WorldWideScience

Sample records for human genome array

  1. Human and mouse genome analysis using array comparative genomic hybridization

    NARCIS (Netherlands)

    Snijders, Antoine Maria

    2004-01-01

    Almost all human cancers as well as developmental abnormalities are characterized by the presence of genetic alterations, most of which target a gene or a particular genomic locus resulting in altered gene expression and ultimately an altered phenotype. Different types of genetic alterations include

  2. Expression, tandem repeat copy number variation and stability of four macrosatellite arrays in the human genome

    Directory of Open Access Journals (Sweden)

    Chadwick Brian P

    2010-11-01

    Full Text Available Abstract Background Macrosatellites are some of the largest variable number tandem repeats in the human genome, but what role these unusual sequences perform is unknown. Their importance to human health is clearly demonstrated by the 4q35 macrosatellite D4Z4 that is associated with the onset of the muscle degenerative disease facioscapulohumeral muscular dystrophy. Nevertheless, many other macrosatellite arrays in the human genome remain poorly characterized. Results Here we describe the organization, tandem repeat copy number variation, transmission stability and expression of four macrosatellite arrays in the human genome: the TAF11-Like array located on chromosomes 5p15.1, the SST1 arrays on 4q28.3 and 19q13.12, the PRR20 array located on chromosome 13q21.1, and the ZAV array at 9q32. All are polymorphic macrosatellite arrays that at least for TAF11-Like and SST1 show evidence of meiotic instability. With the exception of the SST1 array that is ubiquitously expressed, all are expressed at high levels in the testis and to a lesser extent in the brain. Conclusions Our results extend the number of characterized macrosatellite arrays in the human genome and provide the foundation for formulation of hypotheses to begin assessing their functional role in the human genome.

  3. Genomic and expression array profiling of chromosome 20q amplicon in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Carter Jennifer

    2005-01-01

    Full Text Available Background: Gain of the q arm of chromosome 20 in human colorectal cancer has been associated with poorer survival time and has been reported to increase in frequency from adenomas to metastasis. The increasing frequency of chromosome 20q amplification during colorectal cancer progression and the presence of this amplification in carcinomas of other tissue origin has lead us to hypothesize that 20q11-13 harbors one or more genes which, when over expressed promote tumor invasion and metastasis. Aims: Generate genomic and expression profiles of the 20q amplicon in human cancer cell lines in order to identify genes with increased copy number and expression. Materials and Methods: Utilizing genomic sequencing clones and amplification mapping data from our lab and other previous studies, BAC/ PAC tiling paths spanning the 20q amplicon and genomic microarrays were generated. Array-CGH on the custom array with human cancer cell line DNAs was performed to generate genomic profiles of the amplicon. Expression array analysis with RNA from these cell lines using commercial oligo microarrays generated expression profiles of the amplicon. The data were then combined in order to identify genes with increased copy number and expression. Results: Over expressed genes in regions of increased copy number were identified and a list of potential novel genetic tumor markers was assembled based on biological functions of these genes Conclusions: Performing high-resolution genomic microarray profiling in conjunction with expression analysis is an effective approach to identify potential tumor markers.

  4. Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms.

    Directory of Open Access Journals (Sweden)

    Rajini R Haraksingh

    Full Text Available Accurate and efficient genome-wide detection of copy number variants (CNVs is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH, Single Nucleotide Polymorphism (SNP genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications.

  5. Leveraging human genomic information to identify nonhuman primate sequences for expression array development

    Directory of Open Access Journals (Sweden)

    Boyle Nicholas F

    2005-11-01

    Full Text Available Abstract Background Nonhuman primates (NHPs are essential for biomedical research due to their similarities to humans. The utility of NHPs will be greatly increased by the application of genomics-based approaches such as gene expression profiling. Sequence information from the 3' end of genes is the key resource needed to create oligonucleotide expression arrays. Results We have developed the algorithms and procedures necessary to quickly acquire sequence information from the 3' end of nonhuman primate orthologs of human genes. To accomplish this, we identified terminal exons of over 15,000 human genes by aligning mRNA sequences with genomic sequence. We found the mean length of complete last exons to be approximately 1,400 bp, significantly longer than previous estimates. We designed primers to amplify genomic DNA, which included at least 300 bp of the terminal exon. We cloned and sequenced the PCR products representing over 5,500 Macaca mulatta (rhesus monkey orthologs of human genes. This sequence information has been used to select probes for rhesus gene expression profiling. We have also tested 10 sets of primers with genomic DNA from Macaca fascicularis (Cynomolgus monkey, Papio hamadryas (Baboon, and Chlorocebus aethiops (African green monkey, vervet. The results indicate that the primers developed for this study will be useful for acquiring sequence from the 3' end of genes for other nonhuman primate species. Conclusion This study demonstrates that human genomic DNA sequence can be leveraged to obtain sequence from the 3' end of NHP orthologs and that this sequence can then be used to generate NHP oligonucleotide microarrays. Affymetrix and Agilent used sequences obtained with this approach in the design of their rhesus macaque oligonucleotide microarrays.

  6. Exploring the utility of human DNA methylation arrays for profiling mouse genomic DNA.

    Science.gov (United States)

    Wong, Nicholas C; Ng, Jane; Hall, Nathan E; Lunke, Sebastian; Salmanidis, Marika; Brumatti, Gabriela; Ekert, Paul G; Craig, Jeffrey M; Saffery, Richard

    2013-07-01

    Illumina Infinium Human Methylation (HM) BeadChips are widely used for measuring genome-scale DNA methylation, particularly in relation to epigenome-wide association studies (EWAS) studies. The methylation profile of human samples can be assessed accurately and reproducibly using the HM27 BeadChip (27,578 CpG sites) or its successor, the HM450 BeadChip (482,421 CpG sites). To date no mouse equivalent has been developed, greatly hindering the application of this methodology to the wide range of valuable murine models of disease and development currently in existence. We found 1308 and 13,715 probes from HM27 and HM450 BeadChip respectively, uniquely matched the bisulfite converted reference mouse genome (mm9). We demonstrate reproducible measurements of DNA methylation at these probes in a range of mouse tissue samples and in a murine cell line model of acute myeloid leukaemia. In the absence of a mouse counterpart, the Infinium Human Methylation BeadChip arrays have utility for methylation profiling in non-human species.

  7. Generation of a genomic tiling array of the human Major Histocompatibility Complex (MHC and its application for DNA methylation analysis

    Directory of Open Access Journals (Sweden)

    Ottaviani Diego

    2008-05-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC is essential for human immunity and is highly associated with common diseases, including cancer. While the genetics of the MHC has been studied intensively for many decades, very little is known about the epigenetics of this most polymorphic and disease-associated region of the genome. Methods To facilitate comprehensive epigenetic analyses of this region, we have generated a genomic tiling array of 2 Kb resolution covering the entire 4 Mb MHC region. The array has been designed to be compatible with chromatin immunoprecipitation (ChIP, methylated DNA immunoprecipitation (MeDIP, array comparative genomic hybridization (aCGH and expression profiling, including of non-coding RNAs. The array comprises 7832 features, consisting of two replicates of both forward and reverse strands of MHC amplicons and appropriate controls. Results Using MeDIP, we demonstrate the application of the MHC array for DNA methylation profiling and the identification of tissue-specific differentially methylated regions (tDMRs. Based on the analysis of two tissues and two cell types, we identified 90 tDMRs within the MHC and describe their characterisation. Conclusion A tiling array covering the MHC region was developed and validated. Its successful application for DNA methylation profiling indicates that this array represents a useful tool for molecular analyses of the MHC in the context of medical genomics.

  8. Identification of a novel gene by whole human genome tiling array.

    Science.gov (United States)

    Ishida, Hirokazu; Yagi, Tomohito; Tanaka, Masami; Tokuda, Yuichi; Kamoi, Kazumi; Hongo, Fumiya; Kawauchi, Akihiro; Nakano, Masakazu; Miki, Tsuneharu; Tashiro, Kei

    2013-03-01

    When the whole human genome sequence was determined by the Human Genome Project, the number of identified genes was fewer than expected. However, recent studies suggest that undiscovered transcripts still exist in the human genome. Furthermore, a new technology, the DNA microarray, which can simultaneously characterize huge amounts of genome sequence data, has become a useful tool for analyzing genetic changes in various diseases. A version of this tool, the tiling DNA microarray, was designed to search all the transcripts of the entire human genome, and provides huge amounts of data, including both exon and intron sequences, by a simple process. Although some previous studies using tiling DNA microarray analysis have indicated that numerous novel transcripts can be found in the human genome, none of them has reported any novel full-length human genes. Here, to find novel genes, we analyzed all the transcripts expressed in normal human prostate cells using this microarray. Because the optimal analytical parameters for using tiling DNA microarray data for this purpose had not been established, we established parameters for extracting the most likely regions for novel transcripts. The three parameters we optimized were the threshold for positive signal intensity, the Max gap, and the Min run, which we set to detect all transcriptional regions that were above the average length of known exons and had a signal intensity in the top 5%. We succeeded in obtaining the full-length sequence of one novel gene, located on chromosome 12q24.13. We named the novel gene "POTAGE". Its 5841-bp mRNA consists of 26 exons. We detected part of exon 2 in the tiling data analysis. The full-length sequence was then obtained by RT-PCR and RACE. Although the function of POTAGE is unclear, its sequence showed high homology with genes in other species, suggesting it might have an important or essential function. This study demonstrates that the tiling DNA microarray can be useful for

  9. Rapid detection of genomic imbalances using micro-arrays consisting of pooled BACs covering all human chromosome arms.

    Science.gov (United States)

    Knijnenburg, Jeroen; van der Burg, Marja; Nilsson, Philomeen; Ploos van Amstel, Hans Kristian; Tanke, Hans; Szuhai, Károly

    2005-10-12

    A strategy is presented to select, pool and spot human BAC clones on an array in such a way that each spot contains five well performing BAC clones, covering one chromosome arm. A mini-array of 240 spots was prepared representing all human chromosome arms in a 5-fold as well as some controls, and used for comparative genomic hybridization (CGH) of 10 cell lines with aneusomies frequently found in clinical cytogenetics and oncology. Spot-to-spot variation within five replicates was below 6% and all expected abnormalities were detected 100% correctly. Sensitivity was such that replacing one BAC clone in a given spot of five by a BAC clone from another chromosome, thus resulting in a change in ratio of 20%, was reproducibly detected. Incubation time of the mini-array was varied and the fluorescently labelled target DNA was diluted. Typically, aneusomies could be detected using 30 ng of non-amplified random primed labelled DNA amounts in a 4 h hybridization reaction. Potential application of these mini-arrays for genomic profiling of disseminated tumour cells or of blastomeres for preimplantation genetic diagnosis, using specially designed DNA amplification methods, are discussed.

  10. Human artificial chromosome assembly by transposon-based retrofitting of genomic BACs with synthetic alpha-satellite arrays.

    Science.gov (United States)

    Basu, Joydeep; Willard, Huntington F; Stromberg, Gregory

    2007-01-01

    The development of methodologies for the rapid assembly of synthetic alpha-satellite arrays recapitulating the higher-order periodic organization of native human centromeres permits the systematic investigation of the significance of primary sequence and sequence organization in centromere function. Synthetic arrays with defined mutations affecting sequence and/or organization may be evaluated in a de novo human artificial chromosome assay. This unit describes strategies for the assembly of custom built alpha-satellite arrays containing any desired mutation as well as strategies for the construction and manipulation of alpha satellite-based transposons. Transposons permit the rapid and reliable retrofitting of any genomic bacterial artificial chromosome (BAC) with synthetic alpha-satellite arrays and other functional components, thereby facilitating conversion into BAC-based human artificial chromosome vectors. These techniques permit identification and optimization of the critical parameters underlying the unique ability of alpha-satellite DNA to facilitate de novo centromere assembly, and they will establish the foundation for the next generation of human artificial chromosome vectors.

  11. Array comparative genomic hybridization analysis of small supernumerary marker chromosomes in human infertility.

    Science.gov (United States)

    Guediche, N; Tosca, L; Kara Terki, A; Bas, C; Lecerf, L; Young, J; Briand-Suleau, A; Tou, B; Bouligand, J; Brisset, S; Misrahi, M; Guiochon-Mantel, A; Goossens, M; Tachdjian, G

    2012-01-01

    Small supernumerary marker chromosomes (sSMC) are structurally abnormal chromosomes that cannot be unambiguously identified by conventional banding cytogenetics. This study describes four patients with sSMC in relation with infertility. Patient 1 had primary infertility. His brother, fertile, carried the same sSMC (patient 2). Patient 3 presented polycystic ovary syndrome and patient 4 primary ovarian insufficiency. Cytogenetic studies, array comparative genomic hybridization (CGH) and sperm analyses were compared with cases previously reported. sSMC corresponded to the 15q11.2 region (patients 1 and 2), the centromeric chromosome 15 region (patient 3) and the 21p11.2 region (patient 4). Array CGH showed 3.6-Mb gain for patients 1 and 2 and 0.266-Mb gain for patient 4. Sperm fluorescent in-situ hybridization analyses found ratios of 0.37 and 0.30 of sperm nuclei with sSMC(15) for patients 1 and 2, respectively (P < 0.001). An increase of sperm nuclei with disomy X, Y and 18 was noted for patient 1 compared with control and patient 2 (P < 0.001). Among the genes mapped in the unbalanced chromosomal regions, POTE B and BAGE are related to the testis and ovary, respectively. The implication of sSMC in infertility could be due to duplication, but also to mechanical effects perturbing meiosis.

  12. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis

    Directory of Open Access Journals (Sweden)

    Chavez Adela

    2008-07-01

    Full Text Available Abstract Background Anaplasma phagocytophilum (Ap is an obligate intracellular bacterium and the agent of human granulocytic anaplasmosis, an emerging tick-borne disease. Ap alternately infects ticks and mammals and a variety of cell types within each. Understanding the biology behind such versatile cellular parasitism may be derived through the use of tiling microarrays to establish high resolution, genome-wide transcription profiles of the organism as it infects cell lines representative of its life cycle (tick; ISE6 and pathogenesis (human; HL-60 and HMEC-1. Results Detailed, host cell specific transcriptional behavior was revealed. There was extensive differential Ap gene transcription between the tick (ISE6 and the human (HL-60 and HMEC-1 cell lines, with far fewer differentially transcribed genes between the human cell lines, and all disproportionately represented by membrane or surface proteins. There were Ap genes exclusively transcribed in each cell line, apparent human- and tick-specific operons and paralogs, and anti-sense transcripts that suggest novel expression regulation processes. Seven virB2 paralogs (of the bacterial type IV secretion system showed human or tick cell dependent transcription. Previously unrecognized genes and coding sequences were identified, as were the expressed p44/msp2 (major surface proteins paralogs (of 114 total, through elevated signal produced to the unique hypervariable region of each – 2/114 in HL-60, 3/114 in HMEC-1, and none in ISE6. Conclusion Using these methods, whole genome transcription profiles can likely be generated for Ap, as well as other obligate intracellular organisms, in any host cells and for all stages of the cell infection process. Visual representation of comprehensive transcription data alongside an annotated map of the genome renders complex transcription into discernable patterns.

  13. hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions

    Directory of Open Access Journals (Sweden)

    Macario Alberto JL

    2008-01-01

    Full Text Available Abstract Background Hsp70 chaperones are required for key cellular processes and response to environmental changes and survival but they have not been fully characterized yet. The human hsp70-gene family has an unknown number of members (eleven counted over ten years ago; some have been described but the information is incomplete and inconsistent. A coherent body of knowledge encompassing all family components that would facilitate their study individually and as a group is lacking. Nowadays, the study of chaperone genes benefits from the availability of genome sequences and a new protocol, chaperonomics, which we applied to elucidate the human hsp70 family. Results We identified 47 hsp70 sequences, 17 genes and 30 pseudogenes. The genes distributed into seven evolutionarily distinct groups with distinguishable subgroups according to phylogenetic and other data, such as exon-intron and protein features. The N-terminal ATP-binding domain (ABD was conserved at least partially in the majority of the proteins but the C-terminal substrate-binding domain (SBD was not. Nine proteins were typical Hsp70s (65–80 kDa with ABD and SBD, two were lighter lacking partly or totally the SBD, and six were heavier (>80 kDa with divergent C-terminal domains. We also analyzed exon-intron features, transcriptional variants and protein structure and isoforms, and modality and patterns of expression in various tissues and developmental stages. Evolutionary analyses, including human hsp70 genes and pseudogenes, and other eukaryotic hsp70 genes, showed that six human genes encoding cytosolic Hsp70s and 27 pseudogenes originated from retro-transposition of HSPA8, a gene highly expressed in most tissues and developmental stages. Conclusion The human hsp70-gene family is characterized by a remarkable evolutionary diversity that mainly resulted from multiple duplications and retrotranspositions of a highly expressed gene, HSPA8. Human Hsp70 proteins are clustered into

  14. National Human Genome Research Institute

    Science.gov (United States)

    ... the Director Organization Reports & Publications Español The National Human Genome Research Institute conducts genetic and genomic research, funds ... Landscape Social Media Videos Image Gallery Fact Sheets Human Genome Project Clinical Studies Genomic Careers DNA Day Calendar ...

  15. Tandemly Arrayed Genes in Vertebrate Genomes

    Directory of Open Access Journals (Sweden)

    Deng Pan

    2008-01-01

    Full Text Available Tandemly arrayed genes (TAGs are duplicated genes that are linked as neighbors on a chromosome, many of which have important physiological and biochemical functions. Here we performed a survey of these genes in 11 available vertebrate genomes. TAGs account for an average of about 14% of all genes in these vertebrate genomes, and about 25% of all duplications. The majority of TAGs (72–94% have parallel transcription orientation (i.e., they are encoded on the same strand in contrast to the genome, which has about 50% of its genes in parallel transcription orientation. The majority of tandem arrays have only two members. In all species, the proportion of genes that belong to TAGs tends to be higher in large gene families than in small ones; together with our recent finding that tandem duplication played a more important role than retroposition in large families, this fact suggests that among all types of duplication mechanisms, tandem duplication is the predominant mechanism of duplication, especially in large families. Finally, several species have a higher proportion of large tandem arrays that are species-specific than random expectation.

  16. Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Block, S. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Fortson, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Joyce, G. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Kimble, H. J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Lewis, N. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Max, C. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Prince, T. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, P. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Woodin, W. H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1998-01-04

    The study reviews Department of Energy supported aspects of the United States Human Genome Project, the joint National Institutes of Health/Department of Energy program to characterize all human genetic material, to discover the set of human genes, and to render them accessible for further biological study. The study concentrates on issues of technology, quality assurance/control, and informatics relevant to current effort on the genome project and needs beyond it. Recommendations are presented on areas of the genome program that are of particular interest to and supported by the Department of Energy.

  17. Mapping genomic library clones using oligonucleotide arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sapolsky, R.J.; Lipshutz, R.J. [Affymetrix, Santa Clara, CA (United States)

    1996-05-01

    We have developed a high-density DNA probe array and accompanying biochemical and informatic methods to order clones from genomic libraries. This approach involves a series of enzymatic steps for capturing a set of short dispersed sequence markers scattered throughout a high-molecular-weight DNA. By this process, all the ambiguous sequences lying adjacent to a given Type IIS restriction site are ligated between two DNA adaptors. These markers, once amplified and labeled by PCR, can be hybridized and detected on a high-density olligonucleotide array bearing probes complementary to all possible markers. The array is synthesized using light-directed combinatorial chemistry. For each clone in a genomic library, a characteristic set of sequence markers can be determined. On the basis of the similarity between the marker sets for each pair of clones, their relative overlap can be measured. The library can be sequentially ordered into a contig map using this overlap information. This new methodology does not require gel-based methods or prior sequence information and involves manipulations that should allow for easy adaptation to automated processing and data collection. 28 refs., 9 figs., 2 tabs.

  18. Human social genomics.

    Directory of Open Access Journals (Sweden)

    Steven W Cole

    2014-08-01

    Full Text Available A growing literature in human social genomics has begun to analyze how everyday life circumstances influence human gene expression. Social-environmental conditions such as urbanity, low socioeconomic status, social isolation, social threat, and low or unstable social status have been found to associate with differential expression of hundreds of gene transcripts in leukocytes and diseased tissues such as metastatic cancers. In leukocytes, diverse types of social adversity evoke a common conserved transcriptional response to adversity (CTRA characterized by increased expression of proinflammatory genes and decreased expression of genes involved in innate antiviral responses and antibody synthesis. Mechanistic analyses have mapped the neural "social signal transduction" pathways that stimulate CTRA gene expression in response to social threat and may contribute to social gradients in health. Research has also begun to analyze the functional genomics of optimal health and thriving. Two emerging opportunities now stand to revolutionize our understanding of the everyday life of the human genome: network genomics analyses examining how systems-level capabilities emerge from groups of individual socially sensitive genomes and near-real-time transcriptional biofeedback to empirically optimize individual well-being in the context of the unique genetic, geographic, historical, developmental, and social contexts that jointly shape the transcriptional realization of our innate human genomic potential for thriving.

  19. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  20. Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The DOE Human Genome program has grown tremendously, as shown by the marked increase in the number of genome-funded projects since the last workshop held in 1991. The abstracts in this book describe the genome research of DOE-funded grantees and contractors and invited guests, and all projects are represented at the workshop by posters. The 3-day meeting includes plenary sessions on ethical, legal, and social issues pertaining to the availability of genetic data; sequencing techniques, informatics support; and chromosome and cDNA mapping and sequencing.

  1. Microfluidic gene arrays for rapid genomic profiling

    Science.gov (United States)

    West, Jay A.; Hukari, Kyle W.; Hux, Gary A.; Shepodd, Timothy J.

    2004-12-01

    Genomic analysis tools have recently become an indispensable tool for the evaluation of gene expression in a variety of experiment protocols. Two of the main drawbacks to this technology are the labor and time intensive process for sample preparation and the relatively long times required for target/probe hybridization. In order to overcome these two technological barriers we have developed a microfluidic chip to perform on chip sample purification and labeling, integrated with a high density genearray. Sample purification was performed using a porous polymer monolithic material functionalized with an oligo dT nucleotide sequence for the isolation of high purity mRNA. These purified mRNA"s can then rapidly labeled using a covalent fluorescent molecule which forms a selective covalent bond at the N7 position of guanine residues. These labeled mRNA"s can then released from the polymer monolith to allow for direct hybridization with oligonucletide probes deposited in microfluidic channel. To allow for rapid target/probe hybridization high density microarray were printed in microchannels. The channels can accommodate array densities as high as 4000 probes. When oligonucleotide deposition is complete, these channels are sealed using a polymer film which forms a pressure tight seal to allow sample reagent flow to the arrayed probes. This process will allow for real time target to probe hybridization monitoring using a top mounted CCD fiber bundle combination. Using this process we have been able to perform a multi-step sample preparation to labeled target/probe hybridization in less than 30 minutes. These results demonstrate the capability to perform rapid genomic screening on a high density microfluidic microarray of oligonucleotides.

  2. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    Directory of Open Access Journals (Sweden)

    Moreau Yves

    2005-05-01

    Full Text Available Abstract Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH. One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at http://medgen.ugent.be/arrayCGHbase/.

  3. Optimizing cell arrays for accurate functional genomics

    Directory of Open Access Journals (Sweden)

    Fengler Sven

    2012-07-01

    Full Text Available Abstract Background Cellular responses emerge from a complex network of dynamic biochemical reactions. In order to investigate them is necessary to develop methods that allow perturbing a high number of gene products in a flexible and fast way. Cell arrays (CA enable such experiments on microscope slides via reverse transfection of cellular colonies growing on spotted genetic material. In contrast to multi-well plates, CA are susceptible to contamination among neighboring spots hindering accurate quantification in cell-based screening projects. Here we have developed a quality control protocol for quantifying and minimizing contamination in CA. Results We imaged checkered CA that express two distinct fluorescent proteins and segmented images into single cells to quantify the transfection efficiency and interspot contamination. Compared with standard procedures, we measured a 3-fold reduction of contaminants when arrays containing HeLa cells were washed shortly after cell seeding. We proved that nucleic acid uptake during cell seeding rather than migration among neighboring spots was the major source of contamination. Arrays of MCF7 cells developed without the washing step showed 7-fold lower percentage of contaminant cells, demonstrating that contamination is dependent on specific cell properties. Conclusions Previously published methodological works have focused on achieving high transfection rate in densely packed CA. Here, we focused in an equally important parameter: The interspot contamination. The presented quality control is essential for estimating the rate of contamination, a major source of false positives and negatives in current microscopy based functional genomics screenings. We have demonstrated that a washing step after seeding enhances CA quality for HeLA but is not necessary for MCF7. The described method provides a way to find optimal seeding protocols for cell lines intended to be used for the first time in CA.

  4. Efficient oligonucleotide probe selection for pan-genomic tiling arrays

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2009-09-01

    Full Text Available Abstract Background Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome. Results This paper presents a new probe selection algorithm (PanArray that can tile multiple whole genomes using a minimal number of probes. Unlike arrays built on clustered gene families, PanArray uses an unbiased, probe-centric approach that does not rely on annotations, gene clustering, or multi-alignments. Instead, probes are evenly tiled across all sequences of the pan-genome at a consistent level of coverage. To minimize the required number of probes, probes conserved across multiple strains in the pan-genome are selected first, and additional probes are used only where necessary to span polymorphic regions of the genome. The viability of the algorithm is demonstrated by array designs for seven different bacterial pan-genomes and, in particular, the design of a 385,000 probe array that fully tiles the genomes of 20 different Listeria monocytogenes strains with overlapping probes at greater than twofold coverage. Conclusion PanArray is an oligonucleotide probe selection algorithm for tiling multiple genome sequences using a minimal number of probes. It is capable of fully tiling all genomes of a species on

  5. Optimized design and assessment of whole genome tiling arrays.

    NARCIS (Netherlands)

    Graf, S.; Nielsen, F.G.G.; Kurtz, S.; Huynen, M.A.; Birney, E.; Stunnenberg, H.G.; Flicek, P.

    2007-01-01

    MOTIVATION: Recent advances in microarray technologies have made it feasible to interrogate whole genomes with tiling arrays and this technique is rapidly becoming one of the most important high-throughput functional genomics assays. For large mammalian genomes, analyzing oligonucleotide tiling arra

  6. Genomics of human longevity.

    Science.gov (United States)

    Slagboom, P E; Beekman, M; Passtoors, W M; Deelen, J; Vaarhorst, A A M; Boer, J M; van den Akker, E B; van Heemst, D; de Craen, A J M; Maier, A B; Rozing, M; Mooijaart, S P; Heijmans, B T; Westendorp, R G J

    2011-01-12

    In animal models, single-gene mutations in genes involved in insulin/IGF and target of rapamycin signalling pathways extend lifespan to a considerable extent. The genetic, genomic and epigenetic influences on human longevity are expected to be much more complex. Strikingly however, beneficial metabolic and cellular features of long-lived families resemble those in animals for whom the lifespan is extended by applying genetic manipulation and, especially, dietary restriction. Candidate gene studies in humans support the notion that human orthologues from longevity genes identified in lower species do contribute to longevity but that the influence of the genetic variants involved is small. Here we discuss how an integration of novel study designs, labour-intensive biobanking, deep phenotyping and genomic research may provide insights into the mechanisms that drive human longevity and healthy ageing, beyond the associations usually provided by molecular and genetic epidemiology. Although prospective studies of humans from the cradle to the grave have never been performed, it is feasible to extract life histories from different cohorts jointly covering the molecular changes that occur with age from early development all the way up to the age at death. By the integration of research in different study cohorts, and with research in animal models, biological research into human longevity is thus making considerable progress.

  7. Mapping the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, Charles R.

    1989-06-01

    The following pages aim to lay a foundation for understanding the excitement surrounding the ''human genome project,'' as well as to convey a flavor of the ongoing efforts and plans at the Human Genome Center at the Lawrence Berkeley Laboratory. Our own work, of course, is only part of a broad international effort that will dramatically enhance our understanding of human molecular genetics before the end of this century. In this country, the bulk of the effort will be carried out under the auspices of the Department of Energy and the National Institutes of Health, but significant contributions have already been made both by nonprofit private foundations and by private corporation. The respective roles of the DOE and the NIH are being coordinated by an inter-agency committee, the aims of which are to emphasize the strengths of each agency, to facilitate cooperation, and to avoid unnecessary duplication of effort. The NIH, for example, will continue its crucial work in medical genetics and in mapping the genomes of nonhuman species. The DOE, on the other hand, has unique experience in managing large projects, and its national laboratories are repositories of expertise in physics, engineering, and computer science, as well as the life sciences. The tools and techniques the project will ultimately rely on are thus likely to be developed in multidisciplinary efforts at laboratories like LBL. Accordingly, we at LBL take great pride in this enterprise -- an enterprise that will eventually transform our understanding of ourselves.

  8. Human transcriptome array for high-throughput clinical studies.

    Science.gov (United States)

    Xu, Weihong; Seok, Junhee; Mindrinos, Michael N; Schweitzer, Anthony C; Jiang, Hui; Wilhelmy, Julie; Clark, Tyson A; Kapur, Karen; Xing, Yi; Faham, Malek; Storey, John D; Moldawer, Lyle L; Maier, Ronald V; Tompkins, Ronald G; Wong, Wing Hung; Davis, Ronald W; Xiao, Wenzhong

    2011-03-01

    A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing as well as detection of coding SNPs and noncoding transcripts. The performance of the array was examined and compared with mRNA sequencing (RNA-Seq) results over multiple independent replicates of liver and muscle samples. Compared with RNA-Seq of 46 million uniquely mappable reads per replicate, the GG-H array is highly reproducible in estimating gene and exon abundance. Although both platforms detect similar expression changes at the gene level, the GG-H array is more sensitive at the exon level. Deeper sequencing is required to adequately cover low-abundance transcripts. The array has been implemented in a multicenter clinical program and has generated high-quality, reproducible data. Considering the clinical trial requirements of cost, sample availability, and throughput, the GG-H array has a wide range of applications. An emerging approach for large-scale clinical genomic studies is to first use RNA-Seq to the sufficient depth for the discovery of transcriptome elements relevant to the disease process followed by high-throughput and reliable screening of these elements on thousands of patient samples using custom-designed arrays.

  9. Human myoblast genome therapy

    Institute of Scientific and Technical Information of China (English)

    Peter K Law; Leo A Bockeria; Choong-Chin Liew; Danlin M Law; Ping Lu; Eugene KW Sim; Khawja H Haider; Lei Ye; Xun Li; Margarita N Vakhromeeva; Ilia I Berishvili

    2006-01-01

    Human Myoblast Genome Therapy (HMGT) is a platform technology of cell transplantation, nuclear transfer, and tissue engineering. Unlike stem cells, myoblasts are differentiated, immature cells destined to become muscles. Myoblasts cultured from satellite cells of adult muscle biopsies survive, develop, and function to revitalize degenerative muscles upon transplantation. Injection injury activates regeneration of host myofibers that fuse with the engrafted myoblasts, sharing their nuclei in a common gene pool of the syncytium. Thus, through nuclear transfer and complementation, the normal human genome can be transferred into muscles of patients with genetic disorders to achieve phenotype repair or disease prevention. Myoblasts are safe and efficient gene transfer vehicles endogenous to muscles that constitute 50% of body weight. Results of over 280 HMGT procedures on Duchenne Muscular Dystrophy (DMD) subjects in the past 15 years demonstrated absolute safety. Myoblast-injected DMD muscles showed improved histology.Strength increase at 18 months post-operatively averaged 123%. In another application of HMGT on ischemic cardiomyopathy, the first human myoblast transfer into porcine myocardium revealed that it was safe and effective. Clinical trials on approximately 220 severe cardiomyopathy patients in 15 countries showed a <10% mortality. Most subjects received autologous cells implanted on the epicardial surface during coronory artery bypass graft, or injected on the endomyocardial surface percutaneously through guiding catheters. Significant increases in left ventricular ejection fraction, wall thickness, and wall motion have been reported, with reduction in perfusion defective areas, angina, and shortness of breath. As a new modality of treatment for disease in the skeletal muscle or myocardium, HMGT emerged as safe and effective. Large randomized multi-center trials are under way to confirm these preliminary results. The future of HMGT is bright and exciting

  10. Genome engineering in human cells.

    Science.gov (United States)

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  11. All about the Human Genome Project (HGP)

    Science.gov (United States)

    ... Genome Resources Access to the full human sequence All About The Human Genome Project (HGP) The Human ... an international research effort to sequence and map all of the genes - together known as the genome - ...

  12. Whole genome amplification and its impact on CGH array profiles

    Directory of Open Access Journals (Sweden)

    Meldrum Cliff

    2008-07-01

    Full Text Available Abstract Background Some array comparative genomic hybridisation (array CGH platforms require a minimum of micrograms of DNA for the generation of reliable and reproducible data. For studies where there are limited amounts of genetic material, whole genome amplification (WGA is an attractive method for generating sufficient quantities of genomic material from miniscule amounts of starting material. A range of WGA methods are available and the multiple displacement amplification (MDA approach has been shown to be highly accurate, although amplification bias has been reported. In the current study, WGA was used to amplify DNA extracted from whole blood. In total, six array CGH experiments were performed to investigate whether the use of whole genome amplified DNA (wgaDNA produces reliable and reproducible results. Four experiments were conducted on amplified DNA compared to unamplified DNA and two experiments on unamplified DNA compared to unamplified DNA. Findings All the experiments involving wgaDNA resulted in a high proportion of losses and gains of genomic material. Previously, amplification bias has been overcome by using amplified DNA in both the test and reference DNA. Our data suggests that this approach may not be effective, as the gains and losses introduced by WGA appears to be random and are not reproducible between different experiments using the same DNA. Conclusion In light of these findings, the use of both amplified test and reference DNA on CGH arrays may not provide an accurate representation of copy number variation in the DNA.

  13. Human genome. 1993 Program report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The purpose of this report is to update the Human Genome 1991-92 Program Report and provide new information on the DOE genome program to researchers, program managers, other government agencies, and the interested public. This FY 1993 supplement includes abstracts of 60 new or renewed projects and listings of 112 continuing and 28 completed projects. These two reports, taken together, present the most complete published view of the DOE Human Genome Program through FY 1993. Research is progressing rapidly toward 15-year goals of mapping and sequencing the DNA of each of the 24 different human chromosomes.

  14. the human genome project

    African Journals Online (AJOL)

    Enrique

    The shaping of life forms through the principles of mutation and natural selection have resulted in the ... by Antonie von. Leeuwenhoek was a necessary prerequisite to the vast array of high-definition ... genetics as a formal science included.

  15. Concentrating Genomic Length DNA in a Microfabricated Array

    DEFF Research Database (Denmark)

    Chen, Yu; Abrams, Ezra S.; Boles, T. Christian

    2015-01-01

    We demonstrate that a microfabricated bump array can concentrate genomic-length DNA molecules efficiently at continuous, high flow velocities, up to 40 μm=s, if the single-molecule DNA globule has a sufficiently large shear modulus. Increase in the shear modulus is accomplished by compacting...

  16. Characterization of copy number variation in genomic regions containing STR loci using array comparative genomic hybridization.

    Science.gov (United States)

    Repnikova, Elena A; Rosenfeld, Jill A; Bailes, Andrea; Weber, Cecilia; Erdman, Linda; McKinney, Aimee; Ramsey, Sarah; Hashimoto, Sayaka; Lamb Thrush, Devon; Astbury, Caroline; Reshmi, Shalini C; Shaffer, Lisa G; Gastier-Foster, Julie M; Pyatt, Robert E

    2013-09-01

    Short tandem repeat (STR) loci are commonly used in forensic casework, familial analysis for human identification, and for monitoring hematopoietic cell engraftment after bone marrow transplant. Unexpected genetic variation leading to sequence and length differences in STR loci can complicate STR typing, and presents challenges in casework interpretation. Copy number variation (CNV) is a relatively recently identified form of genetic variation consisting of genomic regions present at variable copy numbers within an individual compared to a reference genome. Large scale population studies have demonstrated that likely all individuals carry multiple regions with CNV of 1kb in size or greater in their genome. To date, no study correlating genomic regions containing STR loci with CNV has been conducted. In this study, we analyzed results from 32,850 samples sent for clinical array comparative genomic hybridization (CGH) analysis for the presence of CNV at regions containing the 13 CODIS (Combined DNA Index System) STR, and the Amelogenin X (AMELX) and Amelogenin Y (AMELY) loci. Thirty-two individuals with CNV involving STR loci on chromosomes 2, 4, 7, 11, 12, 13, 16, and 21, and twelve with CNV involving the AMELX/AMELY loci were identified. These results were correlated with data from publicly available databases housing information on CNV identified in normal populations and additional clinical cases. These collective results demonstrate the presence of CNV in regions containing 9 of the 13 CODIS STR and AMELX/Y loci. Further characterization of STR profiles within regions of CNV, additional cataloging of these variants in multiple populations, and contributing such examples to the public domain will provide valuable information for reliable use of these loci.

  17. Array-based genome-wide RNAi screening to identify shRNAs that enhance p53-related apoptosis in human cancer cells.

    Science.gov (United States)

    Idogawa, Masashi; Ohashi, Tomoko; Sugisaka, Jun; Sasaki, Yasushi; Suzuki, Hiromu; Tokino, Takashi

    2014-09-15

    p53 transduction is a potentially effective cancer therapy but does not result in a good therapeutic response in all human cancers due to resistance to apoptosis. To discover factors that overcome resistance to p53-induced apoptosis, we attempted to identify RNAi sequences that enhance p53-induced apoptosis. We screened a genome-wide lentiviral shRNA library in liver cancer Huh-7 and pancreatic cancer Panc-1 cells, both of which resist p53-induced apoptosis. After the infection of adenovirus expressing p53 or LacZ as a control, shRNA-treated populations were analyzed by microarray. We identified shRNAs that were significantly decreased in p53-infected cells compared with control cells. Among these shRNAs, shRNA-58335 was markedly decreased in both cancer cell lines tested. shRNA-58335 enhanced p53-related apoptosis in vitro and augmented the inhibitory effect of adenoviral p53 transduction on tumor growth in vivo. Furthermore, the enhanced apoptotic response by shRNA-58335 was also confirmed by treatment with PRIMA-1, which reactivates mutant p53, instead of adenoviral p53 transduction. We found that shRNA-58335 evokes the apoptotic response following p53 transduction or functional restoration of p53 with a small molecule drug in cancer cells resistant to p53-induced apoptosis. The combination of p53 restoration and RNAi-based drugs is expected to be a promising novel cancer therapy.

  18. Genomic characterization of some Iranian children with idiopathic mental retardation using array comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Farkhondeh Behjati

    2013-01-01

    Full Text Available Background: Mental retardation (MR has a prevalence of 1-3% and genetic causes are present in more than 50% of patients. Chromosomal abnormalities are one of the most common genetic causes of MR and are responsible for 4-28% of mental retardation. However, the smallest loss or gain of material visible by standard cytogenetic is about 4 Mb and for smaller abnormalities, molecular cytogenetic techniques such as array comparative genomic hybridization (array CGH should be used. It has been shown that 15-25% of idiopathic MR (IMR has submicroscopic rearrangements detectable by array CGH. In this project, the genomic abnormalities were investigated in 32 MR patients using this technique. Materials and Methods: Patients with IMR with dysmorphism were investigated in this study. Karyotype analysis, fragile X and metabolic tests were first carried out on the patients. The copy number variation was then assessed in a total of 32 patients with normal results for the mentioned tests using whole genome oligo array CGH. Multiple ligation probe amplification was carried out as a confirmation test. Results: In total, 19% of the patients showed genomic abnormalities. This is reduced to 12.5% once the two patients with abnormal karyotypes (upon re-evaluation are removed. Conclusion: The array CGH technique increased the detection rate of genomic imbalances in our patients by 12.5%. It is an accurate and reliable method for the determination of genomic imbalances in patients with IMR and dysmorphism.

  19. Gender And The Human Genome

    Directory of Open Access Journals (Sweden)

    Chadwick Ruth

    2009-01-01

    Full Text Available Gender issues arise in relation to the human genome across a number of dimensions: the level of attention given to the nuclear genome as opposed to the mitochondrial; the level of basic scientific research; decision-making in the clinic related to both reproductive decision-making on the one hand, and diagnostic and predictive testing on the other; and wider societal implications. Feminist bioethics offers a useful perspective for addressing these issues.

  20. Characterization of genomic alterations in radiation-associated breast cancer among childhood cancer survivors, using comparative genomic hybridization (CGH arrays.

    Directory of Open Access Journals (Sweden)

    Xiaohong R Yang

    Full Text Available Ionizing radiation is an established risk factor for breast cancer. Epidemiologic studies of radiation-exposed cohorts have been primarily descriptive; molecular events responsible for the development of radiation-associated breast cancer have not been elucidated. In this study, we used array comparative genomic hybridization (array-CGH to characterize genome-wide copy number changes in breast tumors collected in the Childhood Cancer Survivor Study (CCSS. Array-CGH data were obtained from 32 cases who developed a second primary breast cancer following chest irradiation at early ages for the treatment of their first cancers, mostly Hodgkin lymphoma. The majority of these cases developed breast cancer before age 45 (91%, n = 29, had invasive ductal tumors (81%, n = 26, estrogen receptor (ER-positive staining (68%, n = 19 out of 28, and high proliferation as indicated by high Ki-67 staining (77%, n = 17 out of 22. Genomic regions with low-copy number gains and losses and high-level amplifications were similar to what has been reported in sporadic breast tumors, however, the frequency of amplifications of the 17q12 region containing human epidermal growth factor receptor 2 (HER2 was much higher among CCSS cases (38%, n = 12. Our findings suggest that second primary breast cancers in CCSS were enriched for an "amplifier" genomic subgroup with highly proliferative breast tumors. Future investigation in a larger irradiated cohort will be needed to confirm our findings.

  1. Array-based comparative genomic hybridization for genome-wide screening of DNA copy number in bladder tumors.

    NARCIS (Netherlands)

    Veltman, J.A.; Fridlyand, J.; Pejavar, S.; Olshen, A.B.; Korkola, J.E.; Vries, S. de; Carroll, P.; Kuo, W.L.; Pinkel, D.; Albertson, D.; Cordon-Cardo, C.; Jain, A.N.; Waldman, F.M.

    2003-01-01

    Genome-wide copy number profiles were characterized in 41 primary bladder tumors using array-based comparative genomic hybridization (array CGH). In addition to previously identified alterations in large chromosomal regions, alterations were identified in many small genomic regions, some with high-l

  2. Comprehensive survey of SNPs in the Affymetrix exon array using the 1000 Genomes dataset.

    Directory of Open Access Journals (Sweden)

    Eric R Gamazon

    Full Text Available Microarray gene expression data has been used in genome-wide association studies to allow researchers to study gene regulation as well as other complex phenotypes including disease risks and drug response. To reach scientifically sound conclusions from these studies, however, it is necessary to get reliable summarization of gene expression intensities. Among various factors that could affect expression profiling using a microarray platform, single nucleotide polymorphisms (SNPs in target mRNA may lead to reduced signal intensity measurements and result in spurious results. The recently released 1000 Genomes Project dataset provides an opportunity to evaluate the distribution of both known and novel SNPs in the International HapMap Project lymphoblastoid cell lines (LCLs. We mapped the 1000 Genomes Project genotypic data to the Affymetrix GeneChip Human Exon 1.0ST array (exon array, which had been used in our previous studies and for which gene expression data had been made publicly available. We also evaluated the potential impact of these SNPs on the differentially spliced probesets we had identified previously. Though the 1000 Genomes Project data allowed a comprehensive survey of the SNPs in this particular array, the same approach can certainly be applied to other microarray platforms. Furthermore, we present a detailed catalogue of SNP-containing probesets (exon-level and transcript clusters (gene-level, which can be considered in evaluating findings using the exon array as well as benefit the design of follow-up experiments and data re-analysis.

  3. Genomic SNP array as a gold standard for prenatal diagnosis of foetal ultrasound abnormalities

    Directory of Open Access Journals (Sweden)

    Srebniak Malgorzata I

    2012-03-01

    Full Text Available Abstract Background We have investigated whether replacing conventional karyotyping by SNP array analysis in cases of foetal ultrasound abnormalities would increase the diagnostic yield and speed of prenatal diagnosis in clinical practice. Findings/results From May 2009 till June 2011 we performed HumanCytoSNP-12 array (HCS (http://www.Illumina.com analysis in 207 cases of foetal structural abnormalities. HCS allows detecting unbalanced genomic abnormalities with a resolution of about 150/200 kb. All cases were selected by a clinical geneticist after excluding the most common aneuploidies by RAD (rapid aneuploidy detection. Pre-test genetic counselling was offered in all cases. In 24/207 (11,6% foetuses a clinically relevant genetic abnormality was detected. Only 8/24 abnormalities would have been detected if only routine karyotyping was performed. Submicroscopic abnormalities were found in 16/207 (7,7% cases. The array results were achieved within 1-2 weeks after amniocentesis. Conclusions Prenatal SNP array testing is faster than karyotyping and allows detecting much smaller aberrations (~0.15 Mb in addition to the microscopic unbalanced chromosome abnormalities detectable with karyotyping (~ > 5 Mb. Since karyotyping would have missed 66% (16/24 of genomic abnormalities in our cohort, we propose to perform genomic high resolution array testing assisted by pre-test counselling as a primary prenatal diagnostic test in cases of foetal ultrasound abnormalities.

  4. A Universal Genome Array and Transcriptome Atlas for Brachypodium Distachyon

    Energy Technology Data Exchange (ETDEWEB)

    Mockler, Todd [Oregon State Univ., Corvallis, OR (United States)

    2017-04-17

    Brachypodium distachyon is the premier experimental model grass platform and is related to candidate feedstock crops for bioethanol production. Based on the DOE-JGI Brachypodium Bd21 genome sequence and annotation we designed a whole genome DNA microarray platform. The quality of this array platform is unprecedented due to the exceptional quality of the Brachypodium genome assembly and annotation and the stringent probe selection criteria employed in the design. We worked with members of the international community and the bioinformatics/design team at Affymetrix at all stages in the development of the array. We used the Brachypodium arrays to interrogate the transcriptomes of plants grown in a variety of environmental conditions including diurnal and circadian light/temperature conditions and under a variety of environmental conditions. We examined the transciptional responses of Brachypodium seedlings subjected to various abiotic stresses including heat, cold, salt, and high intensity light. We generated a gene expression atlas representing various organs and developmental stages. The results of these efforts including all microarray datasets are published and available at online public databases.

  5. The Past, Present, and Future of Human Centromere Genomics

    Directory of Open Access Journals (Sweden)

    Megan E. Aldrup-MacDonald

    2014-01-01

    Full Text Available The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function.

  6. Progress in the detection of human genome structural variations

    Institute of Scientific and Technical Information of China (English)

    WU XueMei; XIAO HuaSheng

    2009-01-01

    The emerging of high.throughput and high-resolution genomic technologies led to the detection of submicroscopic variants ranging from 1 kb to 3 Mb in the human genome. These variants include copy number variations (CNVs), inversions, insertions, deletions and other complex rearrangements of DNA sequences. This paper briefly reviews the commonly used technologies to discover both genomic structural variants and their potential influences. Particularly, we highlight the array-based, PCR-based and sequencing-based assays, including array-based comparative genomic hybridization (aCGH),representational oligonucleotide microarray analysis (ROMA), multiplex amplifiable probe hybridization (MAPH), multiplex ligation-dependent probe amplification (MLPA), paired-end mapping (PEM), and next-generation DNA sequencing technologies. Furthermore, we discuss the limitations and challenges of current assays and give advices on how to make the database of genomic variations more reliable.

  7. Progress in the detection of human genome structural variations

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The emerging of high-throughput and high-resolution genomic technologies led to the detection of submicroscopic variants ranging from 1 kb to 3 Mb in the human genome.These variants include copy number variations(CNVs),inversions,insertions,deletions and other complex rearrangements of DNA sequences.This paper briefly reviews the commonly used technologies to discover both genomic structural variants and their potential influences.Particularly,we highlight the array-based,PCR-based and sequencing-based assays,including array-based comparative genomic hybridization(aCGH),representational oligonucleotide microarray analysis(ROMA),multiplex amplifiable probe hybridization(MAPH),multiplex ligation-dependent probe amplification(MLPA),paired-end mapping(PEM),and next-generation DNA sequencing technologies.Furthermore,we discuss the limitations and challenges of current assays and give advices on how to make the database of genomic variations more reliable.

  8. Design optimization methods for genomic DNA tiling arrays.

    Science.gov (United States)

    Bertone, Paul; Trifonov, Valery; Rozowsky, Joel S; Schubert, Falk; Emanuelsson, Olof; Karro, John; Kao, Ming-Yang; Snyder, Michael; Gerstein, Mark

    2006-02-01

    A recent development in microarray research entails the unbiased coverage, or tiling, of genomic DNA for the large-scale identification of transcribed sequences and regulatory elements. A central issue in designing tiling arrays is that of arriving at a single-copy tile path, as significant sequence cross-hybridization can result from the presence of non-unique probes on the array. Due to the fragmentation of genomic DNA caused by the widespread distribution of repetitive elements, the problem of obtaining adequate sequence coverage increases with the sizes of subsequence tiles that are to be included in the design. This becomes increasingly problematic when considering complex eukaryotic genomes that contain many thousands of interspersed repeats. The general problem of sequence tiling can be framed as finding an optimal partitioning of non-repetitive subsequences over a prescribed range of tile sizes, on a DNA sequence comprising repetitive and non-repetitive regions. Exact solutions to the tiling problem become computationally infeasible when applied to large genomes, but successive optimizations are developed that allow their practical implementation. These include an efficient method for determining the degree of similarity of many oligonucleotide sequences over large genomes, and two algorithms for finding an optimal tile path composed of longer sequence tiles. The first algorithm, a dynamic programming approach, finds an optimal tiling in linear time and space; the second applies a heuristic search to reduce the space complexity to a constant requirement. A Web resource has also been developed, accessible at http://tiling.gersteinlab.org, to generate optimal tile paths from user-provided DNA sequences.

  9. How to Concentrate Genomic Length DNA in a Microfabricated Array

    Science.gov (United States)

    Chen, Yu; Abrams, Ezra; Boles, Christian; Pedersen, Jonas; Flyvbjerg, Henrik; Sturm, James; Austin, Robert

    We demonstrate that a microfabricated bump array can concentrate genomic-length DNA molecules efficiently at continuous, high flow velocities, up to 40 ?m/s, if the single-molecule DNA globule has a sufficiently large shear modulus.. Increase in the shear modulus is accomplished by compacting the DNA molecules to minimal coil-size using polyethylene glycol (PEG) derived depletion forces. We map out the sweet spot where concentration occurs as a function of PEG con- centration, flow speed, and bump array parameters using a combination of theoretical analysis and experiment. Purification of DNA from enzymatic reactions for next-generation DNA-sequencing libraries will be an important application of this development.

  10. Analysis of Chinese women with primary ovarian insufficiency by high resolution array-comparative genomic hybridization

    Institute of Scientific and Technical Information of China (English)

    LIAO Can; FU Fang; YANG Xin; SUN Yi-min; LI Dong-zhi

    2011-01-01

    Background Primary ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea) or premature depletion of ovarian follicles before the age of 40 years. The etiology of primary ovarian insufficiency in human female patients is still unclear. The purpose of this study is to investigate the potential genetic causes in primary amenorrhea patients by high resolution array based comparative genomic hybridization (array-CGH) analysis.Methods Following the standard karyotyping analysis, genomic DNA from whole blood of 15 primary amenorrhea patients and 15 normal control women was hybridized with Affymetrix cytogenetic 2.7M arrays following the standard protocol. Copy number variations identified by array-CGH were confirmed by real time polymerase chain reaction.Results All the 30 samples were negative by conventional karyotyping analysis. Microdeletions on chromosome 17q21.31-q21.32 with approximately 1.3 Mb were identified in four patients by high resolution array-CGH analysis. This included the female reproductive secretory pathway related factor N-ethylmaleimide-sensitive factor (NSF) gene.Conclusions The results of the present study suggest that there may be critical regions regulating primary ovarian insufficiency in women with a 17q21.31-q21.32 microdeletion. This effect might be due to the loss of function of the NSF gene/genes within the deleted region or to effects on contiguous genes.

  11. Evolutionary insights from suffix array-based genome sequence analysis

    Indian Academy of Sciences (India)

    Anindya Poddar; Nagasuma Chandra; Madhavi Ganapathiraju; K Sekar; Judith Klein-Seetharaman; Raj Reddy; N Balakrishnan

    2007-08-01

    Gene and protein sequence analyses, central components of studies in modern biology are easily amenable to string matching and pattern recognition algorithms. The growing need of analysing whole genome sequences more efficiently and thoroughly, has led to the emergence of new computational methods. Suffix trees and suffix arrays are data structures, well known in many other areas and are highly suited for sequence analysis too. Here we report an improvement to the design of construction of suffix arrays. Enhancement in versatility and scalability, enabled by this approach, is demonstrated through the use of real-life examples. The scalability of the algorithm to whole genomes renders it suitable to address many biologically interesting problems. One example is the evolutionary insight gained by analysing unigrams, bi-grams and higher n-grams, indicating that the genetic code has a direct influence on the overall composition of the genome. Further, different proteomes have been analysed for the coverage of the possible peptide space, which indicate that as much as a quarter of the total space at the tetra-peptide level is left un-sampled in prokaryotic organisms, although almost all tri-peptides can be seen in one protein or another in a proteome. Besides, distinct patterns begin to emerge for the counts of particular tetra and higher peptides, indicative of a ‘meaning’ for tetra and higher n-grams. The toolkit has also been used to demonstrate the usefulness of identifying repeats in whole proteomes efficiently. As an example, 16 members of one COG, coded by the genome of Mycobacterium tuberculosis H37Rv have been found to contain a repeating sequence of 300 amino acids.

  12. Development and application of a novel genome-wide SNP array reveals domestication history in soybean.

    Science.gov (United States)

    Wang, Jiao; Chu, Shanshan; Zhang, Huairen; Zhu, Ying; Cheng, Hao; Yu, Deyue

    2016-02-09

    Domestication of soybeans occurred under the intense human-directed selections aimed at developing high-yielding lines. Tracing the domestication history and identifying the genes underlying soybean domestication require further exploration. Here, we developed a high-throughput NJAU 355 K SoySNP array and used this array to study the genetic variation patterns in 367 soybean accessions, including 105 wild soybeans and 262 cultivated soybeans. The population genetic analysis suggests that cultivated soybeans have tended to originate from northern and central China, from where they spread to other regions, accompanied with a gradual increase in seed weight. Genome-wide scanning for evidence of artificial selection revealed signs of selective sweeps involving genes controlling domestication-related agronomic traits including seed weight. To further identify genomic regions related to seed weight, a genome-wide association study (GWAS) was conducted across multiple environments in wild and cultivated soybeans. As a result, a strong linkage disequilibrium region on chromosome 20 was found to be significantly correlated with seed weight in cultivated soybeans. Collectively, these findings should provide an important basis for genomic-enabled breeding and advance the study of functional genomics in soybean.

  13. The Human Genome Diversity Project

    Energy Technology Data Exchange (ETDEWEB)

    Cavalli-Sforza, L. [Stanford Univ., CA (United States)

    1994-12-31

    The Human Genome Diversity Project (HGD Project) is an international anthropology project that seeks to study the genetic richness of the entire human species. This kind of genetic information can add a unique thread to the tapestry knowledge of humanity. Culture, environment, history, and other factors are often more important, but humanity`s genetic heritage, when analyzed with recent technology, brings another type of evidence for understanding species` past and present. The Project will deepen the understanding of this genetic richness and show both humanity`s diversity and its deep and underlying unity. The HGD Project is still largely in its planning stages, seeking the best ways to reach its goals. The continuing discussions of the Project, throughout the world, should improve the plans for the Project and their implementation. The Project is as global as humanity itself; its implementation will require the kinds of partnerships among different nations and cultures that make the involvement of UNESCO and other international organizations particularly appropriate. The author will briefly discuss the Project`s history, describe the Project, set out the core principles of the Project, and demonstrate how the Project will help combat the scourge of racism.

  14. A hidden Markov model approach for determining expression from genomic tiling micro arrays

    Directory of Open Access Journals (Sweden)

    Krogh Anders

    2006-05-01

    Full Text Available Abstract Background Genomic tiling micro arrays have great potential for identifying previously undiscovered coding as well as non-coding transcription. To-date, however, analyses of these data have been performed in an ad hoc fashion. Results We present a probabilistic procedure, ExpressHMM, that adaptively models tiling data prior to predicting expression on genomic sequence. A hidden Markov model (HMM is used to model the distributions of tiling array probe scores in expressed and non-expressed regions. The HMM is trained on sets of probes mapped to regions of annotated expression and non-expression. Subsequently, prediction of transcribed fragments is made on tiled genomic sequence. The prediction is accompanied by an expression probability curve for visual inspection of the supporting evidence. We test ExpressHMM on data from the Cheng et al. (2005 tiling array experiments on ten Human chromosomes 1. Results can be downloaded and viewed from our web site 2. Conclusion The value of adaptive modelling of fluorescence scores prior to categorisation into expressed and non-expressed probes is demonstrated. Our results indicate that our adaptive approach is superior to the previous analysis in terms of nucleotide sensitivity and transfrag specificity.

  15. Genomics and identity: the bioinformatisation of human life.

    Science.gov (United States)

    Zwart, Hub

    2009-06-01

    The genomics "revolution" is spreading. Originating in the molecular life sciences, it initially affected a number of biomedical research fields such as cancer genomics and clinical genetics. Now, however, a new "wave" of genomic bioinformation is transforming a widening array of disciplines, including those that address the social, historical and cultural dimensions of human life. Increasingly, bioinformation is affecting "human sciences" such as psychiatry, psychology, brain research, behavioural research ("behavioural genomics"), but also anthropology and archaeology ("bioarchaeology"). Thus, bioinformatics is having an impact on how we define and understand ourselves, how identities are formed and constituted, and, finally, on how we (on the basis of these redefined identities) assess and address some of the more concrete societal issues involved in genomics governance in various settings. This article explores how genomics and bioinformation, by influencing research agendas in the human sciences and the humanities, are affecting our self-image, our identity, the way we see ourselves. The impact of bioinformation on self-understanding will be assessed on three levels: (1) the collective level (the impact of comparative genomics on our understanding of human beings as a species), (2) the individual level (the impact of behavioural genomics on our understanding of ourselves as individuals), and (3) the genealogical level (the impact of population genomics on our understanding of human history, notably early human history). This threefold impact will be assessed from two seemingly incompatible philosophical perspectives, namely a "humanistic" perspective (represented in this article by Francis Fukuyama) and a "post-humanistic" one (represented by Peter Sloterdijk). On the basis of this analysis it will be concluded that, rather than focussing on human "enhancement" by adding or deleting genes, genome-oriented practices of the Self will focus on using genomics

  16. Use of human methylation arrays for epigenome research in the common marmoset (Callithrix jacchus).

    Science.gov (United States)

    Ueda, Junko; Murata, Yui; Bundo, Miki; Oh-Nishi, Arata; Kassai, Hidetoshi; Ikegame, Tempei; Zhao, Zhilei; Jinde, Seiichiro; Aiba, Atsu; Suhara, Tetsuya; Kasai, Kiyoto; Kato, Tadafumi; Iwamoto, Kazuya

    2017-02-17

    We examined the usefulness of commercially available DNA methylation arrays designed for the human genome (Illumina HumanMethylation450 and MethylationEPIC) for high-throughput epigenome analysis of the common marmoset, a nonhuman primate suitable for research on neuropsychiatric disorders. From among the probes on the methylation arrays, we selected those available for the common marmoset. DNA methylation data were obtained from genomic DNA extracted from the frontal cortex and blood samples of adult common marmosets as well as the frontal cortex of neonatal marmosets. About 10% of the probes on the arrays were estimated to be useful for DNA methylation assay in the common marmoset. Strong correlations existed between human and marmoset DNA methylation data. Illumina methylation arrays are useful for epigenome research using the common marmoset.

  17. Array comparative genomic hybridization in retinoma and retinoblastoma tissues.

    Science.gov (United States)

    Sampieri, Katia; Amenduni, Mariangela; Papa, Filomena Tiziana; Katzaki, Eleni; Mencarelli, Maria Antonietta; Marozza, Annabella; Epistolato, Maria Carmela; Toti, Paolo; Lazzi, Stefano; Bruttini, Mirella; De Filippis, Roberta; De Francesco, Sonia; Longo, Ilaria; Meloni, Ilaria; Mari, Francesca; Acquaviva, Antonio; Hadjistilianou, Theodora; Renieri, Alessandra; Ariani, Francesca

    2009-03-01

    In retinoblastoma, two RB1 mutations are necessary for tumor development. Recurrent genomic rearrangements may represent subsequent events required for retinoblastoma progression. Array-comparative genomic hybridization was carried out in 18 eye samples, 10 from bilateral and eight from unilateral retinoblastoma patients. Two unilateral cases also showed areas of retinoma. The most frequent imbalance in retinoblastomas was 6p gain (40%), followed by gains at 1q12-q25.3, 2p24.3-p24.2, 9q22.2, and 9q33.1 and losses at 11q24.3, 13q13.2-q22.3, and 16q12.1-q21. Bilateral cases showed a lower number of imbalances than unilateral cases (P = 0.002). Unilateral cases were divided into low-level ( or = 7) chromosomal instability groups. The first group presented with younger age at diagnosis (mean 511 days) compared with the second group (mean 1606 days). In one retinoma case ophthalmoscopically diagnosed as a benign lesion no rearrangements were detected, whereas the adjacent retinoblastoma displayed seven aberrations. The other retinoma case identified by retrospective histopathological examination shared three rearrangements with the adjacent retinoblastoma. Two other gene-free rearrangements were retinoma specific. One rearrangement, dup5p, was retinoblastoma specific and included the SKP2 gene. Genomic profiling indicated that the first retinoma was a pretumoral lesion, whereas the other represents a subclone of cells bearing 'benign' rearrangements overwhelmed by another subclone presenting aberrations with higher 'oncogenic' potential. In summary, the present study shows that bilateral and unilateral retinoblastoma have different chromosomal instability that correlates with the age of tumor onset in unilateral cases. This is the first report of genomic profiling in retinoma tissue, shedding light on the different nature of lesions named 'retinoma'.

  18. Genomic Alterations in Sporadic Synchronous Primary Breast Cancer Using Array and Metaphase Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Arezou A. Ghazani

    2007-06-01

    Full Text Available Synchronous primary breast cancer describes the occurrence of multiple tumors affecting one or both breasts at initial diagnosis. This provides a unique opportunity to identify tissue-specific genomic markers that characterize each tumor while controlling for the individual genetic background of a patient. The aim of this study was to examine the genomic alterations and degree of similarity between synchronous cancers. Using metaphase comparative genomic hybridization and array comparative genomic hybridization (aCGH, the genomic alterations of 23 synchronous breast cancers from 10 patients were examined at both chromosomal and gene levels. Synchronous breast cancers, when compared to their matched counterparts, were found to have a common core set of genetic alterations, with additional unique changes present in each. They also frequently exhibited features distinct from the more usual solitary primary breast cancers. The most frequent genomic alterations included chromosomal gains of 1q, 3p, 4q, and 8q, and losses of 11q, 12q, 16q, and 17p. aCGH identified copy number amplification in regions that are present in all 23 tumor samples, including 1p31.3–1p32.3 harboring JAK1. Our findings suggest that synchronous primary breast cancers represent a unique type of breast cancer and, at least in some instances, one tumor may give rise to the other.

  19. Genomic analysis by oligonucleotide array Comparative Genomic Hybridization utilizing formalin-fixed, paraffin-embedded tissues.

    Science.gov (United States)

    Savage, Stephanie J; Hostetter, Galen

    2011-01-01

    Formalin fixation has been used to preserve tissues for more than a hundred years, and there are currently more than 300 million archival samples in the United States alone. The application of genomic protocols such as high-density oligonucleotide array Comparative Genomic Hybridization (aCGH) to formalin-fixed, paraffin-embedded (FFPE) tissues, therefore, opens an untapped resource of available tissues for research and facilitates utilization of existing clinical data in a research sample set. However, formalin fixation results in cross-linking of proteins and DNA, typically leading to such a significant degradation of DNA template that little is available for use in molecular applications. Here, we describe a protocol to circumvent formalin fixation artifact by utilizing enzymatic reactions to obtain quality DNA from a wide range of FFPE tissues for successful genome-wide discovery of gene dosage alterations in archival clinical samples.

  20. ArraySearch: A Web-Based Genomic Search Engine.

    Science.gov (United States)

    Wilson, Tyler J; Ge, Steven X

    2012-01-01

    Recent advances in microarray technologies have resulted in a flood of genomics data. This large body of accumulated data could be used as a knowledge base to help researchers interpret new experimental data. ArraySearch finds statistical correlations between newly observed gene expression profiles and the huge source of well-characterized expression signatures deposited in the public domain. A search query of a list of genes will return experiments on which the genes are significantly up- or downregulated collectively. Searches can also be conducted using gene expression signatures from new experiments. This resource will empower biological researchers with a statistical method to explore expression data from their own research by comparing it with expression signatures from a large public archive.

  1. Nitrogen regulation in Sinorhizobium meliloti probed with whole genome arrays.

    Science.gov (United States)

    Davalos, Marcela; Fourment, Joëlle; Lucas, Antoine; Bergès, Hélène; Kahn, Daniel

    2004-12-01

    Using whole genome arrays, we systematically investigated nitrogen regulation in the plant symbiotic bacterium Sinorhizobium meliloti. The use of glutamate instead of ammonium as a nitrogen source induced nitrogen catabolic genes independently of the carbon source, including two glutamine synthetase genes, various aminoacid transporters and the glnKamtB operon. These responses depended on both the ntrC and glnB nitrogen regulators. Glutamate repressible genes included glutamate synthase and a H+-translocating pyrophosphate synthase. The smc01041-ntrBC operon was negatively autoregulated in a glnB-dependent fashion, indicating an involvement of phosphorylated NtrC. In addition to the nitrogen response, glutamate remodelled expression of carbon metabolism by inhibiting expression of the Entner-Doudoroff and pentose phosphate pathways, and by stimulating gluconeogenetic genes independently of ntrC.

  2. Learning about human population history from ancient and modern genomes.

    Science.gov (United States)

    Stoneking, Mark; Krause, Johannes

    2011-08-18

    Genome-wide data, both from SNP arrays and from complete genome sequencing, are becoming increasingly abundant and are now even available from extinct hominins. These data are providing new insights into population history; in particular, when combined with model-based analytical approaches, genome-wide data allow direct testing of hypotheses about population history. For example, genome-wide data from both contemporary populations and extinct hominins strongly support a single dispersal of modern humans from Africa, followed by two archaic admixture events: one with Neanderthals somewhere outside Africa and a second with Denisovans that (so far) has only been detected in New Guinea. These new developments promise to reveal new stories about human population history, without having to resort to storytelling.

  3. Genomic array as compared to karyotyping in myelodysplastic syndromes in a prospective clinical trial

    NARCIS (Netherlands)

    Stevens-Kroef, Marian J; Olde Weghuis, Daniel; ElIdrissi-Zaynoun, Najat; van der Reijden, Bert; Cremers, Eline M P; Alhan, Canan; Westers, Theresia M; Visser-Wisselaar, Heleen A; Chitu, Dana A; Cunha, Sonia M; Vellenga, Edo; Klein, Saskia K; Wijermans, Pierre; de Greef, Georgine E; Schaafsma, M Ron; Muus, Petra; Ossenkoppele, Gert J; van de Loosdrecht, Arjan A; Jansen, Joop H

    2017-01-01

    Karyotyping is considered as the gold standard in the genetic subclassification of myelodysplastic syndrome (MDS). Oligo/SNP-based genomic array profiling is a high-resolution tool that also enables genome wide analysis. We compared karyotyping with oligo/SNP-based array profiling in 104 MDS patient

  4. The bonobo genome compared with the chimpanzee and human genomes

    Science.gov (United States)

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R.; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R.; Mullikin, James C.; Meader, Stephen J.; Ponting, Chris P.; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E.; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M.; Fischer, Anne; Ptak, Susan E.; Lachmann, Michael; Symer, David E.; Mailund, Thomas; Schierup, Mikkel H.; Andrés, Aida M.; Kelso, Janet; Pääbo, Svante

    2012-01-01

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours1–4, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other. PMID:22722832

  5. The bonobo genome compared with the chimpanzee and human genomes.

    Science.gov (United States)

    Prüfer, Kay; Munch, Kasper; Hellmann, Ines; Akagi, Keiko; Miller, Jason R; Walenz, Brian; Koren, Sergey; Sutton, Granger; Kodira, Chinnappa; Winer, Roger; Knight, James R; Mullikin, James C; Meader, Stephen J; Ponting, Chris P; Lunter, Gerton; Higashino, Saneyuki; Hobolth, Asger; Dutheil, Julien; Karakoç, Emre; Alkan, Can; Sajjadian, Saba; Catacchio, Claudia Rita; Ventura, Mario; Marques-Bonet, Tomas; Eichler, Evan E; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Junhold, Jörg; Patterson, Nick; Siebauer, Michael; Good, Jeffrey M; Fischer, Anne; Ptak, Susan E; Lachmann, Michael; Symer, David E; Mailund, Thomas; Schierup, Mikkel H; Andrés, Aida M; Kelso, Janet; Pääbo, Svante

    2012-06-28

    Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.

  6. Genomic characterization of large heterochromatic gaps in the human genome assembly.

    Directory of Open Access Journals (Sweden)

    Nicolas Altemose

    2014-05-01

    Full Text Available The largest gaps in the human genome assembly correspond to multi-megabase heterochromatic regions composed primarily of two related families of tandem repeats, Human Satellites 2 and 3 (HSat2,3. The abundance of repetitive DNA in these regions challenges standard mapping and assembly algorithms, and as a result, the sequence composition and potential biological functions of these regions remain largely unexplored. Furthermore, existing genomic tools designed to predict consensus-based descriptions of repeat families cannot be readily applied to complex satellite repeats such as HSat2,3, which lack a consistent repeat unit reference sequence. Here we present an alignment-free method to characterize complex satellites using whole-genome shotgun read datasets. Utilizing this approach, we classify HSat2,3 sequences into fourteen subfamilies and predict their chromosomal distributions, resulting in a comprehensive satellite reference database to further enable genomic studies of heterochromatic regions. We also identify 1.3 Mb of non-repetitive sequence interspersed with HSat2,3 across 17 unmapped assembly scaffolds, including eight annotated gene predictions. Finally, we apply our satellite reference database to high-throughput sequence data from 396 males to estimate array size variation of the predominant HSat3 array on the Y chromosome, confirming that satellite array sizes can vary between individuals over an order of magnitude (7 to 98 Mb and further demonstrating that array sizes are distributed differently within distinct Y haplogroups. In summary, we present a novel framework for generating initial reference databases for unassembled genomic regions enriched with complex satellite DNA, and we further demonstrate the utility of these reference databases for studying patterns of sequence variation within human populations.

  7. The evolution of the human genome.

    Science.gov (United States)

    Simonti, Corinne N; Capra, John A

    2015-12-01

    Human genomes hold a record of the evolutionary forces that have shaped our species. Advances in DNA sequencing, functional genomics, and population genetic modeling have deepened our understanding of human demographic history, natural selection, and many other long-studied topics. These advances have also revealed many previously underappreciated factors that influence the evolution of the human genome, including functional modifications to DNA and histones, conserved 3D topological chromatin domains, structural variation, and heterogeneous mutation patterns along the genome. Using evolutionary theory as a lens to study these phenomena will lead to significant breakthroughs in understanding what makes us human and why we get sick.

  8. Life in our hands? Some ethical perspectives on the human genome and human genome diversity projects

    Directory of Open Access Journals (Sweden)

    Cornelius W. du Toit

    2014-01-01

    Full Text Available The article dealt with implications of the human genome and the human genome diversity project. It examined some theological implications, such as: humans as the image of God, God as the creator of life, the changed role of miracles and healings in religion, the sacredness of nature, life and the genome. Ethical issues that were addressed include eugenics, germline intervention, determinism and the human genome diversity project. Economic and legal factors that play a role were also discussed. Whilst positive aspects of genome research were considered, a critical stance was adopted towards patenting the human genome and some concluding guidelines were proposed.

  9. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening.

    Science.gov (United States)

    Agrotis, Alexander; Ketteler, Robin

    2015-01-01

    CRISPR technology has rapidly changed the face of biological research, such that precise genome editing has now become routine for many labs within several years of its initial development. What makes CRISPR/Cas9 so revolutionary is the ability to target a protein (Cas9) to an exact genomic locus, through designing a specific short complementary nucleotide sequence, that together with a common scaffold sequence, constitute the guide RNA bridging the protein and the DNA. Wild-type Cas9 cleaves both DNA strands at its target sequence, but this protein can also be modified to exert many other functions. For instance, by attaching an activation domain to catalytically inactive Cas9 and targeting a promoter region, it is possible to stimulate the expression of a specific endogenous gene. In principle, any genomic region can be targeted, and recent efforts have successfully generated pooled guide RNA libraries for coding and regulatory regions of human, mouse and Drosophila genomes with high coverage, thus facilitating functional phenotypic screening. In this review, we will highlight recent developments in the area of CRISPR-based functional genomics and discuss potential future directions, with a special focus on mammalian cell systems and arrayed library screening.

  10. A New Age in Functional Genomics Using CRISPR/Cas9 in Arrayed Library Screening

    Directory of Open Access Journals (Sweden)

    Alexander eAgrotis

    2015-09-01

    Full Text Available CRISPR technology has rapidly changed the face of biological research, such that precise genome editing has now become routine for many labs within several years of its initial development. What makes CRISPR/Cas9 so revolutionary is the ability to target a protein (Cas9 to an exact genomic locus, through designing a specific short complementary nucleotide sequence, that together with a common scaffold sequence, constitute the guide RNA bridging the protein and the DNA. Wild-type Cas9 cleaves both DNA strands at its target sequence, but this protein can also be modified to exert many other functions. For instance, by attaching an activation domain to catalytically inactive Cas9 and targeting a promoter region, it is possible to stimulate the expression of a specific endogenous gene. In principle, any genomic region can be targeted, and recent efforts have successfully generated pooled guide RNA libraries for coding and regulatory regions of human, mouse and Drosophila genomes with high coverage, thus facilitating functional phenotypic screening. In this review, we will highlight recent developments in the area of CRISPR-based functional genomics and discuss potential future directions, with a special focus on mammalian cell systems and arrayed library screening.

  11. Copy Number Variation Analysis by Array Analysis of Single Cells Following Whole Genome Amplification.

    Science.gov (United States)

    Dimitriadou, Eftychia; Zamani Esteki, Masoud; Vermeesch, Joris Robert

    2015-01-01

    Whole genome amplification is required to ensure the availability of sufficient material for copy number variation analysis of a genome deriving from an individual cell. Here, we describe the protocols we use for copy number variation analysis of non-fixed single cells by array-based approaches following single-cell isolation and whole genome amplification. We are focusing on two alternative protocols, an isothermal and a PCR-based whole genome amplification method, followed by either comparative genome hybridization (aCGH) or SNP array analysis, respectively.

  12. De Novo Identification of Single Nucleotide Mutations in Caenorhabditis elegans Using Array Comparative Genomic Hybridization

    Science.gov (United States)

    Maydan, Jason S.; Okada, H. Mark; Flibotte, Stephane; Edgley, Mark L.; Moerman, Donald G.

    2009-01-01

    Array comparative genomic hybridization (aCGH) has been used primarily to detect copy-number variants between two genomes. Here we report using aCGH to detect single nucleotide mutations on oligonucleotide microarrays with overlapping 50-mer probes. This technique represents a powerful method for rapidly detecting novel homozygous single nucleotide mutations in any organism with a sequenced reference genome. PMID:19189945

  13. Genomic profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization.

    Directory of Open Access Journals (Sweden)

    Shunichi Yoshioka

    Full Text Available We designed a study to investigate genetic relationships between primary tumors of oral squamous cell carcinoma (OSCC and their lymph node metastases, and to identify genomic copy number aberrations (CNAs related to lymph node metastasis. For this purpose, we collected a total of 42 tumor samples from 25 patients and analyzed their genomic profiles by array-based comparative genomic hybridization. We then compared the genetic profiles of metastatic primary tumors (MPTs with their paired lymph node metastases (LNMs, and also those of LNMs with non-metastatic primary tumors (NMPTs. Firstly, we found that although there were some distinctive differences in the patterns of genomic profiles between MPTs and their paired LNMs, the paired samples shared similar genomic aberration patterns in each case. Unsupervised hierarchical clustering analysis grouped together 12 of the 15 MPT-LNM pairs. Furthermore, similarity scores between paired samples were significantly higher than those between non-paired samples. These results suggested that MPTs and their paired LNMs are composed predominantly of genetically clonal tumor cells, while minor populations with different CNAs may also exist in metastatic OSCCs. Secondly, to identify CNAs related to lymph node metastasis, we compared CNAs between grouped samples of MPTs and LNMs, but were unable to find any CNAs that were more common in LNMs. Finally, we hypothesized that subpopulations carrying metastasis-related CNAs might be present in both the MPT and LNM. Accordingly, we compared CNAs between NMPTs and LNMs, and found that gains of 7p, 8q and 17q were more common in the latter than in the former, suggesting that these CNAs may be involved in lymph node metastasis of OSCC. In conclusion, our data suggest that in OSCCs showing metastasis, the primary and metastatic tumors share similar genomic profiles, and that cells in the primary tumor may tend to metastasize after acquiring metastasis-associated CNAs.

  14. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  15. Human Genome Sequencing in Health and Disease

    Science.gov (United States)

    Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.

    2013-01-01

    Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320

  16. Comparative analysis of copy number detection by whole-genome BAC and oligonucleotide array CGH

    Directory of Open Access Journals (Sweden)

    Bejjani Bassem A

    2010-06-01

    Full Text Available Abstract Background Microarray-based comparative genomic hybridization (aCGH is a powerful diagnostic tool for the detection of DNA copy number gains and losses associated with chromosome abnormalities, many of which are below the resolution of conventional chromosome analysis. It has been presumed that whole-genome oligonucleotide (oligo arrays identify more clinically significant copy-number abnormalities than whole-genome bacterial artificial chromosome (BAC arrays, yet this has not been systematically studied in a clinical diagnostic setting. Results To determine the difference in detection rate between similarly designed BAC and oligo arrays, we developed whole-genome BAC and oligonucleotide microarrays and validated them in a side-by-side comparison of 466 consecutive clinical specimens submitted to our laboratory for aCGH. Of the 466 cases studied, 67 (14.3% had a copy-number imbalance of potential clinical significance detectable by the whole-genome BAC array, and 73 (15.6% had a copy-number imbalance of potential clinical significance detectable by the whole-genome oligo array. However, because both platforms identified copy number variants of unclear clinical significance, we designed a systematic method for the interpretation of copy number alterations and tested an additional 3,443 cases by BAC array and 3,096 cases by oligo array. Of those cases tested on the BAC array, 17.6% were found to have a copy-number abnormality of potential clinical significance, whereas the detection rate increased to 22.5% for the cases tested by oligo array. In addition, we validated the oligo array for detection of mosaicism and found that it could routinely detect mosaicism at levels of 30% and greater. Conclusions Although BAC arrays have faster turnaround times, the increased detection rate of oligo arrays makes them attractive for clinical cytogenetic testing.

  17. Human-mouse comparative genomics: successes and failures to reveal functional regions of the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Baroukh, Nadine; Rubin, Edward M.

    2003-05-15

    Deciphering the genetic code embedded within the human genome remains a significant challenge despite the human genome consortium's recent success at defining its linear sequence (Lander et al. 2001; Venter et al. 2001). While useful strategies exist to identify a large percentage of protein encoding regions, efforts to accurately define functional sequences in the remaining {approx}97 percent of the genome lag. Our primary interest has been to utilize the evolutionary relationship and the universal nature of genomic sequence information in vertebrates to reveal functional elements in the human genome. This has been achieved through the combined use of vertebrate comparative genomics to pinpoint highly conserved sequences as candidates for biological activity and transgenic mouse studies to address the functionality of defined human DNA fragments. Accordingly, we describe strategies and insights into functional sequences in the human genome through the use of comparative genomics coupled wit h functional studies in the mouse.

  18. Gene expression profiles in squamous cell cervical carcinoma using array-based comparative genomic hybridization analysis.

    Science.gov (United States)

    Choi, Y-W; Bae, S M; Kim, Y-W; Lee, H N; Kim, Y W; Park, T C; Ro, D Y; Shin, J C; Shin, S J; Seo, J-S; Ahn, W S

    2007-01-01

    Our aim was to identify novel genomic regions of interest and provide highly dynamic range information on correlation between squamous cell cervical carcinoma and its related gene expression patterns by a genome-wide array-based comparative genomic hybridization (array-CGH). We analyzed 15 cases of cervical cancer from KangNam St Mary's Hospital of the Catholic University of Korea. Microdissection assay was performed to obtain DNA samples from paraffin-embedded cervical tissues of cancer as well as of the adjacent normal tissues. The bacterial artificial chromosome (BAC) array used in this study consisted of 1440 human BACs and the space among the clones was 2.08 Mb. All the 15 cases of cervical cancer showed the differential changes of the cervical cancer-associated genetic alterations. The analysis limit of average gains and losses was 53%. A significant positive correlation was found in 8q24.3, 1p36.32, 3q27.1, 7p21.1, 11q13.1, and 3p14.2 changes through the cervical carcinogenesis. The regions of high level of gain were 1p36.33-1p36.32, 8q24.3, 16p13.3, 1p36.33, 3q27.1, and 7p21.1. And the regions of homozygous loss were 2q12.1, 22q11.21, 3p14.2, 6q24.3, 7p15.2, and 11q25. In the high level of gain regions, GSDMDC1, RECQL4, TP73, ABCF3, ALG3, HDAC9, ESRRA, and RPS6KA4 were significantly correlated with cervical cancer. The genes encoded by frequently lost clones were PTPRG, GRM7, ZDHHC3, EXOSC7, LRP1B, and NR3C2. Therefore, array-CGH analyses showed that specific genomic alterations were maintained in cervical cancer that were critical to the malignant phenotype and may give a chance to find out possible target genes present in the gained or lost clones.

  19. Big Data Analysis of Human Genome Variations

    KAUST Repository

    Gojobori, Takashi

    2016-01-25

    Since the human genome draft sequence was in public for the first time in 2000, genomic analyses have been intensively extended to the population level. The following three international projects are good examples for large-scale studies of human genome variations: 1) HapMap Data (1,417 individuals) (http://hapmap.ncbi.nlm.nih.gov/downloads/genotypes/2010-08_phaseII+III/forward/), 2) HGDP (Human Genome Diversity Project) Data (940 individuals) (http://www.hagsc.org/hgdp/files.html), 3) 1000 genomes Data (2,504 individuals) http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ If we can integrate all three data into a single volume of data, we should be able to conduct a more detailed analysis of human genome variations for a total number of 4,861 individuals (= 1,417+940+2,504 individuals). In fact, we successfully integrated these three data sets by use of information on the reference human genome sequence, and we conducted the big data analysis. In particular, we constructed a phylogenetic tree of about 5,000 human individuals at the genome level. As a result, we were able to identify clusters of ethnic groups, with detectable admixture, that were not possible by an analysis of each of the three data sets. Here, we report the outcome of this kind of big data analyses and discuss evolutionary significance of human genomic variations. Note that the present study was conducted in collaboration with Katsuhiko Mineta and Kosuke Goto at KAUST.

  20. Insights from Human/Mouse genome comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  1. Controls of nucleosome positioning in the human genome.

    Directory of Open Access Journals (Sweden)

    Daniel J Gaffney

    Full Text Available Nucleosomes are important for gene regulation because their arrangement on the genome can control which proteins bind to DNA. Currently, few human nucleosomes are thought to be consistently positioned across cells; however, this has been difficult to assess due to the limited resolution of existing data. We performed paired-end sequencing of micrococcal nuclease-digested chromatin (MNase-seq from seven lymphoblastoid cell lines and mapped over 3.6 billion MNase-seq fragments to the human genome to create the highest-resolution map of nucleosome occupancy to date in a human cell type. In contrast to previous results, we find that most nucleosomes have more consistent positioning than expected by chance and a substantial fraction (8.7% of nucleosomes have moderate to strong positioning. In aggregate, nucleosome sequences have 10 bp periodic patterns in dinucleotide frequency and DNase I sensitivity; and, across cells, nucleosomes frequently have translational offsets that are multiples of 10 bp. We estimate that almost half of the genome contains regularly spaced arrays of nucleosomes, which are enriched in active chromatin domains. Single nucleotide polymorphisms that reduce DNase I sensitivity can disrupt the phasing of nucleosome arrays, which indicates that they often result from positioning against a barrier formed by other proteins. However, nucleosome arrays can also be created by DNA sequence alone. The most striking example is an array of over 400 nucleosomes on chromosome 12 that is created by tandem repetition of sequences with strong positioning properties. In summary, a large fraction of nucleosomes are consistently positioned--in some regions because they adopt favored sequence positions, and in other regions because they are forced into specific arrangements by chromatin remodeling or DNA binding proteins.

  2. Implementing genomics and pharmacogenomics in the clinic: The National Human Genome Research Institute's genomic medicine portfolio.

    Science.gov (United States)

    Manolio, Teri A

    2016-10-01

    Increasing knowledge about the influence of genetic variation on human health and growing availability of reliable, cost-effective genetic testing have spurred the implementation of genomic medicine in the clinic. As defined by the National Human Genome Research Institute (NHGRI), genomic medicine uses an individual's genetic information in his or her clinical care, and has begun to be applied effectively in areas such as cancer genomics, pharmacogenomics, and rare and undiagnosed diseases. In 2011 NHGRI published its strategic vision for the future of genomic research, including an ambitious research agenda to facilitate and promote the implementation of genomic medicine. To realize this agenda, NHGRI is consulting and facilitating collaborations with the external research community through a series of "Genomic Medicine Meetings," under the guidance and leadership of the National Advisory Council on Human Genome Research. These meetings have identified and begun to address significant obstacles to implementation, such as lack of evidence of efficacy, limited availability of genomics expertise and testing, lack of standards, and difficulties in integrating genomic results into electronic medical records. The six research and dissemination initiatives comprising NHGRI's genomic research portfolio are designed to speed the evaluation and incorporation, where appropriate, of genomic technologies and findings into routine clinical care. Actual adoption of successful approaches in clinical care will depend upon the willingness, interest, and energy of professional societies, practitioners, patients, and payers to promote their responsible use and share their experiences in doing so.

  3. DNA copy number aberrations in breast cancer by array comparative genomic hybridization

    DEFF Research Database (Denmark)

    Li, J.; Wang, K.; Li, S.;

    2009-01-01

    Array comparative genomic hybridization (CGH) has been popularly used for analyzing DNA copy number variations in diseases like cancer. In this study, we investigated 82 sporadic samples from 49 breast cancer patients using 1-Mb resolution bacterial artificial chromosome CGH arrays. A number of h...

  4. Application of Array-Based Comparative Genomic Hybridization to Pediatric Neurologic Diseases

    OpenAIRE

    2013-01-01

    Purpose Array comparative genomic hybridization (array-CGH) is a technique used to analyze quantitative increase or decrease of chromosomes by competitive DNA hybridization of patients and controls. This study aimed to evaluate the benefits and yield of array-CGH in comparison with conventional karyotyping in pediatric neurology patients. Materials and Methods We included 87 patients from the pediatric neurology clinic with at least one of the following features: developmental delay, mental r...

  5. The characterization of twenty sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Kimberly Pelak

    2010-09-01

    Full Text Available We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.

  6. Comparative Genomic Analyses of the Human NPHP1 Locus Reveal Complex Genomic Architecture and Its Regional Evolution in Primates.

    Directory of Open Access Journals (Sweden)

    Bo Yuan

    2015-12-01

    Full Text Available Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100 is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases-about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual's susceptibility to acquiring disease-associated alleles.

  7. Genomic disorders: A window into human gene and genome evolution

    Science.gov (United States)

    Carvalho, Claudia M. B.; Zhang, Feng; Lupski, James R.

    2010-01-01

    Gene duplications alter the genetic constitution of organisms and can be a driving force of molecular evolution in humans and the great apes. In this context, the study of genomic disorders has uncovered the essential role played by the genomic architecture, especially low copy repeats (LCRs) or segmental duplications (SDs). In fact, regardless of the mechanism, LCRs can mediate or stimulate rearrangements, inciting genomic instability and generating dynamic and unstable regions prone to rapid molecular evolution. In humans, copy-number variation (CNV) has been implicated in common traits such as neuropathy, hypertension, color blindness, infertility, and behavioral traits including autism and schizophrenia, as well as disease susceptibility to HIV, lupus nephritis, and psoriasis among many other clinical phenotypes. The same mechanisms implicated in the origin of genomic disorders may also play a role in the emergence of segmental duplications and the evolution of new genes by means of genomic and gene duplication and triplication, exon shuffling, exon accretion, and fusion/fission events. PMID:20080665

  8. Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing.

    Science.gov (United States)

    Wiszniewska, Joanna; Bi, Weimin; Shaw, Chad; Stankiewicz, Pawel; Kang, Sung-Hae L; Pursley, Amber N; Lalani, Seema; Hixson, Patricia; Gambin, Tomasz; Tsai, Chun-hui; Bock, Hans-Georg; Descartes, Maria; Probst, Frank J; Scaglia, Fernando; Beaudet, Arthur L; Lupski, James R; Eng, Christine; Cheung, Sau Wai; Bacino, Carlos; Patel, Ankita

    2014-01-01

    In clinical diagnostics, both array comparative genomic hybridization (array CGH) and single nucleotide polymorphism (SNP) genotyping have proven to be powerful genomic technologies utilized for the evaluation of developmental delay, multiple congenital anomalies, and neuropsychiatric disorders. Differences in the ability to resolve genomic changes between these arrays may constitute an implementation challenge for clinicians: which platform (SNP vs array CGH) might best detect the underlying genetic cause for the disease in the patient? While only SNP arrays enable the detection of copy number neutral regions of absence of heterozygosity (AOH), they have limited ability to detect single-exon copy number variants (CNVs) due to the distribution of SNPs across the genome. To provide comprehensive clinical testing for both CNVs and copy-neutral AOH, we enhanced our custom-designed high-resolution oligonucleotide array that has exon-targeted coverage of 1860 genes with 60,000 SNP probes, referred to as Chromosomal Microarray Analysis - Comprehensive (CMA-COMP). Of the 3240 cases evaluated by this array, clinically significant CNVs were detected in 445 cases including 21 cases with exonic events. In addition, 162 cases (5.0%) showed at least one AOH region >10 Mb. We demonstrate that even though this array has a lower density of SNP probes than other commercially available SNP arrays, it reliably detected AOH events >10 Mb as well as exonic CNVs beyond the detection limitations of SNP genotyping. Thus, combining SNP probes and exon-targeted array CGH into one platform provides clinically useful genetic screening in an efficient manner.

  9. Human evolution: a tale from ancient genomes.

    Science.gov (United States)

    Llamas, Bastien; Willerslev, Eske; Orlando, Ludovic

    2017-02-05

    The field of human ancient DNA (aDNA) has moved from mitochondrial sequencing that suffered from contamination and provided limited biological insights, to become a fully genomic discipline that is changing our conception of human history. Recent successes include the sequencing of extinct hominins, and true population genomic studies of Bronze Age populations. Among the emerging areas of aDNA research, the analysis of past epigenomes is set to provide more new insights into human adaptation and disease susceptibility through time. Starting as a mere curiosity, ancient human genetics has become a major player in the understanding of our evolutionary history.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.

  10. Expression Divergence of Tandemly Arrayed Genes in Human and Mouse

    Directory of Open Access Journals (Sweden)

    Valia Shoja

    2007-01-01

    Full Text Available Tandemly arrayed genes (TAGs account for about one third of the duplicated genes in eukaryotic genomes, yet there has not been any systematic study of their gene expression patterns. Taking advantage of recently published large-scale microarray data sets, we studied the expression divergence of 361 two-member TAGs in human and 212 two-member TAGs in mouse and examined the effect of sequence divergence, gene orientation, and chromosomal proximity on the divergence of TAG expression patterns. Our results show that there is a weak negative correlation between sequence divergence of TAG members and their expression similarity. There is also a weak negative correlation between chromosomal proximity of TAG members and their expression similarity. We did not detect any significant relationship between gene orientation and expression similarity. We also found that downstream TAG members do not show significantly narrower expression breadth than upstream members, contrary to what we predict based on TAG expression divergence hypothesis that we propose. Finally, we show that both chromosomal proximity and expression correlation in TAGs do not differ significantly from their neighboring non-TAG gene pairs, suggesting that tandem duplication is unlikely to be the cause for the higher-than-random expression association between neighboring genes on a chromosome in human and mouse.

  11. Segmenting the Human Genome into Isochores.

    Science.gov (United States)

    Cozzi, Paolo; Milanesi, Luciano; Bernardi, Giorgio

    2015-01-01

    The human genome is a mosaic of isochores, which are long (>200 kb) DNA sequences that are fairly homogeneous in base composition and can be assigned to five families comprising 33%-59% of GC composition. Although the compartmentalized organization of the mammalian genome has been investigated for more than 40 years, no satisfactory automatic procedure for segmenting the genome into isochores is available so far. We present a critical discussion of the currently available methods and a new approach called isoSegmenter which allows segmenting the genome into isochores in a fast and completely automatic manner. This approach relies on two types of experimentally defined parameters, the compositional boundaries of isochore families and an optimal window size of 100 kb. The approach represents an improvement over the existing methods, is ideally suited for investigating long-range features of sequenced and assembled genomes, and is publicly available at https://github.com/bunop/isoSegmenter.

  12. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. [eds.

    1992-12-31

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  13. Justice and the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.F.; Lappe, M. (eds.)

    1992-01-01

    Most of the essays gathered in this volume were first presented at a conference, Justice and the Human Genome, in Chicago in early November, 1991. The goal of the, conference was to consider questions of justice as they are and will be raised by the Human Genome Project. To achieve its goal of identifying and elucidating the challenges of justice inherent in genomic research and its social applications the conference drew together in one forum members from academia, medicine, and industry with interests divergent as rate-setting for insurance, the care of newborns, and the history of ethics. The essays in this volume address a number of theoretical and practical concerns relative to the meaning of genomic research.

  14. Initial genomics of the human nucleolus.

    Directory of Open Access Journals (Sweden)

    Attila Németh

    2010-03-01

    Full Text Available We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD-localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD-specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture.

  15. Mapping and Sequencing the Human Genome

    Science.gov (United States)

    1988-01-01

    Numerous meetings have been held and a debate has developed in the biological community over the merits of mapping and sequencing the human genome. In response a committee to examine the desirability and feasibility of mapping and sequencing the human genome was formed to suggest options for implementing the project. The committee asked many questions. Should the analysis of the human genome be left entirely to the traditionally uncoordinated, but highly successful, support systems that fund the vast majority of biomedical research. Or should a more focused and coordinated additional support system be developed that is limited to encouraging and facilitating the mapping and eventual sequencing of the human genome. If so, how can this be done without distorting the broader goals of biological research that are crucial for any understanding of the data generated in such a human genome project. As the committee became better informed on the many relevant issues, the opinions of its members coalesced, producing a shared consensus of what should be done. This report reflects that consensus.

  16. Copy number analysis of the low-copy repeats at the primate NPHP1 locus by array comparative genomic hybridization.

    Science.gov (United States)

    Yuan, Bo; Liu, Pengfei; Rogers, Jeffrey; Lupski, James R

    2016-06-01

    Array comparative genomic hybridization (aCGH) has been widely used to detect copy number variants (CNVs) in both research and clinical settings. A customizable aCGH platform may greatly facilitate copy number analyses in genomic regions with higher-order complexity, such as low-copy repeats (LCRs). Here we present the aCGH analyses focusing on the 45 kb LCRs [1] at the NPHP1 region with diverse copy numbers in humans. Also, the interspecies aCGH analysis comparing human and nonhuman primates revealed dynamic copy number transitions of the human 45 kb LCR orthologues during primate evolution and therefore shed light on the origin of complexity at this locus. The original aCGH data are available at GEO under GSE73962.

  17. Genome editing for human gene therapy.

    Science.gov (United States)

    Meissner, Torsten B; Mandal, Pankaj K; Ferreira, Leonardo M R; Rossi, Derrick J; Cowan, Chad A

    2014-01-01

    The rapid advancement of genome-editing techniques holds much promise for the field of human gene therapy. From bacteria to model organisms and human cells, genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9 have been successfully used to manipulate the respective genomes with unprecedented precision. With regard to human gene therapy, it is of great interest to test the feasibility of genome editing in primary human hematopoietic cells that could potentially be used to treat a variety of human genetic disorders such as hemoglobinopathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant primary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor cells. By using two guide RNAs directed at a single locus, we achieve highly efficient and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion protein allows FACS-based enrichment of the transfected cells. The ease of designing, constructing, and testing guide RNAs makes this dual guide strategy an attractive approach for the efficient deletion of clinically relevant genes in primary human hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene therapy.

  18. Human Genome Editing and Ethical Considerations.

    Science.gov (United States)

    Krishan, Kewal; Kanchan, Tanuj; Singh, Bahadur

    2016-04-01

    Editing human germline genes may act as boon in some genetic and other disorders. Recent editing of the genome of the human embryo with the CRISPR/Cas9 editing tool generated a debate amongst top scientists of the world for the ethical considerations regarding its effect on the future generations. It needs to be seen as to what transformation human gene editing brings to humankind in the times to come.

  19. OpenADAM: an open source genome-wide association data management system for Affymetrix SNP arrays

    Directory of Open Access Journals (Sweden)

    Sham P C

    2008-12-01

    Full Text Available Abstract Background Large scale genome-wide association studies have become popular since the introduction of high throughput genotyping platforms. Efficient management of the vast array of data generated poses many challenges. Description We have developed an open source web-based data management system for the large amount of genotype data generated from the Affymetrix GeneChip® Mapping Array and Affymetrix Genome-Wide Human SNP Array platforms. The database supports genotype calling using DM, BRLMM, BRLMM-P or Birdseed algorithms provided by the Affymetrix Power Tools. The genotype and corresponding pedigree data are stored in a relational database for efficient downstream data manipulation and analysis, such as calculation of allele and genotype frequencies, sample identity checking, and export of genotype data in various file formats for analysis using commonly-available software. A novel method for genotyping error estimation is implemented using linkage disequilibrium information from the HapMap project. All functionalities are accessible via a web-based user interface. Conclusion OpenADAM provides an open source database system for management of Affymetrix genome-wide association SNP data.

  20. Identification of novel non-coding small RNAs from Streptococcus pneumoniae TIGR4 using high-resolution genome tiling arrays

    Directory of Open Access Journals (Sweden)

    Swiatlo Edwin

    2010-06-01

    Full Text Available Abstract Background The identification of non-coding transcripts in human, mouse, and Escherichia coli has revealed their widespread occurrence and functional importance in both eukaryotic and prokaryotic life. In prokaryotes, studies have shown that non-coding transcripts participate in a broad range of cellular functions like gene regulation, stress and virulence. However, very little is known about non-coding transcripts in Streptococcus pneumoniae (pneumococcus, an obligate human respiratory pathogen responsible for significant worldwide morbidity and mortality. Tiling microarrays enable genome wide mRNA profiling as well as identification of novel transcripts at a high-resolution. Results Here, we describe a high-resolution transcription map of the S. pneumoniae clinical isolate TIGR4 using genomic tiling arrays. Our results indicate that approximately 66% of the genome is expressed under our experimental conditions. We identified a total of 50 non-coding small RNAs (sRNAs from the intergenic regions, of which 36 had no predicted function. Half of the identified sRNA sequences were found to be unique to S. pneumoniae genome. We identified eight overrepresented sequence motifs among sRNA sequences that correspond to sRNAs in different functional categories. Tiling arrays also identified approximately 202 operon structures in the genome. Conclusions In summary, the pneumococcal operon structures and novel sRNAs identified in this study enhance our understanding of the complexity and extent of the pneumococcal 'expressed' genome. Furthermore, the results of this study open up new avenues of research for understanding the complex RNA regulatory network governing S. pneumoniae physiology and virulence.

  1. Efficient high-resolution deletion discovery in Caenorhabditis elegans by array comparative genomic hybridization

    Science.gov (United States)

    Maydan, Jason S.; Flibotte, Stephane; Edgley, Mark L.; Lau, Joanne; Selzer, Rebecca R.; Richmond, Todd A.; Pofahl, Nathan J.; Thomas, James H.; Moerman, Donald G.

    2007-01-01

    We have developed array Comparative Genomic Hybridization for Caenorhabditis elegans as a means of screening for novel induced deletions in this organism. We designed three microarrays consisting of overlapping 50-mer probes to annotated exons and micro-RNAs, the first with probes to chromosomes X and II, the second with probes to chromosome II alone, and a third to the entire genome. These arrays were used to reliably detect both a large (50 kb) multigene deletion and a small (1 kb) single-gene deletion in homozygous and heterozygous samples. In one case, a deletion breakpoint was resolved to fewer than 50 bp. In an experiment designed to identify new mutations we used the X:II and II arrays to detect deletions associated with lethal mutants on chromosome II. One is an 8-kb deletion targeting the ast-1 gene on chromosome II and another is a 141-bp deletion in the gene C06A8.1. Others span large sections of the chromosome, up to >750 kb. As a further application of array Comparative Genomic Hybridization in C. elegans we used the whole-genome array to detect the extensive natural gene content variation (almost 2%) between the N2 Bristol strain and the strain CB4856, a strain isolated in Hawaii and JU258, a strain isolated in Madeira. PMID:17267812

  2. Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Kitcher, P.

    1998-11-01

    The Human Genome Project (HGP), launched in 1991, aims to map and sequence the human genome by 2006. During the fifteen-year life of the project, it is projected that $3 billion in federal funds will be allocated to it. The ultimate aims of spending this money are to analyze the structure of human DNA, to identify all human genes, to recognize the functions of those genes, and to prepare for the biology and medicine of the twenty-first century. The following summary examines some of the implications of the program, concentrating on its scientific import and on the ethical and social problems that it raises. Its aim is to expose principles that might be used in applying the information which the HGP will generate. There is no attempt here to translate the principles into detailed proposals for legislation. Arguments and discussion can be found in the full report, but, like this summary, that report does not contain any legislative proposals.

  3. The Human Genome Project and Biology Education.

    Science.gov (United States)

    McInerney, Joseph D.

    1996-01-01

    Highlights the importance of the Human Genome Project in educating the public about genetics. Discusses four challenges that science educators must address: teaching for conceptual understanding, the nature of science, the personal and social impact of science and technology, and the principles of technology. Contains 45 references. (JRH)

  4. Genomics of the human carnitine acyltransferase genes

    NARCIS (Netherlands)

    van der Leij, FR; Huijkman, NCA; Boomsma, C; Kuipers, JRG; Bartelds, B

    2000-01-01

    Five genes in the human genome are known to encode different active forms of related carnitine acyltransferases: CPT1A for liver-type carnitine palmitoyltransferase I, CPT1B for muscle-type carnitine palmitoyltransferase I, CPT2 for carnitine palmitoyltransferase II, CROT for carnitine octanoyltrans

  5. Patentering af det humane genom

    DEFF Research Database (Denmark)

    Sommer, Tine

    2004-01-01

    Direktiv 98/44/EF om retlig beskyttelse af bioteknologiske opfindelser blev gennemført i dansk ret med ikrafttrædelse den 30. juli 2000. Direktivet indeholder i artikel 5 en central bestemmelse som giver adgang til patent på humane gener. I artikel 5, stk. 3, er indføjet et skærpet krav til...

  6. [Novel bidirectional promoter from human genome].

    Science.gov (United States)

    Orekhova, A S; Sverdlova, P S; Spirin, P V; Leonova, O G; Popenko, V I; Prasolov, V S; Rubtsov, P M

    2011-01-01

    In human and other mammalian genomes a number of closely linked gene pairs transcribed in opposite directions are found. According to bioinformatic analysis up to 10% of human genes are arranged in this way. In present work the fragment of human genome was cloned that separates genes localized at 2p13.1 and oriented "head-to-head", coding for hypothetical proteins with unknown functions--CCDC (Coiled Coil Domain Containing) 142 and TTC (TetraTricopeptide repeat Containing) 31. Intergenic CCDC142-TTC31 region overlaps with CpG-island and contains a number of potential binding sites for transcription factors. This fragment functions as bidirectional promoter in the system ofluciferase reporter gene expression upon transfection of human embryonic kidney (HEK293) cells. The vectors containing genes of two fluorescent proteins--green (EGFP) and red (DsRed2) in opposite orientations separated by the fragment of CCDC142-TTC31 intergenic region were constructed. In HEK293 cells transfected with these vectors simultaneous expression of two fluorescent proteins is observed. Truncated versions of intergenic region were obtained and their promoter activity measured. Minimal promoter fragment contains elements Inr, BRE, DPE characteristic for TATA-less promoters. Thus, from the human genome the novel bidirectional promoter was cloned that can be used for simultaneous constitutive expression of two genes in human cells.

  7. Viral symbiosis and the holobiontic nature of the human genome.

    Science.gov (United States)

    Ryan, Francis Patrick

    2016-01-01

    The human genome is a holobiontic union of the mammalian nuclear genome, the mitochondrial genome and large numbers of endogenized retroviral genomes. This article defines and explores this symbiogenetic pattern of evolution, looking at the implications for human genetics, epigenetics, embryogenesis, physiology and the pathogenesis of inborn errors of metabolism and many other diseases.

  8. Experimental annotation of the human genome using microarray technology.

    Science.gov (United States)

    Shoemaker, D D; Schadt, E E; Armour, C D; He, Y D; Garrett-Engele, P; McDonagh, P D; Loerch, P M; Leonardson, A; Lum, P Y; Cavet, G; Wu, L F; Altschuler, S J; Edwards, S; King, J; Tsang, J S; Schimmack, G; Schelter, J M; Koch, J; Ziman, M; Marton, M J; Li, B; Cundiff, P; Ward, T; Castle, J; Krolewski, M; Meyer, M R; Mao, M; Burchard, J; Kidd, M J; Dai, H; Phillips, J W; Linsley, P S; Stoughton, R; Scherer, S; Boguski, M S

    2001-02-15

    The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using 'exon' and 'tiling' arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.

  9. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array--comparative genomic hybridization

    DEFF Research Database (Denmark)

    Jönsson, Mats; Isinger-Ekstrand, Anna; Johansson, Jan;

    2010-01-01

    /losses and gene expression profiles show strong similarity between cancers in the distal esophagus and the gastroesophageal junction with frequent upregulation of CDK6 and EGFR, whereas gastric cancer displays distinct genetic changes. These data suggest that molecular diagnostics and targeted therapies can......15, 13q34, and 12q13, whereas different profiles with gains at 5p15, 7p22, 2q35, and 13q34 characterized gastric cancers. CDK6 and EGFR were identified as putative target genes in cancers of the esophagus and the gastroesophageal junction, with upregulation in one quarter of the tumors. Gains......-resolution array-based comparative genomic hybridization and 27k oligo gene expression arrays, and putative target genes were validated in an extended series. Adenocarcinomas in the distal esophagus and the gastroesophageal junction showed strong similarities with the most common gains at 20q13, 8q24, 1q21-23, 5p...

  10. Diversity Suppression-Subtractive Hybridization Array for Profiling Genomic DNA Polymorphisms

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Genomic DNA polymorphisms are very useful for tracing genetic traits and studying biological diversity among species. Here, we present a method we call the "diversity suppression-subtractive hybridization array" for effectively profiling genomic DNA polymorphisms. The method first obtains the subtracted gDNA fragments between any two species by suppression subtraction hybridization (SSH) to establish a subtracted gDNA library,from which diversity SSH arrays are created with the selected subtracted clones. The diversity SSH array hybridizes with the DIG-labeled genomic DNA of the organism to be assayed. Six closely related Dendrobium species were studied as model samples. Four Dendrobium species as testers were used to perform SSH. A total of 617 subtracted positive clones were obtained from four Dendrobium species, and the average ratio of positive clones was 80.3%. We demonstrated that the average percentage of polymorphic fragments of pairwise comparisons of four Dendrobium species was up to 42.4%. A dendrogram of the relatedness of six Dendrobium species was produced according to their polymorphic profiles. The results revealed that the diversity SSH array is a highly effective platform for profiling genomic DNA polymorphisms and dendrograms.

  11. Optimal design of low-density SNP arrays for genomic prediction: algorithm and applications

    Science.gov (United States)

    Low-density (LD) single nucleotide polymorphism (SNP) arrays provide a cost-effective solution for genomic prediction and selection, but algorithms and computational tools are needed for their optimal design. A multiple-objective, local optimization (MOLO) algorithm was developed for design of optim...

  12. Copy number variation in Fayoumi and Leghorn chickens analyzed using array comparative genomic hybridization

    NARCIS (Netherlands)

    Abernathy, J.; Li, X.; Jia, X.; Chou, W.; Lamont, S.J.; Crooijmans, R.P.M.A.; Zhou, H.

    2014-01-01

    Copy number variation refers to regions along chromosomes that harbor a type of structural variation, such as duplications or deletions. Copy number variants (CNVs) play a role in many important traits as well as in genetic diversity. Previous analyses of chickens using array comparative genomic hyb

  13. Helminth genomics: The implications for human health.

    Directory of Open Access Journals (Sweden)

    Paul J Brindley

    Full Text Available More than two billion people (one-third of humanity are infected with parasitic roundworms or flatworms, collectively known as helminth parasites. These infections cause diseases that are responsible for enormous levels of morbidity and mortality, delays in the physical development of children, loss of productivity among the workforce, and maintenance of poverty. Genomes of the major helminth species that affect humans, and many others of agricultural and veterinary significance, are now the subject of intensive genome sequencing and annotation. Draft genome sequences of the filarial worm Brugia malayi and two of the human schistosomes, Schistosoma japonicum and S. mansoni, are now available, among others. These genome data will provide the basis for a comprehensive understanding of the molecular mechanisms involved in helminth nutrition and metabolism, host-dependent development and maturation, immune evasion, and evolution. They are likely also to predict new potential vaccine candidates and drug targets. In this review, we present an overview of these efforts and emphasize the potential impact and importance of these new findings.

  14. Genomic correlates of atherosclerosis in ancient humans.

    Science.gov (United States)

    Zink, Albert; Wann, L Samuel; Thompson, Randall C; Keller, Andreas; Maixner, Frank; Allam, Adel H; Finch, Caleb E; Frohlich, Bruno; Kaplan, Hillard; Lombardi, Guido P; Sutherland, M Linda; Sutherland, James D; Watson, Lucia; Cox, Samantha L; Miyamoto, Michael I; Narula, Jagat; Stewart, Alexandre F R; Thomas, Gregory S; Krause, Johannes

    2014-06-01

    Paleogenetics offers a unique opportunity to study human evolution, population dynamics, and disease evolution in situ. Although histologic and computed x-ray tomographic investigations of ancient mummies have clearly shown that atherosclerosis has been present in humans for more than 5,000 years, limited data are available on the presence of genetic predisposition for cardiovascular disease in ancient human populations. In a previous whole-genome study of the Tyrolean Iceman, a 5,300-year-old glacier mummy from the Alps, an increased risk for coronary heart disease was detected. The Iceman's genome revealed several single nucleotide polymorphisms that are linked with cardiovascular disease in genome-wide association studies. Future genetic studies of ancient humans from various geographic origins and time periods have the potential to provide more insights into the presence and possible changes of genetic risk factors in our ancestors. The study of ancient humans and a better understanding of the interaction between environmental and genetic influences on the development of heart diseases may lead to a more effective prevention and treatment of the most common cause of death in the modern world.

  15. RNA-guided human genome engineering via Cas9

    National Research Council Canada - National Science Library

    Mali, Prashant; Yang, Luhan; Esvelt, Kevin M; Aach, John; Guell, Marc; DiCarlo, James E; Norville, Julie E; Church, George M

    2013-01-01

    .... We also compute a genome-wide resource of ~190 K unique gRNAs targeting ~40.5% of human exons. Our results establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.

  16. The human genome project and the future of medical practice ...

    African Journals Online (AJOL)

    The human genome project and the future of medical practice. ... the planning stages of the human genome project, the technology and sequence data ... the quality of healthcare available in the resource-rich and the resource-poor countries.

  17. Array comparative genomic hybridization of keratoacanthomas and squamous cell carcinomas

    DEFF Research Database (Denmark)

    Li, Jian; Wang, Kai; Gao, Fei

    2012-01-01

    Keratoacanthoma (KA) is a benign keratinocytic neoplasm that spontaneously regresses after 3-6 months and shares features with squamous cell carcinomas (SCCs). Furthermore, there are reports of KAs that have metastasized, invoking the question of whether KA is a variant of SCC (Hodak et al., 1993......). To date, no reported criteria are sensitive enough to discriminate reliably between KA and SCC, and consequently there is a clinical need for discriminating markers. Our previous study analyzed 132 KAs and 29 SCCs and revealed significantly different regions of genomic aberrations using chromosomal...

  18. Enhancing genome-wide copy number variation identification by high density array CGH using diverse resources of pig breeds.

    Directory of Open Access Journals (Sweden)

    Jiying Wang

    Full Text Available Copy number variations (CNVs are important forms of genomic variation, and have attracted extensive attentions in humans as well as domestic animals. In the study, using a custom-designed 2.1 M array comparative genomic hybridization (aCGH, genome-wide CNVs were identified among 12 individuals from diverse pig breeds, including one Asian wild population, six Chinese indigenous breeds and two modern commercial breeds (Yorkshire and Landrace, with one individual of the other modern commercial breed, Duroc, as the reference. A total of 1,344 CNV regions (CNVRs were identified, covering 47.79 Mb (∼1.70% of the pig genome. The length of these CNVRs ranged from 3.37 Kb to 1,319.0 Kb with a mean of 35.56 Kb and a median of 11.11 Kb. Compared with similar studies reported, most of the CNVRs (74.18% were firstly identified in present study. In order to confirm these CNVRs, 21 CNVRs were randomly chosen to be validated by quantitative real time PCR (qPCR and a high rate (85.71% of confirmation was obtained. Functional annotation of CNVRs suggested that the identified CNVRs have important function, and may play an important role in phenotypic and production traits difference among various breeds. Our results are essential complementary to the CNV map in the pig genome, which will provide abundant genetic markers to investigate association studies between various phenotypes and CNVs in pigs.

  19. About human genome Acerca del genoma humano

    Directory of Open Access Journals (Sweden)

    Mojica Tobias

    2000-12-01

    Full Text Available The sequence ofthe human genome, an undertaking ofadvanced countries, is nearly complete. In fact The Human Genome Project has around 85% ofthe genome sequenced 4 times on the average, with an accuracy of roughly 1 in 1000 nucleotides. Celera Genomics, on the other hand, has 99% of the sequence of one person, with an accuracy of slightly less than 1 in 100. The Human Genome project trives to produce a physical map for public consumption following a step by step strategy, in which the researcher sequences short DNA fragments belonging to Iarger fragments of known relative
    position. Celera Genomics wants to have very rapidly a physical map which can be quickly used to develop genetic tests and drugs, which can be later sold. We feel that the sequence ofthe human genome is something, which will widen the gap between advanced and backward countries.En este artículo se revisan los eventos, alrededor del secuenciamiento del genoma humano, que han llevado a tanta excitación en los medios noticiosos y académicos en meses recientes. Se explican las estrategias que han llevado a que tengamos dos borradores diferentes pero complementarios, la estrategia llevada a cabo con el dinero
    de los contribuyentes que consiste en establecer el orden de fragmentos grandes de DNA antes de ser secuenciados y la estrategia llevada a cabo con dineros aportados por la industria privada, con la intención de explotar gananciosamente el conocimiento derivado del genoma humano. El genoma humano a mediados del año 2000 es
    un borrador incompleto que cubre aliededor del 85% de la secuencia con una precisión de un error en 1000 y el 99% de la secuencia con una precisión menor de 1 en 100 nucleótidos, También se discuten algunas de las posibles avenidas

  20. [Mapping and human genome sequence program].

    Science.gov (United States)

    Weissenbach, J

    1997-03-01

    Until recently, human genome programs focused primarily on establishing maps that would provide signposts to researchers seeking to identify genes responsible for inherited diseases, as well as a basis for genome sequencing studies. Preestablished gene mapping goals have been reached. The over 7,000 microsatellite markers identified to date provide a map of sufficient density to allow localization of the gene of a monogenic disease with a precision of 1 to 2 million base pairs. The physical map, based on systematically arranged overlapping sets of artificial yeast chromosomes (YACs), has also made considerable headway during the last few years. The most recently published map covers more than 90% of the genome. However, currently available physical maps cannot be used for sequencing studies because multiple rearrangements occur in YACs. The recently developed sets of radioinduced hybrids are extremely useful for incorporating genes into existing maps. A network of American and European laboratories has successfully used these radioinduced hybrids to map 15,000 gene tags from large-scale cDNA library sequencing programs. There are increasingly pressing reasons for initiating large scale human genome sequencing studies.

  1. HuMiChip: Development of a Functional Gene Array for the Study of Human Microbiomes

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Q.; Deng, Ye; Lin, Lu; Hemme, Chris L.; He, Zhili; Zhou, Jizhong

    2010-05-17

    Microbiomes play very important roles in terms of nutrition, health and disease by interacting with their hosts. Based on sequence data currently available in public domains, we have developed a functional gene array to monitor both organismal and functional gene profiles of normal microbiota in human and mouse hosts, and such an array is called human and mouse microbiota array, HMM-Chip. First, seed sequences were identified from KEGG databases, and used to construct a seed database (seedDB) containing 136 gene families in 19 metabolic pathways closely related to human and mouse microbiomes. Second, a mother database (motherDB) was constructed with 81 genomes of bacterial strains with 54 from gut and 27 from oral environments, and 16 metagenomes, and used for selection of genes and probe design. Gene prediction was performed by Glimmer3 for bacterial genomes, and by the Metagene program for metagenomes. In total, 228,240 and 801,599 genes were identified for bacterial genomes and metagenomes, respectively. Then the motherDB was searched against the seedDB using the HMMer program, and gene sequences in the motherDB that were highly homologous with seed sequences in the seedDB were used for probe design by the CommOligo software. Different degrees of specific probes, including gene-specific, inclusive and exclusive group-specific probes were selected. All candidate probes were checked against the motherDB and NCBI databases for specificity. Finally, 7,763 probes covering 91.2percent (12,601 out of 13,814) HMMer confirmed sequences from 75 bacterial genomes and 16 metagenomes were selected. This developed HMM-Chip is able to detect the diversity and abundance of functional genes, the gene expression of microbial communities, and potentially, the interactions of microorganisms and their hosts.

  2. An overview of the human genome project

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.

    1994-01-01

    The human genome project is one of the most ambitious scientific projects to date, with the ultimate goal being a nucleotide sequence for all four billion bases of human DNA. In the process of determining the nucleotide sequence for each base, the location, function, and regulatory regions from the estimated 100,000 human genes will be identified. The genome project itself relies upon maps of the human genetic code derived from several different levels of resolution. Genetic linkage analysis provides a low resolution genome map. The information for genetic linkage maps is derived from the analysis of chromosome specific markers such as Sequence Tagged Sites (STSs), Variable Number of Tandem Repeats (VNTRs) or other polymorphic (highly informative) loci in a number of different-families. Using this information the location of an unknown disease gene can be limited to a region comprised of one million base pairs of DNA or less. After this point, one must construct or have access to a physical map of the region of interest. Physical mapping involves the construction of an ordered overlapping (contiguous) set of recombinant DNA clones. These clones may be derived from a number of different vectors including cosmids, Bacterial Artificial Chromosomes (BACs), P1 derived Artificial Chromosomes (PACs), somatic cell hybrids, or Yeast Artificial Chromosomes (YACs). The ultimate goal for physical mapping is to establish a completely overlapping (contiguous) set of clones for the entire genome. After a gene or region of interest has been localized using physical mapping the nucleotide sequence is determined. The overlap between genetic mapping, physical mapping and DNA sequencing has proven to be a powerful tool for the isolation of disease genes through positional cloning.

  3. Compensated individually addressable array technology for human breast imaging

    Science.gov (United States)

    Lewis, D. Kent

    2003-01-01

    A method of forming broad bandwidth acoustic or microwave beams which encompass array design, array excitation, source signal preprocessing, and received signal postprocessing. This technique uses several different methods to achieve improvement over conventional array systems. These methods are: 1) individually addressable array elements; 2) digital-to-analog converters for the source signals; 3) inverse filtering from source precompensation; and 4) spectral extrapolation to expand the bandwidth of the received signals. The components of the system will be used as follows: 1) The individually addressable array allows scanning around and over an object, such as a human breast, without any moving parts. The elements of the array are broad bandwidth elements and efficient radiators, as well as detectors. 2) Digital-to-analog converters as the source signal generators allow virtually any radiated field to be created in the half-space in front of the array. 3) Preprocessing allows for corrections in the system, most notably in the response of the individual elements and in the ability to increase contrast and resolution of signal propagating through the medium under investigation. 4) Postprocessing allows the received broad bandwidth signals to be expanded in a process similar to analytic continuation. Used together, the system allows for compensation to create beams of any desired shape, control the wave fields generated to correct for medium differences, and improve contract and resolution in and through the medium.

  4. A High-throughput Genomic Tool: Diversity Array Technology Complementary for Rice Genotyping

    Institute of Scientific and Technical Information of China (English)

    Yong Xie; Kenneth McNally; Cheng-Yun Li; Hei Leung; You-Yong Zhu

    2006-01-01

    Diversity array technology (DArTTM) was a genotyping tool characterized gel-independent and high throughput.The main purpose of present study is to validate DArT for rice (Oryza sativa L.)genotyping in a high throughput manner. Technically, the main objective was to generate a rice general purpose gene pool, and optimize this genomic tool in order to evaluate rice germplasm genetic diversity. To achieve this, firstly, a generalpurpose DArT array was developed. Ten representatives from 24 varieties were hybridized with the general-purpose array to determine the informativeness of the clones printed on the array. The informative 1 152 clones were re-arrayed on a slide and used to fingerprint 17 of 24 germplasms. Hybridizing targets prepared from the germplasm to be assayed to the DNA array gave DNA fingerprints of germplasms. Raw data were normalized and transformed into binary data, which were then analyzed by using NTSYSpc (Numerical taxonomy system for cluster and ordination analysis, v. 2.02j) software package. The graphically displayed dendrogram derived from the array experimental data was matched with simple Sequence repeats genotyping outline and varieties' pedigree deviation of the different varieties. Considering DArT is a sequence-independent genotyping approach, it will be applied in studies of the genetic diversity and the gene mapping of diverse of organisms, especially for those crops with less-developed molecular markers.

  5. 76 FR 58023 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-09-19

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review... Review, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892,...

  6. 76 FR 28056 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-05-13

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group, Genome Research Review... Scientific Review, National Human Genome Research Institute, National Institutes of Health, Bethesda,...

  7. 77 FR 61770 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-10-11

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; Genomic Medicine RFAs..., Human Genome Research, National Institutes of Health, HHS) ] Dated: October 4, 2012. David...

  8. 77 FR 28888 - National Human Genome Research Institute Notice of Closed Meeting

    Science.gov (United States)

    2012-05-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review... applications. Place: National Human Genome Research Institute, 3635 Fishers Lane, Suite 4076, ] Rockville,...

  9. De novo assembly of a haplotype-resolved human genome.

    Science.gov (United States)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang; Huang, Shujia; Sun, Yuhui; Tong, Xin; Xie, Yinlong; Liu, Binghang; Yang, Hailong; Zheng, Hancheng; Li, Jian; Li, Bo; Wang, Yu; Yang, Fang; Sun, Peng; Liu, Siyang; Gao, Peng; Huang, Haodong; Sun, Jing; Chen, Dan; He, Guangzhu; Huang, Weihua; Huang, Zheng; Li, Yue; Tellier, Laurent C A M; Liu, Xiao; Feng, Qiang; Xu, Xun; Zhang, Xiuqing; Bolund, Lars; Krogh, Anders; Kristiansen, Karsten; Drmanac, Radoje; Drmanac, Snezana; Nielsen, Rasmus; Li, Songgang; Wang, Jian; Yang, Huanming; Li, Yingrui; Wong, Gane Ka-Shu; Wang, Jun

    2015-06-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should aid in translating genotypes to phenotypes for the development of personalized medicine.

  10. De novo assembly of a haplotype-resolved human genome

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Wu, Honglong; Luo, Ruibang

    2015-01-01

    The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. Here we report the assembly of a haplotype-resolved diploid genome without using a reference genome. Our pipeline relies on fosmid pooling together with whole-genome...... of novel coding sequences that could not be aligned to the human reference genome, which include at least six predicted genes. This haplotype-resolved genome represents the most complete de novo human genome assembly to date. Application of our approach to identify individual haplotype differences should...... shotgun strategies, based solely on next-generation sequencing and hierarchical assembly methods. We applied our sequencing method to the genome of an Asian individual and generated a 5.15-Gb assembled genome with a haplotype N50 of 484 kb. Our analysis identified previously undetected indels and 7.49 Mb...

  11. Positive selection on the human genome.

    Science.gov (United States)

    Vallender, Eric J; Lahn, Bruce T

    2004-10-01

    Positive selection has undoubtedly played a critical role in the evolution of Homo sapiens. Of the many phenotypic traits that define our species--notably the enormous brain, advanced cognitive abilities, complex vocal organs, bipedalism and opposable thumbs--most (if not all) are likely the product of strong positive selection. Many other aspects of human biology not necessarily related to the 'branding' of our species, such as host-pathogen interactions, reproduction, dietary adaptation and physical appearance, have also been the substrate of varying levels of positive selection. Comparative genetics/genomics studies in recent years have uncovered a growing list of genes that might have experienced positive selection during the evolution of human and/or primates. These genes offer valuable inroads into understanding the biological processes specific to humans, and the evolutionary forces that gave rise to them. Here, we present a comprehensive review of these genes, and their implications for human evolution.

  12. Characterization of hemizygous deletions in citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome.

    Science.gov (United States)

    Ríos, Gabino; Naranjo, Miguel A; Iglesias, Domingo J; Ruiz-Rivero, Omar; Geraud, Marion; Usach, Antonio; Talón, Manuel

    2008-08-09

    Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny and local gene colinearity in

  13. Characterization of hemizygous deletions in Citrus using array-Comparative Genomic Hybridization and microsynteny comparisons with the poplar genome

    Directory of Open Access Journals (Sweden)

    Usach Antonio

    2008-08-01

    Full Text Available Abstract Background Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Results Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. Conclusion In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected

  14. Report on the Human Genome Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Tinoco, I.; Cahill, G.; Cantor, C.; Caskey, T.; Dulbecco, R.; Engelhardt, D. L.; Hood, L.; Lerman, L. S.; Mendelsohn, M. L.; Sinsheimer, R. L.; Smith, T.; Soll, D.; Stormo, G.; White, R. L.

    1987-04-01

    The report urges DOE and the Nation to commit to a large. multi-year. multidisciplinary. technological undertaking to order and sequence the human genome. This effort will first require significant innovation in general capability to manipulate DNA. major new analytical methods for ordering and sequencing. theoretical developments in computer science and mathematical biology, and great expansions in our ability to store and manipulate the information and to interface it with other large and diverse genetic databases. The actual ordering and sequencing involves the coordinated processing of some 3 billion bases from a reference human genome. Science is poised on the rudimentary edge of being able to read and understand human genes. A concerted. broadly based. scientific effort to provide new methods of sufficient power and scale should transform this activity from an inefficient one-gene-at-a-time. single laboratory effort into a coordinated. worldwide. comprehensive reading of "the book of man". The effort will be extraordinary in scope and magnitude. but so will be the benefit to biological understanding. new technology and the diagnosis and treatment of human disease.

  15. Human genome: proto-oncogenes and proretroviruses.

    Science.gov (United States)

    Kisselev, L L; Chumakov, I M; Zabarovsky, E R; Prassolov, V S; Mett, V L; Berditchevsky, F B; Tret'yakov, L D

    1985-01-01

    A brief review of the studies undertaken at the Laboratory for Molecular Bases of Oncogenesis (Institute of Molecular Biology, Moscow) till middle of 1984 is presented. The human genome contains multiple dispersed nucleotide sequences related to the proto-oncogene mos and to proretroviral sequences in tight juxtaposition to each other. From sequencing appropriate cloned fragments of human DNA in phage and plasmid vectors it follows that one of these regions, NV-1, is a pseudogene of proto-mos with partial duplications and two Alu elements intervening its coding sequence, and the other, CL-1, seems to be also a mos-related gene with a deletion of the internal part of the structural gene. CL-1 is flanked by a proretroviral-like sequence including tRNAiMet binding site and U5 (part of the long terminal repeat). The proretroviral-like sequences are transcribed in 21-35S poly(A)+RNA abundant in normal and malignant human cells. Two hypotheses are proposed: endogenous retroviruses take part in amplification of at least some proto-oncogenes; proto-oncogenes are inactivated via insertion of movable genetic elements and conversion into pseudogenes. Potential oncogenicity of a normal human genome undergoes two controversial influences: it increases due to proto-oncogene amplification and decreases due to inactivation of some of them.

  16. Bioinformatics Assisted Gene Discovery and Annotation of Human Genome

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the sequencing stage of human genome project is near the end, the work has begun for discovering novel genes from genome sequences and annotating their biological functions. Here are reviewed current major bioinformatics tools and technologies available for large scale gene discovery and annotation from human genome sequences. Some ideas about possible future development are also provided.

  17. Stochastic segmentation models for array-based comparative genomic hybridization data analysis.

    Science.gov (United States)

    Lai, Tze Leung; Xing, Haipeng; Zhang, Nancy

    2008-04-01

    Array-based comparative genomic hybridization (array-CGH) is a high throughput, high resolution technique for studying the genetics of cancer. Analysis of array-CGH data typically involves estimation of the underlying chromosome copy numbers from the log fluorescence ratios and segmenting the chromosome into regions with the same copy number at each location. We propose for the analysis of array-CGH data, a new stochastic segmentation model and an associated estimation procedure that has attractive statistical and computational properties. An important benefit of this Bayesian segmentation model is that it yields explicit formulas for posterior means, which can be used to estimate the signal directly without performing segmentation. Other quantities relating to the posterior distribution that are useful for providing confidence assessments of any given segmentation can also be estimated by using our method. We propose an approximation method whose computation time is linear in sequence length which makes our method practically applicable to the new higher density arrays. Simulation studies and applications to real array-CGH data illustrate the advantages of the proposed approach.

  18. Array comparative genomic hybridization-based characterization of genetic alterations in pulmonary neuroendocrine tumors

    OpenAIRE

    Voortman, Johannes; Lee, Jih-Hsiang; Killian, Jonathan Keith; Suuriniemi, Miia; Wang, Yonghong; Lucchi, Marco; Smith, William I; Meltzer, Paul; Wang, Yisong; Giaccone, Giuseppe

    2010-01-01

    The goal of this study was to characterize and classify pulmonary neuroendocrine tumors based on array comparative genomic hybridization (aCGH). Using aCGH, we performed karyotype analysis of 33 small cell lung cancer (SCLC) tumors, 13 SCLC cell lines, 19 bronchial carcinoids, and 9 gastrointestinal carcinoids. In contrast to the relatively conserved karyotypes of carcinoid tumors, the karyotypes of SCLC tumors and cell lines were highly aberrant. High copy number (CN) gains were detected in ...

  19. Genotyping Performance between Saliva and Blood-Derived Genomic DNAs on the DMET Array: A Comparison

    OpenAIRE

    Yueshan Hu; Erik A. Ehli; Kelly Nelson; Krista Bohlen; Christophina Lynch; Patty Huizenga; Julie Kittlelsrud; Soundy, Timothy J.; Davies, Gareth E.

    2012-01-01

    The Affymetrix Drug Metabolism Enzymes and Transporters (DMET) microarray is the first assay to offer a large representation of SNPs conferring genetic diversity across known pharmacokinetic markers. As a convenient and painless alternative to blood, saliva samples have been reported to work well for genotyping on the high density SNP arrays, but no reports to date have examined this application for saliva-derived DNA on the DMET platform. Genomic DNA extractions from saliva samples produced ...

  20. [Human genomic project and human genomic haplotype map project: opportunitiy, challenge and strategy in stomatology].

    Science.gov (United States)

    Wu, Rui-qing; Zeng, Xin; Wang, Zhi

    2010-08-01

    The human genomic project and the international HapMap project were designed to create a genome-wide database of patterns of human genetic variation, with the expectation that these patterns would be useful for genetic association studies of common diseases, thus lead to molecular diagnosis and personnel therapy. The article briefly reviewed the creation, target and achievement of those two projects. Furthermore, the authors have given four suggestions in facing to the opportunities and challenges brought by the two projects, including cultivation improvement of elites, cross binding of multi-subjects, strengthening construction of research base and initiation of natural key scientific project.

  1. Understanding the Human Genome Project -- A Fact Sheet

    Science.gov (United States)

    ... that contribute to human disease. In 1953, James Watson and Francis Crick described the double helix structure ... of sequencing whole exomes or genomes, groundbreaking comparative genomic studies are now identifiying the causes of rare ...

  2. Genetic characterization of dogs via chromosomal analysis and array-based comparative genomic hybridization (aCGH).

    Science.gov (United States)

    Müller, M H; Reimann-Berg, N; Bullerdiek, J; Murua Escobar, H

    2012-01-01

    The results of cytogenetic and molecular cytogenetic investigations revealed similarities in genetic background and biological behaviour between tumours and genetic diseases of humans and dogs. These findings classify the dog a good and accepted model for human cancers such as osteosarcomas, mammary carcinomas, oral melanomas and others. With the appearance of new studies and advances in canine genome sequencing, the number of known homologies in diseases between these species raised and still is expected to increase. In this context, array-based comparative genomic hybridization (aCGH) provides a novel tool to rapidly characterize numerical aberrations in canine tumours or to detect copy number aberrations between different breeds. As it is possible to spot probes covering the whole genome on each chip to discover copy number aberrations of all chromosomes simultaneously, this method is time-saving and cost-effective - considering the relation of costs and the amount of data obtained. Complemented with traditional methods like karyotyping and fluorescence in situ hybridization (FISH) analyses, the aCGH is able to provide new insights into the underlying causes of canine carcinogenesis.

  3. Comprehensive genome characterization of solitary fibrous tumors using high-resolution array-based comparative genomic hybridization.

    Science.gov (United States)

    Bertucci, François; Bouvier-Labit, Corinne; Finetti, Pascal; Adélaïde, José; Metellus, Philippe; Mokhtari, Karima; Decouvelaere, Anne-Valérie; Miquel, Catherine; Jouvet, Anne; Figarella-Branger, Dominique; Pedeutour, Florence; Chaffanet, Max; Birnbaum, Daniel

    2013-02-01

    Solitary fibrous tumors (SFTs) are rare spindle cell tumors with limited therapeutic options. Their molecular basis is poorly known. No consistent cytogenetic abnormality has been reported. We used high-resolution whole-genome array-based comparative genomic hybridization (Agilent 244K oligonucleotide chips) to profile 47 samples, meningeal in >75% of cases. Few copy number aberrations (CNAs) were observed. Sixty-eight percent of samples did not show any gene CNA after exclusion of probes located in regions with referenced copy number variation (CNV). Only low-level CNAs were observed. The genomic profiles were very homogeneous among samples. No molecular class was revealed by clustering of DNA copy numbers. All cases displayed a "simplex" profile. No recurrent CNA was identified. Imbalances occurring in >20%, such as the gain of 8p11.23-11.22 region, contained known CNVs. The 13q14.11-13q31.1 region (lost in 4% of cases) was the largest altered region and contained the lowest percentage of genes with referenced CNVs. A total of 425 genes without CNV showed copy number transition in at least one sample, but only but only 1 in at least 10% of samples. The genomic profiles of meningeal and extra-meningeal cases did not show any differences.

  4. Whole-genome microarrays of fission yeast: characteristics, accuracy, reproducibility, and processing of array data

    Directory of Open Access Journals (Sweden)

    Chen Dongrong

    2003-07-01

    Full Text Available Abstract Background The genome of the fission yeast Schizosaccharomyces pombe has recently been sequenced, setting the stage for the post-genomic era of this increasingly popular model organism. We have built fission yeast microarrays, optimised protocols to improve array performance, and carried out experiments to assess various characteristics of microarrays. Results We designed PCR primers to amplify specific probes (180–500 bp for all known and predicted fission yeast genes, which are printed in duplicate onto separate regions of glass slides together with control elements (~13,000 spots/slide. Fluorescence signal intensities depended on the size and intragenic position of the array elements, whereas the signal ratios were largely independent of element properties. Only the coding strand is covalently linked to the slides, and our array elements can discriminate transcriptional direction. The microarrays can distinguish sequences with up to 70% identity, above which cross-hybridisation contributes to the signal intensity. We tested the accuracy of signal ratios and measured the reproducibility of array data caused by biological and technical factors. Because the technical variability is lower, it is best to use samples prepared from independent biological experiments to obtain repeated measurements with swapping of fluorochromes to prevent dye bias. We also developed a script that discards unreliable data and performs a normalization to correct spatial artefacts. Conclusions This paper provides data for several microarray properties that are rarely measured. The results define critical parameters for microarray design and experiments and provide a framework to optimise and interpret array data. Our arrays give reproducible and accurate expression ratios with high sensitivity. The scripts for primer design and initial data processing as well as primer sequences and detailed protocols are available from our website.

  5. From the genome to the phenome and back: linking genes with human brain function and structure using genetically informed neuroimaging

    DEFF Research Database (Denmark)

    Siebner, H R; Callicott, J H; Sommer, T

    2009-01-01

    In recent years, an array of brain mapping techniques has been successfully employed to link individual differences in circuit function or structure in the living human brain with individual variations in the human genome. Several proof-of-principle studies provided converging evidence that brain...

  6. Origins of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, Robert

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the US and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  7. Origins of the Human Genome Project

    Science.gov (United States)

    Cook-Deegan, Robert (Affiliation: Institute of Medicine, National Academy of Sciences)

    1993-07-01

    The human genome project was borne of technology, grew into a science bureaucracy in the United States and throughout the world, and is now being transformed into a hybrid academic and commercial enterprise. The next phase of the project promises to veer more sharply toward commercial application, harnessing both the technical prowess of molecular biology and the rapidly growing body of knowledge about DNA structure to the pursuit of practical benefits. Faith that the systematic analysis of DNA structure will prove to be a powerful research tool underlies the rationale behind the genome project. The notion that most genetic information is embedded in the sequence of CNA base pairs comprising chromosomes is a central tenet. A rough analogy is to liken an organism's genetic code to computer code. The coal of the genome project, in this parlance, is to identify and catalog 75,000 or more files (genes) in the software that directs construction of a self-modifying and self-replicating system -- a living organism.

  8. Genome Microscale Heterogeneity among Wild Potatoes Revealed by Diversity Arrays Technology Marker Sequences

    Directory of Open Access Journals (Sweden)

    Alessandra Traini

    2013-01-01

    Full Text Available Tuber-bearing potato species possess several genes that can be exploited to improve the genetic background of the cultivated potato Solanum tuberosum. Among them, S. bulbocastanum and S. commersonii are well known for their strong resistance to environmental stresses. However, scant information is available for these species in terms of genome organization, gene function, and regulatory networks. Consequently, genomic tools to assist breeding are meager, and efficient exploitation of these species has been limited so far. In this paper, we employed the reference genome sequences from cultivated potato and tomato and a collection of sequences of 1,423 potato Diversity Arrays Technology (DArT markers that show polymorphic representation across the genomes of S. bulbocastanum and/or S. commersonii genotypes. Our results highlighted microscale genome sequence heterogeneity that may play a significant role in functional and structural divergence between related species. Our analytical approach provides knowledge of genome structural and sequence variability that could not be detected by transcriptome and proteome approaches.

  9. Genomic instability of human embryonic stem cell lines using different passaging culture methods.

    Science.gov (United States)

    Tosca, Lucie; Feraud, Olivier; Magniez, Aurélie; Bas, Cécile; Griscelli, Frank; Bennaceur-Griscelli, Annelise; Tachdjian, Gérard

    2015-01-01

    Human embryonic stem cells exhibit genomic instability that can be related to culture duration or to the passaging methods used for cell dissociation. In order to study the impact of cell dissociation techniques on human embryonic stem cells genomic instability, we cultured H1 and H9 human embryonic stem cells lines using mechanical/manual or enzymatic/collagenase-IV dissociation methods. Genomic instability was evaluated at early (p60) passages by using oligonucleotide based array-comparative genomic hybridization 105 K with a mean resolution of 50 Kb. DNA variations were mainly located on subtelomeric and pericentromeric regions with sizes <100 Kb. In this study, 9 recurrent genomic variations were acquired during culture including the well known duplication 20q11.21. When comparing cell dissociation methods, we found no significant differences between DNA variations number and size, DNA gain or DNA loss frequencies, homozygous loss frequencies and no significant difference on the content of genes involved in development, cell cycle tumorigenesis and syndrome disease. In addition, we have never found any malignant tissue in 4 different teratoma representative of the two independent stem cell lines. These results show that the occurrence of genomic instability in human embryonic stem cells is similar using mechanical or collagenase IV-based enzymatic cell culture dissociation methods. All the observed genomic variations have no impact on the development of malignancy.

  10. Comparative genomic hybridization array study and its utility in detection of constitutional and acquired anomalies.

    Science.gov (United States)

    Andrieux, Joris; Sheth, Frenny

    2009-10-01

    The last decade has witnessed an upsurge in the knowledge of cytogenetic disorders and putting the old technology in a new basket with molecular genetics. As conventional cytogenetic can detect the genetic alteration of 10-15 Mb, many of the micro-deletions and micro-duplications are missed. However, with the advent of technology of fluorescence in situ hybridization (FISH), the resolution of genetic aberrations can reach to 3-5 Mb, nonetheless the anomalies smaller than the above, need further precision which has been achieved using comparative genomic hybridization array (CGH-array). Introduction of array-CGH has brought higher sensitivity with automated DNA fragment analyzer and DNA chip for submicroscopic chromosomal anomalies that are missed till date in many of the acquired and constitutional genetic disorders. The resolution of the technology varies from several Kb to 1 Mb depending upon the type of array selected. With the recent improvement in the array-CGH technology, a link between cytogenetic and molecular biology has been established without replacing conventional cytogenetic technique. The wider accessibility of the technology shall certainly provide a clue to the many unidentified/unexplained genetic disorders which shall prove to be a boon to the clinicians.

  11. Exuberant innovation: The Human Genome Project

    CERN Document Server

    Gisler, Monika; Woodard, Ryan

    2010-01-01

    We present a detailed synthesis of the development of the Human Genome Project (HGP) from 1986 to 2003 in order to test the "social bubble" hypothesis that strong social interactions between enthusiastic supporters of the HGP weaved a network of reinforcing feedbacks that led to a widespread endorsement and extraordinary commitment by those involved in the project, beyond what would be rationalized by a standard cost-benefit analysis in the presence of extraordinary uncertainties and risks. The vigorous competition and race between the initially public project and several private initiatives is argued to support the social bubble hypothesis. We also present quantitative analyses of the concomitant financial bubble concentrated on the biotech sector. Confirmation of this hypothesis is offered by the present consensus that it will take decades to exploit the fruits of the HGP, via a slow and arduous process aiming at disentangling the extraordinary complexity of the human complex body. The HGP has ushered other...

  12. The PCNA pseudogenes in the human genome

    Directory of Open Access Journals (Sweden)

    Stoimenov Ivaylo

    2012-02-01

    Full Text Available Abstract Background The proliferating cell nuclear antigen (PCNA is a key protein in the eukaryotic DNA replication and cell proliferation. Following the cloning and characterisation of the human PCNA gene, the question of the existence of pseudogenes in the human genome was raised. Findings In this short communication we summarise the existing information about the PCNA pseudogenes and critically assess their status. Conclusions We propose the existence of at least four valid PCNA pseudogenes, PCNAP1, PCNAP2, LOC392454 and LOC390102. We would like to recommend assignment of a name for LOC392454 as "proliferating cell nuclear antigen pseudogene 3" (alias PCNAP3 and a name for LOC390102 as "proliferating cell nuclear antigen pseudogene 4" (alias PCNAP4. We prompt for more critical evaluation of the existence of a PCNA pseudogene, designated as PCNAP.

  13. Comparative genomics of emerging human ehrlichiosis agents.

    Directory of Open Access Journals (Sweden)

    Julie C Dunning Hotopp

    2006-02-01

    Full Text Available Anaplasma (formerly Ehrlichia phagocytophilum, Ehrlichia chaffeensis, and Neorickettsia (formerly Ehrlichia sennetsu are intracellular vector-borne pathogens that cause human ehrlichiosis, an emerging infectious disease. We present the complete genome sequences of these organisms along with comparisons to other organisms in the Rickettsiales order. Ehrlichia spp. and Anaplasma spp. display a unique large expansion of immunodominant outer membrane proteins facilitating antigenic variation. All Rickettsiales have a diminished ability to synthesize amino acids compared to their closest free-living relatives. Unlike members of the Rickettsiaceae family, these pathogenic Anaplasmataceae are capable of making all major vitamins, cofactors, and nucleotides, which could confer a beneficial role in the invertebrate vector or the vertebrate host. Further analysis identified proteins potentially involved in vacuole confinement of the Anaplasmataceae, a life cycle involving a hematophagous vector, vertebrate pathogenesis, human pathogenesis, and lack of transovarial transmission. These discoveries provide significant insights into the biology of these obligate intracellular pathogens.

  14. Building the sequence map of the human pan-genome

    DEFF Research Database (Denmark)

    Li, Ruiqiang; Li, Yingrui; Zheng, Hancheng

    2010-01-01

    Here we integrate the de novo assembly of an Asian and an African genome with the NCBI reference human genome, as a step toward constructing the human pan-genome. We identified approximately 5 Mb of novel sequences not present in the reference genome in each of these assemblies. Most novel...... analysis of predicted genes indicated that the novel sequences contain potentially functional coding regions. We estimate that a complete human pan-genome would contain approximately 19-40 Mb of novel sequence not present in the extant reference genome. The extensive amount of novel sequence contributing...... to the genetic variation of the pan-genome indicates the importance of using complete genome sequencing and de novo assembly....

  15. The Human Genome Initiative of the Department of Energy

    Science.gov (United States)

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative.

  16. The Human Genome Initiative of the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-01-01

    The structural characterization of genes and elucidation of their encoded functions have become a cornerstone of modern health research, biology and biotechnology. A genome program is an organized effort to locate and identify the functions of all the genes of an organism. Beginning with the DOE-sponsored, 1986 human genome workshop at Santa Fe, the value of broadly organized efforts supporting total genome characterization became a subject of intensive study. There is now national recognition that benefits will rapidly accrue from an effective scientific infrastructure for total genome research. In the US genome research is now receiving dedicated funds. Several other nations are implementing genome programs. Supportive infrastructure is being improved through both national and international cooperation. The Human Genome Initiative of the Department of Energy (DOE) is a focused program of Resource and Technology Development, with objectives of speeding and bringing economies to the national human genome effort. This report relates the origins and progress of the Initiative. 34 refs.

  17. Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array

    Directory of Open Access Journals (Sweden)

    Sugnet Charles

    2006-12-01

    Full Text Available Abstract Background Alternative splicing is a mechanism for increasing protein diversity by excluding or including exons during post-transcriptional processing. Alternatively spliced proteins are particularly relevant in oncology since they may contribute to the etiology of cancer, provide selective drug targets, or serve as a marker set for cancer diagnosis. While conventional identification of splice variants generally targets individual genes, we present here a new exon-centric array (GeneChip Human Exon 1.0 ST that allows genome-wide identification of differential splice variation, and concurrently provides a flexible and inclusive analysis of gene expression. Results We analyzed 20 paired tumor-normal colon cancer samples using a microarray designed to detect over one million putative exons that can be virtually assembled into potential gene-level transcripts according to various levels of prior supporting evidence. Analysis of high confidence (empirically supported transcripts identified 160 differentially expressed genes, with 42 genes occupying a network impacting cell proliferation and another twenty nine genes with unknown functions. A more speculative analysis, including transcripts based solely on computational prediction, produced another 160 differentially expressed genes, three-fourths of which have no previous annotation. We also present a comparison of gene signal estimations from the Exon 1.0 ST and the U133 Plus 2.0 arrays. Novel splicing events were predicted by experimental algorithms that compare the relative contribution of each exon to the cognate transcript intensity in each tissue. The resulting candidate splice variants were validated with RT-PCR. We found nine genes that were differentially spliced between colon tumors and normal colon tissues, several of which have not been previously implicated in cancer. Top scoring candidates from our analysis were also found to substantially overlap with EST-based bioinformatic

  18. Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies

    DEFF Research Database (Denmark)

    Li, Yun R.; van Setten, Jessica; Verma, Shefali S.;

    2015-01-01

    genome-wide genotyping array, the 'TxArray', comprising approximately 782,000 markers with tailored content for deeper capture of variants across HLA, KIR, pharmacogenomic, and metabolic loci important in transplantation. To test concordance and genotyping quality, we genotyped 85 HapMap samples...

  19. Initial sequencing and analysis of the human genome.

    Science.gov (United States)

    Lander, E S; Linton, L M; Birren, B; Nusbaum, C; Zody, M C; Baldwin, J; Devon, K; Dewar, K; Doyle, M; FitzHugh, W; Funke, R; Gage, D; Harris, K; Heaford, A; Howland, J; Kann, L; Lehoczky, J; LeVine, R; McEwan, P; McKernan, K; Meldrim, J; Mesirov, J P; Miranda, C; Morris, W; Naylor, J; Raymond, C; Rosetti, M; Santos, R; Sheridan, A; Sougnez, C; Stange-Thomann, Y; Stojanovic, N; Subramanian, A; Wyman, D; Rogers, J; Sulston, J; Ainscough, R; Beck, S; Bentley, D; Burton, J; Clee, C; Carter, N; Coulson, A; Deadman, R; Deloukas, P; Dunham, A; Dunham, I; Durbin, R; French, L; Grafham, D; Gregory, S; Hubbard, T; Humphray, S; Hunt, A; Jones, M; Lloyd, C; McMurray, A; Matthews, L; Mercer, S; Milne, S; Mullikin, J C; Mungall, A; Plumb, R; Ross, M; Shownkeen, R; Sims, S; Waterston, R H; Wilson, R K; Hillier, L W; McPherson, J D; Marra, M A; Mardis, E R; Fulton, L A; Chinwalla, A T; Pepin, K H; Gish, W R; Chissoe, S L; Wendl, M C; Delehaunty, K D; Miner, T L; Delehaunty, A; Kramer, J B; Cook, L L; Fulton, R S; Johnson, D L; Minx, P J; Clifton, S W; Hawkins, T; Branscomb, E; Predki, P; Richardson, P; Wenning, S; Slezak, T; Doggett, N; Cheng, J F; Olsen, A; Lucas, S; Elkin, C; Uberbacher, E; Frazier, M; Gibbs, R A; Muzny, D M; Scherer, S E; Bouck, J B; Sodergren, E J; Worley, K C; Rives, C M; Gorrell, J H; Metzker, M L; Naylor, S L; Kucherlapati, R S; Nelson, D L; Weinstock, G M; Sakaki, Y; Fujiyama, A; Hattori, M; Yada, T; Toyoda, A; Itoh, T; Kawagoe, C; Watanabe, H; Totoki, Y; Taylor, T; Weissenbach, J; Heilig, R; Saurin, W; Artiguenave, F; Brottier, P; Bruls, T; Pelletier, E; Robert, C; Wincker, P; Smith, D R; Doucette-Stamm, L; Rubenfield, M; Weinstock, K; Lee, H M; Dubois, J; Rosenthal, A; Platzer, M; Nyakatura, G; Taudien, S; Rump, A; Yang, H; Yu, J; Wang, J; Huang, G; Gu, J; Hood, L; Rowen, L; Madan, A; Qin, S; Davis, R W; Federspiel, N A; Abola, A P; Proctor, M J; Myers, R M; Schmutz, J; Dickson, M; Grimwood, J; Cox, D R; Olson, M V; Kaul, R; Raymond, C; Shimizu, N; Kawasaki, K; Minoshima, S; Evans, G A; Athanasiou, M; Schultz, R; Roe, B A; Chen, F; Pan, H; Ramser, J; Lehrach, H; Reinhardt, R; McCombie, W R; de la Bastide, M; Dedhia, N; Blöcker, H; Hornischer, K; Nordsiek, G; Agarwala, R; Aravind, L; Bailey, J A; Bateman, A; Batzoglou, S; Birney, E; Bork, P; Brown, D G; Burge, C B; Cerutti, L; Chen, H C; Church, D; Clamp, M; Copley, R R; Doerks, T; Eddy, S R; Eichler, E E; Furey, T S; Galagan, J; Gilbert, J G; Harmon, C; Hayashizaki, Y; Haussler, D; Hermjakob, H; Hokamp, K; Jang, W; Johnson, L S; Jones, T A; Kasif, S; Kaspryzk, A; Kennedy, S; Kent, W J; Kitts, P; Koonin, E V; Korf, I; Kulp, D; Lancet, D; Lowe, T M; McLysaght, A; Mikkelsen, T; Moran, J V; Mulder, N; Pollara, V J; Ponting, C P; Schuler, G; Schultz, J; Slater, G; Smit, A F; Stupka, E; Szustakowki, J; Thierry-Mieg, D; Thierry-Mieg, J; Wagner, L; Wallis, J; Wheeler, R; Williams, A; Wolf, Y I; Wolfe, K H; Yang, S P; Yeh, R F; Collins, F; Guyer, M S; Peterson, J; Felsenfeld, A; Wetterstrand, K A; Patrinos, A; Morgan, M J; de Jong, P; Catanese, J J; Osoegawa, K; Shizuya, H; Choi, S; Chen, Y J; Szustakowki, J

    2001-02-15

    The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

  20. Unusual assortment of segments in 2 rare human rotavirus genomes.

    Science.gov (United States)

    De Grazia, Simona; Giammanco, Giovanni M; Potgieter, Christiaan A; Matthijnssens, Jelle; Banyai, Krisztian; Platia, Maria A; Colomba, Claudia; Martella, Vito

    2010-05-01

    Using full-length genome sequence analysis, we investigated 2 rare G3P[9] human rotavirus strains isolated from children with diarrhea. The genomes were recognized as assortments of genes closely related to rotaviruses originating from cats, ruminants, and humans. Results suggest multiple transmissions of genes from animal to human strains of rotaviruses.

  1. 1-Mb resolution array-based comparative genomic hybridization using a BAC clone set optimized for cancer gene analysis

    NARCIS (Netherlands)

    Greshock, J; Naylor, TL; Margolin, A; Diskin, S; Cleaver, SH; Futreal, PA; deJong, PJ; Zhao, SY; Liebman, M; Weber, BL

    2004-01-01

    Array-based comparative genomic hybridization (aCGH) is a recently developed tool for genome-wide determination of DNA copy number alterations. This technology has tremendous potential for disease-gene discovery in cancer and developmental disorders as well as numerous other applications. However, w

  2. Identification of cryptic microaberrations in osteosarcoma by high-definition oligonucleotide array comparative genomic hybridization.

    Science.gov (United States)

    Selvarajah, Shamini; Yoshimoto, Maisa; Maire, Georges; Paderova, Jana; Bayani, Jane; Squire, Jeremy A; Zielenska, Maria

    2007-11-01

    Osteosarcoma (OS) is an aggressive bone tumor characterized by complex abnormal karyotypes and a high level of genomic instability. Using high-resolution array comparative genomic hybridization (aCGH), a novel class of localized copy number variations called microaberrations has been detected. These genomic anomalies typically involve DNA imbalances affecting 700 kb to 1 Mb DNA, and are often associated with some type of genetic syndromes. Because the origin of instability in OS is poorly understood, we used aCGH to determine whether microaberrations were a characteristic of four OS cell lines: U-2 OS, HOS, MG-63, and SAOS-2. TP53 is mutated in SAOS-2, a line in which 17 microaberrations were found. In contrast, U-2 OS, which has a wild-type TP53, had only six such anomalies, the lowest incidence. A 500-kb microaberration within a region of gain at 5p15.33 in SAOS-2 was confirmed by fluorescence in situ hybridization. Significantly, this genomic location is close to the TERT gene, a region of gain in all four cell lines. To our knowledge, this is the first systematic analysis of the incidence of microaberrations in OS. The high levels of these anomalies detected suggest that the instability processes in OS that lead to a highly abnormal karyotypes may also be associated with acquisition of genomic microaberrations.

  3. Development of real-time PCR array for simultaneous detection of eight human blood-borne viral pathogens.

    Directory of Open Access Journals (Sweden)

    Natalia Pripuzova

    Full Text Available BACKGROUND: Real-time PCR array for rapid detection of multiple viral pathogens should be highly useful in cases where the sample volume and the time of testing are limited, i.e. in the eligibility testing of tissue and organ donors. FINDINGS: We developed a real-time PCR array capable of simultaneously detecting eight human viral pathogens: human immunodeficiency virus types 1 and 2 (HIV-1 and -2, hepatitis B virus (HBV, hepatitis C virus (HCV, human T-cell leukemia virus-1 and -2 (HTLV-1 and -2, vaccinia virus (VACV and West Nile virus (WNV. One hundred twenty (120 primers were designed using a combination of bioinformatics approaches, and, after experimental testing, 24 primer sets targeting eight viral pathogens were selected to set up the array with SYBR Green chemistry. The specificity and sensitivity of the virus-specific primer sets selected for the array were evaluated using analytical panels with known amounts of viruses spiked into human plasma. The array detected: 10 genome equivalents (geq/ml of HIV-2 and HCV, 50 geq of HIV-1 (subtype B, HBV (genotype A and WNV. It detected 100-1,000 geq/ml of plasma of HIV-1 subtypes (A - G, group N and CRF (AE and AG isolates. Further evaluation with a panel consisting of 28 HIV-1 and HIV-2 clinical isolates revealed no cross-reactivity of HIV-1 or HIV-2 specific primers with another type of HIV. All 28 viral isolates were identified with specific primer sets targeting the most conserved genome areas. The PCR array correctly identified viral infections in a panel of 17 previously quantified clinical plasma samples positive for HIV-1, HCV or HBV at as low as several geq per PCR reaction. CONCLUSIONS: The viral array described here demonstrated adequate performance in the testing of donors' clinical samples. Further improvement in its sensitivity for the broad spectrum of HIV-1 subtypes is under development.

  4. Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi*

    Science.gov (United States)

    Atanasova, Lea; Druzhinina, Irina S.

    2010-01-01

    Conidial fungi or molds and mildews are widely used in modern biotechnology as producers of antibiotics and other secondary metabolites, industrially important enzymes, chemicals and food. They are also important pathogens of animals including humans and agricultural crops. These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available. Functional genomics and proteomics widely exploit the genomic information to study the cell-wide impact of altered genes on the phenotype of an organism and its function. This allows for global analysis of the information flow from DNA to RNA to protein, but it is usually not sufficient for the description of the global phenotype of an organism. More recently, Phenotype MicroArray (PM) technology has been introduced as a tool to characterize the metabolism of a (wild) fungal strain or a mutant. In this article, we review the background of PM applications for fungi and the methodic requirements to obtain reliable results. We also report examples of the versatility of this tool. PMID:20205302

  5. The impact of array genomic hybridization on mental retardation research: a review of current technologies and their clinical utility.

    Science.gov (United States)

    Zahir, F; Friedman, J M

    2007-10-01

    Our understanding of the causes of mental retardation is benefiting greatly from whole-genome scans to detect submicroscopic pathogenic copy number variants (CNVs) that are undetectable by conventional cytogenetic analysis. The current method of choice for performing whole-genome scans for CNVs is array genomic hybridization (AGH). Several platforms are available for AGH, each with its own strengths and limitations. This review discusses considerations that are relevant to the clinical use of whole-genome AGH platforms for the diagnosis of pathogenic CNVs in children with mental retardation. Whole-genome AGH studies are a maturing technology, but their high diagnostic utility assures their increasing use in clinical genetics.

  6. Complete genome sequence of Treponema pallidum ssp. pallidum strain SS14 determined with oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Sodergren Erica

    2008-05-01

    Full Text Available Abstract Background Syphilis spirochete Treponema pallidum ssp. pallidum remains the enigmatic pathogen, since no virulence factors have been identified and the pathogenesis of the disease is poorly understood. Increasing rates of new syphilis cases per year have been observed recently. Results The genome of the SS14 strain was sequenced to high accuracy by an oligonucleotide array strategy requiring hybridization to only three arrays (Comparative Genome Sequencing, CGS. Gaps in the resulting sequence were filled with targeted dideoxy-terminators (DDT sequencing and the sequence was confirmed by whole genome fingerprinting (WGF. When compared to the Nichols strain, 327 single nucleotide substitutions (224 transitions, 103 transversions, 14 deletions, and 18 insertions were found. On the proteome level, the highest frequency of amino acid-altering substitution polymorphisms was in novel genes, while the lowest was in housekeeping genes, as expected by their evolutionary conservation. Evidence was also found for hypervariable regions and multiple regions showing intrastrain heterogeneity in the T. pallidum chromosome. Conclusion The observed genetic changes do not have influence on the ability of Treponema pallidum to cause syphilitic infection, since both SS14 and Nichols are virulent in rabbit. However, this is the first assessment of the degree of variation between the two syphilis pathogens and paves the way for phylogenetic studies of this fascinating organism.

  7. Genetical genomic determinants of alcohol consumption in rats and humans

    Directory of Open Access Journals (Sweden)

    Mangion Jonathan

    2009-10-01

    Full Text Available Abstract Background We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs. Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations. Results In the HXB/BXH recombinant inbred (RI rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption. Conclusion Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume

  8. [Genomic abnormalities in children with mental retardation and autism: the use of comparative genomic hybridization in situ (HRCGH) and molecular karyotyping with DNA-microchips (array CGH)].

    Science.gov (United States)

    Vorsanova, S G; Iurov, I Iu; Kurinnaia, O S; Voinova, V Iu; Iurov, Iu B

    2013-01-01

    Genomic abnormalities occur with high frequency in children with mental retardation and autistic spectrum disorders (ADS). Molecular karyotyping using DNA microarrays is a new technology for diagnosis of genomic and chromosomal abnormalities in autism implemented in the fields of biological psychiatry and medical genetics. We carried out a comparative analysis of the frequency and spectrum of genome abnormalities in children with mental retardation and autism of unknown etiology using high-resolution comparative genomic methods for hybridization (HRCGH) and molecular karyotyping (array CGH). In a study of 100 children with autism, learning difficulties and congenital malformations by HRCGH, we identified genomic rearrangements in 46% of cases. Using array CGH we examined 50 children with autism. In 44 cases out of 50 (88%), different genomic abnormalities and genomic variations (CNV - copy number variations) were identified. Unbalanced genomic rearrangements, including deletions and duplications, were found in 23 cases out of 44 (52%). These data suggest that genomic abnormalities which are not detectable by common methods of chromosome analysis are often discovered by molecular cytogenetic techniques in children autism spectrum disorders. In addition, 54 children with idiopathic mental retardation and congenital malformations (31 boys and 23 girls) without autism spectrum disorders were examined using molecular karyotyping and microarray containing an increased number of DNA samples for genomic loci of chromosome X. Deletions and duplications affecting different regions of the chromosome X were detected in 11 out of 54 children (20.4%).

  9. 75 FR 10488 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2010-03-08

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; NHGRI MAP Review... Human Genome Research Institute Special Emphasis Panel; LRP 2010 Teleconference. Date: April 7,...

  10. 78 FR 20933 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-04-08

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel Loan Repayment Program... applications. Place: National Human Genome Research Institute, Room 3055, 5635 Fishers Lane, Rockville,...

  11. 76 FR 35223 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, Sequencing Centers...D, Scientific Review Officer, Scientific Review Branch, National Human Genome Research...

  12. 77 FR 60706 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-10-04

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Name of Committee: National Human Genome Research Institute Special Emphasis Panel; Special Emphasis... Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes of...

  13. 76 FR 65204 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-10-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; Genomic Resource...: Rudy O. Pozzatti, Ph.D., Scientific Review Officer, Scientific Review Branch, National Human...

  14. 75 FR 52538 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-26

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel. Date: November 19-20..., Scientific Review Officer, Scientific Review Branch, National Human Genome Research Institute,...

  15. 75 FR 8374 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-24

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, Revolutionary..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4076,...

  16. 78 FR 68856 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-11-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... Review Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes... of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  17. 78 FR 14806 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-03-07

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel: Clinically Relevant... grant applications. Place: National Human Genome Research Institute, 4th Floor Conference Room,...

  18. Using Array-Based Comparative Genomic Hybridization to Diagnose Pallister-Killian Syndrome.

    Science.gov (United States)

    Lee, Mi Na; Lee, Jiwon; Yu, Hee Joon; Lee, Jeehun; Kim, Sun Hee

    2017-01-01

    Pallister-Killian syndrome (PKS) is a rare multisystem disorder characterized by isochromosome 12p and tissue-limited mosaic tetrasomy 12p. In this study, we diagnosed three pediatric patients who were suspicious of having PKS using array-based comparative genomic hybridization (array CGH) and FISH analyses performed on peripheral lymphocytes. Patients 1 and 2 presented with craniofacial dysmorphic features, hypotonia, and a developmental delay. Array CGH revealed two to three copies of 12p in patient 1 and three copies in patient 2. FISH analysis showed trisomy or tetrasomy 12p. Patient 3, who had clinical features comparable to those of patients 1 and 2, was diagnosed by using FISH analysis alone. Here, we report three patients with mosaic tetrasomy 12p. There have been only reported cases diagnosed by chromosome analysis and FISH analysis on skin fibroblast or amniotic fluid. To our knowledge, patient 1 was the first case diagnosed by using array CGH performed on peripheral lymphocytes in Korea.

  19. Application of Array-based Comparative Genome Hybridization in Children with Developmental Delay or Mental Retardation

    Directory of Open Access Journals (Sweden)

    Jao-Shwann Liang

    2008-12-01

    Full Text Available Children with developmental delay or mental retardation (DD/MR are commonly en countered in child neurology clinics, and establishing an etiologic diagnosis is a challenge for child neurologists. Among the etiologies, chromosomal imbalance is one of the most important causes. However, many of these chromosomal imbalances are submicroscopic and cannot be detected by conventional cytogenetic methods. Microarray-based comparative genomic hybridization (array CGH is considered to be superior in the investigation of chromosomal deletions or duplications in children with DD/MR, and has been demonstrated to improve the diagnostic detection rate for these small chromosomal abnormalities. Here, we review the recent studies of array CGH in the evaluation of patients with idiopathic DD/MR.

  20. Genome-wide copy number profiling using high-density SNP array in chickens.

    Science.gov (United States)

    Yi, G; Qu, L; Chen, S; Xu, G; Yang, N

    2015-04-01

    Phenotypic diversity is a direct consequence resulting mainly from the impact of underlying genetic variation, and recent studies have shown that copy number variation (CNV) is emerging as an important contributor to both phenotypic variability and disease susceptibility. Herein, we performed a genome-wide CNV scan in 96 chickens from 12 diversified breeds, benefiting from the high-density Affymetrix 600 K SNP arrays. We identified a total of 231 autosomal CNV regions (CNVRs) encompassing 5.41 Mb of the chicken genome and corresponding to 0.59% of the autosomal sequence. The length of these CNVRs ranged from 2.6 to 586.2 kb with an average of 23.4 kb, including 130 gain, 93 loss and eight both gain and loss events. These CNVRs, especially deletions, had lower GC content and were located particularly in gene deserts. In particular, 102 CNVRs harbored 128 chicken genes, most of which were enriched in immune responses. We obtained 221 autosomal CNVRs after converting probe coordinates to Galgal3, and comparative analysis with previous studies illustrated that 153 of these CNVRs were regarded as novel events. Furthermore, qPCR assays were designed for 11 novel CNVRs, and eight (72.73%) were validated successfully. In this study, we demonstrated that the high-density 600 K SNP array can capture CNVs with higher efficiency and accuracy and highlighted the necessity of integrating multiple technologies and algorithms. Our findings provide a pioneering exploration of chicken CNVs based on a high-density SNP array, which contributes to a more comprehensive understanding of genetic variation in the chicken genome and is beneficial to unearthing potential CNVs underlying important traits of chickens. © 2015 Stichting International Foundation for Animal Genetics.

  1. Identification of genome-wide copy number variations among diverse pig breeds by array CGH

    Directory of Open Access Journals (Sweden)

    Li Yan

    2012-12-01

    Full Text Available Abstract Background Recent studies have shown that copy number variation (CNV in mammalian genomes contributes to phenotypic diversity, including health and disease status. In domestic pigs, CNV has been catalogued by several reports, but the extent of CNV and the phenotypic effects are far from clear. The goal of this study was to identify CNV regions (CNVRs in pigs based on array comparative genome hybridization (aCGH. Results Here a custom-made tiling oligo-nucleotide array was used with a median probe spacing of 2506 bp for screening 12 pigs including 3 Chinese native pigs (one Chinese Erhualian, one Tongcheng and one Yangxin pig, 5 European pigs (one Large White, one Pietrain, one White Duroc and two Landrace pigs, 2 synthetic pigs (Chinese new line DIV pigs and 2 crossbred pigs (Landrace × DIV pigs with a Duroc pig as the reference. Two hundred and fifty-nine CNVRs across chromosomes 1–18 and X were identified, with an average size of 65.07 kb and a median size of 98.74 kb, covering 16.85 Mb or 0.74% of the whole genome. Concerning copy number status, 93 (35.91% CNVRs were called as gains, 140 (54.05% were called as losses and the remaining 26 (10.04% were called as both gains and losses. Of all detected CNVRs, 171 (66.02% and 34 (13.13% CNVRs directly overlapped with Sus scrofa duplicated sequences and pig QTLs, respectively. The CNVRs encompassed 372 full length Ensembl transcripts. Two CNVRs identified by aCGH were validated using real-time quantitative PCR (qPCR. Conclusions Using 720 K array CGH (aCGH we described a map of porcine CNVs which facilitated the identification of structural variations for important phenotypes and the assessment of the genetic diversity of pigs.

  2. Online genetic databases informing human genome epidemiology

    Directory of Open Access Journals (Sweden)

    Higgins Julian PT

    2007-07-01

    Full Text Available Abstract Background With the advent of high throughput genotyping technology and the information available via projects such as the human genome sequencing and the HapMap project, more and more data relevant to the study of genetics and disease risk will be produced. Systematic reviews and meta-analyses of human genome epidemiology studies rely on the ability to identify relevant studies and to obtain suitable data from these studies. A first port of call for most such reviews is a search of MEDLINE. We examined whether this could be usefully supplemented by identifying databases on the World Wide Web that contain genetic epidemiological information. Methods We conducted a systematic search for online databases containing genetic epidemiological information on gene prevalence or gene-disease association. In those containing information on genetic association studies, we examined what additional information could be obtained to supplement a MEDLINE literature search. Results We identified 111 databases containing prevalence data, 67 databases specific to a single gene and only 13 that contained information on gene-disease associations. Most of the latter 13 databases were linked to MEDLINE, although five contained information that may not be available from other sources. Conclusion There is no single resource of structured data from genetic association studies covering multiple diseases, and in relation to the number of studies being conducted there is very little information specific to gene-disease association studies currently available on the World Wide Web. Until comprehensive data repositories are created and utilized regularly, new data will remain largely inaccessible to many systematic review authors and meta-analysts.

  3. Forces shaping the fastest evolving regions in the human genome

    DEFF Research Database (Denmark)

    Pollard, Katherine S; Salama, Sofie R; King, Bryan;

    2006-01-01

    Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202 gen...... contributed to accelerated evolution of the fastest evolving elements in the human genome.......Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202...... genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements...

  4. A hidden Markov model approach for determining expression from genomic tiling micro arrays

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Gardner, P. P.; Arctander, Peter;

    2006-01-01

    HMM, that adaptively models tiling data prior to predicting expression on genomic sequence. A hidden Markov model (HMM) is used to model the distributions of tiling array probe scores in expressed and non-expressed regions. The HMM is trained on sets of probes mapped to regions of annotated expression and non......]. Results can be downloaded and viewed from our web site [2]. Conclusion The value of adaptive modelling of fluorescence scores prior to categorisation into expressed and non-expressed probes is demonstrated. Our results indicate that our adaptive approach is superior to the previous analysis in terms...

  5. Genome Architecture and Its Roles in Human Copy Number Variation

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-12-01

    Full Text Available Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs, are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.

  6. Genome-wide microarray expression and genomic alterations by array-CGH analysis in neuroblastoma stem-like cells.

    Directory of Open Access Journals (Sweden)

    Raquel Ordóñez

    Full Text Available Neuroblastoma has a very diverse clinical behaviour: from spontaneous regression to a very aggressive malignant progression and resistance to chemotherapy. This heterogeneous clinical behaviour might be due to the existence of Cancer Stem Cells (CSC, a subpopulation within the tumor with stem-like cell properties: a significant proliferation capacity, a unique self-renewal capacity, and therefore, a higher ability to form new tumors. We enriched the CSC-like cell population content of two commercial neuroblastoma cell lines by the use of conditioned cell culture media for neurospheres, and compared genomic gains and losses and genome expression by array-CGH and microarray analysis, respectively (in CSC-like versus standard tumor cells culture. Despite the array-CGH did not show significant differences between standard and CSC-like in both analyzed cell lines, the microarray expression analysis highlighted some of the most relevant biological processes and molecular functions that might be responsible for the CSC-like phenotype. Some signalling pathways detected seem to be involved in self-renewal of normal tissues (Wnt, Notch, Hh and TGF-β and contribute to CSC phenotype. We focused on the aberrant activation of TGF-β and Hh signalling pathways, confirming the inhibition of repressors of TGF-β pathway, as SMAD6 and SMAD7 by RT-qPCR. The analysis of the Sonic Hedgehog pathway showed overexpression of PTCH1, GLI1 and SMO. We found overexpression of CD133 and CD15 in SIMA neurospheres, confirming that this cell line was particularly enriched in stem-like cells. This work shows a cross-talk among different pathways in neuroblastoma and its importance in CSC-like cells.

  7. Complete Genome Sequence of the Human Gut Symbiont Roseburia hominis

    DEFF Research Database (Denmark)

    Travis, Anthony J.; Kelly, Denise; Flint, Harry J;

    2015-01-01

    We report here the complete genome sequence of the human gut symbiont Roseburia hominis A2-183(T) (= DSM 16839(T) = NCIMB 14029(T)), isolated from human feces. The genome is represented by a 3,592,125-bp chromosome with 3,405 coding sequences. A number of potential functions contributing to host-...

  8. Child Development and Structural Variation in the Human Genome

    Science.gov (United States)

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  9. Child Development and Structural Variation in the Human Genome

    Science.gov (United States)

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  10. Array comparative genomic hybridization profiling analysis reveals deoxyribonucleic acid copy number variations associated with premature ovarian failure.

    Science.gov (United States)

    Aboura, Azzedine; Dupas, Claire; Tachdjian, Gérard; Portnoï, Marie-France; Bourcigaux, Nathalie; Dewailly, Didier; Frydman, René; Fauser, Bart; Ronci-Chaix, Nathalie; Donadille, Bruno; Bouchard, Philippe; Christin-Maitre, Sophie

    2009-11-01

    Premature ovarian failure (POF) is defined by amenorrhea of at least 4- to 6-month duration, occurring before 40 yr of age, with two FSH levels in the postmenopausal range. Its etiology remains unknown in more than 80% of cases. Standard karyotypes, having a resolution of 5-10 Mb, have identified critical chromosomal regions, mainly located on the long arm of the X chromosome. Array comparative genomic hybridization (a-CGH) analysis is able to detect submicroscopic chromosomal rearrangements with a higher genomic resolution. We searched for copy number variations (CNVs), using a-CGH analysis with a resolution of approximately 0.7 Mb, in a cohort of patients with POF. We prospectively included 99 women. Our study included a conventional karyotype and DNA microarrays comprising 4500 bacterial artificial chromosome clones spread on the entire genome. Thirty-one CNVs have been observed, three on the X chromosome and 28 on autosomal chromosomes. Data have been compared to control populations obtained from the Database of Genomic Variants (http://projects.tcag.ca/variation). Eight statistically significantly different CNVs have been identified in chromosomal regions 1p21.1, 5p14.3, 5q13.2, 6p25.3, 14q32.33, 16p11.2, 17q12, and Xq28. We report the first study of CNV analysis in a large cohort of Caucasian POF patients. In the eight statistically significant CNVs we report, we found five genes involved in reproduction, thus representing potential candidate genes in POF. The current study along with emerging information regarding CNVs, as well as data on their potential association with human diseases, emphasizes the importance of assessing CNVs in cohorts of POF women.

  11. Characterization of Deletions of the HBA and HBB Loci by Array Comparative Genomic Hybridization

    Science.gov (United States)

    Sabath, Daniel E.; Bender, Michael A.; Sankaran, Vijay G.; Vamos, Esther; Kentsis, Alex; Yi, Hye-Son; Greisman, Harvey A.

    2017-01-01

    Thalassemia is among the most common genetic diseases worldwide. α-Thalassemia is usually caused by deletion of one or more of the duplicated HBA genes on chromosome 16. In contrast, most β-thalassemia results from point mutations that decrease or eliminate expression of the HBB gene on chromosome 11. Deletions within the HBB locus result in thalassemia or hereditary persistence of fetal Hb. Although routine diagnostic testing cannot distinguish thalassemia deletions from point mutations, deletional hereditary persistence of fetal Hb is notable for having an elevated HbF level with a normal mean corpuscular volume. A small number of deletions accounts for most α-thalassemias; in contrast, there are no predominant HBB deletions causing β-thalassemia. To facilitate the identification and characterization of deletions of the HBA and HBB globin loci, we performed array-based comparative genomic hybridization using a custom oligonucleotide microarray. We accurately mapped the breakpoints of known and previously uncharacterized HBB deletions defining previously uncharacterized deletion breakpoints by PCR amplification and sequencing. The array also successfully identified the common HBA deletions --SEA and --FIL. In summary, comparative genomic hybridization can be used to characterize deletions of the HBA and HBB loci, allowing high-resolution characterization of novel deletions that are not readily detected by PCR-based methods. PMID:26612711

  12. Microdeletion and microduplication analysis of chinese conotruncal defects patients with targeted array comparative genomic hybridization.

    Directory of Open Access Journals (Sweden)

    Xiaohui Gong

    Full Text Available OBJECTIVE: The current study aimed to develop a reliable targeted array comparative genomic hybridization (aCGH to detect microdeletions and microduplications in congenital conotruncal defects (CTDs, especially on 22q11.2 region, and for some other chromosomal aberrations, such as 5p15-5p, 7q11.23 and 4p16.3. METHODS: Twenty-seven patients with CTDs, including 12 pulmonary atresia (PA, 10 double-outlet right ventricle (DORV, 3 transposition of great arteries (TGA, 1 tetralogy of Fallot (TOF and one ventricular septal defect (VSD, were enrolled in this study and screened for pathogenic copy number variations (CNVs, using Agilent 8 x 15K targeted aCGH. Real-time quantitative polymerase chain reaction (qPCR was performed to test the molecular results of targeted aCGH. RESULTS: Four of 27 patients (14.8% had 22q11.2 CNVs, 1 microdeletion and 3 microduplications. qPCR test confirmed the microdeletion and microduplication detected by the targeted aCGH. CONCLUSION: Chromosomal abnormalities were a well-known cause of multiple congenital anomalies (MCA. This aCGH using arrays with high-density coverage in the targeted regions can detect genomic imbalances including 22q11.2 and other 10 kinds CNVs effectively and quickly. This approach has the potential to be applied to detect aneuploidy and common microdeletion/microduplication syndromes on a single microarray.

  13. Complex Loci in human and mouse genomes.

    Science.gov (United States)

    Engström, Pär G; Suzuki, Harukazu; Ninomiya, Noriko; Akalin, Altuna; Sessa, Luca; Lavorgna, Giovanni; Brozzi, Alessandro; Luzi, Lucilla; Tan, Sin Lam; Yang, Liang; Kunarso, Galih; Ng, Edwin Lian-Chong; Batalov, Serge; Wahlestedt, Claes; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Wells, Christine; Bajic, Vladimir B; Orlando, Valerio; Reid, James F; Lenhard, Boris; Lipovich, Leonard

    2006-04-01

    Mammalian genomes harbor a larger than expected number of complex loci, in which multiple genes are coupled by shared transcribed regions in antisense orientation and/or by bidirectional core promoters. To determine the incidence, functional significance, and evolutionary context of mammalian complex loci, we identified and characterized 5,248 cis-antisense pairs, 1,638 bidirectional promoters, and 1,153 chains of multiple cis-antisense and/or bidirectionally promoted pairs from 36,606 mouse transcriptional units (TUs), along with 6,141 cis-antisense pairs, 2,113 bidirectional promoters, and 1,480 chains from 42,887 human TUs. In both human and mouse, 25% of TUs resided in cis-antisense pairs, only 17% of which were conserved between the two organisms, indicating frequent species specificity of antisense gene arrangements. A sampling approach indicated that over 40% of all TUs might actually be in cis-antisense pairs, and that only a minority of these arrangements are likely to be conserved between human and mouse. Bidirectional promoters were characterized by variable transcriptional start sites and an identifiable midpoint at which overall sequence composition changed strand and the direction of transcriptional initiation switched. In microarray data covering a wide range of mouse tissues, genes in cis-antisense and bidirectionally promoted arrangement showed a higher probability of being coordinately expressed than random pairs of genes. In a case study on homeotic loci, we observed extensive transcription of nonconserved sequences on the noncoding strand, implying that the presence rather than the sequence of these transcripts is of functional importance. Complex loci are ubiquitous, host numerous nonconserved gene structures and lineage-specific exonification events, and may have a cis-regulatory impact on the member genes.

  14. Complex Loci in human and mouse genomes.

    Directory of Open Access Journals (Sweden)

    Pär G Engström

    2006-04-01

    Full Text Available Mammalian genomes harbor a larger than expected number of complex loci, in which multiple genes are coupled by shared transcribed regions in antisense orientation and/or by bidirectional core promoters. To determine the incidence, functional significance, and evolutionary context of mammalian complex loci, we identified and characterized 5,248 cis-antisense pairs, 1,638 bidirectional promoters, and 1,153 chains of multiple cis-antisense and/or bidirectionally promoted pairs from 36,606 mouse transcriptional units (TUs, along with 6,141 cis-antisense pairs, 2,113 bidirectional promoters, and 1,480 chains from 42,887 human TUs. In both human and mouse, 25% of TUs resided in cis-antisense pairs, only 17% of which were conserved between the two organisms, indicating frequent species specificity of antisense gene arrangements. A sampling approach indicated that over 40% of all TUs might actually be in cis-antisense pairs, and that only a minority of these arrangements are likely to be conserved between human and mouse. Bidirectional promoters were characterized by variable transcriptional start sites and an identifiable midpoint at which overall sequence composition changed strand and the direction of transcriptional initiation switched. In microarray data covering a wide range of mouse tissues, genes in cis-antisense and bidirectionally promoted arrangement showed a higher probability of being coordinately expressed than random pairs of genes. In a case study on homeotic loci, we observed extensive transcription of nonconserved sequences on the noncoding strand, implying that the presence rather than the sequence of these transcripts is of functional importance. Complex loci are ubiquitous, host numerous nonconserved gene structures and lineage-specific exonification events, and may have a cis-regulatory impact on the member genes.

  15. Genomic shotgun array: a procedure linking large-scale DNA sequencing with regional transcript mapping.

    Science.gov (United States)

    Li, Ling-Hui; Li, Jian-Chiuan; Lin, Yung-Feng; Lin, Chung-Yen; Chen, Chung-Yung; Tsai, Shih-Feng

    2004-02-11

    To facilitate transcript mapping and to investigate alterations in genomic structure and gene expression in a defined genomic target, we developed a novel microarray-based method to detect transcriptional activity of the human chromosome 4q22-24 region. Loss of heterozygosity of human 4q22-24 is frequently observed in hepatocellular carcinoma (HCC). One hundred and eighteen well-characterized genes have been identified from this region. We took previously sequenced shotgun subclones as templates to amplify overlapping sequences for the genomic segment and constructed a chromosome-region-specific microarray. Using genomic DNA fragments as probes, we detected transcriptional activity from within this region among five different tissues. The hybridization results indicate that there are new transcripts that have not yet been identified by other methods. The existence of new transcripts encoded by genes in this region was confirmed by PCR cloning or cDNA library screening. The procedure reported here allows coupling of shotgun sequencing with transcript mapping and, potentially, detailed analysis of gene expression and chromosomal copy of the genomic sequence for the putative HCC tumor suppressor gene(s) in the 4q candidate region.

  16. Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties

    Directory of Open Access Journals (Sweden)

    Penttilä Merja

    2010-07-01

    Full Text Available Abstract Background Trichoderma reesei is the main industrial producer of cellulases and hemicellulases that are used to depolymerize biomass in a variety of biotechnical applications. Many of the production strains currently in use have been generated by classical mutagenesis. In this study we characterized genomic alterations in high-producing mutants of T. reesei by high-resolution array comparative genomic hybridization (aCGH. Our aim was to obtain genome-wide information which could be utilized for better understanding of the mechanisms underlying efficient cellulase production, and would enable targeted genetic engineering for improved production of proteins in general. Results We carried out an aCGH analysis of four high-producing strains (QM9123, QM9414, NG14 and Rut-C30 using the natural isolate QM6a as a reference. In QM9123 and QM9414 we detected a total of 44 previously undocumented mutation sites including deletions, chromosomal translocation breakpoints and single nucleotide mutations. In NG14 and Rut-C30 we detected 126 mutations of which 17 were new mutations not documented previously. Among these new mutations are the first chromosomal translocation breakpoints identified in NG14 and Rut-C30. We studied the effects of two deletions identified in Rut-C30 (a deletion of 85 kb in the scaffold 15 and a deletion in a gene encoding a transcription factor on cellulase production by constructing knock-out strains in the QM6a background. Neither the 85 kb deletion nor the deletion of the transcription factor affected cellulase production. Conclusions aCGH analysis identified dozens of mutations in each strain analyzed. The resolution was at the level of single nucleotide mutation. High-density aCGH is a powerful tool for genome-wide analysis of organisms with small genomes e.g. fungi, especially in studies where a large set of interesting strains is analyzed.

  17. Evolutionary genomic remodelling of the human 4q subtelomere (4q35.2

    Directory of Open Access Journals (Sweden)

    Riva Paola

    2007-03-01

    Full Text Available Abstract Background In order to obtain insights into the functionality of the human 4q35.2 domain harbouring the facioscapulohumeral muscular dystrophy (FSHD locus, we investigated in African apes genomic and chromatin organisations, and the nuclear topology of orthologous regions. Results A basic block consisting of short D4Z4 arrays (10–15 repeats, 4q35.2 specific sequences, and approximately 35 kb of interspersed repeats from different LINE subfamilies was repeated at least twice in the gorilla 4qter. This genomic organisation has undergone evolutionary remodelling, leading to the single representation of both the D4Z4 array and LINE block in chimpanzee, and the loss of the LINE block in humans. The genomic remodelling has had an impact on 4qter chromatin organisation, but not its interphase nuclear topology. In comparison with humans, African apes show very low or undetectable levels of FRG1 and FRG2 histone 4 acetylation and gene transcription, although histone deacetylase inhibition restores gene transcription to levels comparable with those of human cells, thus indicating that the 4qter region is capable of acquiring a more open chromatin structure. Conversely, as in humans, the 4qter region in African apes has a very peripheral nuclear localisation. Conclusion The 4q subtelomere has undergone substantial genomic changes during evolution that have had an impact on chromatin condensation and the region's transcriptional regulation. Consequently, the 4qter genes in African apes and humans seem to be subjected to a different strategy of regulation in which LINE and D4Z4 sequences may play a pivotal role. However, the effect of peripheral nuclear anchoring of 4qter on these regulation mechanisms is still unclear. The observed differences in the regulation of 4qter gene expression between African apes and humans suggest that the human 4q35.2 locus has acquired a novel functional relevance.

  18. Genomic profiling of plasmablastic lymphoma using array comparative genomic hybridization (aCGH: revealing significant overlapping genomic lesions with diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Lu Xin-Yan

    2009-11-01

    Full Text Available Abstract Background Plasmablastic lymphoma (PL is a subtype of diffuse large B-cell lymphoma (DLBCL. Studies have suggested that tumors with PL morphology represent a group of neoplasms with clinopathologic characteristics corresponding to different entities including extramedullary plasmablastic tumors associated with plasma cell myeloma (PCM. The goal of the current study was to evaluate the genetic similarities and differences among PL, DLBCL (AIDS-related and non AIDS-related and PCM using array-based comparative genomic hybridization. Results Examination of genomic data in PL revealed that the most frequent segmental gain (> 40% include: 1p36.11-1p36.33, 1p34.1-1p36.13, 1q21.1-1q23.1, 7q11.2-7q11.23, 11q12-11q13.2 and 22q12.2-22q13.3. This correlated with segmental gains occurring in high frequency in DLBCL (AIDS-related and non AIDS-related cases. There were some segmental gains and some segmental loss that occurred in PL but not in the other types of lymphoma suggesting that these foci may contain genes responsible for the differentiation of this lymphoma. Additionally, some segmental gains and some segmental loss occurred only in PL and AIDS associated DLBCL suggesting that these foci may be associated with HIV infection. Furthermore, some segmental gains and some segmental loss occurred only in PL and PCM suggesting that these lesions may be related to plasmacytic differentiation. Conclusion To the best of our knowledge, the current study represents the first genomic exploration of PL. The genomic aberration pattern of PL appears to be more similar to that of DLBCL (AIDS-related or non AIDS-related than to PCM. Our findings suggest that PL may remain best classified as a subtype of DLBCL at least at the genome level.

  19. The Human Genome Project, and recent advances in personalized genomics

    Directory of Open Access Journals (Sweden)

    Wilson BJ

    2015-02-01

    Full Text Available Brenda J Wilson, Stuart G Nicholls Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada Abstract: The language of “personalized medicine” and “personal genomics” has now entered the common lexicon. The idea of personalized medicine is the integration of genomic risk assessment alongside other clinical investigations. Consistent with this approach, testing is delivered by health care professionals who are not medical geneticists, and where results represent risks, as opposed to clinical diagnosis of disease, to be interpreted alongside the entirety of a patient's health and medical data. In this review we consider the evidence concerning the application of such personalized genomics within the context of population screening, and potential implications that arise from this. We highlight two general approaches which illustrate potential uses of genomic information in screening. The first is a narrowly targeted approach in which genetic profiling is linked with standard population-based screening for diseases; the second is a broader targeting of variants associated with multiple single gene disorders, performed opportunistically on patients being investigated for unrelated conditions. In doing so we consider the organization and evaluation of tests and services, the challenge of interpretation with less targeted testing, professional confidence, barriers in practice, and education needs. We conclude by discussing several issues pertinent to health policy, namely: avoiding the conflation of genetics with biological determinism, resisting the “technological imperative”, due consideration of the organization of screening services, the need for professional education, as well as informed decision making and public understanding. Keywords: genomics, personalized medicine, ethics, population health, evidence, education

  20. Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results.

    Science.gov (United States)

    Kang, Sung-Hae L; Shaw, Chad; Ou, Zhishuo; Eng, Patricia A; Cooper, M Lance; Pursley, Amber N; Sahoo, Trilochan; Bacino, Carlos A; Chinault, A Craig; Stankiewicz, Pawel; Patel, Ankita; Lupski, James R; Cheung, Sau Wai

    2010-05-01

    Insertional translocations (ITs) are rare events that require at least three breaks in the chromosomes involved and thus qualify as complex chromosomal rearrangements (CCR). In the current study, we identified 40 ITs from approximately 18,000 clinical cases (1:500) using array-comparative genomic hybridization (aCGH) in conjunction with fluorescence in situ hybridization (FISH) confirmation of the aCGH findings, and parental follow-up studies. Both submicroscopic and microscopically visible IT events were detected. They were divided into three major categories: (1) simple intrachromosomal and interchromosomal IT resulting in pure segmental trisomy, (2) complex IT involving more than one abnormality, (3) deletion inherited from a parent with a balanced IT resulting in pure segmental monosomy. Of the cases in which follow-up parental studies were available, over half showed inheritance from an apparently unaffected parent carrying the same unbalanced rearrangement detected in the propositi, thus decreasing the likelihood that these IT events are clinically relevant. Nevertheless, we identified six cases in which small submicroscopic events were detected involving known disease-associated genes/genomic segments and are likely to be pathogenic. We recommend that copy number gains detected by clinical aCGH analysis should be confirmed using FISH analysis whenever possible in order to determine the physical location of the duplicated segment. We hypothesize that the increased use of aCGH in the clinic will demonstrate that IT occurs more frequently than previously considered but can identify genomic rearrangements with unclear clinical significance.

  1. Genome Fusion Detection: a novel method to detect fusion genes from SNP-array data.

    Science.gov (United States)

    Thieme, Sebastian; Groth, Philip

    2013-03-15

    Fusion genes result from genomic rearrangements, such as deletions, amplifications and translocations. Such rearrangements can also frequently be observed in cancer and have been postulated as driving event in cancer development. to detect them, one needs to analyze the transition region of two segments with different copy number, the location where fusions are known to occur. Finding fusion genes is essential to understanding cancer development and may lead to new therapeutic approaches. Here we present a novel method, the Genomic Fusion Detection algorithm, to predict fusion genes on a genomic level based on SNP-array data. This algorithm detects genes at the transition region of segments with copy number variation. With the application of defined constraints, certain properties of the detected genes are evaluated to predict whether they may be fused. We evaluated our prediction by calculating the observed frequency of known fusions in both primary cancers and cell lines. We tested a set of cell lines positive for the BCR-ABL1 fusion and prostate cancers positive for the TMPRSS2-ERG fusion. We could detect the fusions in all positive cell lines, but not in the negative controls.

  2. Minimal absent words in four human genome assemblies.

    Directory of Open Access Journals (Sweden)

    Sara P Garcia

    Full Text Available Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we aim to contribute to the catalogue of human genomic variation by investigating the variation in number and content of minimal absent words within a species, using four human genome assemblies. We compare the reference human genome GRCh37 assembly, the HuRef assembly of the genome of Craig Venter, the NA12878 assembly from cell line GM12878, and the YH assembly of the genome of a Han Chinese individual. We find the variation in number and content of minimal absent words between assemblies more significant for large and very large minimal absent words, where the biases of sequencing and assembly methodologies become more pronounced. Moreover, we find generally greater similarity between the human genome assemblies sequenced with capillary-based technologies (GRCh37 and HuRef than between the human genome assemblies sequenced with massively parallel technologies (NA12878 and YH. Finally, as expected, we find the overall variation in number and content of minimal absent words within a species to be generally smaller than the variation between species.

  3. Minimal absent words in four human genome assemblies.

    Science.gov (United States)

    Garcia, Sara P; Pinho, Armando J

    2011-01-01

    Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we aim to contribute to the catalogue of human genomic variation by investigating the variation in number and content of minimal absent words within a species, using four human genome assemblies. We compare the reference human genome GRCh37 assembly, the HuRef assembly of the genome of Craig Venter, the NA12878 assembly from cell line GM12878, and the YH assembly of the genome of a Han Chinese individual. We find the variation in number and content of minimal absent words between assemblies more significant for large and very large minimal absent words, where the biases of sequencing and assembly methodologies become more pronounced. Moreover, we find generally greater similarity between the human genome assemblies sequenced with capillary-based technologies (GRCh37 and HuRef) than between the human genome assemblies sequenced with massively parallel technologies (NA12878 and YH). Finally, as expected, we find the overall variation in number and content of minimal absent words within a species to be generally smaller than the variation between species.

  4. A fast and accurate method to detect allelic genomic imbalances underlying mosaic rearrangements using SNP array data

    Directory of Open Access Journals (Sweden)

    Pique-Regi Roger

    2011-05-01

    Full Text Available Abstract Background Mosaicism for copy number and copy neutral chromosomal rearrangements has been recently identified as a relatively common source of genetic variation in the normal population. However its prevalence is poorly defined since it has been only studied systematically in one large-scale study and by using non optimal ad-hoc SNP array data analysis tools, uncovering rather large alterations (> 1 Mb and affecting a high proportion of cells. Here we propose a novel methodology, Mosaic Alteration Detection-MAD, by providing a software tool that is effective for capturing previously described alterations as wells as new variants that are smaller in size and/or affecting a low percentage of cells. Results The developed method identified all previously known mosaic abnormalities reported in SNP array data obtained from controls, bladder cancer and HapMap individuals. In addition MAD tool was able to detect new mosaic variants not reported before that were smaller in size and with lower percentage of cells affected. The performance of the tool was analysed by studying simulated data for different scenarios. Our method showed high sensitivity and specificity for all assessed scenarios. Conclusions The tool presented here has the ability to identify mosaic abnormalities with high sensitivity and specificity. Our results confirm the lack of sensitivity of former methods by identifying new mosaic variants not reported in previously utilised datasets. Our work suggests that the prevalence of mosaic alterations could be higher than initially thought. The use of appropriate SNP array data analysis methods would help in defining the human genome mosaic map.

  5. Genetic variation and the de novo assembly of human genomes.

    Science.gov (United States)

    Chaisson, Mark J P; Wilson, Richard K; Eichler, Evan E

    2015-11-01

    The discovery of genetic variation and the assembly of genome sequences are both inextricably linked to advances in DNA-sequencing technology. Short-read massively parallel sequencing has revolutionized our ability to discover genetic variation but is insufficient to generate high-quality genome assemblies or resolve most structural variation. Full resolution of variation is only guaranteed by complete de novo assembly of a genome. Here, we review approaches to genome assembly, the nature of gaps or missing sequences, and biases in the assembly process. We describe the challenges of generating a complete de novo genome assembly using current technologies and the impact that being able to perfectly sequence the genome would have on understanding human disease and evolution. Finally, we summarize recent technological advances that improve both contiguity and accuracy and emphasize the importance of complete de novo assembly as opposed to read mapping as the primary means to understanding the full range of human genetic variation.

  6. Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome.

    Science.gov (United States)

    Hastie, Alex R; Dong, Lingli; Smith, Alexis; Finklestein, Jeff; Lam, Ernest T; Huo, Naxin; Cao, Han; Kwok, Pui-Yan; Deal, Karin R; Dvorak, Jan; Luo, Ming-Cheng; Gu, Yong; Xiao, Ming

    2013-01-01

    Next-generation sequencing (NGS) technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences and to facilitate unambiguous assembly. Plant genomes are notorious for containing high quantities of repetitive elements, which combined with huge genome sizes, makes accurate assembly of these large and complex genomes intractable thus far. Using two-color genome mapping of tiling bacterial artificial chromosomes (BAC) clones on nanochannel arrays, we completed high-confidence assembly of a 2.1-Mb, highly repetitive region in the large and complex genome of Aegilops tauschii, the D-genome donor of hexaploid wheat (Triticum aestivum). Genome mapping is based on direct visualization of sequence motifs on single DNA molecules hundreds of kilobases in length. With the genome map as a scaffold, we anchored unplaced sequence contigs, validated the initial draft assembly, and resolved instances of misassembly, some involving contigs assembly from 75% to 95% complete.

  7. Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome.

    Directory of Open Access Journals (Sweden)

    Alex R Hastie

    Full Text Available Next-generation sequencing (NGS technologies have enabled high-throughput and low-cost generation of sequence data; however, de novo genome assembly remains a great challenge, particularly for large genomes. NGS short reads are often insufficient to create large contigs that span repeat sequences and to facilitate unambiguous assembly. Plant genomes are notorious for containing high quantities of repetitive elements, which combined with huge genome sizes, makes accurate assembly of these large and complex genomes intractable thus far. Using two-color genome mapping of tiling bacterial artificial chromosomes (BAC clones on nanochannel arrays, we completed high-confidence assembly of a 2.1-Mb, highly repetitive region in the large and complex genome of Aegilops tauschii, the D-genome donor of hexaploid wheat (Triticum aestivum. Genome mapping is based on direct visualization of sequence motifs on single DNA molecules hundreds of kilobases in length. With the genome map as a scaffold, we anchored unplaced sequence contigs, validated the initial draft assembly, and resolved instances of misassembly, some involving contigs <2 kb long, to dramatically improve the assembly from 75% to 95% complete.

  8. Genome-Wide Analysis of Human MicroRNA Stability

    Directory of Open Access Journals (Sweden)

    Yang Li

    2013-01-01

    Full Text Available Increasing studies have shown that microRNA (miRNA stability plays important roles in physiology. However, the global picture of miRNA stability remains largely unknown. Here, we had analyzed genome-wide miRNA stability across 10 diverse cell types using miRNA arrays. We found that miRNA stability shows high dynamics and diversity both within individual cells and across cell types. Strikingly, we observed a negative correlation between miRNA stability and miRNA expression level, which is different from current findings on other biological molecules such as proteins and mRNAs that show positive and not negative correlations between stability and expression level. This finding indicates that miRNA has a distinct action mode, which we called “rapid production, rapid turnover; slow production, slow turnover.” This mode further suggests that high expression miRNAs normally degrade fast and may endow the cell with special properties that facilitate cellular status-transition. Moreover, we revealed that the stability of miRNAs is affected by cohorts of factors that include miRNA targets, transcription factors, nucleotide content, evolution, associated disease, and environmental factors. Together, our results provided an extensive description of the global landscape, dynamics, and distinct mode of human miRNA stability, which provide help in investigating their functions in physiology and pathophysiology.

  9. Ancient Human Genome Sequence of an Extinct Palaeo-Eskimo

    DEFF Research Database (Denmark)

    Rasmussen, Morten; Li, Yingrui; Lindgreen, Stinus;

    2010-01-01

    We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome, an...... for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit....

  10. Recent and ongoing selection in the human genome

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Hellmann, Ines; Hubisz, Melissa

    2007-01-01

    The recent availability of genome-scale genotyping data has led to the identification of regions of the human genome that seem to have been targeted by selection. These findings have increased our understanding of the evolutionary forces that affect the human genome, have augmented our knowledge...... of gene function and promise to increase our understanding of the genetic basis of disease. However, inferences of selection are challenged by several confounding factors, especially the complex demographic history of human populations, and concordance between studies is variable. Although such studies...

  11. Population genetic inference from personal genome data: impact of ancestry and admixture on human genomic variation.

    Science.gov (United States)

    Kidd, Jeffrey M; Gravel, Simon; Byrnes, Jake; Moreno-Estrada, Andres; Musharoff, Shaila; Bryc, Katarzyna; Degenhardt, Jeremiah D; Brisbin, Abra; Sheth, Vrunda; Chen, Rong; McLaughlin, Stephen F; Peckham, Heather E; Omberg, Larsson; Bormann Chung, Christina A; Stanley, Sarah; Pearlstein, Kevin; Levandowsky, Elizabeth; Acevedo-Acevedo, Suehelay; Auton, Adam; Keinan, Alon; Acuña-Alonzo, Victor; Barquera-Lozano, Rodrigo; Canizales-Quinteros, Samuel; Eng, Celeste; Burchard, Esteban G; Russell, Archie; Reynolds, Andy; Clark, Andrew G; Reese, Martin G; Lincoln, Stephen E; Butte, Atul J; De La Vega, Francisco M; Bustamante, Carlos D

    2012-10-05

    Full sequencing of individual human genomes has greatly expanded our understanding of human genetic variation and population history. Here, we present a systematic analysis of 50 human genomes from 11 diverse global populations sequenced at high coverage. Our sample includes 12 individuals who have admixed ancestry and who have varying degrees of recent (within the last 500 years) African, Native American, and European ancestry. We found over 21 million single-nucleotide variants that contribute to a 1.75-fold range in nucleotide heterozygosity across diverse human genomes. This heterozygosity ranged from a high of one heterozygous site per kilobase in west African genomes to a low of 0.57 heterozygous sites per kilobase in segments inferred to have diploid Native American ancestry from the genomes of Mexican and Puerto Rican individuals. We show evidence of all three continental ancestries in the genomes of Mexican, Puerto Rican, and African American populations, and the genome-wide statistics are highly consistent across individuals from a population once ancestry proportions have been accounted for. Using a generalized linear model, we identified subtle variations across populations in the proportion of neutral versus deleterious variation and found that genome-wide statistics vary in admixed populations even once ancestry proportions have been factored in. We further infer that multiple periods of gene flow shaped the diversity of admixed populations in the Americas-70% of the European ancestry in today's African Americans dates back to European gene flow happening only 7-8 generations ago.

  12. Identification of genomic aberrations associated with disease transformation by means of high-resolution SNP array analysis in patients with myeloproliferative neoplasm.

    Science.gov (United States)

    Rumi, Elisa; Harutyunyan, Ashot; Elena, Chiara; Pietra, Daniela; Klampfl, Thorsten; Bagienski, Klaudia; Berg, Tiina; Casetti, Ilaria; Pascutto, Cristiana; Passamonti, Francesco; Kralovics, Robert; Cazzola, Mario

    2011-12-01

    Myeloproliferative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). These disorders may undergo phenotypic shifts, and may specifically evolve into secondary myelofibrosis (MF) or acute myeloid leukemia (AML). We studied genomic changes associated with these transformations in 29 patients who had serial samples collected in different phases of disease. Genomic DNA from granulocytes, i.e., the myeloproliferative genome, was processed and hybridized to genome-wide human SNP 6.0 arrays. Most patients in chronic phase had chromosomal regions with uniparental disomy (UPD) and/or copy number changes. Disease progression to secondary MF or AML was associated with the acquisition of additional chromosomal aberrations in granulocytes (P = 0.002). A close relationship was observed between aberrations of chromosome 9p (UPD and/or gain) and progression from PV to post-PV MF (P = 0.002). The acquisition of one or more aberrations involving chromosome 5, 7, or 17p was specifically associated with progression to AML (OR 5.9, 95% CI 1.2-27.7, P = 0.006), and significantly affected overall survival (HR 18, 95% CI 1.9-164, P = 0.01). These observations indicate that disease progression from chronic-phase MPN to secondary MF or AML is associated with specific chromosomal aberrations that can be detected by means of high-resolution SNP array analysis of granulocyte DNA. Copyright © 2011 Wiley-Liss, Inc.

  13. Dissecting the human microbiome with single-cell genomics.

    Science.gov (United States)

    Tolonen, Andrew C; Xavier, Ramnik J

    2017-06-14

    Recent advances in genome sequencing of single microbial cells enable the assignment of functional roles to members of the human microbiome that cannot currently be cultured. This approach can reveal the genomic basis of phenotypic variation between closely related strains and can be applied to the targeted study of immunogenic bacteria in disease.

  14. Genome Editing: A New Approach to Human Therapeutics.

    Science.gov (United States)

    Porteus, Matthew

    2016-01-01

    The ability to manipulate the genome with precise spatial and nucleotide resolution (genome editing) has been a powerful research tool. In the past decade, the tools and expertise for using genome editing in human somatic cells and pluripotent cells have increased to such an extent that the approach is now being developed widely as a strategy to treat human disease. The fundamental process depends on creating a site-specific DNA double-strand break (DSB) in the genome and then allowing the cell's endogenous DSB repair machinery to fix the break such that precise nucleotide changes are made to the DNA sequence. With the development and discovery of several different nuclease platforms and increasing knowledge of the parameters affecting different genome editing outcomes, genome editing frequencies now reach therapeutic relevance for a wide variety of diseases. Moreover, there is a series of complementary approaches to assessing the safety and toxicity of any genome editing process, irrespective of the underlying nuclease used. Finally, the development of genome editing has raised the issue of whether it should be used to engineer the human germline. Although such an approach could clearly prevent the birth of people with devastating and destructive genetic diseases, questions remain about whether human society is morally responsible enough to use this tool.

  15. The complete mitochondrial genome of human parasitic roundworm, Ascaris lumbricoides.

    Science.gov (United States)

    Park, Yung Chul; Kim, Won; Park, Joong-Ki

    2011-08-01

    The genome length of the Ascaris lumbricoides, human parasitic roundworm, is 14,281 bp with a nucleotide composition of 22.1% A, 49.8% T, 7.8% C, and 20.3% G. The genome consists of 12 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and 1 control region.

  16. Development of a maize 55 K SNP array with improved genome coverage for molecular breeding.

    Science.gov (United States)

    Xu, Cheng; Ren, Yonghong; Jian, Yinqiao; Guo, Zifeng; Zhang, Yan; Xie, Chuanxiao; Fu, Junjie; Wang, Hongwu; Wang, Guoying; Xu, Yunbi; Li, Ping; Zou, Cheng

    2017-01-01

    With the decrease of cost in genotyping, single nucleotide polymorphisms (SNPs) have gained wide acceptance because of their abundance, even distribution throughout the maize (Zea mays L.) genome, and suitability for high-throughput analysis. In this study, a maize 55 K SNP array with improved genome coverage for molecular breeding was developed on an Affymetrix® Axiom® platform with 55,229 SNPs evenly distributed across the genome, including 22,278 exonic and 19,425 intronic SNPs. This array contains 451 markers that are associated with 368 known genes and two traits of agronomic importance (drought tolerance and kernel oil biosynthesis), 4067 markers that are not covered by the current reference genome, 734 markers that are differentiated significantly between heterotic groups, and 132 markers that are tags for important transgenic events. To evaluate the performance of 55 K array, we genotyped 593 inbred lines with diverse genetic backgrounds. Compared with the widely-used Illumina® MaizeSNP50 BeadChip, our 55 K array has lower missing and heterozygous rates and more SNPs with lower minor allele frequency (MAF) in tropical maize, facilitating in-depth dissection of rare but possibly valuable variation in tropical germplasm resources. Population structure and genetic diversity analysis revealed that this 55 K array is also quite efficient in resolving heterotic groups and performing fine fingerprinting of germplasm. Therefore, this maize 55 K SNP array is a potentially powerful tool for germplasm evaluation (including germplasm fingerprinting, genetic diversity analysis, and heterotic grouping), marker-assisted breeding, and primary quantitative trait loci (QTL) mapping and genome-wide association study (GWAS) for both tropical and temperate maize.

  17. Validation and implementation of array comparative genomic hybridisation as a first line test in place of postnatal karyotyping for genome imbalance

    Directory of Open Access Journals (Sweden)

    Docherty Zoe

    2010-04-01

    Full Text Available Abstract Background Several studies have demonstrated that array comparative genomic hybridisation (CGH for genome-wide imbalance provides a substantial increase in diagnostic yield for patients traditionally referred for karyotyping by G-banded chromosome analysis. The purpose of this study was to demonstrate the feasibility of and strategies for, the use of array CGH in place of karyotyping for genome imbalance, and to report on the results of the implementation of this approach. Results Following a validation period, an oligoarray platform was chosen. In order to minimise costs and increase efficiency, a patient/patient hybridisation strategy was used, and analysis criteria were set to optimise detection of pathogenic imbalance. A customised database application with direct links to a number of online resources was developed to allow efficient management and tracking of patient samples and facilitate interpretation of results. Following introduction into our routine diagnostic service for patients with suspected genome imbalance, array CGH as a follow-on test for patients with normal karyotypes (n = 1245 and as a first-line test (n = 1169 gave imbalance detection rates of 26% and 22% respectively (excluding common, benign variants. At least 89% of the abnormalities detected by first line testing would not have been detected by standard karyotype analysis. The average reporting time for first-line tests was 25 days from receipt of sample. Conclusions Array CGH can be used in a diagnostic service setting in place of G-banded chromosome analysis, providing a more comprehensive and objective test for patients with suspected genome imbalance. The increase in consumable costs can be minimised by employing appropriate hybridisation strategies; the use of robotics and a customised database application to process multiple samples reduces staffing costs and streamlines analysis, interpretation and reporting of results. Array CGH provides a

  18. Predicting Tissue-Specific Enhancers in the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  19. Comprehensive genomic characterization defines human glioblastoma genes and core pathways

    NARCIS (Netherlands)

    Chin, L.; Meyerson, M.; Aldape, K.; Bigner, D.; Mikkelsen, T.; VandenBerg, S.; Kahn, A.; Penny, R.; Gerhard, D. S.; Getz, G.; Brennan, C.; Taylor, B. S.; Winckler, W.; Park, P.; Ladanyi, M.; Hoadley, K. A.; Verhaak, R. G. W.; Hayes, D. N.; Spellman, Paul T.; Absher, D.; Weir, B. A.; Ding, L.; Wheeler, D.; Lawrence, M. S.; Cibulskis, K.; Mardis, E.; Zhang, Jinghui; Wilson, R. K.; Donehower, L.; Wheeler, D. A.; Purdom, E.; Wallis, J.; Laird, P. W.; Herman, J. G.; Schuebel, K. E.; Weisenberger, D. J.; Baylin, S. B.; Schultz, N.; Yao, Jun; Wiedemeyer, R.; Weinstein, J.; Sander, C.; Gibbs, R. A.; Gray, J.; Kucherlapati, R.; Lander, E. S.; Myers, R. M.; Perou, C. M.; McLendon, Roger; Friedman, Allan; Van Meir, Erwin G; Brat, Daniel J; Mastrogianakis, Gena Marie; Olson, Jeffrey J; Lehman, Norman; Yung, W. K. Alfred; Bogler, Oliver; Berger, Mitchel; Prados, Michael; Muzny, Donna; Morgan, Margaret; Scherer, Steve; Sabo, Aniko; Nazareth, Lynn; Lewis, Lora; Hall, Otis; Zhu, Yiming; Ren, Yanru; Alvi, Omar; Yao, Jiqiang; Hawes, Alicia; Jhangiani, Shalini; Fowler, Gerald; San Lucas, Anthony; Kovar, Christie; Cree, Andrew; Dinh, Huyen; Santibanez, Jireh; Joshi, Vandita; Gonzalez-Garay, Manuel L.; Miller, Christopher A.; Milosavljevic, Aleksandar; Sougnez, Carrie; Fennell, Tim; Mahan, Scott; Wilkinson, Jane; Ziaugra, Liuda; Onofrio, Robert; Bloom, Toby; Nicol, Rob; Ardlie, Kristin; Baldwin, Jennifer; Gabriel, Stacey; Fulton, Robert S.; McLellan, Michael D.; Larson, David E.; Shi, Xiaoqi; Abbott, Rachel; Fulton, Lucinda; Chen, Ken; Koboldt, Daniel C.; Wendl, Michael C.; Meyer, Rick; Tang, Yuzhu; Lin, Ling; Osborne, John R.; Dunford-Shore, Brian H.; Miner, Tracie L.; Delehaunty, Kim; Markovic, Chris; Swift, Gary; Courtney, William; Pohl, Craig; Abbott, Scott; Hawkins, Amy; Leong, Shin; Haipek, Carrie; Schmidt, Heather; Wiechert, Maddy; Vickery, Tammi; Scott, Sacha; Dooling, David J.; Chinwalla, Asif; Weinstock, George M.; O'Kelly, Michael; Robinson, Jim; Alexe, Gabriele; Beroukhim, Rameen; Carter, Scott; Chiang, Derek; Gould, Josh; Gupta, Supriya; Korn, Josh; Mermel, Craig; Mesirov, Jill; Monti, Stefano; Nguyen, Huy; Parkin, Melissa; Reich, Michael; Stransky, Nicolas; Garraway, Levi; Golub, Todd; Protopopov, Alexei; Perna, Ilana; Aronson, Sandy; Sathiamoorthy, Narayan; Ren, Georgia; Kim, Hyunsoo; Kong, Sek Won; Xiao, Yonghong; Kohane, Isaac S.; Seidman, Jon; Cope, Leslie; Pan, Fei; Van Den Berg, David; Van Neste, Leander; Yi, Joo Mi; Li, Jun Z.; Southwick, Audrey; Brady, Shannon; Aggarwal, Amita; Chung, Tisha; Sherlock, Gavin; Brooks, James D.; Jakkula, Lakshmi R.; Lapuk, Anna V.; Marr, Henry; Dorton, Shannon; Choi, Yoon Gi; Han, Ju; Ray, Amrita; Wang, Victoria; Durinck, Steffen; Robinson, Mark; Wang, Nicholas J.; Vranizan, Karen; Peng, Vivian; Van Name, Eric; Fontenay, Gerald V.; Ngai, John; Conboy, John G.; Parvin, Bahram; Feiler, Heidi S.; Speed, Terence P.; Socci, Nicholas D.; Olshen, Adam; Lash, Alex; Reva, Boris; Antipin, Yevgeniy; Stukalov, Alexey; Gross, Benjamin; Cerami, Ethan; Wang, Wei Qing; Qin, Li-Xuan; Seshan, Venkatraman E.; Villafania, Liliana; Cavatore, Magali; Borsu, Laetitia; Viale, Agnes; Gerald, William; Topal, Michael D.; Qi, Yuan; Balu, Sai; Shi, Yan; Wu, George; Bittner, Michael; Shelton, Troy; Lenkiewicz, Elizabeth; Morris, Scott; Beasley, Debbie; Sanders, Sheri; Sfeir, Robert; Chen, Jessica; Nassau, David; Feng, Larry; Hickey, Erin; Schaefer, Carl; Madhavan, Subha; Buetow, Ken; Barker, Anna; Vockley, Joseph; Compton, Carolyn; Vaught, Jim; Fielding, Peter; Collins, Francis; Good, Peter; Guyer, Mark; Ozenberger, Brad; Peterson, Jane; Thomson, Elizabeth

    2008-01-01

    Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas ( TCGA) pilot project aims to assess the value of large- scale multi- dimensional analysis of these molecular

  20. Comprehensive genomic characterization defines human glioblastoma genes and core pathways

    NARCIS (Netherlands)

    Chin, L.; Meyerson, M.; Aldape, K.; Bigner, D.; Mikkelsen, T.; VandenBerg, S.; Kahn, A.; Penny, R.; Gerhard, D. S.; Getz, G.; Brennan, C.; Taylor, B. S.; Winckler, W.; Park, P.; Ladanyi, M.; Hoadley, K. A.; Verhaak, R. G. W.; Hayes, D. N.; Spellman, Paul T.; Absher, D.; Weir, B. A.; Ding, L.; Wheeler, D.; Lawrence, M. S.; Cibulskis, K.; Mardis, E.; Zhang, Jinghui; Wilson, R. K.; Donehower, L.; Wheeler, D. A.; Purdom, E.; Wallis, J.; Laird, P. W.; Herman, J. G.; Schuebel, K. E.; Weisenberger, D. J.; Baylin, S. B.; Schultz, N.; Yao, Jun; Wiedemeyer, R.; Weinstein, J.; Sander, C.; Gibbs, R. A.; Gray, J.; Kucherlapati, R.; Lander, E. S.; Myers, R. M.; Perou, C. M.; McLendon, Roger; Friedman, Allan; Van Meir, Erwin G; Brat, Daniel J; Mastrogianakis, Gena Marie; Olson, Jeffrey J; Lehman, Norman; Yung, W. K. Alfred; Bogler, Oliver; Berger, Mitchel; Prados, Michael; Muzny, Donna; Morgan, Margaret; Scherer, Steve; Sabo, Aniko; Nazareth, Lynn; Lewis, Lora; Hall, Otis; Zhu, Yiming; Ren, Yanru; Alvi, Omar; Yao, Jiqiang; Hawes, Alicia; Jhangiani, Shalini; Fowler, Gerald; San Lucas, Anthony; Kovar, Christie; Cree, Andrew; Dinh, Huyen; Santibanez, Jireh; Joshi, Vandita; Gonzalez-Garay, Manuel L.; Miller, Christopher A.; Milosavljevic, Aleksandar; Sougnez, Carrie; Fennell, Tim; Mahan, Scott; Wilkinson, Jane; Ziaugra, Liuda; Onofrio, Robert; Bloom, Toby; Nicol, Rob; Ardlie, Kristin; Baldwin, Jennifer; Gabriel, Stacey; Fulton, Robert S.; McLellan, Michael D.; Larson, David E.; Shi, Xiaoqi; Abbott, Rachel; Fulton, Lucinda; Chen, Ken; Koboldt, Daniel C.; Wendl, Michael C.; Meyer, Rick; Tang, Yuzhu; Lin, Ling; Osborne, John R.; Dunford-Shore, Brian H.; Miner, Tracie L.; Delehaunty, Kim; Markovic, Chris; Swift, Gary; Courtney, William; Pohl, Craig; Abbott, Scott; Hawkins, Amy; Leong, Shin; Haipek, Carrie; Schmidt, Heather; Wiechert, Maddy; Vickery, Tammi; Scott, Sacha; Dooling, David J.; Chinwalla, Asif; Weinstock, George M.; O'Kelly, Michael; Robinson, Jim; Alexe, Gabriele; Beroukhim, Rameen; Carter, Scott; Chiang, Derek; Gould, Josh; Gupta, Supriya; Korn, Josh; Mermel, Craig; Mesirov, Jill; Monti, Stefano; Nguyen, Huy; Parkin, Melissa; Reich, Michael; Stransky, Nicolas; Garraway, Levi; Golub, Todd; Protopopov, Alexei; Perna, Ilana; Aronson, Sandy; Sathiamoorthy, Narayan; Ren, Georgia; Kim, Hyunsoo; Kong, Sek Won; Xiao, Yonghong; Kohane, Isaac S.; Seidman, Jon; Cope, Leslie; Pan, Fei; Van Den Berg, David; Van Neste, Leander; Yi, Joo Mi; Li, Jun Z.; Southwick, Audrey; Brady, Shannon; Aggarwal, Amita; Chung, Tisha; Sherlock, Gavin; Brooks, James D.; Jakkula, Lakshmi R.; Lapuk, Anna V.; Marr, Henry; Dorton, Shannon; Choi, Yoon Gi; Han, Ju; Ray, Amrita; Wang, Victoria; Durinck, Steffen; Robinson, Mark; Wang, Nicholas J.; Vranizan, Karen; Peng, Vivian; Van Name, Eric; Fontenay, Gerald V.; Ngai, John; Conboy, John G.; Parvin, Bahram; Feiler, Heidi S.; Speed, Terence P.; Socci, Nicholas D.; Olshen, Adam; Lash, Alex; Reva, Boris; Antipin, Yevgeniy; Stukalov, Alexey; Gross, Benjamin; Cerami, Ethan; Wang, Wei Qing; Qin, Li-Xuan; Seshan, Venkatraman E.; Villafania, Liliana; Cavatore, Magali; Borsu, Laetitia; Viale, Agnes; Gerald, William; Topal, Michael D.; Qi, Yuan; Balu, Sai; Shi, Yan; Wu, George; Bittner, Michael; Shelton, Troy; Lenkiewicz, Elizabeth; Morris, Scott; Beasley, Debbie; Sanders, Sheri; Sfeir, Robert; Chen, Jessica; Nassau, David; Feng, Larry; Hickey, Erin; Schaefer, Carl; Madhavan, Subha; Buetow, Ken; Barker, Anna; Vockley, Joseph; Compton, Carolyn; Vaught, Jim; Fielding, Peter; Collins, Francis; Good, Peter; Guyer, Mark; Ozenberger, Brad; Peterson, Jane; Thomson, Elizabeth

    2008-01-01

    Human cancer cells typically harbour multiple chromosomal aberrations, nucleotide substitutions and epigenetic modifications that drive malignant transformation. The Cancer Genome Atlas ( TCGA) pilot project aims to assess the value of large- scale multi- dimensional analysis of these molecular char

  1. A decade of human genome project conclusion: Scientific diffusion about our genome knowledge.

    Science.gov (United States)

    Moraes, Fernanda; Góes, Andréa

    2016-05-06

    The Human Genome Project (HGP) was initiated in 1990 and completed in 2003. It aimed to sequence the whole human genome. Although it represented an advance in understanding the human genome and its complexity, many questions remained unanswered. Other projects were launched in order to unravel the mysteries of our genome, including the ENCyclopedia of DNA Elements (ENCODE). This review aims to analyze the evolution of scientific knowledge related to both the HGP and ENCODE projects. Data were retrieved from scientific articles published in 1990-2014, a period comprising the development and the 10 years following the HGP completion. The fact that only 20,000 genes are protein and RNA-coding is one of the most striking HGP results. A new concept about the organization of genome arose. The ENCODE project was initiated in 2003 and targeted to map the functional elements of the human genome. This project revealed that the human genome is pervasively transcribed. Therefore, it was determined that a large part of the non-protein coding regions are functional. Finally, a more sophisticated view of chromatin structure emerged. The mechanistic functioning of the genome has been redrafted, revealing a much more complex picture. Besides, a gene-centric conception of the organism has to be reviewed. A number of criticisms have emerged against the ENCODE project approaches, raising the question of whether non-conserved but biochemically active regions are truly functional. Thus, HGP and ENCODE projects accomplished a great map of the human genome, but the data generated still requires further in depth analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:215-223, 2016.

  2. Custom Array Comparative Genomic Hybridization: the Importance of DNA Quality, an Expert Eye, and Variant Validation

    Directory of Open Access Journals (Sweden)

    Francesca Lantieri

    2017-03-01

    Full Text Available The presence of false positive and false negative results in the Array Comparative Genomic Hybridization (aCGH design is poorly addressed in literature reports. We took advantage of a custom aCGH recently carried out to analyze its design performance, the use of several Agilent aberrations detection algorithms, and the presence of false results. Our study provides a confirmation that the high density design does not generate more noise than standard designs and, might reach a good resolution. We noticed a not negligible presence of false negative and false positive results in the imbalances call performed by the Agilent software. The Aberration Detection Method 2 (ADM-2 algorithm with a threshold of 6 performed quite well, and the array design proved to be reliable, provided that some additional filters are applied, such as considering only intervals with average absolute log2ratio above 0.3. We also propose an additional filter that takes into account the proportion of probes with log2ratio exceeding suggestive values for gain or loss. In addition, the quality of samples was confirmed to be a crucial parameter. Finally, this work raises the importance of evaluating the samples profiles by eye and the necessity of validating the imbalances detected.

  3. Array comparative genomic hybridisation analysis of boys with X linked hypopituitarism identifies a 3.9 Mb duplicated critical region at Xq27 containing SOX3.

    NARCIS (Netherlands)

    Solomon, N.M.; Ross, S.; Morgan, T.; Belsky, J.L.; Hol, F.A.; Karnes, P.; Hopwood, N.J.; Myers, S.E.; Tan, A.; Warne, G.L.; Forrest, S.M.; Thomas, P.Q.

    2004-01-01

    INTRODUCTION: Array comparative genomic hybridisation (array CGH) is a powerful method that detects alteration of gene copy number with greater resolution and efficiency than traditional methods. However, its ability to detect disease causing duplications in constitutional genomic DNA has not been s

  4. The Psychological Challenges of Replacing Conventional Karyotyping with Genomic SNP Array Analysis in Prenatal Testing

    Directory of Open Access Journals (Sweden)

    Sam Riedijk

    2014-07-01

    Full Text Available Pregnant couples tend to prefer a maximum of information about the health of their fetus. Therefore, we implemented whole genome microarray instead of conventional karyotyping (CK for all indications for prenatal diagnosis (PND. The array detects more clinically relevant anomalies, including early onset disorders, not related to the indication and more genetic anomalies of yet unquantifiable risk, so-called susceptibility loci (SL for mainly neurodevelopmental disorders. This manuscript highlights the psychological challenges in prenatal genetic counselling when using the array and provides counselling suggestions. First, we suggest that pre-test decision counselling should emphasize deliberation about what pregnant couples wish to learn about the future health of their fetus more than information about possible outcomes. Second, pregnant couples need support in dealing with SL. Therefore, in order to consider the SL in a proportionate perspective, the presence of phenotypes associated with SL in the family, the incidence of a particular SL in control populations and in postnatally ascertained patients needs highlighting during post-test genetic counselling. Finally, the decision that couples need to make about the course of their pregnancy is more complicated when the expected phenotype is variable and not quantifiable. Therefore, during post-test psychological counseling, couples should concretize the options of continuing and ending their pregnancy; all underlying feelings and thoughts should be made explicit, as well as the couple’s resources, in order to attain adequate decision-making. As such, pre- and post-test counselling aids pregnant couples in handling the uncertainties that may accompany offering a broader scope of genetic PND using the array.

  5. The Psychological Challenges of Replacing Conventional Karyotyping with Genomic SNP Array Analysis in Prenatal Testing.

    Science.gov (United States)

    Riedijk, Sam; Diderich, Karin E M; van der Steen, Sanne L; Govaerts, Lutgarde C P; Joosten, Marieke; Knapen, Maarten F C M; de Vries, Femke A T; van Opstal, Diane; Tibben, Aad; Galjaard, Robert-Jan H

    2014-07-03

    Pregnant couples tend to prefer a maximum of information about the health of their fetus. Therefore, we implemented whole genome microarray instead of conventional karyotyping (CK) for all indications for prenatal diagnosis (PND). The array detects more clinically relevant anomalies, including early onset disorders, not related to the indication and more genetic anomalies of yet unquantifiable risk, so-called susceptibility loci (SL) for mainly neurodevelopmental disorders. This manuscript highlights the psychological challenges in prenatal genetic counselling when using the array and provides counselling suggestions. First, we suggest that pre-test decision counselling should emphasize deliberation about what pregnant couples wish to learn about the future health of their fetus more than information about possible outcomes. Second, pregnant couples need support in dealing with SL. Therefore, in order to consider the SL in a proportionate perspective, the presence of phenotypes associated with SL in the family, the incidence of a particular SL in control populations and in postnatally ascertained patients needs highlighting during post-test genetic counselling. Finally, the decision that couples need to make about the course of their pregnancy is more complicated when the expected phenotype is variable and not quantifiable. Therefore, during post-test psychological counseling, couples should concretize the options of continuing and ending their pregnancy; all underlying feelings and thoughts should be made explicit, as well as the couple's resources, in order to attain adequate decision-making. As such, pre- and post-test counselling aids pregnant couples in handling the uncertainties that may accompany offering a broader scope of genetic PND using the array.

  6. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery.

    Science.gov (United States)

    O'Driscoll, Mark

    2017-01-01

    Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Analysis of Human Accelerated DNA Regions Using Archaic Hominin Genomes

    Science.gov (United States)

    Burbano, Hernán A.; Green, Richard E.; Maricic, Tomislav; Lalueza-Fox, Carles; de la Rasilla, Marco; Rosas, Antonio; Kelso, Janet; Pollard, Katherine S.; Lachmann, Michael; Pääbo, Svante

    2012-01-01

    Several previous comparisons of the human genome with other primate and vertebrate genomes identified genomic regions that are highly conserved in vertebrate evolution but fast-evolving on the human lineage. These human accelerated regions (HARs) may be regions of past adaptive evolution in humans. Alternatively, they may be the result of non-adaptive processes, such as biased gene conversion. We captured and sequenced DNA from a collection of previously published HARs using DNA from an Iberian Neandertal. Combining these new data with shotgun sequence from the Neandertal and Denisova draft genomes, we determine at least one archaic hominin allele for 84% of all positions within HARs. We find that 8% of HAR substitutions are not observed in the archaic hominins and are thus recent in the sense that the derived allele had not come to fixation in the common ancestor of modern humans and archaic hominins. Further, we find that recent substitutions in HARs tend to have come to fixation faster than substitutions elsewhere in the genome and that substitutions in HARs tend to cluster in time, consistent with an episodic rather than a clock-like process underlying HAR evolution. Our catalog of sequence changes in HARs will help prioritize them for functional studies of genomic elements potentially responsible for modern human adaptations. PMID:22412940

  8. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  9. Array comparative genomic hybridization-based characterization of genetic alterations in pulmonary neuroendocrine tumors.

    Science.gov (United States)

    Voortman, Johannes; Lee, Jih-Hsiang; Killian, Jonathan Keith; Suuriniemi, Miia; Wang, Yonghong; Lucchi, Marco; Smith, William I; Meltzer, Paul; Wang, Yisong; Giaccone, Giuseppe

    2010-07-20

    The goal of this study was to characterize and classify pulmonary neuroendocrine tumors based on array comparative genomic hybridization (aCGH). Using aCGH, we performed karyotype analysis of 33 small cell lung cancer (SCLC) tumors, 13 SCLC cell lines, 19 bronchial carcinoids, and 9 gastrointestinal carcinoids. In contrast to the relatively conserved karyotypes of carcinoid tumors, the karyotypes of SCLC tumors and cell lines were highly aberrant. High copy number (CN) gains were detected in SCLC tumors and cell lines in cytogenetic bands encoding JAK2, FGFR1, and MYC family members. In some of those samples, the CN of these genes exceeded 100, suggesting that they could represent driver alterations and potential drug targets in subgroups of SCLC patients. In SCLC tumors, as well as bronchial carcinoids and carcinoids of gastrointestinal origin, recurrent CN alterations were observed in 203 genes, including the RB1 gene and 59 microRNAs of which 51 locate in the DLK1-DIO3 domain. These findings suggest the existence of partially shared CN alterations in these tumor types. In contrast, CN alterations of the TP53 gene and the MYC family members were predominantly observed in SCLC. Furthermore, we demonstrated that the aCGH profile of SCLC cell lines highly resembles that of clinical SCLC specimens. Finally, by analyzing potential drug targets, we provide a genomics-based rationale for targeting the AKT-mTOR and apoptosis pathways in SCLC.

  10. Genomic analysis of clonal eosinophils by CGH arrays reveals new genetic regions involved in chronic eosinophilia.

    Science.gov (United States)

    Arefi, Maryam; Robledo, Cristina; Peñarrubia, María J; García de Coca, Alfonso; Cordero, Miguel; Hernández-Rivas, Jesús M; García, Juan Luis

    2014-11-01

    To assess the presence of genetic imbalances in patients with myeloproliferative neoplasms (MPNs), 38 patients with chronic eosinophilia were studied by array comparative genomic hybridization (aCGH): seven had chronic myelogenous leukaemia (CML), BCR-ABL1 positive, nine patients had myeloproliferative neoplasia Ph- (MPN-Ph-), three had a myeloid neoplasm associated with a PDGFRA rearrangement, and the remaining two cases were Lymphoproliferative T neoplasms associated with eosinophilia. In addition, 17 patients had a secondary eosinophilia and were used as controls. Eosinophilic enrichment was carried out in all cases. Genomic imbalances were found in 76% of all MPN patients. Losses on 20q were the most frequent genetic abnormality in MPNs (32%), affected the three types of MPN studied. This study also found losses at 11q13.3 in 26% of patients with MPN-Ph- and in 19p13.11 in two of the three patients with an MPN associated with a PDGFRA rearrangement. In addition, 29% of patients with CML had losses on 8q24. In summary, aCGH revealed clonality in eosinophils in most MPNs, suggesting that it could be a useful technique for defining clonality in these diseases. The presence of genetic losses in new regions could provide new insights into the knowledge of these MPN associated with eosinophilia. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. [Attention deficit hyperactivity disorder analyzed with array comparative genome hybridization method. Case report].

    Science.gov (United States)

    Duga, Balázs; Czakó, Márta; Komlósi, Katalin; Hadzsiev, Kinga; Sümegi, Katalin; Kisfali, Péter; Melegh, Márton; Melegh, Béla

    2014-10-05

    One of the most common psychiatric disorders during childhood is attention deficit hyperactivity disorder, which affects 5-6% of children worldwide. Symptoms include attention deficit, hyperactivity, forgetfulness and weak impulse control. The exact mechanism behind the development of the disease is unknown. However, current data suggest that a strong genetic background is responsible, which explains the frequent occurrence within a family. Literature data show that copy number variations are very common in patients with attention deficit hyperactivity disorder. The authors present a patient with attention deficit hyperactivity disorder who proved to have two approximately 400 kb heterozygous microduplications at 6p25.2 and 15q13.3 chromosomal regions detected by comparative genomic hybridization methods. Both duplications affect genes (6p25.2: SLC22A23; 15q13.3: CHRNA7) which may play a role in the development of attention deficit hyperactivity disorder. This case serves as an example of the wide spectrum of indication of the array comparative genome hybridization method.

  12. A statistical multiprobe model for analyzing cis and trans genes in genetical genomics experiments with short-oligonucleotide arrays

    NARCIS (Netherlands)

    Alberts, Rudi; Terpstra, Peter; Bystrykh, Leonid V.; Haan, Gerald de; Jansen, Ritsert C.

    2005-01-01

    Short-oligonucleotide arrays typically contain multiple probes per gene. In genetical genomics applications a statistical model for the individual probe signals can help in separating ‘‘true’’ differential mRNA expression from ‘‘ghost’’ effects caused by polymorphisms, misdesigned probes, and batch

  13. Development and evaluation of a genome-wide 6K SNP array for diploid sweet cherry and tetraploid sour cherry

    Science.gov (United States)

    High-throughput genome scans are important tools for genetic studies and breeding applications. Here, a 6K SNP array for use with the Illumina Infinium® system was developed for diploid sweet cherry (Prunus avium) and allotetraploid sour cherry (P. cerasus). This effort was led by RosBREED, a commun...

  14. Relevance of the Human Genome Project to inherited metabolic disease.

    Science.gov (United States)

    Burn, J

    1994-01-01

    The Human Genome Project is an international effort to identify the complete structure of the human genome. HUGO, the Human Genome Organization, facilitates international cooperation and exchange of information while the Genome Data Base will act as the on-line information retrieval and storage system for the huge amount of information being accumulated. The clinical register MIM (Mendelian Inheritance in Man) established by Victor McKusick is now an on-line resource that will allow biochemists working with inborn errors of metabolism to access the rapidly expanding body of knowledge. Biochemical and molecular genetics are complementary and should draw together to find solutions to the academic and clinical problems posed by inborn errors of metabolism.

  15. Genome editing: a robust technology for human stem cells.

    Science.gov (United States)

    Chandrasekaran, Arun Pandian; Song, Minjung; Ramakrishna, Suresh

    2017-09-01

    Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.

  16. Localizing recent adaptive evolution in the human genome

    DEFF Research Database (Denmark)

    Williamson, Scott H; Hubisz, Melissa J; Clark, Andrew G;

    2007-01-01

    Identifying genomic locations that have experienced selective sweeps is an important first step toward understanding the molecular basis of adaptive evolution. Using statistical methods that account for the confounding effects of population demography, recombination rate variation, and single......-nucleotide polymorphism ascertainment, while also providing fine-scale estimates of the position of the selected site, we analyzed a genomic dataset of 1.2 million human single-nucleotide polymorphisms genotyped in African-American, European-American, and Chinese samples. We identify 101 regions of the human genome......, clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome...

  17. [The Human Genome Project and the right to intellectual property].

    Science.gov (United States)

    Cambrón, A

    2000-01-01

    The Human Genome Project was designed to achieve two objectives. The scientific goal was the mapping and sequencing of the human genome and the social objective was to benefit the health and well-being of humanity. Although the first objective is nearing successful conclusion, the same cannot be said for the second, mainly because the benefits will take some time to be applicable and effective, but also due to the very nature of the project. The HGP also had a clear economic dimension, which has had a major bearing on its social side. Operating in the midst of these three dimensions is the right to intellectual property (although not just this right), which has facilitated the granting of patents on human genes. Put another way, the carrying out of the HGP has required the privatisation of knowledge of the human genome, and this can be considered an attack on the genetic heritage of mankind.

  18. Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: array-based comparative genomic hybridization analysis

    Directory of Open Access Journals (Sweden)

    Qiu-jiong Zhao

    2016-01-01

    Full Text Available Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease.

  19. 75 FR 52537 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-26

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review... Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS)...

  20. 75 FR 2148 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-01-14

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group, Genome Research Review... Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS)...

  1. 78 FR 24223 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-04-24

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review... applications. Place: National Human Genome Research Institute, 3rd floor Conf. Room 3146, 5635 Fishers...

  2. 76 FR 3643 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Initial Review Group; Genome Research Review... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: January...

  3. Defining functional DNA elements in the human genome.

    Science.gov (United States)

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P; Bernstein, Bradley E; Kundaje, Anshul; Marinov, Georgi K; Ward, Lucas D; Birney, Ewan; Crawford, Gregory E; Dekker, Job; Dunham, Ian; Elnitski, Laura L; Farnham, Peggy J; Feingold, Elise A; Gerstein, Mark; Giddings, Morgan C; Gilbert, David M; Gingeras, Thomas R; Green, Eric D; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D; Myers, Richard M; Pazin, Michael J; Ren, Bing; Stamatoyannopoulos, John A; Weng, Zhiping; White, Kevin P; Hardison, Ross C

    2014-04-29

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.

  4. Comparison of buccal and blood-derived canine DNA, either native or whole genome amplified, for array-based genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Lawley Cynthia

    2011-06-01

    Full Text Available Abstract Background The availability of array-based genotyping platforms for single nucleotide polymorphisms (SNPs for the canine genome has expanded the opportunities to undertake genome-wide association (GWA studies to identify the genetic basis for Mendelian and complex traits. Whole blood as the source of high quality DNA is undisputed but often proves impractical for collection of the large numbers of samples necessary to discover the loci underlying complex traits. Further, many countries prohibit the collection of blood from dogs unless medically necessary thereby restricting access to critical control samples from healthy dogs. Alternate sources of DNA, typically from buccal cytobrush extractions, while convenient, have been suggested to have low yield and perform poorly in GWA. Yet buccal cytobrushes provide a cost-effective means of collecting DNA, are readily accepted by dog owners, and represent a large resource base in many canine genetics laboratories. To increase the DNA quantities, whole genome amplification (WGA can be performed. Thus, the present study assessed the utility of buccal-derived DNA as well as whole genome amplification in comparison to blood samples for use on the most recent iteration of the canine HD SNP array (Illumina. Findings In both buccal and blood samples, whether whole genome amplified or not, 97% of the samples had SNP call rates in excess of 80% indicating that the vast majority of the SNPs would be suitable to perform association studies regardless of the DNA source. Similarly, there were no significant differences in marker intensity measurements between buccal and blood samples for copy number variations (CNV analysis. Conclusions All DNA samples assayed, buccal or blood, native or whole genome amplified, are appropriate for use in array-based genome-wide association studies. The concordance between subsets of dogs for which both buccal and blood samples, or those samples whole genome amplified, was

  5. Human genome and open source: balancing ethics and business.

    Science.gov (United States)

    Marturano, Antonio

    2011-01-01

    The Human Genome Project has been completed thanks to a massive use of computer techniques, as well as the adoption of the open-source business and research model by the scientists involved. This model won over the proprietary model and allowed a quick propagation and feedback of research results among peers. In this paper, the author will analyse some ethical and legal issues emerging by the use of such computer model in the Human Genome property rights. The author will argue that the Open Source is the best business model, as it is able to balance business and human rights perspectives.

  6. Sequencing and analysis of an Irish human genome.

    LENUS (Irish Health Repository)

    Tong, Pin

    2010-01-01

    Recent studies generating complete human sequences from Asian, African and European subgroups have revealed population-specific variation and disease susceptibility loci. Here, choosing a DNA sample from a population of interest due to its relative geographical isolation and genetic impact on further populations, we extend the above studies through the generation of 11-fold coverage of the first Irish human genome sequence.

  7. From hacking the human genome to editing organs.

    Science.gov (United States)

    Tobita, Takamasa; Guzman-Lepe, Jorge; Collin de l'Hortet, Alexandra

    2015-01-01

    In the recent decades, human genome engineering has been one of the major interesting research subjects, essentially because it raises new possibilities for personalized medicine and biotechnologies. With the development of engineered nucleases such as the Zinc Finger Nucleases (ZFNs), the Transcription activator-like effector nucleases (TALENs) and more recently the Clustered Regularly Interspaced short Palindromic Repeats (CRISPR), the field of human genome edition has evolved very rapidly. Every new genetic tool is broadening the scope of applications on human tissues, even before we can completely master each of these tools. In this review, we will present the recent advances regarding human genome edition tools, we will discuss the numerous implications they have in research and medicine, and we will mention the limits and concerns about such technologies.

  8. Genomic divergences among cattle, dog and human estimated from large-scale alignments of genomic sequences

    Directory of Open Access Journals (Sweden)

    Shade Larry L

    2006-06-01

    Full Text Available Abstract Background Approximately 11 Mb of finished high quality genomic sequences were sampled from cattle, dog and human to estimate genomic divergences and their regional variation among these lineages. Results Optimal three-way multi-species global sequence alignments for 84 cattle clones or loci (each >50 kb of genomic sequence were constructed using the human and dog genome assemblies as references. Genomic divergences and substitution rates were examined for each clone and for various sequence classes under different functional constraints. Analysis of these alignments revealed that the overall genomic divergences are relatively constant (0.32–0.37 change/site for pairwise comparisons among cattle, dog and human; however substitution rates vary across genomic regions and among different sequence classes. A neutral mutation rate (2.0–2.2 × 10(-9 change/site/year was derived from ancestral repetitive sequences, whereas the substitution rate in coding sequences (1.1 × 10(-9 change/site/year was approximately half of the overall rate (1.9–2.0 × 10(-9 change/site/year. Relative rate tests also indicated that cattle have a significantly faster rate of substitution as compared to dog and that this difference is about 6%. Conclusion This analysis provides a large-scale and unbiased assessment of genomic divergences and regional variation of substitution rates among cattle, dog and human. It is expected that these data will serve as a baseline for future mammalian molecular evolution studies.

  9. New complete genome sequences of human rhinoviruses shed light on their phylogeny and genomic features

    Directory of Open Access Journals (Sweden)

    Zdobnov Evgeny M

    2007-07-01

    Full Text Available Abstract Background Human rhinoviruses (HRV, the most frequent cause of respiratory infections, include 99 different serotypes segregating into two species, A and B. Rhinoviruses share extensive genomic sequence similarity with enteroviruses and both are part of the picornavirus family. Nevertheless they differ significantly at the phenotypic level. The lack of HRV full-length genome sequences and the absence of analysis comparing picornaviruses at the whole genome level limit our knowledge of the genomic features supporting these differences. Results Here we report complete genome sequences of 12 HRV-A and HRV-B serotypes, more than doubling the current number of available HRV sequences. The whole-genome maximum-likelihood phylogenetic analysis suggests that HRV-B and human enteroviruses (HEV diverged from the last common ancestor after their separation from HRV-A. On the other hand, compared to HEV, HRV-B are more related to HRV-A in the capsid and 3B-C regions. We also identified the presence of a 2C cis-acting replication element (cre in HRV-B that is not present in HRV-A, and that had been previously characterized only in HEV. In contrast to HEV viruses, HRV-A and HRV-B share also markedly lower GC content along the whole genome length. Conclusion Our findings provide basis to speculate about both the biological similarities and the differences (e.g. tissue tropism, temperature adaptation or acid lability of these three groups of viruses.

  10. Recurrent DNA inversion rearrangements in the human genome

    DEFF Research Database (Denmark)

    Flores, Margarita; Morales, Lucía; Gonzaga-Jauregui, Claudia

    2007-01-01

    Several lines of evidence suggest that reiterated sequences in the human genome are targets for nonallelic homologous recombination (NAHR), which facilitates genomic rearrangements. We have used a PCR-based approach to identify breakpoint regions of rearranged structures in the human genome...... on chromosomes 3, 15, and 19, were analyzed. The relative proportion of wild-type to rearranged structures was determined in DNA samples from blood obtained from different, unrelated individuals. The results obtained indicate that recurrent genomic rearrangements occur at relatively high frequency in somatic...... cells. Interestingly, the rearrangements studied were significantly more abundant in adults than in newborn individuals, suggesting that such DNA rearrangements might start to appear during embryogenesis or fetal life and continue to accumulate after birth. The relevance of our results in regard...

  11. The diploid genome sequence of an individual human.

    Directory of Open Access Journals (Sweden)

    Samuel Levy

    2007-09-01

    Full Text Available Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel included 3,213,401 single nucleotide polymorphisms (SNPs, 53,823 block substitutions (2-206 bp, 292,102 heterozygous insertion/deletion events (indels(1-571 bp, 559,473 homozygous indels (1-82,711 bp, 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.

  12. A Portrait of Ribosomal DNA Contacts with Hi-C Reveals 5S and 45S rDNA Anchoring Points in the Folded Human Genome.

    Science.gov (United States)

    Yu, Shoukai; Lemos, Bernardo

    2016-12-31

    Ribosomal RNAs (rRNAs) account for >60% of all RNAs in eukaryotic cells and are encoded in the ribosomal DNA (rDNA) arrays. The rRNAs are produced from two sets of loci: the 5S rDNA array resides exclusively on human chromosome 1, whereas the 45S rDNA array resides on the short arm of five human acrocentric chromosomes. The 45S rDNA gives origin to the nucleolus, the nuclear organelle that is the site of ribosome biogenesis. Intriguingly, 5S and 45S rDNA arrays exhibit correlated copy number variation in lymphoblastoid cells (LCLs). Here we examined the genomic architecture and repeat content of the 5S and 45S rDNA arrays in multiple human genome assemblies (including PacBio MHAP assembly) and ascertained contacts between the rDNA arrays and the rest of the genome using Hi-C datasets from two human cell lines (erythroleukemia K562 and lymphoblastoid cells). Our analyses revealed that 5S and 45S arrays each have thousands of contacts in the folded genome, with rDNA-associated regions and genes dispersed across all chromosomes. The rDNA contact map displayed conserved and disparate features between two cell lines, and pointed to specific chromosomes, genomic regions, and genes with evidence of spatial proximity to the rDNA arrays; the data also showed a lack of direct physical interaction between the 5S and 45S rDNA arrays. Finally, the analysis identified an intriguing organization in the 5S array with Alu and 5S elements adjacent to one another and organized in opposite orientation along the array. Portraits of genome folding centered on the ribosomal DNA array could help understand the emergence of concerted variation, the control of 5S and 45S expression, as well as provide insights into an organelle that contributes to the spatial localization of human chromosomes during interphase. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. 2q23.1 microdeletion identified by array comparative genomic hybridisation: an emerging phenotype with Angelman-like features?

    Science.gov (United States)

    Jaillard, S; Dubourg, C; Gérard-Blanluet, M; Delahaye, A; Pasquier, L; Dupont, C; Henry, C; Tabet, A-C; Lucas, J; Aboura, A; David, V; Benzacken, B; Odent, S; Pipiras, E

    2009-12-01

    Genome-wide screening of patients with mental retardation using array comparative genomic hybridisation (CGH) has identified several novel imbalances. With this genotype-first approach, the 2q22.3q23.3 deletion was recently described as a novel microdeletion syndrome. The authors report two unrelated patients with a de novo interstitial deletion mapping in this genomic region and presenting similar "pseudo-Angelman" phenotypes, including severe psychomotor retardation, speech impairment, epilepsy, microcephaly, ataxia, and behavioural disabilities. The microdeletions were identified by array CGH using oligonucleotide and bacterial artificial chromosome (BAC) arrays, and further confirmed by fluorescence in situ hybridisation (FISH) and semi-quantitative polymerase chain reaction (PCR). The boundaries and sizes of the deletions in the two patients were different but an overlapping region of about 250 kb was defined, which mapped to 2q23.1 and included two genes: MBD5 and EPC2. The SIP1 gene associated with the Mowat-Wilson syndrome was not included in the deleted genomic region. Haploinsufficiency of one of the deleted genes (MBD5 or EPC2) could be responsible for the common clinical features observed in the 2q23.1 microdeletion syndrome, and this hypothesis needs further investigation.

  14. SNP array analysis reveals novel genomic abnormalities including copy neutral loss of heterozygosity in anaplastic oligodendrogliomas.

    Directory of Open Access Journals (Sweden)

    Ahmed Idbaih

    Full Text Available Anaplastic oligodendrogliomas (AOD are rare glial tumors in adults with relative homogeneous clinical, radiological and histological features at the time of diagnosis but dramatically various clinical courses. Studies have identified several molecular abnormalities with clinical or biological relevance to AOD (e.g. t(1;19(q10;p10, IDH1, IDH2, CIC and FUBP1 mutations.To better characterize the clinical and biological behavior of this tumor type, the creation of a national multicentric network, named "Prise en charge des OLigodendrogliomes Anaplasiques (POLA," has been supported by the Institut National du Cancer (InCA. Newly diagnosed and centrally validated AOD patients and their related biological material (tumor and blood samples were prospectively included in the POLA clinical database and tissue bank, respectively.At the molecular level, we have conducted a high-resolution single nucleotide polymorphism array analysis, which included 83 patients. Despite a careful central pathological review, AOD have been found to exhibit heterogeneous genomic features. A total of 82% of the tumors exhibited a 1p/19q-co-deletion, while 18% harbor a distinct chromosome pattern. Novel focal abnormalities, including homozygously deleted, amplified and disrupted regions, have been identified. Recurring copy neutral losses of heterozygosity (CNLOH inducing the modulation of gene expression have also been discovered. CNLOH in the CDKN2A locus was associated with protein silencing in 1/3 of the cases. In addition, FUBP1 homozygous deletion was detected in one case suggesting a putative tumor suppressor role of FUBP1 in AOD.Our study showed that the genomic and pathological analyses of AOD are synergistic in detecting relevant clinical and biological subgroups of AOD.

  15. Primer on Molecular Genetics; DOE Human Genome Program

    Science.gov (United States)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  16. Triplex-forming oligonucleotide target sequences in the human genome

    OpenAIRE

    Goñi, J Ramon; de la Cruz, Xavier; Orozco, Modesto

    2004-01-01

    The existence of sequences in the human genome which can be a target for triplex formation, and accordingly are candidates for anti-gene therapies, has been studied by using bioinformatics tools. It was found that the population of triplex-forming oligonucleotide target sequences (TTS) is much more abundant than that expected from simple random models. The population of TTS is large in all the genome, without major differences between chromosomes. A wide analysis along annotated regions of th...

  17. Genomics of Streptococcus salivarius, a major human commensal.

    Science.gov (United States)

    Delorme, Christine; Abraham, Anne-Laure; Renault, Pierre; Guédon, Eric

    2015-07-01

    The salivarius group of streptococci is of particular importance for humans. This group consists of three genetically similar species, Streptococcus salivarius, Streptococcus vestibularis and Streptococcus thermophilus. S. salivarius and S. vestibularis are commensal organisms that may occasionally cause opportunistic infections in humans, whereas S. thermophilus is a food bacterium widely used in dairy production. We developed Multilocus sequence typing (MLST) and comparative genomic analysis to confirm the clear separation of these three species. These analyses also identified a subgroup of four strains, with a core genome diverging by about 10%, in terms of its nucleotide sequence, from that of S. salivarius sensu stricto. S. thermophilus species displays a low level of nucleotide variability, due to its recent emergence with the development of agriculture. By contrast, nucleotide variability is high in the other two species of the salivarius group, reflecting their long-standing association with humans. The species of the salivarius group have genome sizes ranging from the smallest (∼ 1.7 Mb for S. thermophilus) to the largest (∼ 2.3 Mb for S. salivarius) among streptococci, reflecting genome reduction linked to a narrow, nutritionally rich environment for S. thermophilus, and natural, more competitive niches for the other two species. Analyses of genomic content have indicated that the core genes of S. salivarius account for about two thirds of the genome, indicating considerable variability of gene content and differences in potential adaptive features. Furthermore, we showed that the genome of this species is exceptionally rich in genes encoding surface factors, glycosyltransferases and response regulators. Evidence of widespread genetic exchanges was obtained, probably involving a natural competence system and the presence of diverse mobile elements. However, although the S. salivarius strains studied were isolated from several human body-related sites

  18. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  19. The human genome project: Prospects and implications for clinical medicine

    Energy Technology Data Exchange (ETDEWEB)

    Green, E.D.; Waterston, R.H. (Washington Univ., St. Louis, MO (United States))

    1991-10-09

    The recently initiated human genome project is a large international effort to elucidate the genetic architecture of the genomes of man and several model organisms. The initial phases of this endeavor involve the establishment of rough blueprints (maps) of the genetic landscape of these genomes, with the long-term goal of determining their precise nucleotide sequences and identifying the genes. The knowledge gained by these studies will provide a vital tool for the study of many biologic processes and will have a profound impact on clinical medicine.

  20. Genome-wide detection of copy number variations among diverse horse breeds by array CGH.

    Science.gov (United States)

    Wang, Wei; Wang, Shenyuan; Hou, Chenglin; Xing, Yanping; Cao, Junwei; Wu, Kaifeng; Liu, Chunxia; Zhang, Dong; Zhang, Li; Zhang, Yanru; Zhou, Huanmin

    2014-01-01

    Recent studies have found that copy number variations (CNVs) are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds) and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs). The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO), genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses.

  1. Implementation of High Resolution Whole Genome Array CGH in the Prenatal Clinical Setting: Advantages, Challenges, and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Paola Evangelidou

    2013-01-01

    Full Text Available Array Comparative Genomic Hybridization analysis is replacing postnatal chromosomal analysis in cases of intellectual disabilities, and it has been postulated that it might also become the first-tier test in prenatal diagnosis. In this study, array CGH was applied in 64 prenatal samples with whole genome oligonucleotide arrays (BlueGnome, Ltd. on DNA extracted from chorionic villi, amniotic fluid, foetal blood, and skin samples. Results were confirmed with Fluorescence In Situ Hybridization or Real-Time PCR. Fifty-three cases had normal karyotype and abnormal ultrasound findings, and seven samples had balanced rearrangements, five of which also had ultrasound findings. The value of array CGH in the characterization of previously known aberrations in five samples is also presented. Seventeen out of 64 samples carried copy number alterations giving a detection rate of 26.5%. Ten of these represent benign or variables of unknown significance, giving a diagnostic capacity of the method to be 10.9%. If karyotype is performed the additional diagnostic capacity of the method is 5.1% (3/59. This study indicates the ability of array CGH to identify chromosomal abnormalities which cannot be detected during routine prenatal cytogenetic analysis, therefore increasing the overall detection rate. In addition a thorough review of the literature is presented.

  2. Human genome and the african personality: implications for social work.

    Science.gov (United States)

    Mickel, Elijah; Miller, Sheila D

    2011-01-01

    The integration of the human genome with the African personality should be viewed as an interdependent whole. The African personality, for purposes of this article, comprises Black experiences, Negritude, and an Africa-centered axiology and epistemology. The outcome results in a spiritual focused collective consciousness. Anthropologically, historically (and with the Human Genome Project), genetically Africa has proven to be the source of all human life. Human kind wherever they exist on the planet using the African personality must be viewed as interconnected. Although racism and its progeny discrimination preexist the human genome project (HGP), the human genome provides an evidence-based rationale for the end to all policy and subsequent practice based on race and racism. Policy must be based on evidence to be competent practice. It would be remiss if not irresponsible of social work and the other behavioral scientist concerned with intervention and prevention behaviors to not infuse the findings of the HCPs. The African personality is a concept that provides a wholistic way to evaluate human behavior from an African worldview.

  3. A complex genome-microRNA interplay in human mitochondria.

    Science.gov (United States)

    Shinde, Santosh; Bhadra, Utpal

    2015-01-01

    Small noncoding regulatory RNA exist in wide spectrum of organisms ranging from prokaryote bacteria to humans. In human, a systematic search for noncoding RNA is mainly limited to the nuclear and cytosolic compartments. To investigate whether endogenous small regulatory RNA are present in cell organelles, human mitochondrial genome was also explored for prediction of precursor microRNA (pre-miRNA) and mature miRNA (miRNA) sequences. Six novel miRNA were predicted from the organelle genome by bioinformatics analysis. The structures are conserved in other five mammals including chimp, orangutan, mouse, rat, and rhesus genome. Experimentally, six human miRNA are well accumulated or deposited in human mitochondria. Three of them are expressed less prominently in Northern analysis. To ascertain their presence in human skeletal muscles, total RNA was extracted from enriched mitochondria by an immunomagnetic method. The expression of six novel pre-miRNA and miRNA was confirmed by Northern blot analysis; however, low level of remaining miRNA was found by sensitive Northern analysis. Their presence is further confirmed by real time RT-PCR. The six miRNA find their multiple targets throughout the human genome in three different types of software. The luciferase assay was used to confirm that MT-RNR2 gene was the potential target of hsa-miR-mit3 and hsa-miR-mit4.

  4. Cochlear implant insertion forces in microdissected human cochlea to evaluate a prototype array.

    Science.gov (United States)

    Nguyen, Yann; Miroir, Mathieu; Kazmitcheff, Guillaume; Sutter, Jasmine; Bensidhoum, Morad; Ferrary, Evelyne; Sterkers, Olivier; Bozorg Grayeli, Alexis

    2012-01-01

    Cochlear implant array insertion forces are potentially related to cochlear trauma. We compared these forces between a standard (Digisonic SP; Neurelec, Vallauris, France) and an array prototype (Neurelec) with a smaller diameter. The arrays were inserted by a mechatronic tool in 23 dissected human cochlea specimens exposing the basilar membrane. The array progression under the basilar membrane was filmed together with dynamic force measurements. Insertion force profiles and depth of insertion were compared. The recordings showed lower insertion forces beyond 270° of insertion and deeper insertions with the thin prototype array. This will potentially allow larger cochlear coverage with less trauma.

  5. Genomic signatures of diet-related shifts during human origins.

    Science.gov (United States)

    Babbitt, Courtney C; Warner, Lisa R; Fedrigo, Olivier; Wall, Christine E; Wray, Gregory A

    2011-04-07

    There are numerous anthropological analyses concerning the importance of diet during human evolution. Diet is thought to have had a profound influence on the human phenotype, and dietary differences have been hypothesized to contribute to the dramatic morphological changes seen in modern humans as compared with non-human primates. Here, we attempt to integrate the results of new genomic studies within this well-developed anthropological context. We then review the current evidence for adaptation related to diet, both at the level of sequence changes and gene expression. Finally, we propose some ways in which new technologies can help identify specific genomic adaptations that have resulted in metabolic and morphological differences between humans and non-human primates.

  6. Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies.

    Directory of Open Access Journals (Sweden)

    Brendan J Keating

    Full Text Available A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS. True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a "cosmopolitan" tagging approach to capture the genetic diversity across approximately 2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.

  7. Pathogen receptor discovery with a microfluidic human membrane protein array

    Science.gov (United States)

    Glick, Yair; Ben-Ari, Ya’ara; Drayman, Nir; Pellach, Michal; Neveu, Gregory; Boonyaratanakornkit, Jim; Avrahami, Dorit; Einav, Shirit; Oppenheim, Ariella

    2016-01-01

    The discovery of how a pathogen invades a cell requires one to determine which host cell receptors are exploited. This determination is a challenging problem because the receptor is invariably a membrane protein, which represents an Achilles heel in proteomics. We have developed a universal platform for high-throughput expression and interaction studies of membrane proteins by creating a microfluidic-based comprehensive human membrane protein array (MPA). The MPA is, to our knowledge, the first of its kind and offers a powerful alternative to conventional proteomics by enabling the simultaneous study of 2,100 membrane proteins. We characterized direct interactions of a whole nonenveloped virus (simian virus 40), as well as those of the hepatitis delta enveloped virus large form antigen, with candidate host receptors expressed on the MPA. Selected newly discovered membrane protein–pathogen interactions were validated by conventional methods, demonstrating that the MPA is an important tool for cellular receptor discovery and for understanding pathogen tropism. PMID:27044079

  8. Prospects for the Chinese Human Genome Project (HGP)at the beginning of next century

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chinese Human Genome Project (CHGP) as part of the international human genome research has achieved significant progress and created a solid foundation for further development. While participating in the human genome sequencing and gene discovery, the emphasis of CHGP in the next century will be laid on functional genomics. The strategy, resources and some policy issues will be addressed.

  9. Novel Altered Region for Biomarker Discovery in Hepatocellular Carcinoma (HCC Using Whole Genome SNP Array

    Directory of Open Access Journals (Sweden)

    Esraa M. Hashem

    2016-04-01

    Full Text Available cancer represents one of the greatest medical causes of mortality. The majority of Hepatocellular carcinoma arises from the accumulation of genetic abnormalities, and possibly induced by exterior etiological factors especially HCV and HBV infections. There is a need for new tools to analysis the large sum of data to present relevant genetic changes that may be critical for both understanding how cancers develop and determining how they could ultimately be treated. Gene expression profiling may lead to new biomarkers that may help develop diagnostic accuracy for detecting Hepatocellular carcinoma. In this work, statistical technique (discrete stationary wavelet transform for detection of copy number alternations to analysis high-density single-nucleotide polymorphism array of 30 cell lines on specific chromosomes, which are frequently detected in Hepatocellular carcinoma have been proposed. The results demonstrate the feasibility of whole-genome fine mapping of copy number alternations via high-density single-nucleotide polymorphism genotyping, Results revealed that a novel altered chromosomal region is discovered; region amplification (4q22.1 have been detected in 22 out of 30-Hepatocellular carcinoma cell lines (73%. This region strike, AFF1 and DSPP, tumor suppressor genes. This finding has not previously reported to be involved in liver carcinogenesis; it can be used to discover a new HCC biomarker, which helps in a better understanding of hepatocellular carcinoma.

  10. New Tools for Embryo Selection: Comprehensive Chromosome Screening by Array Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Lorena Rodrigo

    2014-01-01

    Full Text Available The objective of this study was to evaluate the usefulness of comprehensive chromosome screening (CCS using array comparative genomic hybridization (aCGH. The study included 1420 CCS cycles for recurrent miscarriage (n=203; repetitive implantation failure (n=188; severe male factor (n=116; previous trisomic pregnancy (n=33; and advanced maternal age (n=880. CCS was performed in cycles with fresh oocytes and embryos (n=774; mixed cycles with fresh and vitrified oocytes (n=320; mixed cycles with fresh and vitrified day-2 embryos (n=235; and mixed cycles with fresh and vitrified day-3 embryos (n=91. Day-3 embryo biopsy was performed and analyzed by aCGH followed by day-5 embryo transfer. Consistent implantation (range: 40.5–54.2% and pregnancy rates per transfer (range: 46.0–62.9% were obtained for all the indications and independently of the origin of the oocytes or embryos. However, a lower delivery rate per cycle was achieved in women aged over 40 years (18.1% due to the higher percentage of aneuploid embryos (85.3% and lower number of cycles with at least one euploid embryo available per transfer (40.3%. We concluded that aneuploidy is one of the major factors which affect embryo implantation.

  11. Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies

    DEFF Research Database (Denmark)

    Li, Yun R.; van Setten, Jessica; Verma, Shefali S.

    2015-01-01

    on the array, including eight trios. Results: We show low Mendelian error rates and high concordance rates for HapMap samples (average parent-parent-child heritability of 0.997, and concordance of 0.996). We performed genotype imputation across autosomal regions, masking directly genotyped SNPs to assess...... compared to reference samples and to other genome-wide genotyping platforms. Conclusions: We have designed a comprehensive genome-wide genotyping tool which enables accurate association testing and imputation of ungenotyped SNPs, facilitating powerful and cost-effective large-scale genotyping of transplant...

  12. Development and evaluation of a genome-wide 6K SNP array for diploid sweet cherry and tetraploid sour cherry.

    Directory of Open Access Journals (Sweden)

    Cameron Peace

    Full Text Available High-throughput genome scans are important tools for genetic studies and breeding applications. Here, a 6K SNP array for use with the Illumina Infinium® system was developed for diploid sweet cherry (Prunus avium and allotetraploid sour cherry (P. cerasus. This effort was led by RosBREED, a community initiative to enable marker-assisted breeding for rosaceous crops. Next-generation sequencing in diverse breeding germplasm provided 25 billion basepairs (Gb of cherry DNA sequence from which were identified genome-wide SNPs for sweet cherry and for the two sour cherry subgenomes derived from sweet cherry (avium subgenome and P. fruticosa (fruticosa subgenome. Anchoring to the peach genome sequence, recently released by the International Peach Genome Initiative, predicted relative physical locations of the 1.9 million putative SNPs detected, preliminarily filtered to 368,943 SNPs. Further filtering was guided by results of a 144-SNP subset examined with the Illumina GoldenGate® assay on 160 accessions. A 6K Infinium® II array was designed with SNPs evenly spaced genetically across the sweet and sour cherry genomes. SNPs were developed for each sour cherry subgenome by using minor allele frequency in the sour cherry detection panel to enrich for subgenome-specific SNPs followed by targeting to either subgenome according to alleles observed in sweet cherry. The array was evaluated using panels of sweet (n = 269 and sour (n = 330 cherry breeding germplasm. Approximately one third of array SNPs were informative for each crop. A total of 1825 polymorphic SNPs were verified in sweet cherry, 13% of these originally developed for sour cherry. Allele dosage was resolved for 2058 polymorphic SNPs in sour cherry, one third of these being originally developed for sweet cherry. This publicly available genomics resource represents a significant advance in cherry genome-scanning capability that will accelerate marker-locus-trait association discovery

  13. Identification of chromosome aberrations in sporadic microsatellite stable and unstable colorectal cancers using array comparative genomic hybridization

    DEFF Research Database (Denmark)

    Jensen, Thomas Dyrsø; Li, Jian; Wang, Kai;

    2011-01-01

    Colorectal cancer (CRC) is one of the most common cancers in Denmark and in the western world in general, and the prognosis is generally poor. According to the traditional molecular classification of sporadic colorectal cancer, microsatellite stable (MSS)/chromosome unstable (CIN) colorectal...... cancers constitute approximately 85% of sporadic cases, whereas microsatellite unstable (MSI) cases constitute the remaining 15%. In this study, we used array comparative genomic hybridization (aCGH) to identify genomic hotspot regions that harbor recurrent copy number changes. The study material...

  14. A high-density Diversity Arrays Technology (DArT microarray for genome-wide genotyping in Eucalyptus

    Directory of Open Access Journals (Sweden)

    Myburg Alexander A

    2010-06-01

    Full Text Available Abstract Background A number of molecular marker technologies have allowed important advances in the understanding of the genetics and evolution of Eucalyptus, a genus that includes over 700 species, some of which are used worldwide in plantation forestry. Nevertheless, the average marker density achieved with current technologies remains at the level of a few hundred markers per population. Furthermore, the transferability of markers produced with most existing technology across species and pedigrees is usually very limited. High throughput, combined with wide genome coverage and high transferability are necessary to increase the resolution, speed and utility of molecular marker technology in eucalypts. We report the development of a high-density DArT genome profiling resource and demonstrate its potential for genome-wide diversity analysis and linkage mapping in several species of Eucalyptus. Findings After testing several genome complexity reduction methods we identified the PstI/TaqI method as the most effective for Eucalyptus and developed 18 genomic libraries from PstI/TaqI representations of 64 different Eucalyptus species. A total of 23,808 cloned DNA fragments were screened and 13,300 (56% were found to be polymorphic among 284 individuals. After a redundancy analysis, 6,528 markers were selected for the operational array and these were supplemented with 1,152 additional clones taken from a library made from the E. grandis tree whose genome has been sequenced. Performance validation for diversity studies revealed 4,752 polymorphic markers among 174 individuals. Additionally, 5,013 markers showed segregation when screened using six inter-specific mapping pedigrees, with an average of 2,211 polymorphic markers per pedigree and a minimum of 859 polymorphic markers that were shared between any two pedigrees. Conclusions This operational DArT array will deliver 1,000-2,000 polymorphic markers for linkage mapping in most eucalypt pedigrees

  15. [From human genome to individualized medicine].

    Science.gov (United States)

    Del Barrio, Jaime

    2008-01-01

    Advances in the knowledge of our genome, and a deeper understanding of the molecular basis of disease are laying the foundations of Individualised Medicine. This new approach to Medicine seeks to establish a consistent relation between the genetic profile of each individual and the clinical profile of every disease, thereby helping healthcare professionals to individualise treatment for each patient, in order to administrate the right drug at the right dose, while optimising its efficacy and safety. Translational research, Pharmacogenetics, Pharmacogenomics, biomarkers and diagnostic tests are bringing profound change already under way to our healthcare systems, and pose new ethical and social challenges that our legal framework will have to address.

  16. Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi

    National Research Council Canada - National Science Library

    Atanasova, Lea; Druzhinina, Irina S

    2010-01-01

    .... They are also important pathogens of animals including humans and agricultural crops. These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available...

  17. A new approach for using genome scans to detect recent positive selection in the human genome.

    Directory of Open Access Journals (Sweden)

    Kun Tang

    2007-07-01

    Full Text Available Genome-wide scanning for signals of recent positive selection is essential for a comprehensive and systematic understanding of human adaptation. Here, we present a genomic survey of recent local selective sweeps, especially aimed at those nearly or recently completed. A novel approach was developed for such signals, based on contrasting the extended haplotype homozygosity (EHH profiles between populations. We applied this method to the genome single nucleotide polymorphism (SNP data of both the International HapMap Project and Perlegen Sciences, and detected widespread signals of recent local selection across the genome, consisting of both complete and partial sweeps. A challenging problem of genomic scans of recent positive selection is to clearly distinguish selection from neutral effects, given the high sensitivity of the test statistics to departures from neutral demographic assumptions and the lack of a single, accurate neutral model of human history. We therefore developed a new procedure that is robust across a wide range of demographic and ascertainment models, one that indicates that certain portions of the genome clearly depart from neutrality. Simulations of positive selection showed that our tests have high power towards strong selection sweeps that have undergone fixation. Gene ontology analysis of the candidate regions revealed several new functional groups that might help explain some important interpopulation differences in phenotypic traits.

  18. Genome-wide approaches to understanding human ageing

    Directory of Open Access Journals (Sweden)

    Kaeberlein Matt

    2006-06-01

    Full Text Available Abstract The use of genomic technologies in biogerontology has the potential to greatly enhance our understanding of human ageing. High-throughput screens for alleles correlated with survival in long-lived people have uncovered novel genes involved in age-associated disease. Genome-wide longevity studies in simple eukaryotes are identifying evolutionarily conserved pathways that determine longevity. It is hoped that validation of these 'public' aspects of ageing in mice, along with analyses of variation in candidate human ageing genes, will provide targets for future interventions to slow the ageing process and retard the onset of age-associated pathologies.

  19. The zebrafish reference genome sequence and its relationship to the human genome.

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D; Torroja, Carlos F; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T; Guerra-Assunção, José A; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F; Laird, Gavin K; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Elliot, David; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Begum, Sharmin; Mortimore, Beverley; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Lloyd, Christine; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James D; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Lanz, Christa; Raddatz, Günter; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Schuster, Stephan C; Carter, Nigel P; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M J; Enright, Anton; Geisler, Robert; Plasterk, Ronald H A; Lee, Charles; Westerfield, Monte; de Jong, Pieter J; Zon, Leonard I; Postlethwait, John H; Nüsslein-Volhard, Christiane; Hubbard, Tim J P; Roest Crollius, Hugues; Rogers, Jane; Stemple, Derek L

    2013-04-25

    Zebrafish have become a popular organism for the study of vertebrate gene function. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination.

  20. The zebrafish reference genome sequence and its relationship to the human genome

    Science.gov (United States)

    Howe, Kerstin; Clark, Matthew D.; Torroja, Carlos F.; Torrance, James; Berthelot, Camille; Muffato, Matthieu; Collins, John E.; Humphray, Sean; McLaren, Karen; Matthews, Lucy; McLaren, Stuart; Sealy, Ian; Caccamo, Mario; Churcher, Carol; Scott, Carol; Barrett, Jeffrey C.; Koch, Romke; Rauch, Gerd-Jörg; White, Simon; Chow, William; Kilian, Britt; Quintais, Leonor T.; Guerra-Assunção, José A.; Zhou, Yi; Gu, Yong; Yen, Jennifer; Vogel, Jan-Hinnerk; Eyre, Tina; Redmond, Seth; Banerjee, Ruby; Chi, Jianxiang; Fu, Beiyuan; Langley, Elizabeth; Maguire, Sean F.; Laird, Gavin K.; Lloyd, David; Kenyon, Emma; Donaldson, Sarah; Sehra, Harminder; Almeida-King, Jeff; Loveland, Jane; Trevanion, Stephen; Jones, Matt; Quail, Mike; Willey, Dave; Hunt, Adrienne; Burton, John; Sims, Sarah; McLay, Kirsten; Plumb, Bob; Davis, Joy; Clee, Chris; Oliver, Karen; Clark, Richard; Riddle, Clare; Eliott, David; Threadgold, Glen; Harden, Glenn; Ware, Darren; Mortimer, Beverly; Kerry, Giselle; Heath, Paul; Phillimore, Benjamin; Tracey, Alan; Corby, Nicole; Dunn, Matthew; Johnson, Christopher; Wood, Jonathan; Clark, Susan; Pelan, Sarah; Griffiths, Guy; Smith, Michelle; Glithero, Rebecca; Howden, Philip; Barker, Nicholas; Stevens, Christopher; Harley, Joanna; Holt, Karen; Panagiotidis, Georgios; Lovell, Jamieson; Beasley, Helen; Henderson, Carl; Gordon, Daria; Auger, Katherine; Wright, Deborah; Collins, Joanna; Raisen, Claire; Dyer, Lauren; Leung, Kenric; Robertson, Lauren; Ambridge, Kirsty; Leongamornlert, Daniel; McGuire, Sarah; Gilderthorp, Ruth; Griffiths, Coline; Manthravadi, Deepa; Nichol, Sarah; Barker, Gary; Whitehead, Siobhan; Kay, Michael; Brown, Jacqueline; Murnane, Clare; Gray, Emma; Humphries, Matthew; Sycamore, Neil; Barker, Darren; Saunders, David; Wallis, Justene; Babbage, Anne; Hammond, Sian; Mashreghi-Mohammadi, Maryam; Barr, Lucy; Martin, Sancha; Wray, Paul; Ellington, Andrew; Matthews, Nicholas; Ellwood, Matthew; Woodmansey, Rebecca; Clark, Graham; Cooper, James; Tromans, Anthony; Grafham, Darren; Skuce, Carl; Pandian, Richard; Andrews, Robert; Harrison, Elliot; Kimberley, Andrew; Garnett, Jane; Fosker, Nigel; Hall, Rebekah; Garner, Patrick; Kelly, Daniel; Bird, Christine; Palmer, Sophie; Gehring, Ines; Berger, Andrea; Dooley, Christopher M.; Ersan-Ürün, Zübeyde; Eser, Cigdem; Geiger, Horst; Geisler, Maria; Karotki, Lena; Kirn, Anette; Konantz, Judith; Konantz, Martina; Oberländer, Martina; Rudolph-Geiger, Silke; Teucke, Mathias; Osoegawa, Kazutoyo; Zhu, Baoli; Rapp, Amanda; Widaa, Sara; Langford, Cordelia; Yang, Fengtang; Carter, Nigel P.; Harrow, Jennifer; Ning, Zemin; Herrero, Javier; Searle, Steve M. J.; Enright, Anton; Geisler, Robert; Plasterk, Ronald H. A.; Lee, Charles; Westerfield, Monte; de Jong, Pieter J.; Zon, Leonard I.; Postlethwait, John H.; Nüsslein-Volhard, Christiane; Hubbard, Tim J. P.; Crollius, Hugues Roest; Rogers, Jane; Stemple, Derek L.

    2013-01-01

    Zebrafish have become a popular organism for the study of vertebrate gene function1,2. The virtually transparent embryos of this species, and the ability to accelerate genetic studies by gene knockdown or overexpression, have led to the widespread use of zebrafish in the detailed investigation of vertebrate gene function and increasingly, the study of human genetic disease3–5. However, for effective modelling of human genetic disease it is important to understand the extent to which zebrafish genes and gene structures are related to orthologous human genes. To examine this, we generated a high-quality sequence assembly of the zebrafish genome, made up of an overlapping set of completely sequenced large-insert clones that were ordered and oriented using a high-resolution high-density meiotic map. Detailed automatic and manual annotation provides evidence of more than 26,000 protein-coding genes6, the largest gene set of any vertebrate so far sequenced. Comparison to the human reference genome shows that approximately 70% of human genes have at least one obvious zebrafish orthologue. In addition, the high quality of this genome assembly provides a clearer understanding of key genomic features such as a unique repeat content, a scarcity of pseudogenes, an enrichment of zebrafish-specific genes on chromosome 4 and chromosomal regions that influence sex determination. PMID:23594743

  1. Detection of genomic imbalances in microdissected Hodgkin and Reed-Sternberg cells of classical Hodgkin's lymphoma by array-based comparative genomic hybridization.

    Science.gov (United States)

    Hartmann, Sylvia; Martin-Subero, José I; Gesk, Stefan; Hüsken, Julia; Giefing, Maciej; Nagel, Inga; Riemke, Jennifer; Chott, Andreas; Klapper, Wolfram; Parrens, Marie; Merlio, Jean-Philippe; Küppers, Ralf; Bräuninger, Andreas; Siebert, Reiner; Hansmann, Martin-Leo

    2008-09-01

    Cytogenetic analysis of classical Hodgkin's lymphoma is limited by the low content of the neoplastic Hodgkin-Reed-Sternberg cells in the affected tissues. However, available cytogenetic data point to an extreme karyotype complexity. To obtain insights into chromosomal imbalances in classical Hodgkin's lymphoma, we applied array-based comparative genomic hybridization (array comparative genomic hybridization) using DNA from microdissected Hodgkin-Reed-Sternberg cells. To avoid biases introduced by DNA amplification for array comparative genomic hybridization, cHL cases rich in Hodgkin-Reed-Sternberg cells were selected. DNA obtained from approximately 100,000 microdissected Hodgkin-Reed-Sternberg cells of each of ten classical Hodgkin's lymphoma cases was hybridized onto commercial 105 K oligonucleotide comparative genomic hybridization microarrays. Selected imbalances were confirmed by interphase cytogenetics and quantitative polymerase chain reaction analysis and further studied in an independent series of classical Hodgkin's lymphoma. Gains identified in at least five cHL affected 2p12-16, 5q15-23, 6p22, 8q13, 8q24, 9p21-24, 9q34, 12q13-14, 17q12, 19p13, 19q13 and 20q11 whereas losses recurrent in at least five cases involved Xp21, 6q23-24 and 13q22. Copy number changes of selected genes and a small deletion (156 kb) of the CDKN2B (p15) gene were confirmed by interphase cytogenetics and polymerase chain reaction analysis, respectively. Several gained regions included genes constitutively expressed in cHL. Among these, gains of STAT6 (12q13), NOTCH1 (9q34) and JUNB (19p13) were present in additional cHL with the usual low Hodgkin-Reed-Sternberg cell content. The present study demonstrates that array comparative genomic hybridization of microdissected Hodgkin-Reed-Sternberg cells is suitable for identifying and characterizing chromosomal imbalances. Regions affected by genomic changes in Hodgkin-Reed-Sternberg cells recurrently include genes constitutively

  2. Forces shaping the fastest evolving regions in the human genome.

    Directory of Open Access Journals (Sweden)

    Katherine S Pollard

    2006-10-01

    Full Text Available Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202 genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements are dramatically changed in human but not in other primates, with seven times more substitutions in human than in chimp. The accelerated elements, and in particular the top five, show a strong bias for adenine and thymine to guanine and cytosine nucleotide changes and are disproportionately located in high recombination and high guanine and cytosine content environments near telomeres, suggesting either biased gene conversion or isochore selection. In addition, there is some evidence of directional selection in the regions containing the two most accelerated regions. A combination of evolutionary forces has contributed to accelerated evolution of the fastest evolving elements in the human genome.

  3. Genomics and the Ark: an ecocentric perspective on human history.

    Science.gov (United States)

    Zwart, Hub; Penders, Bart

    2011-01-01

    Views of ourselves in relationship to the rest of the biosphere are changing. Theocentric and anthropocentric perspectives are giving way to more ecocentric views on the history, present, and future of humankind. Novel sciences, such as genomics, have deepened and broadened our understanding of the process of anthropogenesis, the coming into being of humans. Genomics suggests that early human history must be regarded as a complex narrative of evolving ecosystems, in which human evolution both influenced and was influenced by the evolution of companion species. During the agricultural revolution, human beings designed small-scale artificial ecosystems or evolutionary "Arks," in which networks of plants, animals, and microorganisms coevolved. Currently, our attitude towards this process seems subject to a paradoxical reversal. The boundaries of the Ark have dramatically broadened, and genomics is not only being used to increase our understanding of our ecological past, but may also help us to conserve, reconstruct, or even revivify species and ecosystems to whose degradation or (near) extinction we have contributed. This article explores the role of genomics in the elaboration of a more ecocentric view of ourselves with the help of two examples, namely the renaissance of Paleolithic diets and of Pleistocene parks. It argues that an understanding of the world in ecocentric terms requires new partnerships and mutually beneficial forms of collaboration and convergence between life sciences, social sciences, and the humanities.

  4. Combining two technologies for full genome sequencing of human.

    Science.gov (United States)

    Skryabin, K G; Prokhortchouk, E B; Mazur, A M; Boulygina, E S; Tsygankova, S V; Nedoluzhko, A V; Rastorguev, S M; Matveev, V B; Chekanov, N N; D A, Goranskaya; Teslyuk, A B; Gruzdeva, N M; Velikhov, V E; Zaridze, D G; Kovalchuk, M V

    2009-10-01

    At present, the new technologies of DNA sequencing are rapidly developing allowing quick and efficient characterisation of organisms at the level of the genome structure. In this study, the whole genome sequencing of a human (Russian man) was performed using two technologies currently present on the market - Sequencing by Oligonucleotide Ligation and Detection (SOLiD™) (Applied Biosystems) and sequencing technologies of molecular clusters using fluorescently labeled precursors (Illumina). The total number of generated data resulted in 108.3 billion base pairs (60.2 billion from Illumina technology and 48.1 billion from SOLiD technology). Statistics performed on reads generated by GAII and SOLiD showed that they covered 75% and 96% of the genome respectively. Short polymorphic regions were detected with comparable accuracy however, the absolute amount of them revealed by SOLiD was several times less than by GAII. Optimal algorithm for using the latest methods of sequencing was established for the analysis of individual human genomes. The study is the first Russian effort towards whole human genome sequencing.

  5. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan

    2014-01-01

    mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost......BACKGROUND: Structural variants (SVs) are less common than single nucleotide polymorphisms and indels in the population, but collectively account for a significant fraction of genetic polymorphism and diseases. Base pair differences arising from SVs are on a much higher order (>100 fold) than point...... mapping technology as a comprehensive and cost-effective method for detecting structural variation and studying complex regions in the human genome, as well as deciphering viral integration into the host genome....

  6. Data mining and the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Abarbanel, Henry [The MITRE Corporation, McLean, VA (US). JASON Program Office; Callan, Curtis [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dally, William [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, Freeman [The MITRE Corporation, McLean, VA (US). JASON Program Office; Hwa, Terence [The MITRE Corporation, McLean, VA (US). JASON Program Office; Koonin, Steven [The MITRE Corporation, McLean, VA (US). JASON Program Office; Levine, Herbert [The MITRE Corporation, McLean, VA (US). JASON Program Office; Rothaus, Oscar [The MITRE Corporation, McLean, VA (US). JASON Program Office; Schwitters, Roy [The MITRE Corporation, McLean, VA (US). JASON Program Office; Stubbs, Christopher [The MITRE Corporation, McLean, VA (US). JASON Program Office; Weinberger, Peter [The MITRE Corporation, McLean, VA (US). JASON Program Office

    2000-01-07

    As genomics research moves from an era of data acquisition to one of both acquisition and interpretation, new methods are required for organizing and prioritizing the data. These methods would allow an initial level of data analysis to be carried out before committing resources to a particular genetic locus. This JASON study sought to delineate the main problems that must be faced in bioinformatics and to identify information technologies that can help to overcome those problems. While the current influx of data greatly exceeds what biologists have experienced in the past, other scientific disciplines and the commercial sector have been handling much larger datasets for many years. Powerful datamining techniques have been developed in other fields that, with appropriate modification, could be applied to the biological sciences.

  7. ENGINES: exploring single nucleotide variation in entire human genomes

    Directory of Open Access Journals (Sweden)

    Salas Antonio

    2011-04-01

    Full Text Available Abstract Background Next generation ultra-sequencing technologies are starting to produce extensive quantities of data from entire human genome or exome sequences, and therefore new software is needed to present and analyse this vast amount of information. The 1000 Genomes project has recently released raw data for 629 complete genomes representing several human populations through their Phase I interim analysis and, although there are certain public tools available that allow exploration of these genomes, to date there is no tool that permits comprehensive population analysis of the variation catalogued by such data. Description We have developed a genetic variant site explorer able to retrieve data for Single Nucleotide Variation (SNVs, population by population, from entire genomes without compromising future scalability and agility. ENGINES (ENtire Genome INterface for Exploring SNVs uses data from the 1000 Genomes Phase I to demonstrate its capacity to handle large amounts of genetic variation (>7.3 billion genotypes and 28 million SNVs, as well as deriving summary statistics of interest for medical and population genetics applications. The whole dataset is pre-processed and summarized into a data mart accessible through a web interface. The query system allows the combination and comparison of each available population sample, while searching by rs-number list, chromosome region, or genes of interest. Frequency and FST filters are available to further refine queries, while results can be visually compared with other large-scale Single Nucleotide Polymorphism (SNP repositories such as HapMap or Perlegen. Conclusions ENGINES is capable of accessing large-scale variation data repositories in a fast and comprehensive manner. It allows quick browsing of whole genome variation, while providing statistical information for each variant site such as allele frequency, heterozygosity or FST values for genetic differentiation. Access to the data mart

  8. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer

    Directory of Open Access Journals (Sweden)

    Kenter Gemma G

    2007-02-01

    Full Text Available Abstract Background Cervical carcinoma develops as a result of multiple genetic alterations. Different studies investigated genomic alterations in cervical cancer mainly by means of metaphase comparative genomic hybridization (mCGH and microsatellite marker analysis for the detection of loss of heterozygosity (LOH. Currently, high throughput methods such as array comparative genomic hybridization (array CGH, single nucleotide polymorphism array (SNP array and gene expression arrays are available to study genome-wide alterations. Integration of these 3 platforms allows detection of genomic alterations at high resolution and investigation of an association between copy number changes and expression. Results Genome-wide copy number and genotype analysis of 10 cervical cancer cell lines by array CGH and SNP array showed highly complex large-scale alterations. A comparison between array CGH and SNP array revealed that the overall concordance in detection of the same areas with copy number alterations (CNA was above 90%. The use of SNP arrays demonstrated that about 75% of LOH events would not have been found by methods which screen for copy number changes, such as array CGH, since these were LOH events without CNA. Regions frequently targeted by CNA, as determined by array CGH, such as amplification of 5p and 20q, and loss of 8p were confirmed by fluorescent in situ hybridization (FISH. Genome-wide, we did not find a correlation between copy-number and gene expression. At chromosome arm 5p however, 22% of the genes were significantly upregulated in cell lines with amplifications as compared to cell lines without amplifications, as measured by gene expression arrays. For 3 genes, SKP2, ANKH and TRIO, expression differences were confirmed by quantitative real-time PCR (qRT-PCR. Conclusion This study showed that copy number data retrieved from either array CGH or SNP array are comparable and that the integration of genome-wide LOH, copy number and gene

  9. Identification of copy number variants defining genomic differences among major human groups.

    Directory of Open Access Journals (Sweden)

    Lluís Armengol

    Full Text Available BACKGROUND: Understanding the genetic contribution to phenotype variation of human groups is necessary to elucidate differences in disease predisposition and response to pharmaceutical treatments in different human populations. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the genome-wide profile of structural variation on pooled samples from the three populations studied in the HapMap project by comparative genome hybridization (CGH in different array platforms. We have identified and experimentally validated 33 genomic loci that show significant copy number differences from one population to the other. Interestingly, we found an enrichment of genes related to environment adaptation (immune response, lipid metabolism and extracellular space within these regions and the study of expression data revealed that more than half of the copy number variants (CNVs translate into gene-expression differences among populations, suggesting that they could have functional consequences. In addition, the identification of single nucleotide polymorphisms (SNPs that are in linkage disequilibrium with the copy number alleles allowed us to detect evidences of population differentiation and recent selection at the nucleotide variation level. CONCLUSIONS: Overall, our results provide a comprehensive view of relevant copy number changes that might play a role in phenotypic differences among major human populations, and generate a list of interesting candidates for future studies.

  10. Targets of balancing selection in the human genome

    DEFF Research Database (Denmark)

    Andrés, Aida M; Hubisz, Melissa J; Indap, Amit

    2009-01-01

    to maintaining phenotypic variation in natural populations. Nevertheless, its prevalence and specific targets in the human genome remain largely unknown. We have analyzed the patterns of diversity and divergence of 13,400 genes in two human populations using an unbiased single-nucleotide polymorphism data set......, a genome-wide approach, and a method that incorporates demography in neutrality tests. We identified an unbiased catalog of genes with signatures of long-term balancing selection, which includes immunity genes as well as genes encoding keratins and membrane channels; the catalog also shows enrichment...... in functional categories involved in cellular structure. Patterns are mostly concordant in the two populations, with a small fraction of genes showing population-specific signatures of selection. Power considerations indicate that our findings represent a subset of all targets in the genome, suggesting...

  11. An integrated encyclopedia of DNA elements in the human genome.

    Science.gov (United States)

    2012-09-01

    The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.

  12. Evolutionary forces shaping genomic islands of population differentiation in humans

    Directory of Open Access Journals (Sweden)

    Hofer Tamara

    2012-03-01

    Full Text Available Abstract Background Levels of differentiation among populations depend both on demographic and selective factors: genetic drift and local adaptation increase population differentiation, which is eroded by gene flow and balancing selection. We describe here the genomic distribution and the properties of genomic regions with unusually high and low levels of population differentiation in humans to assess the influence of selective and neutral processes on human genetic structure. Methods Individual SNPs of the Human Genome Diversity Panel (HGDP showing significantly high or low levels of population differentiation were detected under a hierarchical-island model (HIM. A Hidden Markov Model allowed us to detect genomic regions or islands of high or low population differentiation. Results Under the HIM, only 1.5% of all SNPs are significant at the 1% level, but their genomic spatial distribution is significantly non-random. We find evidence that local adaptation shaped high-differentiation islands, as they are enriched for non-synonymous SNPs and overlap with previously identified candidate regions for positive selection. Moreover there is a negative relationship between the size of islands and recombination rate, which is stronger for islands overlapping with genes. Gene ontology analysis supports the role of diet as a major selective pressure in those highly differentiated islands. Low-differentiation islands are also enriched for non-synonymous SNPs, and contain an overly high proportion of genes belonging to the 'Oncogenesis' biological process. Conclusions Even though selection seems to be acting in shaping islands of high population differentiation, neutral demographic processes might have promoted the appearance of some genomic islands since i as much as 20% of islands are in non-genic regions ii these non-genic islands are on average two times shorter than genic islands, suggesting a more rapid erosion by recombination, and iii most loci are

  13. MIR retrotransposon sequences provide insulators to the human genome.

    Science.gov (United States)

    Wang, Jianrong; Vicente-García, Cristina; Seruggia, Davide; Moltó, Eduardo; Fernandez-Miñán, Ana; Neto, Ana; Lee, Elbert; Gómez-Skarmeta, José Luis; Montoliu, Lluís; Lunyak, Victoria V; Jordan, I King

    2015-08-11

    Insulators are regulatory elements that help to organize eukaryotic chromatin via enhancer-blocking and chromatin barrier activity. Although there are several examples of transposable element (TE)-derived insulators, the contribution of TEs to human insulators has not been systematically explored. Mammalian-wide interspersed repeats (MIRs) are a conserved family of TEs that have substantial regulatory capacity and share sequence characteristics with tRNA-related insulators. We sought to evaluate whether MIRs can serve as insulators in the human genome. We applied a bioinformatic screen using genome sequence and functional genomic data from CD4(+) T cells to identify a set of 1,178 predicted MIR insulators genome-wide. These predicted MIR insulators were computationally tested to serve as chromatin barriers and regulators of gene expression in CD4(+) T cells. The activity of predicted MIR insulators was experimentally validated using in vitro and in vivo enhancer-blocking assays. MIR insulators are enriched around genes of the T-cell receptor pathway and reside at T-cell-specific boundaries of repressive and active chromatin. A total of 58% of the MIR insulators predicted here show evidence of T-cell-specific chromatin barrier and gene regulatory activity. MIR insulators appear to be CCCTC-binding factor (CTCF) independent and show a distinct local chromatin environment with marked peaks for RNA Pol III and a number of histone modifications, suggesting that MIR insulators recruit transcriptional complexes and chromatin modifying enzymes in situ to help establish chromatin and regulatory domains in the human genome. The provisioning of insulators by MIRs across the human genome suggests a specific mechanism by which TE sequences can be used to modulate gene regulatory networks.

  14. Enhancing Biology Instruction with the Human Genome Project

    Science.gov (United States)

    Buxeda, Rosa J.; Moore-Russo, Deborah A.

    2003-01-01

    The Human Genome Project (HGP) is a recent scientific milestone that has received notable attention. This article shows how a biology course is using the HGP to enhance students' experiences by providing awareness of cutting edge research, with information on new emerging career options, and with opportunities to consider ethical questions raised…

  15. The Human Genome Project: Biology, Computers, and Privacy.

    Science.gov (United States)

    Cutter, Mary Ann G.; Drexler, Edward; Gottesman, Kay S.; Goulding, Philip G.; McCullough, Laurence B.; McInerney, Joseph D.; Micikas, Lynda B.; Mural, Richard J.; Murray, Jeffrey C.; Zola, John

    This module, for high school teachers, is the second of two modules about the Human Genome Project (HGP) produced by the Biological Sciences Curriculum Study (BSCS). The first section of this module provides background information for teachers about the structure and objectives of the HGP, aspects of the science and technology that underlie the…

  16. Human Genome Project and cystic fibrosis--a symbiotic relationship.

    Science.gov (United States)

    Tolstoi, L G; Smith, C L

    1999-11-01

    When Watson and Crick determined the structure of DNA in 1953, a biological revolution began. One result of this revolution is the Human Genome Project. The primary goal of this international project is to obtain the complete nucleotide sequence of the human genome by the year 2005. Although molecular biologists and geneticists are most enthusiastic about the Human Genome Project, all areas of clinical medicine and fields of biology will be affected. Cystic fibrosis is the most common, inherited, lethal disease of white persons. In 1989, researchers located the cystic fibrosis gene on the long arm of chromosome 7 by a technique known as positional cloning. The most common mutation (a 3-base pair deletion) of the cystic fibrosis gene occurs in 70% of patients with cystic fibrosis. The knowledge gained from genetic research on cystic fibrosis will help researchers develop new therapies (e.g., gene) and improve standard therapies (e.g., pharmacologic) so that a patient's life span is increased and quality of life is improved. The purpose of this review is twofold. First, the article provides an overview of the Human Genome Project and its clinical significance in advancing interdisciplinary care for patients with cystic fibrosis. Second, the article includes a discussion of the genetic basis, pathophysiology, and management of cystic fibrosis.

  17. DOE Human Genome Program contractor-grantee workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This volume contains the proceedings for the DOE Human Genome Program`s Contractor-Grantee Workshop V held in Sante Fe, New Mexico January 28, February 1, 1996. Presentations were divided into sessions entitled Sequencing; Mapping; Informatics; Ethical, Legal, and Social Issues; and Infrastructure. Reports of individual projects described herein are separately indexed and abstracted for the database.

  18. Human genome program report. Part 2, 1996 research abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  19. Templated sequence insertion polymorphisms in the human genome

    Science.gov (United States)

    Onozawa, Masahiro; Aplan, Peter

    2016-11-01

    Templated Sequence Insertion Polymorphism (TSIP) is a recently described form of polymorphism recognized in the human genome, in which a sequence that is templated from a distant genomic region is inserted into the genome, seemingly at random. TSIPs can be grouped into two classes based on nucleotide sequence features at the insertion junctions; Class 1 TSIPs show features of insertions that are mediated via the LINE-1 ORF2 protein, including 1) target-site duplication (TSD), 2) polyadenylation 10-30 nucleotides downstream of a “cryptic” polyadenylation signal, and 3) preference for insertion at a 5’-TTTT/A-3’ sequence. In contrast, class 2 TSIPs show features consistent with repair of a DNA double-strand break via insertion of a DNA “patch” that is derived from a distant genomic region. Survey of a large number of normal human volunteers demonstrates that most individuals have 25-30 TSIPs, and that these TSIPs track with specific geographic regions. Similar to other forms of human polymorphism, we suspect that these TSIPs may be important for the generation of human diversity and genetic diseases.

  20. The human genome; you gain some, you lose some

    NARCIS (Netherlands)

    Kriek, Marjolein

    2007-01-01

    Copy number variations (CNVs) in the human genome are inherent in both evolutionary progression as well as the etiology of disease. The introduction of this thesis will review CNVs that appear to be neutral as well as CNVs that appear to be related to a phenotypic trait. This will be followed by a

  1. Reconsidering democracy - History of the human genome project

    NARCIS (Netherlands)

    Huijer, M

    What options are open for people-citizens, politicians, and other nonscientists-to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  2. Reconsidering democracy - History of the human genome project

    NARCIS (Netherlands)

    Huijer, M

    2003-01-01

    What options are open for people-citizens, politicians, and other nonscientists-to become actively involved in and anticipate new directions in the life sciences? In addressing this question, this article focuses on the start of the Human Genome Project (1985-1990). By contrasting various models of

  3. Human Genome Program Report. Part 2, 1996 Research Abstracts

    Science.gov (United States)

    1997-11-01

    This report contains Part 2 of a two-part report to reflect research and progress in the US Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 2 consists of 1996 research abstracts. Attention is focused on the following: sequencing; mapping; informatics; ethical, legal, and social issues; infrastructure; and small business innovation research.

  4. Human Genome Program Report. Part 1, Overview and Progress

    Science.gov (United States)

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  5. Human genome program report. Part 1, overview and progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report contains Part 1 of a two-part report to reflect research and progress in the U.S. Department of Energy Human Genome Program from 1994 through 1996, with specified updates made just before publication. Part 1 consists of the program overview and report on progress.

  6. 78 FR 55752 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-09-11

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; Clinical Sites for..., Scientific Review Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC...

  7. 76 FR 28056 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-05-13

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed....), notice is hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research... individual intramural programs and projects conducted by the National Human Genome Research...

  8. 76 FR 35224 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, PhD, Scientific Review Officer, CIR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  9. 76 FR 5390 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-31

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... privacy. Place: National Human Genome Research Institute Special Emphasis Panel; NHGRI Sample Repository..., National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville, MD...

  10. 77 FR 58402 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-09-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; R25 DAP Sept. 2012...: National Human Genome Research Institute, 5635 Fishers Lane, 3rd Floor Conference Room, Rockville, MD...

  11. 75 FR 62548 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-10-12

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed..., PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes... . Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  12. 76 FR 22112 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-04-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, Special Emphasis Panel... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: April...

  13. 76 FR 19780 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-04-08

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... Officer, CIDR, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane... Assistance Program No. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: April...

  14. 75 FR 80509 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-12-22

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed..., PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes..., Human Genome Research, National Institutes of Health, HHS) Dated: December 16, 2010. Jennifer S....

  15. 77 FR 8268 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-02-14

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...:30 a.m. to 1 p.m. Agenda: To review and evaluate grant applications. Place: National Human Genome...). Contact Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome...

  16. 77 FR 20646 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-04-05

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; Loan Repayment Program...: National Human Genome Research Institute, 5635 Fishers Lane, 3rd Floor Conference Room, Rockville, MD...

  17. 77 FR 59933 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-10-01

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; ELSI CEERS RFA (SEP... Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville,...

  18. 76 FR 66731 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-27

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, DAP for CEGS-SEP. Date...@mail.nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  19. 76 FR 66076 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-25

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National..., Human Genome Research, National Institutes of Health, HHS) Dated: October 19, 2011. Jennifer S....

  20. 77 FR 64816 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-10-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  1. 78 FR 56905 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-09-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; H3AFRICA ELSI Research.... Place: National Human Genome Research Institute, Suite 3055, 5635 Fishers Lane, Rockville, MD...

  2. 78 FR 77477 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-12-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  3. 76 FR 9031 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-02-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed..., PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  4. 75 FR 13558 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-03-22

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed....), notice is hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research... individual intramural programs and projects conducted by the National Human Genome Research...

  5. 75 FR 8977 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-26

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome Research...-402-0838. (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  6. 75 FR 2147 - National Human Genome Research Institute; Notice of Meetings

    Science.gov (United States)

    2010-01-14

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of....), notice is hereby given of meetings of the National Advisory Council for Human Genome Research. The... of Committee: National Advisory Council for Human Genome Research. Date: February 8-9, 2010....

  7. 77 FR 35991 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-06-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  8. 78 FR 31953 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-05-28

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; SEP-UDN Coordinating... applications. Place: National Human Genome Research Institute, 3rd Floor Conference Room, 3146, 5635...

  9. 75 FR 67380 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-11-02

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Ken D. Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome... Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: October 26,...

  10. 75 FR 19984 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2010-04-16

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: Camilla E. Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers...

  11. 78 FR 11898 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-02-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, Ph.D., Scientific Review Officer CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  12. 78 FR 70063 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-11-22

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed....), notice is hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research... individual intramural programs and projects conducted by the NATIONAL HUMAN GENOME RESEARCH...

  13. 76 FR 36930 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-06-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, DAP R-25. Date: July...@mail.nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  14. 75 FR 8373 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-24

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, GWAS Comparing Design... of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  15. 75 FR 60467 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2010-09-30

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research Institute... intramural programs and projects conducted by the National Human Genome Research Institute,...

  16. 78 FR 47715 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-08-06

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...., Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes of Health... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health,...

  17. 76 FR 50486 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-08-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  18. 76 FR 10909 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-02-28

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Nakamura, PhD, Scientific Review Officer, Scientific Review Branch, National Human Genome Research...-402-0838. (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  19. 77 FR 50140 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-08-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  20. 76 FR 17930 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-03-31

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... privacy. Name of Committee: National Human Genome Research Institute Special Emphasis Panel; Genetic... Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville,...

  1. 77 FR 2304 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2012-01-17

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... given that the National Human Genome Research Institute (NHGRI) will host a series of meetings to enable... for Human Genome Research. Background materials on the proposed reorganization and...

  2. 77 FR 2735 - National Human Genome Research Institute; Notice of Meetings

    Science.gov (United States)

    2012-01-19

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of....), notice is hereby given of meetings of the National Advisory Council for Human Genome Research. The... of Committee: National Advisory Council for Human Genome Research. Date: February 13-14, 2012....

  3. 78 FR 9707 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-02-11

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; H3Africa (RM-006, RM... Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville, MD 20852, (301)...

  4. 77 FR 22332 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-04-13

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, H3Africa Biorepository... applications. Place: National Human Genome Research Institute, 5635 Fishers Lane, 4076, Rockville, MD...

  5. 77 FR 74676 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-12-17

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... Person: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute...@nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome...

  6. 77 FR 12604 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-03-01

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... >Name of Committee: National Human Genome Research Institute Special Emphasis Panel, CIDR Contract. Date...: National Human Genome Reseach Institute, 5635 Fishers Lane, Room 4076, Rockville, MD 20852,...

  7. 78 FR 21382 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-04-10

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...:00 p.m. to 4:00 p.m. Agenda: To review and evaluate grant applications. Place: National Human Genome... Person: Camilla E. Day, PhD., Scientific Review Officer, CIDR, National Human Genome Research...

  8. 75 FR 56115 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-09-15

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; CEGS DAP. Date... Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS) Dated: September...

  9. 75 FR 48977 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-08-12

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed.... Day, PhD, Scientific Review Officer, CIDR, National Human Genome Research Institute, National... . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  10. 76 FR 65204 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2011-10-20

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research Institute... intramural programs and projects conducted by the National Human Genome Research Institute,...

  11. 77 FR 31863 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-05-30

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel DAP R25 Eppig.... (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  12. 77 FR 71604 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-12-03

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel. Date: January 11, 2013..., National Human Genome Research Institute, National Institutes of Health, 5635 Fishers Lane, Suite 4076,...

  13. 75 FR 46951 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2010-08-04

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... hereby given of a meeting of the National Advisory Council for Human Genome Research. The meeting will be...: National Advisory Council for Human Genome Research. Date: September 13-14, 2010. Open: September 13,...

  14. 78 FR 107 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-01-02

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...: National Human Genome Research Institute, 3rd Floor Conference Room, 5635 Fishers Lane, Rockville, MD 20851... Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635 Fishers...

  15. 75 FR 32957 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-10

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, Protein Resource RFA... of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes...

  16. 75 FR 44800 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-07-29

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed....), notice is hereby given of a meeting of the National Advisory Council for Human Genome Research. The... Call). Contact Person: Mark S. Guyer, Director for Extramural Research, National Human Genome...

  17. 77 FR 64816 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2012-10-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... hereby given of a meeting of the Board of Scientific Counselors, National Human Genome Research Institute... intramural programs and projects conducted by the National Human Genome Research Institute,...

  18. 76 FR 22407 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-04-21

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; Loan Repayment Program....172, Human Genome Research, National Institutes of Health, HHS) Dated: April 12, 2011. Jennifer...

  19. 76 FR 79199 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-12-21

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed...., Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes of Health... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health,...

  20. 77 FR 6810 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-02-09

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; CIDR Contract Renewal... Branch, National Human Genome Research Institute, 5635 Fishers Lane, Suite 4076, MSC 9306, Rockville,...

  1. 75 FR 35821 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed..., Scientific Review Officer, CIDR, National Human Genome Research Institute, National Institutes of Health... Federal Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health,...

  2. Human Cancer Models Initiative | Office of Cancer Genomics

    Science.gov (United States)

    The Human Cancer Models Initiative (HCMI) is an international consortium that is generating novel human tumor-derived culture models, which are annotated with genomic and clinical data. In an effort to advance cancer research and more fully understand how in vitro findings are related to clinical biology, HCMI-developed models and related data will be available as a community resource for cancer research.

  3. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA

    Directory of Open Access Journals (Sweden)

    Chan Alan

    2006-06-01

    Full Text Available Abstract Background Current methods for measurement of copy number do not combine all the desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH we aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform from PamGene International. In this new method, electrophoretic analysis of amplified products is replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is that discrimination of amplified probes is based on sequence and not fragment length. Results In this study we showed that microarray MAPH measurement of PMP22 gene dosage correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have Charcot-Marie-Tooth disease type 1A (CMT1A. Conclusion Measurement of microarray-based endpoints for MAPH appears to be of comparable accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes with a large number of exons, or of expanded sets of probes from dispersed genomic locations.

  4. Evolution and genomics of the human brain.

    Science.gov (United States)

    Rosales-Reynoso, M A; Juárez-Vázquez, C I; Barros-Núñez, P

    2015-08-21

    Most living beings are able to perform actions that can be considered intelligent or, at the very least, the result of an appropriate reaction to changing circumstances in their environment. However, the intelligence or intellectual processes of humans are vastly superior to those achieved by all other species. The adult human brain is a highly complex organ weighing approximately 1500g, which accounts for only 2% of the total body weight but consumes an amount of energy equal to that required by all skeletal muscle at rest. Although the human brain displays a typical primate structure, it can be identified by its specific distinguishing features. The process of evolution and humanisation of the Homo sapiens brain resulted in a unique and distinct organ with the largest relative volume of any animal species. It also permitted structural reorganization of tissues and circuits in specific segments and regions. These steps explain the remarkable cognitive abilities of modern humans compared not only with other species in our genus, but also with older members of our own species. Brain evolution required the coexistence of two adaptation mechanisms. The first involves genetic changes that occur at the species level, and the second occurs at the individual level and involves changes in chromatin organisation or epigenetic changes. The genetic mechanisms include: a) genetic changes in coding regions that lead to changes in the sequence and activity of existing proteins; b) duplication and deletion of previously existing genes; c) changes in gene expression through changes in the regulatory sequences of different genes; and d) synthesis of non-coding RNAs. Lastly, this review describes some of the main documented chromosomal differences between humans and great apes. These differences have also contributed to the evolution and humanisation process of the H. sapiens brain. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights

  5. Development of a 690 K SNP array in catfish and its application for genetic mapping and validation of the reference genome sequence

    Science.gov (United States)

    Zeng, Qifan; Fu, Qiang; Li, Yun; Waldbieser, Geoff; Bosworth, Brian; Liu, Shikai; Yang, Yujia; Bao, Lisui; Yuan, Zihao; Li, Ning; Liu, Zhanjiang

    2017-01-01

    Single nucleotide polymorphisms (SNPs) are capable of providing the highest level of genome coverage for genomic and genetic analysis because of their abundance and relatively even distribution in the genome. Such a capacity, however, cannot be achieved without an efficient genotyping platform such as SNP arrays. In this work, we developed a high-density SNP array with 690,662 unique SNPs (herein 690 K array) that were relatively evenly distributed across the entire genome, and covered 98.6% of the reference genome sequence. Here we also report linkage mapping using the 690 K array, which allowed mapping of over 250,000 SNPs on the linkage map, the highest marker density among all the constructed linkage maps. These markers were mapped to 29 linkage groups (LGs) with 30,591 unique marker positions. This linkage map anchored 1,602 scaffolds of the reference genome sequence to LGs, accounting for over 97% of the total genome assembly. A total of 1,007 previously unmapped scaffolds were placed to LGs, allowing validation and in few instances correction of the reference genome sequence assembly. This linkage map should serve as a valuable resource for various genetic and genomic analyses, especially for GWAS and QTL mapping for genes associated with economically important traits. PMID:28079141

  6. Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite

    Science.gov (United States)

    2011-01-01

    Background Blastocystis is a highly prevalent anaerobic eukaryotic parasite of humans and animals that is associated with various gastrointestinal and extraintestinal disorders. Epidemiological studies have identified different subtypes but no one subtype has been definitively correlated with disease. Results Here we report the 18.8 Mb genome sequence of a Blastocystis subtype 7 isolate, which is the smallest stramenopile genome sequenced to date. The genome is highly compact and contains intriguing rearrangements. Comparisons with other available stramenopile genomes (plant pathogenic oomycete and diatom genomes) revealed effector proteins potentially involved in the adaptation to the intestinal environment, which were likely acquired via horizontal gene transfer. Moreover, Blastocystis living in anaerobic conditions harbors mitochondria-like organelles. An incomplete oxidative phosphorylation chain, a partial Krebs cycle, amino acid and fatty acid metabolisms and an iron-sulfur cluster assembly are all predicted to occur in these organelles. Predicted secretory proteins possess putative activities that may alter host physiology, such as proteases, protease-inhibitors, immunophilins and glycosyltransferases. This parasite also possesses the enzymatic machinery to tolerate oxidative bursts resulting from its own metabolism or induced by the host immune system. Conclusions This study provides insights into the genome architecture of this unusual stramenopile. It also proposes candidate genes with which to study the physiopathology of this parasite and thus may lead to further investigations into Blastocystis-host interactions. PMID:21439036

  7. Analysis of copy number variation in the rhesus macaque genome identifies candidate loci for evolutionary and human disease studies.

    Science.gov (United States)

    Lee, Arthur S; Gutiérrez-Arcelus, María; Perry, George H; Vallender, Eric J; Johnson, Welkin E; Miller, Gregory M; Korbel, Jan O; Lee, Charles

    2008-04-15

    Copy number variants (CNVs) are heritable gains and losses of genomic DNA in normal individuals. While copy number variation is widely studied in humans, our knowledge of CNVs in other mammalian species is more limited. We have designed a custom array-based comparative genomic hybridization (aCGH) platform with 385 000 oligonucleotide probes based on the reference genome sequence of the rhesus macaque (Macaca mulatta), the most widely studied non-human primate in biomedical research. We used this platform to identify 123 CNVs among 10 unrelated macaque individuals, with 24% of the CNVs observed in multiple individuals. We found that segmental duplications were significantly enriched at macaque CNV loci. We also observed significant overlap between rhesus macaque and human CNVs, suggesting that certain genomic regions are prone to recurrent CNV formation and instability, even across a total of approximately 50 million years of primate evolution ( approximately 25 million years in each lineage). Furthermore, for eight of the CNVs that were observed in both humans and macaques, previous human studies have reported a relationship between copy number and gene expression or disease susceptibility. Therefore, the rhesus macaque offers an intriguing, non-human primate outbred model organism with which hypotheses concerning the specific functions of phenotypically relevant human CNVs can be tested.

  8. Specificity of the Linear Array HPV Genotyping Test for detecting human papillomavirus genotype 52 (HPV-52)

    OpenAIRE

    Kocjan, Boštjan; Poljak, Mario; Oštrbenk, Anja

    2015-01-01

    Introduction: HPV-52 is one of the most frequent human papillomavirus (HPV) genotypes causing significant cervical pathology. The most widely used HPV genotyping assay, the Roche Linear Array HPV Genotyping Test (Linear Array), is unable to identify HPV- 52 status in samples containing HPV-33, HPV-35, and/or HPV-58. Methods: Linear Array HPV-52 analytical specificity was established by testing 100 specimens reactive with the Linear Array HPV- 33/35/52/58 cross-reactive probe, but not with the...

  9. Chromosomal Aberrations in ETV6/RUNX1-positive Childhood Acute Lymphoblastic Leukemia using 244K Oligonucleotide Array Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Zakaria Zubaidah

    2012-11-01

    Full Text Available Abstract Background Acute lymphoblastic leukemia (ALL is a heterogeneous form of hematological cancer consisting of various subtypes. We are interested to study the genetic aberration in precursor B-cell ALL with specific t(12;21 translocation in childhood ALL patients. A high resolution 244K array-based Comparative Genomic Hybridization (array-CGH was used to study eleven ETV6/RUNX1-positive childhood acute lymphoblastic leukemia (ALL patients. Result 155 chromosomal aberrations (119 losses, 36 gains were reported in the array findings, corresponding to 76.8% deletions and 23.2% amplifications. The ETV6 gene deletion occurred in 4 of the patients, corresponding to 45% of the sample. The most common alterations above 1 Mb were deletion 6q (13%, 12p (12% and 9p (8%, and duplication 4q (6% and Xq (4%. Other genes important in ALL were also identified in this study including RUNX1, CDKN2A, FHIT, and PAX5. The array-CGH technique was able to detect microdeletion as small as 400 bp. Conclusion The results demonstrate the usefulness of high resolution array-CGH as a complementary tool in the investigation of ALL.

  10. Genomic responses in mouse models poorly mimic human inflammatory diseases.

    Science.gov (United States)

    Seok, Junhee; Warren, H Shaw; Cuenca, Alex G; Mindrinos, Michael N; Baker, Henry V; Xu, Weihong; Richards, Daniel R; McDonald-Smith, Grace P; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C; López, Cecilia M; Honari, Shari; Moore, Ernest E; Minei, Joseph P; Cuschieri, Joseph; Bankey, Paul E; Johnson, Jeffrey L; Sperry, Jason; Nathens, Avery B; Billiar, Timothy R; West, Michael A; Jeschke, Marc G; Klein, Matthew B; Gamelli, Richard L; Gibran, Nicole S; Brownstein, Bernard H; Miller-Graziano, Carol; Calvano, Steve E; Mason, Philip H; Cobb, J Perren; Rahme, Laurence G; Lowry, Stephen F; Maier, Ronald V; Moldawer, Lyle L; Herndon, David N; Davis, Ronald W; Xiao, Wenzhong; Tompkins, Ronald G

    2013-02-26

    A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R(2) between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases.

  11. Genomic responses in mouse models poorly mimic human inflammatory diseases

    Science.gov (United States)

    Seok, Junhee; Warren, H. Shaw; Cuenca, Alex G.; Mindrinos, Michael N.; Baker, Henry V.; Xu, Weihong; Richards, Daniel R.; McDonald-Smith, Grace P.; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C.; López, Cecilia M.; Honari, Shari; Moore, Ernest E.; Minei, Joseph P.; Cuschieri, Joseph; Bankey, Paul E.; Johnson, Jeffrey L.; Sperry, Jason; Nathens, Avery B.; Billiar, Timothy R.; West, Michael A.; Jeschke, Marc G.; Klein, Matthew B.; Gamelli, Richard L.; Gibran, Nicole S.; Brownstein, Bernard H.; Miller-Graziano, Carol; Calvano, Steve E.; Mason, Philip H.; Cobb, J. Perren; Rahme, Laurence G.; Lowry, Stephen F.; Maier, Ronald V.; Moldawer, Lyle L.; Herndon, David N.; Davis, Ronald W.; Xiao, Wenzhong; Tompkins, Ronald G.; Abouhamze, Amer; Balis, Ulysses G. J.; Camp, David G.; De, Asit K.; Harbrecht, Brian G.; Hayden, Douglas L.; Kaushal, Amit; O’Keefe, Grant E.; Kotz, Kenneth T.; Qian, Weijun; Schoenfeld, David A.; Shapiro, Michael B.; Silver, Geoffrey M.; Smith, Richard D.; Storey, John D.; Tibshirani, Robert; Toner, Mehmet; Wilhelmy, Julie; Wispelwey, Bram; Wong, Wing H

    2013-01-01

    A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R2 between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases. PMID:23401516

  12. Inference of distant genetic relations in humans using "1000 genomes".

    Science.gov (United States)

    Al-Khudhair, Ahmed; Qiu, Shuhao; Wyse, Meghan; Chowdhury, Shilpi; Cheng, Xi; Bekbolsynov, Dulat; Saha-Mandal, Arnab; Dutta, Rajib; Fedorova, Larisa; Fedorov, Alexei

    2015-01-07

    Nucleotide sequence differences on the whole-genome scale have been computed for 1,092 people from 14 populations publicly available by the 1000 Genomes Project. Total number of differences in genetic variants between 96,464 human pairs has been calculated. The distributions of these differences for individuals within European, Asian, or African origin were characterized by narrow unimodal peaks with mean values of 3.8, 3.5, and 5.1 million, respectively, and standard deviations of 0.1-0.03 million. The total numbers of genomic differences between pairs of all known relatives were found to be significantly lower than their respective population means and in reverse proportion to the distance of their consanguinity. By counting the total number of genomic differences it is possible to infer familial relations for people that share down to 6% of common loci identical-by-descent. Detection of familial relations can be radically improved when only very rare genetic variants are taken into account. Counting of total number of shared very rare single nucleotide polymorphisms (SNPs) from whole-genome sequences allows establishing distant familial relations for persons with eighth and ninth degrees of relationship. Using this analysis we predicted 271 distant familial pairwise relations among 1,092 individuals that have not been declared by 1000 Genomes Project. Particularly, among 89 British and 97 Chinese individuals we found three British-Chinese pairs with distant genetic relationships. Individuals from these pairs share identical-by-descent DNA fragments that represent 0.001%, 0.004%, and 0.01% of their genomes. With affordable whole-genome sequencing techniques, very rare SNPs should become important genetic markers for familial relationships and population stratification. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Human genome education model project. Ethical, legal, and social implications of the human genome project: Education of interdisciplinary professionals

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, J.O. [Alliance of Genetic Support Groups, Chevy Chase, MD (United States); Lapham, E.V. [Georgetown Univ., Washington, DC (United States). Child Development Center

    1996-12-31

    This meeting was held June 10, 1996 at Georgetown University. The purpose of this meeting was to provide a multidisciplinary forum for exchange of state-of-the-art information on the human genome education model. Topics of discussion include the following: psychosocial issues; ethical issues for professionals; legislative issues and update; and education issues.

  14. A periodic pattern of SNPs in the human genome

    DEFF Research Database (Denmark)

    Madsen, Bo Eskerod; Villesen, Palle; Wiuf, Carsten

    2007-01-01

    or alignment errors, for example, transposable elements (SINE, LINE, and LTR), tandem repeats, and large duplicated regions. However, we found that the pattern is almost entirely confined to what we define as "periodic DNA." Periodic DNA is a genomic region with a high degree of periodicity in nucleotide usage...... periodic DNA. Our results suggest that not all SNPs in the human genome are created by independent single nucleotide mutations, and that care should be taken in analysis of SNPs from periodic DNA. The latter may have important consequences for SNP and association studies....

  15. Human genomics and microarrays: implications for the plastic surgeon.

    Science.gov (United States)

    Cole, Jana; Isik, Frank

    2002-09-01

    The Human Genome Project was launched in 1989 in an effort to sequence the entire span of human DNA. Although coding sequences are important in identifying mutations, the static order of DNA does not explain how a cell or organism may respond to normal and abnormal biological processes. By examining the mRNA content of a cell, researchers can determine which genes are being activated in response to a stimulus. Traditional methods in molecular biology generally work on a "one gene: one experiment" basis, which means that the throughput is very limited and the "whole picture" of gene function is hard to obtain. To study each of the 60,000 to 80,000 genes in the human genome under each biological circumstance is not practical. Recently, microarrays (also known as gene or DNA chips) have emerged; these allow for the simultaneous determination of expression for thousands of genes and analysis of genome-wide mRNA expression. The purpose of this article is twofold: first, to provide the clinical plastic surgeon with a working knowledge and understanding of the fields of genomics, microarrays, and bioinformatics and second, to present a case to illustrate how these technologies can be applied in the study of wound healing.

  16. Meta-basic estimates the size of druggable human genome.

    Science.gov (United States)

    Plewczynski, Dariusz; Rychlewski, Leszek

    2009-06-01

    We present here the estimation of the upper limit of the number of molecular targets in the human genome that represent an opportunity for further therapeutic treatment. We select around approximately 6300 human proteins that are similar to sequences of known protein targets collected from DrugBank database. Our bioinformatics study estimates the size of 'druggable' human genome to be around 20% of human proteome, i.e. the number of the possible protein targets for small-molecule drug design in medicinal chemistry. We do not take into account any toxicity prediction, the three-dimensional characteristics of the active site in the predicted 'druggable' protein families, or detailed chemical analysis of known inhibitors/drugs. Instead we rely on remote homology detection method Meta-BASIC, which is based on sequence and structural similarity. The prepared dataset of all predicted protein targets from human genome presents the unique opportunity for developing and benchmarking various in silico chemo/bio-informatics methods in the context of the virtual high throughput screening.

  17. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  18. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  19. Genomic structure of the human BCCIP gene and its expression in cancer.

    Science.gov (United States)

    Meng, Xiangbing; Liu, Jingmei; Shen, Zhiyuan

    2003-01-02

    Human BCCIPalpha (Tok-1alpha) is a BRCA2 and CDKN1A (Cip1, p21) interacting protein. Our previous studies have showed that overexpression of BCCIPalpha inhibits the growth of certain tumor cells [Oncogene 20 (2001) 336]. In this study, we report the genomic structure of the human BCCIP gene, which contains nine exons. Alternative splicing of the 3'-terminal exons produces two isoforms of BCCIP transcripts, BCCIPalpha and BCCIPbeta. The BCCIP gene is flanked by two genes that are transcribed in the opposite orientation of the BCCIP gene. It lies head-to-head and shares a bi-directional promoter with the uroporphyrinogen III synthase (UROS) gene. The last three exons of BCCIP gene overlap the 3'-terminal seven exons of a DEAD/H helicase-like gene (DDX32). Using a matched normal/tumor cDNA array, we identified a reduced expression of BCCIP in kidney tumor, suggesting a role of BCCIP in cancer etiology.

  20. A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control.

    Science.gov (United States)

    Bartha, István; Carlson, Jonathan M; Brumme, Chanson J; McLaren, Paul J; Brumme, Zabrina L; John, Mina; Haas, David W; Martinez-Picado, Javier; Dalmau, Judith; López-Galíndez, Cecilio; Casado, Concepción; Rauch, Andri; Günthard, Huldrych F; Bernasconi, Enos; Vernazza, Pietro; Klimkait, Thomas; Yerly, Sabine; O'Brien, Stephen J; Listgarten, Jennifer; Pfeifer, Nico; Lippert, Christoph; Fusi, Nicolo; Kutalik, Zoltán; Allen, Todd M; Müller, Viktor; Harrigan, P Richard; Heckerman, David; Telenti, Amalio; Fellay, Jacques

    2013-10-29

    HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (pgenome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host-pathogen interaction. DOI:http://dx.doi.org/10.7554/eLife.01123.001.

  1. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array--comparative genomic hybridization

    DEFF Research Database (Denmark)

    Isinger-Ekstrand, Anna; Johansson, Jan; Ohlsson, Mattias

    2010-01-01

    We aimed to characterize the genomic profiles of adenocarcinomas in the gastroesophageal junction in relation to cancers in the esophagus and the stomach. Profiles of gains/losses as well as gene expression profiles were obtained from 27 gastroesophageal adenocarcinomas by means of 32k high......15, 13q34, and 12q13, whereas different profiles with gains at 5p15, 7p22, 2q35, and 13q34 characterized gastric cancers. CDK6 and EGFR were identified as putative target genes in cancers of the esophagus and the gastroesophageal junction, with upregulation in one quarter of the tumors. Gains....../losses and gene expression profiles show strong similarity between cancers in the distal esophagus and the gastroesophageal junction with frequent upregulation of CDK6 and EGFR, whereas gastric cancer displays distinct genetic changes. These data suggest that molecular diagnostics and targeted therapies can...

  2. Novel Genomic Aberrations in Testicular Germ Cell Tumors by Array-CGH, and Associated Gene Expression Changes

    Directory of Open Access Journals (Sweden)

    Rolf I. Skotheim

    2006-01-01

    Full Text Available Introduction: Testicular germ cell tumors of adolescent and young adult men (TGCTs generally have near triploid and complex karyotypes. The actual genes driving the tumorigenesis remain essentially to be identified. Materials and Methods: To determine the detailed DNA copy number changes, and investigate their impact on gene expression levels, we performed an integrated microarray profiling of TGCT genomes and transcriptomes. We analyzed 17 TGCTs, three precursor lesions, and the embryonal carcinoma cell lines, NTERA2 and 2102Ep, by comparative genomic hybridization microarrays (array-CGH, and integrated the data with transcriptome profiles of the same samples. Results: The gain of chromosome arm 12p was, as expected, the most common aberration, and we found CCND2, CD9, GAPD, GDF3, NANOG, and TEAD4 to be the therein most highly over-expressed genes. Additional frequent genomic aberrations revealed some shorter chromosomal segments, which are novel to TGCT, as well as known aberrations for which we here refined boundaries. These include gains from 7p15.2 and 21q22.2, and losses of 4p16.3 and 22q13.3. Integration of DNA copy number information to gene expression profiles identified that BRCC3, FOS, MLLT11, NES, and RAC1 may act as novel oncogenes in TGCT. Similarly, DDX26, ERCC5, FZD4, NME4, OPTN, and RB1 were both lost and under-expressed genes, and are thus putative TGCT suppressor genes. Conclusion: This first genome-wide integrated array-CGH and gene expression profiling of TGCT provides novel insights into the genome biology underlying testicular tumorigenesis.

  3. Significance of genome-wide analysis of copy number alterations and UPD in myelodysplastic syndromes using combined CGH - SNP arrays.

    Science.gov (United States)

    Ahmad, Ausaf; Iqbal, M Anwar

    2012-01-01

    Genetic information is an extremely valuable data source in characterizing the personal nature of cancer. Chromosome instability is a hallmark of most cancer cells. Chromosomal abnormalities are correlated with poor prognosis, disease classification, risk stratification, and treatment selection. Copy number alterations (CNAs) are an important molecular signature in cancer initiation, development, and progression. Recent application of whole-genome tools to characterize normal and cancer genomes provides the powerful molecular cytogenetic means to enumerate the multiple somatic, genetic and epigenetic alterations that occur in cancer. Combined array comparative genomic hybridization (aCGH) with single nucleotide polymorphism (SNP) array is a useful technique allowing detection of CNAs and loss of heterozygosity (LOH) or uni-parental disomy (UPD) together in a single experiment. It also provides allelic information on deletions, duplications, and amplifications. UPD can result in an abnormal phenotype when the chromosomes involved are imprinted. Myelodysplastic syndromes (MDS) are the most common clonal stem cell hematologic malignancy characterized by ineffective hematopoiesis, which leads to rapid progression into acute myeloid leukemia. UPD that occurs without concurrent changes in the gene copy number is a common chromosomal defect in hematologic malignancies, especially in MDS. Approximately 40-50% of MDS patients do not have karyotypic abnormalities that are detectable using classical metaphase cytogenetic techniques (MC) because of inherent limitations of MC, low resolution and the requirement of having dividing cells. In this review, we highlight advances in the clinical application of microarray technology in MDS and discuss the clinical potential of microarray.

  4. Clusters of adaptive evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Laura B. Scheinfeldt

    2011-09-01

    Full Text Available Considerable work has been devoted to identifying regions of the human genome that have been subjected to recent positive selection. Although detailed follow-up studies of putatively selected regions are critical for a deeper understanding of human evolutionary history, such studies have received comparably less attention. Recently, we have shown that ALMS1 has been the target of recent positive selection acting on standing variation in Eurasian populations. Here, we describe a careful follow-up analysis of genetic variation across the ALMS1 region, which unexpectedly revealed a cluster of substrates of positive selection. Specifically, through the analysis of SNP data from the HapMap and HGDP-CEPH samples as well sequence data from the region, we find compelling evidence for three independent and distinct signals of recent positive selection across this 3 Mb region surrounding ALMS1. Moreover, we analyzed the HapMap data to identify other putative clusters of independent selective events and conservatively discovered 19 additional clusters of adaptive evolution. This work has important implications for the interpretation of genome-scans for positive selection in humans and more broadly contributes to a better understanding of how recent positive selection has shaped genetic variation across the human genome.

  5. Genome-wide landscapes of human local adaptation in Asia.

    Directory of Open Access Journals (Sweden)

    Wei Qian

    Full Text Available Genetic studies of human local adaptation have been facilitated greatly by recent advances in high-throughput genotyping and sequencing technologies. However, few studies have investigated local adaptation in Asian populations on a genome-wide scale and with a high geographic resolution. In this study, taking advantage of the dense population coverage in Southeast Asia, which is the part of the world least studied in term of natural selection, we depicted genome-wide landscapes of local adaptations in 63 Asian populations representing the majority of linguistic and ethnic groups in Asia. Using genome-wide data analysis, we discovered many genes showing signs of local adaptation or natural selection. Notable examples, such as FOXQ1, MAST2, and CDH4, were found to play a role in hair follicle development and human cancer, signal transduction, and tumor repression, respectively. These showed strong indications of natural selection in Philippine Negritos, a group of aboriginal hunter-gatherers living in the Philippines. MTTP, which has associations with metabolic syndrome, body mass index, and insulin regulation, showed a strong signature of selection in Southeast Asians, including Indonesians. Functional annotation analysis revealed that genes and genetic variants underlying natural selections were generally enriched in the functional category of alternative splicing. Specifically, many genes showing significant difference with respect to allele frequency between northern and southern Asian populations were found to be associated with human height and growth and various immune pathways. In summary, this study contributes to the overall understanding of human local adaptation in Asia and has identified both known and novel signatures of natural selection in the human genome.

  6. Statistical analysis of simple repeats in the human genome

    Science.gov (United States)

    Piazza, F.; Liò, P.

    2005-03-01

    The human genome contains repetitive DNA at different level of sequence length, number and dispersion. Highly repetitive DNA is particularly rich in homo- and di-nucleotide repeats, while middle repetitive DNA is rich of families of interspersed, mobile elements hundreds of base pairs (bp) long, among which belong the Alu families. A link between homo- and di-polymeric tracts and mobile elements has been recently highlighted. In particular, the mobility of Alu repeats, which form 10% of the human genome, has been correlated with the length of poly(A) tracts located at one end of the Alu. These tracts have a rigid and non-bendable structure and have an inhibitory effect on nucleosomes, which normally compact the DNA. We performed a statistical analysis of the genome-wide distribution of lengths and inter-tract separations of poly(X) and poly(XY) tracts in the human genome. Our study shows that in humans the length distributions of these sequences reflect the dynamics of their expansion and DNA replication. By means of general tools from linguistics, we show that the latter play the role of highly-significant content-bearing terms in the DNA text. Furthermore, we find that such tracts are positioned in a non-random fashion, with an apparent periodicity of 150 bases. This allows us to extend the link between repetitive, highly mobile elements such as Alus and low-complexity words in human DNA. More precisely, we show that Alus are sources of poly(X) tracts, which in turn affect in a subtle way the combination and diversification of gene expression and the fixation of multigene families.

  7. 78 FR 61851 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2013-10-04

    ... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research... Human Genome Research Institute, 4076 Conference Room, 5635 Fishers Lane, Rockville, MD 20852... Domestic Assistance Program Nos. 93.172, Human Genome Research, National Institutes of Health, HHS)...

  8. Learning about the Human Genome. Part 2: Resources for Science Educators. ERIC Digest.

    Science.gov (United States)

    Haury, David L.

    This ERIC Digest identifies how the human genome project fits into the "National Science Education Standards" and lists Human Genome Project Web sites found on the World Wide Web. It is a resource companion to "Learning about the Human Genome. Part 1: Challenge to Science Educators" (Haury 2001). The Web resources and…

  9. 75 FR 51828 - National Human Genome Research Institute; Notice of Meetings

    Science.gov (United States)

    2010-08-23

    ... for Human Genome Research. The meetings will be open to the public as indicated below, with attendance..., PhD, Director for Extramural Research, National Human Genome Research Institute, 5635 Fishers Lane...: National Advisory Council for Human Genome Research. Date: May 16-17, 2011. Open: May 16, 2011, 8:30...

  10. Rapid extraction and preservation of genomic DNA from human samples.

    Science.gov (United States)

    Kalyanasundaram, D; Kim, J-H; Yeo, W-H; Oh, K; Lee, K-H; Kim, M-H; Ryew, S-M; Ahn, S-G; Gao, D; Cangelosi, G A; Chung, J-H

    2013-02-01

    Simple and rapid extraction of human genomic DNA remains a bottleneck for genome analysis and disease diagnosis. Current methods using microfilters require cumbersome, multiple handling steps in part because salt conditions must be controlled for attraction and elution of DNA in porous silica. We report a novel extraction method of human genomic DNA from buccal swab and saliva samples. DNA is attracted onto a gold-coated microchip by an electric field and capillary action while the captured DNA is eluted by thermal heating at 70 °C. A prototype device was designed to handle four microchips, and a compatible protocol was developed. The extracted DNA using microchips was characterized by qPCR for different sample volumes, using different lengths of PCR amplicon, and nuclear and mitochondrial genes. In comparison with a commercial kit, an equivalent yield of DNA extraction was achieved with fewer steps. Room-temperature preservation for 1 month was demonstrated for captured DNA, facilitating straightforward collection, delivery, and handling of genomic DNA in an environment-friendly protocol.

  11. Opening plenary speaker: Human genomics, precision medicine, and advancing human health.

    Science.gov (United States)

    Green, Eric D

    2016-08-01

    Starting with the launch of the Human Genome Project in 1990, the past quarter-century has brought spectacular achievements in genomics that dramatically empower the study of human biology and disease. The human genomics enterprise is now in the midst of an important transition, as the growing foundation of genomic knowledge is being used by researchers and clinicians to tackle increasingly complex problems in biomedicine. Of particular prominence is the use of revolutionary new DNA sequencing technologies for generating prodigious amounts of DNA sequence data to elucidate the complexities of genome structure, function, and evolution, as well as to unravel the genomic bases of rare and common diseases. Together, these developments are ushering in the era of genomic medicine. Augmenting the advances in human genomics have been innovations in technologies for measuring environmental and lifestyle information, electronic health records, and data science; together, these provide opportunities of unprecedented scale and scope for investigating the underpinnings of health and disease. To capitalize on these opportunities, U.S. President Barack Obama recently announced a major new research endeavor - the U.S. Precision Medicine Initiative. This bold effort will be framed around several key aims, which include accelerating the use of genomically informed approaches to cancer care, making important policy and regulatory changes, and establishing a large research cohort of >1 million volunteers to facilitate precision medicine research. The latter will include making the partnership with all participants a centerpiece feature in the cohort's design and development. The Precision Medicine Initiative represents a broad-based research program that will allow new approaches for individualized medical care to be rigorously tested, so as to establish a new evidence base for advancing clinical practice and, eventually, human health.

  12. High taxonomic level fingerprint of the human intestinal microbiota by Ligase Detection Reaction - Universal Array approach

    Directory of Open Access Journals (Sweden)

    Vitali Beatrice

    2010-04-01

    Full Text Available Abstract Background Affecting the core functional microbiome, peculiar high level taxonomic unbalances of the human intestinal microbiota have been recently associated with specific diseases, such as obesity, inflammatory bowel diseases, and intestinal inflammation. Results In order to specifically monitor microbiota unbalances that impact human physiology, here we develop and validate an original DNA-microarray (HTF-Microbi.Array for the high taxonomic level fingerprint of the human intestinal microbiota. Based on the Ligase Detection Reaction-Universal Array (LDR-UA approach, the HTF-Microbi.Array enables specific detection and approximate relative quantification of 16S rRNAs from 30 phylogenetically related groups of the human intestinal microbiota. The HTF-Microbi.Array was used in a pilot study of the faecal microbiota of eight young adults. Cluster analysis revealed the good reproducibility of the high level taxonomic microbiota fingerprint obtained for each of the subject. Conclusion The HTF-Microbi.Array is a fast and sensitive tool for the high taxonomic level fingerprint of the human intestinal microbiota in terms of presence/absence of the principal groups. Moreover, analysis of the relative fluorescence intensity for each probe pair of our LDR-UA platform can provide estimation of the relative abundance of the microbial target groups within each samples. Focusing the phylogenetic resolution at division, order and cluster levels, the HTF-Microbi.Array is blind with respect to the inter-individual variability at the species level.

  13. Implementation of exon arrays: alternative splicing during T-cell proliferation as determined by whole genome analysis

    Directory of Open Access Journals (Sweden)

    Whistler Toni

    2010-09-01

    Full Text Available Abstract Background The contribution of alternative splicing and isoform expression to cellular response is emerging as an area of considerable interest, and the newly developed exon arrays allow for systematic study of these processes. We use this pilot study to report on the feasibility of exon array implementation looking to replace the 3' in vitro transcription expression arrays in our laboratory. One of the most widely studied models of cellular response is T-cell activation from exogenous stimulation. Microarray studies have contributed to our understanding of key pathways activated during T-cell stimulation. We use this system to examine whole genome transcription and alternate exon usage events that are regulated during lymphocyte proliferation in an attempt to evaluate the exon arrays. Results Peripheral blood mononuclear cells form healthy donors were activated using phytohemagglutinin, IL2 and ionomycin and harvested at 5 points over a 7 day period. Flow cytometry measured cell cycle events and the Affymetrix exon array platform was used to identify the gene expression and alternate exon usage changes. Gene expression changes were noted in a total of 2105 transcripts, and alternate exon usage identified in 472 transcript clusters. There was an overlap of 263 transcripts which showed both differential expression and alternate exon usage over time. Gene ontology enrichment analysis showed a broader range of biological changes in biological processes for the differentially expressed genes, which include cell cycle, cell division, cell proliferation, chromosome segregation, cell death, component organization and biogenesis and metabolic process ontologies. The alternate exon usage ontological enrichments are in metabolism and component organization and biogenesis. We focus on alternate exon usage changes in the transcripts of the spliceosome complex. The real-time PCR validation rates were 86% for transcript expression and 71% for

  14. Genomic discovery of potent chromatin insulators for human gene therapy.

    Science.gov (United States)

    Liu, Mingdong; Maurano, Matthew T; Wang, Hao; Qi, Heyuan; Song, Chao-Zhong; Navas, Patrick A; Emery, David W; Stamatoyannopoulos, John A; Stamatoyannopoulos, George

    2015-02-01

    Insertional mutagenesis and genotoxicity, which usually manifest as hematopoietic malignancy, represent major barriers to realizing the promise of gene therapy. Although insulator sequences that block transcriptional enhancers could mitigate or eliminate these risks, so far no human insulators with high functional potency have been identified. Here we describe a genomic approach for the identification of compact sequence elements that function as insulators. These elements are highly occupied by the insulator protein CTCF, are DNase I hypersensitive and represent only a small minority of the CTCF recognition sequences in the human genome. We show that the elements identified acted as potent enhancer blockers and substantially decreased the risk of tumor formation in a cancer-prone animal model. The elements are small, can be efficiently accommodated by viral vectors and have no detrimental effects on viral titers. The insulators we describe here are expected to increase the safety of gene therapy for genetic diseases.

  15. Genome Editing in Human Cells Using CRISPR/Cas Nucleases.

    Science.gov (United States)

    Wyvekens, Nicolas; Tsai, Shengdar Q; Joung, J Keith

    2015-10-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been broadly adopted for highly efficient genome editing in a variety of model organisms and human cell types. Unlike previous genome editing technologies such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), CRISPR/Cas technology does not require complex protein engineering and can be utilized by any researcher proficient in basic molecular biology and cell culture techniques. This unit describes protocols for design and cloning of vectors expressing single or multiplex gRNAs, for transient transfection of human cell lines, and for quantitation of mutation frequencies by T7 endonuclease I assay. These protocols also include guidance for using two improvements that increase the specificity of CRISPR/Cas nucleases: truncated gRNAs and dimeric RNA-guided FokI nucleases.

  16. GENOME EDITING IN HUMAN CELLS USING CRISPR/CAS NUCLEASES

    Science.gov (United States)

    Wyvekens, Nicolas; Tsai, Shengdar; Joung, J. Keith

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been broadly adopted for highly efficient genome editing in a variety of model organisms and human cell types. Unlike previous genome editing technologies such as Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), the CRISPR/Cas technology does not require complex protein engineering and can be utilized by any researcher proficient in basic molecular biology and cell culture techniques. Here we describe protocols for design and cloning of vectors expressing single or multiplex gRNAs, for transient transfection of human cell lines, and for quantitation of mutation frequencies by T7 Endonuclease I assay. These protocols also include guidance for using two improvements that increase the specificity of CRISPR/Cas nucleases: truncated gRNAs and dimeric RNA-guided FokI nucleases. PMID:26423589

  17. Life Sciences Division and Center for Human Genome Studies

    Energy Technology Data Exchange (ETDEWEB)

    Spitzmiller, D.; Bradbury, M.; Cram, S. (comps.)

    1992-05-01

    This report summarizes the research and development activities of Los Alamos National Laboratories Life Sciences Division and biological aspects of the Center for Human Genome Studies for the calendar year 1991. Selected research highlights include: yeast artificial chromosome libraries from flow sorted human chromosomes 16 and 21; distances between the antigen binding sites of three murine antibody subclasses measured using neutron and x-ray scattering; NFCR 10th anniversary highlights; kinase-mediated differences found in the cell cycle regulation of normal and transformed cells; and detecting mutations that cause Gaucher's disease by denaturing gradient gel electrophoresis. Project descriptions include: genomic structure and regulation, molecular structure, cytometry, cell growth and differentiation, radiation biology and carcinogenesis, and pulmonary biology.

  18. Concise review: Human cell engineering: cellular reprogramming and genome editing.

    Science.gov (United States)

    Mali, Prashant; Cheng, Linzhao

    2012-01-01

    Cell engineering is defined here as the collective ability to both reset and edit the genome of a mammalian cell. Until recently, this had been extremely challenging to achieve as nontransformed human cells are significantly refractory to both these processes. The recent success in reprogramming somatic cells into induced pluripotent stem cells that are self-renewable in culture, coupled with our increasing ability to effect precise and predesigned genomic editing, now readily permits cellular changes at both the genetic and epigenetic levels. These dual capabilities also make possible the generation of genetically matched, disease-free stem cells from patients for regenerative medicine. The objective of this review is to summarize the key enabling developments on these two rapidly evolving research fronts in human cell engineering, highlight unresolved issues, and outline potential future research directions.

  19. Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis

    OpenAIRE

    Desjardins, Christopher A; Champion, Mia D.; Holder, Jason W.; Muszewska, Anna; Goldberg, Jonathan; Bailao, Alexandre M.; Brigido, Marcelo de Macedo; Silva Ferreira, Marcia Eliana da; Garcia, Ana Maria; Grynberg, Marcin; Gujja, Sharvari; Heiman, David I.; Henn, Matthew R.; Kodira, Chinnappa D.; Leon-Narvaez, Henry

    2011-01-01

    Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasi...

  20. Detection of extracellular genomic DNA scaffold in human thrombus

    DEFF Research Database (Denmark)

    Oklu, Rahmi; Albadawi, Hassan; Watkins, Michael T

    2012-01-01

    PURPOSE: Mechanisms underlying transition of a thrombus susceptible to tissue plasminogen activator (TPA) fibrinolysis to one that is resistant is unclear. Demonstration of a new possible thrombus scaffold may open new avenues of research in thrombolysis and may provide mechanistic insight...... thrombi. CONCLUSIONS: Extensive detection of genomic DNA associated with histones in the extracellular matrix of human and mouse thrombi suggest the presence of a new thrombus-associated scaffold....

  1. Prenatal Diagnosis of a Fetus with de novo Supernumerary Ring Chromosome 16 Characterized by Array Comparative Genomic Hybridization

    Directory of Open Access Journals (Sweden)

    Pietro Cignini

    2011-09-01

    Full Text Available A fetus with de novo ring chromosome 16 is presented. At 20 weeks' gestation, ultrasound examination demonstrated bilateral clubfoot, bilateral renal pyelectasis, hypoplasia of the corpus callosum, and transposition of the great vessel. Amniocentesis was performed. Chromosome analysis identified a ring chromosome 16 [47,XY,r(16] and array comparative genomic hybridization (a-CGH demonstrated that the ring included the euchromatic portion 16p11.2. Postmortem examination confirmed prenatal findings. This is the first case of de novo ring chromosome 16 diagnosed prenatally with a new phenotypic pattern and also reinforces the importance of offering amniocentesis with a-CGH if fetal anomalies are detected.

  2. Human genome-guided identification of memory-modulating drugs.

    Science.gov (United States)

    Papassotiropoulos, Andreas; Gerhards, Christiane; Heck, Angela; Ackermann, Sandra; Aerni, Amanda; Schicktanz, Nathalie; Auschra, Bianca; Demougin, Philippe; Mumme, Eva; Elbert, Thomas; Ertl, Verena; Gschwind, Leo; Hanser, Edveena; Huynh, Kim-Dung; Jessen, Frank; Kolassa, Iris-Tatjana; Milnik, Annette; Paganetti, Paolo; Spalek, Klara; Vogler, Christian; Muhs, Andreas; Pfeifer, Andrea; de Quervain, Dominique J-F

    2013-11-12

    In the last decade there has been an exponential increase in knowledge about the genetic basis of complex human traits, including neuropsychiatric disorders. It is not clear, however, to what extent this knowledge can be used as a starting point for drug identification, one of the central hopes of the human genome project. The aim of the present study was to identify memory-modulating compounds through the use of human genetic information. We performed a multinational collaborative study, which included assessment of aversive memory--a trait central to posttraumatic stress disorder--and a gene-set analysis in healthy individuals. We identified 20 potential drug target genes in two genomewide-corrected gene sets: the neuroactive ligand-receptor interaction and the long-term depression gene set. In a subsequent double-blind, placebo-controlled study in healthy volunteers, we aimed at providing a proof of concept for the genome-guided identification of memory modulating compounds. Pharmacological intervention at the neuroactive ligand-receptor interaction gene set led to significant reduction of aversive memory. The findings demonstrate that genome information, along with appropriate data mining methodology, can be used as a starting point for the identification of memory-modulating compounds.

  3. Report of the second Human Genome Diversity workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The Second Human Genome Diversity Workshop was successfully held at Penn State University from October 29--31, 1992. The Workshop was essentially organized around 7 groups, each comprising approximately 10 participants, representing the sampling issues in different regions of the world. These groups worked independently, using a common format provided by the organizers; this was adjusted as needed by the individual groups. The Workshop began with a presentation of the mandate to the participants, and of the procedures to be followed during the workshop. Dr. Feldman presented a summary of the results from the First Workshop. He and the other organizers also presented brief comments giving their perspective on the objectives of the Second Workshop. Dr. Julia Bodmer discussed the study of European genetic diversity, especially in the context of the HLA experience there, and of plans to extend such studies in the coming years. She also discussed surveys of world HLA laboratories in regard to resources related to Human Genome Diversity. Dr. Mark Weiss discussed the relevance of nonhuman primate studies for understanding how demographic processes, such as mate exchange between local groups, affected the local dispersion of genetic variation. Primate population geneticists have some relevant experience in interpreting variation at this local level, in particular, with various DNA fingerprinting methods. This experience may be relevant to the Human Genome Diversity Project, in terms of practical and statistical issues.

  4. Chromosome region-specific libraries for human genome analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Fa-Ten.

    1991-01-01

    We have made important progress since the beginning of the current grant year. We have further developed the microdissection and PCR- assisted microcloning techniques using the linker-adaptor method. We have critically evaluated the microdissection libraries constructed by this microtechnology and proved that they are of high quality. We further demonstrated that these microdissection clones are useful in identifying corresponding YAC clones for a thousand-fold expansion of the genomic coverage and for contig construction. We are also improving the technique of cloning the dissected fragments in test tube by the TDT method. We are applying both of these PCR cloning technique to human chromosomes 2 and 5 to construct region-specific libraries for physical mapping purposes of LLNL and LANL. Finally, we are exploring efficient procedures to use unique sequence microclones to isolate cDNA clones from defined chromosomal regions as valuable resources for identifying expressed gene sequences in the human genome. We believe that we are making important progress under the auspices of this DOE human genome program grant and we will continue to make significant contributions in the coming year. 4 refs., 4 figs.

  5. The human genome: Some assembly required. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Human Genome Project promises to be one of the most rewarding endeavors in modern biology. The cost and the ethical and social implications, however, have made this project the source of considerable debate both in the scientific community and in the public at large. The 1994 Graduate Student Symposium addresses the scientific merits of the project, the technical issues involved in accomplishing the task, as well as the medical and social issues which stem from the wealth of knowledge which the Human Genome Project will help create. To this end, speakers were brought together who represent the diverse areas of expertise characteristic of this multidisciplinary project. The keynote speaker addresses the project`s motivations and goals in the larger context of biological and medical sciences. The first two sessions address relevant technical issues, data collection with a focus on high-throughput sequencing methods and data analysis with an emphasis on identification of coding sequences. The third session explores recent advances in the understanding of genetic diseases and possible routes to treatment. Finally, the last session addresses some of the ethical, social and legal issues which will undoubtedly arise from having a detailed knowledge of the human genome.

  6. Sequencing and annotated analysis of an Estonian human genome.

    Science.gov (United States)

    Lilleoja, Rutt; Sarapik, Aili; Reimann, Ene; Reemann, Paula; Jaakma, Ülle; Vasar, Eero; Kõks, Sulev

    2012-02-01

    In present study we describe the sequencing and annotated analysis of the individual genome of Estonian. Using SOLID technology we generated 2,449,441,916 of 50-bp reads. The Bioscope version 1.3 was used for mapping and pairing of reads to the NCBI human genome reference (build 36, hg18). Bioscope enables also the annotation of the results of variant (tertiary) analysis. The average mapping of reads was 75.5% with total coverage of 107.72 Gb. resulting in mean fold coverage of 34.6. We found 3,482,975 SNPs out of which 352,492 were novel. 21,222 SNPs were in coding region: 10,649 were synonymous SNPs, 10,360 were nonsynonymous missense SNPs, 155 were nonsynonymous nonsense SNPs and 58 were nonsynonymous frameshifts. We identified 219 CNVs with total base pair coverage of 37,326,300 bp and 87,451 large insertion/deletion polymorphisms covering 10,152,256 bp of the genome. In addition, we found 285,864 small size insertion/deletion polymorphisms out of which 133,969 were novel. Finally, we identified 53 inversions, 19 overlapped genes and 2 overlapped exons. Interestingly, we found the region in chromosome 6 to be enriched with the coding SNPs and CNVs. This study confirms previous findings, that our genomes are more complex and variable as thought before. Therefore, sequencing of the personal genomes followed by annotation would improve the analysis of heritability of phenotypes and our understandings on the functions of genome.

  7. Standardized metadata for human pathogen/vector genomic sequences.

    Directory of Open Access Journals (Sweden)

    Vivien G Dugan

    Full Text Available High throughput sequencing has accelerated the determination of genome sequences for thousands of human infectious disease pathogens and dozens of their vectors. The scale and scope of these data are enabling genotype-phenotype association studies to identify genetic determinants of pathogen virulence and drug/insecticide resistance, and phylogenetic studies to track the origin and spread of disease outbreaks. To maximize the utility of genomic sequences for these purposes, it is essential that metadata about the pathogen/vector isolate characteristics be collected and made available in organized, clear, and consistent formats. Here we report the development of the GSCID/BRC Project and Sample Application Standard, developed by representatives of the Genome Sequencing Centers for Infectious Diseases (GSCIDs, the Bioinformatics Resource Centers (BRCs for Infectious Diseases, and the U.S. National Institute of Allergy and Infectious Diseases (NIAID, part of the National Institutes of Health (NIH, informed by interactions with numerous collaborating scientists. It includes mapping to terms from other data standards initiatives, including the Genomic Standards Consortium's minimal information (MIxS and NCBI's BioSample/BioProjects checklists and the Ontology for Biomedical Investigations (OBI. The standard includes data fields about characteristics of the organism or environmental source of the specimen, spatial-temporal information about the specimen isolation event, phenotypic characteristics of the pathogen/vector isolated, and project leadership and support. By modeling metadata fields into an ontology-based semantic framework and reusing existing ontologies and minimum information checklists, the application standard can be extended to support additional project-specific data fields and integrated with other data represented with comparable standards. The use of this metadata standard by all ongoing and future GSCID sequencing projects will

  8. Predicting human genetic interactions from cancer genome evolution.

    Directory of Open Access Journals (Sweden)

    Xiaowen Lu

    Full Text Available Synthetic Lethal (SL genetic interactions play a key role in various types of biological research, ranging from understanding genotype-phenotype relationships to identifying drug-targets against cancer. Despite recent advances in empirical measuring SL interactions in human cells, the human genetic interaction map is far from complete. Here, we present a novel approach to predict this map by exploiting patterns in cancer genome evolution. First, we show that empirically determined SL interactions are reflected in various gene presence, absence, and duplication patterns in hundreds of cancer genomes. The most evident pattern that we discovered is that when one member of an SL interaction gene pair is lost, the other gene tends not to be lost, i.e. the absence of co-loss. This observation is in line with expectation, because the loss of an SL interacting pair will be lethal to the cancer cell. SL interactions are also reflected in gene expression profiles, such as an under representation of cases where the genes in an SL pair are both under expressed, and an over representation of cases where one gene of an SL pair is under expressed, while the other one is over expressed. We integrated the various previously unknown cancer genome patterns and the gene expression patterns into a computational model to identify SL pairs. This simple, genome-wide model achieves a high prediction power (AUC = 0.75 for known genetic interactions. It allows us to present for the first time a comprehensive genome-wide list of SL interactions with a high estimated prediction precision, covering up to 591,000 gene pairs. This unique list can potentially be used in various application areas ranging from biotechnology to medical genetics.

  9. Frequency and Correlation of Nearest Neighboring Nucleotides in Human Genome

    Science.gov (United States)

    Jin, Neng-zhi; Liu, Zi-xian; Qiu, Wen-yuan

    2009-02-01

    Zipf's approach in linguistics is utilized to analyze the statistical features of frequency and correlation of 16 nearest neighboring nucleotides (AA, AC, AG, ..., TT) in 12 human chromosomes (Y, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, and 12). It is found that these statistical features of nearest neighboring nucleotides in human genome: (i) the frequency distribution is a linear function, and (ii) the correlation distribution is an inverse function. The coefficients of the linear function and inverse function depend on the GC content. It proposes the correlation distribution of nearest neighboring nucleotides for the first time and extends the descriptor about nearest neighboring nucleotides.

  10. SAQC: SNP Array Quality Control

    Directory of Open Access Journals (Sweden)

    Li Ling-Hui

    2011-04-01

    Full Text Available Abstract Background Genome-wide single-nucleotide polymorphism (SNP arrays containing hundreds of thousands of SNPs from the human genome have proven useful for studying important human genome questions. Data quality of SNP arrays plays a key role in the accuracy and precision of downstream data analyses. However, good indices for assessing data quality of SNP arrays have not yet been developed. Results We developed new quality indices to measure the quality of SNP arrays and/or DNA samples and investigated their statistical properties. The indices quantify a departure of estimated individual-level allele frequencies (AFs from expected frequencies via standardized distances. The proposed quality indices followed lognormal distributions in several large genomic studies that we empirically evaluated. AF reference data and quality index reference data for different SNP array platforms were established based on samples from various reference populations. Furthermore, a confidence interval method based on the underlying empirical distributions of quality indices was developed to identify poor-quality SNP arrays and/or DNA samples. Analyses of authentic biological data and simulated data show that this new method is sensitive and specific for the detection of poor-quality SNP arrays and/or DNA samples. Conclusions This study introduces new quality indices, establishes references for AFs and quality indices, and develops a detection method for poor-quality SNP arrays and/or DNA samples. We have developed a new computer program that utilizes these methods called SNP Array Quality Control (SAQC. SAQC software is written in R and R-GUI and was developed as a user-friendly tool for the visualization and evaluation of data quality of genome-wide SNP arrays. The program is available online (http://www.stat.sinica.edu.tw/hsinchou/genetics/quality/SAQC.htm.

  11. Ubiquitous polygenicity of human complex traits: genome-wide analysis of 49 traits in Koreans.

    Directory of Open Access Journals (Sweden)

    Jian Yang

    Full Text Available Recent studies in population of European ancestry have shown that 30% ~ 50% of heritability for human complex traits such as height and body mass index, and common diseases such as schizophrenia and rheumatoid arthritis, can be captured by common SNPs and that genetic variation attributed to chromosomes are in proportion to their length. Using genome-wide estimation and partitioning approaches, we analysed 49 human quantitative traits, many of which are relevant to human diseases, in 7,170 unrelated Korean individuals genotyped on 326,262 SNPs. For 43 of the 49 traits, we estimated a nominally significant (P<0.05 proportion of variance explained by all SNPs on the Affymetrix 5.0 genotyping array ([Formula: see text]. On average across 47 of the 49 traits for which the estimate of h(G(2 is non-zero, common SNPs explain approximately one-third (range of 7.8% to 76.8% of narrow sense heritability. The estimate of h(G(2 is highly correlated with the proportion of SNPs with association P<0.031 (r(2 = 0.92. Longer genomic segments tend to explain more phenotypic variation, with a correlation of 0.78 between the estimate of variance explained by individual chromosomes and their physical length, and 1% of the genome explains approximately 1% of the genetic variance. Despite the fact that there are a few SNPs with large effects for some traits, these results suggest that polygenicity is ubiquitous for most human complex traits and that a substantial proportion of the "missing heritability" is captured by common SNPs.

  12. Genomic relationships computed from either next- generation sequence or array SNP data

    NARCIS (Netherlands)

    Perez Enciso, M.

    2014-01-01

    The use of sequence data in genomic prediction models is a topic of high interest, given the decreasing prices of current next'-generation sequencing technologies (NGS) and the theoretical possibility of directly interrogating the genomes for all causal mutations. Here, we compare by simulation how

  13. Global genomic diversity of human papillomavirus 6 based on 724 isolates and 190 complete genome sequences.

    Science.gov (United States)

    Jelen, Mateja M; Chen, Zigui; Kocjan, Boštjan J; Burt, Felicity J; Chan, Paul K S; Chouhy, Diego; Combrinck, Catharina E; Coutlée, François; Estrade, Christine; Ferenczy, Alex; Fiander, Alison; Franco, Eduardo L; Garland, Suzanne M; Giri, Adriana A; González, Joaquín Víctor; Gröning, Arndt; Heidrich, Kerstin; Hibbitts, Sam; Hošnjak, Lea; Luk, Tommy N M; Marinic, Karina; Matsukura, Toshihiko; Neumann, Anna; Oštrbenk, Anja; Picconi, Maria Alejandra; Richardson, Harriet; Sagadin, Martin; Sahli, Roland; Seedat, Riaz Y; Seme, Katja; Severini, Alberto; Sinchi, Jessica L; Smahelova, Jana; Tabrizi, Sepehr N; Tachezy, Ruth; Tohme, Sarah; Uloza, Virgilijus; Vitkauskiene, Astra; Wong, Yong Wee; Zidovec Lepej, Snježana; Burk, Robert D; Poljak, Mario

    2014-07-01

    Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.8%) HPV6-positive samples collected for this study. Among them, 130 exhibited at least one single nucleotide polymorphism (SNP), indel, or amino acid change in the E5a-E5b-L1-LCR fragment and were sequenced in full. A global alignment and maximum likelihood tree of 190 complete HPV6 genomes (130 fully sequenced in this study and 60 obtained from sequence repositories) revealed two variant lineages, A and B, and five B sublineages: B1, B2, B3, B4, and B5. HPV6 (sub)lineage-specific SNPs and a 960-bp representative region for whole-genome-based phylogenetic clustering within the L2 open reading frame were identified. Multivariate logistic regression analysis revealed that lineage B predominated globally. Sublineage B3 was more common in Africa and North and South America, and lineage A was more common in Asia. Sublineages B1 and B3 were associated with anogenital infections, indicating a potential lesion-specific predilection of some HPV6 sublineages. Females had higher odds for infection with sublineage B3 than males. In conclusion, a global HPV6 phylogenetic analysis revealed the existence of two variant lineages and five sublineages, showing some degree of ethnogeographic, gender, and/or disease predilection in their distribution. This study established the largest database of globally circulating HPV6 genomic variants and contributed a total of 130 new, complete HPV6 genome sequences to available sequence repositories. Two HPV6 variant lineages

  14. Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology.

    Directory of Open Access Journals (Sweden)

    John R Shaffer

    2016-08-01

    Full Text Available Numerous lines of evidence point to a genetic basis for facial morphology in humans, yet little is known about how specific genetic variants relate to the phenotypic expression of many common facial features. We conducted genome-wide association meta-analyses of 20 quantitative facial measurements derived from the 3D surface images of 3118 healthy individuals of European ancestry belonging to two US cohorts. Analyses were performed on just under one million genotyped SNPs (Illumina OmniExpress+Exome v1.2 array imputed to the 1000 Genomes reference panel (Phase 3. We observed genome-wide significant associations (p < 5 x 10-8 for cranial base width at 14q21.1 and 20q12, intercanthal width at 1p13.3 and Xq13.2, nasal width at 20p11.22, nasal ala length at 14q11.2, and upper facial depth at 11q22.1. Several genes in the associated regions are known to play roles in craniofacial development or in syndromes affecting the face: MAFB, PAX9, MIPOL1, ALX3, HDAC8, and PAX1. We also tested genotype-phenotype associations reported in two previous genome-wide studies and found evidence of replication for nasal ala length and SNPs in CACNA2D3 and PRDM16. These results provide further evidence that common variants in regions harboring genes of known craniofacial function contribute to normal variation in human facial features. Improved understanding of the genes associated with facial morphology in healthy individuals can provide insights into the pathways and mechanisms controlling normal and abnormal facial morphogenesis.

  15. [Genetic individuality and the universal declaration on the human genome and human rights].

    Science.gov (United States)

    Siqueiros, Jesús M; Saruwatari, Garbiñe; Oliva-Sánchez, Pablo Francisco

    2012-01-01

    In this article we explore the epistemic and ontological relationship between science and law through the concept of individual in the Universal Declaration of the Human Genome and Human Rights. We argue for a better understanding of this relationship in order to foresee ethical and social consequences derived from Law adopting concepts with a strong scientific meaning.

  16. Human and non-human primate genomes share hotspots of positive selection.

    Directory of Open Access Journals (Sweden)

    David Enard

    2010-02-01

    Full Text Available Among primates, genome-wide analysis of recent positive selection is currently limited to the human species because it requires extensive sampling of genotypic data from many individuals. The extent to which genes positively selected in human also present adaptive changes in other primates therefore remains unknown. This question is important because a gene that has been positively selected independently in the human and in other primate lineages may be less likely to be involved in human specific phenotypic changes such as dietary habits or cognitive abilities. To answer this question, we analysed heterozygous Single Nucleotide Polymorphisms (SNPs in the genomes of single human, chimpanzee, orangutan, and macaque individuals using a new method aiming to identify selective sweeps genome-wide. We found an unexpectedly high number of orthologous genes exhibiting signatures of a selective sweep simultaneously in several primate species, suggesting the presence of hotspots of positive selection. A similar significant excess is evident when comparing genes positively selected during recent human evolution with genes subjected to positive selection in their coding sequence in other primate lineages and identified using a different test. These findings are further supported by comparing several published human genome scans for positive selection with our findings in non-human primate genomes. We thus provide extensive evidence that the co-occurrence of positive selection in humans and in other primates at the same genetic loci can be measured with only four species, an indication that it may be a widespread phenomenon. The identification of positive selection in humans alongside other primates is a powerful tool to outline those genes that were selected uniquely during recent human evolution.

  17. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, N G; Shea, N [eds.

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  18. Los Alamos Science: The Human Genome Project. Number 20, 1992

    Science.gov (United States)

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  19. Complete genome sequence of human astrovirus genotype 6

    Directory of Open Access Journals (Sweden)

    Vernet Guy

    2010-02-01

    Full Text Available Abstract Background Human astroviruses (HAstVs are one of the important causes of acute gastroenteritis in children. Currently, eight HAstV genotypes have been identified and all but two (HAstV-6 and HAstV-7 have been fully sequenced. We here sequenced and analyzed the complete genome of a HAstV-6 strain (192-BJ07, which was identified in Beijing, China. Results The genome of 192-BJ07 consists of 6745 nucleotides. The 192-BJ07 strain displays a 77.2-78.0% nucleotide sequence identity with other HAstV genotypes and exhibits amino acid sequence identities of 86.5-87.4%, 94.2-95.1%, and 65.5-74.8% in the ORF1a, ORF1b, and ORF2 regions, respectively. Homological analysis of ORF2 shows that 192-BJ07 is 96.3% identical to the documented HAstV-6 strain. Further, phylogenetic analysis indicates that different genomic regions are likely undergoing different evolutionary and selective pressures. No recombination event was observed in HAstV-6 in this study. Conclusion The completely sequenced and characterized genome of HAstV-6 (192-BJ07 provides further insight into the genetics of astroviruses and aids in the surveillance and control of HAstV gastroenteritis.

  20. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  1. Flexible Rechargeable Zinc-Air Batteries through Morphological Emulation of Human Hair Array.

    Science.gov (United States)

    Fu, Jing; Hassan, Fathy Mohamed; Li, Jingde; Lee, Dong Un; Ghannoum, Abdul Rahman; Lui, Gregory; Hoque, Md Ariful; Chen, Zhongwei

    2016-08-01

    An electrically rechargeable, nanoarchitectured air electrode that morphologically emulates a human hair array is demonstrated in a zinc-air battery. The hair-like array of mesoporous cobalt oxide nanopetals in nitrogen-doped carbon nanotubes is grown directly on a stainless-steel mesh. This electrode produces both flexibility and improved battery performance, and thus fully manifests the advantages of flexible rechargeable zinc-air batteries in practical applications.

  2. Self-assembled random arrays: high-performance imaging and genomics applications on a high-density microarray platform

    Science.gov (United States)

    Barker, David L.; Theriault, Greg; Che, Diping; Dickinson, Todd; Shen, Richard; Kain, Robert C.

    2003-07-01

    images. The optical train is designed around a telecentric, flat field, macro scan lens with a field of view of 2 mm. Our BeadArray platform is adaptable to many different assays. In our genotyping services lab, we automated the development and production of highly multiplexed SNP genotyping assays. Each SNP call is made automatically and assigned a quality score based on objective measures of allele clustering across multiple samples. The quality score correlates directly with genotyping accuracy. With a small number of robots and thermal cyclers, and a team of 5 people, we have the capacity to perform over 1 million genotypes per day. The system is modular so that scale-up is limited only by demand. The system has the capacity, versatility, and cost structure to meet the needs of large-scale genomic analysis.

  3. Analysis of East Asia genetic substructure using genome-wide SNP arrays.

    Directory of Open Access Journals (Sweden)

    Chao Tian

    Full Text Available Accounting for population genetic substructure is important in reducing type 1 errors in genetic studies of complex disease. As efforts to understand complex genetic disease are expanded to different continental populations the understanding of genetic substructure within these continents will be useful in design and execution of association tests. In this study, population differentiation (Fst and Principal Components Analyses (PCA are examined using >200 K genotypes from multiple populations of East Asian ancestry. The population groups included those from the Human Genome Diversity Panel [Cambodian, Yi, Daur, Mongolian, Lahu, Dai, Hezhen, Miaozu, Naxi, Oroqen, She, Tu, Tujia, Naxi, Xibo, and Yakut], HapMap [ Han Chinese (CHB and Japanese (JPT], and East Asian or East Asian American subjects of Vietnamese, Korean, Filipino and Chinese ancestry. Paired Fst (Wei and Cockerham showed close relationships between CHB and several large East Asian population groups (CHB/Korean, 0.0019; CHB/JPT, 00651; CHB/Vietnamese, 0.0065 with larger separation with Filipino (CHB/Filipino, 0.014. Low levels of differentiation were also observed between Dai and Vietnamese (0.0045 and between Vietnamese and Cambodian (0.0062. Similarly, small Fst's were observed among different presumed Han Chinese populations originating in different regions of mainland of China and Taiwan (Fst's <0.0025 with CHB. For PCA, the first two PC's showed a pattern of relationships that closely followed the geographic distribution of the different East Asian populations. PCA showed substructure both between different East Asian groups and within the Han Chinese population. These studies have also identified a subset of East Asian substructure ancestry informative markers (EASTASAIMS that may be useful for future complex genetic disease association studies in reducing type 1 errors and in identifying homogeneous groups that may increase the power of such studies.

  4. Personal and population genomics of human regulatory variation.

    Science.gov (United States)

    Vernot, Benjamin; Stergachis, Andrew B; Maurano, Matthew T; Vierstra, Jeff; Neph, Shane; Thurman, Robert E; Stamatoyannopoulos, John A; Akey, Joshua M

    2012-09-01

    The characteristics and evolutionary forces acting on regulatory variation in humans remains elusive because of the difficulty in defining functionally important noncoding DNA. Here, we combine genome-scale maps of regulatory DNA marked by DNase I hypersensitive sites (DHSs) from 138 cell and tissue types with whole-genome sequences of 53 geographically diverse individuals in order to better delimit the patterns of regulatory variation in humans. We estimate that individuals likely harbor many more functionally important variants in regulatory DNA compared with protein-coding regions, although they are likely to have, on average, smaller effect sizes. Moreover, we demonstrate that there is significant heterogeneity in the level of functional constraint in regulatory DNA among different cell types. We also find marked variability in functional constraint among transcription factor motifs in regulatory DNA, with sequence motifs for major developmental regulators, such as HOX proteins, exhibiting levels of constraint comparable to protein-coding regions. Finally, we perform a genome-wide scan of recent positive selection and identify hundreds of novel substrates of adaptive regulatory evolution that are enriched for biologically interesting pathways such as melanogenesis and adipocytokine signaling. These data and results provide new insights into patterns of regulatory variation in individuals and populations and demonstrate that a large proportion of functionally important variation lies beyond the exome.

  5. Mosaic maternal uniparental disomy of chromosome 15 in Prader-Willi syndrome: utility of genome-wide SNP array.

    Science.gov (United States)

    Izumi, Kosuke; Santani, Avni B; Deardorff, Matthew A; Feret, Holly A; Tischler, Tanya; Thiel, Brian D; Mulchandani, Surabhi; Stolle, Catherine A; Spinner, Nancy B; Zackai, Elaine H; Conlin, Laura K

    2013-01-01

    Prader-Willi syndrome is caused by the loss of paternal gene expression on 15q11.2-q13.2, and one of the mechanisms resulting in Prader-Willi syndrome phenotype is maternal uniparental disomy of chromosome 15. Various mechanisms including trisomy rescue, monosomy rescue, and post fertilization errors can lead to uniparental disomy, and its mechanism can be inferred from the pattern of uniparental hetero and isodisomy. Detection of a mosaic cell line provides a unique opportunity to understand the mechanism of uniparental disomy; however, mosaic uniparental disomy is a rare finding in patients with Prader-Willi syndrome. We report on two infants with Prader-Willi syndrome caused by mosaic maternal uniparental disomy 15. Patient 1 has mosaic uniparental isodisomy of the entire chromosome 15, and Patient 2 has mosaic uniparental mixed iso/heterodisomy 15. Genome-wide single-nucleotide polymorphism array was able to demonstrate the presence of chromosomally normal cell line in the Patient 1 and trisomic cell line in Patient 2, and provide the evidence that post-fertilization error and trisomy rescue as a mechanism of uniparental disomy in each case, respectively. Given its ability of detecting small percent mosaicism as well as its capability of identifying the loss of heterozygosity of chromosomal regions, genome-wide single-nucleotide polymorphism array should be utilized as an adjunct to the standard methylation analysis in the evaluation of Prader-Willi syndrome.

  6. Genome-wide survey of allele-specific splicing in humans

    Directory of Open Access Journals (Sweden)

    Scheffler Konrad

    2008-06-01

    Full Text Available Abstract Background Accurate mRNA splicing depends on multiple regulatory signals encoded in the transcribed RNA sequence. Many examples of mutations within human splice regulatory regions that alter splicing qualitatively or quantitatively have been reported and allelic differences in mRNA splicing are likely to be a common and important source of phenotypic diversity at the molecular level, in addition to their contribution to genetic disease susceptibility. However, because the effect of a mutation on the efficiency of mRNA splicing is often difficult to predict, many mutations that cause disease through an effect on splicing are likely to remain undiscovered. Results We have combined a genome-wide scan for sequence polymorphisms likely to affect mRNA splicing with analysis of publicly available Expressed Sequence Tag (EST and exon array data. The genome-wide scan uses published tools and identified 30,977 SNPs located within donor and acceptor splice sites, branch points and exonic splicing enhancer elements. For 1,185 candidate splicing polymorphisms the difference in splicing between alternative alleles was corroborated by publicly available exon array data from 166 lymphoblastoid cell lines. We developed a novel probabilistic method to infer allele-specific splicing from EST data. The method uses SNPs and alternative mRNA isoforms mapped to EST sequences and models both regulated alternative splicing as well as allele-specific splicing. We have also estimated heritability of splicing and report that a greater proportion of genes show evidence of splicing heritability than show heritability of overall gene expression level. Our results provide an extensive resource that can be used to assess the possible effect on splicing of human polymorphisms in putative splice-regulatory sites. Conclusion We report a set of genes showing evidence of allele-specific splicing from an integrated analysis of genomic polymorphisms, EST data and exon array

  7. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array

    Directory of Open Access Journals (Sweden)

    Settles Matthew L

    2009-05-01

    Full Text Available Abstract Background Natural antisense transcripts (NATs are transcripts of the opposite DNA strand to the sense-strand either at the same locus (cis-encoded or a different locus (trans-encoded. They can affect gene expression at multiple stages including transcription, RNA processing and transport, and translation. NATs give rise to sense-antisense transcript pairs and the number of these identified has escalated greatly with the availability of DNA sequencing resources and public databases. Traditionally, NATs were identified by the alignment of full-length cDNAs or expressed sequence tags to genome sequences, but an alternative method for large-scale detection of sense-antisense transcript pairs involves the use of microarrays. In this study we developed a novel protocol to assay sense- and antisense-strand transcription on the 55 K Affymetrix GeneChip Wheat Genome Array, which is a 3' in vitro transcription (3'IVT expression array. We selected five different tissue types for assay to enable maximum discovery, and used the 'Chinese Spring' wheat genotype because most of the wheat GeneChip probe sequences were based on its genomic sequence. This study is the first report of using a 3'IVT expression array to discover the expression of natural sense-antisense transcript pairs, and may be considered as proof-of-concept. Results By using alternative target preparation schemes, both the sense- and antisense-strand derived transcripts were labeled and hybridized to the Wheat GeneChip. Quality assurance verified that successful hybridization did occur in the antisense-strand assay. A stringent threshold for positive hybridization was applied, which resulted in the identification of 110 sense-antisense transcript pairs, as well as 80 potentially antisense-specific transcripts. Strand-specific RT-PCR validated the microarray observations, and showed that antisense transcription is likely to be tissue specific. For the annotated sense

  8. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment.

    Science.gov (United States)

    Kang, Bo; Zhou, Yanwen; Zheng, Min; Wang, Ying-Jie

    2015-09-01

    A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.

  9. Complete Genome Sequence of Human Respiratory Syncytial Virus from Lanzhou, China

    OpenAIRE

    Zhu, Chuanfeng; Fu, Shengfang; Zhou, Xv; Yu, Li

    2017-01-01

    ABSTRACT A complete genome of human respiratory syncytial virus was sequenced and analyzed. Phylogenetic analysis showed that the full-length human respiratory syncytial virus (HRSV) genome sequence belongs to gene type NA1. We sequenced the genome in order to create the full-length cDNA infectious clone and develop vaccines against HRSV.

  10. 78 FR 64222 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2013-10-28

    ... Committee, CEGS-- Initiative to Maximize Research Education in Genomics. Date: November 7-8, 2013. Time: 8..., Ph.D., Scientific Review Officer, Office of Scientific Review, National Human Genome Research...: Camilla E. Day, Ph.D., Scientific Review Officer, CIDR, National Human Genome Research Institute, National...

  11. A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation.

    Science.gov (United States)

    Ouyang, Lei; Hu, Yaowu; Zhu, Lihua; Cheng, Gary J; Irudayaraj, Joseph

    2017-06-15

    Methylation is an important epigenetic DNA modification that governs gene expression. The genomic level of methylated DNA and its derivatives may serve as important indicators for the initiation and progression of cancers among other diseases. In this effort we propose a new laser wrapped graphene-Ag array as a highly sensitive Surface-enhanced Raman spectroscopy (SERS) sensor for the detection of methylated DNA (5-methylcytosine, 5mC) and its oxidation derivatives namely 5-hydroxymethylcytosine (5-hmC) and 5-carboxylcytosine (5-caC). Excellent sensitivity and reproducibility were achieved with the laser wrapped graphene-Ag array as a substrate, with the graphene layer acting as an enhancer of the SERS signal due to the effective coupling of the electromagnetic field. In summary, fast (less than 60min) and sensitive (at a limit of detection 0.2pgμL(-1), ie. 1.8pmolL(-1)) detection of methylated DNA and its derivatives was realized with the ability to distinguish methylation levels from a mixture at 0.1%. The sensitive and accurate detection in DNA extracted from cells was also accomplished. Furthermore our graphene wrapped approach circumvents the direct interaction between Ag array and the analytes, thus improving the reusability of the SERS substrate even after five cycles of use. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. 76 FR 3917 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-21

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... privacy. Name of Committee: National Human Genome Research Institute Special Emphasis Panel, TRND--RFP... Person: Rudy O. Pozzatti, PhD, Scientific Review Officer, Scientific Review Branch, National Human...

  13. 77 FR 5035 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2012-02-01

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel Sequencing Technology..., Rockville, MD 20852, (301) 402-0838, nakamurk@mail.nih.gov . Name of Committee: National Human...

  14. 78 FR 47715 - National Human Genome Research Institute; Notice of Meeting

    Science.gov (United States)

    2013-08-06

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Meeting... hereby given of a meeting of the National Advisory Council for Human Genome Research. The meeting will be... unwarranted invasion of personal privacy. Name of Committee: National Advisory Council for Human...

  15. 76 FR 29772 - National Human Genome Research Institute; Notice of Closed Meetings

    Science.gov (United States)

    2011-05-23

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel; ELSI-SEP. Date: June...: Rudy O. Pozzatti, PhD, Scientific Review Officer, Office of Scientific Review, National Human...

  16. Genomic variation landscape of the human gut microbiome

    DEFF Research Database (Denmark)

    Schloissnig, Siegfried; Arumugam, Manimozhiyan; Sunagawa, Shinichi

    2013-01-01

    Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 faecal...... metagenomes of 207 individuals from Europe and North America. Using 7.4 billion reads aligned to 101 reference species, we detected 10.3 million single nucleotide polymorphisms (SNPs), 107,991 short insertions/deletions, and 1,051 structural variants. The average ratio of non-synonymous to synonymous...... polymorphism rates of 0.11 was more variable between gut microbial species than across human hosts. Subjects sampled at varying time intervals exhibited individuality and temporal stability of SNP variation patterns, despite considerable composition changes of their gut microbiota. This indicates...

  17. Genome-Wide Identification of Regulatory Sequences Undergoing Accelerated Evolution in the Human Genome.

    Science.gov (United States)

    Dong, Xinran; Wang, Xiao; Zhang, Feng; Tian, Weidong

    2016-10-01

    Accelerated evolution of regulatory sequence can alter the expression pattern of target genes, and cause phenotypic changes. In this study, we used DNase I hypersensitive sites (DHSs) to annotate putative regulatory sequences in the human genome, and conducted a genome-wide analysis of the effects of accelerated evolution on regulatory sequences. Working under the assumption that local ancient repeat elements of DHSs are under neutral evolution, we discovered that ∼0.44% of DHSs are under accelerated evolution (ace-DHSs). We found that ace-DHSs tend to be more active than background DHSs, and are strongly associated with epigenetic marks of active transcription. The target genes of ace-DHSs are significantly enriched in neuron-related functions, and their expression levels are positively selected in the human brain. Thus, these lines of evidences strongly suggest that accelerated evolution on regulatory sequences plays important role in the evolution of human-specific phenotypes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. De novo assembly and phasing of a Korean human genome.

    Science.gov (United States)

    Seo, Jeong-Sun; Rhie, Arang; Kim, Junsoo; Lee, Sangjin; Sohn, Min-Hwan; Kim, Chang-Uk; Hastie, Alex; Cao, Han; Yun, Ji-Young; Kim, Jihye; Kuk, Junho; Park, Gun Hwa; Kim, Juhyeok; Ryu, Hanna; Kim, Jongbum; Roh, Mira; Baek, Jeonghun; Hunkapiller, Michael W; Korlach, Jonas; Shin, Jong-Yeon; Kim, Changhoon

    2016-10-13

    Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 (ref. 1) using single-molecule real-time sequencing, next-generation mapping, microfluidics-based linked reads, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9 Mb and a scaffold N50 size of 44.8 Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03 Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6 Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of

  19. An integrative view of dynamic genomic elements influencing human brain evolution and individual neurodevelopment.

    Science.gov (United States)

    Gericke, G S

    2008-09-01

    An increasing number of reports of rearranged and aneuploid chromosomes in brain cells suggest an unexpected link between developmental chromosomal instability and brain genome diversity. Unstable chromosomal fragile sites (FS), endogenously or exogenously induced by replicative stressors, participate in genetic rearrangement and may be key features of epigenetically modified neuroplasticity. Certain common chromosomal FS are known to function as signals for RAG complex targets. Recombinase activation gene RAG-1 directed V(D)J recombination affecting specific recognition sequences allows the immune system to encode memories of a vast array of antigens. The finding that RAG-1 is transcribed in the central nervous system raised the consideration that immunoglobulin-like somatic DNA recombination could be involved in recognition and memory processes in brain development and function. Cognitive stress induced somatic hypermutation in neurons, similar to what happens after antigenic challenge in lymphocytes, could underly a massive increase in the synthesis of novel macromolecules to function as coded information bits which get selected for memory storage. This process may involve mobile element activation, which may also play a role in recombinational repair. As a source of tested, successful new open reading frames, somatic hypermutation may confer a selective advantage if somatically acquired information is fed back to germline V gene arrays and the human brain could have adopted a similar process to manage the information captured in rearranged sequences. In neuroevolution and individual brain development, germline information could thus represent a crucial component. The brain itself may, from an evolutionary genetic point of view, represent nothing more than a highly specialized and individually diversified information accrual and memory system to increase the overall phenotypically validated information content of the immortal germline. In the evolution of rapid

  20. A genomic atlas of human adrenal and gonad development [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ignacio del Valle

    2017-04-01

    Full Text Available Background: In humans, the adrenal glands and gonads undergo distinct biological events between 6-10 weeks post conception (wpc, such as testis determination, the onset of steroidogenesis and primordial germ cell development. However, relatively little is currently known about the genetic mechanisms underlying these processes. We therefore aimed to generate a detailed genomic atlas of adrenal and gonad development across these critical stages of human embryonic and fetal development. Methods: RNA was extracted from 53 tissue samples between 6-10 wpc (adrenal, testis, ovary and control. Affymetrix array analysis was performed and differential gene expression was analysed using Bioconductor. A mathematical model was constructed to investigate time-series changes across the dataset. Pathway analysis was performed using ClueGo and cellular localisation of novel factors confirmed using immunohistochemistry. Results: Using this approach, we have identified novel components of adrenal development (e.g. ASB4, NPR3 and confirmed the role of SRY as the main human testis-determining gene. By mathematical modelling time-series data we have found new genes up-regulated with SOX9 in the testis (e.g. CITED1, which may represent components of the testis development pathway. We have shown that testicular steroidogenesis has a distinct onset at around 8 wpc and identified potential novel components in adrenal and testicular steroidogenesis (e.g. MGARP, FOXO4, MAP3K15, GRAMD1B, RMND2, as well as testis biomarkers (e.g. SCUBE1. We have also shown that the developing human ovary expresses distinct subsets of genes (e.g. OR10G9, OR4D5, but enrichment for established biological pathways is limited. Conclusion: This genomic atlas is revealing important novel aspects of human development and new candidate genes for adrenal and reproductive disorders.

  1. The Human Genome Diversity (HGD) Project. Summary document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    In 1991 a group of human geneticists and molecular biologists proposed to the scientific community that a world wide survey be undertaken of variation in the human genome. To aid their considerations, the committee therefore decided to hold a small series of international workshops to explore the major scientific issues involved. The intention was to define a framework for the project which could provide a basis for much wider and more detailed discussion and planning--it was recognized that the successful implementation of the proposed project, which has come to be known as the Human Genome Diversity (HGD) Project, would not only involve scientists but also various national and international non-scientific groups all of which should contribute to the project`s development. The international HGD workshop held in Sardinia in September 1993 was the last in the initial series of planning workshops. As such it not only explored new ground but also pulled together into a more coherent form much of the formal and informal discussion that had taken place in the preceding two years. This report presents the deliberations of the Sardinia workshop within a consideration of the overall development of the HGD Project to date.

  2. Comparative genomics of the neglected human malaria parasite Plasmodium vivax

    Science.gov (United States)

    Carlton, Jane M.; Adams, John H.; Silva, Joana C.; Bidwell, Shelby L.; Lorenzi, Hernan; Caler, Elisabet; Crabtree, Jonathan; Angiuoli, Samuel V.; Merino, Emilio F.; Amedeo, Paolo; Cheng, Qin; Coulson, Richard M. R.; Crabb, Brendan S.; del Portillo, Hernando A.; Essien, Kobby; Feldblyum, Tamara V.; Fernandez-Becerra, Carmen; Gilson, Paul R.; Gueye, Amy H.; Guo, Xiang; Kang’a, Simon; Kooij, Taco W. A.; Korsinczky, Michael; Meyer, Esmeralda V.-S.; Nene, Vish; Paulsen, Ian; White, Owen; Ralph, Stuart A.; Ren, Qinghu; Sargeant, Tobias J.; Salzberg, Steven L.; Stoeckert, Christian J.; Sullivan, Steven A.; Yamamoto, Marcio Massao; Hoffman, Stephen L.; Wortman, Jennifer R.; Gardner, Malcolm J.; Galinski, Mary R.; Barnwell, John W.; Fraser-Liggett, Claire M.

    2008-01-01

    The human malaria parasite Plasmodium vivax is responsible for 25-40% of the ~515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated in the laboratory except in non-human primates. We determined the genome sequence of P. vivax in order to shed light on its distinctive biologic features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternate invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance scientific investigation into this neglected species. PMID:18843361

  3. Dynamic association of NUP98 with the human genome.

    Directory of Open Access Journals (Sweden)

    Yun Liang

    Full Text Available Faithful execution of developmental gene expression programs occurs at multiple levels and involves many different components such as transcription factors, histone-modification enzymes, and mRNA processing proteins. Recent evidence suggests that nucleoporins, well known components that control nucleo-cytoplasmic trafficking, have wide-ranging functions in developmental gene regulation that potentially extend beyond their role in nuclear transport. Whether the unexpected role of nuclear pore proteins in transcription regulation, which initially has been described in fungi and flies, also applies to human cells is unknown. Here we show at a genome-wide level that the nuclear pore protein NUP98 associates with developmentally regulated genes active during human embryonic stem cell differentiation. Overexpression of a dominant negative fragment of NUP98 levels decreases expression levels of NUP98-bound genes. In addition, we identify two modes of developmental gene regulation by NUP98 that are differentiated by the spatial localization of NUP98 target genes. Genes in the initial stage of developmental induction can associate with NUP98 that is embedded in the nuclear pores at the nuclear periphery. Alternatively, genes that are highly induced can interact with NUP98 in the nuclear interior, away from the nuclear pores. This work demonstrates for the first time that NUP98 dynamically associates with the human genome during differentiation, revealing a role of a nuclear pore protein in regulating developmental gene expression programs.

  4. Insertion and deletion mutagenesis of the human cytomegalovirus genome

    Energy Technology Data Exchange (ETDEWEB)

    Spaete, R.R.; Mocarski, E.S.

    1987-10-01

    Studies on human cytomegalovirus (CMV) have been limited by a paucity of molecular genetic techniques available for manipulating the viral genome. The authors have developed methods for site-specific insertion and deletion mutagenesis of CMV utilizing a modified Escherichia coli lacZ gene as a genetic marker. The lacZ gene was placed under the control of the major ..beta.. gene regulatory signals and inserted into the viral genome by homologous recombination, disrupting one of two copies of this ..beta.. gene within the L-component repeats of CMV DNA. They observed high-level expression of ..beta..-galactosidase by the recombinant in a temporally authentic manner, with levels of this enzyme approaching 1% of total protein in infected cells. Thus, CMV is an efficient vector for high-level expression of foreign gene products in human cells. Using back selection of lacZ-deficient virus in the presence of the chromogenic substrate 5-bromo-4-chloro-3-indolyl ..beta..-D-galactoside, they generated random endpoint deletion mutants. Analysis of these mutant revealed that CMV DNA sequences flanking the insert had been removed, thereby establishing this approach as a means of determining whether sequences flanking a lacZ insertion are dispensable for viral growth. In an initial test of the methods, they have shown that 7800 base pairs of one copy of L-component repeat sequences can be deleted without affecting viral growth in human fibroblasts.

  5. Multi-channel microstrip transceiver arrays using harmonics for high field MR imaging in humans.

    Science.gov (United States)

    Wu, Bing; Wang, Chunsheng; Lu, Jonathan; Pang, Yong; Nelson, Sarah J; Vigneron, Daniel B; Zhang, Xiaoliang

    2012-02-01

    Radio-frequency (RF) transceiver array design using primary and higher order harmonics for in vivo parallel magnetic resonance imaging imaging (MRI) and spectroscopic imaging is proposed. The improved electromagnetic decoupling performance, unique magnetic field distributions and high-frequency operation capabilities of higher-order harmonics of resonators would benefit transceiver arrays for parallel MRI, especially for ultrahigh field parallel MRI. To demonstrate this technique, microstrip transceiver arrays using first and second harmonic resonators were developed for human head parallel imaging at 7T. Phantom and human head images were acquired and evaluated using the GRAPPA reconstruction algorithm. The higher-order harmonic transceiver array design technique was also assessed numerically using FDTD simulation. Compared with regular primary-resonance transceiver designs, the proposed higher-order harmonic technique provided an improved g-factor and increased decoupling among resonant elements without using dedicated decoupling circuits, which would potentially lead to a better parallel imaging performance and ultimately faster and higher quality imaging. The proposed technique is particularly suitable for densely spaced transceiver array design where the increased mutual inductance among the elements becomes problematic. In addition, it also provides a simple approach to readily upgrade the channels of a conventional primary resonator microstrip array to a larger number for faster imaging.

  6. HUMAN CANCER IS A PARASITE SPREAD VIA INTRUSION IN GENOME

    Directory of Open Access Journals (Sweden)

    Sergey N. Rumyantsev

    2013-03-01

    Full Text Available The present article is devoted to further development of new paradigm about the biology of human cancer: the hypothesis of parasitic nature, origin and evolution of the phenomenon. The study included integrative reconsidering, and reinterpretation of the make-ups, traits and processes existing both in human and animal cancers. It was demonstrated that human cancer possesses nearly analogous set of traits characteristic of transmissible animal cancer. Undoubted analogies are seen in the prevalence, clinical exposure, progression of disease, origin of causative agents, immune response against invasion and especially in the intrinsic deviations of the leading traits of cancerous cells. Both human and animal cancers are highly exceptional pathogens. But in contrast to contagious animal cancers the cells of of human cancer can not pass between individuals as usual infectious agents. Exhaustive evidence of the parasitic nature and evolutionary origin of human cancer was revealed and interpreted. In contrast to animal cancer formed of solitary cell lineage, human cancer consists of a couple of lineages constructed under different genetic regulations and performed different structural and physiological functions. The complex make-up of cancer composition remains stable over sequential propagation. The subsistence of human cancer regularly includes obligatory interchange of its successive forms. Human cancer possesses its own biological watch and the ability to gobble its victim, transmit via the intrusion of the genome, perform intercommunications within the tumor components and between the dispersed subunits of cancer. Such intrinsic traits characterize human cancer as a primitively structured parasite that can be classified in Class Mammalians, Species Genomeintruder malevolent (G.malevolent.

  7. Computational Comparison of Human Genomic Sequence Assemblies for a Region of Chromosome 4

    OpenAIRE

    Semple, Colin; Stewart W. Morris; Porteous, David J.; Evans, Kathryn L.

    2002-01-01

    Much of the available human genomic sequence data exist in a fragmentary draft state following the completion of the initial high-volume sequencing performed by the International Human Genome Sequencing Consortium (IHGSC) and Celera Genomics (CG). We compared six draft genome assemblies over a region of chromosome 4p (D4S394–D4S403), two consecutive releases by the IHGSC at University of California, Santa Cruz (UCSC), two consecutive releases from the National Centre for Biotechnology Informa...

  8. A co-evolutionary arms race: trypanosomes shaping the human genome, humans shaping the trypanosome genome

    OpenAIRE

    Capewell, Paul; Cooper, Anneli; Clucas, Caroline; Weir, William; MacLeod, Annette

    2014-01-01

    Trypanosoma brucei is the causative agent of African sleeping sickness in humans and one of several pathogens that cause the related veterinary disease Nagana. A complex co-evolution has occurred between these parasites and primates that led to the emergence of trypanosome-specific defences and counter-measures. The first line of defence in humans and several other catarrhine primates is the trypanolytic protein apolipoprotein-L1 (APOL1) found within two serum protein complexes, trypanosome l...

  9. Frequency and Correlation of Nearest Neighboring Nucleotides in Human Genome

    Institute of Scientific and Technical Information of China (English)

    Neng-zhi Jin; Zi-xian Liu; Wen-yuan Qiu

    2009-01-01

    Zipf's approach in linguistics is utilized to analyze the statistical features of frequency and mosomes (Y, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, and 12). It is found that these statistical features of nearest neighboring nucleotides in human genome: (ⅰ) the frequency distribution is a linear function, and (ⅱ) the correlation distribution is an inverse function. The coeffi-cients of the linear function and inverse function depend on the GC content. It proposes the correlation distribution of nearest neighboring nucleotides for the first time and extends the descriptor about nearest neighboring nucleotides.

  10. Multiple single-cell genomes provide insight into functions of uncultured Deltaproteobacteria in the human oral cavity.

    Science.gov (United States)

    Campbell, Alisha G; Campbell, James H; Schwientek, Patrick; Woyke, Tanja; Sczyrba, Alexander; Allman, Steve; Beall, Clifford J; Griffen, Ann; Leys, Eugene; Podar, Mircea

    2013-01-01

    Despite a long history of investigation, many bacteria associated with the human oral cavity have yet to be cultured. Studies that correlate the presence or abundance of uncultured species with oral health or disease highlight the importance of these community members. Thus, we sequenced several single-cell genomic amplicons from Desulfobulbus and Desulfovibrio (class Deltaproteobacteria) to better understand their function within the human oral community and their association with periodontitis, as well as other systemic diseases. Genomic data from oral Desulfobulbus and Desulfovibrio species were compared to other available deltaproteobacterial genomes, including from a subset of host-associated species. While both groups share a large number of genes with other environmental Deltaproteobacteria genomes, they encode a wide array of unique genes that appear to function in survival in a host environment. Many of these genes are similar to virulence and host adaptation factors of known human pathogens, suggesting that the oral Deltaproteobacteria have the potential to play a role in the etiology of periodontal disease.

  11. Multiple single-cell genomes provide insight into functions of uncultured Deltaproteobacteria in the human oral cavity.

    Directory of Open Access Journals (Sweden)

    Alisha G Campbell

    Full Text Available Despite a long history of investigation, many bacteria associated with the human oral cavity have yet to be cultured. Studies that correlate the presence or abundance of uncultured species with oral health or disease highlight the importance of these community members. Thus, we sequenced several single-cell genomic amplicons from Desulfobulbus and Desulfovibrio (class Deltaproteobacteria to better understand their function within the human oral community and their association with periodontitis, as well as other systemic diseases. Genomic data from oral Desulfobulbus and Desulfovibrio species were compared to other available deltaproteobacterial genomes, including from a subset of host-associated species. While both groups share a large number of genes with other environmental Deltaproteobacteria genomes, they encode a wide array of unique genes that appear to function in survival in a host environment. Many of these genes are similar to virulence and host adaptation factors of known human pathogens, suggesting that the oral Deltaproteobacteria have the potential to play a role in the etiology of periodontal disease.

  12. Genomic imprinting and human psychology: cognition, behavior and pathology.

    Science.gov (United States)

    Goos, Lisa M; Ragsdale, Gillian

    2008-01-01

    Imprinted genes expressed in the brain are numerous and it has become clear that they play an important role in nervous system development and function. The significant influence of genomic imprinting during development sets the stage for structural and physiological variations affecting psychological function and behaviour, as well as other physiological systems mediating health and well-being. However, our understanding of the role of imprinted genes in behaviour lags far behind our understanding of their roles in perinatal growth and development. Knowledge of genomic imprinting remains limited among behavioral scientists and clinicians and research regarding the influence of imprinted genes on normal cognitive processes and the most common forms of neuropathology has been limited to date. In this chapter, we will explore how knowledge of genomic imprinting can be used to inform our study of normal human cognitive and behavioral processes as well as their disruption. Behavioural analyses of rare imprinted disorders, such as Prader-Willi and Angelman syndromes, provide insight regarding the phenotypic impact of imprinted genes in the brain, and can be used to guide the study of normal behaviour as well as more common but etiologically complex disorders such as ADHD and autism. Furthermore, hypotheses regarding the evolutionary development of imprinted genes can be used to derive predictions about their role in normal behavioural variation, such as that observed in food-related and social interactions.

  13. A library of TAL effector nucleases spanning the human genome.

    Science.gov (United States)

    Kim, Yongsub; Kweon, Jiyeon; Kim, Annie; Chon, Jae Kyung; Yoo, Ji Yeon; Kim, Hye Joo; Kim, Sojung; Lee, Choongil; Jeong, Euihwan; Chung, Eugene; Kim, Doyoung; Lee, Mi Seon; Go, Eun Mi; Song, Hye Jung; Kim, Hwangbeom; Cho, Namjin; Bang, Duhee; Kim, Seokjoong; Kim, Jin-Soo

    2013-03-01

    Transcription activator-like (TAL) effector nucleases (TALENs) can be readily engineered to bind specific genomic loci, enabling the introduction of precise genetic modifications such as gene knockouts and additions. Here we present a genome-scale collection of TALENs for efficient and scalable gene targeting in human cells. We chose target sites that did not have highly similar sequences elsewhere in the genome to avoid off-target mutations and assembled TALEN plasmids for 18,740 protein-coding genes using a high-throughput Golden-Gate cloning system. A pilot test involving 124 genes showed that all TALENs were active and disrupted their target genes at high frequencies, although two of these TALENs became active only after their target sites were partially demethylated using an inhibitor of DNA methyltransferase. We used our TALEN library to generate single- and double-gene-knockout cells in which NF-κB signaling pathways were disrupted. Compared with cells treated with short interfering RNAs, these cells showed unambiguous suppression of signal transduction.

  14. A hybrid approach for de novo human genome sequence assembly and phasing.

    Science.gov (United States)

    Mostovoy, Yulia; Levy-Sakin, Michal; Lam, Jessica; Lam, Ernest T; Hastie, Alex R; Marks, Patrick; Lee, Joyce; Chu, Catherine; Lin, Chin; Džakula, Željko; Cao, Han; Schlebusch, Stephen A; Giorda, Kristina; Schnall-Levin, Michael; Wall, Jeffrey D; Kwok, Pui-Yan

    2016-07-01

    Despite tremendous progress in genome sequencing, the basic goal of producing a phased (haplotype-resolved) genome sequence with end-to-end contiguity for each chromosome at reasonable cost and effort is still unrealized. In this study, we describe an approach to performing de novo genome assembly and experimental phasing by integrating the data from Illumina short-read sequencing, 10X Genomics linked-read sequencing, and BioNano Genomics genome mapping to yield a high-quality, phased, de novo assembled human genome.

  15. Exploring human disease using the Rat Genome Database

    Directory of Open Access Journals (Sweden)

    Mary Shimoyama

    2016-10-01

    Full Text Available Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers – within and beyond the rat community – who are particularly interested in leveraging rat-based insights to understand human diseases.

  16. Exploring human disease using the Rat Genome Database

    Science.gov (United States)

    Laulederkind, Stanley J. F.; De Pons, Jeff; Nigam, Rajni; Smith, Jennifer R.; Tutaj, Marek; Petri, Victoria; Hayman, G. Thomas; Wang, Shur-Jen; Ghiasvand, Omid; Thota, Jyothi; Dwinell, Melinda R.

    2016-01-01

    ABSTRACT Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu) has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers – within and beyond the rat community – who are particularly interested in leveraging rat-based insights to understand human diseases. PMID:27736745

  17. Design of a detection system of highlight LED arrays' effect on the human organization

    Science.gov (United States)

    Chen, Shuwang; Shi, Guiju; Xue, Tongze; Liu, Yanming

    2009-05-01

    LED (Light Emitting Diode) has many advantages in the intensity, wavelength, practicality and price, so it is feasible to apply in biomedicine engineering. A system for the research on the effect of highlight LED arrays to human organization is designed. The temperature of skin surface can rise if skin and organization are in irradiation by highlight LED arrays. The metabolism and blood circulation of corresponding position will be quicker than those not in the shine, so the surface temperature will vary in different position of skin. The structure of LED source arrays system is presented and a measure system for studying LED's influence on human organization is designed. The temperature values of shining point are detected by infrared temperature detector. Temperature change is different according to LED parameters, such as the number, irradiation time and luminous intensity of LED. Experimental device is designed as an LED arrays pen. The LED arrays device is used to shine the points of human body, then it may effect on personal organization as well as the acupuncture. The system is applied in curing a certain skin disease, such as age pigment, skin cancer and fleck.

  18. Microsatellite interruptions stabilize primate genomes and exist as population-specific single nucleotide polymorphisms within individual human genomes.

    Science.gov (United States)

    Ananda, Guruprasad; Hile, Suzanne E; Breski, Amanda; Wang, Yanli; Kelkar, Yogeshwar; Makova, Kateryna D; Eckert, Kristin A

    2014-07-01

    Interruptions of microsatellite sequences impact genome evolution and can alter disease manifestation. However, human polymorphism levels at interrupted microsatellites (iMSs) are not known at a genome-wide scale, and the pathways for gaining interruptions are poorly understood. Using the 1000 Genomes Phase-1 variant call set, we interrogated mono-, di-, tri-, and tetranucleotide repeats up to 10 units in length. We detected ∼26,000-40,000 iMSs within each of four human population groups (African, European, East Asian, and American). We identified population-specific iMSs within exonic regions, and discovered that known disease-associated iMSs contain alleles present at differing frequencies among the populations. By analyzing longer microsatellites in primate genomes, we demonstrate that single interruptions result in a genome-wide average two- to six-fold reduction in microsatellite mutability, as compared with perfect microsatellites. Centrally located interruptions lowered mutability dramatically, by two to three orders of magnitude. Using a biochemical approach, we tested directly whether the mutability of a specific iMS is lower because of decreased DNA polymerase strand slippage errors. Modeling the adenomatous polyposis coli tumor suppressor gene sequence, we observed that a single base substitution interruption reduced strand slippage error rates five- to 50-fold, relative to a perfect repeat, during synthesis by DNA polymerases α, β, or η. Computationally, we demonstrate that iMSs arise primarily by base substitution mutations within individual human genomes. Our biochemical survey of human DNA polymerase α, β, δ, κ, and η error rates within certain microsatellites suggests that interruptions are created most frequently by low fidelity polymerases. Our combined computational and biochemical results demonstrate that iMSs are abundant in human genomes and are sources of population-specific genetic variation that may affect genome stability. The

  19. In vitro concurrent endothelial and osteogenic commitment of adipose-derived stem cells and their genomical analyses through comparative genomic hybridization array: novel strategies to increase the successful engraftment of tissue-engineered bone grafts.

    Science.gov (United States)

    Gardin, Chiara; Bressan, Eriberto; Ferroni, Letizia; Nalesso, Elisa; Vindigni, Vincenzo; Stellini, Edoardo; Pinton, Paolo; Sivolella, Stefano; Zavan, Barbara

    2012-03-20

    In the field of tissue engineering, adult stem cells are increasingly recognized as an important tool for in vitro reconstructed tissue-engineered grafts. In the world of cell therapies, undoubtedly, mesenchymal stem cells from bone marrow or adipose tissue are the most promising progenitors for tissue engineering applications. In this setting, adipose-derived stem cells (ASCs) are generally similar to those derived from bone marrow and are most conveniently extracted from tissue removed by elective cosmetic liposuction procedures; they also show a great potential for endothelization. The aim of the present work was to investigate how the cocommitment into a vascular and bone phenotype of ASCs could be a useful tool for improving the in vitro and in vivo reconstruction of a vascularized bone graft. Human ASCs obtained from abdominoplasty procedures were loaded in a hydroxyapatite clinical-grade scaffold, codifferentiated, and tested for proliferation, cell distribution, and osteogenic and vasculogenic gene expression. The chromosomal stability of the cultures was investigated using the comparative genomic hybridization array for 3D cultures. ASC adhesion, distribution, proliferation, and gene expression not only demonstrated a full osteogenic and vasculogenic commitment in vitro and in vivo, but also showed that endothelization strongly improves their osteogenic commitment. In the end, genetic analyses confirmed that no genomical alteration in long-term in vitro culture of ASCs in 3D scaffolds occurs.

  20. The influence of genomic context on mutation patterns in the human genome inferred from rare variants.

    Science.gov (United States)

    Schaibley, Valerie M; Zawistowski, Matthew; Wegmann, Daniel; Ehm, Margaret G; Nelson, Matthew R; St Jean, Pamela L; Abecasis, Gonçalo R; Novembre, John; Zöllner, Sebastian; Li, Jun Z

    2013-12-01

    Understanding patterns of spontaneous mutations is of fundamental interest in studies of human genome evolution and genetic disease. Here, we used extremely rare variants in humans to model the molecular spectrum of single-nucleotide mutations. Compared to common variants in humans and human-chimpanzee fixed differences (substitutions), rare variants, on average, arose more recently in the human lineage and are less affected by the potentially confounding effects of natural selection, population demographic history, and biased gene conversion. We analyzed variants obtained from a population-based sequencing study of 202 genes in >14,000 individuals. We observed considerable variability in the per-gene mutation rate, which was correlated with local GC content, but not recombination rate. Using >20,000 variants with a derived allele frequency ≤ 10(-4), we examined the effect of local GC content and recombination rate on individual variant subtypes and performed comparisons with common variants and substitutions. The influence of local GC content on rare variants differed from that on common variants or substitutions, and the differences varied by variant subtype. Furthermore, recombination rate and recombination hotspots have little effect on rare variants of any subtype, yet both have a relatively strong impact on multiple variant subtypes in common variants and substitutions. This observation is consistent with the effect of biased gene conversion or selection-dependent processes. Our results highlight the distinct biases inherent in the initial mutation patterns and subsequent evolutionary processes that affect segregating variants.

  1. Documenting genomics: Applying archival theory to preserving the records of the Human Genome Project.

    Science.gov (United States)

    Shaw, Jennifer

    2016-02-01

    The Human Genome Archive Project (HGAP) aimed to preserve the documentary heritage of the UK's contribution to the Human Genome Project (HGP) by using archival theory to develop a suitable methodology for capturing the results of modern, collaborative science. After assessing past projects and different archival theories, the HGAP used an approach based on the theory of documentation strategy to try to capture the records of a scientific project that had an influence beyond the purely scientific sphere. The HGAP was an archival survey that ran for two years. It led to ninety scientists being contacted and has, so far, led to six collections being deposited in the Wellcome Library, with additional collections being deposited in other UK repositories. In applying documentation strategy the HGAP was attempting to move away from traditional archival approaches to science, which have generally focused on retired Nobel Prize winners. It has been partially successful in this aim, having managed to secure collections from people who are not 'big names', but who made an important contribution to the HGP. However, the attempt to redress the gender imbalance in scientific collections and to improve record-keeping in scientific organisations has continued to be difficult to achieve.

  2. Genome-Wide Screening of Cytogenetic Abnormalities in Multiple Myeloma Patients Using Array-CGH Technique: A Czech Multicenter Experience

    Directory of Open Access Journals (Sweden)

    Jan Smetana

    2014-01-01

    Full Text Available Characteristic recurrent copy number aberrations (CNAs play a key role in multiple myeloma (MM pathogenesis and have important prognostic significance for MM patients. Array-based comparative genomic hybridization (aCGH provides a powerful tool for genome-wide classification of CNAs and thus should be implemented into MM routine diagnostics. We demonstrate the possibility of effective utilization of oligonucleotide-based aCGH in 91 MM patients. Chromosomal aberrations associated with effect on the prognosis of MM were initially evaluated by I-FISH and were found in 93.4% (85/91. Incidence of hyperdiploidy was 49.5% (45/91; del(13(q14 was detected in 57.1% (52/91; gain(1(q21 occurred in 58.2% (53/91; del(17(p13 was observed in 15.4% (14/91; and t(4;14(p16;q32 was found in 18.6% (16/86. Genome-wide screening using Agilent 44K aCGH microarrays revealed copy number alterations in 100% (91/91. Most common deletions were found at 13q (58.9%, 1p (39.6%, and 8p (31.1%, whereas gain of whole 1q was the most often duplicated region (50.6%. Furthermore, frequent homozygous deletions of genes playing important role in myeloma biology such as TRAF3, BIRC1/BIRC2, RB1, or CDKN2C were observed. Taken together, we demonstrated the utilization of aCGH technique in clinical diagnostics as powerful tool for identification of unbalanced genomic abnormalities with prognostic significance for MM patients.

  3. CAG-encoded polyglutamine length polymorphism in the human genome

    Directory of Open Access Journals (Sweden)

    Hayden Michael R

    2007-05-01

    Full Text Available Abstract Background Expansion of polyglutamine-encoding CAG trinucleotide repeats has been identified as the pathogenic mutation in nine different genes associated with neurodegenerative disorders. The majority of individuals clinically diagnosed with spinocerebellar ataxia do not have mutations within known disease genes, and it is likely that additional ataxias or Huntington disease-like disorders will be found to be caused by this common mutational mechanism. We set out to determine the length distributions of CAG-polyglutamine tracts for the entire human genome in a set of healthy individuals in order to characterize the nature of polyglutamine repeat length variation across the human genome, to establish the background against which pathogenic repeat expansions can be detected, and to prioritize candidate genes for repeat expansion disorders. Results We found that repeats, including those in known disease genes, have unique distributions of glutamine tract lengths, as measured by fragment analysis of PCR-amplified repeat regions. This emphasizes the need to characterize each distribution and avoid making generalizations between loci. The best predictors of known disease genes were occurrence of a long CAG-tract uninterrupted by CAA codons in their reference genome sequence, and high glutamine tract length variance in the normal population. We used these parameters to identify eight priority candidate genes for polyglutamine expansion disorders. Twelve CAG-polyglutamine repeats were invariant and these can likely be excluded as candidates. We outline some confusion in the literature about this type of data, difficulties in comparing such data between publications, and its application to studies of disease prevalence in different populations. Analysis of Gene Ontology-based functions of CAG-polyglutamine-containing genes provided a visual framework for interpretation of these genes' functions. All nine known disease genes were involved in DNA

  4. Identification of genome-wide copy number variations among diverse pig breeds using SNP genotyping arrays.

    Directory of Open Access Journals (Sweden)

    Jiying Wang

    Full Text Available Copy number variations (CNVs are important forms of genetic variation complementary to SNPs, and can be considered as promising markers for some phenotypic and economically important traits or diseases susceptibility in domestic animals. In the present study, we performed a genome-wide CNV identification in 14 individuals selected from diverse populations, including six types of Chinese indigenous breeds, one Asian wild boar population, as well as three modern commercial foreign breeds. We identified 63 CNVRs in total, which covered 9.98 Mb of polymorphic sequence and corresponded to 0.36% of the genome sequence. The length of these CNVRs ranged from 3.20 to 827.21 kb, with an average of 158.37 kb and a median of 97.85 kb. Functional annotation revealed these identified CNVR have important molecular function, and may play an important role in exploring the genetic basis of phenotypic variability and disease susceptibility among pigs. Additionally, to confirm these potential CNVRs, we performed qPCR for 12 randomly selected CNVRs and 8 of them (66.67% were confirmed successfully. CNVs detected in diverse populations herein are essential complementary to the CNV map in the pig genome, which provide an important resource for studies of genomic variation and the association between various economically important traits and CNVs.

  5. Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer

    DEFF Research Database (Denmark)

    Carneiro, Ana; Isinger, Anna; Karlsson, Anna;

    2008-01-01

    interdependent alterations and deranged pathways were identified and copy number changes were correlated to stage, differentiation and survival. RESULTS: Copy number alterations affected median 19% of the genome and included recurrent gains of chromosome regions 5p, 7p, 7q, 8q, 10q, 11q, 12p, 14q, 16p, 17p, 19p...

  6. Power generation from human body motion through magnet and coil arrays with magnetic spring

    Science.gov (United States)

    Zhang, Qian; Wang, Yufeng; Kim, Eun Sok

    2014-02-01

    This article presents a hand-held electromagnetic energy harvester which can be used to harvest tens of mW power level from human body motion. A magnet array, aligned to a coil array for maximum magnetic flux change, is suspended by a magnetic spring for a resonant frequency of several Hz and is stabilized horizontally by graphite sheets for reducing the friction. An analytical model of vibration-driven energy harvester with magnetic spring through magnet and coil arrays is developed to explore the power generation from vibrations at low frequency and large amplitude. When the energy harvester (occupying 120 cc and weighing 180 g) is placed in a backpack of a human walking at various speeds, the power output increases as the walking speed increases from 0.45 m/s (slow walking) to 3.58 m/s (slow running), and reaches 32 mW at 3.58 m/s.

  7. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2 group of human endogenous retroviruses

    Directory of Open Access Journals (Sweden)

    Subramanian Ravi P

    2011-11-01

    Full Text Available Abstract Background Integration of retroviral DNA into a germ cell may lead to a provirus that is transmitted vertically to that host's offspring as an endogenous retrovirus (ERV. In humans, ERVs (HERVs comprise about 8% of the genome, the vast majority of which are truncated and/or highly mutated and no longer encode functional genes. The most recently active retroviruses that integrated into the human germ line are members of the Betaretrovirus-like HERV-K (HML-2 group, many of which contain intact open reading frames (ORFs in some or all genes, sometimes encoding functional proteins that are expressed in various tissues. Interestingly, this expression is upregulated in many tumors ranging from breast and ovarian tissues to lymphomas and melanomas, as well as schizophrenia, rheumatoid arthritis, and other disorders. Results No study to date has characterized all HML-2 elements in the genome, an essential step towards determining a possible functional role of HML-2 expression in disease. We present here the most comprehensive and accurate catalog of all full-length and partial HML-2 proviruses, as well as solo LTR elements, within the published human genome to date. Furthermore, we provide evidence for preferential maintenance of proviruses and solo LTR elements on gene-rich chromosomes of the human genome and in proximity to gene regions. Conclusions Our analysis has found and corrected several errors in the annotation of HML-2 elements in the human genome, including mislabeling of a newly identified group called HML-11. HML-elements have been implicated in a wide array of diseases, and characterization of these elements will play a fundamental role to understand the relationship between endogenous retrovirus expression and disease.

  8. An Aboriginal Australian genome reveals separate human dispersals into Asia.

    Science.gov (United States)

    Rasmussen, Morten; Guo, Xiaosen; Wang, Yong; Lohmueller, Kirk E; Rasmussen, Simon; Albrechtsen, Anders; Skotte, Line; Lindgreen, Stinus; Metspalu, Mait; Jombart, Thibaut; Kivisild, Toomas; Zhai, Weiwei; Eriksson, Anders; Manica, Andrea; Orlando, Ludovic; De La Vega, Francisco M; Tridico, Silvana; Metspalu, Ene; Nielsen, Kasper; Ávila-Arcos, María C; Moreno-Mayar, J Víctor; Muller, Craig; Dortch, Joe; Gilbert, M Thomas P; Lund, Ole; Wesolowska, Agata; Karmin, Monika; Weinert, Lucy A; Wang, Bo; Li, Jun; Tai, Shuaishuai; Xiao, Fei; Hanihara, Tsunehiko; van Driem, George; Jha, Aashish R; Ricaut, François-Xavier; de Knijff, Peter; Migliano, Andrea B; Gallego Romero, Irene; Kristiansen, Karsten; Lambert, David M; Brunak, Søren; Forster, Peter; Brinkmann, Bernd; Nehlich, Olaf; Bunce, Michael; Richards, Michael; Gupta, Ramneek; Bustamante, Carlos D; Krogh, Anders; Foley, Robert A; Lahr, Marta M; Balloux, Francois; Sicheritz-Pontén, Thomas; Villems, Richard; Nielsen, Rasmus; Wang, Jun; Willerslev, Eske

    2011-10-07

    We present an Aboriginal Australian genomic sequence obtained from a 100-year-old lock of hair donated by an Aboriginal man from southern Western Australia in the early 20th century. We detect no evidence of European admixture and estimate contamination levels to be below 0.5%. We show that Aboriginal Australians are descendants of an early human dispersal into eastern Asia, possibly 62,000 to 75,000 years ago. This dispersal is separate from the one that gave rise to modern Asians 25,000 to 38,000 years ago. We also find evidence of gene flow between populations of the two dispersal waves prior to the divergence of Native Americans from modern Asian ancestors. Our findings support the hypothesis that present-day Aboriginal Australians descend from the earliest humans to occupy Australia, likely representing one of the oldest continuous populations outside Africa.

  9. The UK Human Genome Mapping Project online computing service.

    Science.gov (United States)

    Rysavy, F R; Bishop, M J; Gibbs, G P; Williams, G W

    1992-04-01

    This paper presents an overview of computing and networking facilities developed by the Medical Research Council to provide online computing support to the Human Genome Mapping Project (HGMP) in the UK. The facility is connected to a number of other computing facilities in various centres of genetics and molecular biology research excellence, either directly via high-speed links or through national and international wide-area networks. The paper describes the design and implementation of the current system, a 'client/server' network of Sun, IBM, DEC and Apple servers, gateways and workstations. A short outline of online computing services currently delivered by this system to the UK human genetics research community is also provided. More information about the services and their availability could be obtained by a direct approach to the UK HGMP-RC.

  10. Linkage disequilibrium of evolutionarily conserved regions in the human genome

    Directory of Open Access Journals (Sweden)

    Johnson Todd A

    2006-12-01

    Full Text Available Abstract Background The strong linkage disequilibrium (LD recently found in genic or exonic regions of the human genome demonstrated that LD can be increased by evolutionary mechanisms that select for functionally important loci. This suggests that LD might be stronger in regions conserved among species than in non-conserved regions, since regions exposed to natural selection tend to be conserved. To assess this hypothesis, we used genome-wide polymorphism data from the HapMap project and investigated LD within DNA sequences conserved between the human and mouse genomes. Results Unexpectedly, we observed that LD was significantly weaker in conserved regions than in non-conserved regions. To investigate why, we examined sequence features that may distort the relationship between LD and conserved regions. We found that interspersed repeats, and not other sequence features, were associated with the weak LD tendency in conserved regions. To appropriately understand the relationship between LD and conserved regions, we removed the effect of repetitive elements and found that the high degree of sequence conservation was strongly associated with strong LD in coding regions but not with that in non-coding regions. Conclusion Our work demonstrates that the degree of sequence conservation does not simply increase LD as predicted by the hypothesis. Rather, it implies that purifying selection changes the polymorphic patterns of coding sequences but has little influence on the patterns of functional units such as regulatory elements present in non-coding regions, since the former are generally restricted by the constraint of maintaining a functional protein product across multiple exons while the latter may exist more as individually isolated units.

  11. Probing Genome Maintenance Functions of human RECQ1

    Directory of Open Access Journals (Sweden)

    Furqan Sami

    2013-03-01

    Full Text Available The RecQ helicases are a highly conserved family of DNA-unwinding enzymes that play key roles in protecting the genome stability in all kingdoms of life. Human RecQ homologs include RECQ1, BLM, WRN, RECQ4, and RECQ5β. Although the individual RecQ-related diseases are characterized by a variety of clinical features encompassing growth defects (Bloom Syndrome and Rothmund Thomson Syndrome to premature aging (Werner Syndrome, all these patients have a high risk of cancer predisposition. Here, we present an overview of recent progress towards elucidating functions of RECQ1 helicase, the most abundant but poorly characterized RecQ homolog in humans. Consistent with a conserved role in genome stability maintenance, deficiency of RECQ1 results in elevated frequency of spontaneous sister chromatid exchanges, chromosomal instability, increased DNA damage and greater sensitivity to certain genotoxic stress. Delineating what aspects of RECQ1 catalytic functions contribute to the observed cellular phenotypes, and how this is regulated is critical to establish its biological functions in DNA metabolism. Recent studies have identified functional specialization of RECQ1 in DNA repair; however, identification of fundamental similarities will be just as critical in developing a unifying theme for RecQ actions, allowing the functions revealed from studying one homolog to be extrapolated and generalized to other RecQ homologs.

  12. PROBING GENOME MAINTENANCE FUNCTIONS OF HUMAN RECQ1

    Directory of Open Access Journals (Sweden)

    Furqan Sami

    2013-03-01

    Full Text Available The RecQ helicases are a highly conserved family of DNA-unwinding enzymes that play key roles in protecting the genome stability in all kingdoms of life.'Human RecQ homologs include RECQ1, BLM, WRN, RECQ4, and RECQ5β.'Although the individual RecQ-related diseases are characterized by a variety of clinical features encompassing growth defects (Bloom Syndrome and Rothmund Thomson Syndrome to premature aging (Werner Syndrome, all these patients have a high risk of cancer predisposition.'Here, we present an overview of recent progress towards elucidating functions of RECQ1 helicase, the most abundant but poorly characterized RecQ homolog in humans.'Consistent with a conserved role in genome stability maintenance, deficiency of RECQ1 results in elevated frequency of spontaneous sister chromatid exchanges, chromosomal instability, increased DNA damage and greater sensitivity to certain genotoxic stress.'Delineating what aspects of RECQ1 catalytic functions contribute to the observed cellular phenotypes, and how this is regulated is critical to establish its biological functions in DNA metabolism.'Recent studies have identified functional specialization of RECQ1 in DNA repair; however, identification of fundamental similarities will be just as critical in developing a unifying theme for RecQ actions, allowing the functions revealed from studying one homolog to be extrapolated and generalized to other RecQ homologs.

  13. Retrocopy contributions to the evolution of the human genome

    Directory of Open Access Journals (Sweden)

    Haussler David

    2008-10-01

    Full Text Available Abstract Background Evolution via point mutations is a relatively slow process and is unlikely to completely explain the differences between primates and other mammals. By contrast, 45% of the human genome is composed of retroposed elements, many of which were inserted in the primate lineage. A subset of retroposed mRNAs (retrocopies shows strong evidence of expression in primates, often yielding functional retrogenes. Results To identify and analyze the relatively recently evolved retrogenes, we carried out BLASTZ alignments of all human mRNAs against the human genome and scored a set of features indicative of retroposition. Of over 12,000 putative retrocopy-derived genes that arose mainly in the primate lineage, 726 with strong evidence of transcript expression were examined in detail. These mRNA retroposition events fall into three categories: I 34 retrocopies and antisense retrocopies that added potential protein coding space and UTRs to existing genes; II 682 complete retrocopy duplications inserted into new loci; and III an unexpected set of 13 retrocopies that contributed out-of-frame, or antisense sequences in combination with other types of transposed elements (SINEs, LINEs, LTRs, even unannotated sequence to form potentially novel genes with no homologs outside primates. In addition to their presence in human, several of the gene candidates also had potentially viable ORFs in chimpanzee, orangutan, and rhesus macaque, underscoring their potential of function. Conclusion mRNA-derived retrocopies provide raw material for the evolution of genes in a wide variety of ways, duplicating and amending the protein coding region of existing genes as well as generating the potential for new protein coding space, or non-protein coding RNAs, by unexpected contributions out of frame, in reverse orientation, or from previously non-protein coding sequence.

  14. Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage.

    Directory of Open Access Journals (Sweden)

    Anna Rosell

    Full Text Available BACKGROUND: Spontaneous intracerebral hemorrhage (ICH represents about 15% of all strokes and is associated with high mortality rates. Our aim was to identify the gene expression changes and biological pathways altered in the brain following ICH. METHODOLOGY/PRINCIPAL FINDINGS: Twelve brain samples were obtained from four deceased patients who suffered an ICH including perihematomal tissue (PH and the corresponding contralateral white (CW and grey (CG matter. Affymetrix GeneChip platform for analysis of over 47,000 transcripts was conducted. Microarray Analysis Suite 5.0 was used to process array images and the Ingenuity Pathway Analysis System was used to analyze biological mechanisms and functions of the genes. We identified 468 genes in the PH areas displaying a different expression pattern with a fold change between -3.74 and +5.16 when compared to the contralateral areas (291 overexpressed and 177 underexpressed. The top genes which appeared most significantly overexpressed in the PH areas codify for cytokines, chemokines, coagulation factors, cell growth and proliferation factors while the underexpressed codify for proteins involved in cell cycle or neurotrophins. Validation and replication studies at gene and protein level in brain samples confirmed microarray results. CONCLUSIONS: The genomic responses identified in this study provide valuable information about potential biomarkers and target molecules altered in the perihematomal regions.

  15. 77 FR 67385 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2012-11-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research...

  16. 78 FR 66752 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2013-11-06

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research Institute Special Emphasis Panel, October 15, 2013, 01:00 p.m. to October 15, 2013, 02:30 p.m., National...

  17. 76 FR 65738 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2011-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research...

  18. 77 FR 55853 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2012-09-11

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Advisory Council for Human Genome Research, September 10, 2012, 8:30 a.m. to September 11, 2012, 5 p.m., National Institutes...

  19. 76 FR 63932 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2011-10-14

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Notice of Closed... of Committee: National Human Genome Research Institute Special Emphasis Panel, ENCODE Technology RFA...- 4280, mckenneyk@mail.nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172,...

  20. 75 FR 53703 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-09-01

    ... National Human Genome Research Institute; Notice of Closed Meeting Pursuant to section 10(d) of the Federal... Review Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes... review and funding cycle. (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human...

  1. 77 FR 27471 - National Human Genome Research Institute Amended Notice of Meeting

    Science.gov (United States)

    2012-05-10

    ... HUMAN SERVICES National Institutes of Health National Human Genome Research Institute Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Advisory Council for Human Genome Research, May 21, 2012, 8:30 a.m. to May 22, 2012, 5:00 p.m., National Institutes of Health,...

  2. 75 FR 26762 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-05-12

    ... clearly unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research....nih.gov . (Catalogue of Federal Domestic Assistance Program Nos. 93.172, Human Genome Research... No: 2010-11051] DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National...

  3. 76 FR 71581 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2011-11-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research...

  4. 78 FR 65342 - National Human Genome Research Institute; Amended Notice of Meeting

    Science.gov (United States)

    2013-10-31

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome Research Institute; Amended Notice of Meeting Notice is hereby given of a change in the meeting of the National Human Genome Research...

  5. Estimates of array and pool-construction variance for planning efficient DNA-pooling genome wide association studies

    Directory of Open Access Journals (Sweden)

    Earp Madalene A

    2011-11-01

    Full Text Available Abstract Background Until recently, genome-wide association studies (GWAS have been restricted to research groups with the budget necessary to genotype hundreds, if not thousands, of samples. Replacing individual genotyping with genotyping of DNA pools in Phase I of a GWAS has proven successful, and dramatically altered the financial feasibility of this approach. When conducting a pool-based GWAS, how well SNP allele frequency is estimated from a DNA pool will influence a study's power to detect associations. Here we address how to control the variance in allele frequency estimation when DNAs are pooled, and how to plan and conduct the most efficient well-powered pool-based GWAS. Methods By examining the variation in allele frequency estimation on SNP arrays between and within DNA pools we determine how array variance [var(earray] and pool-construction variance [var(econstruction] contribute to the total variance of allele frequency estimation. This information is useful in deciding whether replicate arrays or replicate pools are most useful in reducing variance. Our analysis is based on 27 DNA pools ranging in size from 74 to 446 individual samples, genotyped on a collective total of 128 Illumina beadarrays: 24 1M-Single, 32 1M-Duo, and 72 660-Quad. Results For all three Illumina SNP array types our estimates of var(earray were similar, between 3-4 × 10-4 for normalized data. Var(econstruction accounted for between 20-40% of pooling variance across 27 pools in normalized data. Conclusions We conclude that relative to var(earray, var(econstruction is of less importance in reducing the variance in allele frequency estimation from DNA pools; however, our data suggests that on average it may be more important than previously thought. We have prepared a simple online tool, PoolingPlanner (available at http://www.kchew.ca/PoolingPlanner/, which calculates the effective sample size (ESS of a DNA pool given a range of replicate array values. ESS can

  6. High-resolution array comparative genomic hybridization of chromosome 8q: evaluation of putative progression markers for gastroesophageal junction adenocarcinomas.

    Science.gov (United States)

    van Duin, M; van Marion, R; Vissers, K J; Hop, W C J; Dinjens, W N M; Tilanus, H W; Siersema, P D; van Dekken, H

    2007-01-01

    Amplification of 8q is frequently found in gastroesophageal junction (GEJ) cancer. It is usually detected in high-grade, high-stage GEJ adenocarcinomas. Moreover, it has been implicated in tumor progression in other cancer types. In this study, a detailed genomic analysis of 8q was performed on a series of GEJ adenocarcinomas, including 22 primary adenocarcinomas, 13 cell lines and two xenografts, by array comparative genomic hybridization (aCGH) with a whole chromosome 8q contig array. Of the 37 specimens, 21 originated from the esophagus and 16 were derived from the gastric cardia. Commonly overrepresented regions were identified at distal 8q, i.e. 124-125 Mb (8q24.13), at 127-128 Mb (8q24.21), and at 141-142 Mb (8q24.3). From these regions six genes were selected with putative relevance to cancer: ANXA13, MTSS1, FAM84B (alias NSE2), MYC, C8orf17 (alias MOST-1) and PTK2 (alias FAK). In addition, the gene EXT1 was selected since it was found in a specific amplification in cell line SK-GT-5. Quantitative RT-PCR analysis of these seven genes was subsequently performed on a panel of 24 gastroesophageal samples, including 13 cell lines, two xenografts and nine normal stomach controls. Significant overexpression was found for MYC and EXT1 in GEJ adenocarcinoma cell lines and xenografts compared to normal controls. Expression of the genes MTSS1, FAM84B and C8orf17 was found to be significantly decreased in this set of cell lines and xenografts. We conclude that, firstly, there are other genes than MYC involved in the 8q amplification in GEJ cancer. Secondly, the differential expression of these genes contributes to unravel the biology of GEJ adenocarcinomas.

  7. ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation

    Directory of Open Access Journals (Sweden)

    Porter Christopher J

    2007-09-01

    Full Text Available Abstract Background SNP microarrays are designed to genotype Single Nucleotide Polymorphisms (SNPs. These microarrays report hybridization of DNA fragments and therefore can be used for the purpose of detecting genomic fragments. Results Here, we demonstrate that a SNP microarray can be effectively used in this way to perform chromatin immunoprecipitation (ChIP on chip as an alternative to tiling microarrays. We illustrate this novel application by mapping whole genome histone H4 hyperacetylation in human myoblasts and myotubes. We detect clusters of hyperacetylated histone H4, often spanning across up to 300 kilobases of genomic sequence. Using complementary genome-wide analyses of gene expression by DNA microarray we demonstrate that these clusters of hyperacetylated histone H4 tend to be associated with expressed genes. Conclusion The use of a SNP array for a ChIP-on-chip application (ChIP on SNP-chip will be of great value to laboratories whose interest is the determination of general rules regarding the relationship of specific chromatin modifications to transcriptional status throughout the genome and to examine the asymmetric modification of chromatin at heterozygous loci.

  8. Matching of array CGH and gene expression microarray features for the purpose of integrative genomic analyses

    Directory of Open Access Journals (Sweden)

    van Wieringen Wessel N

    2012-05-01

    Full Text Available Abstract Background An increasing number of genomic studies interrogating more than one molecular level is published. Bioinformatics follows biological practice, and recent years have seen a surge in methodology for the integrative analysis of genomic data. Often such analyses require knowledge of which elements of one platform link to those of another. Although important, many integrative analyses do not or insufficiently detail the matching of the platforms. Results We describe, illustrate and discuss six matching procedures. They are implemented in the R-package sigaR (available from Bioconductor. The principles underlying the presented matching procedures are generic, and can be combined to form new matching approaches or be applied to the matching of other platforms. Illustration of the matching procedures on a variety of data sets reveals how the procedures differ in the use of the available data, and may even lead to different results for individual genes. Conclusions Matching of data from multiple genomics platforms is an important preprocessing step for many integrative bioinformatic analysis, for which we present six generic procedures, both old and new. They have been implemented in the R-package sigaR, available from Bioconductor.

  9. Detection and precise mapping of germline rearrangements in BRCA1, BRCA2, MSH2, and MLH1 using zoom-in array comparative genomic hybridization (aCGH)

    DEFF Research Database (Denmark)

    Staaf, Johan; Törngren, Therese; Rambech, Eva

    2008-01-01

    Disease-predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements that are challenging to detect and characterize using standard PCR-based mutation screening methods. Here, we describe a custom-made zoom-in microarray comparative genomic...... hybridization (CGH) platform of 60mer oligonucleotides. The 4 x 44 K array format provides high-resolution coverage (200-300 bp) of 400-700 kb genomic regions surrounding six cancer susceptibility genes. We evaluate its performance to accurately detect and precisely map earlier described or novel large germline...

  10. Translation of the human genome into clinical allergy, part 2

    Directory of Open Access Journals (Sweden)

    Hirohisa Saito

    2004-01-01

    Full Text Available After completion of sequencing of the human genome, you will no longer be able to discover a new gene and may not be able to find a new molecule in the human body. Instead, you may find many new molecule networks. It will be possible to select information obtained from animal models just where orthologous genes are functioning similarly. Mouse disease models will not be used any longer where key orthologous genes are working differently than in humans. Analysis of cell type-selective transcripts from database searches is now available to minimize the efforts required for drug discovery. As such, it will soon be possible to use computational modeling to analyze integrative biological function and to test hypotheses without performing any in vivo or in vitro experimentation. However, before establishing a system simulating the human body, which consists of a variety of organs, which further consist of various types of cells, which then consist of various types of proteins, which consist of 20 types of amino acids, there are many steps that need to be understood.

  11. Investigation of osteosarcoma genomics and its impact on targeted therapy:an international collaboration to conquer human osteosarcoma

    Institute of Scientific and Technical Information of China (English)

    Ji-Long Yang

    2014-01-01

    Osteosarcoma is a genetical y unstable malignancy that most frequently occurs in children and young adults. The lack of progress in managing this devastating disease in the clinic has prompted international researchers to collaborate to profile key genomic alterations that define osteosarcoma. A team of researchers and clinicians from China, Finland, and the United States investigated human osteosarcoma by integrating transcriptome sequencing (RNA-seq), high-density genome-wide array comparative genomic hybridization (aCGH), fluorescence in situ hybridization (FISH), reverse transcription-polymerase chain reaction (RT-PCR), Sanger sequencing, cell culture, and molecular biological approaches. Systematic analysis of genetic/genomic alterations and further functional studies have led to several important findings, including novel rearrangement hotspots, osteosarcoma-specific LRP1-SNRNP25 and KCNMB4-CCND3 fusion genes, VEGF and Wnt signaling pathway alterations, deletion of the WWOX gene, and amplification of the APEX1 and RUNX2 genes. Importantly, these genetic events associate significantly with pathogenesis, prognosis, progression, and therapeutic activity in osteosarcoma, suggesting their potential impact on improved managements of human osteosarcoma. This international initiative provides opportunities for developing new treatment modalities to conquer osteosarcoma.

  12. Investigation of osteosarcoma genomics and its impact on targeted therapy: an international collaboration to conquer human osteosarcoma.

    Science.gov (United States)

    Yang, Ji-Long

    2014-12-01

    Osteosarcoma is a genetically unstable malignancy that most frequently occurs in children and young adults. The lack of progress in managing this devastating disease in the clinic has prompted international researchers to collaborate to profile key genomic alterations that define osteosarcoma. A team of researchers and clinicians from China, Finland, and the United States investigated human osteosarcoma by integrating transcriptome sequencing (RNA-seq), high-density genome-wide array comparative genomic hybridization (aCGH), fluorescence in situ hybridization (FISH), reverse transcription-polymerase chain reaction (RT-PCR), Sanger sequencing, cell culture, and molecular biological approaches. Systematic analysis of genetic/genomic alterations and further functional studies have led to several important findings, including novel rearrangement hotspots, osteosarcoma-specific LRP1-SNRNP25 and KCNMB4-CCND3 fusion genes, VEGF and Wnt signaling pathway alterations, deletion of the WWOX gene, and amplification of the APEX1 and RUNX2 genes. Importantly, these genetic events associate significantly with pathogenesis, prognosis, progression, and therapeutic activity in osteosarcoma, suggesting their potential impact on improved managements of human osteosarcoma. This international initiative provides opportunities for developing new treatment modalities to conquer osteosarcoma.

  13. The extended nutrigenomics - understanding the interplay between the genomes of food, gut microbes, and human host

    NARCIS (Netherlands)

    Kussmann, M.; Bladeren, van P.J.

    2011-01-01

    Comprehensive investigation of nutritional health effects at the molecular level requires the understanding of the interplay between three genomes, the food, the gut microbial, and the human host genome. Food genomes are researched for discovery and exploitation of macro- and micronutrients as well

  14. Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human

    NARCIS (Netherlands)

    S.L. Macrae (Sheila L.); Q. Zhang (Quanwei); C. Lemetre (Christophe); I. Seim (Inge); R.B. Calder (Robert B.); J.H.J. Hoeijmakers (Jan); Y. Suh (Yousin); V.N. Gladyshev (Vadim N.); A. Seluanov (Andrei); V. Gorbunova (Vera); J. Vijg (Jan); Z.D. Zhang (Zhengdong D.)

    2015-01-01

    textabstractGenome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM g

  15. The extended nutrigenomics - understanding the interplay between the genomes of food, gut microbes, and human host

    NARCIS (Netherlands)

    Kussmann, M.; Bladeren, van P.J.

    2011-01-01

    Comprehensive investigation of nutritional health effects at the molecular level requires the understanding of the interplay between three genomes, the food, the gut microbial, and the human host genome. Food genomes are researched for discovery and exploitation of macro- and micronutrients as well

  16. Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms.

    Science.gov (United States)

    Porth, Ilga; Klapšte, Jaroslav; Skyba, Oleksandr; Hannemann, Jan; McKown, Athena D; Guy, Robert D; DiFazio, Stephen P; Muchero, Wellington; Ranjan, Priya; Tuskan, Gerald A; Friedmann, Michael C; Ehlting, Juergen; Cronk, Quentin C B; El-Kassaby, Yousry A; Douglas, Carl J; Mansfield, Shawn D

    2013-11-01

    Establishing links between phenotypes and molecular variants is of central importance to accelerate genetic improvement of economically important plant species. Our work represents the first genome-wide association study to the inherently complex and currently poorly understood genetic architecture of industrially relevant wood traits. Here, we employed an Illumina Infinium 34K single nucleotide polymorphism (SNP) genotyping array that generated 29,233 high-quality SNPs in c. 3500 broad-based candidate genes within a population of 334 unrelated Populus trichocarpa individuals to establish genome-wide associations. The analysis revealed 141 significant SNPs (α ≤ 0.05) associated with 16 wood chemistry/ultrastructure traits, individually explaining 3-7% of the phenotypic variance. A large set of associations (41% of all hits) occurred in candidate genes preselected for their suggested a priori involvement with secondary growth. For example, an allelic variant in the FRA8 ortholog explained 21% of the total genetic variance in fiber length, when the trait's heritability estimate was considered. The remaining associations identified SNPs in genes not previously implicated in wood or secondary wall formation. Our findings provide unique insights into wood trait architecture and support efforts for population improvement based on desirable allelic variants.

  17. Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers

    Science.gov (United States)

    Carrot is one of the most economically important vegetables worldwide, however, genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to devel...

  18. Genome-wide map of regulatory interactions in the human genome.

    Science.gov (United States)

    Heidari, Nastaran; Phanstiel, Douglas H; He, Chao; Grubert, Fabian; Jahanbani, Fereshteh; Kasowski, Maya; Zhang, Michael Q; Snyder, Michael P

    2014-12-01

    Increasing evidence suggests that interactions between regulatory genomic elements play an important role in regulating gene expression. We generated a genome-wide interaction map of regulatory elements in human cells (ENCODE tier 1 cells, K562, GM12878) using Chromatin Interaction Analysis by Paired-End Tag sequencing (ChIA-PET) experiments targeting six broadly distributed factors. Bound regions covered 80% of DNase I hypersensitive sites including 99.7% of TSS and 98% of enhancers. Correlating this map with ChIP-seq and RNA-seq data sets revealed cohesin, CTCF, and ZNF143 as key components of three-dimensional chromatin structure and revealed how the distal chromatin state affects gene transcription. Comparison of interactions between cell types revealed that enhancer-promoter interactions were highly cell-type-specific. Construction and comparison of distal and proximal regulatory networks revealed stark differences in structure and biological function. Proximal binding events are enriched at genes with housekeeping functions, while distal binding events interact with genes involved in dynamic biological processes including response to stimulus. This study reveals new mechanistic and functional insights into regulatory region organization in the nucleus. © 2014 Heidari et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Genome editing of human pluripotent stem cells to generate human cellular disease models

    Directory of Open Access Journals (Sweden)

    Kiran Musunuru

    2013-07-01

    Full Text Available Disease modeling with human pluripotent stem cells has come into the public spotlight with the awarding of the Nobel Prize in Physiology or Medicine for 2012 to Drs John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent. This discovery has opened the door for the generation of pluripotent stem cells from individuals with disease and the differentiation of these cells into somatic cell types for the study of disease pathophysiology. The emergence of genome-editing technology over the past few years has made it feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Here, recent technological advances in genome editing, and its utility in human biology and disease studies, are reviewed.

  20. Genome editing of human pluripotent stem cells to generate human cellular disease models.

    Science.gov (United States)

    Musunuru, Kiran

    2013-07-01

    Disease modeling with human pluripotent stem cells has come into the public spotlight with the awarding of the Nobel Prize in Physiology or Medicine for 2012 to Drs John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent. This discovery has opened the door for the generation of pluripotent stem cells from individuals with disease and the differentiation of these cells into somatic cell types for the study of disease pathophysiology. The emergence of genome-editing technology over the past few years has made it feasible to generate and investigate human cellular disease models with even greater speed and efficiency. Here, recent technological advances in genome editing, and its utility in human biology and disease studies, are reviewed.