone receptor and integrin signaling pathways were under positive selection in all improved tilapia lines. Our study provides a genome-wide map of genetic variation and selection footprints in tilapia, which could be important for genetic studies and accelerating genetic improvement of tilapia.

  7. The PCNA pseudogenes in the human genome

    Directory of Open Access Journals (Sweden)

    Stoimenov Ivaylo

    2012-02-01

    Full Text Available Abstract Background The proliferating cell nuclear antigen (PCNA is a key protein in the eukaryotic DNA replication and cell proliferation. Following the cloning and characterisation of the human PCNA gene, the question of the existence of pseudogenes in the human genome was raised. Findings In this short communication we summarise the existing information about the PCNA pseudogenes and critically assess their status. Conclusions We propose the existence of at least four valid PCNA pseudogenes, PCNAP1, PCNAP2, LOC392454 and LOC390102. We would like to recommend assignment of a name for LOC392454 as "proliferating cell nuclear antigen pseudogene 3" (alias PCNAP3 and a name for LOC390102 as "proliferating cell nuclear antigen pseudogene 4" (alias PCNAP4. We prompt for more critical evaluation of the existence of a PCNA pseudogene, designated as PCNAP.

  8. Comparative genomics of emerging human ehrlichiosis agents.

    Directory of Open Access Journals (Sweden)

    Julie C Dunning Hotopp

    2006-02-01

    Full Text Available Anaplasma (formerly Ehrlichia phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.

  9. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome

    DEFF Research Database (Denmark)

    Lewis, Nathan E; Liu, Xin; Li, Yuxiang

    2013-01-01

    stymied by the lack of a unifying genomic resource for CHO cells. Here we report a 2.4-Gb draft genome sequence of a female Chinese hamster, Cricetulus griseus, harboring 24,044 genes. We also resequenced and analyzed the genomes of six CHO cell lines from the CHO-K1, DG44 and CHO-S lineages...

  10. A set of BAC clones spanning the human genome.

    NARCIS (Netherlands)

    Krzywinski, M.; Bosdet, I.; Smailus, D.; Chiu, R.; Mathewson, C.; Wye, N.; Barber, S.; Brown-John, M.; Chan, S.; Chand, S.; Cloutier, A.; Girn, N.; Lee, D.; Masson, A.; Mayo, M.; Olson, T.; Pandoh, P.; Prabhu, A.L.; Schoenmakers, E.F.P.M.; Tsai, M.Y.; Albertson, D.; Lam, W.W.; Choy, C.O.; Osoegawa, K.; Zhao, S.; Jong, P.J. de; Schein, J.; Jones, S.; Marra, M.A.

    2004-01-01

    Using the human bacterial artificial chromosome (BAC) fingerprint-based physical map, genome sequence assembly and BAC end sequences, we have generated a fingerprint-validated set of 32 855 BAC clones spanning the human genome. The clone set provides coverage for at least 98% of the human

  11. The Human Genome Project: how do we protect Australians?

    Science.gov (United States)

    Stott Despoja, N

    It is the moon landing of the nineties: the ambitious Human Genome Project--identifying the up to 100,000 genes that make up human DNA and the sequences of the three billion base-pairs that comprise the human genome. However, unlike the moon landing, the effects of the genome project will have a fundamental impact on the way we see ourselves and each other.

  12. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute’s genomic medicine portfolio

    Science.gov (United States)

    Manolio, Teri A.

    2016-01-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual’s genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of “Genomic Medicine Meetings,” under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and diffficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI’s genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so. PMID:27612677

  13. Culture independent genomic comparisons reveal environmental adaptations for Altiarchaeales

    Directory of Open Access Journals (Sweden)

    Jordan T Bird

    2016-08-01

    Full Text Available The recently proposed candidatus order Altiarchaeales remains an uncultured archaeal lineage composed of genetically diverse, globally widespread organisms frequently observed in anoxic subsurface environments. In spite of 15 years of studies on the psychrophilic biofilm-producing Candidatus (Ca. Altiarchaeum hamiconexum and its close relatives, very little is known about the phylogenetic and functional diversity of the widespread free-living marine members of this taxon. From methanogenic sediments in the White Oak River Estuary, NC, we sequenced a single cell amplified genome (SAG, WOR_SCG_SM1, and used it to identify and refine two high-quality genomes from metagenomes, WOR_79 and WOR_86-2, from the same site in a different year. These three genomic reconstructions form a monophyletic group which also includes three previously published genomes from metagenomes from terrestrial springs and a SAG from Sakinaw Lake in a group previously designated as pMC2A384. A synapomorphic mutation in the Altiarchaeales tRNA synthetase β subunit, pheT, causes the protein to be encoded as two subunits at distant loci. Consistent with the terrestrial spring clades, our estuarine genomes contain a near-complete autotrophic metabolism, H2 or CO as potential electron donors, a reductive acetyl-CoA pathway for carbon fixation, and methylotroph-like NADP(H-dependent dehydrogenase. Phylogenies based on 16S rRNA genes and concatenated conserved proteins identify two distinct sub-clades of Altiarchaeales, Alti-1 populated by organisms from actively flowing springs, and Alti-2 which is more widespread, diverse, and not associated with visible mats. The core Alti-1 genome supports Alti-1 as adapted for the stream environment, with lipopolysaccharide production capacity, extracellular hami structures. The core Alti-2 genome members of this clade are free-living, with distinct mechanisms for energy maintenance, motility, osmoregulation, and sulfur redox reactions. These

  14. Genomic analysis reveals the molecular basis for capsule loss in the group B Streptococcus population.

    Directory of Open Access Journals (Sweden)

    Roberto Rosini

    Full Text Available The human and bovine bacterial pathogen Streptococcus agalactiae (Group B Streptococcus, GBS expresses a thick polysaccharide capsule that constitutes a major virulence factor and vaccine target. GBS can be classified into ten distinct serotypes differing in the chemical composition of their capsular polysaccharide. However, non-typeable strains that do not react with anti-capsular sera are frequently isolated from colonized and infected humans and cattle. To gain a comprehensive insight into the molecular basis for the loss of capsule expression in GBS, a collection of well-characterized non-typeable strains was investigated by genome sequencing. Genome based phylogenetic analysis extended to a wide population of sequenced strains confirmed the recently observed high clonality among GBS lineages mainly containing human strains, and revealed a much higher degree of diversity in the bovine population. Remarkably, non-typeable strains were equally distributed in all lineages. A number of distinct mutations in the cps operon were identified that were apparently responsible for inactivation of capsule synthesis. The most frequent genetic alterations were point mutations leading to stop codons in the cps genes, and the main target was found to be cpsE encoding the portal glycosyl transferase of capsule biosynthesis. Complementation of strains carrying missense mutations in cpsE with a wild-type gene restored capsule expression allowing the identification of amino acid residues essential for enzyme activity.

  15. Recurrent DNA inversion rearrangements in the human genome

    DEFF Research Database (Denmark)

    Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia

    2007-01-01

    Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome...... to human genomic variation is discussed........ In particular, we have identified intrachromosomal identical repeats that are located in reverse orientation, which may lead to chromosomal inversions. A bioinformatic workflow pathway to select appropriate regions for analysis was developed. Three such regions overlapping with known human genes, located...

  16. Infectious diseases of marine molluscs and host responses as revealed by genomic tools

    Science.gov (United States)

    Ford, Susan E.

    2016-01-01

    More and more infectious diseases affect marine molluscs. Some diseases have impacted commercial species including MSX and Dermo of the eastern oyster, QPX of hard clams, withering syndrome of abalone and ostreid herpesvirus 1 (OsHV-1) infections of many molluscs. Although the exact transmission mechanisms are not well understood, human activities and associated environmental changes often correlate with increased disease prevalence. For instance, hatcheries and large-scale aquaculture create high host densities, which, along with increasing ocean temperature, might have contributed to OsHV-1 epizootics in scallops and oysters. A key to understanding linkages between the environment and disease is to understand how the environment affects the host immune system. Although we might be tempted to downplay the role of immunity in invertebrates, recent advances in genomics have provided insights into host and parasite genomes and revealed surprisingly sophisticated innate immune systems in molluscs. All major innate immune pathways are found in molluscs with many immune receptors, regulators and effectors expanded. The expanded gene families provide great diversity and complexity in innate immune response, which may be key to mollusc's defence against diverse pathogens in the absence of adaptive immunity. Further advances in host and parasite genomics should improve our understanding of genetic variation in parasite virulence and host disease resistance. PMID:26880838

  17. Genomic Variants Revealed by Invariably Missing Genotypes in Nelore Cattle.

    Directory of Open Access Journals (Sweden)

    Joaquim Manoel da Silva

    Full Text Available High density genotyping panels have been used in a wide range of applications. From population genetics to genome-wide association studies, this technology still offers the lowest cost and the most consistent solution for generating SNP data. However, in spite of the application, part of the generated data is always discarded from final datasets based on quality control criteria used to remove unreliable markers. Some discarded data consists of markers that failed to generate genotypes, labeled as missing genotypes. A subset of missing genotypes that occur in the whole population under study may be caused by technical issues but can also be explained by the presence of genomic variations that are in the vicinity of the assayed SNP and that prevent genotyping probes from annealing. The latter case may contain relevant information because these missing genotypes might be used to identify population-specific genomic variants. In order to assess which case is more prevalent, we used Illumina HD Bovine chip genotypes from 1,709 Nelore (Bos indicus samples. We found 3,200 missing genotypes among the whole population. NGS re-sequencing data from 8 sires were used to verify the presence of genomic variations within their flanking regions in 81.56% of these missing genotypes. Furthermore, we discovered 3,300 novel SNPs/Indels, 31% of which are located in genes that may affect traits of importance for the genetic improvement of cattle production.

  18. Chimpanzee genomic diversity reveals ancient admixture with bonobos

    DEFF Research Database (Denmark)

    de Manuel, Marc; Kuhlwilm, Martin; Frandsen, Peter

    2016-01-01

    Our closest living relatives, chimpanzees and bonobos, have a complex demographic history. We analyzed the high-coverage whole genomes of 75 wild-born chimpanzees and bonobos from 10 countries in Africa. We found that chimpanzee population substructure makes genetic information a good predictor...

  19. Genomic Perturbations Reveal Distinct Regulatory Networks in Intrahepatic Cholangiocarcinoma

    DEFF Research Database (Denmark)

    Nepal, Chirag; O'Rourke, Colm J; Oliveira, Douglas Vnp

    2018-01-01

    Intrahepatic cholangiocarcinoma (iCCA) remains a highly heterogeneous malignancy that has eluded effective patient stratification to date. The extent to which such heterogeneity can be influenced by individual driver mutations remains to be evaluated. Here, we analyzed genomic (whole-exome sequen...

  20. Human Rhinovirus B and C Genomes from Rural Coastal Kenya

    NARCIS (Netherlands)

    Agoti, Charles N.; Kiyuka, Patience K.; Kamau, Everlyn; Munywoki, Patrick K.; Bett, Anne; van der Hoek, Lia; Kellam, Paul; Nokes, D. James; Cotten, Matthew

    2016-01-01

    Primer-independent agnostic deep sequencing was used to generate three human rhinovirus (HRV) B genomes and one HRV C genome from samples collected in a household respiratory survey in rural coastal Kenya. The study provides the first rhinovirus genomes from Kenya and will help improve the

  1. Deep sequencing of foot-and-mouth disease virus reveals RNA sequences involved in genome packaging.

    Science.gov (United States)

    Logan, Grace; Newman, Joseph; Wright, Caroline F; Lasecka-Dykes, Lidia; Haydon, Daniel T; Cottam, Eleanor M; Tuthill, Tobias J

    2017-10-18

    Non-enveloped viruses protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. Packaging and capsid assembly in RNA viruses can involve interactions between capsid proteins and secondary structures in the viral genome as exemplified by the RNA bacteriophage MS2 and as proposed for other RNA viruses of plants, animals and human. In the picornavirus family of non-enveloped RNA viruses, the requirements for genome packaging remain poorly understood. Here we show a novel and simple approach to identify predicted RNA secondary structures involved in genome packaging in the picornavirus foot-and-mouth disease virus (FMDV). By interrogating deep sequencing data generated from both packaged and unpackaged populations of RNA we have determined multiple regions of the genome with constrained variation in the packaged population. Predicted secondary structures of these regions revealed stem loops with conservation of structure and a common motif at the loop. Disruption of these features resulted in attenuation of virus growth in cell culture due to a reduction in assembly of mature virions. This study provides evidence for the involvement of predicted RNA structures in picornavirus packaging and offers a readily transferable methodology for identifying packaging requirements in many other viruses. Importance In order to transmit their genetic material to a new host, non-enveloped viruses must protect their genomes by packaging them into an outer shell or capsid of virus-encoded proteins. For many non-enveloped RNA viruses the requirements for this critical part of the viral life cycle remain poorly understood. We have identified RNA sequences involved in genome packaging of the picornavirus foot-and-mouth disease virus. This virus causes an economically devastating disease of livestock affecting both the developed and developing world. The experimental methods developed to carry out this work are novel, simple and transferable to the

  2. Human genetics and genomics a decade after the release of the draft sequence of the human genome

    Science.gov (United States)

    2011-01-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605

  3. Genomic stability of adipogenic human adenovirus 36.

    Science.gov (United States)

    Nam, J-H; Na, H-N; Atkinson, R L; Dhurandhar, N V

    2014-02-01

    Human adenovirus Ad36 increases adiposity in several animal models, including rodents and non-human primates. Importantly, Ad36 is associated with human obesity, which has prompted research to understand its epidemiology and to develop a vaccine to prevent a subgroup of obesity. For this purpose, understanding the genomic stability of Ad36 in vivo and in vitro infections is critical. Here, we examined whether in vitro cell passaging over a 14-year period introduced any genetic variation in Ad36. We sequenced the whole genome of Ad36-which was plaque purified in 1998 from the original strain obtained from American Type Culture Collection, and passaged approximately 12 times over the past 14 years (Ad36-2012). This DNA sequence was compared with a previously published sequence of Ad36 likely obtained from the same source (Ad36-1988). Compared with Ad36-1988, only two nucleotides were altered in Ad36-2012: a T insertion at nucleotide 1862, which may induce early termination of the E1B viral protein, and a T➝C transition at nucleotide 26 136. Virus with the T insertion (designated Ad36-2012-T6) was mixed with wild-type virus lacking the T insertion (designated Ad36-2012-T5) in the viral stock. The transition at nucleotide 26 136 does not change the encoded amino acid (aspartic acid) in the pVIII viral protein. The rate of genetic variation in Ad36 is ∼2.37 × 10(-6) mutations/nucleotide/passage. Of particular importance, there were no mutations in the E4orf1 gene, the critical gene for producing obesity. This very-low-variation rate should reduce concerns about genetic variability when developing Ad36 vaccines or developing assays for detecting Ad36 infection in populations.

  4. Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer.

    Directory of Open Access Journals (Sweden)

    Shinya Akatsuka

    Full Text Available Iron overload has been associated with carcinogenesis in humans. Intraperitoneal administration of ferric nitrilotriacetate initiates a Fenton reaction in renal proximal tubules of rodents that ultimately leads to a high incidence of renal cell carcinoma (RCC after repeated treatments. We performed high-resolution microarray comparative genomic hybridization to identify characteristics in the genomic profiles of this oxidative stress-induced rat RCCs. The results revealed extensive large-scale genomic alterations with a preference for deletions. Deletions and amplifications were numerous and sometimes fragmented, demonstrating that a Fenton reaction is a cause of such genomic alterations in vivo. Frequency plotting indicated that two of the most commonly altered loci corresponded to a Cdkn2a/2b deletion and a Met amplification. Tumor sizes were proportionally associated with Met expression and/or amplification, and clustering analysis confirmed our results. Furthermore, we developed a procedure to compare whole genomic patterns of the copy number alterations among different species based on chromosomal syntenic relationship. Patterns of the rat RCCs showed the strongest similarity to the human RCCs among five types of human cancers, followed by human malignant mesothelioma, an iron overload-associated cancer. Therefore, an iron-dependent Fenton chemical reaction causes large-scale genomic alterations during carcinogenesis, which may result in distinct genomic profiles. Based on the characteristics of extensive genome alterations in human cancer, our results suggest that this chemical reaction may play a major role during human carcinogenesis.

  5. Human genome-microbiome interaction: metagenomics frontiers for the aetiopathology of autoimmune diseases

    Science.gov (United States)

    Nalbantoglu, Ufuk

    2017-01-01

    A short while ago, the human genome and microbiome were analysed simultaneously for the first time as a multi-omic approach. The analyses of heterogeneous population cohorts showed that microbiome components were associated with human genome variations. In-depth analysis of these results reveals that the majority of those relationships are between immune pathways and autoimmune disease-associated microbiome components. Thus, it can be hypothesized that autoimmunity may be associated with homeostatic disequilibrium of the human-microbiome interactome. Further analysis of human genome–human microbiome relationships in disease contexts with tailored systems biology approaches may yield insights into disease pathogenesis and prognosis. PMID:28785422

  6. Comparative genomic hybridizations reveal absence of large Streptomyces coelicolor genomic islands in Streptomyces lividans

    OpenAIRE

    Jayapal, Karthik P; Lian, Wei; Glod, Frank; Sherman, David H; Hu, Wei-Shou

    2007-01-01

    Abstract Background The genomes of Streptomyces coelicolor and Streptomyces lividans bear a considerable degree of synteny. While S. coelicolor is the model streptomycete for studying antibiotic synthesis and differentiation, S. lividans is almost exclusively considered as the preferred host, among actinomycetes, for cloning and expression of exogenous DNA. We used whole genome microarrays as a comparative genomics tool for identifying the subtle differences between these two chromosomes. Res...

  7. 75 FR 8374 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health...

  8. 77 FR 5035 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-02-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health...

  9. 78 FR 64222 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-10-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Review, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, 301...

  10. 77 FR 20646 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-04-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research.... Agenda: To review and evaluate grant applications. Place: National Human Genome Research Institute, 5635...

  11. 77 FR 58402 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-09-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research...: To review and evaluate grant applications. Place: National Human Genome Research Institute, 5635...

  12. 76 FR 65204 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-10-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome... Review Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane...

  13. 77 FR 12604 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-03-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. >Name of Committee: National Human Genome Research... review and evaluate contract proposals. Place: National Human Genome Reseach Institute, 5635 Fishers Lane...

  14. 78 FR 55752 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-09-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research.... Pozzatti, Ph.D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research...

  15. 78 FR 56905 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-09-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research....m. Agenda: To review and evaluate grant applications. Place: National Human Genome Research...

  16. 76 FR 28056 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Counselors, National Human Genome Research Institute. The meeting will be closed to the public as indicated... National Human Genome Research Institute, including consideration of personnel qualifications and...

  17. 76 FR 17930 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-03-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Review Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane...

  18. 77 FR 59933 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research....D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research Institute...

  19. 78 FR 107 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-01-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... evaluate grant applications. Place: National Human Genome Research Institute, 3rd Floor Conference Room....D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research Institute...

  20. 76 FR 58023 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-09-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial..., Scientific Review Officer, Office of Scientific Review, National Human Genome Research Institute, National...

  1. 77 FR 28888 - National Human Genome Research Institute Notice of Closed Meeting

    Science.gov (United States)

    2012-05-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial...: To review and evaluate grant applications. Place: National Human Genome Research Institute, 3635...

  2. 78 FR 70063 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-11-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Counselors, National Human Genome Research Institute. The meeting will be closed to the public as indicated... NATIONAL HUMAN GENOME RESEARCH INSTITUTE, including consideration of personnel qualifications and...

  3. 78 FR 9707 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-02-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076...

  4. 77 FR 71604 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-12-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special..., Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635...

  5. 76 FR 5390 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Place: National Human Genome Research Institute Special Emphasis... Officer, Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076...

  6. 75 FR 13558 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-03-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Counselors, National Human Genome Research Institute. The meeting will be closed to the public as indicated... National Human Genome Research Institute, including consideration of personnel qualifications and...

  7. 76 FR 29772 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-05-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... of Scientific Review, National Human Genome Research Institute, National Institutes of Health...

  8. Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs

    Czech Academy of Sciences Publication Activity Database

    Oborník, Miroslav; Kořený, Luděk

    2012-01-01

    Roč. 492, č. 7427 (2012), s. 59-65 ISSN 0028-0836 Institutional support: RVO:60077344 Keywords : GENE-TRANSFER * BIGELOWIELLA-NATANS * EUKARYOTIC GENOMES * GUILLARDIA-THETA * NUCLEUS * CHLORARACHNIOPHYTE * PROTEINS * SEQUENCE * ORIGIN * CRYPTOPHYTES Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 38.597, year: 2012 http://www.nature.com/nature/journal/v492/n7427/full/nature11681.html

  9. Genome-wide comparison of cowpox viruses reveals a new clade related to Variola virus.

    Directory of Open Access Journals (Sweden)

    Piotr Wojtek Dabrowski

    Full Text Available Zoonotic infections caused by several orthopoxviruses (OPV like monkeypox virus or vaccinia virus have a significant impact on human health. In Europe, the number of diagnosed infections with cowpox viruses (CPXV is increasing in animals as well as in humans. CPXV used to be enzootic in cattle; however, such infections were not being diagnosed over the last decades. Instead, individual cases of cowpox are being found in cats or exotic zoo animals that transmit the infection to humans. Both animals and humans reveal local exanthema on arms and legs or on the face. Although cowpox is generally regarded as a self-limiting disease, immunosuppressed patients can develop a lethal systemic disease resembling smallpox. To date, only limited information on the complex and, compared to other OPV, sparsely conserved CPXV genomes is available. Since CPXV displays the widest host range of all OPV known, it seems important to comprehend the genetic repertoire of CPXV which in turn may help elucidate specific mechanisms of CPXV pathogenesis and origin. Therefore, 22 genomes of independent CPXV strains from clinical cases, involving ten humans, four rats, two cats, two jaguarundis, one beaver, one elephant, one marah and one mongoose, were sequenced by using massive parallel pyrosequencing. The extensive phylogenetic analysis showed that the CPXV strains sequenced clearly cluster into several distinct clades, some of which are closely related to Vaccinia viruses while others represent different clades in a CPXV cluster. Particularly one CPXV clade is more closely related to Camelpox virus, Taterapox virus and Variola virus than to any other known OPV. These results support and extend recent data from other groups who postulate that CPXV does not form a monophyletic clade and should be divided into multiple lineages.

  10. Prehistoric genomes reveal the genetic foundation and cost of horse domestication

    DEFF Research Database (Denmark)

    Schubert, Mikkel; Jáónsson, Hákon; Chang, Dan

    2014-01-01

    genetics alone. We therefore sequenced two complete horse genomes, predating domestication by thousands of years, to characterize the genetic footprint of domestication. These ancient genomes reveal predomestic population structure and a significant fraction of genetic variation shared with the domestic...... breeds but absent from Przewalski’s horses. We find positive selection on genes involved in various aspects of locomotion, physiology, and cognition. Finally, we show that modern horse genomes contain an excess of deleterious mutations, likely representing the genetic cost of domestication....

  11. Forces shaping the fastest evolving regions in the human genome

    DEFF Research Database (Denmark)

    Pollard, Katherine S; Salama, Sofie R; King, Bryan

    2006-01-01

    Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202...... genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements...... contributed to accelerated evolution of the fastest evolving elements in the human genome....

  12. Genomic Analysis of 15 Human Coronaviruses OC43 (HCoV-OC43s Circulating in France from 2001 to 2013 Reveals a High Intra-Specific Diversity with New Recombinant Genotypes

    Directory of Open Access Journals (Sweden)

    Nathalie Kin

    2015-05-01

    Full Text Available Human coronavirus OC43 (HCoV-OC43 is one of five currently circulating human coronaviruses responsible for respiratory infections. Like all coronaviruses, it is characterized by its genome’s high plasticity. The objectives of the current study were to detect genetically distinct genotypes and eventually recombinant genotypes in samples collected in Lower Normandy between 2001 and 2013. To this end, we sequenced complete nsp12, S, and N genes of 15 molecular isolates of HCoV-OC43 from clinical samples and compared them to available data from the USA, Belgium, and Hong-Kong. A new cluster E was invariably detected from nsp12, S, and N data while the analysis of nsp12 and N genes revealed the existence of new F and G clusters respectively. The association of these different clusters of genes in our specimens led to the description of thirteen genetically distinct genotypes, among which eight recombinant viruses were discovered. Identification of these recombinant viruses, together with temporal analysis and tMRCA estimation, provides important information for understanding the dynamics of the evolution of these epidemic coronaviruses.

  13. Genome Architecture and Its Roles in Human Copy Number Variation

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-12-01

    Full Text Available Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs, are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.

  14. The Human Genome Project: An Imperative for International Collaboration.

    Science.gov (United States)

    Allende, J. E.

    1989-01-01

    Discussed is the Human Genome Project which aims to decipher the totality of the human genetic information. The historical background, the objectives, international cooperation, ethical discussion, and the role of UNESCO are included. (KR)

  15. Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis

    DEFF Research Database (Denmark)

    Travis, Anthony J.; Kelly, Denise; Flint, Harry J

    2015-01-01

    We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183(T) (= DSM 16839(T) = NCIMB 14029(T)), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host...

  16. Child Development and Structural Variation in the Human Genome

    Science.gov (United States)

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  17. Widespread of horizontal gene transfer in the human genome.

    Science.gov (United States)

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-04-04

    A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. From the pair-wise alignments between human genome and 53 vertebrate genomes, 1,467 human genome regions (2.6 M bases) from all chromosomes were found to be more conserved with non-mammals than with most mammals. These human genome regions involve 642 known genes, which are enriched with ion binding. Compared to known horizontal gene transfer regions in the human genome, there were few overlapping regions, which indicated horizontal gene transfer is more common than we expected in the human genome. Horizontal gene transfer impacts hundreds of human genes and this study provided insight into potential mechanisms of HGT in the human genome.

  18. What does it mean to be genomically literate?: National Human Genome Research Institute Meeting Report.

    Science.gov (United States)

    Hurle, Belen; Citrin, Toby; Jenkins, Jean F; Kaphingst, Kimberly A; Lamb, Neil; Roseman, Jo Ellen; Bonham, Vence L

    2013-08-01

    Genomic discoveries will increasingly advance the science of medicine. Limited genomic literacy may adversely impact the public's understanding and use of the power of genetics and genomics in health care and public health. In November 2011, a meeting was held by the National Human Genome Research Institute to examine the challenge of achieving genomic literacy for the general public, from kindergarten to grade 12 to adult education. The role of the media in disseminating scientific messages and in perpetuating or reducing misconceptions was also discussed. Workshop participants agreed that genomic literacy will be achieved only through active engagement between genomics experts and the varied constituencies that comprise the public. This report summarizes the background, content, and outcomes from this meeting, including recommendations for a research agenda to inform decisions about how to advance genomic literacy in our society.

  19. Genomic Comparisons Reveal Microevolutionary Differences in Mycobacterium abscessus Subspecies

    Directory of Open Access Journals (Sweden)

    Joon L. Tan

    2017-10-01

    Full Text Available Mycobacterium abscessus, a rapid-growing non-tuberculous mycobacterium, has been the cause of sporadic and outbreak infections world-wide. The subspecies in M. abscessus complex (M. abscessus, M. massiliense, and M. bolletii are associated with different biologic and pathogenic characteristics and are known to be among the most frequently isolated opportunistic pathogens from clinical material. To date, the evolutionary forces that could have contributed to these biological and clinical differences are still unclear. We compared genome data from 243 M. abscessus strains downloaded from the NCBI ftp Refseq database to understand how the microevolutionary processes of homologous recombination and positive selection influenced the diversification of the M. abscessus complex at the subspecies level. The three subspecies are clearly separated in the Minimum Spanning Tree. Their MUMi-based genomic distances support the separation of M. massiliense and M. bolletii into two subspecies. Maximum Likelihood analysis through dN/dS (the ratio of number of non-synonymous substitutions per non-synonymous site, to the number of synonymous substitutions per synonymous site identified distinct genes in each subspecies that could have been affected by positive selection during evolution. The results of genome-wide alignment based on concatenated locally-collinear blocks suggest that (a recombination has affected the M. abscessus complex more than mutation and positive selection; (b recombination occurred more frequently in M. massiliense than in the other two subspecies; and (c the recombined segments in the three subspecies have come from different intra-species and inter-species origins. The results lead to the identification of possible gene sets that could have been responsible for the subspecies-specific features and suggest independent evolution among the three subspecies, with recombination playing a more significant role than positive selection in the

  20. Genomic Comparisons Reveal Microevolutionary Differences in Mycobacterium abscessus Subspecies

    Science.gov (United States)

    Tan, Joon L.; Ng, Kee P.; Ong, Chia S.; Ngeow, Yun F.

    2017-01-01

    Mycobacterium abscessus, a rapid-growing non-tuberculous mycobacterium, has been the cause of sporadic and outbreak infections world-wide. The subspecies in M. abscessus complex (M. abscessus, M. massiliense, and M. bolletii) are associated with different biologic and pathogenic characteristics and are known to be among the most frequently isolated opportunistic pathogens from clinical material. To date, the evolutionary forces that could have contributed to these biological and clinical differences are still unclear. We compared genome data from 243 M. abscessus strains downloaded from the NCBI ftp Refseq database to understand how the microevolutionary processes of homologous recombination and positive selection influenced the diversification of the M. abscessus complex at the subspecies level. The three subspecies are clearly separated in the Minimum Spanning Tree. Their MUMi-based genomic distances support the separation of M. massiliense and M. bolletii into two subspecies. Maximum Likelihood analysis through dN/dS (the ratio of number of non-synonymous substitutions per non-synonymous site, to the number of synonymous substitutions per synonymous site) identified distinct genes in each subspecies that could have been affected by positive selection during evolution. The results of genome-wide alignment based on concatenated locally-collinear blocks suggest that (a) recombination has affected the M. abscessus complex more than mutation and positive selection; (b) recombination occurred more frequently in M. massiliense than in the other two subspecies; and (c) the recombined segments in the three subspecies have come from different intra-species and inter-species origins. The results lead to the identification of possible gene sets that could have been responsible for the subspecies-specific features and suggest independent evolution among the three subspecies, with recombination playing a more significant role than positive selection in the diversification

  1. Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-09-01

    Full Text Available Abstract Background Dinoflagellates comprise an ecologically significant and diverse eukaryotic phylum that is sister to the phylum containing apicomplexan endoparasites. The mitochondrial genome of apicomplexans is uniquely reduced in gene content and size, encoding only three proteins and two ribosomal RNAs (rRNAs within a highly compacted 6 kb DNA. Dinoflagellate mitochondrial genomes have been comparatively poorly studied: limited available data suggest some similarities with apicomplexan mitochondrial genomes but an even more radical type of genomic organization. Here, we investigate structure, content and expression of dinoflagellate mitochondrial genomes. Results From two dinoflagellates, Crypthecodinium cohnii and Karlodinium micrum, we generated over 42 kb of mitochondrial genomic data that indicate a reduced gene content paralleling that of mitochondrial genomes in apicomplexans, i.e., only three protein-encoding genes and at least eight conserved components of the highly fragmented large and small subunit rRNAs. Unlike in apicomplexans, dinoflagellate mitochondrial genes occur in multiple copies, often as gene fragments, and in numerous genomic contexts. Analysis of cDNAs suggests several novel aspects of dinoflagellate mitochondrial gene expression. Polycistronic transcripts were found, standard start codons are absent, and oligoadenylation occurs upstream of stop codons, resulting in the absence of termination codons. Transcripts of at least one gene, cox3, are apparently trans-spliced to generate full-length mRNAs. RNA substitutional editing, a process previously identified for mRNAs in dinoflagellate mitochondria, is also implicated in rRNA expression. Conclusion The dinoflagellate mitochondrial genome shares the same gene complement and fragmentation of rRNA genes with its apicomplexan counterpart. However, it also exhibits several unique characteristics. Most notable are the expansion of gene copy numbers and their arrangements

  2. Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe.

    Science.gov (United States)

    Schuenemann, Verena J; Avanzi, Charlotte; Krause-Kyora, Ben; Seitz, Alexander; Herbig, Alexander; Inskip, Sarah; Bonazzi, Marion; Reiter, Ella; Urban, Christian; Dangvard Pedersen, Dorthe; Taylor, G Michael; Singh, Pushpendra; Stewart, Graham R; Velemínský, Petr; Likovsky, Jakub; Marcsik, Antónia; Molnár, Erika; Pálfi, György; Mariotti, Valentina; Riga, Alessandro; Belcastro, M Giovanna; Boldsen, Jesper L; Nebel, Almut; Mays, Simon; Donoghue, Helen D; Zakrzewski, Sonia; Benjak, Andrej; Nieselt, Kay; Cole, Stewart T; Krause, Johannes

    2018-05-01

    Studying ancient DNA allows us to retrace the evolutionary history of human pathogens, such as Mycobacterium leprae, the main causative agent of leprosy. Leprosy is one of the oldest recorded and most stigmatizing diseases in human history. The disease was prevalent in Europe until the 16th century and is still endemic in many countries with over 200,000 new cases reported annually. Previous worldwide studies on modern and European medieval M. leprae genomes revealed that they cluster into several distinct branches of which two were present in medieval Northwestern Europe. In this study, we analyzed 10 new medieval M. leprae genomes including the so far oldest M. leprae genome from one of the earliest known cases of leprosy in the United Kingdom-a skeleton from the Great Chesterford cemetery with a calibrated age of 415-545 C.E. This dataset provides a genetic time transect of M. leprae diversity in Europe over the past 1500 years. We find M. leprae strains from four distinct branches to be present in the Early Medieval Period, and strains from three different branches were detected within a single cemetery from the High Medieval Period. Altogether these findings suggest a higher genetic diversity of M. leprae strains in medieval Europe at various time points than previously assumed. The resulting more complex picture of the past phylogeography of leprosy in Europe impacts current phylogeographical models of M. leprae dissemination. It suggests alternative models for the past spread of leprosy such as a wide spread prevalence of strains from different branches in Eurasia already in Antiquity or maybe even an origin in Western Eurasia. Furthermore, these results highlight how studying ancient M. leprae strains improves understanding the history of leprosy worldwide.

  3. Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe.

    Directory of Open Access Journals (Sweden)

    Verena J Schuenemann

    2018-05-01

    Full Text Available Studying ancient DNA allows us to retrace the evolutionary history of human pathogens, such as Mycobacterium leprae, the main causative agent of leprosy. Leprosy is one of the oldest recorded and most stigmatizing diseases in human history. The disease was prevalent in Europe until the 16th century and is still endemic in many countries with over 200,000 new cases reported annually. Previous worldwide studies on modern and European medieval M. leprae genomes revealed that they cluster into several distinct branches of which two were present in medieval Northwestern Europe. In this study, we analyzed 10 new medieval M. leprae genomes including the so far oldest M. leprae genome from one of the earliest known cases of leprosy in the United Kingdom-a skeleton from the Great Chesterford cemetery with a calibrated age of 415-545 C.E. This dataset provides a genetic time transect of M. leprae diversity in Europe over the past 1500 years. We find M. leprae strains from four distinct branches to be present in the Early Medieval Period, and strains from three different branches were detected within a single cemetery from the High Medieval Period. Altogether these findings suggest a higher genetic diversity of M. leprae strains in medieval Europe at various time points than previously assumed. The resulting more complex picture of the past phylogeography of leprosy in Europe impacts current phylogeographical models of M. leprae dissemination. It suggests alternative models for the past spread of leprosy such as a wide spread prevalence of strains from different branches in Eurasia already in Antiquity or maybe even an origin in Western Eurasia. Furthermore, these results highlight how studying ancient M. leprae strains improves understanding the history of leprosy worldwide.

  4. Dynamic association of NUP98 with the human genome.

    Directory of Open Access Journals (Sweden)

    Yun Liang

    Full Text Available Faithful execution of developmental gene expression programs occurs at multiple levels and involves many different components such as transcription factors, histone-modification enzymes, and mRNA processing proteins. Recent evidence suggests that nucleoporins, well known components that control nucleo-cytoplasmic trafficking, have wide-ranging functions in developmental gene regulation that potentially extend beyond their role in nuclear transport. Whether the unexpected role of nuclear pore proteins in transcription regulation, which initially has been described in fungi and flies, also applies to human cells is unknown. Here we show at a genome-wide level that the nuclear pore protein NUP98 associates with developmentally regulated genes active during human embryonic stem cell differentiation. Overexpression of a dominant negative fragment of NUP98 levels decreases expression levels of NUP98-bound genes. In addition, we identify two modes of developmental gene regulation by NUP98 that are differentiated by the spatial localization of NUP98 target genes. Genes in the initial stage of developmental induction can associate with NUP98 that is embedded in the nuclear pores at the nuclear periphery. Alternatively, genes that are highly induced can interact with NUP98 in the nuclear interior, away from the nuclear pores. This work demonstrates for the first time that NUP98 dynamically associates with the human genome during differentiation, revealing a role of a nuclear pore protein in regulating developmental gene expression programs.

  5. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Ulrich, Luke E.; Lupa, Boguslaw; Susanti, Dwi; Porat, Iris; Hooper, Sean D.; Lykidis, Athanasios; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla; Saunders, Elizabeth; Han, Cliff; Land, Miriam; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William B.; Woese, Carl; Bristow, James; Kyrpides, Nikos

    2009-05-01

    Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  6. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities

    DEFF Research Database (Denmark)

    Aylward, Frank O.; McDonald, Bradon R.; Adams, Sandra M.

    2013-01-01

    to the genus Sphingobium. Our pan-genomic analysis of sphingomonads reveals numerous species-specific open reading frames (ORFs) but few signatures of genus-specific cores. The organization and coding potential of the sphingomonad genomes appear to be highly variable, and plasmid-mediated gene transfer...... and chromosome-plasmid recombination, together with prophage- and transposon-mediated rearrangements, appear to play prominent roles in the genome evolution of this group. We find that many of the sphingomonad genomes encode numerous oxygenases and glycoside hydrolases, which are likely responsible...... a basis for understanding the ecological strategies employed by sphingomonads and their role in environmental nutrient cycling....

  7. Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum.

    Science.gov (United States)

    Rao, Soumya; Nandineni, Madhusudan R

    2017-01-01

    Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens.

  8. De novo assembly and phasing of a Korean human genome.

    Science.gov (United States)

    Seo, Jeong-Sun; Rhie, Arang; Kim, Junsoo; Lee, Sangjin; Sohn, Min-Hwan; Kim, Chang-Uk; Hastie, Alex; Cao, Han; Yun, Ji-Young; Kim, Jihye; Kuk, Junho; Park, Gun Hwa; Kim, Juhyeok; Ryu, Hanna; Kim, Jongbum; Roh, Mira; Baek, Jeonghun; Hunkapiller, Michael W; Korlach, Jonas; Shin, Jong-Yeon; Kim, Changhoon

    2016-10-13

    Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 (ref. 1) using single-molecule real-time sequencing, next-generation mapping, microfluidics-based linked reads, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9 Mb and a scaffold N50 size of 44.8 Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03 Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6 Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of

  9. The gene order on Human Chromosome 15 and Chicken Chromosome 10 reveal multiple inter- and intrachromosomal rearrangements

    NARCIS (Netherlands)

    Crooijmans, R.P.M.A.; Dijkhof, R.J.M.; Veenendaal, T.; Poel, van der J.J.; Groenen, M.A.M.

    2001-01-01

    Comparative mapping between the human and chicken genomes has revealed a striking conservation of synteny between the genomes of these two species, but the results have been based on low-resolution comparative maps. To address this conserved synteny in much more detail, a high-resolution

  10. Tempo and mode of genomic mutations unveil human evolutionary history.

    Science.gov (United States)

    Hara, Yuichiro

    2015-01-01

    Mutations that have occurred in human genomes provide insight into various aspects of evolutionary history such as speciation events and degrees of natural selection. Comparing genome sequences between human and great apes or among humans is a feasible approach for inferring human evolutionary history. Recent advances in high-throughput or so-called 'next-generation' DNA sequencing technologies have enabled the sequencing of thousands of individual human genomes, as well as a variety of reference genomes of hominids, many of which are publicly available. These sequence data can help to unveil the detailed demographic history of the lineage leading to humans as well as the explosion of modern human population size in the last several thousand years. In addition, high-throughput sequencing illustrates the tempo and mode of de novo mutations, which are producing human genetic variation at this moment. Pedigree-based human genome sequencing has shown that mutation rates vary significantly across the human genome. These studies have also provided an improved timescale of human evolution, because the mutation rate estimated from pedigree analysis is half that estimated from traditional analyses based on molecular phylogeny. Because of the dramatic reduction in sequencing cost, sequencing on-demand samples designed for specific studies is now also becoming popular. To produce data of sufficient quality to meet the requirements of the study, it is necessary to set an explicit sequencing plan that includes the choice of sample collection methods, sequencing platforms, and number of sequence reads.

  11. Single-Molecule FISH Reveals Non-selective Packaging of Rift Valley Fever Virus Genome Segments.

    Directory of Open Access Journals (Sweden)

    Paul J Wichgers Schreur

    2016-08-01

    Full Text Available The bunyavirus genome comprises a small (S, medium (M, and large (L RNA segment of negative polarity. Although genome segmentation confers evolutionary advantages by enabling genome reassortment events with related viruses, genome segmentation also complicates genome replication and packaging. Accumulating evidence suggests that genomes of viruses with eight or more genome segments are incorporated into virions by highly selective processes. Remarkably, little is known about the genome packaging process of the tri-segmented bunyaviruses. Here, we evaluated, by single-molecule RNA fluorescence in situ hybridization (FISH, the intracellular spatio-temporal distribution and replication kinetics of the Rift Valley fever virus (RVFV genome and determined the segment composition of mature virions. The results reveal that the RVFV genome segments start to replicate near the site of infection before spreading and replicating throughout the cytoplasm followed by translocation to the virion assembly site at the Golgi network. Despite the average intracellular S, M and L genome segments approached a 1:1:1 ratio, major differences in genome segment ratios were observed among cells. We also observed a significant amount of cells lacking evidence of M-segment replication. Analysis of two-segmented replicons and four-segmented viruses subsequently confirmed the previous notion that Golgi recruitment is mediated by the Gn glycoprotein. The absence of colocalization of the different segments in the cytoplasm and the successful rescue of a tri-segmented variant with a codon shuffled M-segment suggested that inter-segment interactions are unlikely to drive the copackaging of the different segments into a single virion. The latter was confirmed by direct visualization of RNPs inside mature virions which showed that the majority of virions lack one or more genome segments. Altogether, this study suggests that RVFV genome packaging is a non-selective process.

  12. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states.

    Directory of Open Access Journals (Sweden)

    Kevin A Wilkinson

    2008-04-01

    Full Text Available Replication and pathogenesis of the human immunodeficiency virus (HIV is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001 SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further

  13. The Past, Present, and Future of Human Centromere Genomics

    Directory of Open Access Journals (Sweden)

    Megan E. Aldrup-MacDonald

    2014-01-01

    Full Text Available The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function.

  14. A genomic atlas of human adrenal and gonad development

    Science.gov (United States)

    del Valle, Ignacio; Buonocore, Federica; Duncan, Andrew J.; Lin, Lin; Barenco, Martino; Parnaik, Rahul; Shah, Sonia; Hubank, Mike; Gerrelli, Dianne; Achermann, John C.

    2017-01-01

    Background: In humans, the adrenal glands and gonads undergo distinct biological events between 6-10 weeks post conception (wpc), such as testis determination, the onset of steroidogenesis and primordial germ cell development. However, relatively little is currently known about the genetic mechanisms underlying these processes. We therefore aimed to generate a detailed genomic atlas of adrenal and gonad development across these critical stages of human embryonic and fetal development. Methods: RNA was extracted from 53 tissue samples between 6-10 wpc (adrenal, testis, ovary and control). Affymetrix array analysis was performed and differential gene expression was analysed using Bioconductor. A mathematical model was constructed to investigate time-series changes across the dataset. Pathway analysis was performed using ClueGo and cellular localisation of novel factors confirmed using immunohistochemistry. Results: Using this approach, we have identified novel components of adrenal development (e.g. ASB4, NPR3) and confirmed the role of SRY as the main human testis-determining gene. By mathematical modelling time-series data we have found new genes up-regulated with SOX9 in the testis (e.g. CITED1), which may represent components of the testis development pathway. We have shown that testicular steroidogenesis has a distinct onset at around 8 wpc and identified potential novel components in adrenal and testicular steroidogenesis (e.g. MGARP, FOXO4, MAP3K15, GRAMD1B, RMND2), as well as testis biomarkers (e.g. SCUBE1). We have also shown that the developing human ovary expresses distinct subsets of genes (e.g. OR10G9, OR4D5), but enrichment for established biological pathways is limited. Conclusion: This genomic atlas is revealing important novel aspects of human development and new candidate genes for adrenal and reproductive disorders. PMID:28459107

  15. The complete nucleotide sequence, genome organization, and origin of human adenovirus type 11

    International Nuclear Information System (INIS)

    Stone, Daniel; Furthmann, Anne; Sandig, Volker; Lieber, Andre

    2003-01-01

    The complete DNA sequence and transcription map of human adenovirus type 11 are reported here. This is the first published sequence for a subgenera B human adenovirus and demonstrates a genome organization highly similar to those of other human adenoviruses. All of the genes from the early, intermediate, and late regions are present in the expected locations of the genome for a human adenovirus. The genome size is 34,794 bp in length and has a GC content of 48.9%. Sequence alignment with genomes of groups A (Ad12), C (Ad5), D (Ad17), E (Simian adenovirus 25), and F (Ad40) revealed homologies of 64, 54, 68, 75, and 52%, respectively. Detailed genomic analysis demonstrated that Ads 11 and 35 are highly conserved in all areas except the hexon hypervariable regions and fiber. Similarly, comparison of Ad11 with subgroup E SAV25 revealed poor homology between fibers but high homology in proteins encoded by all other areas of the genome. We propose an evolutionary model in which functional viruses can be reconstituted following fiber substitution from one serotype to another. According to this model either the Ad11 genome is a derivative of Ad35, from which the fiber was substituted with Ad7, or the Ad35 genome is the product of a fiber substitution from Ad21 into the Ad11 genome. This model also provides a possible explanation for the origin of group E Ads, which are evolutionarily derived from a group C fiber substitution into a group B genome

  16. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan

    2014-01-01

    mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost......-effective genome mapping technology to comprehensively discover genome-wide SVs and characterize complex regions of the YH genome using long single molecules (>150 kb) in a global fashion. RESULTS: Utilizing nanochannel-based genome mapping technology, we obtained 708 insertions/deletions and 17 inversions larger...... fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides...

  17. Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function

    Directory of Open Access Journals (Sweden)

    Antommattei Frances M

    2008-10-01

    Full Text Available Abstract Background Geobacter species are δ-Proteobacteria and are often the predominant species in a variety of sedimentary environments where Fe(III reduction is important. Their ability to remediate contaminated environments and produce electricity makes them attractive for further study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of Geobacter in changing environments and for electricity production. Recent studies in other bacteria have demonstrated that signaling pathways homologous to the paradigm established for Escherichia coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili, the production of extracellular matrix material, and biofilm formation. The classification of these pathways by comparative genomics improves the ability to understand how Geobacter thrives in natural environments and better their use in microbial fuel cells. Results The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple (~70 homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven, respectively. Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown function. We identified large numbers of methyl-accepting chemotaxis protein (MCP homologs that have diverse sensing domain architectures and generate a potential for sensing a great variety of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter elements suggest that the alternative sigma factors

  18. Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis.

    Science.gov (United States)

    Jun, Se-Ran; Wassenaar, Trudy M; Nookaew, Intawat; Hauser, Loren; Wanchai, Visanu; Land, Miriam; Timm, Collin M; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A; Ussery, David W

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches, including the rhizosphere and endosphere of many plants. Their diversity influences the phylogenetic diversity and heterogeneity of these communities. On the basis of average amino acid identity, comparative genome analysis of >1,000 Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides (eastern cottonwood) trees resulted in consistent and robust genomic clusters with phylogenetic homogeneity. All Pseudomonas aeruginosa genomes clustered together, and these were clearly distinct from other Pseudomonas species groups on the basis of pangenome and core genome analyses. In contrast, the genomes of Pseudomonas fluorescens were organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. Most of our 21 Populus-associated isolates formed three distinct subgroups within the major P. fluorescens group, supported by pathway profile analysis, while two isolates were more closely related to Pseudomonas chlororaphis and Pseudomonas putida. Genes specific to Populus-associated subgroups were identified. Genes specific to subgroup 1 include several sensory systems that act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor. Genes specific to subgroup 2 contain hypothetical genes, and genes specific to subgroup 3 were annotated with hydrolase activity. This study justifies the need to sequence multiple isolates, especially from P. fluorescens, which displays the most genetic variation, in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants. Copyright © 2015 Jun et al.

  19. Comprehensive genomic characterization of campylobacter genus reveals some underlying mechanisms for its genomic diversification.

    Directory of Open Access Journals (Sweden)

    Yizhuang Zhou

    Full Text Available Campylobacter species.are phenotypically diverse in many aspects including host habitats and pathogenicities, which demands comprehensive characterization of the entire Campylobacter genus to study their underlying genetic diversification. Up to now, 34 Campylobacter strains have been sequenced and published in public databases, providing good opportunity to systemically analyze their genomic diversities. In this study, we first conducted genomic characterization, which includes genome-wide alignments, pan-genome analysis, and phylogenetic identification, to depict the genetic diversity of Campylobacter genus. Afterward, we improved the tetranucleotide usage pattern-based naïve Bayesian classifier to identify the abnormal composition fragments (ACFs, fragments with significantly different tetranucleotide frequency profiles from its genomic tetranucleotide frequency profiles including horizontal gene transfers (HGTs to explore the mechanisms for the genetic diversity of this organism. Finally, we analyzed the HGTs transferred via bacteriophage transductions. To our knowledge, this study is the first to use single nucleotide polymorphism information to construct liable microevolution phylogeny of 21 Campylobacter jejuni strains. Combined with the phylogeny of all the collected Campylobacter species based on genome-wide core gene information, comprehensive phylogenetic inference of all 34 Campylobacter organisms was determined. It was found that C. jejuni harbors a high fraction of ACFs possibly through intraspecies recombination, whereas other Campylobacter members possess numerous ACFs possibly via intragenus recombination. Furthermore, some Campylobacter strains have undergone significant ancient viral integration during their evolution process. The improved method is a powerful tool for bacterial genomic analysis. Moreover, the findings would provide useful information for future research on Campylobacter genus.

  20. PROBING GENOME MAINTENANCE FUNCTIONS OF HUMAN RECQ1

    Directory of Open Access Journals (Sweden)

    Furqan Sami

    2013-03-01

    Full Text Available The RecQ helicases are a highly conserved family of DNA-unwinding enzymes that play key roles in protecting the genome stability in all kingdoms of life.'Human RecQ homologs include RECQ1, BLM, WRN, RECQ4, and RECQ5β.'Although the individual RecQ-related diseases are characterized by a variety of clinical features encompassing growth defects (Bloom Syndrome and Rothmund Thomson Syndrome to premature aging (Werner Syndrome, all these patients have a high risk of cancer predisposition.'Here, we present an overview of recent progress towards elucidating functions of RECQ1 helicase, the most abundant but poorly characterized RecQ homolog in humans.'Consistent with a conserved role in genome stability maintenance, deficiency of RECQ1 results in elevated frequency of spontaneous sister chromatid exchanges, chromosomal instability, increased DNA damage and greater sensitivity to certain genotoxic stress.'Delineating what aspects of RECQ1 catalytic functions contribute to the observed cellular phenotypes, and how this is regulated is critical to establish its biological functions in DNA metabolism.'Recent studies have identified functional specialization of RECQ1 in DNA repair; however, identification of fundamental similarities will be just as critical in developing a unifying theme for RecQ actions, allowing the functions revealed from studying one homolog to be extrapolated and generalized to other RecQ homologs.

  1. Commonalities in Development of Pure Breeds and Population Isolates Revealed in the Genome of the Sardinian Fonni's Dog

    Science.gov (United States)

    Dreger, Dayna L.; Davis, Brian W.; Cocco, Raffaella; Sechi, Sara; Di Cerbo, Alessandro; Parker, Heidi G.; Polli, Michele; Marelli, Stefano P.; Crepaldi, Paola; Ostrander, Elaine A.

    2016-01-01

    The island inhabitants of Sardinia have long been a focus for studies of complex human traits due to their unique ancestral background and population isolation reflecting geographic and cultural restriction. Population isolates share decreased genomic diversity, increased linkage disequilibrium, and increased inbreeding coefficients. In many regions, dogs and humans have been exposed to the same natural and artificial forces of environment, growth, and migration. Distinct dog breeds have arisen through human-driven selection of characteristics to meet an ideal standard of appearance and function. The Fonni’s Dog, an endemic dog population on Sardinia, has not been subjected to an intensive system of artificial selection, but rather has developed alongside the human population of Sardinia, influenced by geographic isolation and unregulated selection based on its environmental adaptation and aptitude for owner-desired behaviors. Through analysis of 28 dog breeds, represented with whole-genome sequences from 13 dogs and ∼170,000 genome-wide single nucleotide variants from 155 dogs, we have produced a genomic illustration of the Fonni’s Dog. Genomic patterns confirm within-breed similarity, while population and demographic analyses provide spatial identity of Fonni’s Dog to other Mediterranean breeds. Investigation of admixture and fixation indices reveals insights into the involvement of Fonni’s Dogs in breed development throughout the Mediterranean. We describe how characteristics of population isolates are reflected in dog breeds that have undergone artificial selection, and are mirrored in the Fonni’s Dog through traditional isolating factors that affect human populations. Lastly, we show that the genetic history of Fonni’s Dog parallels demographic events in local human populations. PMID:27519604

  2. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  3. Nationwide Genomic Study in Denmark Reveals Remarkable Population Homogeneity.

    Science.gov (United States)

    Athanasiadis, Georgios; Cheng, Jade Y; Vilhjálmsson, Bjarni J; Jørgensen, Frank G; Als, Thomas D; Le Hellard, Stephanie; Espeseth, Thomas; Sullivan, Patrick F; Hultman, Christina M; Kjærgaard, Peter C; Schierup, Mikkel H; Mailund, Thomas

    2016-10-01

    Denmark has played a substantial role in the history of Northern Europe. Through a nationwide scientific outreach initiative, we collected genetic and anthropometrical data from ∼800 high school students and used them to elucidate the genetic makeup of the Danish population, as well as to assess polygenic predictions of phenotypic traits in adolescents. We observed remarkable homogeneity across different geographic regions, although we could still detect weak signals of genetic structure reflecting the history of the country. Denmark presented genomic affinity with primarily neighboring countries with overall resemblance of decreasing weight from Britain, Sweden, Norway, Germany, and France. A Polish admixture signal was detected in Zealand and Funen, and our date estimates coincided with historical evidence of Wend settlements in the south of Denmark. We also observed considerably diverse demographic histories among Scandinavian countries, with Denmark having the smallest current effective population size compared to Norway and Sweden. Finally, we found that polygenic prediction of self-reported adolescent height in the population was remarkably accurate (R 2 = 0.639 ± 0.015). The high homogeneity of the Danish population could render population structure a lesser concern for the upcoming large-scale gene-mapping studies in the country. Copyright © 2016 by the Genetics Society of America.

  4. Whole-genome resequencing reveals candidate mutations for pig prolificacy.

    Science.gov (United States)

    Li, Wen-Ting; Zhang, Meng-Meng; Li, Qi-Gang; Tang, Hui; Zhang, Li-Fan; Wang, Ke-Jun; Zhu, Mu-Zhen; Lu, Yun-Feng; Bao, Hai-Gang; Zhang, Yuan-Ming; Li, Qiu-Yan; Wu, Ke-Liang; Wu, Chang-Xin

    2017-12-20

    Changes in pig fertility have occurred as a result of domestication, but are not understood at the level of genetic variation. To identify variations potentially responsible for prolificacy, we sequenced the genomes of the highly prolific Taihu pig breed and four control breeds. Genes involved in embryogenesis and morphogenesis were targeted in the Taihu pig, consistent with the morphological differences observed between the Taihu pig and others during pregnancy. Additionally, excessive functional non-coding mutations have been specifically fixed or nearly fixed in the Taihu pig. We focused attention on an oestrogen response element (ERE) within the first intron of the bone morphogenetic protein receptor type-1B gene ( BMPR1B ) that overlaps with a known quantitative trait locus (QTL) for pig fecundity. Using 242 pigs from 30 different breeds, we confirmed that the genotype of the ERE was nearly fixed in the Taihu pig. ERE function was assessed by luciferase assays, examination of histological sections, chromatin immunoprecipitation, quantitative polymerase chain reactions, and western blots. The results suggest that the ERE may control pig prolificacy via the cis-regulation of BMPR1B expression. This study provides new insight into changes in reproductive performance and highlights the role of non-coding mutations in generating phenotypic diversity between breeds. © 2017 The Author(s).

  5. Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA

    2015-10-24

    Background Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug resistance. In an age where whole genome sequencing is increasingly relied upon for defining the structure of bacterial genomes, it is important to investigate the reliability of next generation sequencing to identify clonal variants present in a minor percentage of the population. This study aimed to define a reliable cut-off for identification of low frequency sequence variants and to subsequently investigate genetic heterogeneity and the evolution of drug resistance in M. tuberculosis. Methods Genomic DNA was isolated from single colonies from 14 rifampicin mono-resistant M. tuberculosis isolates, as well as the primary cultures and follow up MDR cultures from two of these patients. The whole genomes of the M. tuberculosis isolates were sequenced using either the Illumina MiSeq or Illumina HiSeq platforms. Sequences were analysed with an in-house pipeline. Results Using next-generation sequencing in combination with Sanger sequencing and statistical analysis we defined a read frequency cut-off of 30 % to identify low frequency M. tuberculosis variants with high confidence. Using this cut-off we demonstrated a high rate of genetic diversity between single colonies isolated from one population, showing that by using the current sequencing technology, single colonies are not a true reflection of the genetic diversity within a whole population and vice versa. We further showed that numerous heterogeneous variants emerge and then disappear during the evolution of isoniazid resistance within individual patients. Our findings allowed us to formulate a model for the selective bottleneck which occurs during the course of infection, acting as a genomic purification event. Conclusions Our study demonstrated true levels of genetic diversity

  6. Supplementary Material for: Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA

    2015-01-01

    Abstract Background Whole genome sequencing has revolutionised the interrogation of mycobacterial genomes. Recent studies have reported conflicting findings on the genomic stability of Mycobacterium tuberculosis during the evolution of drug resistance. In an age where whole genome sequencing is increasingly relied upon for defining the structure of bacterial genomes, it is important to investigate the reliability of next generation sequencing to identify clonal variants present in a minor percentage of the population. This study aimed to define a reliable cut-off for identification of low frequency sequence variants and to subsequently investigate genetic heterogeneity and the evolution of drug resistance in M. tuberculosis. Methods Genomic DNA was isolated from single colonies from 14 rifampicin mono-resistant M. tuberculosis isolates, as well as the primary cultures and follow up MDR cultures from two of these patients. The whole genomes of the M. tuberculosis isolates were sequenced using either the Illumina MiSeq or Illumina HiSeq platforms. Sequences were analysed with an in-house pipeline. Results Using next-generation sequencing in combination with Sanger sequencing and statistical analysis we defined a read frequency cut-off of 30 % to identify low frequency M. tuberculosis variants with high confidence. Using this cut-off we demonstrated a high rate of genetic diversity between single colonies isolated from one population, showing that by using the current sequencing technology, single colonies are not a true reflection of the genetic diversity within a whole population and vice versa. We further showed that numerous heterogeneous variants emerge and then disappear during the evolution of isoniazid resistance within individual patients. Our findings allowed us to formulate a model for the selective bottleneck which occurs during the course of infection, acting as a genomic purification event. Conclusions Our study demonstrated true levels of genetic

  7. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites

    Directory of Open Access Journals (Sweden)

    Sibley L David

    2005-12-01

    Full Text Available Abstract Background The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a number of important human and animal pathogens. Their complex life cycles and unique cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-based motility for cell invasion, yet the regulation of this system remains largely unknown. Consequently, we focused our efforts on identifying actin-related proteins in the recently completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp. Results Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that most contain only a single conventional actin and yet they each have 8–10 additional actin-related proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin complex, and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery. In contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these actin-like proteins (ALPs are novel to apicomplexans. They show no phylogenetic associations to the known Arp groups and likely serve functions specific to this important group of intracellular parasites. Conclusion The large diversity of actin-like proteins in apicomplexans suggests that the actin protein family has diverged to fulfill various roles in the unique biology of intracellular parasites. Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-specific ALPs may control unique biological traits such as actin-based gliding motility.

  8. Complete genome sequence of a commensal bacterium, Hafnia alvei CBA7124, isolated from human feces.

    Science.gov (United States)

    Song, Hye Seon; Kim, Joon Yong; Kim, Yeon Bee; Jeong, Myeong Seon; Kang, Jisu; Rhee, Jin-Kyu; Kwon, Joseph; Kim, Ju Suk; Choi, Jong-Soon; Choi, Hak-Jong; Nam, Young-Do; Roh, Seong Woon

    2017-01-01

    Members of the genus Hafnia have been isolated from the feces of mammals, birds, reptiles, and fish, as well as from soil, water, sewage, and foods. Hafnia alvei is an opportunistic pathogen that has been implicated in intestinal and extraintestinal infections in humans. However, its pathogenicity is still unclear. In this study, we isolated H. alvei from human feces and performed sequencing as well as comparative genomic analysis to better understand its pathogenicity. The genome of H. alvei CBA7124 comprised a single circular chromosome with 4,585,298 bp and a GC content of 48.8%. The genome contained 25 rRNA genes (9 5S rRNA genes, 8 16S rRNA genes, and 8 23S rRNA genes), 88 tRNA genes, and 4043 protein-coding genes. Using comparative genomic analysis, the genome of this strain was found to have 72 strain-specific singletons. The genome also contained genes for antibiotic and antimicrobial resistance, as well as toxin-antitoxin systems. We revealed the complete genome sequence of the opportunistic gut pathogen, H. alvei CBA7124. We also performed comparative genomic analysis of the sequences in the genome of H. alvei CBA7124, and found that it contained strain-specific singletons, antibiotic resistance genes, and toxin-antitoxin systems. These results could improve our understanding of the pathogenicity and the mechanism behind the antibiotic resistance of H. alvei strains.

  9. Recent and ongoing selection in the human genome

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Hellmann, Ines; Hubisz, Melissa

    2007-01-01

    The recent availability of genome-scale genotyping data has led to the identification of regions of the human genome that seem to have been targeted by selection. These findings have increased our understanding of the evolutionary forces that affect the human genome, have augmented our knowledge...... of gene function and promise to increase our understanding of the genetic basis of disease. However, inferences of selection are challenged by several confounding factors, especially the complex demographic history of human populations, and concordance between studies is variable. Although such studies...

  10. Explaining human uniqueness: genome interactions with environment, behaviour and culture.

    Science.gov (United States)

    Varki, Ajit; Geschwind, Daniel H; Eichler, Evan E

    2008-10-01

    What makes us human? Specialists in each discipline respond through the lens of their own expertise. In fact, 'anthropogeny' (explaining the origin of humans) requires a transdisciplinary approach that eschews such barriers. Here we take a genomic and genetic perspective towards molecular variation, explore systems analysis of gene expression and discuss an organ-systems approach. Rejecting any 'genes versus environment' dichotomy, we then consider genome interactions with environment, behaviour and culture, finally speculating that aspects of human uniqueness arose because of a primate evolutionary trend towards increasing and irreversible dependence on learned behaviours and culture - perhaps relaxing allowable thresholds for large-scale genomic diversity.

  11. Localizing recent adaptive evolution in the human genome

    DEFF Research Database (Denmark)

    Williamson, Scott H; Hubisz, Melissa J; Clark, Andrew G

    2007-01-01

    , clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome......-nucleotide polymorphism ascertainment, while also providing fine-scale estimates of the position of the selected site, we analyzed a genomic dataset of 1.2 million human single-nucleotide polymorphisms genotyped in African-American, European-American, and Chinese samples. We identify 101 regions of the human genome...

  12. Transposable element activity, genome regulation and human health.

    Science.gov (United States)

    Wang, Lu; Jordan, I King

    2018-03-02

    A convergence of novel genome analysis technologies is enabling population genomic studies of human transposable elements (TEs). Population surveys of human genome sequences have uncovered thousands of individual TE insertions that segregate as common genetic variants, i.e. TE polymorphisms. These recent TE insertions provide an important source of naturally occurring human genetic variation. Investigators are beginning to leverage population genomic data sets to execute genome-scale association studies for assessing the phenotypic impact of human TE polymorphisms. For example, the expression quantitative trait loci (eQTL) analytical paradigm has recently been used to uncover hundreds of associations between human TE insertion variants and gene expression levels. These include population-specific gene regulatory effects as well as coordinated changes to gene regulatory networks. In addition, analyses of linkage disequilibrium patterns with previously characterized genome-wide association study (GWAS) trait variants have uncovered TE insertion polymorphisms that are likely causal variants for a variety of common complex diseases. Gene regulatory mechanisms that underlie specific disease phenotypes have been proposed for a number of these trait associated TE polymorphisms. These new population genomic approaches hold great promise for understanding how ongoing TE activity contributes to functionally relevant genetic variation within and between human populations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Comparative Genome Analysis Reveals Divergent Genome Size Evolution in a Carnivorous Plant Genus

    Czech Academy of Sciences Publication Activity Database

    Vu, G.T.H.; Schmutzer, T.; Bull, F.; Cao, H.X.; Fuchs, J.; Tran, T.D.; Jovtchev, G.; Pistrick, K.; Stein, N.; Pečinka, A.; Neumann, Pavel; Novák, Petr; Macas, Jiří; Dear, P.H.; Blattner, F.R.; Scholz, U.; Schubert, I.

    2015-01-01

    Roč. 8, č. 3 (2015) ISSN 1940-3372 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:60077344 Keywords : Genlisea * genome * repetitive sequences Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.509, year: 2015

  14. Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium tuberculosis isolates

    KAUST Repository

    Black, PA; de Vos, M.; Louw, GE; van der Merwe, RG; Dippenaar, A.; Streicher, EM; Abdallah, A. M.; Sampson, SL; Victor, TC; Dolby, T.; Simpson, JA; van Helden, PD; Warren, RM; Pain, Arnab

    2015-01-01

    Our study demonstrated true levels of genetic diversity within an M. tuberculosis population and showed that genetic diversity may be re-defined when a selective pressure, such as drug exposure, is imposed on M. tuberculosis populations during the course of infection. This suggests that the genome of M. tuberculosis is more dynamic than previously thought, suggesting preparedness to respond to a changing environment.

  15. Building the sequence map of the human pan-genome

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Zheng, Hancheng

    2010-01-01

    analysis of predicted genes indicated that the novel sequences contain potentially functional coding regions. We estimate that a complete human pan-genome would contain approximately 19-40 Mb of novel sequence not present in the extant reference genome. The extensive amount of novel sequence contributing...

  16. Genome Editing: A New Approach to Human Therapeutics.

    Science.gov (United States)

    Porteus, Matthew

    2016-01-01

    The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.

  17. The spotted gar genome illuminates vertebrate evolution and facilitates human-to-teleost comparisons

    Science.gov (United States)

    Braasch, Ingo; Gehrke, Andrew R.; Smith, Jeramiah J.; Kawasaki, Kazuhiko; Manousaki, Tereza; Pasquier, Jeremy; Amores, Angel; Desvignes, Thomas; Batzel, Peter; Catchen, Julian; Berlin, Aaron M.; Campbell, Michael S.; Barrell, Daniel; Martin, Kyle J.; Mulley, John F.; Ravi, Vydianathan; Lee, Alison P.; Nakamura, Tetsuya; Chalopin, Domitille; Fan, Shaohua; Wcisel, Dustin; Cañestro, Cristian; Sydes, Jason; Beaudry, Felix E. G.; Sun, Yi; Hertel, Jana; Beam, Michael J.; Fasold, Mario; Ishiyama, Mikio; Johnson, Jeremy; Kehr, Steffi; Lara, Marcia; Letaw, John H.; Litman, Gary W.; Litman, Ronda T.; Mikami, Masato; Ota, Tatsuya; Saha, Nil Ratan; Williams, Louise; Stadler, Peter F.; Wang, Han; Taylor, John S.; Fontenot, Quenton; Ferrara, Allyse; Searle, Stephen M. J.; Aken, Bronwen; Yandell, Mark; Schneider, Igor; Yoder, Jeffrey A.; Volff, Jean-Nicolas; Meyer, Axel; Amemiya, Chris T.; Venkatesh, Byrappa; Holland, Peter W. H.; Guiguen, Yann; Bobe, Julien; Shubin, Neil H.; Di Palma, Federica; Alföldi, Jessica; Lindblad-Toh, Kerstin; Postlethwait, John H.

    2016-01-01

    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before the teleost genome duplication (TGD). The slowly evolving gar genome conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization, and development (e.g., Hox, ParaHox, and miRNA genes). Numerous conserved non-coding elements (CNEs, often cis-regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles of such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses revealed that the sum of expression domains and levels from duplicated teleost genes often approximate patterns and levels of gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes, and the function of human regulatory sequences. PMID:26950095

  18. The human genome as public: Justifications and implications.

    Science.gov (United States)

    Bayefsky, Michelle J

    2017-03-01

    Since the human genome was decoded, great emphasis has been placed on the unique, personal nature of the genome, along with the benefits that personalized medicine can bring to individuals and the importance of safeguarding genetic privacy. As a result, an equally important aspect of the human genome - its common nature - has been underappreciated and underrepresented in the ethics literature and policy dialogue surrounding genetics and genomics. This article will argue that, just as the personal nature of the genome has been used to reinforce individual rights and justify important privacy protections, so too the common nature of the genome can be employed to support protections of the genome at a population level and policies designed to promote the public's wellbeing. In order for public health officials to have the authority to develop genetics policies for the sake of the public good, the genome must have not only a common, but also a public, dimension. This article contends that DNA carries a public dimension through the use of two conceptual frameworks: the common heritage (CH) framework and the common resource (CR) framework. Both frameworks establish a public interest in the human genome, but the CH framework can be used to justify policies aimed at preserving and protecting the genome, while the CR framework can be employed to justify policies for utilizing the genome for the public benefit. A variety of possible policy implications are discussed, with special attention paid to the use of large-scale genomics databases for public health research. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  19. Mitochondrial genome sequences reveal deep divergences among Anopheles punctulatus sibling species in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Logue Kyle

    2013-02-01

    Full Text Available Abstract Background Members of the Anopheles punctulatus group (AP group are the primary vectors of human malaria in Papua New Guinea. The AP group includes 13 sibling species, most of them morphologically indistinguishable. Understanding why only certain species are able to transmit malaria requires a better comprehension of their evolutionary history. In particular, understanding relationships and divergence times among Anopheles species may enable assessing how malaria-related traits (e.g. blood feeding behaviours, vector competence have evolved. Methods DNA sequences of 14 mitochondrial (mt genomes from five AP sibling species and two species of the Anopheles dirus complex of Southeast Asia were sequenced. DNA sequences from all concatenated protein coding genes (10,770 bp were then analysed using a Bayesian approach to reconstruct phylogenetic relationships and date the divergence of the AP sibling species. Results Phylogenetic reconstruction using the concatenated DNA sequence of all mitochondrial protein coding genes indicates that the ancestors of the AP group arrived in Papua New Guinea 25 to 54 million years ago and rapidly diverged to form the current sibling species. Conclusion Through evaluation of newly described mt genome sequences, this study has revealed a divergence among members of the AP group in Papua New Guinea that would significantly predate the arrival of humans in this region, 50 thousand years ago. The divergence observed among the mtDNA sequences studied here may have resulted from reproductive isolation during historical changes in sea-level through glacial minima and maxima. This leads to a hypothesis that the AP sibling species have evolved independently for potentially thousands of generations. This suggests that the evolution of many phenotypes, such as insecticide resistance will arise independently in each of the AP sibling species studied here.

  20. Comparative genomics of neuroglobin reveals its early origins.

    Directory of Open Access Journals (Sweden)

    Jasmin Dröge

    Full Text Available Neuroglobin (Ngb is a hexacoordinated globin expressed mainly in the central and peripheral nervous system of vertebrates. Although several hypotheses have been put forward regarding the role of neuroglobin, its definite function remains uncertain. Ngb appears to have a neuro-protective role enhancing cell viability under hypoxia and other types of oxidative stress. Ngb is phylogenetically ancient and has a substitution rate nearly four times lower than that of other vertebrate globins, e.g. hemoglobin. Despite its high sequence conservation among vertebrates Ngb seems to be elusive in invertebrates.We determined candidate orthologs in invertebrates and identified a globin of the placozoan Trichoplax adhaerens that is most likely orthologous to vertebrate Ngb and confirmed the orthologous relationship of the polymeric globin of the sea urchin Strongylocentrotus purpuratus to Ngb. The putative orthologous globin genes are located next to genes orthologous to vertebrate POMT2 similarly to localization of vertebrate Ngb. The shared syntenic position of the globins from Trichoplax, the sea urchin and of vertebrate Ngb strongly suggests that they are orthologous. A search for conserved transcription factor binding sites (TFBSs in the promoter regions of the Ngb genes of different vertebrates via phylogenetic footprinting revealed several TFBSs, which may contribute to the specific expression of Ngb, whereas a comparative analysis with myoglobin revealed several common TFBSs, suggestive of regulatory mechanisms common to globin genes.Identification of the placozoan and echinoderm genes orthologous to vertebrate neuroglobin strongly supports the hypothesis of the early evolutionary origin of this globin, as it shows that neuroglobin was already present in the placozoan-bilaterian last common ancestor. Computational determination of the transcription factor binding sites repertoire provides on the one hand a set of transcriptional factors that are

  1. The Genome of the Basidiomycetous Yeast and Human Pathogen Cryptococcus neoformans

    Science.gov (United States)

    Loftus, Brendan J.; Fung, Eula; Roncaglia, Paola; Rowley, Don; Amedeo, Paolo; Bruno, Dan; Vamathevan, Jessica; Miranda, Molly; Anderson, Iain J.; Fraser, James A.; Allen, Jonathan E.; Bosdet, Ian E.; Brent, Michael R.; Chiu, Readman; Doering, Tamara L.; Donlin, Maureen J.; D’Souza, Cletus A.; Fox, Deborah S.; Grinberg, Viktoriya; Fu, Jianmin; Fukushima, Marilyn; Haas, Brian J.; Huang, James C.; Janbon, Guilhem; Jones, Steven J. M.; Koo, Hean L.; Krzywinski, Martin I.; Kwon-Chung, June K.; Lengeler, Klaus B.; Maiti, Rama; Marra, Marco A.; Marra, Robert E.; Mathewson, Carrie A.; Mitchell, Thomas G.; Pertea, Mihaela; Riggs, Florenta R.; Salzberg, Steven L.; Schein, Jacqueline E.; Shvartsbeyn, Alla; Shin, Heesun; Shumway, Martin; Specht, Charles A.; Suh, Bernard B.; Tenney, Aaron; Utterback, Terry R.; Wickes, Brian L.; Wortman, Jennifer R.; Wye, Natasja H.; Kronstad, James W.; Lodge, Jennifer K.; Heitman, Joseph; Davis, Ronald W.; Fraser, Claire M.; Hyman, Richard W.

    2012-01-01

    Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its ~20-megabase genome, which contains ~6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype instability and phenotypic variation. C. neoformans encodes unique genes that may contribute to its unusual virulence properties, and comparison of two phenotypically distinct strains reveals variation in gene content in addition to sequence polymorphisms between the genomes. PMID:15653466

  2. Predicting Tissue-Specific Enhancers in the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  3. National human genome projects: an update and an agenda.

    Science.gov (United States)

    An, Joon Yong

    2017-01-01

    Population genetic and human genetic studies are being accelerated with genome technology and data sharing. Accordingly, in the past 10 years, several countries have initiated genetic research using genome technology and identified the genetic architecture of the ethnic groups living in the corresponding country or suggested the genetic foundation of a social phenomenon. Genetic research has been conducted from epidemiological studies that previously described the health or disease conditions in defined population. This perspective summarizes national genome projects conducted in the past 10 years and introduces case studies to utilize genomic data in genetic research.

  4. Genetic variation architecture of mitochondrial genome reveals the differentiation in Korean landrace and weedy rice

    OpenAIRE

    Wei Tong; Qiang He; Yong-Jin Park

    2017-01-01

    Mitochondrial genome variations have been detected despite the overall conservation of this gene content, which has been valuable for plant population genetics and evolutionary studies. Here, we describe mitochondrial variation architecture and our performance of a phylogenetic dissection of Korean landrace and weedy rice. A total of 4,717 variations across the mitochondrial genome were identified adjunct with 10 wild rice. Genetic diversity assessment revealed that wild rice has higher nucle...

  5. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats.

    Science.gov (United States)

    Martino, Maria Elena; Bayjanov, Jumamurat R; Caffrey, Brian E; Wels, Michiel; Joncour, Pauline; Hughes, Sandrine; Gillet, Benjamin; Kleerebezem, Michiel; van Hijum, Sacha A F T; Leulier, François

    2016-12-01

    The ability of bacteria to adapt to diverse environmental conditions is well-known. The process of bacterial adaptation to a niche has been linked to large changes in the genome content, showing that many bacterial genomes reflect the constraints imposed by their habitat. However, some highly versatile bacteria are found in diverse habitats that almost share nothing in common. Lactobacillus plantarum is a lactic acid bacterium that is found in a large variety of habitat. With the aim of unravelling the link between evolution and ecological versatility of L. plantarum, we analysed the genomes of 54 L. plantarum strains isolated from different environments. Comparative genome analysis identified a high level of genomic diversity and plasticity among the strains analysed. Phylogenomic and functional divergence studies coupled with gene-trait matching analyses revealed a mixed distribution of the strains, which was uncoupled from their environmental origin. Our findings revealed the absence of specific genomic signatures marking adaptations of L. plantarum towards the diverse habitats it is associated with. This suggests fundamentally similar trends of genome evolution in L. plantarum, which occur in a manner that is apparently uncoupled from ecological constraint and reflects the nomadic lifestyle of this species. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Human genome and genetic sequencing research and informed consent

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi

    2003-01-01

    On March 29, 2001, the Ethical Guidelines for Human Genome and Genetic Sequencing Research were established. They have intended to serve as ethical guidelines for all human genome and genetic sequencing research practice, for the purpose of upholding respect for human dignity and rights and enforcing use of proper methods in the pursuit of human genome and genetic sequencing research, with the understanding and cooperation of the public. The RadGenomics Project has prepared a research protocol and informed consent document that follow these ethical guidelines. We have endeavored to protect the privacy of individual information, and have established a procedure for examination of research practices by an ethics committee. Here we report our procedure in order to offer this concept to the patients. (authors)

  7. Human · mouse genome analysis and radiation biology. Proceedings

    International Nuclear Information System (INIS)

    Hori, Tada-aki

    1994-03-01

    This issue is the collection of the papers presented at the 25th NIRS symposium on Human, Mouse Genome Analysis and Radiation Biology. The 14 of the presented papers are indexed individually. (J.P.N.)

  8. Comparative Genomics Reveals the Core Gene Toolbox for the Fungus-Insect Symbiosis

    Science.gov (United States)

    Stata, Matt; Wang, Wei; White, Merlin M.; Moncalvo, Jean-Marc

    2018-01-01

    ABSTRACT Modern genomics has shed light on many entomopathogenic fungi and expanded our knowledge widely; however, little is known about the genomic features of the insect-commensal fungi. Harpellales are obligate commensals living in the digestive tracts of disease-bearing insects (black flies, midges, and mosquitoes). In this study, we produced and annotated whole-genome sequences of nine Harpellales taxa and conducted the first comparative analyses to infer the genomic diversity within the members of the Harpellales. The genomes of the insect gut fungi feature low (26% to 37%) GC content and large genome size variations (25 to 102 Mb). Further comparisons with insect-pathogenic fungi (from both Ascomycota and Zoopagomycota), as well as with free-living relatives (as negative controls), helped to identify a gene toolbox that is essential to the fungus-insect symbiosis. The results not only narrow the genomic scope of fungus-insect interactions from several thousands to eight core players but also distinguish host invasion strategies employed by insect pathogens and commensals. The genomic content suggests that insect commensal fungi rely mostly on adhesion protein anchors that target digestive system, while entomopathogenic fungi have higher numbers of transmembrane helices, signal peptides, and pathogen-host interaction (PHI) genes across the whole genome and enrich genes as well as functional domains to inactivate the host inflammation system and suppress the host defense. Phylogenomic analyses have revealed that genome sizes of Harpellales fungi vary among lineages with an integer-multiple pattern, which implies that ancient genome duplications may have occurred within the gut of insects. PMID:29764946

  9. The Human Genome Project: big science transforms biology and medicine

    OpenAIRE

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and a...

  10. Human language reveals a universal positivity bias.

    Science.gov (United States)

    Dodds, Peter Sheridan; Clark, Eric M; Desu, Suma; Frank, Morgan R; Reagan, Andrew J; Williams, Jake Ryland; Mitchell, Lewis; Harris, Kameron Decker; Kloumann, Isabel M; Bagrow, James P; Megerdoomian, Karine; McMahon, Matthew T; Tivnan, Brian F; Danforth, Christopher M

    2015-02-24

    Using human evaluation of 100,000 words spread across 24 corpora in 10 languages diverse in origin and culture, we present evidence of a deep imprint of human sociality in language, observing that (i) the words of natural human language possess a universal positivity bias, (ii) the estimated emotional content of words is consistent between languages under translation, and (iii) this positivity bias is strongly independent of frequency of word use. Alongside these general regularities, we describe interlanguage variations in the emotional spectrum of languages that allow us to rank corpora. We also show how our word evaluations can be used to construct physical-like instruments for both real-time and offline measurement of the emotional content of large-scale texts.

  11. Crossed wires: 3D genome misfolding in human disease.

    Science.gov (United States)

    Norton, Heidi K; Phillips-Cremins, Jennifer E

    2017-11-06

    Mammalian genomes are folded into unique topological structures that undergo precise spatiotemporal restructuring during healthy development. Here, we highlight recent advances in our understanding of how the genome folds inside the 3D nucleus and how these folding patterns are miswired during the onset and progression of mammalian disease states. We discuss potential mechanisms underlying the link among genome misfolding, genome dysregulation, and aberrant cellular phenotypes. We also discuss cases in which the endogenous 3D genome configurations in healthy cells might be particularly susceptible to mutation or translocation. Together, these data support an emerging model in which genome folding and misfolding is critically linked to the onset and progression of a broad range of human diseases. © 2017 Norton and Phillips-Cremins.

  12. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  13. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing

    DEFF Research Database (Denmark)

    Li, Ying-hui; Zhao, Shan-cen; Ma, Jian-xin

    2013-01-01

    and genetic improvement were identified.CONCLUSIONS:Given the uniqueness of the soybean germplasm sequenced, this study drew a clear picture of human-mediated evolution of the soybean genomes. The genomic resources and information provided by this study would also facilitate the discovery of genes......BACKGROUND:Artificial selection played an important role in the origin of modern Glycine max cultivars from the wild soybean Glycine soja. To elucidate the consequences of artificial selection accompanying the domestication and modern improvement of soybean, 25 new and 30 published whole-genome re...

  14. Ancient Human Genome Sequence of an Extinct Palaeo-Eskimo

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Li, Yingrui; Lindgreen, Stinus

    2010-01-01

    We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome...... possible phenotypic characteristics of the individual that belonged to a culture whose location has yielded only trace human remains. We compare the high-confidence SNPs to those of contemporary populations to find the populations most closely related to the individual. This provides evidence...

  15. Human Papillomavirus Genome Integration and Head and Neck Cancer.

    Science.gov (United States)

    Pinatti, L M; Walline, H M; Carey, T E

    2018-06-01

    We conducted a critical review of human papillomavirus (HPV) integration into the host genome in oral/oropharyngeal cancer, reviewed the literature for HPV-induced cancers, and obtained current data for HPV-related oral and oropharyngeal cancers. In addition, we performed studies to identify HPV integration sites and the relationship of integration to viral-host fusion transcripts and whether integration is required for HPV-associated oncogenesis. Viral integration of HPV into the host genome is not required for the viral life cycle and might not be necessary for cellular transformation, yet HPV integration is frequently reported in cervical and head and neck cancer specimens. Studies of large numbers of early cervical lesions revealed frequent viral integration into gene-poor regions of the host genome with comparatively rare integration into cellular genes, suggesting that integration is a stochastic event and that site of integration may be largely a function of chance. However, more recent studies of head and neck squamous cell carcinomas (HNSCCs) suggest that integration may represent an additional oncogenic mechanism through direct effects on cancer-related gene expression and generation of hybrid viral-host fusion transcripts. In HNSCC cell lines as well as primary tumors, integration into cancer-related genes leading to gene disruption has been reported. The studies have shown that integration-induced altered gene expression may be associated with tumor recurrence. Evidence from several studies indicates that viral integration into genic regions is accompanied by local amplification, increased expression in some cases, interruption of gene expression, and likely additional oncogenic effects. Similarly, reported examples of viral integration near microRNAs suggest that altered expression of these regulatory molecules may also contribute to oncogenesis. Future work is indicated to identify the mechanisms of these events on cancer cell behavior.

  16. Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity.

    Science.gov (United States)

    Mao, Peng; Brown, Alexander J; Malc, Ewa P; Mieczkowski, Piotr A; Smerdon, Michael J; Roberts, Steven A; Wyrick, John J

    2017-10-01

    DNA base damage is an important contributor to genome instability, but how the formation and repair of these lesions is affected by the genomic landscape and contributes to mutagenesis is unknown. Here, we describe genome-wide maps of DNA base damage, repair, and mutagenesis at single nucleotide resolution in yeast treated with the alkylating agent methyl methanesulfonate (MMS). Analysis of these maps revealed that base excision repair (BER) of alkylation damage is significantly modulated by chromatin, with faster repair in nucleosome-depleted regions, and slower repair and higher mutation density within strongly positioned nucleosomes. Both the translational and rotational settings of lesions within nucleosomes significantly influence BER efficiency; moreover, this effect is asymmetric relative to the nucleosome dyad axis and is regulated by histone modifications. Our data also indicate that MMS-induced mutations at adenine nucleotides are significantly enriched on the nontranscribed strand (NTS) of yeast genes, particularly in BER-deficient strains, due to higher damage formation on the NTS and transcription-coupled repair of the transcribed strand (TS). These findings reveal the influence of chromatin on repair and mutagenesis of base lesions on a genome-wide scale and suggest a novel mechanism for transcription-associated mutation asymmetry, which is frequently observed in human cancers. © 2017 Mao et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Constraints on genome dynamics revealed from gene distribution among the Ralstonia solanacearum species.

    Directory of Open Access Journals (Sweden)

    Pierre Lefeuvre

    Full Text Available Because it is suspected that gene content may partly explain host adaptation and ecology of pathogenic bacteria, it is important to study factors affecting genome composition and its evolution. While recent genomic advances have revealed extremely large pan-genomes for some bacterial species, it remains difficult to predict to what extent gene pool is accessible within or transferable between populations. As genomes bear imprints of the history of the organisms, gene distribution pattern analyses should provide insights into the forces and factors at play in the shaping and maintaining of bacterial genomes. In this study, we revisited the data obtained from a previous CGH microarrays analysis in order to assess the genomic plasticity of the R. solanacearum species complex. Gene distribution analyses demonstrated the remarkably dispersed genome of R. solanacearum with more than half of the genes being accessory. From the reconstruction of the ancestral genomes compositions, we were able to infer the number of gene gain and loss events along the phylogeny. Analyses of gene movement patterns reveal that factors associated with gene function, genomic localization and ecology delineate gene flow patterns. While the chromosome displayed lower rates of movement, the megaplasmid was clearly associated with hot-spots of gene gain and loss. Gene function was also confirmed to be an essential factor in gene gain and loss dynamics with significant differences in movement patterns between different COG categories. Finally, analyses of gene distribution highlighted possible highways of horizontal gene transfer. Due to sampling and design bias, we can only speculate on factors at play in this gene movement dynamic. Further studies examining precise conditions that favor gene transfer would provide invaluable insights in the fate of bacteria, species delineation and the emergence of successful pathogens.

  18. Distinct p53 genomic binding patterns in normal and cancer-derived human cells

    Energy Technology Data Exchange (ETDEWEB)

    Botcheva K.; McCorkle S. R.; McCombie W. R.; Dunn J. J.; Anderson C. W.

    2011-12-15

    We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.

  19. MYSTERIES OF THE HUMAN FETUS REVEALED.

    Science.gov (United States)

    Sandman, Curt A

    2015-09-01

    The impressive program of research from the DiPietro laboratory succeeds in its aim to document the ontogeny of human fetal neurobehavioral development. From studies of great depth and breadth, and wielding creative methods of assessment, DiPietro et al. open a window into the largely inaccessible developing human fetal brain. This commentary, with reference to the seminal cardiovascular studies of the Laceys, supports the measures of the fetal heart to index fetal well-being and to provide evidence of stimulus processing. A separate case is made that the DiPietro program provides unique and invaluable information for assessing the influential Developmental Origins of Health and Disease or Fetal Programming Models. The goal of these models, to predict or understand the influences of early experience or response patterns on later postnatal life, is identical to the ultimate goal of the DiPietro program. Because human fetal behavior is uncontaminated by socialization or parenting or peers, it may be the best reflection of fetal exposures. The remarkable neurobehavioral profiles generated by the DiPietro program can make a critical contribution to the Fetal Programming Model in terms of sensitive and critical periods of nervous system vulnerability and to specify gestational periods of neurobehavioral risk. © 2015 The Society for Research in Child Development, Inc.

  20. The Population Genomics of Sunflowers and Genomic Determinants of Protein Evolution Revealed by RNAseq

    Directory of Open Access Journals (Sweden)

    Loren H. Rieseberg

    2012-10-01

    Full Text Available Few studies have investigated the causes of evolutionary rate variation among plant nuclear genes, especially in recently diverged species still capable of hybridizing in the wild. The recent advent of Next Generation Sequencing (NGS permits investigation of genome wide rates of protein evolution and the role of selection in generating and maintaining divergence. Here, we use individual whole-transcriptome sequencing (RNAseq to refine our understanding of the population genomics of wild species of sunflowers (Helianthus spp. and the factors that affect rates of protein evolution. We aligned 35 GB of transcriptome sequencing data and identified 433,257 polymorphic sites (SNPs in a reference transcriptome comprising 16,312 genes. Using SNP markers, we identified strong population clustering largely corresponding to the three species analyzed here (Helianthus annuus, H. petiolaris, H. debilis, with one distinct early generation hybrid. Then, we calculated the proportions of adaptive substitution fixed by selection (alpha and identified gene ontology categories with elevated values of alpha. The “response to biotic stimulus” category had the highest mean alpha across the three interspecific comparisons, implying that natural selection imposed by other organisms plays an important role in driving protein evolution in wild sunflowers. Finally, we examined the relationship between protein evolution (dN/dS ratio and several genomic factors predicted to co-vary with protein evolution (gene expression level, divergence and specificity, genetic divergence [FST], and nucleotide diversity pi. We find that variation in rates of protein divergence was correlated with gene expression level and specificity, consistent with results from a broad range of taxa and timescales. This would in turn imply that these factors govern protein evolution both at a microevolutionary and macroevolutionary timescale. Our results contribute to a general understanding of the

  1. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  2. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments

    Science.gov (United States)

    Trojan, Daniela; Roux, Simon; Herbold, Craig; Rattei, Thomas; Woebken, Dagmar

    2018-01-01

    Summary Members of the phylum Acidobacteria are abundant and ubiquitous across soils. We performed a large‐scale comparative genome analysis spanning subdivisions 1, 3, 4, 6, 8 and 23 (n = 24) with the goal to identify features to help explain their prevalence in soils and understand their ecophysiology. Our analysis revealed that bacteriophage integration events along with transposable and mobile elements influenced the structure and plasticity of these genomes. Low‐ and high‐affinity respiratory oxygen reductases were detected in multiple genomes, suggesting the capacity for growing across different oxygen gradients. Among many genomes, the capacity to use a diverse collection of carbohydrates, as well as inorganic and organic nitrogen sources (such as via extracellular peptidases), was detected – both advantageous traits in environments with fluctuating nutrient environments. We also identified multiple soil acidobacteria with the potential to scavenge atmospheric concentrations of H2, now encompassing mesophilic soil strains within the subdivision 1 and 3, in addition to a previously identified thermophilic strain in subdivision 4. This large‐scale acidobacteria genome analysis reveal traits that provide genomic, physiological and metabolic versatility, presumably allowing flexibility and versatility in the challenging and fluctuating soil environment. PMID:29327410

  3. Adaptations to a Subterranean Environment and Longevity Revealed by the Analysis of Mole Rat Genomes

    Directory of Open Access Journals (Sweden)

    Xiaodong Fang

    2014-09-01

    Full Text Available Subterranean mammals spend their lives in dark, unventilated environments that are rich in carbon dioxide and ammonia and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber. Comparative genome analyses, along with the transcriptomes of related subterranean rodents, revealed candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, an aberrant melatonin system, pain insensitivity, and unique processing of 28S rRNA. Together, these genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance, and longevity.

  4. Human tears reveal insights into corneal neovascularization.

    Science.gov (United States)

    Zakaria, Nadia; Van Grasdorff, Sigi; Wouters, Kristien; Rozema, Jos; Koppen, Carina; Lion, Eva; Cools, Nathalie; Berneman, Zwi; Tassignon, Marie-José

    2012-01-01

    Corneal neovascularization results from the encroachment of blood vessels from the surrounding conjunctiva onto the normally avascular cornea. The aim of this study is to identify factors in human tears that are involved in development and/or maintenance of corneal neovascularization in humans. This could allow development of diagnostic tools for monitoring corneal neovascularization and combination monoclonal antibody therapies for its treatment. In an observational case-control study we enrolled a total of 12 patients with corneal neovascularization and 10 healthy volunteers. Basal tears along with reflex tears from the inferior fornix, superior fornix and using a corneal bath were collected along with blood serum samples. From all patients, ocular surface photographs were taken. Concentrations of the pro-angiogenic cytokines interleukin (IL)-6, IL-8, Vascular Endothelial Growth Factor (VEGF), Monocyte Chemoattractant Protein 1 (MCP-1) and Fas Ligand (FasL) were determined in blood and tear samples using a flow cytometric multiplex assay. Our results show that the concentration of pro-angiogenic cytokines in human tears are significantly higher compared to their concentrations in serum, with highest levels found in basal tears. Interestingly, we could detect a significantly higher concentration of IL- 6, IL-8 and VEGF in localized corneal tears of patients with neovascularized corneas when compared to the control group. This is the first study of its kind demonstrating a significant difference of defined factors in tears from patients with neovascularized corneas as compared to healthy controls. These results provide the basis for future research using animal models to further substantiate the role of these cytokines in the establishment and maintenance of corneal neovascularization.

  5. High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model.

    Directory of Open Access Journals (Sweden)

    Chiao-Ling Lo

    2016-08-01

    Full Text Available Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP. This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross resulted in small haplotype blocks (HB with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS, were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50% of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284 and intronic regions (169 with the least in exon's (4, suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a, excitatory receptors (Grin2a, Gria3, Grip1, neurotransmitters (Pomc, and synapses (Snap29. This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits.

  6. High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model.

    Science.gov (United States)

    Lo, Chiao-Ling; Lossie, Amy C; Liang, Tiebing; Liu, Yunlong; Xuei, Xiaoling; Lumeng, Lawrence; Zhou, Feng C; Muir, William M

    2016-08-01

    Investigations on the influence of nature vs. nurture on Alcoholism (Alcohol Use Disorder) in human have yet to provide a clear view on potential genomic etiologies. To address this issue, we sequenced a replicated animal model system bidirectionally-selected for alcohol preference (AP). This model is uniquely suited to map genetic effects with high reproducibility, and resolution. The origin of the rat lines (an 8-way cross) resulted in small haplotype blocks (HB) with a corresponding high level of resolution. We sequenced DNAs from 40 samples (10 per line of each replicate) to determine allele frequencies and HB. We achieved ~46X coverage per line and replicate. Excessive differentiation in the genomic architecture between lines, across replicates, termed signatures of selection (SS), were classified according to gene and region. We identified SS in 930 genes associated with AP. The majority (50%) of the SS were confined to single gene regions, the greatest numbers of which were in promoters (284) and intronic regions (169) with the least in exon's (4), suggesting that differences in AP were primarily due to alterations in regulatory regions. We confirmed previously identified genes and found many new genes associated with AP. Of those newly identified genes, several demonstrated neuronal function involved in synaptic memory and reward behavior, e.g. ion channels (Kcnf1, Kcnn3, Scn5a), excitatory receptors (Grin2a, Gria3, Grip1), neurotransmitters (Pomc), and synapses (Snap29). This study not only reveals the polygenic architecture of AP, but also emphasizes the importance of regulatory elements, consistent with other complex traits.

  7. Human genome project: revolutionizing biology through leveraging technology

    Science.gov (United States)

    Dahl, Carol A.; Strausberg, Robert L.

    1996-04-01

    The Human Genome Project (HGP) is an international project to develop genetic, physical, and sequence-based maps of the human genome. Since the inception of the HGP it has been clear that substantially improved technology would be required to meet the scientific goals, particularly in order to acquire the complete sequence of the human genome, and that these technologies coupled with the information forthcoming from the project would have a dramatic effect on the way biomedical research is performed in the future. In this paper, we discuss the state-of-the-art for genomic DNA sequencing, technological challenges that remain, and the potential technological paths that could yield substantially improved genomic sequencing technology. The impact of the technology developed from the HGP is broad-reaching and a discussion of other research and medical applications that are leveraging HGP-derived DNA analysis technologies is included. The multidisciplinary approach to the development of new technologies that has been successful for the HGP provides a paradigm for facilitating new genomic approaches toward understanding the biological role of functional elements and systems within the cell, including those encoded within genomic DNA and their molecular products.

  8. The human noncoding genome defined by genetic diversity.

    Science.gov (United States)

    di Iulio, Julia; Bartha, Istvan; Wong, Emily H M; Yu, Hung-Chun; Lavrenko, Victor; Yang, Dongchan; Jung, Inkyung; Hicks, Michael A; Shah, Naisha; Kirkness, Ewen F; Fabani, Martin M; Biggs, William H; Ren, Bing; Venter, J Craig; Telenti, Amalio

    2018-03-01

    Understanding the significance of genetic variants in the noncoding genome is emerging as the next challenge in human genomics. We used the power of 11,257 whole-genome sequences and 16,384 heptamers (7-nt motifs) to build a map of sequence constraint for the human species. This build differed substantially from traditional maps of interspecies conservation and identified regulatory elements among the most constrained regions of the genome. Using new Hi-C experimental data, we describe a strong pattern of coordination over 2 Mb where the most constrained regulatory elements associate with the most essential genes. Constrained regions of the noncoding genome are up to 52-fold enriched for known pathogenic variants as compared to unconstrained regions (21-fold when compared to the genome average). This map of sequence constraint across thousands of individuals is an asset to help interpret noncoding elements in the human genome, prioritize variants and reconsider gene units at a larger scale.

  9. Population genetic inference from personal genome data: impact of ancestry and admixture on human genomic variation.

    Science.gov (United States)

    Kidd, Jeffrey M; Gravel, Simon; Byrnes, Jake; Moreno-Estrada, Andres; Musharoff, Shaila; Bryc, Katarzyna; Degenhardt, Jeremiah D; Brisbin, Abra; Sheth, Vrunda; Chen, Rong; McLaughlin, Stephen F; Peckham, Heather E; Omberg, Larsson; Bormann Chung, Christina A; Stanley, Sarah; Pearlstein, Kevin; Levandowsky, Elizabeth; Acevedo-Acevedo, Suehelay; Auton, Adam; Keinan, Alon; Acuña-Alonzo, Victor; Barquera-Lozano, Rodrigo; Canizales-Quinteros, Samuel; Eng, Celeste; Burchard, Esteban G; Russell, Archie; Reynolds, Andy; Clark, Andrew G; Reese, Martin G; Lincoln, Stephen E; Butte, Atul J; De La Vega, Francisco M; Bustamante, Carlos D

    2012-10-05

    Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas-70% of the European ancestry in today's African Americans dates back to European gene flow happening only 7-8 generations ago. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Genome-wide analysis reveals the vacuolar pH-stat of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Christopher L Brett

    Full Text Available Protons, the smallest and most ubiquitous of ions, are central to physiological processes. Transmembrane proton gradients drive ATP synthesis, metabolite transport, receptor recycling and vesicle trafficking, while compartmental pH controls enzyme function. Despite this fundamental importance, the mechanisms underlying pH homeostasis are not entirely accounted for in any organelle or organism. We undertook a genome-wide survey of vacuole pH (pH(v in 4,606 single-gene deletion mutants of Saccharomyces cerevisiae under control, acid and alkali stress conditions to reveal the vacuolar pH-stat. Median pH(v (5.27±0.13 was resistant to acid stress (5.28±0.14 but shifted significantly in response to alkali stress (5.83±0.13. Of 107 mutants that displayed aberrant pH(v under more than one external pH condition, functional categories of transporters, membrane biogenesis and trafficking machinery were significantly enriched. Phospholipid flippases, encoded by the family of P4-type ATPases, emerged as pH regulators, as did the yeast ortholog of Niemann Pick Type C protein, implicated in sterol trafficking. An independent genetic screen revealed that correction of pH(v dysregulation in a neo1(ts mutant restored viability whereas cholesterol accumulation in human NPC1(-/- fibroblasts diminished upon treatment with a proton ionophore. Furthermore, while it is established that lumenal pH affects trafficking, this study revealed a reciprocal link with many mutants defective in anterograde pathways being hyperacidic and retrograde pathway mutants with alkaline vacuoles. In these and other examples, pH perturbations emerge as a hitherto unrecognized phenotype that may contribute to the cellular basis of disease and offer potential therapeutic intervention through pH modulation.

  11. Megabase replication domains along the human genome: relation to chromatin structure and genome organisation.

    Science.gov (United States)

    Audit, Benjamin; Zaghloul, Lamia; Baker, Antoine; Arneodo, Alain; Chen, Chun-Long; d'Aubenton-Carafa, Yves; Thermes, Claude

    2013-01-01

    In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.

  12. Chromosomal clustering of a human transcriptome reveals regulatory background

    Directory of Open Access Journals (Sweden)

    Purmann Antje

    2005-09-01

    Full Text Available Abstract Background There has been much evidence recently for a link between transcriptional regulation and chromosomal gene order, but the relationship between genomic organization, regulation and gene function in higher eukaryotes remains to be precisely defined. Results Here, we present evidence for organization of a large proportion of a human transcriptome into gene clusters throughout the genome, which are partly regulated by the same transcription factors, share biological functions and are characterized by non-housekeeping genes. This analysis was based on the cardiac transcriptome identified by our genome-wide array analysis of 55 human heart samples. We found 37% of these genes to be arranged mainly in adjacent pairs or triplets. A significant number of pairs of adjacent genes are putatively regulated by common transcription factors (p = 0.02. Furthermore, these gene pairs share a significant number of GO functional classification terms. We show that the human cardiac transcriptome is organized into many small clusters across the whole genome, rather than being concentrated in a few larger clusters. Conclusion Our findings suggest that genes expressed in concert are organized in a linear arrangement for coordinated regulation. Determining the relationship between gene arrangement, regulation and nuclear organization as well as gene function will have broad biological implications.

  13. Novel mouse model recapitulates genome and transcriptome alterations in human colorectal carcinomas.

    Science.gov (United States)

    McNeil, Nicole E; Padilla-Nash, Hesed M; Buishand, Floryne O; Hue, Yue; Ried, Thomas

    2017-03-01

    Human colorectal carcinomas are defined by a nonrandom distribution of genomic imbalances that are characteristic for this disease. Often, these imbalances affect entire chromosomes. Understanding the role of these aneuploidies for carcinogenesis is of utmost importance. Currently, established transgenic mice do not recapitulate the pathognonomic genome aberration profile of human colorectal carcinomas. We have developed a novel model based on the spontaneous transformation of murine colon epithelial cells. During this process, cells progress through stages of pre-immortalization, immortalization and, finally, transformation, and result in tumors when injected into immunocompromised mice. We analyzed our model for genome and transcriptome alterations using ArrayCGH, spectral karyotyping (SKY), and array based gene expression profiling. ArrayCGH revealed a recurrent pattern of genomic imbalances. These results were confirmed by SKY. Comparing these imbalances with orthologous maps of human chromosomes revealed a remarkable overlap. We observed focal deletions of the tumor suppressor genes Trp53 and Cdkn2a/p16. High-level focal genomic amplification included the locus harboring the oncogene Mdm2, which was confirmed by FISH in the form of double minute chromosomes. Array-based global gene expression revealed distinct differences between the sequential steps of spontaneous transformation. Gene expression changes showed significant similarities with human colorectal carcinomas. Pathways most prominently affected included genes involved in chromosomal instability and in epithelial to mesenchymal transition. Our novel mouse model therefore recapitulates the most prominent genome and transcriptome alterations in human colorectal cancer, and might serve as a valuable tool for understanding the dynamic process of tumorigenesis, and for preclinical drug testing. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Genome sequencing and comparative genomics analysis revealed pathogenic potential in Penicillium capsulatum as a novel fungal pathogen belonging to Eurotiales

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2016-10-01

    Full Text Available Penicillium capsulatum is a rare Penicillium species used in paper manufacturing, but recently it has been reported to cause invasive infection. To research the pathogenicity of the clinical Penicillium strain, we sequenced the genomes and transcriptome of the clinical and environmental strains of P. capsulatum. Comparative analyses of these two P. capsulatum strains and close related strains belonging to Eurotiales were performed. The assembled genome sizes of P. capsulatum are approximately 34.4 Mbp in length and encode 11,080 predicted genes. The different isolates of P. capsulatum are highly similar, with the exception of several unique genes, INDELs or SNP in the genes coding for glycosyl hydrolases, amino acid transporters and circumsporozoite protein. A phylogenomic analysis was performed based on the whole genome data of 38 strains belonging to Eurotiales. By comparing the whole genome sequences and the virulence-related genes from 20 important related species, including fungal pathogens and non-human pathogens belonging to Eurotiales, we found meaningful pathogenicity characteristics between P. capsulatum and its closely related species. Our research indicated that P. capsulatum may be a neglected opportunistic pathogen. This study is beneficial for mycologists, geneticists and epidemiologists to achieve a deeper understanding of the genetic basis of the role of P. capsulatum as a newly reported fungal pathogen.

  15. Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome.

    Directory of Open Access Journals (Sweden)

    Keyan Zhao

    2010-05-01

    Full Text Available The domestication of Asian rice (Oryza sativa was a complex process punctuated by episodes of introgressive hybridization among and between subpopulations. Deep genetic divergence between the two main varietal groups (Indica and Japonica suggests domestication from at least two distinct wild populations. However, genetic uniformity surrounding key domestication genes across divergent subpopulations suggests cultural exchange of genetic material among ancient farmers.In this study, we utilize a novel 1,536 SNP panel genotyped across 395 diverse accessions of O. sativa to study genome-wide patterns of polymorphism, to characterize population structure, and to infer the introgression history of domesticated Asian rice. Our population structure analyses support the existence of five major subpopulations (indica, aus, tropical japonica, temperate japonica and GroupV consistent with previous analyses. Our introgression analysis shows that most accessions exhibit some degree of admixture, with many individuals within a population sharing the same introgressed segment due to artificial selection. Admixture mapping and association analysis of amylose content and grain length illustrate the potential for dissecting the genetic basis of complex traits in domesticated plant populations.Genes in these regions control a myriad of traits including plant stature, blast resistance, and amylose content. These analyses highlight the power of population genomics in agricultural systems to identify functionally important regions of the genome and to decipher the role of human-directed breeding in refashioning the genomes of a domesticated species.

  16. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea

    NARCIS (Netherlands)

    Olsen, Jeanine; Rouzé, Pierre; Verhelst, Bram; Lin, Yao-Cheng; Bayer, Till; Collen, Jonas; Dattolo, Emanuela; De Paoli, Emanuele; Dittami, Simon; Maumus, Florian; Michel, Gurvan; Kersting, Anna; Lauritano, Chiara; Lohaus, Rolf; Töpel, Mats; Tonon, Thierry; Vanneste, Kevin; Amirebrahimi, Mojgan; Brakel, Janina; Boström, Christoffer; Chovatia, Mansi; Grimwood, Jane; Jenkins, Jerry W; Jueterbock, Alexander; Mraz, Amy; Stam, Wytze T; Tice, Hope; Bornberg-Bauer, Erich; Green, Pamela J; Pearson, Gareth A; Procaccini, Gabriele; Duarte, Carlos M; Schmutz, Jeremy; Reusch, Thorsten B H; Van de Peer, Yves

    2016-01-01

    Seagrasses colonized the sea on at least three independent occasions to form the basis of one of the most productive and widespread coastal ecosystems on the planet. Here we report the genome of Zostera marina (L.), the first, to our knowledge, marine angiosperm to be fully sequenced. This reveals

  17. Human genome and open source: balancing ethics and business.

    Science.gov (United States)

    Marturano, Antonio

    2011-01-01

    The Human Genome Project has been completed thanks to a massive use of computer techniques, as well as the adoption of the open-source business and research model by the scientists involved. This model won over the proprietary model and allowed a quick propagation and feedback of research results among peers. In this paper, the author will analyse some ethical and legal issues emerging by the use of such computer model in the Human Genome property rights. The author will argue that the Open Source is the best business model, as it is able to balance business and human rights perspectives.

  18. Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks.

    Science.gov (United States)

    Kang, Yu; Gu, Chaohao; Yuan, Lina; Wang, Yue; Zhu, Yanmin; Li, Xinna; Luo, Qibin; Xiao, Jingfa; Jiang, Daquan; Qian, Minping; Ahmed Khan, Aftab; Chen, Fei; Zhang, Zhang; Yu, Jun

    2014-11-25

    The prokaryotic pangenome partitions genes into core and dispensable genes. The order of core genes, albeit assumed to be stable under selection in general, is frequently interrupted by horizontal gene transfer and rearrangement, but how a core-gene-defined genome maintains its stability or flexibility remains to be investigated. Based on data from 30 species, including 425 genomes from six phyla, we grouped core genes into syntenic blocks in the context of a pangenome according to their stability across multiple isolates. A subset of the core genes, often species specific and lineage associated, formed a core-gene-defined genome organizational framework (cGOF). Such cGOFs are either single segmental (one-third of the species analyzed) or multisegmental (the rest). Multisegment cGOFs were further classified into symmetric or asymmetric according to segment orientations toward the origin-terminus axis. The cGOFs in Gram-positive species are exclusively symmetric and often reversible in orientation, as opposed to those of the Gram-negative bacteria, which are all asymmetric and irreversible. Meanwhile, all species showing strong strand-biased gene distribution contain symmetric cGOFs and often specific DnaE (α subunit of DNA polymerase III) isoforms. Furthermore, functional evaluations revealed that cGOF genes are hub associated with regard to cellular activities, and the stability of cGOF provides efficient indexes for scaffold orientation as demonstrated by assembling virtual and empirical genome drafts. cGOFs show species specificity, and the symmetry of multisegmental cGOFs is conserved among taxa and constrained by DNA polymerase-centric strand-biased gene distribution. The definition of species-specific cGOFs provides powerful guidance for genome assembly and other structure-based analysis. Prokaryotic genomes are frequently interrupted by horizontal gene transfer (HGT) and rearrangement. To know whether there is a set of genes not only conserved in position

  19. From hacking the human genome to editing organs.

    Science.gov (United States)

    Tobita, Takamasa; Guzman-Lepe, Jorge; Collin de l'Hortet, Alexandra

    2015-01-01

    In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies.

  20. A periodic pattern of SNPs in the human genome

    DEFF Research Database (Denmark)

    Madsen, Bo Eskerod; Villesen, Palle; Wiuf, Carsten

    2007-01-01

    By surveying a filtered, high-quality set of SNPs in the human genome, we have found that SNPs positioned 1, 2, 4, 6, or 8 bp apart are more frequent than SNPs positioned 3, 5, 7, or 9 bp apart. The observed pattern is not restricted to genomic regions that are known to cause sequencing...... periodic DNA. Our results suggest that not all SNPs in the human genome are created by independent single nucleotide mutations, and that care should be taken in analysis of SNPs from periodic DNA. The latter may have important consequences for SNP and association studies....... or alignment errors, for example, transposable elements (SINE, LINE, and LTR), tandem repeats, and large duplicated regions. However, we found that the pattern is almost entirely confined to what we define as "periodic DNA." Periodic DNA is a genomic region with a high degree of periodicity in nucleotide usage...

  1. The Methanosarcina barkeri genome: comparative analysis withMethanosarcina acetivorans and Methanosarcina mazei reveals extensiverearrangement within methanosarcinal genomes

    Energy Technology Data Exchange (ETDEWEB)

    Maeder, Dennis L.; Anderson, Iain; Brettin, Thomas S.; Bruce,David C.; Gilna, Paul; Han, Cliff S.; Lapidus, Alla; Metcalf, William W.; Saunders, Elizabeth; Tapia, Roxanne; Sowers, Kevin R.

    2006-05-19

    We report here a comparative analysis of the genome sequence of Methanosarcina barkeri with those of Methanosarcina acetivorans and Methanosarcina mazei. All three genomes share a conserved double origin of replication and many gene clusters. M. barkeri is distinguished by having an organization that is well conserved with respect to the other Methanosarcinae in the region proximal to the origin of replication with interspecies gene similarities as high as 95%. However it is disordered and marked by increased transposase frequency and decreased gene synteny and gene density in the proximal semi-genome. Of the 3680 open reading frames in M. barkeri, 678 had paralogs with better than 80% similarity to both M. acetivorans and M. mazei while 128 nonhypothetical orfs were unique (non-paralogous) amongst these species including a complete formate dehydrogenase operon, two genes required for N-acetylmuramic acid synthesis, a 14 gene gas vesicle cluster and a bacterial P450-specific ferredoxin reductase cluster not previously observed or characterized in this genus. A cryptic 36 kbp plasmid sequence was detected in M. barkeri that contains an orc1 gene flanked by a presumptive origin of replication consisting of 38 tandem repeats of a 143 nt motif. Three-way comparison of these genomes reveals differing mechanisms for the accrual of changes. Elongation of the large M. acetivorans is the result of multiple gene-scale insertions and duplications uniformly distributed in that genome, while M. barkeri is characterized by localized inversions associated with the loss of gene content. In contrast, the relatively short M. mazei most closely approximates the ancestral organizational state.

  2. Comparative study of human mitochondrial proteome reveals extensive protein subcellular relocalization after gene duplications

    Directory of Open Access Journals (Sweden)

    Huang Yong

    2009-11-01

    Full Text Available Abstract Background Gene and genome duplication is the principle creative force in evolution. Recently, protein subcellular relocalization, or neolocalization was proposed as one of the mechanisms responsible for the retention of duplicated genes. This hypothesis received support from the analysis of yeast genomes, but has not been tested thoroughly on animal genomes. In order to evaluate the importance of subcellular relocalizations for retention of duplicated genes in animal genomes, we systematically analyzed nuclear encoded mitochondrial proteins in the human genome by reconstructing phylogenies of mitochondrial multigene families. Results The 456 human mitochondrial proteins selected for this study were clustered into 305 gene families including 92 multigene families. Among the multigene families, 59 (64% consisted of both mitochondrial and cytosolic (non-mitochondrial proteins (mt-cy families while the remaining 33 (36% were composed of mitochondrial proteins (mt-mt families. Phylogenetic analyses of mt-cy families revealed three different scenarios of their neolocalization following gene duplication: 1 relocalization from mitochondria to cytosol, 2 from cytosol to mitochondria and 3 multiple subcellular relocalizations. The neolocalizations were most commonly enabled by the gain or loss of N-terminal mitochondrial targeting signals. The majority of detected subcellular relocalization events occurred early in animal evolution, preceding the evolution of tetrapods. Mt-mt protein families showed a somewhat different pattern, where gene duplication occurred more evenly in time. However, for both types of protein families, most duplication events appear to roughly coincide with two rounds of genome duplications early in vertebrate evolution. Finally, we evaluated the effects of inaccurate and incomplete annotation of mitochondrial proteins and found that our conclusion of the importance of subcellular relocalization after gene duplication on

  3. A genome-wide map of hyper-edited RNA reveals numerous new sites

    Science.gov (United States)

    Porath, Hagit T.; Carmi, Shai; Levanon, Erez Y.

    2014-01-01

    Adenosine-to-inosine editing is one of the most frequent post-transcriptional modifications, manifested as A-to-G mismatches when comparing RNA sequences with their source DNA. Recently, a number of RNA-seq data sets have been screened for the presence of A-to-G editing, and hundreds of thousands of editing sites identified. Here we show that existing screens missed the majority of sites by ignoring reads with excessive (‘hyper’) editing that do not easily align to the genome. We show that careful alignment and examination of the unmapped reads in RNA-seq studies reveal numerous new sites, usually many more than originally discovered, and in precisely those regions that are most heavily edited. Specifically, we discover 327,096 new editing sites in the heavily studied Illumina Human BodyMap data and more than double the number of detected sites in several published screens. We also identify thousands of new sites in mouse, rat, opossum and fly. Our results establish that hyper-editing events account for the majority of editing sites. PMID:25158696

  4. A genome-wide study reveals rare CNVs exclusive to extreme phenotypes of Alzheimer disease.

    Science.gov (United States)

    Rovelet-Lecrux, Anne; Legallic, Solenn; Wallon, David; Flaman, Jean-Michel; Martinaud, Olivier; Bombois, Stéphanie; Rollin-Sillaire, Adeline; Michon, Agnès; Le Ber, Isabelle; Pariente, Jérémie; Puel, Michèle; Paquet, Claire; Croisile, Bernard; Thomas-Antérion, Catherine; Vercelletto, Martine; Lévy, Richard; Frébourg, Thierry; Hannequin, Didier; Campion, Dominique

    2012-06-01

    Studying rare extreme forms of Alzheimer disease (AD) may prove to be a useful strategy in identifying new genes involved in monogenic determinism of AD. Amyloid precursor protein (APP), PSEN1, and PSEN2 mutations account for only 85% of autosomal dominant early-onset AD (ADEOAD) families. We hypothesised that rare copy number variants (CNVs) could be involved in ADEOAD families without mutations in known genes, as well as in rare sporadic young-onset AD cases. Using high-resolution array comparative genomic hybridisation, we assessed the presence of rare CNVs in 21 unrelated ADEOAD cases, having no alteration on known genes, and 12 sporadic AD cases, with an age of onset younger than 55 years. The analysis revealed the presence of 7 singleton CNVs (4 in ADEOAD and 3 in sporadic cases) absent in 1078 controls and 912 late-onset AD cases. Strikingly, 4 out of 7 rearrangements target genes (KLK6, SLC30A3, MEOX2, and FPR2) encoding proteins that are tightly related to amyloid-β peptide metabolism or signalling. Although these variants are individually rare and restricted to particular subgroups of patients, these findings support the causal role, in human pathology, of a set of genes coding for molecules suspected for a long time to modify Aβ metabolism or signalling, and for which animal or cellular models have already been developed.

  5. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  6. National human genome projects: an update and an agenda

    OpenAIRE

    An, Joon Yong

    2017-01-01

    Population genetic and human genetic studies are being accelerated with genome technology and data sharing. Accordingly, in the past 10 years, several countries have initiated genetic research using genome technology and identified the genetic architecture of the ethnic groups living in the corresponding country or suggested the genetic foundation of a social phenomenon. Genetic research has been conducted from epidemiological studies that previously described the health or disease conditions...

  7. Saccharomyces genome database informs human biology

    OpenAIRE

    Skrzypek, Marek S; Nash, Robert S; Wong, Edith D; MacPherson, Kevin A; Hellerstedt, Sage T; Engel, Stacia R; Karra, Kalpana; Weng, Shuai; Sheppard, Travis K; Binkley, Gail; Simison, Matt; Miyasato, Stuart R; Cherry, J Michael

    2017-01-01

    Abstract The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is an expertly curated database of literature-derived functional information for the model organism budding yeast, Saccharomyces cerevisiae. SGD constantly strives to synergize new types of experimental data and bioinformatics predictions with existing data, and to organize them into a comprehensive and up-to-date information resource. The primary mission of SGD is to facilitate research into the biology of yeast and...

  8. Whole genome sequencing revealed host adaptation-focused genomic plasticity of pathogenic Leptospira

    Science.gov (United States)

    Xu, Yinghua; Zhu, Yongzhang; Wang, Yuezhu; Chang, Yung-Fu; Zhang, Ying; Jiang, Xiugao; Zhuang, Xuran; Zhu, Yongqiang; Zhang, Jinlong; Zeng, Lingbing; Yang, Minjun; Li, Shijun; Wang, Shengyue; Ye, Qiang; Xin, Xiaofang; Zhao, Guoping; Zheng, Huajun; Guo, Xiaokui; Wang, Junzhi

    2016-01-01

    Leptospirosis, caused by pathogenic Leptospira spp., has recently been recognized as an emerging infectious disease worldwide. Despite its severity and global importance, knowledge about the molecular pathogenesis and virulence evolution of Leptospira spp. remains limited. Here we sequenced and analyzed 102 isolates representing global sources. A high genomic variability were observed among different Leptospira species, which was attributed to massive gene gain and loss events allowing for adaptation to specific niche conditions and changing host environments. Horizontal gene transfer and gene duplication allowed the stepwise acquisition of virulence factors in pathogenic Leptospira evolved from a recent common ancestor. More importantly, the abundant expansion of specific virulence-related protein families, such as metalloproteases-associated paralogs, were exclusively identified in pathogenic species, reflecting the importance of these protein families in the pathogenesis of leptospirosis. Our observations also indicated that positive selection played a crucial role on this bacteria adaptation to hosts. These novel findings may lead to greater understanding of the global diversity and virulence evolution of Leptospira spp. PMID:26833181

  9. The Douglas-Fir Genome Sequence Reveals Specialization of the Photosynthetic Apparatus in Pinaceae

    Directory of Open Access Journals (Sweden)

    David B. Neale

    2017-09-01

    Full Text Available A reference genome sequence for Pseudotsuga menziesii var. menziesii (Mirb. Franco (Coastal Douglas-fir is reported, thus providing a reference sequence for a third genus of the family Pinaceae. The contiguity and quality of the genome assembly far exceeds that of other conifer reference genome sequences (contig N50 = 44,136 bp and scaffold N50 = 340,704 bp. Incremental improvements in sequencing and assembly technologies are in part responsible for the higher quality reference genome, but it may also be due to a slightly lower exact repeat content in Douglas-fir vs. pine and spruce. Comparative genome annotation with angiosperm species reveals gene-family expansion and contraction in Douglas-fir and other conifers which may account for some of the major morphological and physiological differences between the two major plant groups. Notable differences in the size of the NDH-complex gene family and genes underlying the functional basis of shade tolerance/intolerance were observed. This reference genome sequence not only provides an important resource for Douglas-fir breeders and geneticists but also sheds additional light on the evolutionary processes that have led to the divergence of modern angiosperms from the more ancient gymnosperms.

  10. Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth

    Directory of Open Access Journals (Sweden)

    Shakhova VV

    2008-05-01

    Full Text Available Abstract Background Bifidobacteria are frequently proposed to be associated with good intestinal health primarily because of their overriding dominance in the feces of breast fed infants. However, clinical feeding studies with exogenous bifidobacteria show they don't remain in the intestine, suggesting they may lose competitive fitness when grown outside the gut. Results To further the understanding of genetic attenuation that may be occurring in bifidobacteria cultures, we obtained the complete genome sequence of an intestinal isolate, Bifidobacterium longum DJO10A that was minimally cultured in the laboratory, and compared it to that of a culture collection strain, B. longum NCC2705. This comparison revealed colinear genomes that exhibited high sequence identity, except for the presence of 17 unique DNA regions in strain DJO10A and six in strain NCC2705. While the majority of these unique regions encoded proteins of diverse function, eight from the DJO10A genome and one from NCC2705, encoded gene clusters predicted to be involved in diverse traits pertinent to the human intestinal environment, specifically oligosaccharide and polyol utilization, arsenic resistance and lantibiotic production. Seven of these unique regions were suggested by a base deviation index analysis to have been precisely deleted from strain NCC2705 and this is substantiated by a DNA remnant from within one of the regions still remaining in the genome of NCC2705 at the same locus. This targeted loss of genomic regions was experimentally validated when growth of the intestinal B. longum in the laboratory for 1,000 generations resulted in two large deletions, one in a lantibiotic encoding region, analogous to a predicted deletion event for NCC2705. A simulated fecal growth study showed a significant reduced competitive ability of this deletion strain against Clostridium difficile and E. coli. The deleted region was between two IS30 elements which were experimentally

  11. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation.

    Science.gov (United States)

    Yu, Dong; Hui, Yiming; Zai, Xiaodong; Xu, Junjie; Liang, Long; Wang, Bingxiang; Yue, Junjie; Li, Shanhu

    2015-01-01

    The Brucella abortus strain 104M, a spontaneously attenuated strain, has been used as a vaccine strain in humans against brucellosis for 6 decades in China. Despite many studies, the molecular mechanisms that cause the attenuation are still unclear. Here, we determined the whole-genome sequence of 104M and conducted a comprehensive comparative analysis against the whole genome sequences of the virulent strain, A13334, and other reference strains. This analysis revealed a highly similar genome structure between 104M and A13334. The further comparative genomic analysis between 104M and A13334 revealed a set of genes missing in 104M. Some of these genes were identified to be directly or indirectly associated with virulence. Similarly, a set of mutations in the virulence-related genes was also identified, which may be related to virulence alteration. This study provides a set of candidate genes associated with virulence attenuation in B.abortus vaccine strain 104M.

  12. In the Beginning was the Genome: Genomics and the Bi-textuality of Human Existence.

    Science.gov (United States)

    Zwart, H A E Hub

    2018-04-01

    This paper addresses the cultural impact of genomics and the Human Genome Project (HGP) on human self-understanding. Notably, it addresses the claim made by Francis Collins (director of the HGP) that the genome is the language of God and the claim made by Max Delbrück (founding father of molecular life sciences research) that Aristotle must be credited with having predicted DNA as the soul that organises bio-matter. From a continental philosophical perspective I will argue that human existence results from a dialectical interaction between two types of texts: the language of molecular biology and the language of civilisation; the language of the genome and the language of our socio-cultural, symbolic ambiance. Whereas the former ultimately builds on the alphabets of genes and nucleotides, the latter is informed by primordial texts such as the Bible and the Quran. In applied bioethics deliberations on genomics, science is easily framed as liberating and progressive, religious world-views as conservative and restrictive (Zwart 1993). This paper focusses on the broader cultural ambiance of the debate to discern how the bi-textuality of human existence is currently undergoing a transition, as not only the physiological, but also the normative dimension is being reframed in biomolecular and terabyte terms.

  13. Genomic signatures of diet-related shifts during human origins.

    Science.gov (United States)

    Babbitt, Courtney C; Warner, Lisa R; Fedrigo, Olivier; Wall, Christine E; Wray, Gregory A

    2011-04-07

    There are numerous anthropological analyses concerning the importance of diet during human evolution. Diet is thought to have had a profound influence on the human phenotype, and dietary differences have been hypothesized to contribute to the dramatic morphological changes seen in modern humans as compared with non-human primates. Here, we attempt to integrate the results of new genomic studies within this well-developed anthropological context. We then review the current evidence for adaptation related to diet, both at the level of sequence changes and gene expression. Finally, we propose some ways in which new technologies can help identify specific genomic adaptations that have resulted in metabolic and morphological differences between humans and non-human primates.

  14. Beyond the human genome: Microbes, methaphors and what it means to be human in an interconnected post-genomic world

    NARCIS (Netherlands)

    Nerlich, B.; Hellsten, I.R.

    2009-01-01

    Four years after the completion of the Human Genome Project, the US National Institutes for Health launched the Human Microbiome Project on 19 December 2007. Using metaphor analysis, this article investigates reporting in English-language newspapers on advances in microbiomics from 2003 onwards,

  15. Sequencing of bovine herpesvirus 4 v.test strain reveals important genome features

    Directory of Open Access Journals (Sweden)

    Gillet Laurent

    2011-08-01

    Full Text Available Abstract Background Bovine herpesvirus 4 (BoHV-4 is a useful model for the human pathogenic gammaherpesviruses Epstein-Barr virus and Kaposi's Sarcoma-associated Herpesvirus. Although genome manipulations of this virus have been greatly facilitated by the cloning of the BoHV-4 V.test strain as a Bacterial Artificial Chromosome (BAC, the lack of a complete genome sequence for this strain limits its experimental use. Methods In this study, we have determined the complete sequence of BoHV-4 V.test strain by a pyrosequencing approach. Results The long unique coding region (LUR consists of 108,241 bp encoding at least 79 open reading frames and is flanked by several polyrepetitive DNA units (prDNA. As previously suggested, we showed that the prDNA unit located at the left prDNA-LUR junction (prDNA-G differs from the other prDNA units (prDNA-inner. Namely, the prDNA-G unit lacks the conserved pac-2 cleavage and packaging signal in its right terminal region. Based on the mechanisms of cleavage and packaging of herpesvirus genomes, this feature implies that only genomes bearing left and right end prDNA units are encapsulated into virions. Conclusions In this study, we have determined the complete genome sequence of the BAC-cloned BoHV-4 V.test strain and identified genome organization features that could be important in other herpesviruses.

  16. Recent adaptive events in human brain revealed by meta-analysis of positively selected genes.

    Directory of Open Access Journals (Sweden)

    Yue Huang

    Full Text Available BACKGROUND AND OBJECTIVES: Analysis of positively-selected genes can help us understand how human evolved, especially the evolution of highly developed cognitive functions. However, previous works have reached conflicting conclusions regarding whether human neuronal genes are over-represented among genes under positive selection. METHODS AND RESULTS: We divided positively-selected genes into four groups according to the identification approaches, compiling a comprehensive list from 27 previous studies. We showed that genes that are highly expressed in the central nervous system are enriched in recent positive selection events in human history identified by intra-species genomic scan, especially in brain regions related to cognitive functions. This pattern holds when different datasets, parameters and analysis pipelines were used. Functional category enrichment analysis supported these findings, showing that synapse-related functions are enriched in genes under recent positive selection. In contrast, immune-related functions, for instance, are enriched in genes under ancient positive selection revealed by inter-species coding region comparison. We further demonstrated that most of these patterns still hold even after controlling for genomic characteristics that might bias genome-wide identification of positively-selected genes including gene length, gene density, GC composition, and intensity of negative selection. CONCLUSION: Our rigorous analysis resolved previous conflicting conclusions and revealed recent adaptation of human brain functions.

  17. Whole genome sequencing of the monomorphic pathogen Mycobacterium bovis reveals local differentiation of cattle clinical isolates.

    Science.gov (United States)

    Lasserre, Moira; Fresia, Pablo; Greif, Gonzalo; Iraola, Gregorio; Castro-Ramos, Miguel; Juambeltz, Arturo; Nuñez, Álvaro; Naya, Hugo; Robello, Carlos; Berná, Luisa

    2018-01-02

    Bovine tuberculosis (bTB) poses serious risks to animal welfare and economy, as well as to public health as a zoonosis. Its etiological agent, Mycobacterium bovis, belongs to the Mycobacterium tuberculosis complex (MTBC), a group of genetically monomorphic organisms featured by a remarkably high overall nucleotide identity (99.9%). Indeed, this characteristic is of major concern for correct typing and determination of strain-specific traits based on sequence diversity. Due to its historical economic dependence on cattle production, Uruguay is deeply affected by the prevailing incidence of Mycobacterium bovis. With the world's highest number of cattle per human, and its intensive cattle production, Uruguay represents a particularly suited setting to evaluate genomic variability among isolates, and the diversity traits associated to this pathogen. We compared 186 genomes from MTBC strains isolated worldwide, and found a highly structured population in M. bovis. The analysis of 23 new M. bovis genomes, belonging to strains isolated in Uruguay evidenced three groups present in the country. Despite presenting an expected highly conserved genomic structure and sequence, these strains segregate into a clustered manner within the worldwide phylogeny. Analysis of the non-pe/ppe differential areas against a reference genome defined four main sources of variability, namely: regions of difference (RD), variable genes, duplications and novel genes. RDs and variant analysis segregated the strains into clusters that are concordant with their spoligotype identities. Due to its high homoplasy rate, spoligotyping failed to reflect the true genomic diversity among worldwide representative strains, however, it remains a good indicator for closely related populations. This study introduces a comprehensive population structure analysis of worldwide M. bovis isolates. The incorporation and analysis of 23 novel Uruguayan M. bovis genomes, sheds light onto the genomic diversity of this

  18. 78 FR 68856 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-11-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Nakamura, Ph.D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research...-402-0838. [[Page 68857

  19. The Echinococcus canadensis (G7) genome: a key knowledge of parasitic platyhelminth human diseases.

    Science.gov (United States)

    Maldonado, Lucas L; Assis, Juliana; Araújo, Flávio M Gomes; Salim, Anna C M; Macchiaroli, Natalia; Cucher, Marcela; Camicia, Federico; Fox, Adolfo; Rosenzvit, Mara; Oliveira, Guilherme; Kamenetzky, Laura

    2017-02-27

    The parasite Echinococcus canadensis (G7) (phylum Platyhelminthes, class Cestoda) is one of the causative agents of echinococcosis. Echinococcosis is a worldwide chronic zoonosis affecting humans as well as domestic and wild mammals, which has been reported as a prioritized neglected disease by the World Health Organisation. No genomic data, comparative genomic analyses or efficient therapeutic and diagnostic tools are available for this severe disease. The information presented in this study will help to understand the peculiar biological characters and to design species-specific control tools. We sequenced, assembled and annotated the 115-Mb genome of E. canadensis (G7). Comparative genomic analyses using whole genome data of three Echinococcus species not only confirmed the status of E. canadensis (G7) as a separate species but also demonstrated a high nucleotide sequences divergence in relation to E. granulosus (G1). The E. canadensis (G7) genome contains 11,449 genes with a core set of 881 orthologs shared among five cestode species. Comparative genomics revealed that there are more single nucleotide polymorphisms (SNPs) between E. canadensis (G7) and E. granulosus (G1) than between E. canadensis (G7) and E. multilocularis. This result was unexpected since E. canadensis (G7) and E. granulosus (G1) were considered to belong to the species complex E. granulosus sensu lato. We described SNPs in known drug targets and metabolism genes in the E. canadensis (G7) genome. Regarding gene regulation, we analysed three particular features: CpG island distribution along the three Echinococcus genomes, DNA methylation system and small RNA pathway. The results suggest the occurrence of yet unknown gene regulation mechanisms in Echinococcus. This is the first work that addresses Echinococcus comparative genomics. The resources presented here will promote the study of mechanisms of parasite development as well as new tools for drug discovery. The availability of a high

  20. Continued colonization of the human genome by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Miria Ricchetti

    2004-09-01

    Full Text Available Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4-6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA.

  1. Microbial genome-wide association studies: lessons from human GWAS.

    Science.gov (United States)

    Power, Robert A; Parkhill, Julian; de Oliveira, Tulio

    2017-01-01

    The reduced costs of sequencing have led to whole-genome sequences for a large number of microorganisms, enabling the application of microbial genome-wide association studies (GWAS). Given the successes of human GWAS in understanding disease aetiology and identifying potential drug targets, microbial GWAS are likely to further advance our understanding of infectious diseases. These advances include insights into pressing global health problems, such as antibiotic resistance and disease transmission. In this Review, we outline the methodologies of GWAS, the current state of the field of microbial GWAS, and how lessons from human GWAS can direct the future of the field.

  2. The human Genome project and the future of oncology

    International Nuclear Information System (INIS)

    Collins, Francis S.

    1996-01-01

    The Human Genome Project is an ambitious 15-year effort to devise maps and sequence of the 3-billion base pair human genome, including all 100,000 genes. The project is running ahead of schedule and under budget. Already the effects on progress in disease gene discovery have been dramatic, especially for cancer. The most appropriate uses of susceptibility testing for breast, ovarian, and colon cancer are being investigated in research protocols, and the need to prevent genetic discrimination in employment and health insurance is becoming more urgent. In the longer term, these gene discoveries are likely to usher in a new era of therapeutic molecular medicine

  3. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants

    Energy Technology Data Exchange (ETDEWEB)

    Rensing, Stefan A.; Lang, Daniel; Zimmer, Andreas D.; Terry, Astrid; Salamov, Asaf; Shapiro, Harris; Nishiyama, Tomaoki; Perroud, Pierre-Francois; Lindquist, Erika A.; Kamisugi, Yasuko; Tanahashi, Takako; Sakakibara, Keiko; Fujita, Tomomichi; Oishi, Kazuko; Shin, Tadasu; Kuroki, Yoko; Toyoda, Atsushi; Suzuki, Yutaka; Hashimoto, Shin-ichi; Yamaguchi, Kazuo; Sugano, Sumio; Kohara, Yuji; Fujiyama, Asao; Anterola, Aldwin; Aoki, Setsuyuki; Ashton, Neil; Barbazuk, W. Brad; Barker, Elizabeth; Bennetzen, Jeffrey L.; Blankenship, Robert; Cho, Sung Hyun; Dutcher, Susan K.; Estelle, Mark; Fawcett, Jeffrey A.; Gundlach, Heidrum; Hanada, Kousuke; Melkozernov, Alexander; Murata, Takashi; Nelson, David R.; Pils, Birgit; Prigge, Michael; Reiss, Bernd; Renner, Tanya; Rombauts, Stephane; Rushton, Paul J.; Sanderfoot, Anton; Schween, Gabriele; Shiu, Shin-Han; Stueber, Kurt; Theodoulou, Frederica L.; Tu, Hank; Van de Peer, Yves; Verrier, Paul J.; Waters, Elizabeth; Wood, Andrew; Yang, Lixing; Cove, David; Cuming, Andrew C.; Hasebe, Mitsayasu; Lucas, Susan; Mishler, Brent D.; Reski, Ralf; Grigoriev, Igor V.; Quatrano, Rakph S.; Boore, Jeffrey L.

    2007-09-18

    We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.

  4. Transcriptome sequencing from diverse human populations reveals differentiated regulatory architecture.

    Directory of Open Access Journals (Sweden)

    Alicia R Martin

    2014-08-01

    Full Text Available Large-scale sequencing efforts have documented extensive genetic variation within the human genome. However, our understanding of the origins, global distribution, and functional consequences of this variation is far from complete. While regulatory variation influencing gene expression has been studied within a handful of populations, the breadth of transcriptome differences across diverse human populations has not been systematically analyzed. To better understand the spectrum of gene expression variation, alternative splicing, and the population genetics of regulatory variation in humans, we have sequenced the genomes, exomes, and transcriptomes of EBV transformed lymphoblastoid cell lines derived from 45 individuals in the Human Genome Diversity Panel (HGDP. The populations sampled span the geographic breadth of human migration history and include Namibian San, Mbuti Pygmies of the Democratic Republic of Congo, Algerian Mozabites, Pathan of Pakistan, Cambodians of East Asia, Yakut of Siberia, and Mayans of Mexico. We discover that approximately 25.0% of the variation in gene expression found amongst individuals can be attributed to population differences. However, we find few genes that are systematically differentially expressed among populations. Of this population-specific variation, 75.5% is due to expression rather than splicing variability, and we find few genes with strong evidence for differential splicing across populations. Allelic expression analyses indicate that previously mapped common regulatory variants identified in eight populations from the International Haplotype Map Phase 3 project have similar effects in our seven sampled HGDP populations, suggesting that the cellular effects of common variants are shared across diverse populations. Together, these results provide a resource for studies analyzing functional differences across populations by estimating the degree of shared gene expression, alternative splicing, and

  5. Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction

    Directory of Open Access Journals (Sweden)

    Audic Stéphane

    2009-04-01

    Full Text Available Abstract Background The Rickettsia genus includes 25 validated species, 17 of which are proven human pathogens. Among these, the pathogenicity varies greatly, from the highly virulent R. prowazekii, which causes epidemic typhus and kills its arthropod host, to the mild pathogen R. africae, the agent of African tick-bite fever, which does not affect the fitness of its tick vector. Results We evaluated the clonality of R. africae in 70 patients and 155 ticks, and determined its genome sequence, which comprises a circular chromosome of 1,278,540 bp including a tra operon and an unstable 12,377-bp plasmid. To study the genetic characteristics associated with virulence, we compared this species to R. prowazekii, R. rickettsii and R. conorii. R. africae and R. prowazekii have, respectively, the less and most decayed genomes. Eighteen genes are present only in R. africae including one with a putative protease domain upregulated at 37°C. Conclusion Based on these data, we speculate that a loss of regulatory genes causes an increase of virulence of rickettsial species in ticks and mammals. We also speculate that in Rickettsia species virulence is mostly associated with gene loss. The genome sequence was deposited in GenBank under accession number [GenBank: NZ_AAUY01000001].

  6. Characterization of noncoding regulatory DNA in the human genome.

    Science.gov (United States)

    Elkon, Ran; Agami, Reuven

    2017-08-08

    Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.

  7. The zebrafish reference genome sequence and its relationship to the human genome

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  8. The zebrafish reference genome sequence and its relationship to the human genome.

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  9. Quantifying the Number of Independent Organelle DNA Insertions in Genome Evolution and Human Health.

    Science.gov (United States)

    Hazkani-Covo, Einat; Martin, William F

    2017-05-01

    Fragments of organelle genomes are often found as insertions in nuclear DNA. These fragments of mitochondrial DNA (numts) and plastid DNA (nupts) are ubiquitous components of eukaryotic genomes. They are, however, often edited out during the genome assembly process, leading to systematic underestimation of their frequency. Numts and nupts, once inserted, can become further fragmented through subsequent insertion of mobile elements or other recombinational events that disrupt the continuity of the inserted sequence relative to the genuine organelle DNA copy. Because numts and nupts are typically identified through sequence comparison tools such as BLAST, disruption of insertions into smaller fragments can lead to systematic overestimation of numt and nupt frequencies. Accurate identification of numts and nupts is important, however, both for better understanding of their role during evolution, and for monitoring their increasingly evident role in human disease. Human populations are polymorphic for 141 numt loci, five numts are causal to genetic disease, and cancer genomic studies are revealing an abundance of numts associated with tumor progression. Here, we report investigation of salient parameters involved in obtaining accurate estimates of numt and nupt numbers in genome sequence data. Numts and nupts from 44 sequenced eukaryotic genomes reveal lineage-specific differences in the number, relative age and frequency of insertional events as well as lineage-specific dynamics of their postinsertional fragmentation. Our findings outline the main technical parameters influencing accurate identification and frequency estimation of numts in genomic studies pertinent to both evolution and human health. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome

    Directory of Open Access Journals (Sweden)

    Ferrari Francesco

    2009-06-01

    Full Text Available Abstract Background Water stress during grain filling has a marked effect on grain yield, leading to a reduced endosperm cell number and thus sink capacity to accumulate dry matter. The bread wheat cultivar Chinese Spring (CS, a Chinese Spring terminal deletion line (CS_5AL-10 and the durum wheat cultivar Creso were subjected to transcriptional profiling after exposure to mild and severe drought stress at the grain filling stage to find evidences of differential stress responses associated to different wheat genome regions. Results The transcriptome analysis of Creso, CS and its deletion line revealed 8,552 non redundant probe sets with different expression levels, mainly due to the comparisons between the two species. The drought treatments modified the expression of 3,056 probe sets. Besides a set of genes showing a similar drought response in Creso and CS, cluster analysis revealed several drought response features that can be associated to the different genomic structure of Creso, CS and CS_5AL-10. Some drought-related genes were expressed at lower level (or not expressed in Creso (which lacks the D genome or in the CS_5AL-10 deletion line compared to CS. The chromosome location of a set of these genes was confirmed by PCR-based mapping on the D genome (or the 5AL-10 region. Many clusters were characterized by different level of expression in Creso, CS and CS_AL-10, suggesting that the different genome organization of the three genotypes may affect plant adaptation to stress. Clusters with similar expression trend were grouped and functional classified to mine the biological mean of their activation or repression. Genes involved in ABA, proline, glycine-betaine and sorbitol pathways were found up-regulated by drought stress. Furthermore, the enhanced expression of a set of transposons and retrotransposons was detected in CS_5AL-10. Conclusion Bread and durum wheat genotypes were characterized by a different physiological reaction to water

  11. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M

    Directory of Open Access Journals (Sweden)

    Pradeepkiran JA

    2015-03-01

    Full Text Available Jangampalli Adi Pradeepkiran,1* Sri Bhashyam Sainath,2,3* Konidala Kranthi Kumar,1 Matcha Bhaskar1 1Division of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati, India; 2CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, Porto, Portugal, 3Department of Biotechnology, Vikrama Simhapuri University, Nellore, Andhra Pradesh, India *These authors contributed equally to this work Abstract: Brucella melitensis 16M is a Gram-negative coccobacillus that infects both animals and humans. It causes a disease known as brucellosis, which is characterized by acute febrile illness in humans and causes abortions in livestock. To prevent and control brucellosis, identification of putative drug targets is crucial. The present study aimed to identify drug targets in B. melitensis 16M by using a subtractive genomic approach. We used available database repositories (Database of Essential Genes, Kyoto Encyclopedia of Genes and Genomes Automatic Annotation Server, and Kyoto Encyclopedia of Genes and Genomes to identify putative genes that are nonhomologous to humans and essential for pathogen B. melitensis 16M. The results revealed that among 3 Mb genome size of pathogen, 53 putative characterized and 13 uncharacterized hypothetical genes were identified; further, from Basic Local Alignment Search Tool protein analysis, one hypothetical protein showed a close resemblance (50% to Silicibacter pomeroyi DUF1285 family protein (2RE3. A further homology model of the target was constructed using MODELLER 9.12 and optimized through variable target function method by molecular dynamics optimization with simulating annealing. The stereochemical quality of the restrained model was evaluated by PROCHECK, VERIFY-3D, ERRAT, and WHATIF servers. Furthermore, structure-based virtual screening was carried out against the predicted active site of the respective protein using the

  12. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus.

    Directory of Open Access Journals (Sweden)

    Fagen Li

    Full Text Available Dense genetic maps, along with quantitative trait loci (QTLs detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR, expressed sequence tag (EST derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS, and diversity arrays technology (DArT markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus and with the E. grandis genome sequence. Fifty-three QTLs for growth (10-56 months of age and wood density (56 months were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa.

  13. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus

    Science.gov (United States)

    Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10–56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa. PMID:26695430

  14. Genomics and the Ark: an ecocentric perspective on human history.

    Science.gov (United States)

    Zwart, Hub; Penders, Bart

    2011-01-01

    Views of ourselves in relationship to the rest of the biosphere are changing. Theocentric and anthropocentric perspectives are giving way to more ecocentric views on the history, present, and future of humankind. Novel sciences, such as genomics, have deepened and broadened our understanding of the process of anthropogenesis, the coming into being of humans. Genomics suggests that early human history must be regarded as a complex narrative of evolving ecosystems, in which human evolution both influenced and was influenced by the evolution of companion species. During the agricultural revolution, human beings designed small-scale artificial ecosystems or evolutionary "Arks," in which networks of plants, animals, and microorganisms coevolved. Currently, our attitude towards this process seems subject to a paradoxical reversal. The boundaries of the Ark have dramatically broadened, and genomics is not only being used to increase our understanding of our ecological past, but may also help us to conserve, reconstruct, or even revivify species and ecosystems to whose degradation or (near) extinction we have contributed. This article explores the role of genomics in the elaboration of a more ecocentric view of ourselves with the help of two examples, namely the renaissance of Paleolithic diets and of Pleistocene parks. It argues that an understanding of the world in ecocentric terms requires new partnerships and mutually beneficial forms of collaboration and convergence between life sciences, social sciences, and the humanities.

  15. Forces shaping the fastest evolving regions in the human genome.

    Directory of Open Access Journals (Sweden)

    Katherine S Pollard

    2006-10-01

    Full Text Available Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202 genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements are dramatically changed in human but not in other primates, with seven times more substitutions in human than in chimp. The accelerated elements, and in particular the top five, show a strong bias for adenine and thymine to guanine and cytosine nucleotide changes and are disproportionately located in high recombination and high guanine and cytosine content environments near telomeres, suggesting either biased gene conversion or isochore selection. In addition, there is some evidence of directional selection in the regions containing the two most accelerated regions. A combination of evolutionary forces has contributed to accelerated evolution of the fastest evolving elements in the human genome.

  16. Comparative Genomics and Transcriptomics Analyses Reveal Divergent Lifestyle Features of Nematode Endoparasitic Fungus Hirsutella minnesotensis

    Science.gov (United States)

    Lai, Yiling; Liu, Keke; Zhang, Xinyu; Zhang, Xiaoling; Li, Kuan; Wang, Niuniu; Shu, Chi; Wu, Yunpeng; Wang, Chengshu; Bushley, Kathryn E.; Xiang, Meichun; Liu, Xingzhong

    2014-01-01

    Hirsutella minnesotensis [Ophiocordycipitaceae (Hypocreales, Ascomycota)] is a dominant endoparasitic fungus by using conidia that adhere to and penetrate the secondary stage juveniles of soybean cyst nematode. Its genome was de novo sequenced and compared with five entomopathogenic fungi in the Hypocreales and three nematode-trapping fungi in the Orbiliales (Ascomycota). The genome of H. minnesotensis is 51.4 Mb and encodes 12,702 genes enriched with transposable elements up to 32%. Phylogenomic analysis revealed that H. minnesotensis was diverged from entomopathogenic fungi in Hypocreales. Genome of H. minnesotensis is similar to those of entomopathogenic fungi to have fewer genes encoding lectins for adhesion and glycoside hydrolases for cellulose degradation, but is different from those of nematode-trapping fungi to possess more genes for protein degradation, signal transduction, and secondary metabolism. Those results indicate that H. minnesotensis has evolved different mechanism for nematode endoparasitism compared with nematode-trapping fungi. Transcriptomics analyses for the time-scale parasitism revealed the upregulations of lectins, secreted proteases and the genes for biosynthesis of secondary metabolites that could be putatively involved in host surface adhesion, cuticle degradation, and host manipulation. Genome and transcriptome analyses provided comprehensive understanding of the evolution and lifestyle of nematode endoparasitism. PMID:25359922

  17. Data mining and the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, Henry [The MITRE Corporation, McLean, VA (US). JASON Program Office; Callan, Curtis [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, William [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, Freeman [The MITRE Corporation, McLean, VA (US). JASON Program Office; Hwa, Terence [The MITRE Corporation, McLean, VA (US). JASON Program Office; Koonin, Steven [The MITRE Corporation, McLean, VA (US). JASON Program Office; Levine, Herbert [The MITRE Corporation, McLean, VA (US). JASON Program Office; Rothaus, Oscar [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, Roy [The MITRE Corporation, McLean, VA (US). JASON Program Office; Stubbs, Christopher [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, Peter [The MITRE Corporation, McLean, VA (US). JASON Program Office

    2000-01-07

    As genomics research moves from an era of data acquisition to one of both acquisition and interpretation, new methods are required for organizing and prioritizing the data. These methods would allow an initial level of data analysis to be carried out before committing resources to a particular genetic locus. This JASON study sought to delineate the main problems that must be faced in bioinformatics and to identify information technologies that can help to overcome those problems. While the current influx of data greatly exceeds what biologists have experienced in the past, other scientific disciplines and the commercial sector have been handling much larger datasets for many years. Powerful datamining techniques have been developed in other fields that, with appropriate modification, could be applied to the biological sciences.

  18. The genomic structure of the human UFO receptor.

    Science.gov (United States)

    Schulz, A S; Schleithoff, L; Faust, M; Bartram, C R; Janssen, J W

    1993-02-01

    Using a DNA transfection-tumorigenicity assay we have recently identified the UFO oncogene. It encodes a tyrosine kinase receptor characterized by the juxtaposition of two immunoglobulin-like and two fibronectin type III repeats in its extracellular domain. Here we describe the genomic organization of the human UFO locus. The UFO receptor is encoded by 20 exons that are distributed over a region of 44 kb. Different isoforms of UFO mRNA are generated by alternative splicing of exon 10 and differential usage of two imperfect polyadenylation sites resulting in the presence or absence of 1.5-kb 3' untranslated sequences. Primer extension and S1 nuclease analyses revealed multiple transcriptional initiation sites including a major site 169 bp upstream of the translation start site. The promoter region is GC rich, lacks TATA and CAAT boxes, but contains potential recognition sites for a variety of trans-acting factors, including Sp1, AP-2 and the cyclic AMP response element-binding protein. Proto-UFO and its oncogenic counterpart exhibit identical cDNA and promoter regions sequences. Possible modes of UFO activation are discussed.

  19. Non-genomic effects of vitamin D in human spermatozoa

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Dissing, Steen

    2012-01-01

    The spectrum for vitamin D (VD) mediated effects has expanded in recent years. Activated VD (1,25(OH)(2)D(3)) binds to the VD receptor (VDR) and mediates non-genomic effects through the alternative ligand binding-pocket (VDR-ap) or regulates gene transcription through the genomic binding......-pocket. VDR and VD-metabolizing enzymes are expressed in human testis, male reproductive tract and mature spermatozoa, and VD is considered important for male reproduction. Expression of the VD-inactivating enzyme CYP24A1 at the annulus of human spermatozoa distinguish normal and infertile men with high...... specificity, and CYP24A1 expression is positively correlated with all semen variables and suggested as a marker for both semen quality and VD responsiveness. Moreover, spermatozoa are transcriptionally silent and are therefore a unique model to study non-genomic effects. 1,25(OH)(2)D(3) induced a rapid...

  20. Sequence-Based Mapping and Genome Editing Reveal Mutations in Stickleback Hps5 Cause Oculocutaneous Albinism and the casper Phenotype

    Directory of Open Access Journals (Sweden)

    James C. Hart

    2017-09-01

    Full Text Available Here, we present and characterize the spontaneous X-linked recessive mutation casper, which causes oculocutaneous albinism in threespine sticklebacks (Gasterosteus aculeatus. In humans, Hermansky-Pudlak syndrome results in pigmentation defects due to disrupted formation of the melanin-containing lysosomal-related organelle (LRO, the melanosome. casper mutants display not only reduced pigmentation of melanosomes in melanophores, but also reductions in the iridescent silver color from iridophores, while the yellow pigmentation from xanthophores appears unaffected. We mapped casper using high-throughput sequencing of genomic DNA from bulked casper mutants to a region of the stickleback X chromosome (chromosome 19 near the stickleback ortholog of Hermansky-Pudlak syndrome 5 (Hps5. casper mutants have an insertion of a single nucleotide in the sixth exon of Hps5, predicted to generate an early frameshift. Genome editing using CRISPR/Cas9 induced lesions in Hps5 and phenocopied the casper mutation. Injecting single or paired Hps5 guide RNAs revealed higher incidences of genomic deletions from paired guide RNAs compared to single gRNAs. Stickleback Hps5 provides a genetic system where a hemizygous locus in XY males and a diploid locus in XX females can be used to generate an easily scored visible phenotype, facilitating quantitative studies of different genome editing approaches. Lastly, we show the ability to better visualize patterns of fluorescent transgenic reporters in Hps5 mutant fish. Thus, Hps5 mutations present an opportunity to study pigmented LROs in the emerging stickleback model system, as well as a tool to aid in assaying genome editing and visualizing enhancer activity in transgenic fish.

  1. Imaging mass spectrometry and genome mining reveal highly antifungal virulence factor of mushroom soft rot pathogen.

    Science.gov (United States)

    Graupner, Katharina; Scherlach, Kirstin; Bretschneider, Tom; Lackner, Gerald; Roth, Martin; Gross, Harald; Hertweck, Christian

    2012-12-21

    Caught in the act: imaging mass spectrometry of a button mushroom infected with the soft rot pathogen Janthinobacterium agaricidamnosum in conjunction with genome mining revealed jagaricin as a highly antifungal virulence factor that is not produced under standard cultivation conditions. The structure of jagaricin was rigorously elucidated by a combination of physicochemical analyses, chemical derivatization, and bioinformatics. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Virus Genomes Reveal the Factors that Spread and Sustained the West African Ebola Epidemic

    Science.gov (United States)

    2016-08-09

    Ladner, J. T. et al. Evolution and Spread of Ebola Virus in Liberia , 2014--2015. Cell Host Microbe 18, 659–669 (2015). 15. Lemey, P. et al. Unifying...Virus genomes reveal the factors that spread and sustained the West African Ebola epidemic. Gytis Dudas1,2, Luiz Max Carvalho1, Trevor Bedford2...Charlesville, Liberia ., 19University of Sierra Leone, Freetown, Sierra Leone , 20Center for Systems Biology, Department of Organismic and Evolutionary

  3. Distinct Biological Potential of Streptococcus gordonii and Streptococcus sanguinis Revealed by Comparative Genome Analysis

    OpenAIRE

    Zheng, Wenning; Tan, Mui Fern; Old, Lesley A.; Paterson, Ian C.; Jakubovics, Nicholas S.; Choo, Siew Woh

    2017-01-01

    Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virule...

  4. An extended anchored linkage map and virtual mapping for the american mink genome based on homology to human and dog

    DEFF Research Database (Denmark)

    Anistoroaei, Razvan Marian; Ansari, S.; Farid, A.

    2009-01-01

    hybridization (FISH) and/or by means of human/dog/mink comparative homology. The average interval between markers is 8.5 cM and the linkage groups collectively span 1340 cM. In addition, 217 and 275 mink microsatellites have been placed on human and dog genomes, respectively. In conjunction with the existing...... comparative human/dog/mink data, these assignments represent useful virtual maps for the American mink genome. Comparison of the current human/dog assembled sequential map with the existing Zoo-FISH-based human/dog/mink maps helped to refine the human/dog/mink comparative map. Furthermore, comparison...... of the human and dog genome assemblies revealed a number of large synteny blocks, some of which are corroborated by data from the mink linkage map....

  5. Evolutionary forces shaping genomic islands of population differentiation in humans

    Directory of Open Access Journals (Sweden)

    Hofer Tamara

    2012-03-01

    Full Text Available Abstract Background Levels of differentiation among populations depend both on demographic and selective factors: genetic drift and local adaptation increase population differentiation, which is eroded by gene flow and balancing selection. We describe here the genomic distribution and the properties of genomic regions with unusually high and low levels of population differentiation in humans to assess the influence of selective and neutral processes on human genetic structure. Methods Individual SNPs of the Human Genome Diversity Panel (HGDP showing significantly high or low levels of population differentiation were detected under a hierarchical-island model (HIM. A Hidden Markov Model allowed us to detect genomic regions or islands of high or low population differentiation. Results Under the HIM, only 1.5% of all SNPs are significant at the 1% level, but their genomic spatial distribution is significantly non-random. We find evidence that local adaptation shaped high-differentiation islands, as they are enriched for non-synonymous SNPs and overlap with previously identified candidate regions for positive selection. Moreover there is a negative relationship between the size of islands and recombination rate, which is stronger for islands overlapping with genes. Gene ontology analysis supports the role of diet as a major selective pressure in those highly differentiated islands. Low-differentiation islands are also enriched for non-synonymous SNPs, and contain an overly high proportion of genes belonging to the 'Oncogenesis' biological process. Conclusions Even though selection seems to be acting in shaping islands of high population differentiation, neutral demographic processes might have promoted the appearance of some genomic islands since i as much as 20% of islands are in non-genic regions ii these non-genic islands are on average two times shorter than genic islands, suggesting a more rapid erosion by recombination, and iii most loci are

  6. Accelerated Evolution of Conserved Noncoding Sequences in theHuman Genome

    Energy Technology Data Exchange (ETDEWEB)

    Prambhakar, Shyam; Noonan, James P.; Paabo, Svante; Rubin, EdwardM.

    2006-07-06

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detect"cryptic" functional elements, which are too weakly conserved amongmammals to distinguish from nonfunctional DNA. To address this problem,we explored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  7. The "most wanted" taxa from the human microbiome for whole genome sequencing.

    Directory of Open Access Journals (Sweden)

    Anthony A Fodor

    Full Text Available The goal of the Human Microbiome Project (HMP is to generate a comprehensive catalog of human-associated microorganisms including reference genomes representing the most common species. Toward this goal, the HMP has characterized the microbial communities at 18 body habitats in a cohort of over 200 healthy volunteers using 16S rRNA gene (16S sequencing and has generated nearly 1,000 reference genomes from human-associated microorganisms. To determine how well current reference genome collections capture the diversity observed among the healthy microbiome and to guide isolation and future sequencing of microbiome members, we compared the HMP's 16S data sets to several reference 16S collections to create a 'most wanted' list of taxa for sequencing. Our analysis revealed that the diversity of commonly occurring taxa within the HMP cohort microbiome is relatively modest, few novel taxa are represented by these OTUs and many common taxa among HMP volunteers recur across different populations of healthy humans. Taken together, these results suggest that it should be possible to perform whole-genome sequencing on a large fraction of the human microbiome, including the 'most wanted', and that these sequences should serve to support microbiome studies across multiple cohorts. Also, in stark contrast to other taxa, the 'most wanted' organisms are poorly represented among culture collections suggesting that novel culture- and single-cell-based methods will be required to isolate these organisms for sequencing.

  8. Characterization of Human Cytomegalovirus Genome Diversity in Immunocompromised Hosts by Whole-Genome Sequencing Directly From Clinical Specimens.

    Science.gov (United States)

    Hage, Elias; Wilkie, Gavin S; Linnenweber-Held, Silvia; Dhingra, Akshay; Suárez, Nicolás M; Schmidt, Julius J; Kay-Fedorov, Penelope C; Mischak-Weissinger, Eva; Heim, Albert; Schwarz, Anke; Schulz, Thomas F; Davison, Andrew J; Ganzenmueller, Tina

    2017-06-01

    Advances in next-generation sequencing (NGS) technologies allow comprehensive studies of genetic diversity over the entire genome of human cytomegalovirus (HCMV), a significant pathogen for immunocompromised individuals. Next-generation sequencing was performed on target enriched sequence libraries prepared directly from a variety of clinical specimens (blood, urine, breast milk, respiratory samples, biopsies, and vitreous humor) obtained longitudinally or from different anatomical compartments from 20 HCMV-infected patients (renal transplant recipients, stem cell transplant recipients, and congenitally infected children). De novo-assembled HCMV genome sequences were obtained for 57 of 68 sequenced samples. Analysis of longitudinal or compartmental HCMV diversity revealed various patterns: no major differences were detected among longitudinal, intraindividual blood samples from 9 of 15 patients and in most of the patients with compartmental samples, whereas a switch of the major HCMV population was observed in 6 individuals with sequential blood samples and upon compartmental analysis of 1 patient with HCMV retinitis. Variant analysis revealed additional aspects of minor virus population dynamics and antiviral-resistance mutations. In immunosuppressed patients, HCMV can remain relatively stable or undergo drastic genomic changes that are suggestive of the emergence of minor resident strains or de novo infection. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  9. Comparison of phasing strategies for whole human genomes.

    Science.gov (United States)

    Choi, Yongwook; Chan, Agnes P; Kirkness, Ewen; Telenti, Amalio; Schork, Nicholas J

    2018-04-01

    Humans are a diploid species that inherit one set of chromosomes paternally and one homologous set of chromosomes maternally. Unfortunately, most human sequencing initiatives ignore this fact in that they do not directly delineate the nucleotide content of the maternal and paternal copies of the 23 chromosomes individuals possess (i.e., they do not 'phase' the genome) often because of the costs and complexities of doing so. We compared 11 different widely-used approaches to phasing human genomes using the publicly available 'Genome-In-A-Bottle' (GIAB) phased version of the NA12878 genome as a gold standard. The phasing strategies we compared included laboratory-based assays that prepare DNA in unique ways to facilitate phasing as well as purely computational approaches that seek to reconstruct phase information from general sequencing reads and constructs or population-level haplotype frequency information obtained through a reference panel of haplotypes. To assess the performance of the 11 approaches, we used metrics that included, among others, switch error rates, haplotype block lengths, the proportion of fully phase-resolved genes, phasing accuracy and yield between pairs of SNVs. Our comparisons suggest that a hybrid or combined approach that leverages: 1. population-based phasing using the SHAPEIT software suite, 2. either genome-wide sequencing read data or parental genotypes, and 3. a large reference panel of variant and haplotype frequencies, provides a fast and efficient way to produce highly accurate phase-resolved individual human genomes. We found that for population-based approaches, phasing performance is enhanced with the addition of genome-wide read data; e.g., whole genome shotgun and/or RNA sequencing reads. Further, we found that the inclusion of parental genotype data within a population-based phasing strategy can provide as much as a ten-fold reduction in phasing errors. We also considered a majority voting scheme for the construction of a

  10. Single genome retrieval of context-dependent variability in mutation rates for human germline.

    Science.gov (United States)

    Sahakyan, Aleksandr B; Balasubramanian, Shankar

    2017-01-13

    Accurate knowledge of the core components of substitution rates is of vital importance to understand genome evolution and dynamics. By performing a single-genome and direct analysis of 39,894 retrotransposon remnants, we reveal sequence context-dependent germline nucleotide substitution rates for the human genome. The rates are characterised through rate constants in a time-domain, and are made available through a dedicated program (Trek) and a stand-alone database. Due to the nature of the method design and the imposed stringency criteria, we expect our rate constants to be good estimates for the rates of spontaneous mutations. Benefiting from such data, we study the short-range nucleotide (up to 7-mer) organisation and the germline basal substitution propensity (BSP) profile of the human genome; characterise novel, CpG-independent, substitution prone and resistant motifs; confirm a decreased tendency of moieties with low BSP to undergo somatic mutations in a number of cancer types; and, produce a Trek-based estimate of the overall mutation rate in human. The extended set of rate constants we report may enrich our resources and help advance our understanding of genome dynamics and evolution, with possible implications for the role of spontaneous mutations in the emergence of pathological genotypes and neutral evolution of proteomes.

  11. DOE Human Genome Program contractor-grantee workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This volume contains the proceedings for the DOE Human Genome Program`s Contractor-Grantee Workshop V held in Sante Fe, New Mexico January 28, February 1, 1996. Presentations were divided into sessions entitled Sequencing; Mapping; Informatics; Ethical, Legal, and Social Issues; and Infrastructure. Reports of individual projects described herein are separately indexed and abstracted for the database.

  12. Human genome program report. Part 2, 1996 research abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  13. Reconsidering democracy. History of the Human Genome Project.

    NARCIS (Netherlands)

    Marli Huijer

    2003-01-01

    What options are open for people—citizens, politicians, and other nonscientists—to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  14. Human genome program report. Part 1, overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  15. The Human Genome Project: Biology, Computers, and Privacy.

    Science.gov (United States)

    Cutter, Mary Ann G.; Drexler, Edward; Gottesman, Kay S.; Goulding, Philip G.; McCullough, Laurence B.; McInerney, Joseph D.; Micikas, Lynda B.; Mural, Richard J.; Murray, Jeffrey C.; Zola, John

    This module, for high school teachers, is the second of two modules about the Human Genome Project (HGP) produced by the Biological Sciences Curriculum Study (BSCS). The first section of this module provides background information for teachers about the structure and objectives of the HGP, aspects of the science and technology that underlie the…

  16. The human genome; you gain some, you lose some

    NARCIS (Netherlands)

    Kriek, Marjolein

    2007-01-01

    Copy number variations (CNVs) in the human genome are inherent in both evolutionary progression as well as the etiology of disease. The introduction of this thesis will review CNVs that appear to be neutral as well as CNVs that appear to be related to a phenotypic trait. This will be followed by a

  17. Reconsidering democracy - History of the human genome project

    NARCIS (Netherlands)

    Huijer, M

    What options are open for people-citizens, politicians, and other nonscientists-to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  18. Genome-wide linkage analysis for human longevity

    DEFF Research Database (Denmark)

    Beekman, Marian; Blanché, Hélène; Perola, Markus

    2013-01-01

    Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian...

  19. Enhancing Biology Instruction with the Human Genome Project

    Science.gov (United States)

    Buxeda, Rosa J.; Moore-Russo, Deborah A.

    2003-01-01

    The Human Genome Project (HGP) is a recent scientific milestone that has received notable attention. This article shows how a biology course is using the HGP to enhance students' experiences by providing awareness of cutting edge research, with information on new emerging career options, and with opportunities to consider ethical questions raised…

  20. Templated sequence insertion polymorphisms in the human genome

    Science.gov (United States)

    Onozawa, Masahiro; Aplan, Peter

    2016-11-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.

  1. Genome Sequence of Novel Human Parechovirus Type 17

    OpenAIRE

    B?ttcher, Sindy; Obermeier, Patrick E.; Diedrich, Sabine; Kabor?, Yolande; D?Alfonso, Rossella; Pfister, Herbert; Kaiser, Rolf; Di Cristanziano, Veronica

    2017-01-01

    ABSTRACT Human parechoviruses (HPeV) circulate worldwide, causing a broad variety of symptoms, preferentially in early childhood. We report here the nearly complete genome sequence of a novel HPeV type, consisting of 7,062 nucleotides and encoding 2,179?amino acids. M36/CI/2014 was taxonomically classified as HPeV-17 by the picornavirus study group.

  2. The human genome project and the future of medical practice ...

    African Journals Online (AJOL)

    Contrary to the scepticism that characterised the planning stages of the human genome project, the technology and sequence data resulting from the project are set to revolutionise medical practice for good. The expected benefits include: enhanced discovery of disease genes, which will lead to improved knowledge on the ...

  3. 76 FR 66076 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 19...

  4. 77 FR 60706 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-10-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special.... Nakamura, Ph.D., Scientific Review Officer, Scientific Review Branch, National Human Genome Research...

  5. 76 FR 19780 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-04-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program No. 93.172, Human Genome Research, National Institutes of...

  6. 76 FR 3917 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville, MD...

  7. 75 FR 56115 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-09-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS...

  8. 77 FR 2735 - National Human Genome Research Institute; Notice of Meetings

    Science.gov (United States)

    2012-01-19

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... personal privacy. Name of Committee: National Advisory Council for Human Genome Research. Date: February 13... Extramural Research National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9305...

  9. 76 FR 3643 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  10. 78 FR 24223 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-04-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial...: To review and evaluate grant applications. Place: National Human Genome Research Institute, 3rd floor...

  11. 77 FR 2304 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2012-01-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome....S.C. 281(d)(4)), notice is hereby given that the National Human Genome Research Institute (NHGRI... meeting of the National Advisory Council for Human Genome Research. Background materials on the proposed...

  12. 78 FR 21382 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-04-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... applications. Place: National Human Genome Research Institute, Suite 4076, 5635 Fisher's Lane, Bethesda, MD..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4075...

  13. 78 FR 20933 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-04-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... review and evaluate grant applications. Place: National Human Genome Research Institute, Room 3055, 5635...

  14. 76 FR 22112 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-04-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special....nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  15. 78 FR 31953 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-05-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... review and evaluate grant applications. Place: National Human Genome Research Institute, 3rd Floor...

  16. 75 FR 10488 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2010-03-08

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research...- 4280, [email protected]gov . Name of Committee: National Human Genome Research Institute Special...

  17. 76 FR 35224 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome...). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  18. 77 FR 64816 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2012-10-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute. The meeting will be open to the public as indicated below, with... invasion of personal privacy. Name of Committee: Board of Scientific Counselors, National Human Genome...

  19. 75 FR 8373 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  20. 75 FR 2147 - National Human Genome Research Institute; Notice of Meetings

    Science.gov (United States)

    2010-01-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Council for Human Genome Research. The meetings will be open to the public as indicated below, with... Extramural Research, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9305...

  1. 77 FR 22332 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-04-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special.... Agenda: To review and evaluate grant applications. Place: National Human Genome Research Institute, 5635...

  2. 76 FR 65204 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2011-10-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute. The meeting will be open to the public as indicated below, with... invasion of personal privacy. Name of Committee: Board of Scientific Counselors, National Human Genome...

  3. 76 FR 22407 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-04-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  4. 77 FR 8268 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-02-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... applications. Place: National Human Genome Research Institute, 5635 Fisher's Lane, Room 4076, Rockville, MD..., CIDR, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite...

  5. 75 FR 48977 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome.... Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  6. 77 FR 74676 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-12-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4075, Bethesda.... 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: December 11, 2012. David...

  7. 75 FR 19984 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2010-04-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4075... Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome Research...

  8. 75 FR 26762 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-05-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  9. 75 FR 44800 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-07-29

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... for Human Genome Research. The meeting will be closed to the public in accordance with the provisions... Committee: National Advisory Council for Human Genome Research. Date: August 18, 2010. Time: 1 p.m. to 3 p.m...

  10. 75 FR 35821 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  11. 76 FR 3642 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-01-20

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research....nih.gov . Name of Committee: National Human Genome Research Institute Special Emphasis Panel eMERGE...

  12. 78 FR 47715 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-08-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  13. 77 FR 31863 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-05-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special..., Human Genome Research, National Institutes of Health, HHS) Dated: May 22, 2012. Jennifer S. Spaeth...

  14. 75 FR 52537 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial....nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  15. 78 FR 61851 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-10-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... a.m. to 4:00 p.m. Agenda: To review and evaluate grant applications. Place: National Human Genome...

  16. 76 FR 79199 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-12-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome.... Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research..., [email protected] . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  17. 75 FR 80509 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-12-22

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Call). Contact Person: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: December 16...

  18. 76 FR 28056 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-05-13

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... D. Nakamura, PhD, Scientific Review Officer, Office of Scientific Review, National Human Genome...

  19. 75 FR 2148 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-01-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Initial....nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  20. 76 FR 66731 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 21, 2011...

  1. 76 FR 10909 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-02-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4076, MSC..., Human Genome Research, National Institutes of Health, HHS). Dated: February 18, 2011. Jennifer S. Spaeth...

  2. 75 FR 52538 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Person: Ken D. Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome...

  3. 76 FR 35223 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Person: Rudy O. Pozzatti, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome...

  4. 76 FR 36930 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special..., Human Genome Research, National Institutes of Health, HHS) Dated: June 17, 2011. Jennifer S. Spaeth...

  5. 77 FR 35991 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-06-15

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4075, Bethesda.... 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: June 8, 2012. Jennifer S...

  6. 77 FR 61770 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-10-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) [[Page 61771...

  7. 76 FR 63932 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-14

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 7...

  8. 75 FR 8977 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4076, MSC..., Human Genome Research, National Institutes of Health, HHS) Dated: February 18, 2010. Jennifer Spaeth...

  9. 78 FR 66752 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2013-11-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... National Human Genome Research Institute Special Emphasis Panel, October 15, 2013, 01:00 p.m. to October 15, 2013, 02:30 p.m., National Human Genome Research Institute, 5635 Fishers Lane, Suite 3055, Rockville...

  10. 75 FR 32957 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-10

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... funding cycle. (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research...

  11. 78 FR 14806 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-03-07

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... p.m. Agenda: To review and evaluate grant applications. Place: National Human Genome Research...

  12. 75 FR 53703 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-09-01

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  13. 75 FR 51828 - National Human Genome Research Institute; Notice of Meetings

    Science.gov (United States)

    2010-08-23

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... personal privacy. Name of Committee: National Advisory Council for Human Genome Research. Date: February 7... Research, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9305, Bethesda, MD...

  14. 75 FR 60467 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2010-09-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome..., National Human Genome Research Institute. The meeting will be open to the public as indicated below, with... invasion of personal privacy. Name of Committee: Board of Scientific Counselors, National Human Genome...

  15. 75 FR 67380 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-11-02

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of...

  16. Human Cancer Models Initiative | Office of Cancer Genomics

    Science.gov (United States)

    The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer research.

  17. Illuminating the Druggable Genome (IDG)

    Data.gov (United States)

    Federal Laboratory Consortium — Results from the Human Genome Project revealed that the human genome contains 20,000 to 25,000 genes. A gene contains (encodes) the information that each cell uses...

  18. The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity.

    Directory of Open Access Journals (Sweden)

    Marco Ventura

    2009-12-01

    Full Text Available Bifidobacteria, one of the relatively dominant components of the human intestinal microbiota, are considered one of the key groups of beneficial intestinal bacteria (probiotic bacteria. However, in addition to health-promoting taxa, the genus Bifidobacterium also includes Bifidobacterium dentium, an opportunistic cariogenic pathogen. The genetic basis for the ability of B. dentium to survive in the oral cavity and contribute to caries development is not understood. The genome of B. dentium Bd1, a strain isolated from dental caries, was sequenced to completion to uncover a single circular 2,636,368 base pair chromosome with 2,143 predicted open reading frames. Annotation of the genome sequence revealed multiple ways in which B. dentium has adapted to the oral environment through specialized nutrient acquisition, defences against antimicrobials, and gene products that increase fitness and competitiveness within the oral niche. B. dentium Bd1 was shown to metabolize a wide variety of carbohydrates, consistent with genome-based predictions, while colonization and persistence factors implicated in tissue adhesion, acid tolerance, and the metabolism of human saliva-derived compounds were also identified. Global transcriptome analysis demonstrated that many of the genes encoding these predicted traits are highly expressed under relevant physiological conditions. This is the first report to identify, through various genomic approaches, specific genetic adaptations of a Bifidobacterium taxon, Bifidobacterium dentium Bd1, to a lifestyle as a cariogenic microorganism in the oral cavity. In silico analysis and comparative genomic hybridization experiments clearly reveal a high level of genome conservation among various B. dentium strains. The data indicate that the genome of this opportunistic cariogen has evolved through a very limited number of horizontal gene acquisition events, highlighting the narrow boundaries that separate commensals from

  19. Ancient ancestry of KFDV and AHFV revealed by complete genome analyses of viruses isolated from ticks and mammalian hosts.

    Directory of Open Access Journals (Sweden)

    Kimberly A Dodd

    2011-10-01

    Full Text Available BACKGROUND: Alkhurma hemorrhagic fever virus (AHFV and Kyasanur forest disease virus (KFDV cause significant human disease and mortality in Saudi Arabia and India, respectively. Despite their distinct geographic ranges, AHFV and KFDV share a remarkably high sequence identity. Given its emergence decades after KFDV, AHFV has since been considered a variant of KFDV and thought to have arisen from an introduction of KFDV to Saudi Arabia from India. To gain a better understanding of the evolutionary history of AHFV and KFDV, we analyzed the full length genomes of 16 AHFV and 3 KFDV isolates. METHODOLOGY/PRINCIPAL FINDINGS: Viral genomes were sequenced and compared to two AHFV sequences available in GenBank. Sequence analyses revealed higher genetic diversity within AHFVs isolated from ticks than human AHFV isolates. A Bayesian coalescent phylogenetic analysis demonstrated an ancient divergence of AHFV and KFDV of approximately 700 years ago. CONCLUSIONS/SIGNIFICANCE: The high sequence diversity within tick populations and the presence of competent tick vectors in the surrounding regions, coupled with the recent identification of AHFV in Egypt, indicate possible viral range expansion or a larger geographic range than previously thought. The divergence of AHFV from KFDV nearly 700 years ago suggests other AHFV/KFDV-like viruses might exist in the regions between Saudi Arabia and India. Given the human morbidity and mortality associated with these viruses, these results emphasize the importance of more focused study of these significant public health threats.

  20. Genomic characterisation of Wongabel virus reveals novel genes within the Rhabdoviridae.

    Science.gov (United States)

    Gubala, Aneta J; Proll, David F; Barnard, Ross T; Cowled, Chris J; Crameri, Sandra G; Hyatt, Alex D; Boyle, David B

    2008-06-20

    Viruses belonging to the family Rhabdoviridae infect a variety of different hosts, including insects, vertebrates and plants. Currently, there are approximately 200 ICTV-recognised rhabdoviruses isolated around the world. However, the majority remain poorly characterised and only a fraction have been definitively assigned to genera. The genomic and transcriptional complexity displayed by several of the characterised rhabdoviruses indicates large diversity and complexity within this family. To enable an improved taxonomic understanding of this family, it is necessary to gain further information about the poorly characterised members of this family. Here we present the complete genome sequence and predicted transcription strategy of Wongabel virus (WONV), a previously uncharacterised rhabdovirus isolated from biting midges (Culicoides austropalpalis) collected in northern Queensland, Australia. The 13,196 nucleotide genome of WONV encodes five typical rhabdovirus genes N, P, M, G and L. In addition, the WONV genome contains three genes located between the P and M genes (U1, U2, U3) and two open reading frames overlapping with the N and G genes (U4, U5). These five additional genes and their putative protein products appear to be novel, and their functions are unknown. Predictive analysis of the U5 gene product revealed characteristics typical of viroporins, and indicated structural similarities with the alpha-1 protein (putative viroporin) of viruses in the genus Ephemerovirus. Phylogenetic analyses of the N and G proteins of WONV indicated closest similarity with the avian-associated Flanders virus; however, the genomes of these two viruses are significantly diverged. WONV displays a novel and unique genome structure that has not previously been described for any animal rhabdovirus.

  1. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    KAUST Repository

    Wang, Yong

    2016-07-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic pathways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat. Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood–Ljungdahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood–Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aerophobetes bacterium TCS1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal transduction and cell motility. The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg.

  2. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    Science.gov (United States)

    Yea, Carmen; Cheung, Rose; Collins, Carol; Adachi, Dena; Nishikawa, John; Tellier, Raymond

    2009-01-01

    Although the human parainfluenza virus 4 (HPIV4) has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada). The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97%) with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized. PMID:21994536

  3. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    Directory of Open Access Journals (Sweden)

    Carmen Yea

    2009-06-01

    Full Text Available Although the human parainfluenza virus 4 (HPIV4 has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada. The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97% with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized.

  4. CRISPR Genome Engineering for Human Pluripotent Stem Cell Research.

    Science.gov (United States)

    Chaterji, Somali; Ahn, Eun Hyun; Kim, Deok-Ho

    2017-01-01

    The emergence of targeted and efficient genome editing technologies, such as repurposed bacterial programmable nucleases (e.g., CRISPR-Cas systems), has abetted the development of cell engineering approaches. Lessons learned from the development of RNA-interference (RNA-i) therapies can spur the translation of genome editing, such as those enabling the translation of human pluripotent stem cell engineering. In this review, we discuss the opportunities and the challenges of repurposing bacterial nucleases for genome editing, while appreciating their roles, primarily at the epigenomic granularity. First, we discuss the evolution of high-precision, genome editing technologies, highlighting CRISPR-Cas9. They exist in the form of programmable nucleases, engineered with sequence-specific localizing domains, and with the ability to revolutionize human stem cell technologies through precision targeting with greater on-target activities. Next, we highlight the major challenges that need to be met prior to bench-to-bedside translation, often learning from the path-to-clinic of complementary technologies, such as RNA-i. Finally, we suggest potential bioinformatics developments and CRISPR delivery vehicles that can be deployed to circumvent some of the challenges confronting genome editing technologies en route to the clinic.

  5. Genomic profiling of plasmablastic lymphoma using array comparative genomic hybridization (aCGH: revealing significant overlapping genomic lesions with diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Lu Xin-Yan

    2009-11-01

    Full Text Available Abstract Background Plasmablastic lymphoma (PL is a subtype of diffuse large B-cell lymphoma (DLBCL. Studies have suggested that tumors with PL morphology represent a group of neoplasms with clinopathologic characteristics corresponding to different entities including extramedullary plasmablastic tumors associated with plasma cell myeloma (PCM. The goal of the current study was to evaluate the genetic similarities and differences among PL, DLBCL (AIDS-related and non AIDS-related and PCM using array-based comparative genomic hybridization. Results Examination of genomic data in PL revealed that the most frequent segmental gain (> 40% include: 1p36.11-1p36.33, 1p34.1-1p36.13, 1q21.1-1q23.1, 7q11.2-7q11.23, 11q12-11q13.2 and 22q12.2-22q13.3. This correlated with segmental gains occurring in high frequency in DLBCL (AIDS-related and non AIDS-related cases. There were some segmental gains and some segmental loss that occurred in PL but not in the other types of lymphoma suggesting that these foci may contain genes responsible for the differentiation of this lymphoma. Additionally, some segmental gains and some segmental loss occurred only in PL and AIDS associated DLBCL suggesting that these foci may be associated with HIV infection. Furthermore, some segmental gains and some segmental loss occurred only in PL and PCM suggesting that these lesions may be related to plasmacytic differentiation. Conclusion To the best of our knowledge, the current study represents the first genomic exploration of PL. The genomic aberration pattern of PL appears to be more similar to that of DLBCL (AIDS-related or non AIDS-related than to PCM. Our findings suggest that PL may remain best classified as a subtype of DLBCL at least at the genome level.

  6. The complete genome and proteome of Laribacter hongkongensis reveal potential mechanisms for adaptations to different temperatures and habitats.

    Science.gov (United States)

    Woo, Patrick C Y; Lau, Susanna K P; Tse, Herman; Teng, Jade L L; Curreem, Shirly O T; Tsang, Alan K L; Fan, Rachel Y Y; Wong, Gilman K M; Huang, Yi; Loman, Nicholas J; Snyder, Lori A S; Cai, James J; Huang, Jian-Dong; Mak, William; Pallen, Mark J; Lok, Si; Yuen, Kwok-Yung

    2009-03-01

    Laribacter hongkongensis is a newly discovered Gram-negative bacillus of the Neisseriaceae family associated with freshwater fish-borne gastroenteritis and traveler's diarrhea. The complete genome sequence of L. hongkongensis HLHK9, recovered from an immunocompetent patient with severe gastroenteritis, consists of a 3,169-kb chromosome with G+C content of 62.35%. Genome analysis reveals different mechanisms potentially important for its adaptation to diverse habitats of human and freshwater fish intestines and freshwater environments. The gene contents support its phenotypic properties and suggest that amino acids and fatty acids can be used as carbon sources. The extensive variety of transporters, including multidrug efflux and heavy metal transporters as well as genes involved in chemotaxis, may enable L. hongkongensis to survive in different environmental niches. Genes encoding urease, bile salts efflux pump, adhesin, catalase, superoxide dismutase, and other putative virulence factors-such as hemolysins, RTX toxins, patatin-like proteins, phospholipase A1, and collagenases-are present. Proteomes of L. hongkongensis HLHK9 cultured at 37 degrees C (human body temperature) and 20 degrees C (freshwater habitat temperature) showed differential gene expression, including two homologous copies of argB, argB-20, and argB-37, which encode two isoenzymes of N-acetyl-L-glutamate kinase (NAGK)-NAGK-20 and NAGK-37-in the arginine biosynthesis pathway. NAGK-20 showed higher expression at 20 degrees C, whereas NAGK-37 showed higher expression at 37 degrees C. NAGK-20 also had a lower optimal temperature for enzymatic activities and was inhibited by arginine probably as negative-feedback control. Similar duplicated copies of argB are also observed in bacteria from hot springs such as Thermus thermophilus, Deinococcus geothermalis, Deinococcus radiodurans, and Roseiflexus castenholzii, suggesting that similar mechanisms for temperature adaptation may be employed by other

  7. Genome-wide analysis reveals novel regulators of growth in Drosophila melanogaster

    OpenAIRE

    Vonesch, Sibylle; Mackay, Trudy; Lamparter, David; Hafen, Ernst; Bergmann, Sven

    2015-01-01

    Organismal size depends on the interplay between genetic and environmental factors. Genome-wide association (GWA) analyses in humans have implied many genes in the control of height but suffer from the inability to control the environment. Genetic analyses in Drosophila have identified conserved signaling pathways controlling size; however, how these pathways control phenotypic diversity is unclear. We performed GWA of size traits using the Drosophila Genetic Reference Panel of inbred, sequen...

  8. Comparative Genomics of the Herbivore Gut Symbiont Lactobacillus reuteri Reveals Genetic Diversity and Lifestyle Adaptation

    Directory of Open Access Journals (Sweden)

    Jie Yu

    2018-06-01

    Full Text Available Lactobacillus reuteri is a catalase-negative, Gram-positive, non-motile, obligately heterofermentative bacterial species that has been used as a model to describe the ecology and evolution of vertebrate gut symbionts. However, the genetic features and evolutionary strategies of L. reuteri from the gastrointestinal tract of herbivores remain unknown. Therefore, 16 L. reuteri strains isolated from goat, sheep, cow, and horse in Inner Mongolia, China were sequenced in this study. A comparative genomic approach was used to assess genetic diversity and gain insight into the distinguishing features related to the different hosts based on 21 published genomic sequences. Genome size, G + C content, and average nucleotide identity values of the L. reuteri strains from different hosts indicated that the strains have broad genetic diversity. The pan-genome of 37 L. reuteri strains contained 8,680 gene families, and the core genome contained 726 gene families. A total of 92,270 nucleotide mutation sites were discovered among 37 L. reuteri strains, and all core genes displayed a Ka/Ks ratio much lower than 1, suggesting strong purifying selective pressure (negative selection. A highly robust maximum likelihood tree based on the core genes shown in the herbivore isolates were divided into three clades; clades A and B contained most of the herbivore isolates and were more closely related to human isolates and vastly distinct from clade C. Some functional genes may be attributable to host-specific of the herbivore, omnivore, and sourdough groups. Moreover, the numbers of genes encoding cell surface proteins and active carbohydrate enzymes were host-specific. This study provides new insight into the adaptation of L. reuteri to the intestinal habitat of herbivores, suggesting that the genomic diversity of L. reuteri from different ecological origins is closely associated with their living environment.

  9. Human genome education model project. Ethical, legal, and social implications of the human genome project: Education of interdisciplinary professionals

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, J.O. [Alliance of Genetic Support Groups, Chevy Chase, MD (United States); Lapham, E.V. [Georgetown Univ., Washington, DC (United States). Child Development Center

    1996-12-31

    This meeting was held June 10, 1996 at Georgetown University. The purpose of this meeting was to provide a multidisciplinary forum for exchange of state-of-the-art information on the human genome education model. Topics of discussion include the following: psychosocial issues; ethical issues for professionals; legislative issues and update; and education issues.

  10. A korarchaeal genome reveals insights into the evolution of the Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain J; Elkins, James G.; Podar, Mircea; Graham, David E.; Makarova, Kira S.; Wolf, Yuri; Randau, Lennart; Hedlund, Brian P.; Brochier-Armanet, Celine; Kunin, Victor; Anderson, Iain; Lapidus, Alla; Goltsman, Eugene; Barry, Kerrie; Koonin, Eugene V.; Hugenholtz, Phil; Kyrpides, Nikos; Wanner, Gerhard; Richardson, Paul; Keller, Martin; Stetter, Karl O.

    2008-06-05

    The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name,"Candidatus Korarchaeum cryptofilum," which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49percent. Of the 1,617 predicted protein-coding genes, 1,382 (85percent) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.

  11. A Korarchael Genome Reveals Insights into the Evolution of the Archaea

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla; Elkins, James G.; Podar, Mircea; Graham, David E.; Makarova, Kira S.; Wolf, Yuri; Randau, Lennart; Hedlund, Brian P.; Brochier-Armanet, Celine; Kunin, Victor; Anderson, Iain; Lapidus, Alla; Goltsman, Eugene; Barry, Kerrie; Koonin, Eugene V.; Hugenholtz, Phil; Kyrpides, Nikos; Wanner, Gerhard; Richardson, Paul; Keller, Martin; Stetter, Karl O.

    2008-01-07

    The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, ?Candidatus Korarchaeum cryptofilum,? which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49percent. Of the 1,617 predicted protein-coding genes, 1,382 (85percent) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.

  12. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles.

    Science.gov (United States)

    Li, Ping; Li, Xuan; Gu, Qing; Lou, Xiu-Yu; Zhang, Xiao-Mei; Song, Da-Feng; Zhang, Chen

    2016-08-01

    In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate.

  13. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles* #

    Science.gov (United States)

    Li, Ping; Li, Xuan; Gu, Qing; Lou, Xiu-yu; Zhang, Xiao-mei; Song, Da-feng; Zhang, Chen

    2016-01-01

    Objective: In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. Methods: The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). Results: We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Conclusions: Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate. PMID:27487802

  14. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus.

    Directory of Open Access Journals (Sweden)

    Kui Lin

    2014-01-01

    Full Text Available Nuclei of arbuscular endomycorrhizal fungi have been described as highly diverse due to their asexual nature and absence of a single cell stage with only one nucleus. This has raised fundamental questions concerning speciation, selection and transmission of the genetic make-up to next generations. Although this concept has become textbook knowledge, it is only based on studying a few loci, including 45S rDNA. To provide a more comprehensive insight into the genetic makeup of arbuscular endomycorrhizal fungi, we applied de novo genome sequencing of individual nuclei of Rhizophagus irregularis. This revealed a surprisingly low level of polymorphism between nuclei. In contrast, within a nucleus, the 45S rDNA repeat unit turned out to be highly diverged. This finding demystifies a long-lasting hypothesis on the complex genetic makeup of arbuscular endomycorrhizal fungi. Subsequent genome assembly resulted in the first draft reference genome sequence of an arbuscular endomycorrhizal fungus. Its length is 141 Mbps, representing over 27,000 protein-coding gene models. We used the genomic sequence to reinvestigate the phylogenetic relationships of Rhizophagus irregularis with other fungal phyla. This unambiguously demonstrated that Glomeromycota are more closely related to Mucoromycotina than to its postulated sister Dikarya.

  15. Genome-wide analysis reveals the extent of EAV-HP integration in domestic chicken.

    Science.gov (United States)

    Wragg, David; Mason, Andrew S; Yu, Le; Kuo, Richard; Lawal, Raman A; Desta, Takele Taye; Mwacharo, Joram M; Cho, Chang-Yeon; Kemp, Steve; Burt, David W; Hanotte, Olivier

    2015-10-14

    EAV-HP is an ancient retrovirus pre-dating Gallus speciation, which continues to circulate in modern chicken populations, and led to the emergence of avian leukosis virus subgroup J causing significant economic losses to the poultry industry. We mapped EAV-HP integration sites in Ethiopian village chickens, a Silkie, Taiwan Country chicken, red junglefowl Gallus gallus and several inbred experimental lines using whole-genome sequence data. An average of 75.22 ± 9.52 integration sites per bird were identified, which collectively group into 279 intervals of which 5 % are common to 90 % of the genomes analysed and are suggestive of pre-domestication integration events. More than a third of intervals are specific to individual genomes, supporting active circulation of EAV-HP in modern chickens. Interval density is correlated with chromosome length (P < 2.31(-6)), and 27 % of intervals are located within 5 kb of a transcript. Functional annotation clustering of genes reveals enrichment for immune-related functions (P < 0.05). Our results illustrate a non-random distribution of EAV-HP in the genome, emphasising the importance it may have played in the adaptation of the species, and provide a platform from which to extend investigations on the co-evolutionary significance of endogenous retroviral genera with their hosts.

  16. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations.

    Science.gov (United States)

    Zheng, Jinshui; Zhao, Xin; Lin, Xiaoxi B; Gänzle, Michael

    2015-12-11

    Lactobacillus reuteri is a dominant member of intestinal microbiota of vertebrates, and occurs in food fermentations. The stable presence of L. reuteri in sourdough provides the opportunity to study the adaptation of vertebrate symbionts to an extra-intestinal habitat. This study evaluated this adaptation by comparative genomics of 16 strains of L. reuteri. A core genome phylogenetic tree grouped L. reuteri into 5 clusters corresponding to the host-adapted lineages. The topology of a gene content tree, which includes accessory genes, differed from the core genome phylogenetic tree, suggesting that the differentiation of L. reuteri is shaped by gene loss or acquisition. About 10% of the core genome (124 core genes) were under positive selection. In lineage III sourdough isolates, 177 genes were under positive selection, mainly related to energy conversion and carbohydrate metabolism. The analysis of the competitiveness of L. reuteri in sourdough revealed that the competitivess of sourdough isolates was equal or higher when compared to rodent isolates. This study provides new insights into the adaptation of L. reuteri to food and intestinal habitats, suggesting that these two habitats exert different selective pressure related to growth rate and energy (carbohydrate) metabolism.

  17. Integrative Genomics Reveals Mechanisms of Copy Number Alterations Responsible for Transcriptional Deregulation in Colorectal Cancer

    Science.gov (United States)

    Camps, Jordi; Nguyen, Quang Tri; Padilla-Nash, Hesed M.; Knutsen, Turid; McNeil, Nicole E.; Wangsa, Danny; Hummon, Amanda B.; Grade, Marian; Ried, Thomas; Difilippantonio, Michael J.

    2016-01-01

    To evaluate the mechanisms and consequences of chromosomal aberrations in colorectal cancer (CRC), we used a combination of spectral karyotyping, array comparative genomic hybridization (aCGH), and array-based global gene expression profiling on 31 primary carcinomas and 15 established cell lines. Importantly, aCGH showed that the genomic profiles of primary tumors are recapitulated in the cell lines. We revealed a preponderance of chromosome breakpoints at sites of copy number variants (CNVs) in the CRC cell lines, a novel mechanism of DNA breakage in cancer. The integration of gene expression and aCGH led to the identification of 157 genes localized within high-level copy number changes whose transcriptional deregulation was significantly affected across all of the samples, thereby suggesting that these genes play a functional role in CRC. Genomic amplification at 8q24 was the most recurrent event and led to the overexpression of MYC and FAM84B. Copy number dependent gene expression resulted in deregulation of known cancer genes such as APC, FGFR2, and ERBB2. The identification of only 36 genes whose localization near a breakpoint could account for their observed deregulated expression demonstrates that the major mechanism for transcriptional deregulation in CRC is genomic copy number changes resulting from chromosomal aberrations. PMID:19691111

  18. Comparative Analysis of 35 Basidiomycete Genomes Reveals Diversity and Uniqueness of the Phylum

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Otillar, Robert; Fagnan, Kirsten; Boussau, Bastien; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Held, Benjamin; Nagy, Laszlo; Floudas, Dimitris; Morin, Emmanuelle; Manning, Gerard; Baker, Scott; Martin, Francis; Blanchette, Robert; Hibbett, David; Grigoriev, Igor V.

    2013-03-11

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprobes including wood decaying fungi. To better understand the diversity of this phylum we compared the genomes of 35 basidiomycete fungi including 6 newly sequenced genomes. The genomes of basidiomycetes span extremes of genome size, gene number, and repeat content. A phylogenetic tree of Basidiomycota was generated using the Phyldog software, which uses all available protein sequence data to simultaneously infer gene and species trees. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) comprising proteins found in only one organism. Phylogenetic patterns of plant biomass-degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay among the members of Agaricomycotina subphylum. There is a correlation of the profile of certain gene families to nutritional mode in Agaricomycotina. Based on phylogenetically-informed PCA analysis of such profiles, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has liginolytic class II fungal peroxidases. Furthermore, we find that both fungi exhibit wood decay with white rot-like characteristics in growth assays. Analysis of the rate of discovery of proteins with no or few homologs suggests the high value of continued sequencing of basidiomycete fungi.

  19. Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations

    Directory of Open Access Journals (Sweden)

    Légaré Danielle

    2011-10-01

    Full Text Available Abstract Background Several mutations were present in the genome of Streptococcus pneumoniae linezolid-resistant strains but the role of several of these mutations had not been experimentally tested. To analyze the role of these mutations, we reconstituted resistance by serial whole genome transformation of a novel resistant isolate into two strains with sensitive background. We sequenced the parent mutant and two independent transformants exhibiting similar minimum inhibitory concentration to linezolid. Results Comparative genomic analyses revealed that transformants acquired G2576T transversions in every gene copy of 23S rRNA and that the number of altered copies correlated with the level of linezolid resistance and cross-resistance to florfenicol and chloramphenicol. One of the transformants also acquired a mutation present in the parent mutant leading to the overexpression of an ABC transporter (spr1021. The acquisition of these mutations conferred a fitness cost however, which was further enhanced by the acquisition of a mutation in a RNA methyltransferase implicated in resistance. Interestingly, the fitness of the transformants could be restored in part by the acquisition of altered copies of the L3 and L16 ribosomal proteins and by mutations leading to the overexpression of the spr1887 ABC transporter that were present in the original linezolid-resistant mutant. Conclusions Our results demonstrate the usefulness of whole genome approaches at detecting major determinants of resistance as well as compensatory mutations that alleviate the fitness cost associated with resistance.

  20. Paleo-eskimo mtDNA genome reveals matrilineal discontinuity in Greenland

    DEFF Research Database (Denmark)

    Gilbert, Marcus Thomas Pius; Kivisild, Toomas; Grønnow, Bjarne

    2008-01-01

    a mitochondrial genome from a Paleo-Eskimo human by using 3400-to 4500-year-old frozen hair excavated from an early Greenlandic Saqqaq settlement. The sample is distinct from modern Native Americans and Neo-Eskimos, falling within haplogroup D2a1, a group previously observed among modern Aleuts and Siberian......The Paleo-Eskimo Saqqaq and Independence I cultures, documented from archaeological remains in Northern Canada and Greenland, represent the earliest human expansion into the New World's northern extremes. However, their origin and genetic relationship to later cultures are unknown. We sequenced...

  1. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes.

    Science.gov (United States)

    Lin, Feng-Jiau; Liu, Yuan; Sha, Zhongli; Tsang, Ling Ming; Chu, Ka Hou; Chan, Tin-Yam; Liu, Ruiyu; Cui, Zhaoxia

    2012-11-16

    The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further

  2. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  3. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  4. Supervised machine learning reveals introgressed loci in the genomes of Drosophila simulans and D. sechellia.

    Science.gov (United States)

    Schrider, Daniel R; Ayroles, Julien; Matute, Daniel R; Kern, Andrew D

    2018-04-01

    Hybridization and gene flow between species appears to be common. Even though it is clear that hybridization is widespread across all surveyed taxonomic groups, the magnitude and consequences of introgression are still largely unknown. Thus it is crucial to develop the statistical machinery required to uncover which genomic regions have recently acquired haplotypes via introgression from a sister population. We developed a novel machine learning framework, called FILET (Finding Introgressed Loci via Extra-Trees) capable of revealing genomic introgression with far greater power than competing methods. FILET works by combining information from a number of population genetic summary statistics, including several new statistics that we introduce, that capture patterns of variation across two populations. We show that FILET is able to identify loci that have experienced gene flow between related species with high accuracy, and in most situations can correctly infer which population was the donor and which was the recipient. Here we describe a data set of outbred diploid Drosophila sechellia genomes, and combine them with data from D. simulans to examine recent introgression between these species using FILET. Although we find that these populations may have split more recently than previously appreciated, FILET confirms that there has indeed been appreciable recent introgression (some of which might have been adaptive) between these species, and reveals that this gene flow is primarily in the direction of D. simulans to D. sechellia.

  5. Functional Coverage of the Human Genome by Existing Structures, Structural Genomics Targets, and Homology Models.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB, target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB, it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the "most wanted list" that should be solved is available on a weekly basis from http://function.rcsb.org:8080/pdb/function_distribution/index.html.

  6. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    Science.gov (United States)

    2014-01-01

    Abstract The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused. Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed

  7. Modeling the integration of bacterial rRNA fragments into the human cancer genome.

    Science.gov (United States)

    Sieber, Karsten B; Gajer, Pawel; Dunning Hotopp, Julie C

    2016-03-21

    Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.

  8. Genomic variation landscape of the human gut microbiome

    DEFF Research Database (Denmark)

    Schloissnig, Siegfried; Arumugam, Manimozhiyan; Sunagawa, Shinichi

    2013-01-01

    Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 faecal...... polymorphism rates of 0.11 was more variable between gut microbial species than across human hosts. Subjects sampled at varying time intervals exhibited individuality and temporal stability of SNP variation patterns, despite considerable composition changes of their gut microbiota. This indicates...

  9. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae.

    Science.gov (United States)

    Macas, Jiří; Novák, Petr; Pellicer, Jaume; Čížková, Jana; Koblížková, Andrea; Neumann, Pavel; Fuková, Iva; Doležel, Jaroslav; Kelly, Laura J; Leitch, Ilia J

    2015-01-01

    The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57%) of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%). Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.

  10. In Depth Characterization of Repetitive DNA in 23 Plant Genomes Reveals Sources of Genome Size Variation in the Legume Tribe Fabeae.

    Directory of Open Access Journals (Sweden)

    Jiří Macas

    Full Text Available The differential accumulation and elimination of repetitive DNA are key drivers of genome size variation in flowering plants, yet there have been few studies which have analysed how different types of repeats in related species contribute to genome size evolution within a phylogenetic context. This question is addressed here by conducting large-scale comparative analysis of repeats in 23 species from four genera of the monophyletic legume tribe Fabeae, representing a 7.6-fold variation in genome size. Phylogenetic analysis and genome size reconstruction revealed that this diversity arose from genome size expansions and contractions in different lineages during the evolution of Fabeae. Employing a combination of low-pass genome sequencing with novel bioinformatic approaches resulted in identification and quantification of repeats making up 55-83% of the investigated genomes. In turn, this enabled an analysis of how each major repeat type contributed to the genome size variation encountered. Differential accumulation of repetitive DNA was found to account for 85% of the genome size differences between the species, and most (57% of this variation was found to be driven by a single lineage of Ty3/gypsy LTR-retrotransposons, the Ogre elements. Although the amounts of several other lineages of LTR-retrotransposons and the total amount of satellite DNA were also positively correlated with genome size, their contributions to genome size variation were much smaller (up to 6%. Repeat analysis within a phylogenetic framework also revealed profound differences in the extent of sequence conservation between different repeat types across Fabeae. In addition to these findings, the study has provided a proof of concept for the approach combining recent developments in sequencing and bioinformatics to perform comparative analyses of repetitive DNAs in a large number of non-model species without the need to assemble their genomes.

  11. Illumina based whole mitochondrial genome of Junonia iphita reveals minor intraspecific variation

    Directory of Open Access Journals (Sweden)

    Catherine Vanlalruati

    2015-12-01

    Full Text Available In the present study, the near complete mitochondrial genome (mitogenome of Junonia iphita (Lepidoptera: Nymphalidae: Nymphalinae was determined to be 14,892 bp. The gene order and orientation are identical to those in other butterfly species. The phylogenetic tree constructed from the whole mitogenomes using the 13 protein coding genes (PCGs defines the genetic relatedness of the two J. iphita species collected from two different regions. All the Junonia species clustered together, and were further subdivided into clade one consisting of J. almana and J. orithya and clade two comprising of the two J. iphita which were collected from Indo and Indochinese subregions separated by river barrier. Comparison between the two J. iphita sequences revealed minor variations and Single Nucleotide Polymorphisms were identified at 51 sites amounting to 0.4% of the entire mitochondrial genome.

  12. The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Sabeeha S

    2007-04-09

    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.

  13. Genomic characterization of large heterochromatic gaps in the human genome assembly.

    Directory of Open Access Journals (Sweden)

    Nicolas Altemose

    2014-05-01

    Full Text Available The largest gaps in the human genome assembly correspond to multi-megabase heterochromatic regions composed primarily of two related families of tandem repeats, Human Satellites 2 and 3 (HSat2,3. The abundance of repetitive DNA in these regions challenges standard mapping and assembly algorithms, and as a result, the sequence composition and potential biological functions of these regions remain largely unexplored. Furthermore, existing genomic tools designed to predict consensus-based descriptions of repeat families cannot be readily applied to complex satellite repeats such as HSat2,3, which lack a consistent repeat unit reference sequence. Here we present an alignment-free method to characterize complex satellites using whole-genome shotgun read datasets. Utilizing this approach, we classify HSat2,3 sequences into fourteen subfamilies and predict their chromosomal distributions, resulting in a comprehensive satellite reference database to further enable genomic studies of heterochromatic regions. We also identify 1.3 Mb of non-repetitive sequence interspersed with HSat2,3 across 17 unmapped assembly scaffolds, including eight annotated gene predictions. Finally, we apply our satellite reference database to high-throughput sequence data from 396 males to estimate array size variation of the predominant HSat3 array on the Y chromosome, confirming that satellite array sizes can vary between individuals over an order of magnitude (7 to 98 Mb and further demonstrating that array sizes are distributed differently within distinct Y haplogroups. In summary, we present a novel framework for generating initial reference databases for unassembled genomic regions enriched with complex satellite DNA, and we further demonstrate the utility of these reference databases for studying patterns of sequence variation within human populations.

  14. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts.

    Science.gov (United States)

    Alex, Anoop; Antunes, Agostinho

    2018-01-01

    Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we perfo