WorldWideScience

Sample records for human genetic testing

  1. [Quality assurance in human genetic testing].

    Science.gov (United States)

    Stuhrmann-Spangenberg, Manfred

    2015-02-01

    Advances in technical developments of genetic diagnostics for more than 50 years, as well as the fact that human genetic testing is usually performed only once in a lifetime, with additional impact for blood relatives, are determining the extraordinary importance of quality assurance in human genetic testing. Abidance of laws, directives, and guidelines plays a major role. This article aims to present the major laws, directives, and guidelines with respect to quality assurance of human genetic testing, paying careful attention to internal and external quality assurance. The information on quality assurance of human genetic testing was obtained through a web-based search of the web pages that are referred to in this article. Further information was retrieved from publications in the German Society of Human Genetics and through a PubMed-search using term quality + assurance + genetic + diagnostics. The most important laws, directives, and guidelines for quality assurance of human genetic testing are the gene diagnostics law (GenDG), the directive of the Federal Medical Council for quality control of clinical laboratory analysis (RiliBÄK), and the S2K guideline for human genetic diagnostics and counselling. In addition, voluntary accreditation under DIN EN ISO 15189:2013 offers a most recommended contribution towards quality assurance of human genetic testing. Legal restraints on quality assurance of human genetic testing as mentioned in § 5 GenDG are fulfilled once RiliBÄK requirements are followed.

  2. Genetic Testing and Its Implications: Human Genetics Researchers Grapple with Ethical Issues.

    Science.gov (United States)

    Rabino, Isaac

    2003-01-01

    Contributes systematic data on the attitudes of scientific experts who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. Finds that they are highly supportive of voluntary testing and the right to know one's genetic heritage. Calls for greater genetic literacy. (Contains 87 references.) (Author/NB)

  3. Attitudes of medical students towards human genome research and genetic counselling and testing

    Directory of Open Access Journals (Sweden)

    Schäfer, Mike Steffen

    2005-04-01

    Full Text Available Purpose: The study aimed to describe students' attitudes towards human genome research and towards genetic counselling and testing at cancer patients. The background of this investigation provided the increasing relevance ob human genetics research for clinical practice.Methods: A total of 167 medical students (54% female, aged 24 +/- 2 years from the second phase of their studies were surveyed in obligatory courses at the University of Leipzig, using a standardized questionnaire. Topics of the survey were attitudes towards human genome research and genetic counselling and testing at cancer patients as well as general values and socio-demographic data of the students.Results: The students consider human genome research as relevant and evaluate it positively, mainly based on expectations of medical uses. Genetic counselling and testing at cancer patients as an application of human genetics is also evaluated as important. The students attribute high relevance to clinical procedures for identification of genetic backgrounds for cancer (family history, information about genetic diagnostic. Nevertheless, deficits in their medical education are highlighted und reflected upon: the increased integration of human genetic content into medical curricula is demanded.Discussion: In accordance with the newly formulated „Approbationsordnung für Ärzte", the results suggest that current human genetic development should be more emphasized in medical education. This could be realized by an enlarged ratio of human genetic courses within curricula and by the transformation of these courses from facultative into obligatory.

  4. Opting for prevention: Human enhancement and genetic testing

    NARCIS (Netherlands)

    Nelis, A.; Detmar, S.; Akker, E. van den

    2013-01-01

    Fictional portrayals of our possible future, such as the Hollywood film Gattaca, often conceive of a world where the genetic profile of each individual determines opportunity. Parents select the best sets of genes for their children to make sure they will be as successful, smart and healthy as possi

  5. Genetic Testing for ALS

    Science.gov (United States)

    ... Involved Donate Familial Amyotrophic Lateral Sclerosis (FALS) and Genetic Testing By Deborah Hartzfeld, MS, CGC, Certified Genetic Counselor ... in your area, please visit www.nsgc.org . Genetic Testing Genetic testing can help determine the cause of ...

  6. Complementation of Yeast Genes with Human Genes as an Experimental Platform for Functional Testing of Human Genetic Variants.

    Science.gov (United States)

    Hamza, Akil; Tammpere, Erik; Kofoed, Megan; Keong, Christelle; Chiang, Jennifer; Giaever, Guri; Nislow, Corey; Hieter, Philip

    2015-11-01

    While the pace of discovery of human genetic variants in tumors, patients, and diverse populations has rapidly accelerated, deciphering their functional consequence has become rate-limiting. Using cross-species complementation, model organisms like the budding yeast, Saccharomyces cerevisiae, can be utilized to fill this gap and serve as a platform for testing human genetic variants. To this end, we performed two parallel screens, a one-to-one complementation screen for essential yeast genes implicated in chromosome instability and a pool-to-pool screen that queried all possible essential yeast genes for rescue of lethality by all possible human homologs. Our work identified 65 human cDNAs that can replace the null allele of essential yeast genes, including the nonorthologous pair yRFT1/hSEC61A1. We chose four human cDNAs (hLIG1, hSSRP1, hPPP1CA, and hPPP1CC) for which their yeast gene counterparts function in chromosome stability and assayed in yeast 35 tumor-specific missense mutations for growth defects and sensitivity to DNA-damaging agents. This resulted in a set of human-yeast gene complementation pairs that allow human genetic variants to be readily characterized in yeast, and a prioritized list of somatic mutations that could contribute to chromosome instability in human tumors. These data establish the utility of this cross-species experimental approach. Copyright © 2015 by the Genetics Society of America.

  7. Statement of the ESHG on direct-to-consumer genetic testing for health-related purposes European Society of Human Genetics

    OpenAIRE

    Borry, Pascal

    2010-01-01

    Many private companies offer direct-to-consumer (DTC) genetic testing services. Some tests may detect severe and highly penetrant monogenic disorders, while other tests are for genetic variants found associated with increased susceptibility for common and complex diseases in large-scale population studies. Through its Public and Professional Policy committee followed by member and expert consultation, the European Society of Human Genetics has developed the following policy on advertising and...

  8. Pitfalls in genetic testing

    DEFF Research Database (Denmark)

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah;

    2016-01-01

    BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying...... mutations. METHODS: We sent out a survey to 16 genetic centers performing SCN1A testing. RESULTS: We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. CONCLUSION: We...

  9. Clinical Genetic Testing in Gastroenterology

    Science.gov (United States)

    Goodman, Russell P; Chung, Daniel C

    2016-01-01

    Rapid advances in genetics have led to an increased understanding of the genetic determinants of human disease, including many gastrointestinal (GI) disorders. Coupled with a proliferation of genetic testing services, this has resulted in a clinical landscape where commercially available genetic tests for GI disorders are now widely available. In this review, we discuss the current status of clinical genetic testing for GI illnesses, review the available testing options, and briefly discuss indications for and practical aspects of such testing. Our goal is to familiarize the practicing gastroenterologist with this rapidly changing and important aspect of clinical care. PMID:27124700

  10. Small Sample Kernel Association Tests for Human Genetic and Microbiome Association Studies.

    Science.gov (United States)

    Chen, Jun; Chen, Wenan; Zhao, Ni; Wu, Michael C; Schaid, Daniel J

    2016-01-01

    Kernel machine based association tests (KAT) have been increasingly used in testing the association between an outcome and a set of biological measurements due to its power to combine multiple weak signals of complex relationship with the outcome through the specification of a relevant kernel. Human genetic and microbiome association studies are two important applications of KAT. However, the classic KAT framework relies on large sample theory, and conservativeness has been observed for small sample studies, especially for microbiome association studies. The common approach for addressing the small sample problem relies on computationally intensive resampling methods. Here, we derive an exact test for KAT with continuous traits, which resolve the small sample conservatism of KAT without the need for resampling. The exact test has significantly improved power to detect association for microbiome studies. For binary traits, we propose a similar approximate test, and we show that the approximate test is very powerful for a wide range of kernels including common variant- and microbiome-based kernels, and the approximate test controls the type I error well for these kernels. In contrast, the sequence kernel association tests have slightly inflated genomic inflation factors after small sample adjustment. Extensive simulations and application to a real microbiome association study are used to demonstrate the utility of our method. © 2015 WILEY PERIODICALS, INC.

  11. How Is Genetic Testing Done?

    Science.gov (United States)

    ... Testing How is genetic testing done? How is genetic testing done? Once a person decides to proceed with ... is called informed consent . For more information about genetic testing procedures: The National Society of Genetic Counselors offers ...

  12. Prenatal Genetic Screening Tests

    Science.gov (United States)

    ... cells from the fetus or placenta obtained through amniocentesis or chorionic villus sampling (CVS) . FAQ164 “Prenatal Genetic ... should be followed by a diagnostic test with amniocentesis or CVS. The cell-free DNA screening test ...

  13. Genetics and recent human evolution.

    Science.gov (United States)

    Templeton, Alan R

    2007-07-01

    Starting with "mitochondrial Eve" in 1987, genetics has played an increasingly important role in studies of the last two million years of human evolution. It initially appeared that genetic data resolved the basic models of recent human evolution in favor of the "out-of-Africa replacement" hypothesis in which anatomically modern humans evolved in Africa about 150,000 years ago, started to spread throughout the world about 100,000 years ago, and subsequently drove to complete genetic extinction (replacement) all other human populations in Eurasia. Unfortunately, many of the genetic studies on recent human evolution have suffered from scientific flaws, including misrepresenting the models of recent human evolution, focusing upon hypothesis compatibility rather than hypothesis testing, committing the ecological fallacy, and failing to consider a broader array of alternative hypotheses. Once these flaws are corrected, there is actually little genetic support for the out-of-Africa replacement hypothesis. Indeed, when genetic data are used in a hypothesis-testing framework, the out-of-Africa replacement hypothesis is strongly rejected. The model of recent human evolution that emerges from a statistical hypothesis-testing framework does not correspond to any of the traditional models of human evolution, but it is compatible with fossil and archaeological data. These studies also reveal that any one gene or DNA region captures only a small part of human evolutionary history, so multilocus studies are essential. As more and more loci became available, genetics will undoubtedly offer additional insights and resolutions of human evolution.

  14. Genetic testing in cardiovascular diseases.

    Science.gov (United States)

    Arndt, Anne-Karin; MacRae, Calum A

    2014-05-01

    The review is designed to outline the major developments in genetic testing in the cardiovascular arena in the past year or so. This is an exciting time in genetic testing as whole exome and whole genome approaches finally reach the clinic. These new approaches offer insight into disease causation in families in which this might previously have been inaccessible, and also bring a wide range of interpretative challenges. Among the most significant recent findings has been the extent of physiologic rare coding variation in the human genome. New disease genes have been identified through whole exome studies in neonatal arrhythmia, congenital heart disease and coronary artery disease that were simply inaccessible with other techniques. This has not only shed light on the challenges of genetic testing at this scale, but has also sharply defined the limits of prior gene-panel focused testing. As novel therapies targeting specific genetic subsets of disease become available, genetic testing will become a part of routine clinical care. The pace of change in sequencing technologies has begun to transform clinical medicine, and cardiovascular disease is no exception. The complexity of such studies emphasizes the importance of real-time communication between the genetics laboratory and genetically informed clinicians. New efforts in data and knowledge management will be central to the continued advancement of genetic testing.

  15. Ethics or Morals: Understanding Students' Values Related to Genetic Tests on Humans

    Science.gov (United States)

    Lindahl, Mats Gunnar

    2009-01-01

    To make meaning of scientific knowledge in such a way that concepts and values of the life-world are not threatened is difficult for students and laymen. Ethics and morals pertaining to the use of genetic tests for hereditary diseases have been investigated and discussed by educators, anthropologists, medical doctors and philosophers giving, at…

  16. Ethics or Morals: Understanding Students' Values Related to Genetic Tests on Humans

    Science.gov (United States)

    Lindahl, Mats Gunnar

    2009-01-01

    To make meaning of scientific knowledge in such a way that concepts and values of the life-world are not threatened is difficult for students and laymen. Ethics and morals pertaining to the use of genetic tests for hereditary diseases have been investigated and discussed by educators, anthropologists, medical doctors and philosophers giving, at…

  17. The Role of Genetic Drift in Shaping Modern Human Cranial Evolution: A Test Using Microevolutionary Modeling

    Directory of Open Access Journals (Sweden)

    Heather F. Smith

    2011-01-01

    Full Text Available The means by which various microevolutionary processes have acted in the past to produce patterns of cranial variation that characterize modern humans is not thoroughly understood. Applying a microevolutionary framework, within- and among-population variance/covariance (V/CV structure was compared for several functional and developmental modules of the skull across a worldwide sample of modern humans. V/CV patterns in the basicranium, temporal bone, and face are proportional within and among groups, which is consistent with a hypothesis of neutral evolution; however, mandibular morphology deviated from this pattern. Degree of intergroup similarity in facial, temporal bone, and mandibular morphology is significantly correlated with geographic distance; however, much of the variance remains unexplained. These findings provide insight into the evolutionary history of modern human cranial variation by identifying signatures of genetic drift, gene flow, and migration and set the stage for inferences regarding selective pressures that early humans encountered since their initial migrations around the world.

  18. Genetic testing in hyperlipidemia.

    Science.gov (United States)

    Bilen, Ozlem; Pokharel, Yashashwi; Ballantyne, Christie M

    2015-05-01

    Hereditary dyslipidemias are often underdiagnosed and undertreated, yet with significant health implications, most importantly causing preventable premature cardiovascular diseases. The commonly used clinical criteria to diagnose hereditary lipid disorders are specific but are not very sensitive. Genetic testing may be of value in making accurate diagnosis and improving cascade screening of family members, and potentially, in risk assessment and choice of therapy. This review focuses on using genetic testing in the clinical setting for lipid disorders, particularly familial hypercholesterolemia.

  19. Genetic Testing: MedlinePlus Health Topic

    Science.gov (United States)

    ... Glitches (National Institutes of Health) Genetic Mapping (National Human Genome Research Institute) Also in Spanish Clinical Trials ClinicalTrials.gov: Genetic Testing (National Institutes of Health) Journal Articles References and abstracts from MEDLINE/PubMed (National ...

  20. Report: Human cancer genetics

    Institute of Scientific and Technical Information of China (English)

    LI Marilyn; ALBERTSON Donna

    2006-01-01

    The short report will be focused on the genetic basis and possible mechanisms of tumorigenesis, common types of cancer, the importance of genetic diagnosis of cancer, and the methodology of cancer genetic diagnosis. They will also review presymptomatic testing of hereditary cancers, and the application of expression profiling to identify patients likely to benefit from particular therapeutic approaches.

  1. Human cancer genetics*

    OpenAIRE

    2006-01-01

    The short report will be focused on the genetic basis and possible mechanisms of tumorigenesis, common types of cancer, the importance of genetic diagnosis of cancer, and the methodology of cancer genetic diagnosis. They will also review presymptomatic testing of hereditary cancers, and the application of expression profiling to identify patients likely to benefit from particular therapeutic approaches.

  2. Human hemoglobin genetics

    Energy Technology Data Exchange (ETDEWEB)

    Honig, G.R.; Adams, J.G.

    1986-01-01

    This book contains the following 10 chapters: Introduction; The Human Hemoglobins; The Human Globin Genes; Hemoglobin Synthesis and Globin Gene Expression; The Globin Gene Mutations - A. Mechanisms and Classification; The Globin Gene Mutations - B. Their Phenotypes and Clinical Expression; The Genetics of the Human Globin Gene Loci: Formal Genetics and Gene Linkage; The Geographic Distribution of Globin Gene Variation; Labortory Identification, Screening, Education, and Counseling for Abnormal Hemoglobins and Thalassemias; and Approaches to the Treatment of the Hemoglobin Disorders.

  3. Pitfalls in genetic testing

    DEFF Research Database (Denmark)

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah

    2016-01-01

    BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying...

  4. Frequently Asked Questions about Genetic Testing

    Science.gov (United States)

    ... Care Specific Genetic Disorders Frequently Asked Questions About Genetic Testing What is genetic testing? What can I learn ... find more information about genetic testing? What is genetic testing? Genetic testing uses laboratory methods to look at ...

  5. Testing the Role of p21-Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease

    Science.gov (United States)

    2015-06-01

    Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease The views, opinions and...TITLE AND SUBTITLE Testing the Role of p21-Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely...1.20 calendar Testing the Role of p21 Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely

  6. Genetic determinism and discrimination: a call to re-orient prevailing human rights discourse to better comport with the public implications of individual genetic testing.

    Science.gov (United States)

    Eltis, Karen

    2007-01-01

    Genetic testing can not only provide information about diseases but also their prevalence in ethnic, gender, or other vulnerable populations. While offering the promise of significant therapeutic benefits and serving to highlight our commonality, genetic information also raises a number of sensitive human rights issues touching on identity and the perception thereof, as well as the possibility of discrimination and social stigma. It stands to reason that the results of individual screenings could haplessly be used to make general assumptions about entire ethnic or gender groups. In this manner, genetic information can directly influence identity by impacting and perhaps even reframing conceptions of group rights and dimensions of self-identification, thus importing constitutional scrutiny on questions of dignity and discrimination in particular. Is there a risk of collective stigmatization deriving from discrete testing of self-identified individuals? Would such stigmatization impinge on individual dignity by the exogenous imposition of ethnic or gender/sexual identity? If so, what norms can most adequately respond if and when individual and group interests diverge? These questions are examined from a comparative perspective.

  7. Feline genetics: clinical applications and genetic testing.

    Science.gov (United States)

    Lyons, Leslie A

    2010-11-01

    DNA testing for domestic cat diseases and appearance traits is a rapidly growing asset for veterinary medicine. Approximately 33 genes contain 50 mutations that cause feline health problems or alterations in the cat's appearance. A variety of commercial laboratories can now perform cat genetic diagnostics, allowing both the veterinary clinician and the private owner to obtain DNA test results. DNA is easily obtained from a cat via a buccal swab with a standard cotton bud or cytological brush, allowing DNA samples to be easily sent to any laboratory in the world. The DNA test results identify carriers of the traits, predict the incidence of traits from breeding programs, and influence medical prognoses and treatments. An overall goal of identifying these genetic mutations is the correction of the defect via gene therapies and designer drug therapies. Thus, genetic testing is an effective preventative medicine and a potential ultimate cure. However, genetic diagnostic tests may still be novel for many veterinary practitioners and their application in the clinical setting needs to have the same scrutiny as any other diagnostic procedure. This article will review the genetic tests for the domestic cat, potential sources of error for genetic testing, and the pros and cons of DNA results in veterinary medicine. Highlighted are genetic tests specific to the individual cat, which are a part of the cat's internal genome.

  8. What Are the Types of Genetic Tests?

    Science.gov (United States)

    ... paternity). For more information about the uses of genetic testing: A Brief Primer on Genetic Testing , which outlines ... at the Univeristy of Utah. Topics in the Genetic Testing chapter What is genetic testing? What are the ...

  9. Advances in human genetics

    Energy Technology Data Exchange (ETDEWEB)

    Harris, H.; Hirschhorn, K. (eds.)

    1993-01-01

    This book has five chapters covering peroxisomal diseases, X-linked immunodeficiencies, genetic mutations affecting human lipoproteins and their receptors and enzymes, genetic aspects of cancer, and Gaucher disease. The chapter on peroxisomes covers their discovery, structure, functions, disorders, etc. The chapter on X-linked immunodeficiencies discusses such diseases as agammaglobulinemia, severe combined immunodeficiency, Wiskott-Aldrich syndrome, animal models, linkage analysis, etc. Apolipoprotein formation, synthesis, gene regulation, proteins, etc. are the main focus of chapter 3. The chapter on cancer covers such topics as oncogene mapping and the molecular characterization of some recessive oncogenes. Gaucher disease is covered from its diagnosis, classification, and prevention, to its organ system involvement and molecular biology.

  10. Genetic Testing Registry

    Science.gov (United States)

    ... GEO) Profiles Genome Workbench HomoloGene Map Viewer Online Mendelian Inheritance in Man (OMIM) RefSeqGene UniGene All Genes & Expression Resources... Genetics & Medicine Bookshelf Database of Genotypes and Phenotypes (dbGaP) ...

  11. Regulation of Genetic Tests

    Science.gov (United States)

    ... the deceptive practices of direct-to-consumer tests, calling the results of such tests as "misleading and ... Bethesda, MD: National Institutes of Health; 2000. US Government Accountability Office Nutrigenetic testing: tests purchased from four ...

  12. Angelina Jolie's Mastectomies Tied to Rise in Genetic Testing

    Science.gov (United States)

    ... html Angelina Jolie's Mastectomies Tied to Rise in Genetic Testing But, researchers did not find a corresponding increase ... Human Services. More Health News on: Breast Cancer Genetic Testing Mastectomy Recent Health News Related MedlinePlus Health Topics ...

  13. [Consent to genetic paternity testing].

    Science.gov (United States)

    Lach, Arkadiusz; Linkowska, Katarzyna; Grzybowski, Tomasz

    2010-01-01

    The present article aims at reviewing the legislation in Poland and other countries concerning the consent to DNA sample collection, with the special reference to genetic relatedness analyses (including paternity tests) in anonymous samples of biological materials. The Polish legislator has not regulated this issue in a direct manner. Therefore, in view of progressing commercialization of genetic paternity tests, it is necessary to undertake legislative actions towards regulation of DNA tests admissibility, both in civil proceedings and by commission of private individuals.

  14. Genetic testing in domestic cats.

    Science.gov (United States)

    Lyons, Leslie A

    2012-12-01

    Varieties of genetic tests are currently available for the domestic cat that support veterinary health care, breed management, species identification, and forensic investigations. Approximately thirty-five genes contain over fifty mutations that cause feline health problems or alterations in the cat's appearance. Specific genes, such as sweet and drug receptors, have been knocked-out of Felidae during evolution and can be used along with mtDNA markers for species identification. Both STR and SNP panels differentiate cat race, breed, and individual identity, as well as gender-specific markers to determine sex of an individual. Cat genetic tests are common offerings for commercial laboratories, allowing both the veterinary clinician and the private owner to obtain DNA test results. This article will review the genetic tests for the domestic cat, and their various applications in different fields of science. Highlighted are genetic tests specific to the individual cat, which are a part of the cat's genome.

  15. Genetic testing and risk interpretation

    Directory of Open Access Journals (Sweden)

    Talya Miron-Shatz

    2010-04-01

    Full Text Available Genetic screening for BRCA1 and BRCA2 gives women the opportunity for early detection, surveillance, and intervention. One key feature of genetic testing and counseling is the provision of personal lifetime risk. However, little attention has been paid to how women interpret lifetime risk information, despite the fact that they base screening, treatment and family planning decisions on such information. To study this vital issue, we set out to test the ability of women to choose the most appropriate interpretation of National Cancer Institute's (NCI message about lifetime risk of developing cancer for a woman with altered BRCA1 and BRCA2 genes. Participants included 277 women who had not undergone genetic testing or had cancer and 207 women who had undergone genetic testing or had cancer. Over 50\\% of the women who had not undergone genetic testing or had cancer and 40\\% of those who had undergone genetic testing or had cancer misunderstood NCI's information. Furthermore, in line with a growing body of research, we found that high numeracy level (objective or subjective is positively associated with a woman's ability to correctly interpret NCI's message.

  16. Prenatal Genetic Diagnostic Tests

    Science.gov (United States)

    ... are offered to all pregnant women. What is amniocentesis? Amniocentesis is a diagnostic test. It usually is done ... a very small chance of pregnancy loss with amniocentesis. Leakage of amniotic fluid and slight bleeding can ...

  17. Genetic Testing (For Parents)

    Science.gov (United States)

    ... before birth, pregnant women may decide to undergo amniocentesis or chorionic villus sampling. There is also a ... If this screening test finds a possible problem, amniocentesis or chorionic villus sampling may be recommended. Amniocentesis ...

  18. Next-generation human genetics

    OpenAIRE

    Shendure, Jay

    2011-01-01

    The field of human genetics is being reshaped by exome and genome sequencing. Several lessons are evident from observing the rapid development of this area over the past 2 years, and these may be instructive with respect to what we should expect from 'next-generation human genetics' in the next few years.

  19. Genetic Mapping in Human Disease

    OpenAIRE

    Altshuler, David; Daly, Mark J; Lander, Eric S.

    2008-01-01

    Genetic mapping provides a powerful approach to identify genes and biological processes underlying any trait influenced by inheritance, including human diseases. We discuss the intellectual foundations of genetic mapping of Mendelian and complex traits in humans, examine lessons emerging from linkage analysis of Mendelian diseases and genome-wide association studies of common diseases, and discuss questions and challenges that lie ahead.

  20. Prenatal Genetic Testing Chart

    Science.gov (United States)

    ... NT ultrasound exam • Screens for Down • syndrome and trisomy 18 First-trimester screening Second-trimester screening (“quad ... 22 weeks • Blood test • Screens for Down syndrome, trisomy 13, trisomy 18, and NTDs Standard ultrasound exam • ...

  1. Actuarial considerations on genetic testing.

    Science.gov (United States)

    Le Grys, D J

    1997-08-29

    In the UK the majority of life insurers employ relatively liberal underwriting standards so that people can easily gain access to life assurance cover. Up to 95% of applicants are accepted at standard terms. If genetic testing becomes widespread then the buying habits of the public may change. Proportionately more people with a predisposition to major types of disease may take life assurance cover while people with no predisposition may take proportionately less. A model is used to show the possible effect. However, the time-scales are long and the mortality of assured people is steadily improving. The change in buying habits may result in the rate of improvement slowing down. In the whole population, the improvement in mortality is likely to continue and could improve faster if widespread genetic testing results in earlier diagnosis and treatment. Life insurers would not call for genetic tests and need not see the results of previous tests except for very large sums assured. In the UK, life insurers are unlikely to change their underwriting standards, and are extremely unlikely to bring in basic premium rating systems that give discounts on the premium or penalty points according to peoples genetic profile. The implications of widespread genetic testing on medical insurance and some health insurance covers may be more extreme.

  2. Attitudes towards genetic testing: analysis of contradictions

    DEFF Research Database (Denmark)

    Jallinoja, P; Hakonen, A; Aro, A R

    1998-01-01

    A survey study was conducted among 1169 people to evaluate attitudes towards genetic testing in Finland. Here we present an analysis of the contradictions detected in people's attitudes towards genetic testing. This analysis focuses on the approval of genetic testing as an individual choice...... and on the confidence in control of the process of genetic testing and its implications. Our analysis indicated that some of the respondents have contradictory attitudes towards genetic testing. It is proposed that contradictory attitudes towards genetic testing should be given greater significance both in scientific...... studies on attitudes towards genetic testing as well as in the health care context, e.g. in genetic counselling....

  3. Testing the prediction from sexual selection of a positive genetic correlation between human mate preferences and corresponding traits

    NARCIS (Netherlands)

    Verweij, K.J.H.; Burri, A.V.; Zietsch, B.P.

    2014-01-01

    Sexual selection can cause evolution in traits that affect mating success, and it has thus been implicated in the evolution of human physical and behavioural traits that influence attractiveness. We use a large sample of identical and nonidentical female twins to test the prediction from mate choice

  4. Metabolic Interactions of Purine Derivatives with Human ABC Transporter ABCG2: Genetic Testing to Assess Gout Risk

    Directory of Open Access Journals (Sweden)

    Kiyoko Kaneko

    2013-11-01

    Full Text Available In mammals, excess purine nucleosides are removed from the body by breakdown in the liver and excretion from the kidneys. Uric acid is the end product of purine metabolism in humans. Two-thirds of uric acid in the human body is normally excreted through the kidney, whereas one-third undergoes uricolysis (decomposition of uric acid in the gut. Elevated serum uric acid levels result in gout and could be a risk factor for cardiovascular disease and diabetes. Recent studies have shown that human ATP-binding cassette transporter ABCG2 plays a role of renal excretion of uric acid. Two non-synonymous single nucleotide polymorphisms (SNPs, i.e., 421C>A (major and 376C>T (minor, in the ABCG2 gene result in impaired transport activity, owing to ubiquitination-mediated proteosomal degradation and truncation of ABCG2, respectively. These genetic polymorphisms are associated with hyperuricemia and gout. Allele frequencies of those SNPs are significantly higher in Asian populations than they are in African and Caucasian populations. A rapid and isothermal genotyping method has been developed to detect the SNP 421C>A, where one drop of peripheral blood is sufficient for the detection. Development of simple genotyping methods would serve to improve prevention and early therapeutic intervention for high-risk individuals in personalized healthcare.

  5. Genetic testing and sports medicine ethics.

    Science.gov (United States)

    McNamee, Michael John; Müller, Arno; van Hilvoorde, Ivo; Holm, Søren

    2009-01-01

    Sports medicine ethics is neither a well established branch of sports medicine nor of medical ethics. It is therefore important to raise to more general awareness some of the significant ethical implications of sports medicine practices. The field of genetics in sports is likewise in its infancy and raises significant ethical concerns. It is not yet clear how genetics will alter our understanding of human potential and performance in sports. While a number of professional medical bodies accept genetic interventions of a therapeutic nature, we argue that the use of genetic technologies to predict sports potential may well breach both the European bioethics convention and North American anti-discrimination legislation, which are designed to support important ethical ideals and the ongoing commitment of the physician to the welfare of their patient. We highlight further ethical problems associated with confidentiality and consent that may arise in genetic testing as opposed to more conventional methods of testing in sports medicine. We conclude that genetic testing in sport that is not strictly limited to the protection of the athlete against harm, should be viewed in a very sceptical light by sports medicine professionals.

  6. The value of cardiac genetic testing.

    Science.gov (United States)

    Ingles, Jodie; Semsarian, Christopher

    2014-08-01

    Genetic testing is an important and necessary aspect of the management of families with cardiac genetic conditions. Commercial genetic tests are available for most cardiac genetic diseases, and increasing uptake amongst patients has contributed to a vastly improved knowledge of the genetic basis of these diseases. The incredible advances in genetic technologies have translated to faster, more comprehensive, and inexpensive commercial genetic tests and has completely changed the landscape of commercial genetic testing in recent years. While there are enormous challenges, mostly relating to interpretation of variants, the value of a genetic diagnosis should not be underestimated. In almost all cases, the single greatest utility is for the predictive genetic testing of family members. This review will describe the value of cardiac genetic testing in the current climate of rapid genetic advancements. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Genetic testing in asymptomatic minors: background considerations towards ESHG Recommendations

    DEFF Research Database (Denmark)

    Borry, Pascal; Evers-Kiebooms, Gerry; Cornel, Martina C

    2009-01-01

    Although various guidelines and position papers have discussed, in the past, the ethical aspects of genetic testing in asymptomatic minors, the European Society of Human Genetics had not earlier endorsed any set of guidelines exclusively focused on this issue. This paper has served as a background...... document in preparation of the development of the policy recommendations of the Public and Professional Committee of the European Society of Human Genetics. This background paper first discusses some general considerations with regard to the provision of genetic tests to minors. It discusses the concept...... of best interests, participation of minors in health-care decisions, parents' responsibilities to share genetic information, the role of clinical genetics and the health-care system in communication within the family. Second, it discusses, respectively, the presymptomatic and predictive genetic testing...

  8. Obtaining genetic testing in pediatric epilepsy.

    Science.gov (United States)

    Ream, Margie A; Patel, Anup D

    2015-10-01

    The steps from patient evaluation to genetic diagnosis remain complicated. We discuss some of the genetic testing methods available along with their general advantages and disadvantages. We briefly review common pediatric epilepsy syndromes with strong genetic association and provide a potentially useful algorithm for genetic testing in drug-resistant epilepsy. We performed an extensive literature review of available information as it pertains to genetic testing and genetics in pediatric epilepsy. If a genetic disorder is suspected as the cause of epilepsy, based on drug resistance, family history, or clinical phenotype, timely diagnosis may reduce overall cost, limit the diagnostic odyssey that can bring much anxiety to families, improve prognostic accuracy, and lead to targeted therapy. Interpretation of complicated results should be performed only in collaboration with geneticists and genetic counselors, unless the ordering neurologist has a strong background in and understanding of genetics. Genetic testing can play an important role in the care provided to patients with epilepsy.

  9. Impact of human genome initiative-derived technology on genetic testing, screening and counseling: Cultural, ethical and legal issues

    Energy Technology Data Exchange (ETDEWEB)

    Trottier, R.W.; Hodgin, F.C.; Imara, M.; Phoenix, D.; Lybrook, S. (Morehouse Coll., Atlanta, GA (United States). School of Medicine); Crandall, L.A.; Moseley, R.E.; Armotrading, D. (Florida Univ., Gainesville, FL (United States). Coll. of Medicine)

    1993-01-01

    Genetic medical services provided by the Georgia Division of Public Health in two northern and two central districts are compared to services provided in a district in which a tertiary care facility is located. Genetics outreach public health nurses play key roles in Georgia's system of Children's Health Services Genetics Program, including significant roles as counselors and information sources on special needs social services and support organizations. Unique features of individual health districts, (e.g., the changing face of some rural communities in ethnocultural diversity and socioeconomic character), present new challenges to current and future genetics services delivery. Preparedness as to educational needs of both health professionals and the lay population is of foremost concern in light of the ever expanding knowledge and technology in medical genetics. Perspectives on genetics and an overview of services offered by a local private sector counselor are included for comparison to state supported services. The nature of the interactions which transpire between private and public genetic services resources in Georgia will be described. A special focus of this research includes issues associated with sickle cell disease newborn screening service delivery process in Georgia, with particular attention paid to patient follow-up and transition to primary care. Of particular interest to this focus is the problem of loss to follow-up in the current system. Critical factors in education and counseling of sickle cell patients and the expectations of expanding roles of primary care physicians are discussed. The Florida approach to the delivery of genetic services contrasts to the Georgia model by placing more emphasis on a consultant-specialist team approach.

  10. Secretary's advisory committee on genetic testing: its emerging role in public policy deliberation on genetic tests.

    Science.gov (United States)

    Carr, S; Goodwin, S M

    1999-01-01

    The Secretary's Advisory Committee on Genetic Testing (SACGT) was established by the U.S. Secretary of Health and Human Services, Donna E. Shalala, to provide a public forum for the formulation of policy advice in the complex and growing area of genetic testing. After a careful nomination and selection process, the Secretary announced the appointment of thirteen advisors to the SACGT in June 1999. The first meeting of the SACGT was held June 30, 1999. This article describes the purpose, formation, and function of the SACGT. Before addressing these questions about the role of the SACGT, we first will explain what genetic testing is, how it is currently used, and what new uses it may be put to in the future.

  11. Application of Next Generation Sequencing on Genetic Testing

    DEFF Research Database (Denmark)

    Li, Jian

    The discovery of genetic factors behind increasing number of human diseases and the growth of education of genetic knowledge to the public make demands for genetic testing increase rapidly. However, traditional genetic testing methods cannot meet all kinds of the requirements. Next generation...... sequencing (NGS) featured with high throughput and low cost of sequencing capacity develops fast, especially with the improvement of its read length, read accuracy and the immergence of small-sized machines, making it a powerful genetic testing tool. In this study, we applied NGS to develop novel genetic...... developed a targeted sequencing based preimplantation genetic diagnosis (PGD) method for monogenic diseases and tested it in a family suffering from β-thalassaemia major undergoing PGD. Moreover, we developed a method which can achieve detection of point mutation and copy number variation simultaneously...

  12. Application of Next Generation Sequencing on Genetic Testing

    DEFF Research Database (Denmark)

    Li, Jian

    The discovery of genetic factors behind increasing number of human diseases and the growth of education of genetic knowledge to the public make demands for genetic testing increase rapidly. However, traditional genetic testing methods cannot meet all kinds of the requirements. Next generation...... sequencing (NGS) featured with high throughput and low cost of sequencing capacity develops fast, especially with the improvement of its read length, read accuracy and the immergence of small-sized machines, making it a powerful genetic testing tool. In this study, we applied NGS to develop novel genetic...... developed a targeted sequencing based preimplantation genetic diagnosis (PGD) method for monogenic diseases and tested it in a family suffering from β-thalassaemia major undergoing PGD. Moreover, we developed a method which can achieve detection of point mutation and copy number variation simultaneously...

  13. Confronting Science: The Dilemma of Genetic Testing.

    Science.gov (United States)

    Zallen, Doris T.

    1997-01-01

    Considers the opportunities and ethical issues involved in genetic testing. Reviews the history of genetics from the first discoveries of Gregor Mendel, through the spurious pseudo-science of eugenics, and up to the discovery of DNA by James Watson and Francis Crick. Explains how genetic tests are done. (MJP)

  14. Confronting Science: The Dilemma of Genetic Testing.

    Science.gov (United States)

    Zallen, Doris T.

    1997-01-01

    Considers the opportunities and ethical issues involved in genetic testing. Reviews the history of genetics from the first discoveries of Gregor Mendel, through the spurious pseudo-science of eugenics, and up to the discovery of DNA by James Watson and Francis Crick. Explains how genetic tests are done. (MJP)

  15. Improved genetic testing: a new impetus toward universal coverage.

    Science.gov (United States)

    Sureka, A

    2000-01-01

    As the Human Genome Project increases the predictive power of human genetics, emerging gene chip technology and other advances of genetic testing will give more information to people about their genetic predilections. If insurance companies were allowed to use this information, they would set premiums such that many who need life-saving medical treatment would have no access to it. Americans would not accept this disparity; instead, genetic information will likely remain private, making the modern health insurance system unprofitable for companies and thus pushing the United States towards a universal health care system in the near future.

  16. Genetic variation and human longevity.

    Science.gov (United States)

    Soerensen, Mette

    2012-05-01

    The overall aim of the PhD project was to elucidate the association of human longevity with genetic variation in major candidate genes and pathways of longevity. Based on a thorough literature and database search we chose to apply a pathway approach; to explore variation in genes composing the DNA damage signaling, DNA repair, GH/IGF-1/insulin signaling and pro-/antioxidant pathways. In addition, 16 genes which did not belong to the core of either pathway, however recurrently regarded as candidate genes of longevity (e.g. APOE), were included. In this way a total of 168 genes were selected for investigation. We decided to explore the genetic variation in the form of single nucleotide polymorphisms (SNPs), a highly investigated type of genetic variation. SNPs having potential functional impact (e.g. affecting binding of transcription factors) were identified, so were specific SNPs in the candidate genes previously published to be associated with human longevity. To cover the majority of the common genetic variation in the 168 gene regions (encoding regions plus 5,000 bp upstream and 1,000 downstream) we applied the tagging SNP approach via the HapMap Consortium. Consequently 1,536 SNPs were selected. The majority of the previous publications on genetic variation and human longevity had employed a case-control study design, e.g. comparing centenarians to middle-aged controls. This type of study design is somehow prone to bias introduced by for instance cohort effects, i.e. differences in characteristics of cases and controls, a kind of bias which is avoided when a prospective cohort is under study. Therefore, we chose to investigate 1,200 individuals of the Danish 1905 birth cohort, which have been followed since 1998 when the members were 92-93 years old. The genetic contribution to human longevity has been estimated to be most profound during the late part of life, thus these oldest-old individuals are excellent for investigating such effect. The follow-up survival

  17. [Genetic Bases of Human Comorbidity].

    Science.gov (United States)

    Puzyrev, V P

    2015-04-01

    In this review, the development of ideas focused on the phenomenon of disease combination (comorbidity) in humans is discussed. The genetic bases of the three forms of the phenomenon, comorbidity (syntropias), inverse comorbidity (dystropias), and comorbidity of Mendelian and multifactorial diseases, are analyzed. The results of personal genome-wide association studies of the genetic risk profile that may predispose an individual to cardiovascular disease continuum (CDC), including coronary heart disease, type 2 diabetes, hypertension, and hypercholesterolemia (CDC syntropy), as well as the results of bioinformatic analysis of common genes and the networks of molecular interactions for two (bronchial asthma and pulmonary tuberculosis) diseases rarely found in one patient (dystropy), are presented. The importance of the diseasome and network medicine concepts in the study of comorbidity is emphasized. Promising areas in genomic studies of comorbidities for disease classification and the development of personalized medicine are designated.

  18. Genetic aspects of human obesity.

    Science.gov (United States)

    Larder, Rachel; Lim, Chung Thong; Coll, Anthony P

    2014-01-01

    Obesity and its related metabolic consequences represent a major public health problem. Huge changes within the environment have undoubtedly contributed to the increased prevalence of obesity but genetic factors are also critical in determining an individual's predisposition to gain weight. The last two decades have seen a huge increase in the understanding of the mechanisms controlling appetitive behavior, body composition, and energy expenditure. Many regions throughout the central nervous system play critical roles in these processes but the hypothalamus, in particular, receives and orchestrates a variety of signals to bring about coordinated changes in energy balance. Reviewing data from human genetic and model organism studies, we consider how disruptions of hypothalamic pathways evolved to maintain energy homeostasis and go on to cause obesity. We highlight ongoing technological developments which continue to lead to novel insights and discuss how this increased knowledge may lead to effective therapeutic interventions in the future.

  19. The Case against Preadoption Genetic Testing.

    Science.gov (United States)

    Freundlich, Madelyn D.

    1998-01-01

    Examines the medical, psychosocial, and ethical considerations concerning presymptomatic genetic testing in evaluating children for adoption. Offers an ethical framework for rejecting such a practice. (JPB)

  20. A comprehensive review of genetics and genetic testing in azoospermia

    Directory of Open Access Journals (Sweden)

    Alaa J. Hamada

    2013-01-01

    Full Text Available Azoospermia due to obstructive and non-obstructive mechanisms is a common manifestation of male infertility accounting for 10-15% of such cases. Known genetic factors are responsible for approximately 1/3 of cases of azoospermia. Nonetheless, at least 40% of cases are currently categorized as idiopathic and may be linked to unknown genetic abnormalities. It is recommended that various genetic screening tests are performed in azoospermic men, given that their results may play vital role in not only identifying the etiology but also in preventing the iatrogenic transmission of genetic defects to offspring via advanced assisted conception techniques. In the present review, we examine the current genetic information associated with azoospermia based on results from search engines, such as PUBMED, OVID, SCIENCE DIRECT and SCOPUS. We also present a critical appraisal of use of genetic testing in this subset of infertile patients.

  1. A comprehensive review of genetics and genetic testing in azoospermia.

    Science.gov (United States)

    Hamada, Alaa J; Esteves, Sandro C; Agarwal, Ashok

    2013-01-01

    Azoospermia due to obstructive and non-obstructive mechanisms is a common manifestation of male infertility accounting for 10-15% of such cases. Known genetic factors are responsible for approximately 1/3 of cases of azoospermia. Nonetheless, at least 40% of cases are currently categorized as idiopathic and may be linked to unknown genetic abnormalities. It is recommended that various genetic screening tests are performed in azoospermic men, given that their results may play vital role in not only identifying the etiology but also in preventing the iatrogenic transmission of genetic defects to offspring via advanced assisted conception techniques. In the present review, we examine the current genetic information associated with azoospermia based on results from search engines, such as PUBMED, OVID, SCIENCE DIRECT and SCOPUS. We also present a critical appraisal of use of genetic testing in this subset of infertile patients.

  2. A comprehensive review of genetics and genetic testing in azoospermia

    Science.gov (United States)

    Hamada, Alaa J; Esteves, Sandro C; Agarwal, Ashok

    2013-01-01

    Azoospermia due to obstructive and non-obstructive mechanisms is a common manifestation of male infertility accounting for 10-15% of such cases. Known genetic factors are responsible for approximately 1/3 of cases of azoospermia. Nonetheless, at least 40% of cases are currently categorized as idiopathic and may be linked to unknown genetic abnormalities. It is recommended that various genetic screening tests are performed in azoospermic men, given that their results may play vital role in not only identifying the etiology but also in preventing the iatrogenic transmission of genetic defects to offspring via advanced assisted conception techniques. In the present review, we examine the current genetic information associated with azoospermia based on results from search engines, such as PUBMED, OVID, SCIENCE DIRECT and SCOPUS. We also present a critical appraisal of use of genetic testing in this subset of infertile patients. PMID:23503954

  3. What Are the Risks and Limitations of Genetic Testing?

    Science.gov (United States)

    ... testing? What are the risks and limitations of genetic testing? The physical risks associated with most genetic tests ... more information about the risks and limitations of genetic testing: The American College of Medical Genetics and Genomics ( ...

  4. LEGAL ASPECTS OF DIRECT-TO-CONSUMER GENETIC TESTS.

    Directory of Open Access Journals (Sweden)

    Mariela Yaneva – Deliverska

    2011-06-01

    Full Text Available Genetic testing is a type of medical test that identifies changes in chromosomes, genes, or proteins. Most of the time, testing is used to find changes that are associated with inherited disorders. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person’s chance of developing or passing on a genetic disorder. The main difference between direct-to-consumer genetic testing and the standard genetic testing is the way informational support is provided in internet offers of testing. Counselling may be offered as an additional special service at extra costs and at the customer's request. It may also be that a recommendation or at least an offer is given for the customer to contact a doctor or health practitioner from the company via phone for counselling.In a liberal society the fundamental individual rights can be considered to include access to medical treatment and diagnostics that may be helpful for improving one's health condition or that can help an individual make decisions regarding life style and health. At the European level, there are no binding legal regulations that specifically apply for genetic testing. In some European counties, national laws, require a responsible medical person to be involved before a genetic test is provided. The Convention on Human Rights and Biomedicine was adopted by the Committee of Ministers on 19 November 1996, while an Additional Protocol to the Convention, concerning Genetic Testing for Health Purposes, was adopted by the Committee of Ministers on 7 May 2008.Direct-to-consumer genetic testing is closely watched by the community of medical genetics and counsellors, and the EU funded Eurogentest Network of Excellence.In 2010, the European Society of Human Genetics has releaseda statement on direct-to-consumer gene testing for health-related purposes. The European Society of Human Genetics is concerned about the way in which commercial companies are

  5. What Is Genetic Ancestry Testing?

    Science.gov (United States)

    ... DNA is packaged in chromosomes within the cell nucleus, cell structures called mitochondria also have a small ... range of genetic variation due to the group's size and history, most members share many SNPs, and ...

  6. Testing for Genetically Modified Foods Using PCR

    Science.gov (United States)

    Taylor, Ann; Sajan, Samin

    2005-01-01

    The polymerase chain reaction (PCR) is a Nobel Prize-winning technique that amplifies a specific segment of DNA and is commonly used to test for the presence of genetic modifications. Students use PCR to test corn meal and corn-muffin mixes for the presence of a promoter commonly used in genetically modified foods, the cauliflower mosaic virus 35S…

  7. Direct-to-Consumer Genetic Tests

    Science.gov (United States)

    ... Search form Search Vea esta página en español Direct-to-Consumer Genetic Tests Related Items Anatomy of ... DTC genetic tests often include dietary advice and sales offers for “customized” dietary supplements and cosmetics. The ...

  8. Testing for Genetically Modified Foods Using PCR

    Science.gov (United States)

    Taylor, Ann; Sajan, Samin

    2005-01-01

    The polymerase chain reaction (PCR) is a Nobel Prize-winning technique that amplifies a specific segment of DNA and is commonly used to test for the presence of genetic modifications. Students use PCR to test corn meal and corn-muffin mixes for the presence of a promoter commonly used in genetically modified foods, the cauliflower mosaic virus 35S…

  9. Testing for Human Immunodeficiency Virus

    Science.gov (United States)

    ... education Fact Sheet PFS005: Testing for Human Immunodeficiency Virus AUGUST 2015 • Reasons for Getting Tested • Who Should ... For More Information • Glossary Testing for Human Immunodeficiency Virus Human immunodeficiency virus (HIV) is the virus that ...

  10. Genetic Testing for Hereditary Cancer Syndromes

    Science.gov (United States)

    ... complaints about false or misleading health claims in advertisements. The American Society of Human Genetics, a membership ... at the National Institutes of Health FOLLOW US Facebook Twitter Instagram YouTube Google+ LinkedIn GovDelivery RSS CONTACT ...

  11. Did sexual selection shape human music? Testing predictions from the sexual selection hypothesis of music evolution using a large genetically informative sample of over 10,000 twins

    NARCIS (Netherlands)

    Mosing, M.A.; Verweij, K.J.H.; Madison, G.; Pedersen, N.L.; Zietsch, B.P.; Ullén, F.

    2015-01-01

    Although music is a universal feature of human culture, little is known about its origins and functions. A prominent theory of music evolution is the sexual selection hypothesis, which proposes that music evolved as a signal of genetic quality to potential mates. The sexual selection hypothesis offe

  12. Did sexual selection shape human music? Testing predictions from the sexual selection hypothesis of music evolution using a large genetically informative sample of over 10,000 twins

    NARCIS (Netherlands)

    Mosing, M.A.; Verweij, K.J.H.; Madison, G.; Pedersen, N.L.; Zietsch, B.P.; Ullén, F.

    2015-01-01

    Although music is a universal feature of human culture, little is known about its origins and functions. A prominent theory of music evolution is the sexual selection hypothesis, which proposes that music evolved as a signal of genetic quality to potential mates. The sexual selection hypothesis

  13. Genetic basis of human brain evolution

    OpenAIRE

    Vallender, Eric J.; Mekel-Bobrov, Nitzan; Lahn, Bruce T

    2008-01-01

    Human evolution is characterized by a rapid increase in brain size and complexity. Decades of research have made important strides in identifying anatomical and physiological substrates underlying the unique features of the human brain. By contrast, it has become possible only very recently to examine the genetic basis of human brain evolution. Through comparative genomics, tantalizing insights regarding human brain evolution have emerged. The genetic changes that potentially underlie human b...

  14. Human genetics in troubled times and places.

    Science.gov (United States)

    Harper, Peter S

    2018-01-01

    The development of human genetics world-wide during the twentieth century, especially across Europe, has occurred against a background of repeated catastrophes, including two world wars and the ideological problems and repression posed by Nazism and Communism. The published scientific literature gives few hints of these problems and there is a danger that they will be forgotten. The First World War was largely indiscriminate in its carnage, but World War 2 and the preceding years of fascism were associated with widespread migration, especially of Jewish workers expelled from Germany, and of their children, a number of whom would become major contributors to the post-war generation of human and medical geneticists in Britain and America. In Germany itself, eminent geneticists were also involved in the abuses carried out in the name of 'eugenics' and 'race biology'. However, geneticists in America, Britain and the rest of Europe were largely responsible for the ideological foundations of these abuses. In the Soviet Union, geneticists and genetics itself became the object of persecution from the 1930s till as late as the mid 1960s, with an almost complete destruction of the field during this time; this extended also to Eastern Europe and China as part of the influence of Russian communism. Most recently, at the end of the twentieth century, China saw a renewal of government sponsored eugenics programmes, now mostly discarded. During the post-world war 2 decades, human genetics research benefited greatly from recognition of the genetic dangers posed by exposure to radiation, following the atomic bomb explosions in Japan, atmospheric testing and successive accidental nuclear disasters in Russia. Documenting and remembering these traumatic events, now largely forgotten among younger workers, is essential if we are to fully understand the history of human genetics and avoid the repetition of similar disasters in the future. The power of modern human genetic and genomic

  15. Genetic toxicities of human teratogens.

    Science.gov (United States)

    Bishop, J B; Witt, K L; Sloane, R A

    1997-12-12

    Birth defects cause a myriad of societal problems and place tremendous anguish on the affected individual and his or her family. Current estimates categorize about 3% of all newborn infants as having some form of birth defect or congenital anomaly. As more precise means of detecting subtle anomalies become available this estimate, no doubt, will increase. Even though birth defects have been observed in newborns throughout history, our knowledge about the causes and mechanisms through which these defects are manifested is limited. For example, it has been estimated that around 20% of all birth defects are due to gene mutations, 5-10% to chromosomal abnormalities, and another 5-10% to exposure to a known teratogenic agent or maternal factor [D.A. Beckman, R.L. Brent, Mechanisms of teratogenesis. Ann. Rev. Pharmacol. Toxicol. 24 (1984) 483-500; K. Nelson, L.B. Holmes Malformations due to presumed spontaneous mutations in newborn infants, N. Engl. J. Med. 320 (1989) 19-23.]. Together, these percentages account for only 30-40%, leaving the etiology of more than half of all human birth defects unexplained. It has been speculated that environmental factors account for no more than one-tenth of all congenital anomalies [D.A. Beckman, R.L. Brent, Mechanisms of teratogenesis, Ann. Rev. Pharmacol. Toxicol. 24 (1984) 483-500]. Furthermore, since there is no evidence in humans that the exposure of an individual to any mutagen measurably increases the risk of congenital anomalies in his or her offspring' [J.F. Crow, C. Denniston, Mutation in human populations, Adv. Human Genet. 14 (1985) 59-121; J.M. Friedman, J.E. Polifka, Teratogenic Effects of Drugs: A Resource for Clinicians (TERIS). The John Hopkins University Press, Baltimore, 1994], the mutagenic activity of environmental agents and drugs as a factor in teratogenesis has been given very little attention. Epigenetic activity has also been given only limited consideration as a mechanism for teratogenesis. As new molecular

  16. Genetic testing for inheritable cardiac channelopathies.

    Science.gov (United States)

    Szepesváry, Eszter; Kaski, Juan Pablo

    2016-05-01

    Cardiac channelopathies are linked to an increased risk of ventricular arrhythmia and sudden death. This article reviews the clinical characteristics and genetic basis of common cardiac ion-channel diseases, highlights some genotype-phenotype correlations, and summarizes genetic testing for inheritable cardiac channelopathies.

  17. Genetic testing and your cancer risk

    Science.gov (United States)

    ... patientinstructions/000842.htm Genetic testing and your cancer risk To use the sharing features on this page, ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  18. [Genetic diagnostic testing in inherited retinal dystrophies].

    Science.gov (United States)

    Kohl, S; Biskup, S

    2013-03-01

    Inherited retinal dystrophies are clinically and genetically highly heterogeneous. They can be divided according to the clinical phenotype and course of the disease, as well as the underlying mode of inheritance. Isolated retinal dystrophies (i.e., retinitis pigmentosa, Leber's congenital amaurosis, cone and cone-rod dystrophy, macular dystrophy, achromatopsia, congenital stationary nightblindness) and syndromal forms (i.e., Usher syndrome, Bardet-Biedl syndrome) can be differentiated. To date almost 180 genes and thousands of distinct mutations have been identified that are responsible for the different forms of these blinding illnesses. Until recently, there was no adequate diagnostic genetic testing available. With the development of the next generation sequencing technologies, a comprehensive genetic screening analysis for all known genes for inherited retinal dystrophies has been established at reasonable costs and in appropriate turn-around times. Depending on the primary clinical diagnosis and the presumed mode of inheritance, different diagnostic panels can be chosen for genetic testing. Statistics show that in 55-80 % of the cases the genetic defect of the inherited retinal dystrophy can be identified with this approach, depending on the initial clinical diagnosis. The aim of any genetic diagnostics is to define the genetic cause of a given illness within the affected patient and family and thereby i) confirm the clinical diagnosis, ii) provide targeted genetic testing in family members, iii) enable therapeutic intervention, iv) give a prognosis on disease course and progression and v) in the long run provide the basis for novel therapeutic approaches and personalised medicine.

  19. 130 FEMINISM AND HUMAN GENETIC ENGINEERING: A ...

    African Journals Online (AJOL)

    Ike Odimegwu

    Abstract. Human genetic in the area of Bio-ethics is a new, rapidly advancing. Science. ... Human genetic engineering, a recent one in medical science and practice, is one ..... The Church on Cloning and Stem Cell Research. The teaching of ...

  20. Molecular Genetics and Genetic Testing in Myotonic Dystrophy Type 1

    Directory of Open Access Journals (Sweden)

    Dušanka Savić Pavićević

    2013-01-01

    Full Text Available Myotonic dystrophy type 1 (DM1 is the most common adult onset muscular dystrophy, presenting as a multisystemic disorder with extremely variable clinical manifestation, from asymptomatic adults to severely affected neonates. A striking anticipation and parental-gender effect upon transmission are distinguishing genetic features in DM1 pedigrees. It is an autosomal dominant hereditary disease associated with an unstable expansion of CTG repeats in the 3′-UTR of the DMPK gene, with the number of repeats ranging from 50 to several thousand. The number of CTG repeats broadly correlates with both the age-at-onset and overall severity of the disease. Expanded DM1 alleles are characterized by a remarkable expansion-biased and gender-specific germline instability, and tissue-specific, expansion-biased, age-dependent, and individual-specific somatic instability. Mutational dynamics in male and female germline account for observed anticipation and parental-gender effect in DM1 pedigrees, while mutational dynamics in somatic tissues contribute toward the tissue-specificity and progressive nature of the disease. Genetic test is routinely used in diagnostic procedure for DM1 for symptomatic, asymptomatic, and prenatal testing, accompanied with appropriate genetic counseling and, as recommended, without predictive information about the disease course. We review molecular genetics of DM1 with focus on those issues important for genetic testing and counseling.

  1. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine.

    Science.gov (United States)

    Stenson, Peter D; Mort, Matthew; Ball, Edward V; Shaw, Katy; Phillips, Andrew; Cooper, David N

    2014-01-01

    The Human Gene Mutation Database (HGMD®) is a comprehensive collection of germline mutations in nuclear genes that underlie, or are associated with, human inherited disease. By June 2013, the database contained over 141,000 different lesions detected in over 5,700 different genes, with new mutation entries currently accumulating at a rate exceeding 10,000 per annum. HGMD was originally established in 1996 for the scientific study of mutational mechanisms in human genes. However, it has since acquired a much broader utility as a central unified disease-oriented mutation repository utilized by human molecular geneticists, genome scientists, molecular biologists, clinicians and genetic counsellors as well as by those specializing in biopharmaceuticals, bioinformatics and personalized genomics. The public version of HGMD (http://www.hgmd.org) is freely available to registered users from academic institutions/non-profit organizations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via BIOBASE GmbH.

  2. Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer in Women

    Science.gov (United States)

    ... Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-related Cancer in Women The U.S. Preventive Services ... Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-related Cancer in Women. This final recommendation statement ...

  3. Genetic basis of human brain evolution.

    Science.gov (United States)

    Vallender, Eric J; Mekel-Bobrov, Nitzan; Lahn, Bruce T

    2008-12-01

    Human evolution is characterized by a rapid increase in brain size and complexity. Decades of research have made important strides in identifying anatomical and physiological substrates underlying the unique features of the human brain. By contrast, it has become possible only very recently to examine the genetic basis of human brain evolution. Through comparative genomics, tantalizing insights regarding human brain evolution have emerged. The genetic changes that potentially underlie human brain evolution span a wide range from single-nucleotide substitutions to large-scale structural alterations of the genome. Similarly, the functional consequences of these genetic changes vary greatly, including protein-sequence alterations, cis-regulatory changes and even the emergence of new genes and the extinction of existing ones. Here, we provide a general review of recent findings into the genetic basis of human brain evolution, highlight the most notable trends that have emerged and caution against over-interpretation of current data.

  4. Genetic enhancement, human nature, and rights.

    Science.gov (United States)

    McConnell, Terrance

    2010-08-01

    Authors such as Francis Fukuyama, the President's Council on Bioethics, and George Annas have argued that biotechnological interventions that aim to promote genetic enhancement pose a threat to human nature. This paper clarifies what conclusions these critics seek to establish, and then shows that there is no plausible account of human nature that will meet the conditions necessary to support this position. Appeals to human nature cannot establish a prohibition against the pursuit of genetic enhancement.

  5. Human genetic determinants of dengue virus susceptibility.

    Science.gov (United States)

    Coffey, Lark L; Mertens, Eva; Brehin, Anne-Claire; Fernandez-Garcia, Maria Dolores; Amara, Ali; Després, Philippe; Sakuntabhai, Anavaj

    2009-02-01

    Dengue virus (DENV) is an emerging mosquito-borne pathogen that produces significant morbidity worldwide resulting in an estimated 50-100 million infections annually. DENV causes a spectrum of illness ranging from inapparent infection to life-threatening hemorrhagic fever and shock. The varied DENV disease outcome is determined by complex interactions between immunopathologic, viral, and human genetic factors. This review summarizes these interactions with a focus on human genetic determinants of DENV susceptibility, including human leukocyte antigens, blood type, and single nucleotide polymorphisms in immune response genes that have been associated with DENV disease. We also discuss other factors related to DENV outcome including viral genetic determinants, age, ethnicity, and nutritional status as they relate to DENV susceptibility. We emphasize the need for functional genetics studies to complement association-based data and we call for controlled study designs and standard clinical DENV disease definitions that will strengthen conclusions based on human genetic DENV studies.

  6. Behavior genetic modeling of human fertility

    DEFF Research Database (Denmark)

    Rodgers, J L; Kohler, H P; Kyvik, K O

    2001-01-01

    Try) and number of children (NumCh). Behavior genetic models were fitted using structural equation modeling and DF analysis. A consistent medium-level additive genetic influence was found for NumCh, equal across genders; a stronger genetic influence was identified for FirstTry, greater for females than for males......Behavior genetic designs and analysis can be used to address issues of central importance to demography. We use this methodology to document genetic influence on human fertility. Our data come from Danish twin pairs born from 1953 to 1959, measured on age at first attempt to get pregnant (First...

  7. Family Secrets: The Bioethics of Genetic Testing

    Science.gov (United States)

    Markowitz, Dina G.; DuPre, Michael J.; Holt, Susan; Chen, Shaw-Ree; Wischnowski, Michael

    2006-01-01

    This article discusses "Family Secrets," a problem-based learning (PBL) curriculum module that focuses on the bioethical implications of genetic testing. In high school biology classrooms throughout New York State, students are using "Family Secrets" to learn about DNA testing; Huntington's disease (HD); and the ethical, legal,…

  8. Genetic Testing in Huntington’s Disease

    OpenAIRE

    J Gordon Millichap

    1997-01-01

    The historical and clinical profiles of Huntington’s disease (HD) presenting in 44 juveniles who were tested for CAG repeat expansions in the gene for HD were defined in a study reported by the US Huntington Disease Genetic Testing Group from the Hennepin County Medical Center, Minneapolis, MN.

  9. Reflections on the Field of Human Genetics: A Call for Increased Disease Genetics Theory.

    Science.gov (United States)

    Schrodi, Steven J

    2016-01-01

    Development of human genetics theoretical models and the integration of those models with experiment and statistical evaluation are critical for scientific progress. This perspective argues that increased effort in disease genetics theory, complementing experimental, and statistical efforts, will escalate the unraveling of molecular etiologies of complex diseases. In particular, the development of new, realistic disease genetics models will help elucidate complex disease pathogenesis, and the predicted patterns in genetic data made by these models will enable the concurrent, more comprehensive statistical testing of multiple aspects of disease genetics predictions, thereby better identifying disease loci. By theoretical human genetics, I intend to encompass all investigations devoted to modeling the heritable architecture underlying disease traits and studies of the resulting principles and dynamics of such models. Hence, the scope of theoretical disease genetics work includes construction and analysis of models describing how disease-predisposing alleles (1) arise, (2) are transmitted across families and populations, and (3) interact with other risk and protective alleles across both the genome and environmental factors to produce disease states. Theoretical work improves insight into viable genetic models of diseases consistent with empirical results from linkage, transmission, and association studies as well as population genetics. Furthermore, understanding the patterns of genetic data expected under realistic disease models will enable more powerful approaches to discover disease-predisposing alleles and additional heritable factors important in common diseases. In spite of the pivotal role of disease genetics theory, such investigation is not particularly vibrant.

  10. The genetics of human obesity.

    Science.gov (United States)

    Xia, Qianghua; Grant, Struan F A

    2013-04-01

    It has long been known that there is a genetic component to obesity, and that characterizing this underlying factor would likely offer the possibility of better intervention in the future. Monogenic obesity has proved to be relatively straightforward, with a combination of linkage analysis and mouse models facilitating the identification of multiple genes. In contrast, genome-wide association studies have successfully revealed a variety of genetic loci associated with the more common form of obesity, allowing for very strong consensus on the underlying genetic architecture of the phenotype for the first time. Although a number of significant findings have been made, it appears that very little of the apparent heritability of body mass index has actually been explained to date. New approaches for data analyses and advances in technology will be required to uncover the elusive missing heritability, and to aid in the identification of the key causative genetic underpinnings of obesity. © 2013 New York Academy of Sciences.

  11. Guidelines for genetic testing of inherited cardiac disorders.

    Science.gov (United States)

    Ingles, Jodie; Zodgekar, Poonam R; Yeates, Laura; Macciocca, Ivan; Semsarian, Christopher; Fatkin, Diane

    2011-11-01

    Inherited gene variants have been implicated increasingly in cardiac disorders but the clinical impact of these discoveries has been variable. For some disorders, such as familial hypertrophic cardiomyopathy, long QT syndrome, and familial hypercholesterolaemia, genetic testing has a high yield and has become an integral part of family management. For other disorders, including dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and atrial fibrillation, relatively less is known about the genes involved and genetic testing has a lower yield. Recent advances in sequencing and array-based technologies promise to change the landscape of our understanding of the genetic basis of human disease and will dramatically increase the rate of detection of genomic variants. Since every individual is expected to harbour thousands of variants, many of which may be novel, interpretation of the functional significance of any single variant is critical, and should be undertaken by experienced personnel. Genotype results can have a wide range of medical and psychosocial implications for affected and unaffected individuals and hence, genetic testing should be performed in a specialised cardiac genetic clinic or clinical genetics service where appropriate family management and genetic counselling can be offered. Copyright © 2011 Australasian Society of Cardiac and Thoracic Surgeons and the Cardiac Society of Australia and New Zealand. Published by Elsevier B.V. All rights reserved.

  12. Revertant mosaicism in human genetic disorders

    NARCIS (Netherlands)

    Jonkman, MF

    1999-01-01

    Somatic reversion of inherited mutations is known for many years in plant breeding, however it was recognized only recently in humans. The concept of revertant mosaicism is important in medical genetics. (C) 1999 Wiley-Liss, Inc.

  13. What's New in Genetic Testing for Cancer Susceptibility?

    Science.gov (United States)

    Plichta, Jennifer K; Griffin, Molly; Thakuria, Joseph; Hughes, Kevin S

    2016-09-15

    The advent of next-generation sequencing, and its transition further into the clinic with the US Food and Drug Administration approval of a cystic fibrosis assay in 2013, have increased the speed and reduced the cost of DNA sequencing. Coupled with a historic ruling by the Supreme Court of the United States that human genes are not patentable, these events have caused a seismic shift in genetic testing in clinical medicine. More labs are offering genetic testing services; more multigene panels are available for gene testing; more genes and gene mutations are being identified; and more variants of uncertain significance, which may or may not be clinically actionable, have been found. All these factors, taken together, are increasing the complexity of clinical management. While these developments have led to a greater interest in genetic testing, risk assessment, and large-scale population screening, they also present unique challenges. The dilemma for clinicians is how best to understand and manage this rapidly growing body of information to improve patient care. With millions of genetic variants of potential clinical significance and thousands of genes associated with rare but well-established genetic conditions, the complexities of genetic data management clearly will require improved computerized clinical decision support tools, as opposed to continued reliance on traditional rote, memory-based medicine.

  14. The genetics of human obesity.

    Science.gov (United States)

    Waalen, Jill

    2014-10-01

    The heritability of obesity has long been appreciated and the genetics of obesity has been the focus of intensive study for decades. Early studies elucidating genetic factors involved in rare monogenic and syndromic forms of extreme obesity focused attention on dysfunction of hypothalamic leptin-related pathways in the control of food intake as a major contributor. Subsequent genome-wide association studies of common genetic variants identified novel loci that are involved in more common forms of obesity across populations of diverse ethnicities and ages. The subsequent search for factors contributing to the heritability of obesity not explained by these 2 approaches ("missing heritability") has revealed additional rare variants, copy number variants, and epigenetic changes that contribute. Although clinical applications of these findings have been limited to date, the increasing understanding of the interplay of these genetic factors with environmental conditions, such as the increased availability of high calorie foods and decreased energy expenditure of sedentary lifestyles, promises to accelerate the translation of genetic findings into more successful preventive and therapeutic interventions.

  15. The genetics of neuroticism and human values.

    Science.gov (United States)

    Zacharopoulos, George; Lancaster, Thomas M; Maio, Gregory R; Linden, David E J

    2016-04-01

    Human values and personality have been shown to share genetic variance in twin studies. However, there is a lack of evidence about the genetic components of this association. This study examined the interplay between genes, values and personality in the case of neuroticism, because polygenic scores were available for this personality trait. First, we replicated prior evidence of a positive association between the polygenic neuroticism score (PNS) and neuroticism. Second, we found that the PNS was significantly associated with the whole human value space in a sinusoidal waveform that was consistent with Schwartz's circular model of human values. These results suggest that it is useful to consider human values in the analyses of genetic contributions to personality traits. They also pave the way for an investigation of the biological mechanisms contributing to human value orientations.

  16. Genetically Modified Pig Models for Human Diseases

    Institute of Scientific and Technical Information of China (English)

    Nana Fan; Liangxue Lai

    2013-01-01

    Genetically modified animal models are important for understanding the pathogenesis of human disease and developing therapeutic strategies.Although genetically modified mice have been widely used to model human diseases,some of these mouse models do not replicate important disease symptoms or pathology.Pigs are more similar to humans than mice in anatomy,physiology,and genome.Thus,pigs are considered to be better animal models to mimic some human diseases.This review describes genetically modified pigs that have been used to model various diseases including neurological,cardiovascular,and diabetic disorders.We also discuss the development in gene modification technology that can facilitate the generation of transgenic pig models for human diseases.

  17. Predictivity, genetic tests and insurance law.

    Science.gov (United States)

    Romeo Casabona, Carlos Maria

    2009-01-01

    An increasing discussion today consists of whether emerging genetic tests will provide a powerful tool for individual risk assessments for the life, health, disability and accident policies underwritten by private insurance companies and what could be the consequences of this for the insurance contract system built throughout the last decades. Thus, access to such risk information will facilitate more precise actuarial premium assessments.

  18. Human genetic factors in tuberculosis: an update.

    Science.gov (United States)

    van Tong, Hoang; Velavan, Thirumalaisamy P; Thye, Thorsten; Meyer, Christian G

    2017-09-01

    Tuberculosis (TB) is a major threat to human health, especially in many developing countries. Human genetic variability has been recognised to be of great relevance in host responses to Mycobacterium tuberculosis infection and in regulating both the establishment and the progression of the disease. An increasing number of candidate gene and genome-wide association studies (GWAS) have focused on human genetic factors contributing to susceptibility or resistance to TB. To update previous reviews on human genetic factors in TB we searched the MEDLINE database and PubMed for articles from 1 January 2014 through 31 March 2017 and reviewed the role of human genetic variability in TB. Search terms applied in various combinations were 'tuberculosis', 'human genetics', 'candidate gene studies', 'genome-wide association studies' and 'Mycobacterium tuberculosis'. Articles in English retrieved and relevant references cited in these articles were reviewed. Abstracts and reports from meetings were also included. This review provides a recent summary of associations of polymorphisms of human genes with susceptibility/resistance to TB. © 2017 John Wiley & Sons Ltd.

  19. Genetic engineering of human pluripotent cells using TALE nucleases.

    Science.gov (United States)

    Hockemeyer, Dirk; Wang, Haoyi; Kiani, Samira; Lai, Christine S; Gao, Qing; Cassady, John P; Cost, Gregory J; Zhang, Lei; Santiago, Yolanda; Miller, Jeffrey C; Zeitler, Bryan; Cherone, Jennifer M; Meng, Xiangdong; Hinkley, Sarah J; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D; Jaenisch, Rudolf

    2011-07-07

    Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator-like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).

  20. What Is Direct-to-Consumer Genetic Testing?

    Science.gov (United States)

    ... MENU Toggle navigation Home Page Search Share: Email Facebook Twitter Home Health Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Home Help Me Understand Genetics Genetic Testing What is direct-to-consumer genetic testing? What is direct-to-consumer genetic ...

  1. Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic)

    NARCIS (Netherlands)

    Claustres, Mireille; Kozich, Viktor; Dequeker, Els; Fowler, Brain; Hehir-Kwa, Jayne Y.; Miller, Konstantin; Oosterwijk, Cor; Peterlin, Borut; van Ravenswaaij-Arts, Conny; Zimmermann, Uwe; Zuffardi, Orsetta; Hastings, Ros J.; Barton, David E.

    Genetic test results can have considerable importance for patients, their parents and more remote family members. Clinical therapy and surveillance, reproductive decisions and genetic diagnostics in family members, including prenatal diagnosis, are based on these results. The genetic test report

  2. An overview of human genetic privacy.

    Science.gov (United States)

    Shi, Xinghua; Wu, Xintao

    2017-01-01

    The study of human genomics is becoming a Big Data science, owing to recent biotechnological advances leading to availability of millions of personal genome sequences, which can be combined with biometric measurements from mobile apps and fitness trackers, and of human behavior data monitored from mobile devices and social media. With increasing research opportunities for integrative genomic studies through data sharing, genetic privacy emerges as a legitimate yet challenging concern that needs to be carefully addressed, not only for individuals but also for their families. In this paper, we present potential genetic privacy risks and relevant ethics and regulations for sharing and protecting human genomics data. We also describe the techniques for protecting human genetic privacy from three broad perspectives: controlled access, differential privacy, and cryptographic solutions. © 2016 New York Academy of Sciences.

  3. Mendelism in human genetics: 100 years on.

    Science.gov (United States)

    Majumdar, Sisir K

    2003-01-01

    Genetics (Greek word--'genes' = born) is a science without an objective past. But the genre of genetics was always roaming in the corridors of human psyche since antiquity. The account of heritable deformities in human often appears in myths and legends. Ancient Hindu Caste system was based on the assumption that both desirable and undesirable traits are passed from generation to generation. In Babylonia 60 birth defects were listed on Clay tablets written around 5,000 year ago. The Jewish Talmud contains accurate description of the inheritance of haemophilia--a human genetic disorder. The Upanisads vedant--800--200 BC provides instructions for the choice of a wife emphasizing that no heritable illness should be present and that the family should show evidence of good character for several preceding generations. These examples indicate that heritable human traits played a significant role in social customs are presented in this article.

  4. Genetics of obesity in humans.

    Science.gov (United States)

    Farooqi, Sadaf; O'Rahilly, Stephen

    2006-12-01

    Considerable attention has focused on deciphering the hypothalamic pathways that mediate the behavioral and metabolic effects of leptin. We and others have identified several single gene defects that disrupt the molecules in the leptin-melanocortin pathway causing severe obesity in humans. In this review, we consider these human monogenic obesity syndromes and discuss how far the characterization of these patients has informed our understanding of the physiological role of leptin and the melanocortins in the regulation of human body weight and neuroendocrine function.

  5. Human genetics of diabetic vascular complications

    Indian Academy of Sciences (India)

    Zi-Hui Tang; Zhou Fang; Linuo Zhou

    2013-12-01

    Diabetic vascular complications (DVC) affecting several important organ systems of human body such as the cardiovascular system constitute a major public health problem. There is evidence demonstrating that genetic factors contribute to the risk of DVC genetic variants, structural variants, and epigenetic changes play important roles in the development of DVC. Genetic linkage studies have uncovered a number of genetic loci that may shape the risk of DVC. Genetic association studies have identified many common genetic variants for susceptibility to DVC. Structural variants such as copy number variation and interactions of gene × environment have also been detected by association analysis. Apart from the nuclear genome, mitochondrial DNA plays a critical role in regulation of development of DVC. Epigenetic studies have indicated epigenetic changes in chromatin affecting gene transcription in response to environmental stimuli, which provided a large body of evidence of regulating development of diabetes mellitus. Recently, a new window has opened on identifying rare and common genetic loci through next generation sequencing technologies. This review focusses on the current knowledge of the genetic and epigenetic basis of DVC. Ultimately, identification of genes or genetic loci, structural variants and epigenetic changes contributing to risk of or protection from DVC will help uncover the complex mechanism(s) underlying DVC, with crucial implications for the development of personalized medicine for diabetes mellitus and its complications.

  6. A Model of Genetic Variation in Human Social Networks

    CERN Document Server

    Fowler, James H; Christakis, Nicholas A

    2008-01-01

    Social networks influence the evolution of cooperation and they exhibit strikingly systematic patterns across a wide range of human contexts. Both of these facts suggest that variation in the topological attributes of human social networks might have a genetic basis. While genetic variation accounts for a significant portion of the variation in many complex social behaviors, the heritability of egocentric social network attributes is unknown. Here we show that three of these attributes (in-degree, transitivity, and centrality) are heritable. We then develop a "mirror network" method to test extant network models and show that none accounts for observed genetic variation in human social networks. We propose an alternative "attract and introduce" model that generates significant heritability as well as other important network features, and we show that this model with two simple forms of heterogeneity is well suited to the modeling of real social networks in humans. These results suggest that natural selection ...

  7. Genetic Conflict in Human Pregnancy

    OpenAIRE

    1993-01-01

    Pregnancy has commonly been viewed as a cooperative interaction between a mother and her fetus. The effects of natural selection on genes expressed in fetuses, however, may be opposed by the effects of natural selection on genes expressed in mothers. In this sense, a genetic conflict can be said to exist between maternal and fetal genes. Fetal genes will be selected to increase the transfer of nutrients to their fetus, and maternal genes will be selected to limit transfers in excess of Soma m...

  8. Genetic testing by cancer site: endocrine system.

    Science.gov (United States)

    Pilarski, Robert; Nagy, Rebecca

    2012-01-01

    Numerous hereditary syndromes, caused by mutations in multiple tumor suppressor genes and oncogenes, can cause tumors in organs of the endocrine system. The primary syndromes (and genes) addressed here include multiple endocrine neoplasia types 1 and 2 (MEN1 and RET genes), Cowden syndrome (PTEN), hereditary pheochromocytoma/paraganglioma syndromes (multiple genes), and von Hippel-Lindau disease (VHL). Clinical genetic testing is available for each of these syndromes and is generally directed to individuals with endocrine or other tumors and additional features suggestive of a hereditary syndrome. However, for some endocrine tumors, the proportion because of heredity is so high that genetic testing may be appropriate for all affected individuals. Management for hereditary cases typically involves aggressive screening and/or surgical protocols, starting at young ages to minimize morbidity and mortality. Endocrine tumors can be less commonly seen in a number of other hereditary syndromes (eg, neurofibromatosis), which are not reviewed in this section.

  9. Genetics of human male infertility.

    Science.gov (United States)

    Poongothai, J; Gopenath, T S; Manonayaki, S

    2009-04-01

    Infertility is defined as a failure to conceive in a couple trying to reproduce for a period of two years without conception. Approximately 15 percent of couples are infertile, and among these couples, male factor infertility accounts for approximately 50 percent of causes. Male infertility is a multifactorial syndrome encompassing a wide variety of disorders. In more than half of infertile men, the cause of their infertility is unknown (idiopathic) and could be congenital or acquired. Infertility in men can be diagnosed initially by semen analysis. Seminograms of infertile men may reveal many abnormal conditions, which include azoospermia, oligozoospermia, teratozoospermia, asthenozoospermia, necrospermia and pyospermia. The current estimate is that about 30 percent of men seeking help at the infertility clinic are found to have oligozoospermia or azoospermia of unknown aetiology. Therefore, there is a need to find the cause of infertility. The causes are known in less than half of these cases, out of which genetic or inherited disease and specific abnormalities in the Y chromosome are major factors. About 10-20 percent of males presenting without sperm in the ejaculate carry a deletion of the Y chromosome. This deleted region includes the Azoospermia Factor (AZF) locus, located in the Yq11, which is divided into four recurrently deleted non-overlapping subregions designated as AZFa, AZFb, AZFc and AZFd. Each of these regions may be associated with a particular testicular histology, and several candidate genes have been found within these regions. The Deleted in Azoospermia (DAZ) gene family is reported to be the most frequently deleted AZF candidate gene and is located in the AZFc region. Recently, a partial, novel Y chromosome 1.6-Mb deletion, designated "gr/gr" deletion, has been described specifically in infertile men with varying degrees of spermatogenic failure. The DAZ gene has an autosomal homologue, DAZL (DAZ-Like), on the short arm of the chromosome 3 (3

  10. Genes and genetic testing in hereditary ataxias.

    Science.gov (United States)

    Sandford, Erin; Burmeister, Margit

    2014-07-22

    Ataxia is a neurological cerebellar disorder characterized by loss of coordination during muscle movements affecting walking, vision, and speech. Genetic ataxias are very heterogeneous, with causative variants reported in over 50 genes, which can be inherited in classical dominant, recessive, X-linked, or mitochondrial fashion. A common mechanism of dominant ataxias is repeat expansions, where increasing lengths of repeated DNA sequences result in non-functional proteins that accumulate in the body causing disease. Greater understanding of all ataxia genes has helped identify several different pathways, such as DNA repair, ubiquitination, and ion transport, which can be used to help further identify new genes and potential treatments. Testing for the most common mutations in these genes is now clinically routine to help with prognosis and treatment decisions, but next generation sequencing will revolutionize how genetic testing will be done. Despite the large number of known ataxia causing genes, however, many individuals with ataxia are unable to obtain a genetic diagnosis, suggesting that more genes need to be discovered. Utilization of next generation sequencing technologies, expression studies, and increased knowledge of ataxia pathways will aid in the identification of new ataxia genes.

  11. Fetal magnetic resonance imaging and human genetics

    Energy Technology Data Exchange (ETDEWEB)

    Hengstschlaeger, Markus [Medical Genetics, Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)]. E-mail: markus.hengstschlaeger@meduniwien.ac.at

    2006-02-15

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data.

  12. Human Genetic Disorders of Axon Guidance

    OpenAIRE

    Engle, Elizabeth C

    2010-01-01

    This article reviews symptoms and signs of aberrant axon connectivity in humans, and summarizes major human genetic disorders that result, or have been proposed to result, from defective axon guidance. These include corpus callosum agenesis, L1 syndrome, Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis, Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1, Duane retraction syndrome, and pontine tegmental cap dysplasia. Gene...

  13. Human genetics: international projects and personalized medicine.

    Science.gov (United States)

    Apellaniz-Ruiz, Maria; Gallego, Cristina; Ruiz-Pinto, Sara; Carracedo, Angel; Rodríguez-Antona, Cristina

    2016-03-01

    In this article, we present the progress driven by the recent technological advances and new revolutionary massive sequencing technologies in the field of human genetics. We discuss this knowledge in relation with drug response prediction, from the germline genetic variation compiled in the 1000 Genomes Project or in the Genotype-Tissue Expression project, to the phenome-genome archives, the international cancer projects, such as The Cancer Genome Atlas or the International Cancer Genome Consortium, and the epigenetic variation and its influence in gene expression, including the regulation of drug metabolism. This review is based on the lectures presented by the speakers of the Symposium "Human Genetics: International Projects & New Technologies" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held on the 20th and 21st of April 2015.

  14. A global reference for human genetic variation

    DEFF Research Database (Denmark)

    Auton, Adam; Abecasis, Goncalo R.; M. Altshuler, David;

    2015-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals ...

  15. Bioethical – Theological and Legal approach in genetic testing of adult persons

    Directory of Open Access Journals (Sweden)

    George Katsimigas

    2012-07-01

    Full Text Available Thorough genetic testing gives possibility's diagnosis of genetic diseases or identity individuals, who genetic predisposed for disease outbreak Aims: To present/identify the ethical and religious issues, which arise from the application of genetic testing in humans. Furthermore, the principles from the European and Greek legislation regarding genetic testing will be discussed. Materials & Methods: A literature review based on both review and research literature, conducted during the period of (1993-2010, derived from MEDLINE, SCOPUS and ΙΑΤΡΟΤΕΚ databases using as key words: Bioethics, genetic testing, bioethics, access, genetic information, orthodox ethics, Legislation. Results: Genetic testing for disease prevention is of primary importance. The main ethical concerns however, are related to the dissemination/ disclosure and use of this information from insurance companies, healthcare authorities, scientists, forensic departments/services and employers. Similarly, the orthodox religion accepts the use of genetic testing for the prevention and treatment of diseases as long as there is no break of confidentiality. Finally, considering the legal issues, it is apparent that genetic information is regarded as personal information and as such it is protected from the national (Greek and international law. Conclusions: It is necessary to ensure that the public authorities protect the rights of their citizens regarding genetic testing and all insurance companies, employers, schools etc. should not be allowed to have access to genetic information. Such an approach will ensure that social discrimination, obstructions or other inequalities between people on the basis of genetic information is avoided.

  16. Genetic Testing for Breast Cancer: Psychological and Social Impact

    Science.gov (United States)

    Genetic testing for breast cancer: Psychological and social impact Genetic testing to estimate breast and ovarian cancer risk may prompt many emotional and psychological reactions. How will getting the news that you' ...

  17. Genetic Manipulation of Human Embryonic Stem Cells.

    Science.gov (United States)

    Eiges, Rachel

    2016-01-01

    One of the great advantages of embryonic stem (ES) cells over other cell types is their accessibility to genetic manipulation. They can easily undergo genetic modifications while remaining pluripotent, and can be selectively propagated, allowing the clonal expansion of genetically altered cells in culture. Since the first isolation of ES cells in mice, many effective techniques have been developed for gene delivery and manipulation of ES cells. These include transfection, electroporation, and infection protocols, as well as different approaches for inserting, deleting, or changing the expression of genes. These methods proved to be extremely useful in mouse ES cells, for monitoring and directing differentiation, discovering unknown genes, and studying their function, and are now being extensively implemented in human ES cells (HESCs). This chapter describes the different approaches and methodologies that have been applied for the genetic manipulation of HESCs and their applications. Detailed protocols for generating clones of genetically modified HESCs by transfection, electroporation, and infection will be described, with special emphasis on the important technical details that are required for this purpose. All protocols are equally effective in human-induced pluripotent stem (iPS) cells.

  18. Human Genetic Disorders of Axon Guidance

    Science.gov (United States)

    Engle, Elizabeth C.

    2010-01-01

    This article reviews symptoms and signs of aberrant axon connectivity in humans, and summarizes major human genetic disorders that result, or have been proposed to result, from defective axon guidance. These include corpus callosum agenesis, L1 syndrome, Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis, Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1, Duane retraction syndrome, and pontine tegmental cap dysplasia. Genes mutated in these disorders can encode axon growth cone ligands and receptors, downstream signaling molecules, and axon transport motors, as well as proteins without currently recognized roles in axon guidance. Advances in neuroimaging and genetic techniques have the potential to rapidly expand this field, and it is feasible that axon guidance disorders will soon be recognized as a new and significant category of human neurodevelopmental disorders. PMID:20300212

  19. Molecular genetics of human lactase deficiencies.

    Science.gov (United States)

    Järvelä, Irma; Torniainen, Suvi; Kolho, Kaija-Leena

    2009-01-01

    Lactase non-persistence (adult-type hypolactasia) is present in more than half of the human population and is caused by the down-regulation of lactase enzyme activity during childhood. Congenital lactase deficiency (CLD) is a rare severe gastrointestinal disorder of new-borns enriched in the Finnish population. Both lactase deficiencies are autosomal recessive traits and characterized by diminished expression of lactase activity in the intestine. Genetic variants underlying both forms have been identified. Here we review the current understanding of the molecular defects of human lactase deficiencies and their phenotype-genotype correlation, the implications on clinical practice, and the understanding of their function and role in human evolution.

  20. Maintenance of genetic variation in human personality: Testing evolutionary models by estimating heritability due to common causal variants and investigating the effect of distant inbreeding

    NARCIS (Netherlands)

    Verweij, C.J.H.; Yang, J.; Lahti, J.; Veijola, J.; Hintsanen, M.; Pulkki-Raback, L.; Heinonen, K.; Pouta, A.; Pesonen, A.K.; Widen, E.; Taanila, A.; Isohanni, M.; Miettunen, J.; Palotie, A.; Penke, L.; Service, S.K.; Heath, A.C.; Montgomery, G.W.; Raitakari, O.; Kahonen, M.; Viikari, J.; Raikkonen, K.; Eriksson, J.G.; Keltikangas-Jarvinen, L.; Lehtimäki, T.; Martin, N.G.; Jarvelin, M.R.; Visscher, P.M.; Keller, M.C.; Zietsch, B.P.

    2012-01-01

    Personality traits are basic dimensions of behavioral variation, and twin, family, and adoption studies show that around 30% of the between-individual variation is due to genetic variation. There is rapidly growing interest in understanding the evolutionary basis of this genetic variation. Several e

  1. Genetic Heterogeneity in Algerian Human Populations.

    Science.gov (United States)

    Bekada, Asmahan; Arauna, Lara R; Deba, Tahria; Calafell, Francesc; Benhamamouch, Soraya; Comas, David

    2015-01-01

    The demographic history of human populations in North Africa has been characterized by complex processes of admixture and isolation that have modeled its current gene pool. Diverse genetic ancestral components with different origins (autochthonous, European, Middle Eastern, and sub-Saharan) and genetic heterogeneity in the region have been described. In this complex genetic landscape, Algeria, the largest country in Africa, has been poorly covered, with most of the studies using a single Algerian sample. In order to evaluate the genetic heterogeneity of Algeria, Y-chromosome, mtDNA and autosomal genome-wide makers have been analyzed in several Berber- and Arab-speaking groups. Our results show that the genetic heterogeneity found in Algeria is not correlated with geography or linguistics, challenging the idea of Berber groups being genetically isolated and Arab groups open to gene flow. In addition, we have found that external sources of gene flow into North Africa have been carried more often by females than males, while the North African autochthonous component is more frequent in paternally transmitted genome regions. Our results highlight the different demographic history revealed by different markers and urge to be cautious when deriving general conclusions from partial genomic information or from single samples as representatives of the total population of a region.

  2. Genetic testing legislation in Western Europe-a fluctuating regulatory target.

    Science.gov (United States)

    Soini, Sirpa

    2012-01-28

    Rapid developments of biomedical science have initiated different fora to take stand on the protection of human rights and human dignity. In front of the new genomic era with the completion of the Human Genome Project in 2003, a plethora of instruments addressing human genetic testing emerged, some looking suspiciously like legal acts. The notion of genetic exceptionalism was characteristic to the normative reactions in the legal acts, but it can be questioned how justified this is. Despite the critique on genetic exceptionalism, it is argued that in certain situations detection of a serious genetic anomaly may cause extra anxiety in a person tested, if the knowledge has a great significance also to family members. Regulative needs should depend on the context and purpose of the test. This review examines the legal framework governing the use of genetic tests in the clinical setting in Western Europe. Five countries have enacted genetic specific laws, and three have comprehensive provisions pertaining genetic testing in their biomedical legislation. Central provisions cover informed consent, autonomy and integrity of the person tested, further uses of tests results, quality requirements of the personnel and facilities involved. Moreover, contemporary challenges related to whole genome sequencing, direct-to-consumer genetic tests and insurance are briefly discussed.

  3. Human Genetics of Diabetic Retinopathy: Current Perspectives

    Directory of Open Access Journals (Sweden)

    Daniel P. K. Ng

    2010-01-01

    Full Text Available Diabetic retinopathy (DR is a most severe microvascular complication which, if left unchecked, can be sight-threatening. With the global prevalence of diabetes being relentlessly projected to rise to 438 million subjects by 2030, DR will undoubtedly pose a major public health concern. Efforts to unravel the human genetics of DR have been undertaken using the candidate gene and linkage approaches, while GWAS efforts are still lacking. Aside from evidence for a few genes including aldose reductase and vascular endothelial growth factor, the genetics of DR remain poorly elucidated. Nevertheless, the promise of impactful scientific discoveries may be realized if concerted and collaborative efforts are mounted to identify the genes for DR. Harnessing new genetic technologies and resources such as the upcoming 1000 Genomes Project will help advance this field of research, and potentially lead to a rich harvest of insights into the biological mechanisms underlying this debilitating complication.

  4. A global reference for human genetic variation

    DEFF Research Database (Denmark)

    Auton, Adam; Abecasis, Goncalo R.; M. Altshuler, David

    2015-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals...... from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short...... insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications...

  5. Therapeutic Targets of Triglyceride Metabolism as Informed by Human Genetics.

    Science.gov (United States)

    Bauer, Robert C; Khetarpal, Sumeet A; Hand, Nicholas J; Rader, Daniel J

    2016-04-01

    Human genetics has contributed to the development of multiple drugs to treat hyperlipidemia and coronary artery disease (CAD), most recently including antibodies targeting PCSK9 to reduce LDL cholesterol. Despite these successes, a large burden of CAD remains. Genetic and epidemiological studies have suggested that circulating triglyceride (TG)-rich lipoproteins (TRLs) are a causal risk factor for CAD, presenting an opportunity for novel therapeutic strategies. We discuss recent unbiased human genetics testing, including genome-wide association studies (GWAS) and whole-genome or -exome sequencing, that have identified the lipoprotein lipase (LPL) and hepatic lipogenesis pathways as important mechanisms in the regulation of circulating TRLs. Further strengthening the causal relationship between TRLs and CAD, findings such as these may provide novel targets for much-needed potential therapeutic interventions. Copyright © 2016. Published by Elsevier Ltd.

  6. Impact of human genome initiative-derived technology on genetic testing, screening and counseling: Cultural, ethical and legal issues. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Trottier, R.W.; Hodgin, F.C.; Imara, M.; Phoenix, D.; Lybrook, S. [Morehouse Coll., Atlanta, GA (United States). School of Medicine; Crandall, L.A.; Moseley, R.E.; Armotrading, D. [Florida Univ., Gainesville, FL (United States). Coll. of Medicine

    1993-03-01

    Genetic medical services provided by the Georgia Division of Public Health in two northern and two central districts are compared to services provided in a district in which a tertiary care facility is located. Genetics outreach public health nurses play key roles in Georgia`s system of Children`s Health Services Genetics Program, including significant roles as counselors and information sources on special needs social services and support organizations. Unique features of individual health districts, (e.g., the changing face of some rural communities in ethnocultural diversity and socioeconomic character), present new challenges to current and future genetics services delivery. Preparedness as to educational needs of both health professionals and the lay population is of foremost concern in light of the ever expanding knowledge and technology in medical genetics. Perspectives on genetics and an overview of services offered by a local private sector counselor are included for comparison to state supported services. The nature of the interactions which transpire between private and public genetic services resources in Georgia will be described. A special focus of this research includes issues associated with sickle cell disease newborn screening service delivery process in Georgia, with particular attention paid to patient follow-up and transition to primary care. Of particular interest to this focus is the problem of loss to follow-up in the current system. Critical factors in education and counseling of sickle cell patients and the expectations of expanding roles of primary care physicians are discussed. The Florida approach to the delivery of genetic services contrasts to the Georgia model by placing more emphasis on a consultant-specialist team approach.

  7. Human Genetic Engineering: A Survey of Student Value Stances

    Science.gov (United States)

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  8. Exome sequencing and genetic testing for MODY.

    Directory of Open Access Journals (Sweden)

    Stefan Johansson

    Full Text Available CONTEXT: Genetic testing for monogenic diabetes is important for patient care. Given the extensive genetic and clinical heterogeneity of diabetes, exome sequencing might provide additional diagnostic potential when standard Sanger sequencing-based diagnostics is inconclusive. OBJECTIVE: The aim of the study was to examine the performance of exome sequencing for a molecular diagnosis of MODY in patients who have undergone conventional diagnostic sequencing of candidate genes with negative results. RESEARCH DESIGN AND METHODS: We performed exome enrichment followed by high-throughput sequencing in nine patients with suspected MODY. They were Sanger sequencing-negative for mutations in the HNF1A, HNF4A, GCK, HNF1B and INS genes. We excluded common, non-coding and synonymous gene variants, and performed in-depth analysis on filtered sequence variants in a pre-defined set of 111 genes implicated in glucose metabolism. RESULTS: On average, we obtained 45 X median coverage of the entire targeted exome and found 199 rare coding variants per individual. We identified 0-4 rare non-synonymous and nonsense variants per individual in our a priori list of 111 candidate genes. Three of the variants were considered pathogenic (in ABCC8, HNF4A and PPARG, respectively, thus exome sequencing led to a genetic diagnosis in at least three of the nine patients. Approximately 91% of known heterozygous SNPs in the target exomes were detected, but we also found low coverage in some key diabetes genes using our current exome sequencing approach. Novel variants in the genes ARAP1, GLIS3, MADD, NOTCH2 and WFS1 need further investigation to reveal their possible role in diabetes. CONCLUSION: Our results demonstrate that exome sequencing can improve molecular diagnostics of MODY when used as a complement to Sanger sequencing. However, improvements will be needed, especially concerning coverage, before the full potential of exome sequencing can be realized.

  9. Counseling Customers: Emerging Roles for Genetic Counselors in the Direct-to-Consumer Genetic Testing Market

    NARCIS (Netherlands)

    Harris, A.; Kelly, S.; Wyatt, S.

    2013-01-01

    Individuals now have access to an increasing number of internet resources offering personal genomics services. As the direct-to-consumer genetic testing (DTC GT) industry expands, critics have called for pre- and post-test genetic counseling to be included with the product. Several genetic testing

  10. Counseling Customers: Emerging Roles for Genetic Counselors in the Direct-to-Consumer Genetic Testing Market

    NARCIS (Netherlands)

    Harris, A.; Kelly, S.; Wyatt, S.

    2013-01-01

    Individuals now have access to an increasing number of internet resources offering personal genomics services. As the direct-to-consumer genetic testing (DTC GT) industry expands, critics have called for pre- and post-test genetic counseling to be included with the product. Several genetic testing c

  11. Counseling Customers: Emerging Roles for Genetic Counselors in the Direct-to-Consumer Genetic Testing Market

    NARCIS (Netherlands)

    Harris, A.; Kelly, S.; Wyatt, S.

    2013-01-01

    Individuals now have access to an increasing number of internet resources offering personal genomics services. As the direct-to-consumer genetic testing (DTC GT) industry expands, critics have called for pre- and post-test genetic counseling to be included with the product. Several genetic testing c

  12. Paragangliomas/Pheochromocytomas: Clinically Oriented Genetic Testing

    Directory of Open Access Journals (Sweden)

    Rute Martins

    2014-01-01

    Full Text Available Paragangliomas are rare neuroendocrine tumors that arise in the sympathetic or parasympathetic nervous system. Sympathetic paragangliomas are mainly found in the adrenal medulla (designated pheochromocytomas but may also have a thoracic, abdominal, or pelvic localization. Parasympathetic paragangliomas are generally located at the head or neck. Knowledge concerning the familial forms of paragangliomas has greatly improved in recent years. Additionally to the genes involved in the classical syndromic forms: VHL gene (von Hippel-Lindau, RET gene (Multiple Endocrine Neoplasia type 2, and NF1 gene (Neurofibromatosis type 1, 10 novel genes have so far been implicated in the occurrence of paragangliomas/pheochromocytomas: SDHA, SDHB, SDHC, SDHD, SDHAF2, TMEM127, MAX, EGLN1, HIF2A, and KIF1B. It is currently accepted that about 35% of the paragangliomas cases are due to germline mutations in one of these genes. Furthermore, somatic mutations of RET, VHL, NF1, MAX, HIF2A, and H-RAS can also be detected. The identification of the mutation responsible for the paraganglioma/pheochromocytoma phenotype in a patient may be crucial in determining the treatment and allowing specific follow-up guidelines, ultimately leading to a better prognosis. Herein, we summarize the most relevant aspects regarding the genetics and clinical aspects of the syndromic and nonsyndromic forms of pheochromocytoma/paraganglioma aiming to provide an algorithm for genetic testing.

  13. Advances in gene technology: Human genetic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Scott, W.A.; Ahmad, F.; Black, S.; Schultz, J.; Whelan, W.J.

    1984-01-01

    This book discusses the papers presented at the conference on the subject of ''advances in Gene technology: Human genetic disorders''. Molecular biology of various carcinomas and inheritance of metabolic diseases is discussed and technology advancement in diagnosis of hereditary diseases is described. Some of the titles discussed are-Immunoglobulin genes translocation and diagnosis; hemophilia; oncogenes; oncogenic transformations; experimental data on mice, hamsters, birds carcinomas and sarcomas.

  14. [Issues on business of genetic testing in near future].

    Science.gov (United States)

    Takada, Fumio

    2009-06-01

    Since 1990's, a business condition that company sells genetic testing services directly to consumers without through medical facility, so called "direct-to-consumers (DTC) genetic testing", has risen. They provide genetic testing for obesity, disease susceptibility or paternity, etc. There are serious problems in this kind of business. Most of the providers do not make sales with face-to-face selling, and do through internet instead. They do not provide genetic counseling by certified genetic counselor or clinical geneticist. Most DTC genetic testing services for disease susceptibility or predispositions including obesity, lack scientific validity, clinical validity and clinical utility. And also including paternity genetic testing, they all have risks of ethical legal and social issues (ELSI) in genetic discrimination and/or eugenics. The specific problem in Japan is that the healthcare section of the government still has not paid attention and not taken seriously the requirement to deploy safety net.

  15. Online genetic databases informing human genome epidemiology

    Directory of Open Access Journals (Sweden)

    Higgins Julian PT

    2007-07-01

    Full Text Available Abstract Background With the advent of high throughput genotyping technology and the information available via projects such as the human genome sequencing and the HapMap project, more and more data relevant to the study of genetics and disease risk will be produced. Systematic reviews and meta-analyses of human genome epidemiology studies rely on the ability to identify relevant studies and to obtain suitable data from these studies. A first port of call for most such reviews is a search of MEDLINE. We examined whether this could be usefully supplemented by identifying databases on the World Wide Web that contain genetic epidemiological information. Methods We conducted a systematic search for online databases containing genetic epidemiological information on gene prevalence or gene-disease association. In those containing information on genetic association studies, we examined what additional information could be obtained to supplement a MEDLINE literature search. Results We identified 111 databases containing prevalence data, 67 databases specific to a single gene and only 13 that contained information on gene-disease associations. Most of the latter 13 databases were linked to MEDLINE, although five contained information that may not be available from other sources. Conclusion There is no single resource of structured data from genetic association studies covering multiple diseases, and in relation to the number of studies being conducted there is very little information specific to gene-disease association studies currently available on the World Wide Web. Until comprehensive data repositories are created and utilized regularly, new data will remain largely inaccessible to many systematic review authors and meta-analysts.

  16. Personalized Genetic Testing as a Tool for Integrating Ethics Instruction into Biology Courses

    Directory of Open Access Journals (Sweden)

    Tenny R. Zhang

    2014-09-01

    Full Text Available Personalized genetic testing (PGT has been used by some educational institutions as a pedagogical tool for teaching human genetics. While work has been done that examines the potential for PGT to improve students’ interest and understanding of the science involved in genetic testing, there has been less dialogue about how this method might be useful for integrating ethical and societal issues surrounding genetic testing into classroom discussions. Citing the importance of integrating ethics into the biology classroom, we argue that PGT can be an effective educational tool for integrating ethics and science education, and discuss relevant ethical considerations for instructors using this approach. 

  17. Optimal Trend Tests for Genetic Association Studies of Heterogeneous Diseases.

    Science.gov (United States)

    Lee, Wen-Chung

    2016-06-09

    The Cochran-Armitage trend test is a standard procedure in genetic association studies. It is a directed test with high power to detect genetic effects that follow the gene-dosage model. In this paper, the author proposes optimal trend tests for genetic association studies of heterogeneous diseases. Monte-Carlo simulations show that the power gain of the optimal trend tests over the conventional Cochran-Armitage trend test is striking when the genetic effects are heterogeneous. The easy-to-use R 3.1.2 software (R Foundation for Statistical Computing, Vienna, Austria) code is provided. The optimal trend tests are recommended for routine use.

  18. Counseling customers: emerging roles for genetic counselors in the direct-to-consumer genetic testing market.

    Science.gov (United States)

    Harris, Anna; Kelly, Susan E; Wyatt, Sally

    2013-04-01

    Individuals now have access to an increasing number of internet resources offering personal genomics services. As the direct-to-consumer genetic testing (DTC GT) industry expands, critics have called for pre- and post-test genetic counseling to be included with the product. Several genetic testing companies offer genetic counseling. There has been no examination to date of this service provision, whether it meets critics' concerns and implications it may have for the genetic counseling profession. Considering the increasing relevance of genetics in healthcare, the complexity of genetic information provided by DTC GT, the mediating role of the internet in counseling, and potential conflicts of interest, this is a topic which deserves further attention. In this paper we offer a discourse analysis of ways in which genetic counseling is represented on DTC GT websites, blogs and other online material. This analysis identified four types of genetic counseling represented on the websites: the integrated counseling product; discretionary counseling; independent counseling; and product advice. Genetic counselors are represented as having the following roles: genetics educator; mediator; lifestyle advisor; risk interpreter; and entrepreneur. We conclude that genetic counseling as represented on DTC GT websites demonstrates shifting professional roles and forms of expertise in genetic counseling. Genetic counselors are also playing an important part in how the genetic testing market is taking shape. Our analysis offers important and timely insights into recent developments in the genetic counseling profession, which have relevance for practitioners, researchers and policy makers concerned with the evolving field of personal genomics.

  19. Reliability of genetic bottleneck tests for detecting recent population declines

    NARCIS (Netherlands)

    Peery, M. Zachariah; Kirby, Rebecca; Reid, Brendan N.; Stoelting, Ricka; Doucet-Beer, Elena; Robinson, Stacie; Vasquez-Carrillo, Catalina; Pauli, Jonathan N.; Palsboll, Per J.

    2012-01-01

    The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and popula

  20. Genetic Testing in the Workplace: A Caste System for Workers?

    Science.gov (United States)

    Samuels, Sheldon W.

    1999-01-01

    "Authorized" genetic testing may be obtained from employees with coercion or threat. Unless protections are put in place, employers and health insurers will use genetic screening to hire and fire. (JOW)

  1. Does genetic diversity predict health in humans?

    Directory of Open Access Journals (Sweden)

    Hanne C Lie

    Full Text Available Genetic diversity, especially at genes important for immune functioning within the Major Histocompatibility Complex (MHC, has been associated with fitness-related traits, including disease resistance, in many species. Recently, genetic diversity has been associated with mate preferences in humans. Here we asked whether these preferences are adaptive in terms of obtaining healthier mates. We investigated whether genetic diversity (heterozygosity and standardized mean d(2 at MHC and nonMHC microsatellite loci, predicted health in 153 individuals. Individuals with greater allelic diversity (d(2 at nonMHC loci and at one MHC locus, linked to HLA-DRB1, reported fewer symptoms over a four-month period than individuals with lower d(2. In contrast, there were no associations between MHC or nonMHC heterozygosity and health. NonMHC-d(2 has previously been found to predict male preferences for female faces. Thus, the current findings suggest that nonMHC diversity may play a role in both natural and sexual selection acting on human populations.

  2. Genetic & epigenetic approach to human obesity

    Directory of Open Access Journals (Sweden)

    K Rajender Rao

    2014-01-01

    Full Text Available Obesity is an important clinical and public health challenge, epitomized by excess adipose tissue accumulation resulting from an imbalance in energy intake and energy expenditure. It is a forerunner for a variety of other diseases such as type-2-diabetes (T2D, cardiovascular diseases, some types of cancer, stroke, hyperlipidaemia and can be fatal leading to premature death. Obesity is highly heritable and arises from the interplay of multiple genes and environmental factors. Recent advancements in Genome-wide association studies (GWAS have shown important steps towards identifying genetic risks and identification of genetic markers for lifestyle diseases, especially for a metabolic disorder like obesity. According to the 12 th u0 pdate of Human Obesity Gene Map there are 253 quantity trait loci (QTL for obesity related phenotypes from 61 genome wide scan studies. Contribution of genetic propensity of individual ethnic and racial variations in obesity is an active area of research. Further, understanding its complexity as to how these variations could influence ones susceptibility to become or remain obese will lead us to a greater understanding of how obesity occurs and hopefully, how to prevent and treat this condition. In this review, various strategies adapted for such an analysis based on the recent advances in genome wide and functional variations in human obesity are discussed.

  3. Genetic & epigenetic approach to human obesity.

    Science.gov (United States)

    Rao, K Rajender; Lal, Nirupama; Giridharan, N V

    2014-11-01

    Obesity is an important clinical and public health challenge, epitomized by excess adipose tissue accumulation resulting from an imbalance in energy intake and energy expenditure. It is a forerunner for a variety of other diseases such as type-2-diabetes (T2D), cardiovascular diseases, some types of cancer, stroke, hyperlipidaemia and can be fatal leading to premature death. Obesity is highly heritable and arises from the interplay of multiple genes and environmental factors. Recent advancements in Genome-wide association studies (GWAS) have shown important steps towards identifying genetic risks and identification of genetic markers for lifestyle diseases, especially for a metabolic disorder like obesity. According to the 12th Update of Human Obesity Gene Map there are 253 quantity trait loci (QTL) for obesity related phenotypes from 61 genome wide scan studies. Contribution of genetic propensity of individual ethnic and racial variations in obesity is an active area of research. Further, understanding its complexity as to how these variations could influence ones susceptibility to become or remain obese will lead us to a greater understanding of how obesity occurs and hopefully, how to prevent and treat this condition. In this review, various strategies adapted for such an analysis based on the recent advances in genome wide and functional variations in human obesity are discussed.

  4. Genetic & epigenetic approach to human obesity

    Science.gov (United States)

    Rao, K. Rajender; Lal, Nirupama; Giridharan, N.V.

    2014-01-01

    Obesity is an important clinical and public health challenge, epitomized by excess adipose tissue accumulation resulting from an imbalance in energy intake and energy expenditure. It is a forerunner for a variety of other diseases such as type-2-diabetes (T2D), cardiovascular diseases, some types of cancer, stroke, hyperlipidaemia and can be fatal leading to premature death. Obesity is highly heritable and arises from the interplay of multiple genes and environmental factors. Recent advancements in Genome-wide association studies (GWAS) have shown important steps towards identifying genetic risks and identification of genetic markers for lifestyle diseases, especially for a metabolic disorder like obesity. According to the 12th Update of Human Obesity Gene Map there are 253 quantity trait loci (QTL) for obesity related phenotypes from 61 genome wide scan studies. Contribution of genetic propensity of individual ethnic and racial variations in obesity is an active area of research. Further, understanding its complexity as to how these variations could influence ones susceptibility to become or remain obese will lead us to a greater understanding of how obesity occurs and hopefully, how to prevent and treat this condition. In this review, various strategies adapted for such an analysis based on the recent advances in genome wide and functional variations in human obesity are discussed. PMID:25579139

  5. Deaf Adults' Reasons for Genetic Testing Depend on Cultural Affiliation: Results from a Prospective, Longitudinal Genetic Counseling and Testing Study

    Science.gov (United States)

    Boudreault, Patrick; Baldwin, Erin E.; Fox, Michelle; Dutton, Loriel; Tullis, LeeElle; Linden, Joyce; Kobayashi, Yoko; Zhou, Jin; Sinsheimer, Janet S.; Sininger, Yvonne; Grody, Wayne W.; Palmer, Christina G. S.

    2010-01-01

    This article examines the relationship between cultural affiliation and deaf adults' motivations for genetic testing for deafness in the first prospective, longitudinal study to examine the impact of genetic counseling and genetic testing on deaf adults and the deaf community. Participants (n = 256), classified as affiliating with hearing, Deaf,…

  6. Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic)

    NARCIS (Netherlands)

    Claustres, Mireille; Kozich, Viktor; Dequeker, Els; Fowler, Brain; Hehir-Kwa, Jayne Y.; Miller, Konstantin; Oosterwijk, Cor; Peterlin, Borut; van Ravenswaaij-Arts, Conny; Zimmermann, Uwe; Zuffardi, Orsetta; Hastings, Ros J.; Barton, David E.

    2014-01-01

    Genetic test results can have considerable importance for patients, their parents and more remote family members. Clinical therapy and surveillance, reproductive decisions and genetic diagnostics in family members, including prenatal diagnosis, are based on these results. The genetic test report sho

  7. Genetic tests to identify risk for breast cancer.

    Science.gov (United States)

    Lynch, Julie A; Venne, Vickie; Berse, Brygida

    2015-05-01

    To describe the currently available genetic tests that identify hereditary risk for breast cancer. Systematic review of scientific literature, clinical practice guidelines, and data published by test manufacturers. Changes in gene patent laws and advances in sequencing technologies have resulted in rapid expansion of genetic testing. While BRCA1/2 are the most recognized genes linked to breast cancer, several laboratories now offer multi-gene panels to detect many risk-related mutations. Genetic testing will be increasingly important in the prevention, diagnosis, and treatment of breast cancer. Oncology and advanced practice nurses must understand risk factors, significance of various genetic tests, and patient counseling. Published by Elsevier Inc.

  8. Role of Genetic Testing in Inherited Cardiovascular Disease: A Review.

    Science.gov (United States)

    Cirino, Allison L; Harris, Stephanie; Lakdawala, Neal K; Michels, Michelle; Olivotto, Iacopo; Day, Sharlene M; Abrams, Dominic J; Charron, Philippe; Caleshu, Colleen; Semsarian, Christopher; Ingles, Jodie; Rakowski, Harry; Judge, Daniel P; Ho, Carolyn Y

    2017-08-09

    Genetic testing is a valuable tool for managing inherited cardiovascular disease in patients and families, including hypertrophic, dilated, and arrhythmogenic cardiomyopathies and inherited arrhythmias. By identifying the molecular etiology of disease, genetic testing can improve diagnostic accuracy and refine family management. However, unique features associated with genetic testing affect the interpretation and application of results and differentiate it from traditional laboratory-based diagnostics. Clinicians and patients must have accurate and realistic expectations about the yield of genetic testing and its role in management. Familiarity with the rationale, implications, benefits, and limitations of genetic testing is essential to achieve the best possible outcomes. Successfully incorporating genetic testing into clinical practice requires (1) recognizing when inherited cardiovascular disease may be present, (2) identifying appropriate individuals in the family for testing, (3) selecting the appropriate genetic test, (4) understanding the complexities of result interpretation, and (5) effectively communicating the results and implications to the patient and family. Obtaining a detailed family history is critical to identify families who will benefit from genetic testing, determine the best strategy, and interpret results. Instead of focusing on an individual patient, genetic testing requires consideration of the family as a unit. Consolidation of care in centers with a high level of expertise is recommended. Clinicians without expertise in genetic testing will benefit from establishing referral or consultative networks with experienced clinicans in specialized multidisciplinary clinics. Genetic testing provides a foundation for transitioning to more precise and individualized management. By distinguishing phenotypic subgroups, identifying disease mechanisms, and focusing family care, gene-based diagnosis can improve management. Successful integration of

  9. Deaf Adults’ Reasons for Genetic Testing Depend on Cultural Affiliation: Results From a Prospective, Longitudinal Genetic Counseling and Testing Study

    OpenAIRE

    Boudreault, Patrick; Baldwin, Erin E.; Fox, Michelle; Dutton, Loriel; Tullis, LeeElle; Linden, Joyce; Kobayashi, Yoko; Zhou, Jin; Sinsheimer, Janet S.; Sininger, Yvonne; Grody, Wayne W.; Palmer, Christina G. S.

    2010-01-01

    This article examines the relationship between cultural affiliation and deaf adults’ motivations for genetic testing for deafness in the first prospective, longitudinal study to examine the impact of genetic counseling and genetic testing on deaf adults and the deaf community. Participants (n = 256), classified as affiliating with hearing, Deaf, or both communities, rated interest in testing for 21 reasons covering 5 life domains. Findings suggest strong interest in testing to learn why they ...

  10. Genetically engineered mouse models and human osteosarcoma

    Directory of Open Access Journals (Sweden)

    Ng Alvin JM

    2012-10-01

    Full Text Available Abstract Osteosarcoma is the most common form of bone cancer. Pivotal insight into the genes involved in human osteosarcoma has been provided by the study of rare familial cancer predisposition syndromes. Three kindreds stand out as predisposing to the development of osteosarcoma: Li-Fraumeni syndrome, familial retinoblastoma and RecQ helicase disorders, which include Rothmund-Thomson Syndrome in particular. These disorders have highlighted the important roles of P53 and RB respectively, in the development of osteosarcoma. The association of OS with RECQL4 mutations is apparent but the relevance of this to OS is uncertain as mutations in RECQL4 are not found in sporadic OS. Application of the knowledge or mutations of P53 and RB in familial and sporadic OS has enabled the development of tractable, highly penetrant murine models of OS. These models share many of the cardinal features associated with human osteosarcoma including, importantly, a high incidence of spontaneous metastasis. The recent development of these models has been a significant advance for efforts to improve our understanding of the genetics of human OS and, more critically, to provide a high-throughput genetically modifiable platform for preclinical evaluation of new therapeutics.

  11. Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and molecular genetic).

    Science.gov (United States)

    Claustres, Mireille; Kožich, Viktor; Dequeker, Els; Fowler, Brain; Hehir-Kwa, Jayne Y; Miller, Konstantin; Oosterwijk, Cor; Peterlin, Borut; van Ravenswaaij-Arts, Conny; Zimmermann, Uwe; Zuffardi, Orsetta; Hastings, Ros J; Barton, David E

    2014-02-01

    Genetic test results can have considerable importance for patients, their parents and more remote family members. Clinical therapy and surveillance, reproductive decisions and genetic diagnostics in family members, including prenatal diagnosis, are based on these results. The genetic test report should therefore provide a clear, concise, accurate, fully interpretative and authoritative answer to the clinical question. The need for harmonizing reporting practice of genetic tests has been recognised by the External Quality Assessment (EQA), providers and laboratories. The ESHG Genetic Services Quality Committee has produced reporting guidelines for the genetic disciplines (biochemical, cytogenetic and molecular genetic). These guidelines give assistance on report content, including the interpretation of results. Selected examples of genetic test reports for all three disciplines are provided in an annexe.

  12. Current problems regarding abortion, prenatal genetic testing and managing pregnancy

    Directory of Open Access Journals (Sweden)

    Klajn-Tatić Vesna

    2011-01-01

    Full Text Available Current ethical and legal issues with regard to abortion, prenatal genetic testing and managing pregnancy are discussed in this paper. These problems are considered from the legal theory point of view as well as from the standpoint of the Serbian Law, the European Convention for the Protection of Human Rights and Fundamental Freedoms, European Court of Human Rights, legal regulations of several EU countries, the USA, Japan, and their judicial practice. First, the pregnancy termination standards that exist in Serbia are introduced. Then the following issues are explained separately: the pro life and pro choice approaches to abortion; abortion according to the legal approach as a way of survival; the moral and legal status of the fetus; prenatal genetic testing, and finally matters regarding managing pregnancy today. Moral and legal principals of autonomy, namely freedom of choice of the individual, privacy and self-determination give women the right to terminate unwanted pregnancies. In addition, the basic question is whether the right of the woman to abortion clashes with the rights of others. Firstly, with the right of the "fetus to life". Secondly, with the right of the state to intervene in the interest of protecting "the life of the fetus". Third, with the rights of the woman’s partner. The fetus has the moral right to life, but less in relation to the same right of the woman as well as in relation to her right to control her life and her physical and moral integrity. On the other hand, the value of the life of the fetus increases morally and legally with the maturity of gestation; from the third trimester, the interest of the state prevails in the protection of the "life of the fetus" except when the life or health of the pregnant woman are at risk. As regards the rights of the woman’s partner, namely the husband’s opinion, there is no legal significance. The law does not request his participation in the decision on abortion because

  13. Commercial Genetic Testing and Its Governance in Chinese Society

    Science.gov (United States)

    Sui, Suli; Sleeboom-Faulkner, Margaret

    2015-01-01

    This paper provides an empirical account of commercial genetic testing in China. Commercial predictive genetic testing has emerged and is developing rapidly in China, but there is no strict and effective governance. This raises a number of serious social and ethical issues as a consequence of the enormous potential market for such tests. The paper…

  14. Commercial Genetic Testing and Its Governance in Chinese Society

    Science.gov (United States)

    Sui, Suli; Sleeboom-Faulkner, Margaret

    2015-01-01

    This paper provides an empirical account of commercial genetic testing in China. Commercial predictive genetic testing has emerged and is developing rapidly in China, but there is no strict and effective governance. This raises a number of serious social and ethical issues as a consequence of the enormous potential market for such tests. The paper…

  15. Social and Psychological Aspects of Applied Human Genetics: A Bibliography.

    Science.gov (United States)

    Sorenson, James R., Comp.

    This bibliography is a selective compilation of books and articles which focus on the psychological and social issues of applied human genetics. It is centered in particular around problems, issues, and discussions of genetic counseling, the primary mechanism by which human genetics has been applied to date. It includes those entries which, on the…

  16. Genetic Testing and Psychology: New Roles, New Responsibilities

    Science.gov (United States)

    Patenaude, Andrea Farkas; Guttmacher, Alan E.; Collins, Francis S.

    2002-01-01

    Advances in genetics and genetic testing promise to catalyze a fundamental change in the practice of medicine. Psychologists have much to offer as psychotherapists, researchers, educators, and policymakers to a society heavily influenced by the genetic revolution. To make the most of new opportunities available to mental health professionals in…

  17. [Current situation and ethical-social issues of pediatric genetic testing].

    Science.gov (United States)

    Yamamoto, Toshiyuki

    2015-11-01

    Many pediatric neurological disorders are caused by genetic factors. Therefore, genetic testing is often required for final diagnosis, prognosis prediction, and genetic counseling. Prior to performing genetic research, pediatric neurologists must obtain the approval of the Institutional Review Board. Moreover, according to the "Ethical Guidelines for Human Genome/Gene Analysis Research," anonymity of patient samples must be maintained. Although the guideline for genetic research are not generally applied for genetic testing in routine bedside medical care, the guideline adopted by the Japan Medical Association must be followed, because genetic information from a personal genome is patient-specific. Pediatric neurologists must also be aware of the policies adopted to obtain informed consent from children and patients who are incapable of making their own decisions. They should develop a strategy for collaboration with clinical geneticists and for making a prenatal diagnosis.

  18. Inconsistencies in pedigree symbols in human genetics publications: A need for standardization

    Energy Technology Data Exchange (ETDEWEB)

    Steinhaus, K.A.; Bennett, R.L.; Resta, R.G. [Univ. of California at Irvine, Orange, CA (United States)] [and others

    1995-04-10

    To determine consistency in usage of pedigree symbols by genetics professionals, we reviewed pedigrees printed in 10 human genetic and medical journals and 24 medical genetics textbooks. We found no consistent symbolization for common situations such as pregnancy, spontaneous abortion, death, or test results. Inconsistency in pedigree design can create difficulties in the interpretation of family studies and detract from the pedigree`s basic strength of simple and accurate communication of medical information. We recommend the development of standard pedigree symbols, and their incorporation into genetic publications, professional genetics training programs, pedigree software programs, and genetic board examinations. 5 refs., 11 figs., 2 tabs.

  19. Media coverage of direct-to-consumer genetic testing.

    Science.gov (United States)

    Lynch, John; Parrott, Ashley; Hopkin, Robert J; Myers, Melanie

    2011-10-01

    Media coverage of Direct-to-Consumer (DTC) genetic testing shapes public perception of such testing. The purpose of this study was to determine and assess the themes presented by U.S. news media regarding DTC genetic testing. We performed a Lexis-Nexis search with the keywords "Direct-to-Consumer" and "genetic test" for news stories published from 2006-2009. The sample was coded on themes of genetic determinism, privacy, discrimination, validity, regulation, the Genetic Information Nondiscrimination Act (GINA), utility, and cost. Ninety-two news stories were included. Stories displayed moderate genetic determinism and were neutral about validity and utility. Stories indicated that insurance and employers were the most likely sources of discrimination, yet identified the physicians and DTC companies as groups most likely to violate privacy. Stories claimed lack of regulation would harm consumers, but most post-GINA stories did not discuss the law. The costs of tests were frequently included. The results of this study show a broad range of views toward DTC genetic testing and its potential impacts. The genetics community should be aware that the public has been exposed to multiple views of DTC genetic testing when discussing these tests.

  20. Large, Prospective Analysis of the Reasons Patients Do Not Pursue BRCA Genetic Testing Following Genetic Counseling.

    Science.gov (United States)

    Hayden, Sommer; Mange, Sarah; Duquette, Debra; Petrucelli, Nancie; Raymond, Victoria M

    2017-01-16

    Genetic counseling (GC) and genetic testing (GT) identifies high-risk individuals who benefit from enhanced medical management. Not all individuals undergo GT following GC and understanding the reasons why can impact clinical efficiency, reduce GT costs through appropriate identification of high-risk individuals, and demonstrate the value of pre-GT GC. A collaborative project sponsored by the Michigan Department of Health and Human Services prospectively collects anonymous data on BRCA-related GC visits performed by providers in Michigan, including demographics, patient/family cancer history, GT results, and reasons for declining GT. From 2008 to 2012, 10,726 patients underwent GC; 3476 (32.4%) did not pursue GT. Primary reasons included: not the best test candidate (28.1%), not clinically indicated (23.3%), and insurance/out of pocket cost concerns (13.6%). Patient disinterest was the primary reason for declining in 17.1%. Insurance/out of pocket cost concerns were the primary reason for not testing in 13.4% of untested individuals with private insurance. Among untested individuals with breast and/or ovarian cancer, 22.5% reported insurance/out of pocket cost concerns as the primary reason for not testing and 6.6% failed to meet Medicare criteria. In a five-year time period, nearly one-third of patients who underwent BRCA GC did not pursue GT. GT was not indicated in almost half of patients. Insurance/out of pocket cost concerns continue to be barriers.

  1. Obesity: from animal models to human genetics to practical applications.

    Science.gov (United States)

    Warden, Craig H; Fisler, Janis S

    2010-01-01

    Although many animal models are used in genetic studies, the mouse is most common. Analysis of single-gene mutations, linkage analysis in crossbred strains, and gene targeting are the primary techniques used to associate obesity phenotypes with specific genes or alleles. The orthologous human gene can then be tested, either in linkage studies in families or in genome-wide association studies (GWAS), for effect on the phenotype. Frequent lack of concordance between mouse and human obesity genes may be due to the difference in phenotypes measured in humans (body mass index) versus mouse (fat mass or % body fat), lack of intermediate phenotypes, and the fact that identified genes account for only a small percentage of the heritability of common obesity, suggesting that many genes remain unknown. New technology allows analysis of individual genomes at a reasonable cost, making large-scale obesity genome projects in humans feasible. Such projects could identify common allelic variants that contribute to obesity and to variable individual response to obesity therapy. Currently, family history may be more predictive than genetics for risk of obesity, but individual testing could ultimately guide therapy and, in the aggregate, guide public health policy. The primary limitation to development of genotype-based diets is that successful randomized diet trials of widely ranging macronutrient content, adequately powered for finding rare Mendelian mutations, have not been performed. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Implementation and utilization of genetic testing in personalized medicine

    Directory of Open Access Journals (Sweden)

    Abul-Husn NS

    2014-08-01

    Full Text Available Noura S Abul-Husn,1,* Aniwaa Owusu Obeng,2,3,* Saskia C Sanderson,1 Omri Gottesman,2 Stuart A Scott11Department of Genetics and Genomic Sciences, 2The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 3Department of Pharmacy, Mount Sinai Hospital, New York, NY, USA*These authors contributed equally to this manuscriptAbstract: Clinical genetic testing began over 30 years ago with the availability of mutation detection for sickle cell disease diagnosis. Since then, the field has dramatically transformed to include gene sequencing, high-throughput targeted genotyping, prenatal mutation detection, preimplantation genetic diagnosis, population-based carrier screening, and now genome-wide analyses using microarrays and next-generation sequencing. Despite these significant advances in molecular technologies and testing capabilities, clinical genetics laboratories historically have been centered on mutation detection for Mendelian disorders. However, the ongoing identification of deoxyribonucleic acid (DNA sequence variants associated with common diseases prompted the availability of testing for personal disease risk estimation, and created commercial opportunities for direct-to-consumer genetic testing companies that assay these variants. This germline genetic risk, in conjunction with other clinical, family, and demographic variables, are the key components of the personalized medicine paradigm, which aims to apply personal genomic and other relevant data into a patient's clinical assessment to more precisely guide medical management. However, genetic testing for disease risk estimation is an ongoing topic of debate, largely due to inconsistencies in the results, concerns over clinical validity and utility, and the variable mode of delivery when returning genetic results to patients in the absence of traditional counseling. A related class of genetic testing with analogous issues of clinical utility and

  3. Perceived genetic knowledge, attitudes towards genetic testing, and the relationship between these among patients with a chronic disease

    NARCIS (Netherlands)

    Morren, M.; Rijken, M.; Baanders, A.N.; Bensing, J.

    2007-01-01

    Objective: Genetics increasingly permeate everyday medicine. When patients want to make informed decisions about genetic testing, they require genetic knowledge. This study examined the genetic knowledge and attitudes of patients with chronic diseases, and the relationship between both. In addition,

  4. Perceived genetic knowledge, attitudes toward genetic testing, and the relationship between these among patients with a chronic disease.

    NARCIS (Netherlands)

    Morren, M.; Rijken, M.; Baanders, A.N.; Bensing, J.

    2007-01-01

    OBJECTIVE: Genetics increasingly permeate everyday medicine. When patients want to make informed decisions about genetic testing, they require genetic knowledge. This study examined the genetic knowledge and attitudes of patients with chronic diseases, and the relationship between both. In addition,

  5. Perceived genetic knowledge, attitudes towards genetic testing, and the relationship between these among patients with a chronic disease

    NARCIS (Netherlands)

    Morren, M.; Rijken, M.; Baanders, A.N.; Bensing, J.

    2007-01-01

    Objective: Genetics increasingly permeate everyday medicine. When patients want to make informed decisions about genetic testing, they require genetic knowledge. This study examined the genetic knowledge and attitudes of patients with chronic diseases, and the relationship between both. In addition,

  6. Perceived genetic knowledge, attitudes toward genetic testing, and the relationship between these among patients with a chronic disease.

    NARCIS (Netherlands)

    Morren, M.; Rijken, M.; Baanders, A.N.; Bensing, J.

    2007-01-01

    OBJECTIVE: Genetics increasingly permeate everyday medicine. When patients want to make informed decisions about genetic testing, they require genetic knowledge. This study examined the genetic knowledge and attitudes of patients with chronic diseases, and the relationship between both. In addition,

  7. Genetic Modification of Preimplantation Embryos: Toward Adequate Human Research Policies

    OpenAIRE

    Dresser, Rebecca

    2004-01-01

    Citing advances in transgenic animal research and setbacks in human trials of somatic cell genetic interventions, some scientists and others want to begin planning for research involving the genetic modification of human embryos. Because this form of genetic modification could affect later-born children and their offspring, the protection of human subjects should be a priority in decisions about whether to proceed with such research. Yet because of gaps in existing federal policies, embryo mo...

  8. Worldwide genetic and cultural change in human evolution.

    Science.gov (United States)

    Creanza, Nicole; Feldman, Marcus W

    2016-12-01

    Both genetic variation and certain culturally transmitted phenotypes show geographic signatures of human demographic history. As a result of the human cultural predisposition to migrate to new areas, humans have adapted to a large number of different environments. Migration to new environments alters genetic selection pressures, and comparative genetic studies have pinpointed numerous likely targets of this selection. However, humans also exhibit many cultural adaptations to new environments, such as practices related to clothing, shelter, and food. Human culture interacts with genes and the environment in complex ways, and studying genes and culture together can deepen our understanding of human evolution.

  9. The human genetic history of South Asia.

    Science.gov (United States)

    Majumder, Partha P

    2010-02-23

    South Asia--comprising India, Pakistan, countries in the sub-Himalayan region and Myanmar--was one of the first geographical regions to have been peopled by modern humans. This region has served as a major route of dispersal to other geographical regions, including southeast Asia. The Indian society comprises tribal, ranked caste, and other populations that are largely endogamous. As a result of evolutionary antiquity and endogamy, populations of India show high genetic differentiation and extensive structuring. Linguistic differences of populations provide the best explanation of genetic differences observed in this region of the world. Within India, consistent with social history, extant populations inhabiting northern regions show closer affinities with Indo-European speaking populations of central Asia that those inhabiting southern regions. Extant southern Indian populations may have been derived from early colonizers arriving from Africa along the southern exit route. The higher-ranked caste populations, who were the torch-bearers of Hindu rituals, show closer affinities with central Asian, Indo-European speaking, populations.

  10. Ethical and Social Implications of Genetic Testing for Communication Disorders

    Science.gov (United States)

    Arnos, Kathleen S.

    2008-01-01

    Advances in genetics and genomics have quickly led to clinical applications to human health which have far-reaching consequences at the individual and societal levels. These new technologies have allowed a better understanding of the genetic factors involved in a wide range of disorders. During the past decade, incredible progress has been made in…

  11. Genetic modification of preimplantation embryos: toward adequate human research policies.

    Science.gov (United States)

    Dresser, Rebecca

    2004-01-01

    Citing advances in transgenic animal research and setbacks in human trials of somatic cell genetic interventions, some scientists and others want to begin planning for research involving the genetic modification of human embryos. Because this form of genetic modification could affect later-born children and their offspring, the protection of human subjects should be a priority in decisions about whether to proceed with such research. Yet because of gaps in existing federal policies, embryo modification proposals might not receive adequate scientific and ethical scrutiny. This article describes current policy shortcomings and recommends policy actions designed to ensure that the investigational genetic modification of embryos meets accepted standards for research on human subjects.

  12. Acceptance of genetic testing in a general population

    DEFF Research Database (Denmark)

    Aro, A R; Hakonen, A; Hietala, M

    1997-01-01

    The aim of the study was to analyze effects of age, education and gender on acceptance of genetic testing. Subjects, n = 1967 aged 15-69, were a stratified random sample of the Finnish population. One thousand, one hundred and sixty nine subjects, 530 men and 639 women, returned the questionnaire....... The majority of the respondents approved of the availability of genetic testing. Young, aged 15-24, were more favourable towards testing and more willing to undergo suggested tests, but they were also more worried than others about the misuse of test results. Men aged 45-69 with only basic education were more...... in favour of mandatory genetic testing than other respondents. Respondents with university education were more critical towards genetic testing and expressed their worry about eugenics more often than other education groups. In conclusion, there are age, education and gender related differences...

  13. Ethics, policy, and educational issues in genetic testing.

    Science.gov (United States)

    Williams, Janet K; Skirton, Heather; Masny, Agnes

    2006-01-01

    Analyze ethics, public policy, and education issues that arise in the United States (US) and the United Kingdom (UK) when genomic information acquired as a result of genetic testing is introduced into healthcare services. Priorities in the Ethical, Legal, and Social Issues Research Program include privacy, integration of genetic services into clinical health care, and educational preparation of the nursing workforce. These constructs are used to examine health policies in the US and UK, and professional interactions of individuals and families with healthcare providers. Individual, family, and societal goals may conflict with current healthcare practices and policies when genetic testing is done. Current health policies do not fully address these concerns. Unresolved issues include protection of privacy of individuals while considering genetic information needs of family members, determination of appropriate monitoring of genetic tests, addressing genetic healthcare discrepancies, and assuring appropriate nursing workforce preparation. Introduction of genetic testing into health care requires that providers are knowledgeable regarding ethical, policy, and practice issues in order to minimize risk for harm, protect the rights of individuals and families, and consider societal context in the management of genetic test results. Understanding of these issues is a component of genetic nursing competency that must be addressed at all levels of nursing education.

  14. How Can Consumers Be Sure a Genetic Test Is Valid and Useful?

    Science.gov (United States)

    ... a genetic test is valid and useful? How can consumers be sure a genetic test is valid ... particular gene or genetic change. In other words, can the test accurately detect whether a specific genetic ...

  15. Public attitudes towards genetic testing revisited: comparing opinions between 2002 and 2010

    Science.gov (United States)

    Henneman, Lidewij; Vermeulen, Eric; van El, Carla G; Claassen, Liesbeth; Timmermans, Danielle R M; Cornel, Martina C

    2013-01-01

    Ten years after the Human Genome Project, medicine is still waiting for many of the promised benefits, and experts have tempered their high expectations. Public opinion on genetic testing has generally been favourable but is this still the case? The aim of this study is to compare public experiences, beliefs and expectations concerning genetic testing over the years (2002 vs 2010). A cross-sectional questionnaire survey was conducted using the Dutch Health Care Consumer Panel in 2002 and 2010. Responses to questions in identical wording were compared. In 2002 and 2010, 817 (63%) and 978 (70%) members responded, respectively. Awareness and reported use of genetic tests remained stable over time. In 2010, more respondents expected genetic testing to become more widely applied, believed that knowledge about the genetic background of disease helps people live longer, and that testing should be promoted more intensively. In 2010, they were also more interested in their own genetic make-up. On the one hand, the concern that a dichotomy would emerge between people with ‘good genes' and ‘bad genes' was higher. On the other hand, respondents thought that insurance companies would be less likely to demand a genetic test in order to calculate health insurance premiums. In conclusion, the results suggest that in 8 years, expectations of benefits and potential use of genetic testing have been raised among the public, resulting in more positive opinions. Worries on inequity remain, although worries about premium differentiation by insurance companies have decreased. PMID:23249955

  16. Bio science: genetic genealogy testing and the pursuit of African ancestry.

    Science.gov (United States)

    Nelson, Alondra

    2008-10-01

    This paper considers the extent to which the geneticization of 'race' and ethnicity is the prevailing outcome of genetic testing for genealogical purposes. The decoding of the human genome precipitated a change of paradigms in genetics research, from an emphasis on genetic similarity to a focus on molecular-level differences among individuals and groups. This shift from lumping to splitting spurred ongoing disagreements among scholars about the significance of 'race' and ethnicity in the genetics era. I characterize these divergent perspectives as 'pragmatism' and 'naturalism'. Drawing upon ethnographic fieldwork and interviews, I argue that neither position fully accounts for how understandings of 'race' and ethnicity are being transformed with genetic genealogy testing. While there is some acquiescence to genetic thinking about ancestry, and by implication, 'race', among African-American and black British consumers of genetic genealogy testing, test-takers also adjudicate between sources of genealogical information and from these construct meaningful biographical narratives. Consumers engage in highly situated 'objective' and 'affiliative' self-fashioning, interpreting genetic test results in the context of their 'genealogical aspirations'. I conclude that issues of site, scale, and subjectification must be attended to if scholars are to understand whether and to what extent social identities are being transformed by recent developments in genetic science.

  17. Patient accounts of diagnostic testing for familial hypercholesterolaemia: comparing responses to genetic and non-genetic testing methods

    Directory of Open Access Journals (Sweden)

    Hollands Gareth J

    2012-09-01

    Full Text Available Abstract Background Continuing developments in genetic testing technology together with research revealing gene-disease associations have brought closer the potential for genetic screening of populations. A major concern, as with any screening programme, is the response of the patient to the findings of screening, whether the outcome is positive or negative. Such concern is heightened for genetic testing, which it is feared may elicit stronger reactions than non-genetic testing. Methods This paper draws on thematic analysis of 113 semi-structured interviews with 39 patients being tested for familial hypercholesterolaemia (FH, an inherited predisposition to early-onset heart disease. It examines the impact of disease risk assessments based on both genetic and non-genetic information, or solely non-genetic information. Results The impact of diagnostic testing did not seem to vary according to whether or not genetic information was used. More generally, being given a positive or negative diagnosis of FH had minimal discernible impact on people's lives as they maintained the continuity of their beliefs and behaviour. Conclusions The results suggest that concerns about the use of genetic testing in this context are unfounded, a conclusion that echoes findings from studies in this and other health contexts.

  18. Genetic diversity of human RNase 8

    Directory of Open Access Journals (Sweden)

    Chan Calvin C

    2012-01-01

    Full Text Available Abstract Background Ribonuclease 8 is a member of the RNase A family of secretory ribonucleases; orthologs of this gene have been found only in primate genomes. RNase 8 is a divergent paralog of RNase 7, which is lysine-enriched, highly conserved, has prominent antimicrobial activity, and is expressed in both normal and diseased skin; in contrast, the physiologic function of RNase 8 remains uncertain. Here, we examine the genetic diversity of human RNase 8, a subject of significant interest given the existence of functional pseudogenes (coding sequences that are otherwise intact but with mutations in elements crucial for ribonucleolytic activity in non-human primate genomes. Results RNase 8 expression was detected in adult human lung, spleen and testis tissue by quantitative reverse-transcription PCR. Only two single-nucleotide polymorphisms and four unique alleles were identified within the RNase 8 coding sequence; nucleotide sequence diversity (π = 0.00122 ± 0.00009 per site was unremarkable for a human nuclear gene. We isolated transcripts encoding RNase 8 via rapid amplification of cDNA ends (RACE and RT-PCR which included a distal potential translational start site followed by sequence encoding an additional 30 amino acids that are conserved in the genomes of several higher primates. The distal translational start site is functional and promotes RNase 8 synthesis in transfected COS-7 cells. Conclusions These results suggest that RNase 8 may diverge considerably from typical RNase A family ribonucleases and may likewise exhibit unique function. This finding prompts a reconsideration of what we have previously termed functional pseudogenes, as RNase 8 may be responding to constraints that promote significant functional divergence from the canonical structure and enzymatic activity characteristic of the RNase A family.

  19. Clinical genetic testing of periodic fever syndromes.

    Science.gov (United States)

    Marcuzzi, Annalisa; Piscianz, Elisa; Kleiner, Giulio; Tommasini, Alberto; Severini, Giovanni Maria; Monasta, Lorenzo; Crovella, Sergio

    2013-01-01

    Periodic fever syndromes (PFSs) are a wide group of autoinflammatory diseases. Due to some clinical overlap between different PFSs, differential diagnosis can be a difficult challenge. Nowadays, there are no universally agreed recommendations for most PFSs, and near half of patients may remain without a genetic diagnosis even after performing multiple-gene analyses. Molecular analysis of periodic fevers' causative genes can improve patient quality of life by providing early and accurate diagnosis and allowing the administration of appropriate treatment. In this paper we focus our discussion on effective usefulness of genetic diagnosis of PFSs. The aim of this paper is to establish how much can the diagnostic system improve, in order to increase the success of PFS diagnosis. The mayor expectation in the near future will be addressed to the so-called next generation sequencing approach. Although the application of bioinformatics to high-throughput genetic analysis could allow the identification of complex genotypes, the complexity of this definition will hardly result in a clear contribution for the physician. In our opinion, however, to obtain the best from this new development a rule should always be kept well in mind: use genetics only to answer specific clinical questions.

  20. Clinical Genetic Testing of Periodic Fever Syndromes

    Directory of Open Access Journals (Sweden)

    Annalisa Marcuzzi

    2013-01-01

    Full Text Available Periodic fever syndromes (PFSs are a wide group of autoinflammatory diseases. Due to some clinical overlap between different PFSs, differential diagnosis can be a difficult challenge. Nowadays, there are no universally agreed recommendations for most PFSs, and near half of patients may remain without a genetic diagnosis even after performing multiple-gene analyses. Molecular analysis of periodic fevers’ causative genes can improve patient quality of life by providing early and accurate diagnosis and allowing the administration of appropriate treatment. In this paper we focus our discussion on effective usefulness of genetic diagnosis of PFSs. The aim of this paper is to establish how much can the diagnostic system improve, in order to increase the success of PFS diagnosis. The mayor expectation in the near future will be addressed to the so-called next generation sequencing approach. Although the application of bioinformatics to high-throughput genetic analysis could allow the identification of complex genotypes, the complexity of this definition will hardly result in a clear contribution for the physician. In our opinion, however, to obtain the best from this new development a rule should always be kept well in mind: use genetics only to answer specific clinical questions.

  1. Genetic Testing for Huntington's Disease in Parkinsonism.

    Science.gov (United States)

    Rahman, M S; Nagai, Y; Popiel, H A; Fujikake, N; Okamoto, Y; Ahmed, M U; Islam, M A; Islam, M T; Ahmed, S; Rahman, K M; Uddin, M J; Dey, S K; Ahmed, Q; Hossain, M A; Jahan, N; Toda, T

    2010-10-01

    The study was conducted to find out Huntington's disease (HD) by genetic analysis from those presenting with parkinsonism in the Neurology department of Mymensingh Medical College & Hospital. A sample of about 5ml blood was collected by veni puncture in EDTA tube with informed consent from 9 patients & 7 healthy individuals after approval of the institutional ethics committee for genetic study. The neurological disorder along with a complete history and physical findings were recorded in a prescribed questionnaire by the neurologists of Mymensingh Medical College & Hospital. Extraction of genomic DNA from the venous blood using FlexiGene DNA kit (Qiagen, Japan) was performed in Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh. The extracted DNA was stored and accumulated and then these DNA were sent to Division of Clinical Genetics, Department of Medical Genetics, Osaka University Medical School, Suita, Osaka 565 0871, Japan for PCR and further analysis. PCR amplification of the CAG repeat in the 1T15 gene was performed with primers HD1 and HD3. HD PCR products revealed the DNA product of about 110bp (no. of CAG repeats=21) to 150bp (no. of CAG repeats=34) in both healthy individual and suspected PD patient DNA.

  2. Genetic Testing for Autism Spectrum Disorders

    Science.gov (United States)

    Bauer, Sarah C.; Msall, Michael E.

    2011-01-01

    Children with autism spectrum disorders (ASD) have unique developmental and behavioral phenotypes, and they have specific challenges with communication, social skills, and repetitive behaviors. At this time, no single etiology for ASD has been identified. However, evidence from family studies and linkage analyses suggests that genetic factors play…

  3. Silver-Russell syndrome: genetic basis and molecular genetic testing

    Directory of Open Access Journals (Sweden)

    Binder Gerhard

    2010-06-01

    Full Text Available Abstract Imprinted genes with a parent-of-origin specific expression are involved in various aspects of growth that are rooted in the prenatal period. Therefore it is predictable that many of the so far known congenital imprinting disorders (IDs are clinically characterised by growth disturbances. A noteable imprinting disorder is Silver-Russell syndrome (SRS, a congenital disease characterised by intrauterine and postnatal growth retardation, relative macrocephaly, a typical triangular face, asymmetry and further less characteristic features. However, the clinical spectrum is broad and the clinical diagnosis often subjective. Genetic and epigenetic disturbances can meanwhile be detected in approximately 50% of patients with typical SRS features. Nearly one tenth of patients carry a maternal uniparental disomy of chromosome 7 (UPD(7mat, more than 38% show a hypomethylation in the imprinting control region 1 in 11p15. More than 1% of patients show (submicroscopic chromosomal aberrations. Interestingly, in ~7% of 11p15 hypomethylation carriers, demethylation of other imprinted loci can be detected. Clinically, these patients do not differ from those with isolated 11p15 hypomethylation whereas the UPD(7mat patients generally show a milder phenotype. However, an unambiguous (epigenotype-phenotype correlation can not be delineated. We therefore suggest a diagnostic algorithm focused on the 11p15 hypomethylation, UPD(7mat and cryptic chromosomal imbalances for patients with typical SRS phenotype, but also with milder clinical signs only reminiscent for the disease.

  4. Genetic testing in the epilepsies—Report of the ILAE Genetics Commission

    Science.gov (United States)

    Ottman, Ruth; Hirose, Shinichi; Jain, Satish; Lerche, Holger; Lopes-Cendes, Iscia; Noebels, Jeffrey L.; Serratosa, José; Zara, Federico; Scheffer, Ingrid E.

    2010-01-01

    SUMMARY In this report, the International League Against Epilepsy (ILAE) Genetics Commission discusses essential issues to be considered with regard to clinical genetic testing in the epilepsies. Genetic research on the epilepsies has led to the identification of more than 20 genes with a major effect on susceptibility to idiopathic epilepsies. The most important potential clinical application of these discoveries is genetic testing: the use of genetic information, either to clarify the diagnosis in people already known or suspected to have epilepsy (diagnostic testing), or to predict onset of epilepsy in people at risk because of a family history (predictive testing). Although genetic testing has many potential benefits, it also has potential harms, and assessment of these potential benefits and harms in particular situations is complex. Moreover, many treating clinicians are unfamiliar with the types of tests available, how to access them, how to decide whether they should be offered, and what measures should be used to maximize benefit and minimize harm to their patients. Because the field is moving rapidly, with new information emerging practically every day, we present a framework for considering the clinical utility of genetic testing that can be applied to many different syndromes and clinical contexts. Given the current state of knowledge, genetic testing has high0020clinical utility in few clinical contexts, but in some of these it carries implications for daily clinical practice. PMID:20100225

  5. Genetic testing of the general population: ethical and informatic concerns.

    Science.gov (United States)

    Smith, K

    2000-01-01

    Whether we like it or not, genetic testing will almost certainly become routine medical practice within the next 25 years. Integrated circuit chips already exist that can perform 400 genetic tests simultaneously, thus greatly reducing the costs. At least one company is already working on a prototype for a handheld genetic tester that would allow primary care physicians to perform hundreds or thousands of genetic tests on a simple blood smear in just a few minutes. "Genetic report cards" for children are not very far off at all. The use of such widespread testing poses a variety of ethical dilemmas. One problem that has not been appreciated sufficiently, however, is the question of how to interpret the test results. Because of the ways the genes implicated in diseases are discovered and marketed, quantitative analysis of the tests can be extremely misleading. The difficulty is that we simply do not have sufficient information about variance in genetic and other factors in the general population to make accurate projections of a patient's risk, given the presence of a gene. This uncertainty is obscured, however, when we provide the patient with a numerical analysis of risk because it is well established that people tend to overestimate the information content of numerical projections. This situation is made far worse by the fact that we do not have enough adequately trained genetic counselors to handle the load that will soon be placed on them (and studies have shown that physicians are generally very poorly prepared to act as accurate sources of information on complex genetic issues). For these reasons, I argue that access to genetic testing should be treated the same way as access to new medical procedures and medications--namely, withheld from the general public until proven safe and effective in large-scale trials. This is certain to be an unpopular policy, but it seems the only way to prevent a great deal of abuse of genetic tests.

  6. Diagnostic Tests in Human Brucellosis

    Directory of Open Access Journals (Sweden)

    Hamid Reza Nouri

    2014-07-01

    Full Text Available Context: Brucellosis represents a zoonotic bacterial disease, caused by a gram negative bacterium called Brucella. Between the diverses pecies of this bacteria, B. melitensis, B. abortus, B. suis and B. canis consist the main causes of the disease in humans.More than half a million new cases of Brucellosis are reported annually. Consequently, brucellosis is a remarkable threat for the health of society. Because of the multiple nonspecific clinical signs of this infection, such as fever (60% of cases, night sweating, insomnia and anorexia, which are similar to other diseases, the detection of brucellosis is time-consuming and needs more scrutiny. Evidence Acquisition: Blood culture is considered the gold standard for the detection of brucellosis and the sensitivity of this test in the acute form is high. However, for the chronic type of disease, it is remarkably low, in addition, in some cases, it needs long reaction times. Nevertheless, today, some kinds of tests like automatic culturing system and serological methods, such as Rose Bengal (RB test, serum agglutination test (SAT, 2-mercaptoethanol (2ME and coombs, which are operated based on agglutination, are useful for the problems mentioned earlier. Conclusion: Although serological methods are common for the diagnosis of brucellosis, false results are observable for several methods, such as the SAT method. Tests like the enzyme-linked immunosorbent assay (ELISA, for the screening of specific traits, although confirmed, have their advantages and defects. The lateral flow assay (LFA shows promising evidence to be effective in the diagnosis of brucellosis. The polymerase chain reaction (PCR is more prevalent than other common tests, according to sensitivity and fast answering potency in case of molecular diagnosis. Also, PCR is proper for patients' follow-up during the period of treatment and crimination of relapse by this method is easier compared to others.

  7. Genetic counseling and testing for Huntington's disease: A historical review.

    Science.gov (United States)

    Nance, Martha A

    2017-01-01

    This manuscript describes the ways in which genetic counseling has evolved since John Pearson and Sheldon Reed first promoted "a genetic education" in the 1950s as a voluntary, non-directive clinical tool for permitting individual decision making. It reviews how the emergence of Huntington's disease (HD) registries and patient support organizations, genetic testing, and the discovery of a disease-causing CAG repeat expansion changed the contours of genetic counseling for families with HD. It also reviews the guidelines, outcomes, ethical and laboratory challenges, and uptake of predictive, prenatal, and preimplantation testing, and it casts a vision for how clinicians can better make use of genetic counseling to reach a broader pool of families that may be affected by HD and to ensure that genetic counseling is associated with the best levels of care. © 2016 Wiley Periodicals, Inc.

  8. Knowledge, Attitudes, and Practice Regarding Genetic Testing and Genetic Counselors in Jordan: A Population-Based Survey.

    Science.gov (United States)

    Ahram, Mamoun; Soubani, Majd; Abu Salem, Lana; Saker, Haneen; Ahmad, Muayyad

    2015-12-01

    Genetic testing has a potential in the prevention of genetic diseases, particularly in communities with high rates of consanguineous marriage. Therefore, knowledge, practice, and attitudes of the public in Jordan regarding genetic testing were investigated. Individuals (N = 3,196) were questioned about the concepts of genetic testing and genetic counselors, if they underwent any genetic tests, the type of test, the method of consenting to the test, as well as their level of satisfaction with the privacy of the genetic testing service. The likelihood of pursuing predictive genetic testing for cancer was also investigated. Although almost 70 % of respondents knew the term "genetic testing," only 18 % had undergone genetic testing, primarily the mandatory premarital test. In addition, there was a lack of general knowledge about genetic counselors. Many of those who had genetic testing (45 %) indicated they did not go through a consent process, and a lack of consent was significantly related to dissatisfaction with the privacy of the service. Approximately 55 % of respondents indicated they would potentially pursue predictive genetic testing for cancer. Going for routine health checkups was not significantly correlated with either actual or potential uptake of genetic testing, suggesting health care providers do not play an influential role in patients' testing decisions. Our results show a gap between the knowledge and uptake of genetic testing and may help to guide the design of effective strategies to initiate successful genetic counseling and testing services.

  9. Genetic testing and counselling in inherited eye disease

    DEFF Research Database (Denmark)

    Brøndum-Nielsen, Karen; Jensen, Hanne; Timshel, Susanne

    2013-01-01

    Advances in genetics have made genetic testing in patients with inherited eye disease increasingly accessible, and the initiation of clinical intervention trials makes it increasingly clinically relevant. Based on a multidisciplinary collaboration between ophthalmologists and clinical geneticists......, the extensive register of families with monogenic inherited eye diseases at the National Eye Clinic of the Kennedy Center in Denmark provides a valuable asset waiting to be exploited in the global effort to reduce blindness caused by genetic defects....

  10. Disparities in Cancer Genetic Risk Assessment and Testing.

    Science.gov (United States)

    Underhill, Meghan L; Jones, Tarsha; Habin, Karleen

    2016-07-01

    Scientific and technologic advances in genomics have revolutionized genetic counseling and testing, targeted therapy, and cancer screening and prevention. Among younger women, African American and Hispanic women have a higher rate of cancers that are associated with hereditary cancer risk, such as triple-negative breast cancer, which is linked to poorer outcomes. Therefore, genetic testing is particularly important in diverse populations. Unfortunately, all races and ethnic groups are not well represented in current genetic testing practices, leading to disparities in cancer prevention and early detection.

  11. Genetic Testing for Minors: Comparison between Italian and British Guidelines

    Directory of Open Access Journals (Sweden)

    Pamela Tozzo

    2012-01-01

    Full Text Available Genetic testing in children raises many important ethical, legal, and social issues. One of the main concerns is the ethically inappropriate genetic testing of minors. Various European countries established professional guidelines which reflect the different countries perspectives regarding the main ethical issues involved. In this paper, we analyze the Italian and the British guidelines by highlighting differences and similarities. We discuss presymptomatic, predictive, and carrier testing because we consider them to be the more ethically problematic types of genetic testing in minors. In our opinion, national guidelines should take into account the different needs in clinical practice. At the same time, in the case of genetic testing the national and supranational protection of minors could be strengthened by approving guidelines based on a common framework of principles and values. We suggest that the Oviedo Convention could represent an example of such a common framework or, at least, it could lead to articulate it.

  12. DTC genetic testing: pendulum swings and policy paradoxes.

    Science.gov (United States)

    Caulfield, T

    2012-01-01

    After decades of optimistic portrayals, there has been a shift in the way that the popular press represents genomic research. A skeptical view has become more common. The central reason for this pendulum swing away from popular support is the harsh truth that most genetic risk information just isn't that predictive. This reality has created a fascinating policy paradox. If, as many in the scientific community are now saying, genetic information is not the oracle of our future health as we were once led to believe, and if access does not, for most, cause harm, why regulate the area? Why worry about shoddy direct-to-consumer (DTC) genetic testing companies? One primary justification, and one endorsed by the recent Canadian College of Medical Geneticists (CCMG) Policy Statement on DTC Genetics Testing, is that information that is conveyed to the public about genetics via marketing and to those who access DTC tests should, at a minimum, be accurate.

  13. Clopidogrel and genetic testing: is it necessary for everyone?

    Science.gov (United States)

    Goswami, Sweta; Cheng-Lai, Angela; Nawarskas, James

    2012-01-01

    Clopidogrel is a widely used antiplatelet agent to treat and prevent a variety of atherothrombotic diseases. More than a decade after its initial Food and Drug Administration approval, studies have emerged raising concerns regarding its possible reduced efficacy in patients who have impaired conversion of clopidogrel to its active metabolite (ie, poor metabolizers). Research has implicated genetic variations in the CYP2C19 isozyme as at least partly responsible for the variable antiplatelet response seen with clopidogrel. Studies have shown that patients possessing genetic variants of the CYP2C19 isozyme may be at increased risk of adverse cardiovascular events due to impaired clopidogrel efficacy, although this has not been definitively demonstrated. The Food and Drug Administration has issued a boxed warning regarding this concern. However, specific recommendations on genetic testing and alternative therapeutic strategies are not currently available. Genetic testing is commercially available to test patients for variability in the CYP2C19 isozyme, but altering antiplatelet therapy based on the results of this testing has not been adequately studied, and it is therefore not clear how to adjust therapy based on the results of this genetic testing. In addition, there are many other factors that may contribute to the variability in antiplatelet effect seen with clopidogrel besides CYP2C19 genetic polymorphisms. Ongoing trials dealing with adjusting antiplatelet therapy based on genetic testing will hopefully provide more useful information on how to appropriately integrate pharmacogenomics with the care of patients with atherothrombotic disease.

  14. Metabolic thrift and the genetic basis of human obesity

    OpenAIRE

    O’Rourke, Robert W.

    2014-01-01

    Evolution has molded metabolic thrift within humans, a genetic heritage that, when thrust into our modern “obesogenic” environment, creates the current obesity crisis. Modern genetic analysis has identified genetic and epigenetic contributors to obesity, an understanding of which will guide the development of environmental, pharmacologic, and genetic therapeutic interventions. “The voyage was so long, food and water ran out. One hundred of the paddlers died; forty men remained. The voyager...

  15. Can Using Human Examples Facilitate Learning Mendelian Genetics Concepts?

    Science.gov (United States)

    Moore, John M.; And Others

    1992-01-01

    Reports an experimental study of 80 ninth grade biology students randomly assigned to treatment and control groups to determine whether the use of human examples in instructional strategies on Mendelian genetics increases acquisition and retention of genetics concepts. Results indicate that use of human examples in contrast to traditional examples…

  16. Genetic Testing for Huntington's Disease: How Is the Decision Taken?

    Science.gov (United States)

    Etchegary, Holly

    2006-01-01

    Research on genetic decision-making normally constructs the decision as an opportunity for choice. However, minimal research investigates how these decisions are taken and whether those who live with genetic risk perceive the test as an opportunity for choice. Employing semistructured interviews with at-risk persons, this study explored decisions about genetic testing for Huntington's disease (HD)--a fatal genetic disorder. A primary aim was to understand how test decisions were perceived. Qualitative data analysis revealed four decision pathways: (1) no decision to be made, (2) constrained decisions, (3) reevaluating the decision, and (4) indicators of HD. Contrary to the rational, "information-processor" approach to decision making, some test decisions were immediate and automatic. These stories challenged the conventional construction of a genetic-test decision as an opportunity for choice. Participant narratives suggested that this construction may be inadequate, at least for some people who live with genetic risk. Test decisions were sometimes constrained by perceived responsibility to other family members, notably offspring. For others at risk, the test decision was a dynamic process of critical thought and evaluation. Finally, behaviors that could be symptoms of HD were the catalyst for testing.

  17. Behavior genetic modeling of human fertility

    DEFF Research Database (Denmark)

    Rodgers, J L; Kohler, H P; Kyvik, K O;

    2001-01-01

    Try) and number of children (NumCh). Behavior genetic models were fitted using structural equation modeling and DF analysis. A consistent medium-level additive genetic influence was found for NumCh, equal across genders; a stronger genetic influence was identified for FirstTry, greater for females than for males...

  18. Genetic Testing Accounts of Autonomy, Responsibility and Blame

    DEFF Research Database (Denmark)

    Arribas-Ayllon, M.; Sarangi, Srikant; Clarke, Angus

    Advances in molecular genetics have led to the increasing availability of genetic testing for a variety of inherited disorders. While this new knowledge presents many obvious health benefits to prospective individuals and their families it also raises complex ethical and moral dilemmas for families...

  19. Raising Awareness of Pre-Symptomatic Genetic Testing

    Science.gov (United States)

    Boerwinkel, Dirk Jan; Knippels, Marie-Christine; Waarlo, Arend Jan

    2011-01-01

    Presymptomatic genetic testing generates socioscientific issues in which decision making is complicated by several complexity factors. These factors include weighing of advantages and disadvantages, different interests of stakeholders, uncertainty of genetic information and conflicting values. Education preparing students for future decision…

  20. Nonprofit Groups Offer Genetic Testing for Jewish Students

    Science.gov (United States)

    Supiano, Beckie

    2008-01-01

    This article describes how nonprofit organizations like Hillel are offering free genetic testing for Jewish college students. A growing number of colleges, including Pittsburgh, Brandeis University, and Columbia University are offering students free or reduced-cost screenings for diseases common to Jewish population. Genetic diseases common to…

  1. Genetic research and testing in sport and exercise science: a review of the issues.

    Science.gov (United States)

    Wackerhage, Henning; Miah, Andy; Harris, Roger C; Montgomery, Hugh E; Williams, Alun G

    2009-09-01

    This review is based on the BASES position stand on "Genetic Research and Testing in Sport and Exercise Science". Our aims are first to introduce the reader to research in sport and exercise genetics and then to highlight ethical problems arising from such research and its applications. Sport and exercise genetics research in the form of transgenic animal and human association studies has contributed significantly to our understanding of exercise physiology and there is potential for major new discoveries. Researchers starting out in this field will have to ensure an appropriate study design to avoid, for example, statistically underpowered studies. Ethical concerns arise more from the applications of genetic research than from the research itself, which is assessed by ethical committees. Possible applications of genetic research are genetic performance tests or genetic tests to screen, for example, for increased risk of sudden death during sport. The concerns are that genetic performance testing could be performed on embryos and could be used to select embryos for transplantation or abortion. Screening for risk of sudden death may reduce deaths during sporting events but those that receive a positive diagnosis may suffer severe psychological consequences. Equally, it will be almost impossible to keep a positive diagnosis confidential if the individual tested is an elite athlete.

  2. Postnatal Human Genetic Enhancement – A Consideration of Children’s Right to Be Genetically Enhanced

    OpenAIRE

    Tamir, Sivan

    2016-01-01

    This paper considers children’s rights with respect to genetic enhancement (GE). It is focused on the futuristic prospect of postnatal GE, namely, genetic modifications, in vivo, of actual existing individuals. More specifically, the paper examines whether, in a future reality where pre- and postnatal human GE is safely and prevalently practiced, a child would have a right to be genetically enhanced by her parents or guardians, as well as the right not to be genetically enhanced. It is in fac...

  3. Leveraging human genetics to guide drug target discovery.

    Science.gov (United States)

    Stitziel, Nathan O; Kathiresan, Sekar

    2017-07-01

    Identifying appropriate molecular targets is a critical step in drug development. Despite many advantages, the traditional tools of observational epidemiology and cellular or animal models of disease can be misleading in identifying causal pathways likely to lead to successful therapeutics. Here, we review some favorable aspects of human genetics studies that have the potential to accelerate drug target discovery. These include using genetic studies to identify pathways relevant to human disease, leveraging human genetics to discern causal relationships between biomarkers and disease, and studying genetic variation in humans to predict the potential efficacy and safety of inhibitory compounds aimed at molecular targets. We present some examples taken from studies of plasma lipids and coronary artery disease to highlight how human genetics can accelerate therapeutics development. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Genetic Testing in the Multidisciplinary Management of Melanoma.

    Science.gov (United States)

    Rashid, Omar M; Zager, Jonathan S

    2015-10-01

    Melanoma is increasing in incidence and represents an aggressive type of cancer. Efforts have focused on identifying genetic factors in melanoma carcinogenesis to guide prevention, screening, early detection, and targeted therapy. This article reviews the hereditary risk factors associated with melanoma and the known molecular pathways and genetic mutations associated with this disease. This article also explores the controversies associated with genetic testing and the latest advances in identifying genetic targets in melanoma, which offer promise for future application in the multidisciplinary management of melanoma.

  5. Genetic differences between avian and human isolates of Candida dubliniensis.

    LENUS (Irish Health Repository)

    McManus, Brenda A

    2009-09-01

    When Candida dubliniensis isolates obtained from seabird excrement and from humans in Ireland were compared by using multilocus sequence typing, 13 of 14 avian isolates were genetically distinct from human isolates. The remaining avian isolate was indistinguishable from a human isolate, suggesting that transmission may occur between humans and birds.

  6. [Study on tests of genetics experiments in universities].

    Science.gov (United States)

    Jie, He; Hao, Zhang; Lili, Zhang

    2015-03-01

    Based on the present situation and the development of experiment tests in universities, we introduced a reform in tests of genetics experiments. According to the teaching goals and course contents of genetics experiment, the tests of genetics experiments contain four aspects on the performance of students: the adherence to the experimental procedures, the depth of participation in experiment, the quality of experiment report, and the mastery of experiment principles and skills, which account for 10 %, 20 %, 40 % and 30 % in the total scores, respectively. All four aspects were graded quantitatively. This evaluation system has been tested in our experiment teaching. The results suggest that it has an effect on the promotion of teaching in genetics experiments.

  7. [Present condition and problem of presymptomatic genetic testing].

    Science.gov (United States)

    Kukinaka, Chieko

    2013-01-01

    For neuromuscular disease the best diagnosis is by genetic testing. Genetic testing is very important, however, the influence which a positive result can have on a family is very considerable. It can affect the family's lifestyle a lot. For example presymptomatic and prenatal genetic testing may be necessary for the family's children when they become adults themselves. We did qualitative research with five people who received presymptomatic genetic testing because of a family member with familial amyloidic polyneropathy. Heredity problems had a big influence on their life and on family dynamics. In order to support hereditary disease patients and their families, it is important to make a system which all medical institutions can use to help them cooperate together and deal with the treatment of hereditary diseases.

  8. Participation in Genetic Testing Research Varies by Social Group

    National Research Council Canada - National Science Library

    Hensley Alford, Sharon; McBride, Colleen M; Reid, Robert J; Larson, Eric B; Baxevanis, Andreas D; Brody, Lawrence C

    2011-01-01

    ...: Our primary aim was to evaluate, using a population-based sample of healthy adults, whether gender, race and education status influences interest and participation in a multiplex genetic susceptibility test. Methods...

  9. Health and genetic ancestry testing: time to bridge the gap.

    Science.gov (United States)

    Smart, Andrew; Bolnick, Deborah A; Tutton, Richard

    2017-01-09

    It is becoming increasingly difficult to keep information about genetic ancestry separate from information about health, and consumers of genetic ancestry tests are becoming more aware of the potential health risks associated with particular ancestral lineages. Because some of the proposed associations have received little attention from oversight agencies and professional genetic associations, scientific developments are currently outpacing governance regimes for consumer genetic testing. We highlight the recent and unremarked upon emergence of biomedical studies linking markers of genetic ancestry to disease risks, and show that this body of scientific research is becoming part of public discourse connecting ancestry and health. For instance, data on genome-wide ancestry informative markers are being used to assess health risks, and we document over 100 biomedical research articles that propose associations between mitochondrial DNA and Y chromosome markers of genetic ancestry and a wide variety of disease risks. Taking as an example an association between coronary heart disease and British men belonging to Y chromosome haplogroup I, we show how this science was translated into mainstream and online media, and how it circulates among consumers of genetic tests for ancestry. We find wide variations in how the science is interpreted, which suggests the potential for confusion or misunderstanding. We recommend that stakeholders involved in creating and using estimates of genetic ancestry reconsider their policies for communicating with each other and with the public about the health implications of ancestry information.

  10. Genetic Testing for Rare Cancer: The Wider Issues.

    Science.gov (United States)

    Jacobs, Chris; Pichert, Gabriella

    2016-01-01

    Identification of a potential genetic susceptibility to cancer and confirmation of a pathogenic gene mutation raises a number of challenging issues for the patient with cancer, their relatives and the health professionals caring for them. The specific risks and management issues associated with rare cancer types have been addressed in the earlier chapters. This chapter considers the wider issues involved in genetic counselling and genetic testing for a genetic susceptibility to cancer for patients, families and health professionals. The first part of the chapter will present the issues raised by the current practice in genetic counselling and genetic testing for cancer susceptibility. The second part of the chapter will address some of the issues raised by the advances in genetic testing technology and the future opportunities provided by personalised medicine and targeted cancer therapy. Facilitating these developments requires closer integration of genomics into mainstream cancer care, challenging the existing paradigm of genetic medicine, adding additional layers of complexity to the risk assessment and management of cancer and presenting wider issues for patients, families, health professionals and clinical services.

  11. Inferences of Recent and Ancient Human Population History Using Genetic and Non-Genetic Data

    Science.gov (United States)

    Kitchen, Andrew

    2008-01-01

    I have adopted complementary approaches to inferring human demographic history utilizing human and non-human genetic data as well as cultural data. These complementary approaches form an interdisciplinary perspective that allows one to make inferences of human history at varying timescales, from the events that occurred tens of thousands of years…

  12. Prognostic Factors for Distress After Genetic Testing for Hereditary Cancer.

    Science.gov (United States)

    Voorwinden, Jan S; Jaspers, Jan P C

    2016-06-01

    The psychological impact of an unfavorable genetic test result for counselees at risk for hereditary cancer seems to be limited: only 10-20 % of counselees have psychological problems after testing positive for a known familial mutation. The objective of this study was to find prognostic factors that can predict which counselees are most likely to develop psychological problems after presymptomatic genetic testing. Counselees with a 50 % risk of BRCA1/2 or Lynch syndrome completed questionnaires at three time-points: after receiving a written invitation for a genetic counseling intake (T1), 2-3 days after receiving their DNA test result (T2), and 4-6 weeks later (T3). The psychological impact of the genetic test result was examined shortly and 4-6 weeks after learning their test result. Subsequently, the influence of various potentially prognostic factors on psychological impact were examined in the whole group. Data from 165 counselees were analyzed. Counselees with an unfavorable outcome did not have more emotional distress, but showed significantly more cancer worries 4-6 weeks after learning their test result. Prognostic factors for cancer worries after genetic testing were pre-existing cancer worries, being single, a high risk perception of getting cancer, and an unfavorable test result. Emotional distress was best predicted by pre-existing cancer worries and pre-existing emotional distress. The psychological impact of an unfavorable genetic test result appears considerable if it is measured as "worries about cancer." Genetic counselors should provide additional guidance to counselees with many cancer worries, emotional distress, a high risk perception or a weak social network.

  13. Genetic engineering of human ES and iPS cells using TALE nucleases

    OpenAIRE

    Hockemeyer, Dirk; Wang, Haoyi; Kiani, Samira; Lai, Christine S.; Gao, Qing; Cassady, John P.; Cost, Gregory J.; Zhang, Lei; Santiago, Yolanda; Miller, Jeffrey C; Zeitler, Bryan; Cherone, Jennifer M.; Meng, Xiangdong; Hinkley, Sarah J; Rebar, Edward J.

    2011-01-01

    Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator–like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that T...

  14. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...... of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images.......55). Intelligence shared a common genetic origin with superior occipitofrontal, callosal, and left optical radiation WM and frontal, occipital, and parahippocampal GM (phenotypic correlations up to 0.35). These findings point to a neural network that shares a common genetic origin with human intelligence...

  15. Genetic testing: considerations for pediatric nephrologists.

    NARCIS (Netherlands)

    Guay-Woodford, L.M.; Knoers, N.V.A.M.

    2009-01-01

    With the completion of the Human Genome Project and the associated advances in genomic technologies, clinicians have at their disposal an increasing repertoire of tools to provide accurate and efficient diagnosis, assess disease predisposition and risk factors, and personalize therapeutic management

  16. The wide variation of definitions of genetic testing in international recommendations, guidelines and reports.

    Science.gov (United States)

    Sequeiros, Jorge; Paneque, Milena; Guimarães, Bárbara; Rantanen, Elina; Javaher, Poupak; Nippert, Irma; Schmidtke, Jörg; Kääriäainen, Helena; Kristoffersson, Ulf; Cassiman, Jean-Jacques

    2012-04-01

    In spite of being very commonly used, the term genetic testing is debatable and used with several meanings. The diversity of existing definitions is confusing for scientists, clinicians and other professionals, health authorities, legislators and regulating agencies and the civil society in general, particularly when genetic testing is the object of guidelines or legal documents. This work compares definitions of genetic testing found in recommendations, guidelines and reports from international institutions, policy makers and professional organizations, but also in documents from other stakeholders in the field, as the pharmaceutical industry, insurers, ethics bodies, patient organizations or human-rights associations. A systematic review of these documents confirmed the extreme variability existing in the concepts and the ambiguous or equivocal use of the term. Some definitions (narrower) focus on methodologies or the material analysed, while others (broader) are information- or context-based. Its scope may range from being synonymous of just DNA analysis, to any test that yields genetic data. Genetic testing and genetic information, which may be derived from a range of medical exams or even family history, are often used interchangeably. Genetic testing and genetic screening are sometimes confused. Human molecular genetics (a discipline) is not always distinguished from molecular biology (a tool). Professional background, geographical context and purpose of the organizations may influence scope and usage. A common consensus definition does not exist. Nevertheless, a clear set of precise definitions may help creating a common language among geneticists and other health professionals. Moreover, a clear context-dependent, operative definition should always be given.

  17. Genetic testing and genetic counseling in patients with sudden death risk due to heritable arrhythmias.

    Science.gov (United States)

    Spoonamore, Katherine G; Ware, Stephanie M

    2016-03-01

    Sudden cardiac death due to heritable ventricular arrhythmias is an important cause of mortality, especially in young healthy individuals. The identification of the genetic basis of Mendelian diseases associated with arrhythmia has allowed the integration of this information into the diagnosis and clinical management of patients and at-risk family members. The rapid expansion of genetic testing options and the increasing complexity involved in the interpretation of results creates unique opportunities and challenges. There is a need for competency to incorporate genetics into clinical management and to provide appropriate family-based risk assessment and information. In addition, disease-specific genetic knowledge is required to order and correctly interpret and apply genetic testing results. Importantly, genetic diagnosis has a critical role in the risk stratification and clinical management of family members. This review summarizes the approach to genetic counseling and genetic testing for inherited arrhythmias and highlights specific genetic principles that apply to long QT syndrome, short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia.

  18. Factors influencing uptake of familial long QT syndrome genetic testing.

    Science.gov (United States)

    Burns, Charlotte; McGaughran, Julie; Davis, Andrew; Semsarian, Christopher; Ingles, Jodie

    2016-02-01

    Ongoing challenges of clinical assessment of long QT syndrome (LQTS) highlight the importance of genetic testing in the diagnosis of asymptomatic at-risk family members. Effective access, uptake, and communication of genetic testing are critical for comprehensive cascade family screening and prevention of disease complications such as sudden cardiac death. The aim of this study was to describe factors influencing uptake of LQTS genetic testing, including those relating to access and family communication. We show those who access genetic testing are overrepresented by the socioeconomically advantaged, and that although overall family communication is good, there are some important barriers to be addressed. There were 75 participants (aged 18 years or more, with a clinical and/or genetic diagnosis of LQTS; response rate 71%) who completed a survey including a number of validated scales; demographics; and questions about access, uptake, and communication. Mean age of participants was 46 ± 16 years, 20 (27%) were males and 60 (80%) had genetic testing with a causative gene mutation in 42 (70%). Overall uptake of cascade testing within families was 60% after 4 years from proband genetic diagnosis. All participants reported at least one first-degree relative had been informed of their risk, whereas six (10%) reported at least one first-degree relative had not been informed. Those who were anxious or depressed were more likely to perceive barriers to communicating. Genetic testing is a key aspect of care in LQTS families and intervention strategies that aim to improve equity in access and facilitate effective family communication are needed.

  19. Charcot-Marie-Tooth disease: frequency of genetic subtypes and guidelines for genetic testing.

    LENUS (Irish Health Repository)

    Murphy, Sinead M

    2012-07-01

    Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous group of diseases with approximately 45 different causative genes described. The aims of this study were to determine the frequency of different genes in a large cohort of patients with CMT and devise guidelines for genetic testing in practice.

  20. Seeking perfection: a Kantian look at human genetic engineering.

    Science.gov (United States)

    Gunderson, Martin

    2007-01-01

    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.

  1. How genetic analysis tests theories of animal aging.

    Science.gov (United States)

    Hekimi, Siegfried

    2006-09-01

    Each animal species displays a specific life span, rate of aging and pattern of development of age-dependent diseases. The genetic bases of these related features are being studied experimentally in invertebrate and vertebrate model systems as well as in humans through medical records. Three types of mutants are being analyzed: (i) short-lived mutants that are prone to age-dependent diseases and might be models of accelerated aging; (ii) mutants that show overt molecular defects but that do not live shorter lives than controls, and can be used to test specific theories about the molecular causes of aging and age-dependent diseases; and (iii) long-lived mutants that might advance the understanding of the molecular physiology of slow-aging animals and aid the discovery of molecular targets that could be used to manipulate rates of aging to benefit human health. Here, I analyze some of what we know today and discuss what we should try to find out in the future to understand the aging phenomenon.

  2. Genetic testing in congenital heart disease:A clinical approach

    Institute of Scientific and Technical Information of China (English)

    Marie A Chaix; Gregor Andelfinger; Paul Khairy

    2016-01-01

    Congenital heart disease(CHD) is the most common type of birth defect. Traditionally, a polygenic model defined by the interaction of multiple genes and environmental factors was hypothesized to account for different forms of CHD. It is now understood that the contribution of genetics to CHD extends beyond a single unified paradigm. For example, monogenic models and chromosomal abnormalities have been associated with various syndromic and non-syndromic forms of CHD. In such instances, genetic investigation and testing may potentially play an important role in clinical care. A family tree with a detailed phenotypic description serves as the initial screening tool to identify potentially inherited defects and to guide further genetic investigation. The selection of a genetic test is contingent upon the particular diagnostic hypothesis generated by clinical examination. Genetic investigation in CHD may carry the potential to improve prognosis by yielding valuable information with regards to personalized medical care, confidence in the clinical diagnosis, and/or targeted patient followup. Moreover, genetic assessment may serve as a tool to predict recurrence risk, define the pattern of inheritance within a family, and evaluate the need for further family screening. In some circumstances, prenatal or preimplantation genetic screening could identify fetuses or embryos at high risk for CHD. Although genetics may appear to constitute a highly specialized sector of cardiology, basic knowledge regarding inheritance patterns, recurrence risks, and available screening and diagnostic tools, including their strengths and limitations, could assist the treating physician in providing sound counsel.

  3. Apocalypse... Now? Molecular epidemiology, predictive genetic tests, and social communication of genetic contents

    Directory of Open Access Journals (Sweden)

    Luis David Castiel

    Full Text Available The author analyzes the underlying theoretical aspects in the construction of the molecular watershed of epidemiology and the concept of genetic risk, focusing on issues raised by contemporary reality: new technologies, globalization, proliferation of communications strategies, and the dilution of identity matrices. He discusses problems pertaining to the establishment of such new interdisciplinary fields as molecular epidemiology and molecular genetics. Finally, he analyzes the repercussions of the social communication of genetic content, especially as related to predictive genetic tests and cloning of animals, based on triumphal, deterministic metaphors sustaining beliefs relating to the existence and supremacy of concepts such as 'purity', 'essence', and 'unification' of rational, integrated 'I's/egos'.

  4. A new era in clinical genetic testing for hypertrophic cardiomyopathy.

    Science.gov (United States)

    Wheeler, Matthew; Pavlovic, Aleksandra; DeGoma, Emil; Salisbury, Heidi; Brown, Colleen; Ashley, Euan A

    2009-12-01

    Building on seminal studies of the last 20 years, genetic testing for hypertrophic cardiomyopathy (HCM) has become a clinical reality in the form of targeted exonic sequencing of known disease-causing genes. This has been driven primarily by the decreasing cost of sequencing, but the high profile of genome-wide association studies, the launch of direct-to-consumer genetic testing, and new legislative protection have also played important roles. In the clinical management of hypertrophic cardiomyopathy, genetic testing is primarily used for family screening. An increasing role is recognized, however, in diagnostic settings: in the differential diagnosis of HCM; in the differentiation of HCM from hypertensive or athlete's heart; and more rarely in preimplantation genetic diagnosis. Aside from diagnostic clarification and family screening, use of the genetic test for guiding therapy remains controversial, with data currently too limited to derive a reliable mutation risk prediction from within the phenotypic noise of different modifying genomes. Meanwhile, the power of genetic testing derives from the confidence with which a mutation can be called present or absent in a given individual. This confidence contrasts with our more limited ability to judge the significance of mutations for which co-segregation has not been demonstrated. These variants of "unknown" significance represent the greatest challenge to the wider adoption of genetic testing in HCM. Looking forward, next-generation sequencing technologies promise to revolutionize the current approach as whole genome sequencing will soon be available for the cost of today's targeted panel. In summary, our future will be characterized not by lack of genetic information but by our ability to effectively parse it.

  5. Genetic counseling issues in predictive genetic testing for familial adult-onset neurologic diseases.

    Science.gov (United States)

    Burson, C M; Markey, K R

    2001-09-01

    Genetic counseling is important in any genetic testing situation in order to address the various issues related to obtaining a genetic diagnosis. Presymptomatic testing for adult-onset neurodegenerative disease, in particular, presents a complex counseling scenario. It is imperative to discuss the potential impact of test results on patients' family dynamics, insurability and employability, family planning, and future health in addition to ascertaining a complete understanding of recurrence, inheritance, and testing parameters. The Huntington disease presymptomatic testing protocol is well-defined and has been used for more than 10 years. These guidelines, which protect both patient and provider, can now be applied to other diseases as further presymptomatic testing capabilities are realized.

  6. Insights into the genetic foundations of human communication.

    Science.gov (United States)

    Graham, Sarah A; Deriziotis, Pelagia; Fisher, Simon E

    2015-03-01

    The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior.

  7. Privacy and confidentiality measures in genetic testing and counselling: arguing on genetic exceptionalism again?

    Science.gov (United States)

    Witt, Magdalena M; Witt, Michał P

    2016-11-01

    Medical confidentiality in clinical genetics poses an important question about its scope, which would be in line with professional ethics and simple honesty. It is already known that the maintenance of absolute anonymity, bearing in mind the current progress of genetic techniques, is virtually impossible. On the other hand, our insight into the information contained in the human genome is increasing. This mini-review presents the authors' standpoint regarding this complex and difficult issue.

  8. What Do the Results of Genetic Tests Mean?

    Science.gov (United States)

    ... healthcare professionals consider a person’s medical history, family history, and the type of genetic test that was done. A positive test result means that the laboratory found a change in a particular gene, chromosome, or protein of interest. Depending on the purpose of the ...

  9. Prognostic Factors for Distress After Genetic Testing for Hereditary Cancer

    NARCIS (Netherlands)

    Voorwinden, Jan S; Jaspers, Jan P C

    2015-01-01

    The psychological impact of an unfavorable genetic test result for counselees at risk for hereditary cancer seems to be limited: only 10-20 % of counselees have psychological problems after testing positive for a known familial mutation. The objective of this study was to find prognostic factors tha

  10. Prognostic Factors for Distress After Genetic Testing for Hereditary Cancer

    NARCIS (Netherlands)

    Voorwinden, Jan S.; Jaspers, Jan P C

    2016-01-01

    The psychological impact of an unfavorable genetic test result for counselees at risk for hereditary cancer seems to be limited: only 10-20 % of counselees have psychological problems after testing positive for a known familial mutation. The objective of this study was to find prognostic factors tha

  11. Human Genome Epidemiology : A scientific foundation for using genetic information to improve health and prevent disease

    Directory of Open Access Journals (Sweden)

    Stefania Boccia

    2005-03-01

    Full Text Available

    Human health is determined by the interplay of genetic factors and the environment. In this context the recent advances in human genomics are expected to play a central role in medicine and public health by providing genetic information for disease prediction and prevention.

    After the completion of the human genome sequencing, a fundamental step will be represented by the translation of these discoveries into meaningful actions to improve health and prevent diseases, and the field of epidemiology plays a central role in this effort. These are some of the issues addressed by Human Genome Epidemiology –A scientific foundation for using genetic information to improve health and prevent disease, a volume edited by Prof. M. Khoury, Prof. J. Little, Prof.W. Burke and published by Oxford university Press 2004.

    This book describes the important role that epidemiological methods play in the continuum from gene discovery to the development and application of genetic tests. The Authors calls this continuum human genome epidemiology (HuGE to denote an evolving field of inquiry that uses systematic applications of epidemiological methods to assess the impact of human genetic variation on health and disease.

    The book is divided into four sections and it is structured to allow readers to proceed systematically from the fundamentals of genome technology and discovery, to the epidemiological approaches, to gene characterisation, to the evaluation of genetic tests and their use in health services and public health.

  12. Genetic Testing Accounts of Autonomy, Responsibility and Blame

    DEFF Research Database (Denmark)

    Arribas-Ayllon, M.; Sarangi, Srikant; Clarke, Angus

    as well as genetic professionals. This book explores the ways in which genetic testing generates not only probabilities of potential futures, but also enjoys new forms of social, individual and professional responsibility. Concerns about confidentiality and informed consent involving children......, the assessment of competence and maturity, the ability to engage in shared decision-making through acts of disclosure and choice, are just some of the issues that are examined in detail....

  13. Ethical Issues with Genetic Testing for Tay-Sachs.

    Science.gov (United States)

    Clayton, Tricia

    Several genetic disorders are specific to Jewish heritage; one of the most devastating is Tay-Sachs disease.Tay-Sachs is a fatal hereditary disease, causing progressive neurological problems for which there is no cure. Ethical issues surrounding genetic testing for Tay-Sachs within the Jewish community continue to be complex and multifaceted. A perspective of Tay-Sachs, using rights-based ethics and virtue ethics as a theoretical framework, is explored.

  14. Animal models for human genetic diseases

    African Journals Online (AJOL)

    Sharif Sons

    organisms are extensively used in applied research in agriculture, industry, and also in medicine, where they are ... in genetic disorder that is critical for embryonic .... by practical limitations and ethical concerns. ..... American journal of medical.

  15. Molecular genetics of human pigmentation diversity

    National Research Council Canada - National Science Library

    Sturm, Richard A

    2009-01-01

    The genetic basis underlying normal variation in the pigmentary traits of skin, hair and eye colour has been the subject of intense research directed at understanding the diversity seen both between...

  16. The role of genetic variants in human longevity.

    Science.gov (United States)

    Chung, Wen-Hung; Dao, Ro-Lan; Chen, Liang-Kung; Hung, Shuen-Iu

    2010-11-01

    Human longevity is a complex phenotype with a strong genetic predisposition. Increasing evidence has revealed the genetic antecedents of human longevity. This article aims to review the data of various case/control association studies that examine the difference in genetic polymorphisms between long-lived people and younger subjects across different human populations. There are more than 100 candidate genes potentially involved in human longevity; this article particularly focuses on genes of the insulin/IGF-1 pathway, FOXO3A, FOXO1A, lipoprotein metabolism (e.g., APOE and PON1), and cell-cycle regulators (e.g., TP53 and P21). Since the confirmed genetic components for human longevity are few to date, further precise assessment of the genetic contributions is required. Gaining a better understanding of the contribution of genetics to human longevity may assist in the design of improved treatment methods for age-related diseases, delay the aging process, and, ultimately, prolong the human lifespan.

  17. Genetic susceptibility testing from a stress and coping perspective.

    Science.gov (United States)

    Gooding, Holly C; Organista, Kurt; Burack, Jeffrey; Biesecker, Barbara Bowles

    2006-04-01

    Four theories of health behavior and of stress and coping are reviewed for their ability to illuminate interest in uptake and outcomes of genetic testing for adult-onset diseases. These theories are the Health Belief Model, the Theory of Planned Behavior (TPB), the Common Sense Model of Self-regulation (CSM), and the Transactional Model of Stress and Coping (TMSC). Basic concepts of each theory are discussed, followed by evidence from the literature supporting the relevance of these concepts to the understanding of genetic testing for four adult-onset diseases: Huntington's disease, Alzheimer's disease, hereditary breast/ovarian cancer, and hereditary colorectal cancer. Emphasis is placed on the finding that a decision to undergo genetic testing may be considered as a way to cope with both the cognitive and affective concerns that arise from living at increased risk of developing a disease in the future. The potential value of genetic testing for reducing uncertainty about and gaining a sense of control over one's risk of developing a chronic disease is highlighted. We argue that theories which focus on stress and coping provide a useful framework for future studies of genetic testing decisions for adult-onset disease risk.

  18. Global human genetics of HIV-1 infection and China

    Institute of Scientific and Technical Information of China (English)

    Tuo Fu ZHU; Tie Jian FENG; Xin XIAO; Hui WANG; Bo Ping ZHOU

    2005-01-01

    Genetic polymorphisms in human genes can influence the risk for HIV-1 infection and disease progression, although the reported effects of these alleles have been inconsistent. This review highlights the recent discoveries on global and Chinese genetic polymorphisms and their association with HIV-1 transmission and disease progression.

  19. The etiology and molecular genetics of human pigmentation disorders.

    Science.gov (United States)

    Baxter, Laura L; Pavan, William J

    2013-01-01

    Pigmentation, defined as the placement of pigment in skin, hair, and eyes for coloration, is distinctive because the location, amount, and type of pigmentation provides a visual manifestation of genetic heterogeneity in pathways regulating the pigment-producing cells, melanocytes. The scope of this genetic heterogeneity in humans ranges from normal to pathological pigmentation phenotypes. Clinically, normal human pigmentation encompasses a variety of skin and hair color as well as punctate pigmentation such as melanocytic nevi (moles) or ephelides (freckles), while abnormal human pigmentation exhibits markedly reduced or increased pigment levels, known as hypopigmentation and hyperpigmentation, respectively. Elucidation of the molecular genetics underlying pigmentation has revealed genes important for melanocyte development and function. Furthermore, many pigmentation disorders show additional defects in cells other than melanocytes, and identification of the genetic insults in these disorders has revealed pleiotropic genes, where a single gene is required for various functions in different cell types. Thus, unravelling the genetics of easily visualized pigmentation disorders has identified molecular similarities between melanocytes and less visible cell types/tissues, arising from a common developmental origin and/or shared genetic regulatory pathways. Herein we discuss notable human pigmentation disorders and their associated genetic alterations, focusing on the fact that the developmental genetics of pigmentation abnormalities are instructive for understanding normal pathways governing development and function of melanocytes. Copyright © 2012 Wiley Periodicals, Inc.

  20. An Adaptive Genetic Association Test Using Double Kernel Machines.

    Science.gov (United States)

    Zhan, Xiang; Epstein, Michael P; Ghosh, Debashis

    2015-10-01

    Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study.

  1. Genetic testing for Lynch syndrome: family communication and motivation.

    Science.gov (United States)

    Leenen, Celine H M; Heijer, Mariska den; van der Meer, Conny; Kuipers, Ernst J; van Leerdam, Monique E; Wagner, Anja

    2016-01-01

    Current genetic counselling practice for Lynch syndrome (LS) relies on diagnosed index patients to inform their biological family about LS, referred to as the family-mediated approach. The objective of this study was to evaluate this approach and to identify factors influencing the uptake of genetic testing for LS. In 59 mutation carriers, 70 non carriers and 16 non-tested relatives socio-demographic characteristics, family communication regarding LS, experiences and attitudes towards the family-mediated approach and motivations for genetic testing, were assessed. The majority of all respondents (73 %) were satisfied with the family-mediated approach. Nevertheless, 59 % of the respondents experienced informing a family member and 57 % being informed by a family member as burdensome. Non-tested differed from tested respondents, in that they were younger, less closely related to the index patient and a lower proportion had children. The most important reasons for declining genetic testing were (1) anticipating problems with life insurance and mortgage, (2) being content with life as it is, and (3) not experiencing any physical complaints. In conclusion, the majority of respondents consider the current family-mediated information procedure acceptable, although the provision of information on LS by relatives may be burdensome. Special attention should be paid to communication of LS to more distant relatives.

  2. [Huntington disease: presymptomatic testing, prenatal diagnosis, preimplantation genetic diagnosis experience].

    Science.gov (United States)

    Durr, A; Viville, S

    2007-10-01

    Presymptomatic testing for Huntington disease has been available for 15 years. The possibility of determining the genetic status of an at-risk person for the disorder which runs in his or her family raises questions because of the absence of preventive treatments. In addition, being carrier does not allow to determine when the disease starts and how it will evolve, impairing the possibilities of planning the future. A pluridisciplinary approach to predictive testing with care before, during and after the test taking into account the medical, social and psychological aspects of the disease is good practice. At the present time, only a minority of at-risk individuals request presymptomatic testing and almost 50% do not pursue until the results. The consequences of the test may be harmful, more frequently after an unfavorable than after a favorable result. Motivations and the outcome in terms of request for prenatal testing after a carrier result are known today and the number or prenatal testing remains very limited. Preimplantation genetic testing is an alternative for couples who knows or do not their own genetic status. We report our experience in two French centres: Paris for presymptomatic and prenatal testing and Strasbourg for preimplantation diagnosis.

  3. Precision Medicine and Advancing Genetic Technologies—Disability and Human Rights Perspectives

    Directory of Open Access Journals (Sweden)

    Aisling de Paor

    2016-08-01

    Full Text Available Scientific and technological developments are propelling genetics and genetic technologies into the public sphere. Scientific and technological innovation is becoming more refined, resulting in an increase in the availability and use of genetic testing, and other cutting edge genetic technologies, including gene editing. These genetic advances not only signal a growing trend towards precision medicine, but also provoke consideration of the protection of genetic information as an emerging human rights concern. Particular ethical and legal issues arise from a disability perspective, including the potential for discrimination and privacy violations. In consideration of the intersection of genetics and disability, this article highlights the significant concerns raised as genetic science and technology advances, and the consequences for disability rights, particularly the core concepts of non-discrimination, and respect for diversity and difference. On examining international human rights perspectives, it looks particularly at the UN Convention on the Rights of Persons with Disabilities and how it may be used to guide best practice in this area. With an acknowledgement of historical abuses of genetic science, this article highlights the need to maintain caution as to the potential consequences of advancing genetic technologies on persons with disabilities and indeed on society as a whole.

  4. [A novel approach to techniques in genetic testing for cancer].

    Science.gov (United States)

    Kato, Jun-ichi

    2014-04-01

    In molecular targeted drug therapy, genetic screening is carried out to identify the existence of target genes that are specifically expressed in cancer cells. Conventional methods for detecting the mutation of genes in cancer cells through the use of purified DNA is time consuming, especially in the case of the enzymatic treatment of pathological specimens, and it is difficult to finish all these protocols on the same day. Also, depending on the condition of the patients, it may be difficult to perform surgery or biopsy, and pathological specimens are not always obtainable. Thus, sometimes genetic screening using purified DNA and the enzymatic treatment of pathological specimens cannot be performed. We have successfully solved these problems using i-densy, a genetic analysis device, and two different methods of genetic testing for cancer. The first is a method which, without extracting DNA, uses simply pretreated pathological specimens for genetic screening. Using deparaffinized specimens that have only been heat-treated for a short period of time, we were able to obtain the exact same results as if we had extracted DNA. The second is the highly specific genetic screening technique, the MBP-QP method. Using this method, we were able to confirm the detection of genetic mutation from the DNA of blood plasma. It is now possible to screen for the mutation of genes in cancer cells using just a blood sample from patients without using tissue or cells, which also has little burden on the patient.

  5. American Society of Clinical Oncology policy statement update: genetic testing for cancer susceptibility.

    Science.gov (United States)

    2003-06-15

    genetic information. However, they should remind patients of the importance of communicating test results to family members, as part of pretest counseling and informed consent discussions. ASCO believes that the cancer care provider's obligations (if any) to at-risk relatives are best fulfilled by communication of familial risk to the person undergoing testing, emphasizing the importance of sharing this information with family members so that they may also benefit. Educational Opportunities in Genetics: ASCO is committed to continuing to provide educational opportunities for physicians and other health care providers regarding the methods of cancer risk assessment, the clinical characteristics of hereditary cancer susceptibility syndromes, and the range of issues related to genetic testing, including pre- and post-test genetic counseling, and risk management, so that health professionals may responsibly integrate the care of persons at increased genetic risk of cancer into the practice of clinical and preventive oncology. Special Issues Relating to Genetic Research on Human Tissues:ASCO recommends that all researchers proposing to use or store human biologic specimens for genetic studies should consult either the responsible institutional review board (IRB) or a comparable body specifically constituted to assess human tissue research, to determine the requirements for protection specific to the study under consideration. This consultation should take place before the project is initiated. The determination of the need for informed consent or authorization in such studies should depend on whether the research involves tests for genetic markers of known clinical significance and whether research data will be linked to protected health information, as well as other considerations specific to the study proposed. Special attention should also be paid to 1) whether future research findings will be disclosed to the research participants, 2) whether future contact of participants

  6. Genetic Testing for Complex Diseases: a Simulation Study Perspective

    CERN Document Server

    Vinh, Nguyen Xuan

    2011-01-01

    It is widely recognized nowadays that complex diseases are caused by, amongst the others, multiple genetic factors. The recent advent of genome-wide association study (GWA) has triggered a wave of research aimed at discovering genetic factors underlying common complex diseases. While the number of reported susceptible genetic variants is increasing steadily, the application of such findings into diseases prognosis for the general population is still unclear, and there are doubts about whether the size of the contribution by such factors is significant. In this respect, some recent simulation-based studies have shed more light to the prospect of genetic tests. In this report, we discuss several aspects of simulation-based studies: their parameters, their assumptions, and the information they provide.

  7. Causal attributions of obese men and women in genetic testing: implications of genetic/biological attributions.

    Science.gov (United States)

    Hilbert, Anja; Dierk, Jan-Michael; Conradt, Matthias; Schlumberger, Pia; Hinney, Anke; Hebebrand, Johannes; Rief, Winfried

    2009-09-01

    The present study sought to investigate genetic/biological attributions of obesity, their associations with a predisposition to obesity and their crossectional and longitudinal implications for weight regulation in obese individuals presenting for genetic testing and counselling. A total of 421 obese men and women underwent psychological and anthropometric assessment and a mutation screen of the melanocortin-4 receptor gene. At study entry, women revealed more genetic/biological attributions than men on the Revised Illness Perception Questionnaire adapted to obesity (86.2% versus 59.7%). Genetic/biological attributions of obesity were associated in both sexes with a family history of obesity, assessed through Stunkard's Figure Rating Scale. In both sexes, genetic/biological attributions were unrelated to weight regulation beliefs and behaviour (i.e. self-efficacy, controllability beliefs, restrained eating and physical activity), assessed through standardised questionnaires or interview at baseline and at six-month follow-up. In addition, causal attributions and weight regulation beliefs and behaviour were not predictive of body mass index at six-month follow-up. Overall, the results indicate that causal attributions of obesity to genetic/biological factors in obese individuals presenting for genetic screening and counselling are crossectionally and longitudinally unrelated to weight regulation and longer-term weight outcome. Those who attribute their obesity to genetic/biological factors likely have a familial obesity risk.

  8. Genetics, Genetic Testing, and Management of Hemochromatosis: 15 Years Since Hepcidin.

    Science.gov (United States)

    Pietrangelo, Antonello

    2015-10-01

    The discovery of hepcidin in 2000 and the subsequent unprecedented explosion of research and discoveries in the iron field have dramatically changed our understanding of human disorders of iron metabolism. Today, hereditary hemochromatosis, the paradigmatic iron-loading disorder, is recognized as an endocrine disease due to the genetic loss of hepcidin, the iron hormone produced by the liver. This syndrome is due to unchecked transfer of iron into the bloodstream in the absence of increased erythropoietic needs and its toxic effects in parenchymatous organs. It is caused by mutations that affect any of the proteins that help hepcidin to monitor serum iron, including HFE and, in rarer instances, transferrin-receptor 2 and hemojuvelin, or make its receptor ferroportin, resistant to the hormone. In Caucasians, C282Y HFE homozygotes are numerous, but they are only predisposed to hemochromatosis; complete organ disease develops in a minority, due to alcohol abuse or concurrent genetic modifiers that are now being identified. HFE gene testing can be used to diagnose hemochromatosis in symptomatic patients, but analyses of liver histology and full gene sequencing are required to identify patients with rare, non-HFE forms of the disease. Due to the central pathogenic role of hepcidin, it is anticipated that nongenetic causes of hepcidin loss (eg, end-stage liver disease) can cause acquired forms of hemochromatosis. The mainstay of hemochromatosis management is still removal of iron by phlebotomy, first introduced in 1950s, but identification of hepcidin has not only shed new light on the pathogenesis of the disease and the approach to diagnosis, but etiologic therapeutic applications from these advances are now foreseen.

  9. Genetic Testing for Respiratory Disease: Are We There Yet?

    Directory of Open Access Journals (Sweden)

    Peter D Paré

    2012-01-01

    Full Text Available The human genome project promised a revolution in health care – the development of ‘personalized medicine’, where knowledge of an individual’s genetic code enables the prediction of risk for specific diseases and the potential to alter that risk based on preventive measures and lifestyle modification. The present brief review provides a report card on the progress toward that goal with respect to respiratory disease. Should generalized population screening for genetic risk factors for respiratory disease be instituted? Or not?

  10. Genetic Expeditions with Haploid Human Cells

    NARCIS (Netherlands)

    Jae, L.T.

    2015-01-01

    Random mutagenesis followed by phenotypic selection (forward genetics) is among the most powerful tools to elucidate the molecular basis of intricate biological processes and has been used in a suite of model organisms throughout the last century. However, its application to cultured mammalian cells

  11. Molecular Genetic Study of Human Esophageal Carcinoma

    Science.gov (United States)

    1991-07-16

    carcinogenic processes ( Doerfler , 1983). Direct evidence has shown that the DNA alkylation product, o’-methyl deoxyguanosine was higher in the DNA...of north China and the genetic approach to its control. Genes and Disease, (Science Press, Beijing, China) 1985. Doerfler , W. DNA methylation and

  12. Human Handedness: More Evidence for Genetic Involvement.

    Science.gov (United States)

    Longstreth, Langdon E.

    1980-01-01

    A series of environmental-genetical analyses of the left-handedness of 1,950 college students indicates that left-handedness is familial: it is more frequent in families in which at least one parent is left-handed. (Author/CM)

  13. A global reference for human genetic variation

    DEFF Research Database (Denmark)

    Auton, Adam; Abecasis, Goncalo R.; M. Altshuler, David;

    2015-01-01

    insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications...

  14. Genetic Expeditions with Haploid Human Cells

    NARCIS (Netherlands)

    Jae, L.T.

    2015-01-01

    Random mutagenesis followed by phenotypic selection (forward genetics) is among the most powerful tools to elucidate the molecular basis of intricate biological processes and has been used in a suite of model organisms throughout the last century. However, its application to cultured mammalian cells

  15. Human embryonic stem cells carrying mutations for severe genetic disorders.

    Science.gov (United States)

    Frumkin, Tsvia; Malcov, Mira; Telias, Michael; Gold, Veronica; Schwartz, Tamar; Azem, Foad; Amit, Ami; Yaron, Yuval; Ben-Yosef, Dalit

    2010-04-01

    Human embryonic stem cells (HESCs) carrying specific mutations potentially provide a valuable tool for studying genetic disorders in humans. One preferable approach for obtaining these cell lines is by deriving them from affected preimplantation genetically diagnosed embryos. These unique cells are especially important for modeling human genetic disorders for which there are no adequate research models. They can be further used to gain new insights into developmentally regulated events that occur during human embryo development and that are responsible for the manifestation of genetically inherited disorders. They also have great value for the exploration of new therapeutic protocols, including gene-therapy-based treatments and disease-oriented drug screening and discovery. Here, we report the establishment of 15 different mutant human embryonic stem cell lines derived from genetically affected embryos, all donated by couples undergoing preimplantation genetic diagnosis in our in vitro fertilization unit. For further information regarding access to HESC lines from our repository, for research purposes, please email dalitb@tasmc.health.gov.il.

  16. Current landscape and new paradigms of proficiency testing and external quality assessment for molecular genetics.

    Science.gov (United States)

    Kalman, Lisa V; Lubin, Ira M; Barker, Shannon; du Sart, Desiree; Elles, Rob; Grody, Wayne W; Pazzagli, Mario; Richards, Sue; Schrijver, Iris; Zehnbauer, Barbara

    2013-07-01

    Participation in proficiency testing (PT) or external quality assessment (EQA) programs allows the assessment and comparison of test performance among different clinical laboratories and technologies. In addition to the approximately 2300 tests for individual genetic disorders, recent advances in technology have enabled the development of clinical tests that quickly and economically analyze the entire human genome. New PT/EQA approaches are needed to ensure the continued quality of these complex tests. To review the availability and scope of PT/EQA for molecular genetic testing for inherited conditions in Europe, Australasia, and the United States; to evaluate the successes and demonstrated value of available PT/EQA programs; and to examine the challenges to the provision of comprehensive PT/EQA posed by new laboratory practices and methodologies. The available literature on this topic was reviewed and supplemented with personal experiences of several PT/EQA providers. Proficiency testing/EQA schemes are available for common genetic disorders tested in many clinical laboratories but are not available for most genetic tests offered by only one or a few laboratories. Provision of broad, method-based PT schemes, such as DNA sequencing, would allow assessment of many tests for which formal PT is not currently available. Participation in PT/EQA improves the quality of testing by identifying inaccuracies that laboratories can trace to errors in their testing processes. Areas of research and development to ensure that PT/EQA programs can meet the needs of new and evolving genetic tests and technologies are identified and discussed.

  17. Testing the influence of habituation on genetic structure of brown bear (Ursus arctos

    Directory of Open Access Journals (Sweden)

    Ancuţa Cotovelea

    2015-04-01

    Full Text Available Adult bear individuals live solitary and haveprolonged parent–offspring relationships, therefore the share of learned skills compared to the inherited ones is much larger than in other carnivores. This promotes acquisition of deviated behavior and simultaneously establishment of a kinship structure. However, deviated bear behavior and human food conditioning are the symptoms of habituation. The aim of this paper is to test the genetic structuring of habituated and non-habituated individuals located in the central region of Romania (Braşov and Prahova districts, a hotspot in terms of human-bear conflicts. Seven microsatellites were used to genotype 145 samples (ear clips and tissue, out of which 82 were classified as habituated and 63 as wild individuals, respectively. Our results suggest the presence of kinship structures in habituated bear group and a reduction of genetic diversity (He = 0.75, while the group located in the wild registered a higher genetic diversity (He = 0.78 and more private alleles. The genetic differentiation suggested by the Neighbor joining cluster analysis has been strengthened by the two percent (AMOVA differences between the two groups and highlights the negative impact of brown bear kinship structure, caused by the human expansion on wilderness. The genetic analyses indicated that the two groups share genetic variants due to the dispersal and breeding patterns of male adult bears. The emergence of genetic differences between the two groups can be avoided by preventing bears to become human-food conditioned; over time, kinship structure can pose a threat to genetic diversity.

  18. A Clinical Perspective on Ethical Issues in Genetic Testing

    NARCIS (Netherlands)

    Sijmons, R. H.; Van Langen, I. M.; Sijmons, J. G.

    2011-01-01

    Genetic testing is traditionally preceded by counselling to discuss its advantages and disadvantages with individuals so they can make informed decisions. The new technique of whole genome or exome sequencing, which is currently only used in research settings, can identify many gene mutations, inclu

  19. Eddy current testing probe optimization using a parallel genetic algorithm

    Directory of Open Access Journals (Sweden)

    Dolapchiev Ivaylo

    2008-01-01

    Full Text Available This paper uses the developed parallel version of Michalewicz's Genocop III Genetic Algorithm (GA searching technique to optimize the coil geometry of an eddy current non-destructive testing probe (ECTP. The electromagnetic field is computed using FEMM 2D finite element code. The aim of this optimization was to determine coil dimensions and positions that improve ECTP sensitivity to physical properties of the tested devices.

  20. Do patents impede the provision of genetic tests in Australia?

    Science.gov (United States)

    Nicol, Dianne; Liddicoat, John

    2013-06-01

    Health policy and law reform agencies lack a sound evidence base of the impacts of patents on innovation and access to healthcare to assist them in their deliberations. This paper reports the results of a survey of managers of Australian genetic testing laboratories that asked a series of questions relating to the tests they perform, whether they pay to access patented inventions and whether they have received notifications from patent holders about patents associated with particular tests. Some diagnostics facilities are exposed to patent costs, but they are all located in the private sector. No public hospitals reported paying licence fees or royalties beyond those included in the price of commercial test kits. Some respondents reported having received enforcement notices from patent holders, but almost all related to the widely known breast cancer-associated patents. Respondents were also asked for their views on the most effective mechanisms to protect their ability to provide genetic tests now and in the future. Going to the media, paying licence fees, ignoring patent rights and relying on the government to take action were widely seen as most effective. Litigation and applications for compulsory licences were seen as some of the least effective mechanisms. These results provide an evidence base for development of health policy and law reform. What is known about the topic? The impact of patents on the delivery of genetic testing services remains unclear in Australia. What does this paper add? The survey reported in this paper suggests that, aside from well-known enforcement actions relating to the breast cancer associated patents, there is little evidence that providers of genetic testing services are being exposed to aggressive patent-enforcement practices. What are the implications for practitioners? Although patent-enforcement actions may increase in the future, a range of strategies are available to providers of testing services to protect them against

  1. Human longevity: Genetics or Lifestyle? It takes two to tango.

    Science.gov (United States)

    Passarino, Giuseppe; De Rango, Francesco; Montesanto, Alberto

    2016-01-01

    Healthy aging and longevity in humans are modulated by a lucky combination of genetic and non-genetic factors. Family studies demonstrated that about 25 % of the variation in human longevity is due to genetic factors. The search for genetic and molecular basis of aging has led to the identification of genes correlated with the maintenance of the cell and of its basic metabolism as the main genetic factors affecting the individual variation of the aging phenotype. In addition, studies on calorie restriction and on the variability of genes associated with nutrient-sensing signaling, have shown that ipocaloric diet and/or a genetically efficient metabolism of nutrients, can modulate lifespan by promoting an efficient maintenance of the cell and of the organism. Recently, epigenetic studies have shown that epigenetic modifications, modulated by both genetic background and lifestyle, are very sensitive to the aging process and can either be a biomarker of the quality of aging or influence the rate and the quality of aging. On the whole, current studies are showing that interventions modulating the interaction between genetic background and environment is essential to determine the individual chance to attain longevity.

  2. GOODNESS-OF-FIT TEST WITH GENETIC BACKGROUND

    Institute of Scientific and Technical Information of China (English)

    WU Jihua; XIE Minyu; PENG Rong; SUN Zhihua

    2005-01-01

    The chi-square test is a well-known goodness-of-fit test. It is available for arbitrary alternative hypothesis, particularly for a very general alternative. However, when the alternative is a "one-sided" hypothesis, which usually appears in genetic linkage analysis, the chi-square test does not use the information offered by the one-sided hypothesis.Therefore, it is possible that an appropriate one-sided test, which uses the information,will be better than the chi-square test. This paper gives such an efficient one-sided test.Monte Carlo simulation results show that it is more powerful than the chi-square test, and its power has been in creased by 30 percent as compared with that of the chi-square test inmost situations.

  3. Clinical predictors of genetic testing outcomes in hypertrophic cardiomyopathy.

    Science.gov (United States)

    Ingles, Jodie; Sarina, Tanya; Yeates, Laura; Hunt, Lauren; Macciocca, Ivan; McCormack, Louise; Winship, Ingrid; McGaughran, Julie; Atherton, John; Semsarian, Christopher

    2013-12-01

    Genetic testing for hypertrophic cardiomyopathy has been commercially available for almost a decade; however, low mutation detection rate and cost have hindered uptake. This study sought to identify clinical variables that can predict probands with hypertrophic cardiomyopathy in whom a pathogenic mutation will be identified. Probands attending specialized cardiac genetic clinics across Australia over a 10-year period (2002-2011), who met clinical diagnostic criteria for hypertrophic cardiomyopathy and who underwent genetic testing for hypertrophic cardiomyopathy were included. Clinical, family history, and genotype information were collected. A total of 265 unrelated individuals with hypertrophic cardiomyopathy were included, with 138 (52%) having at least one mutation identified. The mutation detection rate was significantly higher in the probands with hypertrophic cardiomyopathy with an established family history of disease (72 vs. 29%, P < 0.0001), and a positive family history of sudden cardiac death further increased the detection rate (89 vs. 59%, P < 0.0001). Multivariate analysis identified female gender, increased left-ventricular wall thickness, family history of hypertrophic cardiomyopathy, and family history of sudden cardiac death as being associated with greatest chance of identifying a gene mutation. Multiple mutation carriers (n = 16, 6%) were more likely to have suffered an out-of-hospital cardiac arrest or sudden cardiac death (31 vs. 7%, P = 0.012). Family history is a key clinical predictor of a positive genetic diagnosis and has direct clinical relevance, particularly in the pretest genetic counseling setting.

  4. Acceptance of Genetic Testing in a General Population: Age, Education and Gender Differences.

    Science.gov (United States)

    Aro, A. R.; Hakonen, A.; Hietala, M.; Lonnqvist, J.; Niemela, P.; Peltonen, L; Aula, P.

    1997-01-01

    Effects of age, education, and gender on acceptance of genetic testing were studied. Finnish participants responded to a questionnaire presenting reasons for and against genetic testing (N=1,967). Intentions to take genetic tests, worries, and experience of genetic test or hereditary disease were also assessed. Results are presented and discussed.…

  5. Ethical considerations of genetic presymptomatic testing for Huntington's disease.

    Science.gov (United States)

    Coustasse, Alberto; Pekar, Alicia; Sikula, Andrew; Lurie, Sue

    2009-01-01

    The aim of this literature review was to determine if there is adequate ethical justification for presymptomatic genetic testing on potential Huntington's disease patients. Huntington's disease is a neurological genetic disorder characterized by midlife onset which consists of cognitive, physical, and emotional deterioration. Although genetic testing has traditionally been guided by the principle of autonomy, severe psychological consequences such as depression, anxiety, survival guilt, and suicide have complicated the ethical issue of providing a presymptomatic yet definitive diagnosis for an incurable disease. An analysis of available articles yielded inconclusive findings, namely due to insufficient evidence, self-selection bias of test participants, or lack of a longitudinal design. Additional results indicated psychological distress is not solely associated with test result, but rather with individual characteristics including, but not limited to, psychological history, test motivation, level of preparation, social support, and age. In the interest of upholding the principles of autonomy, beneficence, nonmaleficence, and justice, it is recommended that medical professionals follow strict protocol, provide extensive counseling, and employ vigilance when assessing at-risk individuals for HD presymptomatic test eligibility to ensure psychological well-being.

  6. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    Science.gov (United States)

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  7. The Evolution of Human Intelligence and the Coefficient of Additive Genetic Variance in Human Brain Size

    Science.gov (United States)

    Miller, Geoffrey F.; Penke, Lars

    2007-01-01

    Most theories of human mental evolution assume that selection favored higher intelligence and larger brains, which should have reduced genetic variance in both. However, adult human intelligence remains highly heritable, and is genetically correlated with brain size. This conflict might be resolved by estimating the coefficient of additive genetic…

  8. Psychological distress with direct-to-consumer genetic testing: a case report of an unexpected BRCA positive test result.

    Science.gov (United States)

    Dohany, Lindsay; Gustafson, Shanna; Ducaine, Whitney; Zakalik, Dana

    2012-06-01

    We report a case of a client who discovered she had a BRCA mutation following direct-to-consumer (DTC) genetic testing in the absence of genetic counseling. After testing she presented for genetic counseling with anxiety, distress, and a deficit of knowledge about what the DTC genetic testing revealed. Genetic counseling helped alleviate distress while empowering the client to apply the results of testing to improve medical management. Despite recent studies demonstrating no negative psychological impact of DTC genetic testing on the consumer, this case illustrates that significant psychological distress and confusion can occur as a result of DTC genetic testing for highly penetrant single gene disorders. Pre- and post-test genetic counseling in conjunction with DTC genetic testing may alleviate consumers' distress and empower clients to proactively utilize their result information.

  9. Development of a Rapid, Reliable Genetic Test for Pseudoxanthoma Elasticum

    OpenAIRE

    Shi, Yanggu; Terry, Sharon F.; Terry, Patrick F.; Bercovitch, Lionel G.; Gerard, Gary F.

    2007-01-01

    Mutations in the human ABCC6 gene cause pseudoxanthoma elasticum (PXE), a hereditary disorder that impacts the skin, eyes, and cardiovascular system. Currently, the diagnosis of PXE is based on physical findings and histological examination of a biopsy of affected skin. We have combined two simple, polymerase chain reaction (PCR)-based methods to develop a rapid, reliable genetic assay for the majority of known PXE mutations. After PCR amplification and heteroduplex formation, mutations in ex...

  10. Human genetics of infectious diseases: a unified theory

    Science.gov (United States)

    Casanova, Jean-Laurent; Abel, Laurent

    2007-01-01

    Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predisposing the individual to a principal or single type of infection is emerging. In parallel, several common infections have been shown to reflect the inheritance of one major susceptibility gene, at least in some populations. This novel causal relationship (one gene, one infection) blurs the distinction between patient-based Mendelian genetics and population-based complex genetics, and provides a unified conceptual frame for exploring the molecular genetic basis of infectious diseases in humans. PMID:17255931

  11. Primer on Molecular Genetics; DOE Human Genome Program

    Science.gov (United States)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  12. Common genetic variants influence human subcortical brain structures

    OpenAIRE

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro,; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume de...

  13. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  14. Genetic testing in nephrotic syndrome--challenges and opportunities.

    Science.gov (United States)

    Gbadegesin, Rasheed A; Winn, Michelle P; Smoyer, William E

    2013-03-01

    Monogenic nephrotic syndrome (nephrotic syndrome caused by a single gene defect) is responsible for only a small percentage of cases of nephrotic syndrome, but information from studies of the unique cohort of patients with this form of the disease has dramatically improved our understanding of the disease pathogenesis. The use of genetic testing in the management of children and adults with nephrotic syndrome poses unique challenges for clinicians in terms of who to test and how to use the information obtained from testing in the clinical setting. In our view, not enough data exist at present to justify the routine genetic testing of all patients with nephrotic syndrome. Testing is warranted, however, in patients with congenital nephrotic syndrome (onset at 0-3 months), infantile nephrotic syndrome (onset at 3-12 months), a family history of nephrotic syndrome, and those in whom nephrotic syndrome is associated with other congenital malformations. The family and/or the patient should be given complete and unbiased information on the potential benefits and risks associated with therapy, including the reported outcomes of treatment in patients with similar mutations. Based on the data available in the literature so far, intensive immunosuppressive treatment is probably not indicated in monogenic nephrotic syndrome if complete or partial remission has not been achieved within 6 weeks of starting treatment. We advocate that family members of individuals with genetic forms of nephrotic syndrome undergo routine genetic testing prior to living-related kidney transplantation. Prospective, multicentre studies are needed to more completely determine the burden of disease caused by monogenic nephrotic syndrome, and randomized controlled trials are needed to clarify the presence or absence of clinical responses of monogenic nephrotic syndrome to available therapies.

  15. Genetic citizenship: DNA testing and the Israeli Law of Return.

    Science.gov (United States)

    McGonigle, Ian V; Herman, Lauren W

    2015-07-01

    The Israeli State recently announced that it may begin to use genetic tests to determine whether potential immigrants are Jewish or not. This development would demand a rethinking of Israeli law on the issue of the definition of Jewishness. In this article, we discuss the historical and legal context of secular and religious definitions of Jewishness and rights to immigration in the State of Israel. We give a brief overview of different ways in which genes have been regarded as Jewish, and we discuss the relationship between this new use of genetics and the society with which it is co-produced. In conclusion, we raise several questions about future potential impacts of Jewish genetics on Israeli law and society.

  16. Seedling test and genetic analysis of white poplar hybrid clones

    Institute of Scientific and Technical Information of China (English)

    LI Bo; JIANG Xi-bing; ZHANG You-hui; ZHANG Zhi-yi; LI Shan-wen; AN Xin-min

    2008-01-01

    Cross breeding strategies are very efficient for gaining new and superior genotypes. Ninety-eight new white poplar hybrid clones produced from 12 cross combinations within the Section Leuce Duby were studied using genetic analysis and seedling tests. We exploited the wide variation that exists in this population and found that the differences among diameter at breast height (DBH), root collar diameter (RCD) and height (H) were statistically extremely significant. The repeatability of clones of these measured traits ranged from 0.947-0.967, which indicated that these Waits were strongly controlled by genetic factors. Based on multiple comparisons, a total of 25 clones showed better performance in growth than the conlrol cultivar. These 25 clones were from six different cross combinations, which can guarantee a larger genetic background for future new clone promotion projects. This study provides a simple overview on these clones and can guide us to carry out subsequent selection plans.

  17. Genetics of human episodic memory: dealing with complexity.

    Science.gov (United States)

    Papassotiropoulos, Andreas; de Quervain, Dominique J-F

    2011-09-01

    Episodic memory is a polygenic behavioral trait with substantial heritability estimates. Despite its complexity, recent empirical evidence supports the notion that behavioral genetic studies of episodic memory might successfully identify trait-associated molecules and pathways. The development of high-throughput genotyping methods, of elaborated statistical analyses and of phenotypic assessment methods at the neural systems level will facilitate the reliable identification of novel memory-related genes. Importantly, a necessary crosstalk between behavioral genetic studies and investigation of causality by molecular genetic studies will ultimately pave the way towards the identification of biologically important, and hopefully druggable, genes and molecular pathways related to human episodic memory.

  18. A current genetic and epigenetic view on human aging mechanisms.

    Science.gov (United States)

    Ostojić, Sala; Pereza, Nina; Kapović, Miljenko

    2009-06-01

    The process of aging is one of the most complex and intriguing biological phenomenons. Aging is a genetically regulated process in which the organism's maximum lifespan potential is pre-determined, while the rate of aging is influenced by environmental factors and lifestyle. Considering the complexity of mechanisms involved in the regulation of aging process, up to this date there isn't a major, unifying theory which could explain them. As genetic/epigenetic and environmental factors both inevitably influence the aging process, here we present a review on the genetic and epigenetic regulation of the most important molecular and cellular mechanisms involved in the process of aging. Based on the studies on oxidative stress, metabolism, genome stability, epigenetic modifications and cellular senescence in animal models and humans, we give an overview of key genetic and molecular pathways related to aging. As most of genetic manipulations which influence the aging process also affect reproduction, we discuss aging in humans as a post-reproductive genetically determined process. After the age of reproductive success, aging continously progresses which clinically coincides with the onset of most chronic diseases, cancers and dementions. As evolution shapes the genomes for reproductive success and not for post-reproductive survival, aging could be defined as a protective mechanism which ensures the preservation and progress of species through the modification, trasmission and improvement of genetic material.

  19. Genetic Effects on Fine-Grained Human Cortical Regionalization.

    Science.gov (United States)

    Cui, Yue; Liu, Bing; Zhou, Yuan; Fan, Lingzhong; Li, Jin; Zhang, Yun; Wu, Huawang; Hou, Bing; Wang, Chao; Zheng, Fanfan; Qiu, Chengxiang; Rao, Li-Lin; Ning, Yuping; Li, Shu; Jiang, Tianzi

    2016-09-01

    Various brain structural and functional features such as cytoarchitecture, topographic mapping, gyral/sulcal anatomy, and anatomical and functional connectivity have been used in human brain parcellation. However, the fine-grained intrinsic genetic architecture of the cortex remains unknown. In the present study, we parcellated specific regions of the cortex into subregions based on genetic correlations (i.e., shared genetic influences) between the surface area of each pair of cortical locations within the seed region. The genetic correlations were estimated by comparing the correlations of the surface area between monozygotic and dizygotic twins using bivariate twin models. Our genetic subdivisions of diverse brain regions were reproducible across 2 independent datasets and corresponded closely to fine-grained functional specializations. Furthermore, subregional genetic correlation profiles were generally consistent with functional connectivity patterns. Our findings indicate that the magnitude of the genetic covariance in brain anatomy could be used to delineate the boundaries of functional subregions of the brain and may be of value in the next generation human brain atlas.

  20. Mucopolysaccharidosis VI in cats - clarification regarding genetic testing.

    Science.gov (United States)

    Lyons, Leslie A; Grahn, Robert A; Genova, Francesca; Beccaglia, Michela; Hopwood, John J; Longeri, Maria

    2016-07-02

    The release of new DNA-based diagnostic tools has increased tremendously in companion animals. Over 70 different DNA variants are now known for the cat, including DNA variants in disease-associated genes and genes causing aesthetically interesting traits. The impact genetic tests have on animal breeding and health management is significant because of the ability to control the breeding of domestic cats, especially breed cats. If used properly, genetic testing can prevent the production of diseased animals, causing the reduction of the frequency of the causal variant in the population, and, potentially, the eventual eradication of the disease. However, testing of some identified DNA variants may be unwarranted and cause undo strife within the cat breeding community and unnecessary reduction of gene pools and availability of breeding animals. Testing for mucopolysaccharidosis Type VI (MPS VI) in cats, specifically the genetic testing of the L476P (c.1427T>C) and the D520N (c.1558G>A) variants in arylsulfatase B (ARSB), has come under scrutiny. No health problems are associated with the D520N (c.1558G>A) variant, however, breeders that obtain positive results for this variant are speculating as to possible correlation with health concerns. Birman cats already have a markedly reduced gene pool and have a high frequency of the MPS VI D520N variant. Further reduction of the gene pool by eliminating cats that are heterozygous or homozygous for only the MPS VI D520N variant could lead to more inbreeding depression effects on the breed population. Herein is debated the genetic testing of the MPS VI D520N variant in cats. Surveys from different laboratories suggest the L476P (c.1427T>C) disease-associated variant should be monitored in the cat breed populations, particularly breeds with Siamese derivations and outcrosses. However, the D520N has no evidence of association with disease in cats and testing is not recommended in the absence of L476P genotyping. Selection

  1. Consumer preferences for the predictive genetic test for Alzheimer disease.

    Science.gov (United States)

    Huang, Ming-Yi; Huston, Sally A; Perri, Matthew

    2014-04-01

    The purpose of this study was to assess consumer preferences for predictive genetic testing for Alzheimer disease in the United States. A rating conjoint analysis was conducted using an anonymous online survey distributed by Qualtrics to a general population panel in April 2011 in the United States. The study design included three attributes: Accuracy (40%, 80%, and 100%), Treatment Availability (Cure is available/Drug for symptom relief but no cure), and Anonymity (Anonymous/Not anonymous). A total of 12 scenarios were used to elicit people's preference, assessed by an 11-point scale. The respondents also indicated their highest willingness-to-pay (WTP) for each scenario through open-ended questions. A total of 295 responses were collected over 4 days. The most important attribute for the aggregate model was Accuracy, contributing 64.73% to the preference rating. Treatment Availability and Anonymity contributed 20.72% and 14.59%, respectively, to the preference rating. The median WTP for the highest-rating scenario (Accuracy 100%, a cure is available, test result is anonymous) was $100 (mean = $276). The median WTP for the lowest-rating scenario (40% accuracy, no cure but drugs for symptom relief, not anonymous) was zero (mean = $34). The results of this study highlight attributes people find important when making the hypothetical decision to obtain an AD genetic test. These results should be of interests to policy makers, genetic test developers and health care providers.

  2. Genetic and Epigenetic Discoveries in Human Retinoblastoma.

    Science.gov (United States)

    McEvoy, Justina D; Dyer, Michael A

    2015-01-01

    Retinoblastoma is a rare pediatric cancer of the retina. Nearly all retinoblastomas are initiated through the biallelic inactivation of the retinoblastoma tumor susceptibility gene (RB1). Whole-genome sequencing has made it possible to identify secondary genetic lesions following RB1 inactivation. One of the major discoveries from retinoblastoma sequencing studies is that some retinoblastoma tumors have stable genomes. Subsequent epigenetic studies showed that changes in the epigenome contribute to the rapid progression of retinoblastoma following RB1 gene inactivation. In addition, gene amplification and elevated expression of p53 antagonists, MDM2 and MDM4, may also play an important role in retinoblastoma tumorigenesis. The knowledge gained from these recent molecular, cellular, genomic, and epigenomic analyses are now being integrated to identify new therapeutic approaches that can help save lives and vision in children with retinoblastoma, with fewer long-term side effects.

  3. Genetic and biomarker studies of human longevity

    NARCIS (Netherlands)

    Deelen, Joris

    2014-01-01

    The aim of this thesis was to identify novel lifespan regulating loci that influence human longevity and population mortality. To this end, we performed two genome-wide association studies, one of long-lived individuals from the family-based Leiden Longevity Study (LLS) and an extended one of long-l

  4. Human aggression across the lifespan: genetic propensities and environmental moderators.

    Science.gov (United States)

    Tuvblad, Catherine; Baker, Laura A

    2011-01-01

    This chapter reviews the recent evidence of genetic and environmental influences on human aggression. Findings from a large selection of the twin and adoption studies that have investigated the genetic and environmental architecture of aggressive behavior are summarized. These studies together show that about half (50%) of the variance in aggressive behavior is explained by genetic influences in both males and females, with the remaining 50% of the variance being explained by environmental factors not shared by family members. Form of aggression (reactive, proactive, direct/physical, indirect/relational), method of assessment (laboratory observation, self-report, ratings by parents and teachers), and age of the subjects-all seem to be significant moderators of the magnitude of genetic and environmental influences on aggressive behavior. Neither study design (twin vs. sibling adoption design) nor sex (male vs. female) seems to impact the magnitude of the genetic and environmental influences on aggression. There is also some evidence of gene-environment interaction (G × E) from both twin/adoption studies and molecular genetic studies. Various measures of family adversity and social disadvantage have been found to moderate genetic influences on aggressive behavior. Findings from these G × E studies suggest that not all individuals will be affected to the same degree by experiences and exposures, and that genetic predispositions may have different effects depending on the environment.

  5. A comparison of worldwide phonemic and genetic variation in human populations.

    Science.gov (United States)

    Creanza, Nicole; Ruhlen, Merritt; Pemberton, Trevor J; Rosenberg, Noah A; Feldman, Marcus W; Ramachandran, Sohini

    2015-02-03

    Worldwide patterns of genetic variation are driven by human demographic history. Here, we test whether this demographic history has left similar signatures on phonemes-sound units that distinguish meaning between words in languages-to those it has left on genes. We analyze, jointly and in parallel, phoneme inventories from 2,082 worldwide languages and microsatellite polymorphisms from 246 worldwide populations. On a global scale, both genetic distance and phonemic distance between populations are significantly correlated with geographic distance. Geographically close language pairs share significantly more phonemes than distant language pairs, whether or not the languages are closely related. The regional geographic axes of greatest phonemic differentiation correspond to axes of genetic differentiation, suggesting that there is a relationship between human dispersal and linguistic variation. However, the geographic distribution of phoneme inventory sizes does not follow the predictions of a serial founder effect during human expansion out of Africa. Furthermore, although geographically isolated populations lose genetic diversity via genetic drift, phonemes are not subject to drift in the same way: within a given geographic radius, languages that are relatively isolated exhibit more variance in number of phonemes than languages with many neighbors. This finding suggests that relatively isolated languages are more susceptible to phonemic change than languages with many neighbors. Within a language family, phoneme evolution along genetic, geographic, or cognate-based linguistic trees predicts similar ancestral phoneme states to those predicted from ancient sources. More genetic sampling could further elucidate the relative roles of vertical and horizontal transmission in phoneme evolution.

  6. Human fertility, molecular genetics, and natural selection in modern societies.

    Directory of Open Access Journals (Sweden)

    Felix C Tropf

    Full Text Available Research on genetic influences on human fertility outcomes such as number of children ever born (NEB or the age at first childbirth (AFB has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758, results show significant additive genetic effects on both traits explaining 10% (SE = 5 of the variance in the NEB and 15% (SE = 4 in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of -0.62 (SE = 0.27, p-value = 0.02. This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size.

  7. Human fertility, molecular genetics, and natural selection in modern societies.

    Science.gov (United States)

    Tropf, Felix C; Stulp, Gert; Barban, Nicola; Visscher, Peter M; Yang, Jian; Snieder, Harold; Mills, Melinda C

    2015-01-01

    Research on genetic influences on human fertility outcomes such as number of children ever born (NEB) or the age at first childbirth (AFB) has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML) methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758), results show significant additive genetic effects on both traits explaining 10% (SE = 5) of the variance in the NEB and 15% (SE = 4) in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of -0.62 (SE = 0.27, p-value = 0.02). This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size.

  8. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease.

    Science.gov (United States)

    Pinnapureddy, Ashish R; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-09-02

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review.

  9. [Human genetic data from a data protection law perspective].

    Science.gov (United States)

    Schulte In den Bäumen, Tobias

    2007-02-01

    The collection and use of genetic data have caused much concern in the German population. Data protection is widely seen as the tool to address these fears. The term genetic data is not self-explanatory, as it depends on the different types of genetic diseases. The protection of genetic data as defined with regard to the different sets of diseases needs to fit into the preexisting data protection legislation. Still, the particularities of genetic data such as the multipersonal impact need to be considered. A balance between the information needs of society and the right to privacy requires a medically driven criteria. The medical term of indication which corresponds with the data protection term of purpose should serve as a tool in order to balance the rights of the patients and their relatives or between clients and third persons involved. Some countries have set up new legislative acts to address the challenges of human genetics. The current state of German data protection law leaves citizen rather unprotected as long as the data are used for medical purposes in a wider sense. A special law on the collection of genetic data has been discussed for several years, but it should be questioned whether the scope of a sector-specific law would serve citizens better. It seems to be preferable to adjust the existing Data Protection Act rather than drafting a specific law which covers the field of human genetics. This adaptation should reflect upon the different technical ways in which genetic data are collected and used.

  10. Recommendations for quality improvement in genetic testing for cystic fibrosis European Concerted Action on Cystic Fibrosis

    NARCIS (Netherlands)

    Dequeker, E; Cuppens, H; Dodge, J; Estivill, [No Value; Goossens, M; Pignatti, PF; Scheffer, H; Schwartz, M; Schwarz, M; Tummler, B; Cassiman, JJ

    These recommendations for quality improvement of cystic fibrosis genetic diagnostic testing provide general guidelines for the molecular genetic testing of cystic fibrosis in patients/individuals. General strategies for testing as well as guidelines for laboratory procedures, internal and external

  11. Epidemiology and Genetic Epidemiology of the Liver Function Test Proteins

    Science.gov (United States)

    Rahmioglu, Nilufer; Andrew, Toby; Cherkas, Lynn; Surdulescu, Gabriela; Swaminathan, Ramasamyiyer; Spector, Tim; Ahmadi, Kourosh R.

    2009-01-01

    Background The liver function test (LFT) is among the most commonly used clinical investigations to assess hepatic function, severity of liver diseases and the effect of therapies, as well as to detect drug-induced liver injury (DILI). Aims To determine the relative contribution of genetic and environmental factors as well as test and quantify the effects of sex, age, BMI and alcohol consumption to variation in liver function test proteins - including alanine amino transaminase (ALT), Albumin, gamma glutamyl transpeptidase (GGT), total bilirubin, total protein, total globulin, aspartate transaminase (AST), and alkaline phosphotase (ALP) - using the classical twin model. Methods Blood samples were collected from a total of 5380 twin pairs from the TwinsUK registry. We measured the expression levels of major proteins associated with the LFT, calculated BMI from measured weight and height and questionnaires were completed for alcohol consumption by the twins. The relative contribution of genetic and environmental factors to variation in the LFT proteins was assessed and quantified using a variance components model fitting approach. Results Our results show that (1) variation in all the LFTs has a significant heritable basis (h2 ranging from 20% to 77%); (2) other than GGT, the LFTs are all affected to some extent by common environmental factors (c2 ranging from 24% to 54%); and (3) a small but significant proportion of the variation in the LFTs was due to confounding effects of age, sex, BMI, and alcohol use. Conclusions Variation in the LFT proteins is under significant genetic and common environmental control although sex, alcohol use, age and BMI also contribute significantly to inter-individual variation in the LFT proteins. Understanding the underlying genetic contribution of liver function tests may help the interpretation of their results and explain wide variation among individuals. PMID:19209234

  12. Integrated patient and tumor genetic testing for individualized cancer therapy.

    Science.gov (United States)

    Hertz, D L; McLeod, H L

    2016-02-01

    Tumor genome analysis is transforming cancer treatment by enabling identification of specific oncogenic drivers and selection of effective targeted agents. Meanwhile, patient genome analysis is being employed across therapeutic areas to inform selection of appropriate drugs and doses for treatment safety. Integration of patient genome analysis concurrent with preemptive tumor genetic testing will enable oncologists to make informed treatment decisions to select the right dose of the right drug for each patient and their tumor.

  13. Minimal-Length Interoperability Test Sequences Generation via Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHONG Ning; KUANG Jing-ming; HE Zun-wen

    2008-01-01

    A novel interoperability test sequences optimization scheme is proposed in which the genetic algo-rithm(GA)is used to obtain the minimal-length interoperability test sequences.During our work,the basicin teroperability test sequences are generated based on the minimal-complete-coverage criterion,which removes the redundancy from conformance test sequences.Then interoperability sequences minimization problem can be considered as an instance of the set covering problem,and the GA is applied to remove redundancy in interoperability transitions.The results show that compared to conventional algorithm,the proposed algorithm is more practical to avoid the state space explosion problem,for it can reduce the length of the test sequences and maintain the same transition coverage.

  14. Attitudes of young adults to prenatal screening and genetic correction for human attributes and psychiatric conditions.

    Science.gov (United States)

    Milner, K K; Collins, E E; Connors, G R; Petty, E M

    1998-03-05

    With recent advances in DNA technology, questions have arisen as to how this technology should be appropriately used. In this article, results obtained from a survey designed to elicit attitudes of college students to prenatal testing and gene therapy for human attributes and psychiatric conditions are reported. The eleven hypothetical disease phenotypes included schizophrenia, alcoholism, tendency toward violent behavior, attention deficit/hyperactivity disorder, depression requiring medical treatment, obesity, involvement in "dangerous" sports activities, homosexuality, borderline normal IQ (80-100), proportional short stature, and inability to detect perfect pitch. Most students supported prenatal genetic testing for psychiatric disorders and behavior that might result in harm to others (i.e., tendency towards violent behavior) and found prenatal genetic testing for human attributes less desirable. However, the lack of unilateral agreement or disagreement toward any one condition or attribute suggests the potential difficulties ahead in the quest for guidelines for the application of new technologies available to manipulate the human genome.

  15. Genetic Test of New Cottonwood Clones at Nursery Stage

    Institute of Scientific and Technical Information of China (English)

    QINGuanghua; JIANGYuezhong

    2004-01-01

    Twenty-five new clones belong to Populus Aigeiros of both domestic and foreign origin had been introduced and tested at nursery stage in Shandong province. Results showed that height (H),diameter at stem base (DO) and survival rate (SR) varied significantly and genetic variation were very large among the clones. CVg and broad-sense heritability (h2) of H, DO and SR of 1-year-old stock nursery were 7.43%, 9.25%, 18.78% and 78.91%, 96.31%, 95.93%, respectively, showing high genetic control on the tested traits. 11 superior clones with characteristics of high growth rate and medium or high SR were primarily selected and genetic gains (△G) of H, DO and SR were 16.89%, 16.08% and 13.08%, respectively.Rooting habits test of some selected clones were also conducted based on the cutting culture in water container and annual growth increment measured. The date of first root emergence, number of main roots, number of lateral roots, length of main roots and the emergence date of growth peak varied to certain degree among the selected clones.

  16. BRCA mutation genetic testing implications in the United States.

    Science.gov (United States)

    Bayraktar, Soley; Arun, Banu

    2017-02-01

    BRCA mutation carriers have a very high risk of breast and ovarian cancer by age 70, in the ranges 47%-66% and 40%-57%, respectively. Additionally, women with BRCA mutation-associated breast cancer also have an elevated risk of other or secondary malignancies. Fortunately, the breast and ovarian cancer outcome for BRCA1/2 mutation carriers is at least as good as for non-carriers with chemoprevention, prophylactic surgeries and appropriate use of therapies. Therefore, identification of those who might have a mutation is important so that genetic counseling, testing, screening and prevention strategies can be applied in a timely manner. This article reviews the impact of genetic testing in general, timing of genetic testing after diagnosis and prior knowledge of mutation status in BRCA carriers with newly diagnosed breast cancer. Additionally, risk-reducing surgeries including the prophylactic contralateral mastectomy, and bilateral salpingo-oophorectomy and the sensitivity of BRCA-defective breast cancer cell lines to differential chemotherapeutic agents will be discussed.

  17. Genetic heterogeneity in HER2 testing may influence therapy eligibility.

    Science.gov (United States)

    Bernasconi, Barbara; Chiaravalli, Anna Maria; Finzi, Giovanna; Milani, Katia; Tibiletti, Maria Grazia

    2012-05-01

    Prospective studies have demonstrated that approximately 20% of HER2 testing may be inaccurate. When carefully validated testing is conducted, available data do not clearly demonstrate the superiority of either IHC or fluorescence in situ hybridization (FISH) as a predictor of benefit from anti-HER2 therapy. In addition, the interpretation of the findings of HER2 tests according to international guidelines is not uniform. The American Society of Clinical Oncology (ASCO) and the College of American Pathologists (CAP) recently published practice guidelines for a definition of HER2 amplification heterogeneity that can give rise to discrepant results between IHC and FISH assays for HER2. In this article, we compare the HER2 status of 291 non consecutive breast cancers. The status is determined by both IHC and FISH approaches, using a specific FISH strategy to investigate genetic heterogeneity. Our data demonstrate that HER2 amplified cells may be found as diffuse, clustered in a specific area or section, intermingled with non-amplified cells or confined to metastatic nodules. The correct evaluation of ratio value in the presence of genetic heterogeneity and of polysomy contributes to the accurate assessment of HER2 status and potentially affects the selection of appropriate anti-HER2 therapy. By taking into account the presence of different genetic cell populations, the immunotherapy eligibility criteria for HER2 FISH scoring proposed in the CAP (2009) and SIGU guidelines identify an additional subset of cases for trastuzumab or lapatinib therapy compared to the ASCO/CAP (2007) guidelines.

  18. The Current Landscape of Genetic Testing in Cardiovascular Malformations: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Benjamin John Landis

    2016-07-01

    Full Text Available Human cardiovascular malformations (CVMs frequently have a genetic contribution. Through the application of novel technologies such as next generation sequencing, DNA sequence variants associated with CVMs are being identified at a rapid pace. While clinicians are now able to offer testing with next generation sequencing gene panels or whole exome sequencing to any patient with a CVM, the interpretation of genetic variation remains problematic. Variable phenotypic expression, reduced penetrance, inconsistent phenotyping methods, and the lack of high throughput functional testing of variants, contribute to these challenges. This article elaborates critical issues that impact the decision to broadly implement clinical molecular genetic testing in CVMs. Major benefits of testing include establishing a genetic diagnosis, facilitating cost-effective screening of family members who may have subclinical disease, predicting recurrence risk in offspring, enabling early diagnosis and anticipatory management of CV and non-CV disease phenotypes, predicting long term outcomes, and facilitating the development of novel therapies aimed at disease improvement or prevention. Limitations include financial cost, psychosocial cost, and ambiguity of interpretation of results. Multiplex families and patients with syndromic features are two groups where disease causation could potentially be firmly established. However, these account for the minority of the overall CVM population, and there is increasing recognition that genotypes previously associated with syndromes also exist in patients who lack non-CV findings. In all circumstances, ongoing dialogue between cardiologists and clinical geneticists will be needed to accurately interpret genetic testing and improve these patients’ health. This may be most effectively implemented by the creation and support of CV genetics services at centers committed to pursuing testing for patients.

  19. GENETIC STUDY OF HUMAN CELLS IN VITRO

    Science.gov (United States)

    Chang, R. Shihman

    1960-01-01

    The isolation of carbohydrate variants from cultures of HeLa and conjunctival cells was described. Factors inherent in the cell culture system, such as parent populations and dialyzed serums, have been shown to influence the outcome of variant isolations. Established stable variants incorporated significantly more pentoses or lactate into various cell fractions than the parent cultures. Besides their abilities to propagate continuously in the selecting environments, the variants multiplied slower, were more susceptible to sub-zero preservation and the cytotoxic effect of D-2-deoxyglucose, showed lower cloning efficiencies and were less susceptible to the deleterious effect of glucose oxidase. The ribose variants also differed from the parent cultures in morphological appearance such as formation of multinucleated cells and ring-shaped colonies. They converted more ribose into other component sugars of mucopolysaccharides than the parent cultures. Preliminary analyses of the mucopolysaccharides extracted from the ribose variants and parent cultures showed large difference in their carbohydrate (Molisch-positive materials) and DNA ratios. Evidence suggests that a sequence of interrelated events from genetic selection to primitive morphogenesis has been established. PMID:13692337

  20. Unraveling the genetics of human obesity.

    Directory of Open Access Journals (Sweden)

    David M Mutch

    2006-12-01

    Full Text Available The use of modern molecular biology tools in deciphering the perturbed biochemistry and physiology underlying the obese state has proven invaluable. Identifying the hypothalamic leptin/melanocortin pathway as critical in many cases of monogenic obesity has permitted targeted, hypothesis-driven experiments to be performed, and has implicated new candidates as causative for previously uncharacterized clinical cases of obesity. Meanwhile, the effects of mutations in the melanocortin-4 receptor gene, for which the obese phenotype varies in the degree of severity among individuals, are now thought to be influenced by one's environmental surroundings. Molecular approaches have revealed that syndromes (Prader-Willi and Bardet-Biedl previously assumed to be controlled by a single gene are, conversely, regulated by multiple elements. Finally, the application of comprehensive profiling technologies coupled with creative statistical analyses has revealed that interactions between genetic and environmental factors are responsible for the common obesity currently challenging many Westernized societies. As such, an improved understanding of the different "types" of obesity not only permits the development of potential therapies, but also proposes novel and often unexpected directions in deciphering the dysfunctional state of obesity.

  1. Perception of Genetic Testing for Deafness and Factors Associated with Interest in Genetic Testing Among Deaf People in a Selected Population in Sub-Saharan Africa.

    Science.gov (United States)

    Adedokun, Babatunde O; Yusuf, Bidemi O; Lasisi, J Taye; Jinadu, A A; Sunmonu, M T; Ashanke, A F; Lasisi, O Akeem

    2015-12-01

    Understanding the perceptions of genetic testing by members of the deaf community may help in planning deafness genetics research, especially so in the context of strong adherence to cultural values as found among native Africans. Among Yorubas in Nigeria, deafness is perceived to be caused by some offensive actions of the mother during pregnancy, spiritual attack, and childhood infections. We studied attitudes towards, and acceptance of genetic testing by the deaf community in Nigeria. Structured questionnaires were administered to individuals sampled from the Vocational Training Centre for the Deaf, the religious Community, and government schools, among others. The main survey items elicited information about the community in which the deaf people participate, their awareness of genetic testing, whether or not they view genetic testing as acceptable, and their understanding of the purpose of genetic testing. There were 150 deaf participants (61.3 % males, 38.7 % females) with mean age of 26.7 years ±9.8. A majority of survey respondents indicated they relate only with other members of the deaf community (78 %) and reported believing genetic testing does more good than harm (79.3 %); 57 % expressed interest in genetic testing. Interest in genetic testing for deafness or in genetic testing in pregnancy was not related to whether respondents relate primarily to the deaf or to the hearing community. However, a significantly higher number of male respondents and respondents with low education reported interest in genetic testing.

  2. Fine-scaled human genetic structure revealed by SNP microarrays.

    Science.gov (United States)

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  3. Molecular genetics of human obesity: A comprehensive review.

    Science.gov (United States)

    Singh, Rajan Kumar; Kumar, Permendra; Mahalingam, Kulandaivelu

    2017-02-01

    Obesity and its related health complications is a major problem worldwide. Hypothalamus and their signalling molecules play a critical role in the intervening and coordination with energy balance and homeostasis. Genetic factors play a crucial role in determining an individual's predisposition to the weight gain and being obese. In the past few years, several genetic variants were identified as monogenic forms of human obesity having success over common polygenic forms. In the context of molecular genetics, genome-wide association studies (GWAS) approach and their findings signified a number of genetic variants predisposing to obesity. However, the last couple of years, it has also been noticed that alterations in the environmental and epigenetic factors are one of the key causes of obesity. Hence, this review might be helpful in the current scenario of molecular genetics of human obesity, obesity-related health complications (ORHC), and energy homeostasis. Future work based on the clinical discoveries may play a role in the molecular dissection of genetic approaches to find more obesity-susceptible gene loci. Copyright © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  4. Medical and human genetics 1977: trends and directions.

    Science.gov (United States)

    Motulsky, A G

    1978-03-01

    Our field is in a rapid state of evolution. The broader concerns of human genetics not of immediate medical interest such as behavioral genetics are often investigated by persons not trained or identified as human geneticists. Both medical genetics and human genetics in general have prospered when various biologic techniques have been applied to genetic concepts. A search for novel biologic methods may provide new insights and may bridge the gulf between Mendelian and biometric approaches in studies of behavior and of common diseases. Medical geneticists need to broaden their fields of interest to encompass other fields than those of pediatric interest alone. We need to attract more basic scientists. Our field is evolving from a largely research oriented science to a service-oriented specialty. This logical development is a sign of increasing maturity and makes available to the public the results of our research. The resulting stresses and strains need careful watching to prevent their slowing the momentum of our science which can contribute continued insights into the many problems of behavior, health, and disease.

  5. Identifying genetic marker sets associated with phenotypes via an efficient adaptive score test

    KAUST Repository

    Cai, T.

    2012-06-25

    In recent years, genome-wide association studies (GWAS) and gene-expression profiling have generated a large number of valuable datasets for assessing how genetic variations are related to disease outcomes. With such datasets, it is often of interest to assess the overall effect of a set of genetic markers, assembled based on biological knowledge. Genetic marker-set analyses have been advocated as more reliable and powerful approaches compared with the traditional marginal approaches (Curtis and others, 2005. Pathways to the analysis of microarray data. TRENDS in Biotechnology 23, 429-435; Efroni and others, 2007. Identification of key processes underlying cancer phenotypes using biologic pathway analysis. PLoS One 2, 425). Procedures for testing the overall effect of a marker-set have been actively studied in recent years. For example, score tests derived under an Empirical Bayes (EB) framework (Liu and others, 2007. Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models. Biometrics 63, 1079-1088; Liu and others, 2008. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC bioinformatics 9, 292-2; Wu and others, 2010. Powerful SNP-set analysis for case-control genome-wide association studies. American Journal of Human Genetics 86, 929) have been proposed as powerful alternatives to the standard Rao score test (Rao, 1948. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Mathematical Proceedings of the Cambridge Philosophical Society, 44, 50-57). The advantages of these EB-based tests are most apparent when the markers are correlated, due to the reduction in the degrees of freedom. In this paper, we propose an adaptive score test which up- or down-weights the contributions from each member of the marker-set based on the Z-scores of

  6. Organizational Benchmarks for Test Utilization Performance: An Example Based on Positivity Rates for Genetic Tests.

    Science.gov (United States)

    Rudolf, Joseph; Jackson, Brian R; Wilson, Andrew R; Smock, Kristi J; Schmidt, Robert L

    2017-04-01

    Health care organizations are under increasing pressure to deliver value by improving test utilization management. Many factors, including organizational factors, could affect utilization performance. Past research has focused on the impact of specific interventions in single organizations. The impact of organizational factors is unknown. The objective of this study is to determine whether testing patterns are subject to organizational effects, ie, are utilization patterns for individual tests correlated within organizations. Comparative analysis of ordering patterns (positivity rates for three genetic tests) across 659 organizations. Hierarchical regression was used to assess the impact of organizational factors after controlling for test-level factors (mutation prevalence) and hospital bed size. Test positivity rates were correlated within organizations. Organizations have a statistically significant impact on the positivity rate of three genetic tests.

  7. Genetic alterations by human papillomaviruses in oncogenesis.

    Science.gov (United States)

    Lazo, P A; Gallego, M I; Ballester, S; Feduchi, E

    1992-03-30

    The integration sites in the cellular genome of human papillomavirus are located in chromosomal regions always associated with oncogenes or other known tumor phenotypes. Two regions, 8q24 and 12q13, are common to several cases of cervical carcinoma and can have integrated more than one type of papillomavirus DNA. These two chromosomal regions contain several genes implicated in oncogenesis. These observations strongly imply that viral integration sites of DNA tumor viruses can be used as the access point to chromosomal regions where genes implicated in the tumor phenotype are located, a situation similar to that of non-transforming retroviruses.

  8. Dissecting genetic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice.

    Science.gov (United States)

    Wu, Min; Jung, Lina; Cooper, Adrian B; Fleet, Christina; Chen, Lihao; Breault, Lyne; Clark, Kimberly; Cai, Zuhua; Vincent, Sylvie; Bottega, Steve; Shen, Qiong; Richardson, Andrea; Bosenburg, Marcus; Naber, Stephen P; DePinho, Ronald A; Kuperwasser, Charlotte; Robinson, Murray O

    2009-04-28

    Breast cancer development is a complex pathobiological process involving sequential genetic alterations in normal epithelial cells that results in uncontrolled growth in a permissive microenvironment. Accordingly, physiologically relevant models of human breast cancer that recapitulate these events are needed to study cancer biology and evaluate therapeutic agents. Here, we report the generation and utilization of the human breast cancer in mouse (HIM) model, which is composed of genetically engineered primary human breast epithelial organoids and activated human breast stromal cells. By using this approach, we have defined key genetic events required to drive the development of human preneoplastic lesions as well as invasive adenocarcinomas that are histologically similar to those in patients. Tumor development in the HIM model proceeds through defined histological stages of hyperplasia, DCIS to invasive carcinoma. Moreover, HIM tumors display characteristic responses to targeted therapies, such as HER2 inhibitors, further validating the utility of these models in preclinical compound testing. The HIM model is an experimentally tractable human in vivo system that holds great potential for advancing our basic understanding of cancer biology and for the discovery and testing of targeted therapies.

  9. Karyotype versus microarray testing for genetic abnormalities after stillbirth.

    Science.gov (United States)

    Reddy, Uma M; Page, Grier P; Saade, George R; Silver, Robert M; Thorsten, Vanessa R; Parker, Corette B; Pinar, Halit; Willinger, Marian; Stoll, Barbara J; Heim-Hall, Josefine; Varner, Michael W; Goldenberg, Robert L; Bukowski, Radek; Wapner, Ronald J; Drews-Botsch, Carolyn D; O'Brien, Barbara M; Dudley, Donald J; Levy, Brynn

    2012-12-06

    Genetic abnormalities have been associated with 6 to 13% of stillbirths, but the true prevalence may be higher. Unlike karyotype analysis, microarray analysis does not require live cells, and it detects small deletions and duplications called copy-number variants. The Stillbirth Collaborative Research Network conducted a population-based study of stillbirth in five geographic catchment areas. Standardized postmortem examinations and karyotype analyses were performed. A single-nucleotide polymorphism array was used to detect copy-number variants of at least 500 kb in placental or fetal tissue. Variants that were not identified in any of three databases of apparently unaffected persons were then classified into three groups: probably benign, clinical significance unknown, or pathogenic. We compared the results of karyotype and microarray analyses of samples obtained after delivery. In our analysis of samples from 532 stillbirths, microarray analysis yielded results more often than did karyotype analysis (87.4% vs. 70.5%, P<0.001) and provided better detection of genetic abnormalities (aneuploidy or pathogenic copy-number variants, 8.3% vs. 5.8%; P=0.007). Microarray analysis also identified more genetic abnormalities among 443 antepartum stillbirths (8.8% vs. 6.5%, P=0.02) and 67 stillbirths with congenital anomalies (29.9% vs. 19.4%, P=0.008). As compared with karyotype analysis, microarray analysis provided a relative increase in the diagnosis of genetic abnormalities of 41.9% in all stillbirths, 34.5% in antepartum stillbirths, and 53.8% in stillbirths with anomalies. Microarray analysis is more likely than karyotype analysis to provide a genetic diagnosis, primarily because of its success with nonviable tissue, and is especially valuable in analyses of stillbirths with congenital anomalies or in cases in which karyotype results cannot be obtained. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development.).

  10. Articulated Human Motion Tracking Using Sequential Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Li

    2013-01-01

    Full Text Available We formulate human motion tracking as a high-dimensional constrained optimization problem. A novel generative method is proposed for human motion tracking in the framework of evolutionary computation. The main contribution is that we introduce immune genetic algorithm (IGA for pose optimization in latent space of human motion. Firstly, we perform human motion analysis in the learnt latent space of human motion. As the latent space is low dimensional and contents the prior knowledge of human motion, it makes pose analysis more efficient and accurate. Then, in the search strategy, we apply IGA for pose optimization. Compared with genetic algorithm and other evolutionary methods, its main advantage is the ability to use the prior knowledge of human motion. We design an IGA-based method to estimate human pose from static images for initialization of motion tracking. And we propose a sequential IGA (S-IGA algorithm for motion tracking by incorporating the temporal continuity information into the traditional IGA. Experimental results on different videos of different motion types show that our IGA-based pose estimation method can be used for initialization of motion tracking. The S-IGA-based motion tracking method can achieve accurate and stable tracking of 3D human motion.

  11. Genetic variation and the de novo assembly of human genomes.

    Science.gov (United States)

    Chaisson, Mark J P; Wilson, Richard K; Eichler, Evan E

    2015-11-01

    The discovery of genetic variation and the assembly of genome sequences are both inextricably linked to advances in DNA-sequencing technology. Short-read massively parallel sequencing has revolutionized our ability to discover genetic variation but is insufficient to generate high-quality genome assemblies or resolve most structural variation. Full resolution of variation is only guaranteed by complete de novo assembly of a genome. Here, we review approaches to genome assembly, the nature of gaps or missing sequences, and biases in the assembly process. We describe the challenges of generating a complete de novo genome assembly using current technologies and the impact that being able to perfectly sequence the genome would have on understanding human disease and evolution. Finally, we summarize recent technological advances that improve both contiguity and accuracy and emphasize the importance of complete de novo assembly as opposed to read mapping as the primary means to understanding the full range of human genetic variation.

  12. Pervasive genetic integration directs the evolution of human skull shape.

    Science.gov (United States)

    Martínez-Abadías, Neus; Esparza, Mireia; Sjøvold, Torstein; González-José, Rolando; Santos, Mauro; Hernández, Miquel; Klingenberg, Christian Peter

    2012-04-01

    It has long been unclear whether the different derived cranial traits of modern humans evolved independently in response to separate selection pressures or whether they resulted from the inherent morphological integration throughout the skull. In a novel approach to this issue, we combine evolutionary quantitative genetics and geometric morphometrics to analyze genetic and phenotypic integration in human skull shape. We measured human skulls in the ossuary of Hallstatt (Austria), which offer a unique opportunity because they are associated with genealogical data. Our results indicate pronounced covariation of traits throughout the skull. Separate simulations of selection for localized shape changes corresponding to some of the principal derived characters of modern human skulls produced outcomes that were similar to each other and involved a joint response in all of these traits. The data for both genetic and phenotypic shape variation were not consistent with the hypothesis that the face, cranial base, and cranial vault are completely independent modules but relatively strongly integrated structures. These results indicate pervasive integration in the human skull and suggest a reinterpretation of the selective scenario for human evolution where the origin of any one of the derived characters may have facilitated the evolution of the others.

  13. Exploring human brain lateralization with molecular genetics and genomics.

    Science.gov (United States)

    Francks, Clyde

    2015-11-01

    Lateralizations of brain structure and motor behavior have been observed in humans as early as the first trimester of gestation, and are likely to arise from asymmetrical genetic-developmental programs, as in other animals. Studies of gene expression levels in postmortem tissue samples, comparing the left and right sides of the human cerebral cortex, have generally not revealed striking transcriptional differences between the hemispheres. This is likely due to lateralization of gene expression being subtle and quantitative. However, a recent re-analysis and meta-analysis of gene expression data from the adult superior temporal and auditory cortex found lateralization of transcription of genes involved in synaptic transmission and neuronal electrophysiology. Meanwhile, human subcortical mid- and hindbrain structures have not been well studied in relation to lateralization of gene activity, despite being potentially important developmental origins of asymmetry. Genetic polymorphisms with small effects on adult brain and behavioral asymmetries are beginning to be identified through studies of large datasets, but the core genetic mechanisms of lateralized human brain development remain unknown. Identifying subtly lateralized genetic networks in the brain will lead to a new understanding of how neuronal circuits on the left and right are differently fine-tuned to preferentially support particular cognitive and behavioral functions. © 2015 New York Academy of Sciences.

  14. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigat

  15. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); V.M. Strike (Vanessa); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (M.); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  16. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias Vasquez, A.; Desrivieres, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Boks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.; Cuellar-Partida, G.; Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santianez, R.; Rose, E.J.; Salami, A.; Samann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J. van; Eijk, K.R. van; Walters, R.K.; Westlye, L.T.; Whelan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.; McKay, D.R.; Needham, M.; Nugent, A.C.; Putz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; Marel, S.S. van der; Hulzen, K.J.E. van; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; Fisher, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  17. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  18. Improved genetic manipulation of human embryonic stem cells.

    NARCIS (Netherlands)

    Braam, S.R.; Denning, C.; van den Brink, S.; Kats, P.; Hochstenbach, R.; Passier, R.; Mummery, C.L.

    2008-01-01

    Low efficiency of transfection limits the ability to genetically manipulate human embryonic stem cells (hESCs), and differences in cell derivation and culture methods require optimization of transfection protocols. We transiently transferred multiple independent hESC lines with different growth requ

  19. Human Fertility, Molecular Genetics, and Natural Selection in Modern Societies

    NARCIS (Netherlands)

    Tropf, Felix C.; Stulp, Gert; Barban, Nicola; Visscher, Peter M.; Yang, Jian; Snieder, Harold; Mills, Melinda C.

    2015-01-01

    Research on genetic influences on human fertility outcomes such as number of children ever born (NEB) or the age at first childbirth (AFB) has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances

  20. Public Attitudes toward Human Genetic Manipulation: A Revitalization of Eugenics?

    Science.gov (United States)

    Veglia, Geremia; And Others

    The purpose of this investigation was to measure the attitudes of college students across the United States concerning the possible use of genetic manipulation, especially in terms of enhancing human physical and intellectual characteristics. The instrument used was divided into three general areas of inquiry: the first, designed to measure the…

  1. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic; M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); V.M. Strike (Vanessa); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (M.); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn; S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole A.); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cock); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate h

  2. A heterogeneity test for fine-scale genetic structure.

    Science.gov (United States)

    Smouse, Peter E; Peakall, Rod; Gonzales, Eva

    2008-07-01

    For organisms with limited vagility and/or occupying patchy habitats, we often encounter nonrandom patterns of genetic affinity over relatively small spatial scales, labelled fine-scale genetic structure. Both the extent and decay rate of that pattern can be expected to depend on numerous interesting demographic, ecological, historical, and mating system factors, and it would be useful to be able to compare different situations. There is, however, no heterogeneity test currently available for fine-scale genetic structure that would provide us with any guidance on whether the differences we encounter are statistically credible. Here, we develop a general nonparametric heterogeneity test, elaborating on standard autocorrelation methods for pairs of individuals. We first develop a 'pooled within-population' correlogram, where the distance classes (lags) can be defined as functions of distance. Using that pooled correlogram as our null-hypothesis reference frame, we then develop a heterogeneity test of the autocorrelations among different populations, lag-by-lag. From these single-lag tests, we construct an analogous test of heterogeneity for multilag correlograms. We illustrate with a pair of biological examples, one involving the Australian bush rat, the other involving toadshade trillium. The Australian bush rat has limited vagility, and sometimes occupies patchy habitat. We show that the autocorrelation pattern diverges somewhat between continuous and patchy habitat types. For toadshade trillium, clonal replication in Piedmont populations substantially increases autocorrelation for short lags, but clonal replication is less pronounced in mountain populations. Removal of clonal replicates reduces the autocorrelation for short lags and reverses the sign of the difference between mountain and Piedmont correlograms.

  3. Human life: genetic or social construction?

    Science.gov (United States)

    Yudin, Boris

    2005-01-01

    I am going to discuss some present-day tendencies in the development of the very old debate on nature vs nurture. There is a widespread position describing the history of this debate as a pendulum-like process. Some three decades ago there was a time of overwhelming prevalence of the position stressing social factors in determining human character and behavior; now the pendulum has come to the opposite side and those who stress the role of biology, of genes are in favor. Yet in my view rather acute opposition of both positions still exists. Its existence depends not so much on new scientific discoveries as on some social and cultural factors which are more conservative than the development of science. More than that, we can even talk about competition of these two positions.

  4. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.

    Science.gov (United States)

    Hamosh, Ada; Scott, Alan F; Amberger, Joanna S; Bocchini, Carol A; McKusick, Victor A

    2005-01-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.

  5. Points to consider for prioritizing clinical genetic testing services

    DEFF Research Database (Denmark)

    Severin, Franziska; Borry, Pascal; Cornel, Martina C

    2015-01-01

    of prioritization criteria would be desirable. A decision process following the accountability for reasonableness framework was undertaken, including a multidisciplinary EuroGentest/PPPC-ESHG workshop to develop shared prioritization criteria. Resources are currently too limited to fund all the beneficial genetic......Given the cost constraints of the European health-care systems, criteria are needed to decide which genetic services to fund from the public budgets, if not all can be covered. To ensure that high-priority services are available equitably within and across the European countries, a shared set...... testing services available in the next decade. Ethically and economically reflected prioritization criteria are needed. Prioritization should be based on considerations of medical benefit, health need and costs. Medical benefit includes evidence of benefit in terms of clinical benefit, benefit...

  6. 77 FR 3748 - Request for Comments and Notice of Public Hearings on Genetic Diagnostic Testing

    Science.gov (United States)

    2012-01-25

    ... in gathering information on the genetic diagnostic testing for purposes of preparing a report on the... testing. Public Hearings: The USPTO will hold two public hearings in support of the genetic testing study... ``Genetic Testing Study.'' Because written comments and testimony will be made available for...

  7. Development of a rapid, reliable genetic test for pseudoxanthoma elasticum.

    Science.gov (United States)

    Shi, Yanggu; Terry, Sharon F; Terry, Patrick F; Bercovitch, Lionel G; Gerard, Gary F

    2007-02-01

    Mutations in the human ABCC6 gene cause pseudoxanthoma elasticum (PXE), a hereditary disorder that impacts the skin, eyes, and cardiovascular system. Currently, the diagnosis of PXE is based on physical findings and histological examination of a biopsy of affected skin. We have combined two simple, polymerase chain reaction (PCR)-based methods to develop a rapid, reliable genetic assay for the majority of known PXE mutations. After PCR amplification and heteroduplex formation, mutations in exon 24 and exon 28 of the ABCC6 gene were detected with Surveyor nuclease, which cleaves double-stranded DNA at any mismatch site. Mutations originating from deletion of a segment of the ABCC6 gene between exon 23 and exon 29 (ex23_ex29del) were detected by long-range PCR. Size analysis of digestion fragments and long-range PCR products was performed by agarose gel electrophoresis. The methods accurately identified mutations or the absence thereof in 16 affected individuals as confirmed by DNA sequencing. Fifteen patients had one or two point mutations, and two of these individuals carried the ex23_ex29del in their second allele. This mutation detection and mapping strategy provides a simple and reliable genetic assay to assist in diagnosis of PXE, differential diagnosis of PXE-like conditions, and study of PXE genetics.

  8. The human genetic history of the Americas: the final frontier.

    Science.gov (United States)

    O'Rourke, Dennis H; Raff, Jennifer A

    2010-02-23

    The Americas, the last continents to be entered by modern humans, were colonized during the late Pleistocene via a land bridge across what is now the Bering strait. However, the timing and nature of the initial colonization events remain contentious. The Asian origin of the earliest Americans has been amply established by numerous classical marker studies of the mid-twentieth century. More recently, mtDNA sequences, Y-chromosome and autosomal marker studies have provided a higher level of resolution in confirming the Asian origin of indigenous Americans and provided more precise time estimates for the emergence of Native Americans. But these data raise many additional questions regarding source populations, number and size of colonizing groups and the points of entry to the Americas. Rapidly accumulating molecular data from populations throughout the Americas, increased use of demographic models to test alternative colonization scenarios, and evaluation of the concordance of archaeological, paleoenvironmental and genetic data provide optimism for a fuller understanding of the initial colonization of the Americas.

  9. A test of genetic models for the evolutionary maintenance of same-sex sexual behaviour.

    Science.gov (United States)

    Hoskins, Jessica L; Ritchie, Michael G; Bailey, Nathan W

    2015-06-22

    The evolutionary maintenance of same-sex sexual behaviour (SSB) has received increasing attention because it is perceived to be an evolutionary paradox. The genetic basis of SSB is almost wholly unknown in non-human animals, though this is key to understanding its persistence. Recent theoretical work has yielded broadly applicable predictions centred on two genetic models for SSB: overdominance and sexual antagonism. Using Drosophila melanogaster, we assayed natural genetic variation for male SSB and empirically tested predictions about the mode of inheritance and fitness consequences of alleles influencing its expression. We screened 50 inbred lines derived from a wild population for male-male courtship and copulation behaviour, and examined crosses between the lines for evidence of overdominance and antagonistic fecundity selection. Consistent variation among lines revealed heritable genetic variation for SSB, but the nature of the genetic variation was complex. Phenotypic and fitness variation was consistent with expectations under overdominance, although predictions of the sexual antagonism model were also supported. We found an unexpected and strong paternal effect on the expression of SSB, suggesting possible Y-linkage of the trait. Our results inform evolutionary genetic mechanisms that might maintain low but persistently observed levels of male SSB in D. melanogaster, but highlight a need for broader taxonomic representation in studies of its evolutionary causes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Defining the genetic architecture of human developmental language impairment.

    Science.gov (United States)

    Li, Ning; Bartlett, Christopher W

    2012-04-09

    Language is a uniquely human trait, which poses limitations on animal models for discovering biological substrates and pathways. Despite this challenge, rapidly developing biotechnology in the field of genomics has made human genetics studies a viable alternative route for defining the molecular neuroscience of human language. This is accomplished by studying families that transmit both normal and disordered language across generations. The language disorder reviewed here is specific language impairment (SLI), a developmental deficiency in language acquisition despite adequate opportunity, normal intelligence, and without any apparent neurological etiology. Here, we describe disease gene discovery paradigms as applied to SLI families and review the progress this field has made. After review the evidence that genetic factors influence SLI, we discuss methods and findings from scans of the human chromosomes, including the main replicated regions on chromosomes 13, 16 and 19 and two identified genes, ATP2C2 and CMIP that appear to account for the language variation on chromosome 16. Additional work has been done on candidate genes, i.e., genes chosen a priori and not through a genome scanning studies, including several studies of CNTNAP2 and some recent work implicating BDNF as a gene x gene interaction partner of genetic variation on chromosome 13 that influences language. These recent developments may allow for better use of post-mortem human brain samples functional studies and animal models for circumscribed language subcomponents. In the future, the identification of genetic variation associated with language phenotypes will provide the molecular pathways to understanding human language. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Genetical genomic determinants of alcohol consumption in rats and humans

    Directory of Open Access Journals (Sweden)

    Mangion Jonathan

    2009-10-01

    Full Text Available Abstract Background We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs. Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations. Results In the HXB/BXH recombinant inbred (RI rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption. Conclusion Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume

  12. Engagement with Genetic Information and Uptake of Genetic Testing: the Role of Trust and Personal Cancer History.

    Science.gov (United States)

    Roberts, Megan C; Taber, Jennifer M; Klein, William M

    2017-01-20

    We used national survey data to (1) determine the extent to which individuals trust the sources from which they are most likely to receive information about cancer-related genetic tests (BRCA1/2, Lynch syndrome), (2) examine how level of trust for sources of genetic information might be related to cancer-related genetic testing uptake, and (3) determine whether key factors, such as cancer history and numeracy, moderate the latter association. We used cross-sectional data from the Health Information National Trends Survey. Our study sample included individuals who responded that they had heard or read about genetic tests (n = 1117). All analyses accounted for complex survey design. Although respondents trusted information from health professionals the most, they were significantly less likely to report hearing about genetic testing from such professionals than via television (p information source from which participants heard about genetic tests were associated with increased odds of genetic testing uptake, particularly among those with a personal cancer history. Numeracy was not associated with genetic testing uptake. Because health professionals were among the most trusted health information sources, they may serve as important brokers of genetic testing information for those with a personal cancer history.

  13. Detecting Genetic Isolation in Human Populations: A Study of European Language Minorities

    Science.gov (United States)

    Capocasa, Marco; Battaggia, Cinzia; Anagnostou, Paolo; Montinaro, Francesco; Boschi, Ilaria; Ferri, Gianmarco; Alù, Milena; Coia, Valentina; Crivellaro, Federica; Bisol, Giovanni Destro

    2013-01-01

    The identification of isolation signatures is fundamental to better understand the genetic structure of human populations and to test the relations between cultural factors and genetic variation. However, with current approaches, it is not possible to distinguish between the consequences of long-term isolation and the effects of reduced sample size, selection and differential gene flow. To overcome these limitations, we have integrated the analysis of classical genetic diversity measures with a Bayesian method to estimate gene flow and have carried out simulations based on the coalescent. Combining these approaches, we first tested whether the relatively short history of cultural and geographical isolation of four “linguistic islands” of the Eastern Alps (Lessinia, Sauris, Sappada and Timau) had left detectable signatures in their genetic structure. We then compared our findings to previous studies of European population isolates. Finally, we explored the importance of demographic and cultural factors in shaping genetic diversity among the groups under study. A combination of small initial effective size and continued genetic isolation from surrounding populations seems to provide a coherent explanation for the diversity observed among Sauris, Sappada and Timau, which was found to be substantially greater than in other groups of European isolated populations. Simulations of micro-evolutionary scenarios indicate that ethnicity might have been important in increasing genetic diversity among these culturally related and spatially close populations. PMID:23418562

  14. 遗传测试和遗传咨询%Genetic testing and genetic consultation

    Institute of Scientific and Technical Information of China (English)

    郁凯明

    2012-01-01

    遗传物质的突变,包括基因突变或染色体畸变,是遗传病发生的根源,也是区别于其他疾病的基本特点.大力开展遗传测试及筛查,及时检出遗传病患者及致病基因携带者,是提高人口素质,促进家庭幸福、社会繁荣、国家昌盛的唯一可行的方法.遗传咨询对于检出遗传病患者及致病基因携带者,并进行有效、可行的婚姻指导、生育指导,以减少或防止遗传病患儿的发生和发病,发挥着相当重要的作用.在产前诊断中涉及疾病胎儿处理的道德选择问题上,遵循四项基本准则:第一,尊重夫妇双方的选择;第二,对个人和家庭不产生伤害;第三,产前诊断的结果可靠;第四,产前诊断和遗传咨询的自愿性.这些准则无疑在世界各国有着共同性.%the mutation genetic material, including genetic mutations or chromosome aberration, is the source of genetic disease happen, is also different from other diseases of the basic characteristics. Vigorously developing test and genetic screening, timely detection genetic disease patients and virulence genes carriers, is the only feasible method to improve population quality, promote a happy family, social prosperity, prosperous country. Genetic counseling for detection genetic disease patients and virulence genes carriers, and effective and feasible marriage guidance, birth guidance, play an important role in reducing the birth of the sick children and preventing the happening of the disease of children. In prenatal diagnosis of the fetus involved in disease treatment of moral choice in the problem, follow the four basic principles: first, respect the couple's choice; second, don't damage the individual and family; third, reliable prenatal diagnosis results; fourth, voluntary prenatal diagnosis and genetic counseling. These standards in all countries of the world have undoubtedly commonalities.

  15. Mapping genetic influences on the corticospinal motor system in humans

    DEFF Research Database (Denmark)

    Cheeran, B J; Ritter, C; Rothwell, J C

    2009-01-01

    It is becoming increasingly clear that genetic variations account for a certain amount of variance in the acquisition and maintenance of different skills. Until now, several levels of genetic influences were examined, ranging from global heritability estimates down to the analysis...... of the contribution of single nucleotide polymorphisms (SNP) and variable number tandem repeats. In humans, the corticospinal motor system is essential to the acquisition of fine manual motor skills which require a finely tuned coordination of activity in distal forelimb muscles. Here we review recent brain mapping...

  16. Paternity Testing Commission of the International Society of Forensic Genetics: recommendations on genetic investigations in paternity cases.

    Science.gov (United States)

    Morling, Niels; Allen, Robert W; Carracedo, Angel; Geada, Helena; Guidet, Francois; Hallenberg, Charlotte; Martin, Wolfgang; Mayr, Wolfgang R; Olaisen, Bjørnar; Pascali, Vince L; Schneider, Peter M

    2002-10-09

    The International Society for Forensic Genetics (ISFG) has established a Paternity Testing Commission (PTC) with the purpose of formulating international recommendations concerning genetic investigations in paternity testing. The PTC recommends that paternity testing be performed in accordance with the ISO 17025 standards. The ISO 17025 standards are general standards for testing laboratories and the PTC offers explanations and recommendations concerning selected areas of special importance to paternity testing.

  17. Paternity Testing Commission of the International Society of Forensic Genetics: recommendations on genetic investigations in paternity cases

    DEFF Research Database (Denmark)

    Morling, Niels; Allen, Robert W; Carracedo, Angel

    2002-01-01

    The International Society for Forensic Genetics (ISFG) has established a Paternity Testing Commission (PTC) with the purpose of formulating international recommendations concerning genetic investigations in paternity testing. The PTC recommends that paternity testing be performed in accordance wi...... with the ISO 17025 standards. The ISO 17025 standards are general standards for testing laboratories and the PTC offers explanations and recommendations concerning selected areas of special importance to paternity testing....

  18. Genetic testing for cystic fibrosis in adult patients

    Directory of Open Access Journals (Sweden)

    Marina Mencinger

    2006-02-01

    Full Text Available Background: Cystic fibrosis (CF is an autosomal recessive disease caused by mutations in gene encoding cystic fibrosis transmembrane regulator (CFTR protein. Over 1400 mutations found in the gene contribute to the complexity of the CF phenotypes ranging from a classic multiorgan disease commonly involving respiratory, gastrointestinal and reproductive tract to mild and monosymptomatic presentations. Pilocarpine iontophoresis is considered as standard diagnostic test for CF, but it often fails in atypical forms of CF.Methods: In order to provide an additional diagnostic test to assure the diagnosis and provide patients with a proper medical care, we performed a genetic testing on 16 adults suspected to have atypical form of CF. Following counselling, parents of patients with possible homozygote variant of mutations were tested. On a personal request testing was also performed in an adult sibling of a patient with two known mutations to investigate possible carrier hood. The allele specific polymerase chain reaction method (PCR was used to detect 29 most common mutations in the cftr gene.Results: The diagnosis was proved in 3 individuals, a homozygote for Δ F508, and two compound heterozygotes Δ F508/R1162X and Δ F508/3849+10kbC>T. In three cases only one mutation was found: I148T, 2789+5G>A and Δ F508 in a heterozygote form.Conclusions: The genetic testing for CF is a valuable diagnostic tool in atypical forms of CF. Exclusion of possible differential diagnosis is warranted because of a variable CF phenotype. In cases where only one or no mutation was detected a necessity of whole gene sequencing is indicated to exclude rare mutations and polymorphisms that could be implicated in the pathogenesis of atypical CF.

  19. [Direct to consumer genetic testing: is it the moment?].

    Science.gov (United States)

    Lamoril, Jérôme; Bogard, Marc

    2016-01-01

    Since the development of new human genome sequencing technologies at the beginning of the 2000, commercial companies have developped direct to consumer genomic services, which means without medical prescription. From 2007 to 2013, many companies have offered services assesing associated risk with human public health in the world especially in the United States. This kind of company is forbidden in France. From 2009 to 2013, in United States, under the pressure of national or state health administrations, these companies have been progressively forbidden. However, in certain parts of the world, companies are still offering such services. The latter raise many different questions such as ethical, juridical, medical, scientific, educative, professional one. Many studies and debates have demonstrated their limit and the lack of usefulness and advantage in the field of human health for the time being. The commercialization of this type of services has arrived all too soon et is not yet ripe. In our time of globalization, with the lack of international rules controlling direct access to genetic services in the field of human health, there is an urgent need to regulate. International administrations and politicians must act fast. Inevitably, under the pressure of lobbies and citizens, companies (multinational or not) will develop especially as 1) new sequencing technologies evolve rapidly, 2) are cheaper from year to year, 3) scientific and medical knowledges are progressing quickly, 4) services are spreading faster through the web and other networks.

  20. Illusions of scientific legitimacy: misrepresented science in the direct-to-consumer genetic-testing marketplace.

    Science.gov (United States)

    Vashlishan Murray, Amy B; Carson, Michael J; Morris, Corey A; Beckwith, Jon

    2010-11-01

    Marketers of genetic tests often openly or implicitly misrepresent the utility of genetic information. Scientists who are well aware of the current limitations to the utility of such tests are best placed to publicly counter misrepresentations of the science.

  1. Misinterpretation of TPMT by a DTC genetic testing company.

    Science.gov (United States)

    Brownstein, C A; Margulies, D M; Manzi, S F

    2014-06-01

    23andme has suspended marketing of health-related reports due to US Food and Drug Administration approval violations. This has fostered discussions on the actual risks associated with consumer use of these reports. In the case described below, rare genotypes for the gene encoding thiopurine methyltransferase (TPMT) were misinterpreted by a direct-to-consumer (DTC) company, and risk calculations for breast cancer were offered when accuracy was not possible from the available information. Politics aside, these examples illustrate risks associated with DTC genetic testing without professional interpretation.

  2. Genetics of multifactorial disorders: proceedings of the 6th Pan Arab Human Genetics Conference

    OpenAIRE

    Nair, Pratibha; Bizzari, Sami; Rajah, Nirmal; Assaf, Nada; Al-Ali, Mahmoud Taleb; Hamzeh, Abdul Rezzak

    2016-01-01

    The 6th Pan Arab Human Genetics Conference (PAHGC), “Genetics of Multifactorial Disorders” was organized by the Center for Arab Genomic Studies (http://www.cags.org.ae) in Dubai, United Arab Emirates from 21 to 23 January, 2016. The PAHGCs are held biennially to provide a common platform to bring together regional and international geneticists to share their knowledge and to discuss common issues. Over 800 delegates attended the first 2 days of the conference and these came from various medic...

  3. Testing modern human out-of-Africa dispersal models and implications for modern human origins.

    Science.gov (United States)

    Reyes-Centeno, Hugo; Hubbe, Mark; Hanihara, Tsunehiko; Stringer, Chris; Harvati, Katerina

    2015-10-01

    The modern human expansion process out of Africa has important implications for understanding the genetic and phenotypic structure of extant populations. While intensely debated, the primary hypotheses focus on either a single dispersal or multiple dispersals out of the continent. Here, we use the human fossil record from Africa and the Levant, as well as an exceptionally large dataset of Holocene human crania sampled from Asia, to model ancestor-descendant relationships along hypothetical dispersal routes. We test the spatial and temporal predictions of competing out-of-Africa models by assessing the correlation of geographical distances between populations and measures of population differentiation derived from quantitative cranial phenotype data. Our results support a model in which extant Australo-Melanesians are descendants of an initial dispersal out of Africa by early anatomically modern humans, while all other populations are descendants of a later migration wave. Our results have implications for understanding the complexity of modern human origins and diversity.

  4. Genetics and human rights: Two histories: restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil

    Directory of Open Access Journals (Sweden)

    Victor B. Penchaszadeh

    2014-01-01

    Full Text Available Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to identity. In this article, we report the use of genetics to support the right to identity in two historical circumstances. First, we report the search, localization, DNA testing and genetic identification of 110 individuals who were appropriated as babies by the Argentine military dictatorship of 1976-1983 in the context of savage repression and egregious violations of human rights, including forced disappearance and suppression of identity. Second, we report on the repair of right-to-identity violations of hundreds of individuals that occurred during the process of compulsory isolation of patients with leprosy in Brazil through the Program "Reencontro", which has led to the genetic identification of 158 pairs of individuals who previously did not have proof that they were siblings. The high value placed on genetic identification by victims of identity suppression did not counter the prevailing view that genetic factors were not more important than other factors (social, emotional, educational, cultural, spiritual in determining the complex phenomenon of personal identity. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics for the benefit of mankind.

  5. Genetics and human rights. Two histories: Restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil.

    Science.gov (United States)

    Penchaszadeh, Victor B; Schuler-Faccini, Lavinia

    2014-03-01

    Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to identity. In this article, we report the use of genetics to support the right to identity in two historical circumstances. First, we report the search, localization, DNA testing and genetic identification of 110 individuals who were appropriated as babies by the Argentine military dictatorship of 1976-1983 in the context of savage repression and egregious violations of human rights, including forced disappearance and suppression of identity. Second, we report on the repair of right-to-identity violations of hundreds of individuals that occurred during the process of compulsory isolation of patients with leprosy in Brazil through the Program "Reencontro", which has led to the genetic identification of 158 pairs of individuals who previously did not have proof that they were siblings. The high value placed on genetic identification by victims of identity suppression did not counter the prevailing view that genetic factors were not more important than other factors (social, emotional, educational, cultural, spiritual) in determining the complex phenomenon of personal identity. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics for the benefit of mankind.

  6. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.

    Science.gov (United States)

    Macdonald, Lynn E; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T; Yasenchak, Jason; Frendewey, David; Valenzuela, David M; Giallourakis, Cosmas C; Alt, Frederick W; Yancopoulos, George D; Murphy, Andrew J

    2014-04-01

    Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.

  7. Life insurance and genetic test results: a mutation carrier's fight to achieve full cover.

    Science.gov (United States)

    Keogh, Louise A; Otlowski, Margaret F A

    2013-09-01

    Currently, there is debate about life insurance companies' use of genetic information for assessing applicants. In his early 20s, James (pseudonym) was denied full life insurance cover because he revealed that he had discussed genetic testing with a genetic counsellor. He was later tested and found to carry a mutation in the MSH6 gene; after disclosing this, he was denied cover for cancer by two other life insurance companies. Unsatisfied with the insurance companies' risk assessments, and based on his understanding that regular colonoscopy significantly reduced his risk of cancer, James made a complaint to the Australian Human Rights Commission. After informing the third insurance company that he had done so, he was offered full coverage, which suggests that the company did not have actuarial data to justify its decision. This case provides evidence of the high level of initiative and proactivity required for a consumer to achieve a fair result. Few Australians would be in a position to pursue the level of research and advocacy undertaken by James (a professional with scientific training). We call on a collaborative approach between industry, government and researchers to address the issues that James's case raises about genetic testing and life insurance.

  8. Preimplantation genetic diagnosis for Huntington's disease with exclusion testing.

    Science.gov (United States)

    Sermon, Karen; De Rijcke, Martine; Lissens, Willy; De Vos, Anick; Platteau, Peter; Bonduelle, Maryse; Devroey, Paul; Van Steirteghem, André; Liebaers, Inge

    2002-10-01

    Huntington's disease is an autosomal dominant, late-onset disorder, for which the gene and the causative mutation have been known since 1993. Some at-risk patients choose for presymptomatic testing and can make reproductive choices accordingly. Others however, prefer not to know their carrier status, but may still wish to prevent the birth of a carrier child. For these patients, exclusion testing after prenatal sampling has been an option for many years. A disadvantage of this test is that unaffected pregnancies may be terminated if the parent at risk (50%) has not inherited the grandparental Huntington gene, leading to serious moral and ethical objections. As an alternative, preimplantation genetic diagnosis (PGD) on embryos obtained in vitro may be proposed, after which only embryos free of risk are replaced. Embryos can then be selected, either by the amplification of the CAG repeat in the embryos without communicating results to the patients (ie non-disclosure testing), which brings its own practical and moral problems, or exclusion testing. We describe here the first PGD cycles for exclusion testing for Huntington's disease in five couples. Three couples have had at least one PGD cycle so far. One pregnancy ensued and a healthy female baby was delivered.

  9. Ethical and clinical practice considerations for genetic counselors related to direct-to-consumer marketing of genetic tests.

    Science.gov (United States)

    Wade, Christopher H; Wilfond, Benjamin S

    2006-11-15

    Several companies utilize direct-to-consumer (DTC) advertising for genetic tests and some, but not all, bypass clinician involvement by offering DTC purchase of the tests. This article examines how DTC marketing strategies may affect genetic counselors, using available cardiovascular disease susceptibility tests as an illustration. The interpretation of these tests is complex and includes consideration of clinical validity and utility, and the further complications of gene-environment interactions and pleiotropy. Although it is unclear to what extent genetic counselors will encounter clients who have been exposed to DTC marketing strategies, these strategies may influence genetic counseling interactions if they produce directed interest in specific tests and unrealistic expectations for the tests' capacity to predict disease. Often, a client's concern about risk for cardiovascular diseases is best addressed by established clinical tests and a family history assessment. Ethical dilemmas may arise for genetic counselors who consider whether to accept clients who request test interpretation or to order DTC-advertised tests that require a clinician's authorization. Genetic counselors' obligations to care for clients extend to interpreting DTC tests, although this obligation may be fulfilled by referral or consultation with specialists. Genetic counselors do not have an obligation to order DTC-advertised tests that have minimal clinical validity and utility at a client's request. This can be a justified restriction on autonomy based on consideration of risks to the client, the costs, and the implications for society.

  10. Comparison of Fluorescence In Situ Hybridization and Chromogenic In Situ Hybridization for Low and High Throughput HER2 Genetic Testing

    DEFF Research Database (Denmark)

    Poulsen, Tim S; Espersen, Maiken Lise Marcker; Kofoed, Vibeke

    2013-01-01

    results show that the differences between the HER2 genetic assays do not have an effect on the analytic performance and the CISH technology is superior to high throughput HER2 genetic testing due to scanning speed, while the IQ-FISH may still be a choice for fast low throughput HER2 genetic testing.......The purpose was to evaluate and compare 5 different HER2 genetic assays with different characteristics that could affect the performance to analyze the human epidermal growth factor 2 (HER2) gene copy number under low and high throughput conditions. The study included 108 tissue samples from breast...... cancer patients with HER2 immunohistochemistry (IHC) results scored as 0/1+, 2+, and 3+. HER2 genetic status was analysed using chromogenic in situ hybridization (CISH) and fluorescence in situ hybridization (FISH). Scoring results were documented through digital image analysis. The cancer region...

  11. Perceptions and understanding of genetics and genetic eye disease and attitudes to genetic testing and gene therapy in a primary eye care setting.

    Science.gov (United States)

    Ganne, Pratyusha; Garrioch, Robert; Votruba, Marcela

    2015-03-01

    Genetic eye pathology represents a significant percentage of the causes of blindness in industrialized countries. This study explores the level of understanding and perceptions of genetics and inherited eye diseases and the attitudes to genetic testing and gene therapy. The study was conducted in two parts. Participant groups included were: undergraduate students of optometry, primary eye care professionals and members of the general public. A preliminary study aimed to understand perceptions and to explore the level of knowledge about genetics in general, eye genetics and gene therapy. A second survey was designed to explore attitudes to genetic testing and gene therapy. The majority of participants (82%) perceived genetics as an important science. However, none of them showed a high level of understanding of genetics and inherited eye diseases. Undergraduate students and primary eye care professionals were better informed about inherited eye diseases than the general public (p = 0.001). The majority (80%) across all three groups had a positive attitude to genetic testing and gene therapy. There was a lack of knowledge about the genetic services available among all groups of participants. This calls for serious thinking about the level of dissemination of information about genetics and inherited eye diseases. It shows a broadly supportive attitude to genomic medicine among the public. Improving public awareness and education in inherited eye diseases can improve the utility of genetic testing and therapy.

  12. Genetic Tests for Ability?: Talent Identification and the Value of an Open Future

    Science.gov (United States)

    Miah, Andy; Rich, Emma

    2006-01-01

    This paper explores the prospect of genetic tests for performance in physical activity and sports practices. It investigates the terminology associated with genetics, testing, selection and ability as a means towards a socio-ethical analysis of its value within sport, education and society. Our argument suggests that genetic tests need not even be…

  13. Genetic Testing in a Drama and Discussion Workshop: Exploring Knowledge Construction

    Science.gov (United States)

    Dawson, Emily; Hill, Anne; Barlow, John; Weitkamp, Emma

    2009-01-01

    In this pilot project, drama was used to situate genetic testing in a social and cultural context--that of the family. The drama was used to stimulate discussion about social issues relating to genetic testing, such as who has the right to know the results of the test and whether participants would want to know their "genetic future". A…

  14. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy

    2015-04-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  15. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  16. Direct-to-Consumer Genetic Testing and Orphan Drug Development.

    Science.gov (United States)

    Mason, Matthew; Levenson, James; Quillin, John

    2017-08-01

    Since the introduction of the Orphan Drug Act (ODA) in 1983, orphan drug approvals in the United States have jumped from testing companies. This emerging trend is the subject of this article, which begins by considering how rare-disease drugs are regulated and the rising interest in nonclinical genetic testing. It then outlines how DTC companies analyze DNA and how their techniques benefit researchers and drug developers. Then, after an overview of the current partnerships between DTCs and drug developers, it examines concerns about privacy and cost brought up by these partnerships. The article concludes by contrasting the enormous positive potential of DTC-pharma relationships and their concomitant dangers, especially to consumer privacy and cost to the healthcare system.

  17. The ethics of human genetic intervention: a postmodern perspective.

    Science.gov (United States)

    Dyer, A R

    1997-03-01

    Gene therapy for a particular disease like Parkinson's involves ethical principles worked out for other diseases. The major ethical issues for gene therapy (and the corresponding ethical principles) are safety (nonmalfeasance), efficacy (beneficence), informed consent (autonomy), and allocation of resources (justice). Yet genetic engineering (germ-line interventions or interventions to enhance human potentialities) raises emotions and fears that might cause resistance to gene therapies. Looking at these technologies in a postmodern perspective helps one to appreciate the issues at stake in social and cultural change with a new technology such as gene therapy. While "modern" technology and ethics have focused on the autonomy of the individual, we are beginning to see a lessening of such emphasis on individualism and autonomy and more emphasis on the health of the population. Such a social change could cause technologies about which society may currently be cautious (such as human genetic interventions) to become more acceptable or even expected.

  18. Testing to Enhance Retention in Human Anatomy

    Science.gov (United States)

    Logan, Jessica M.; Thompson, Andrew J.; Marshak, David W.

    2011-01-01

    Recent work in cognitive psychology has shown that repeatedly testing one's knowledge is a powerful learning aid and provides substantial benefits for retention of the material. To apply this in a human anatomy course for medical students, 39 fill-in-the-blank quizzes of about 50 questions each, one for each region of the body, and four about the…

  19. Somatic retrotransposition alters the genetic landscape of the human brain

    OpenAIRE

    Baillie, J. Kenneth; Barnett, Mark W.; Upton, Kyle R; Gerhardt, Daniel J.; Richmond, Todd A.; De Sapio, Fioravante; Brennan, Paul; Rizzu, Patrizia; Smith, Sarah; Fell, Mark; Talbot, Richard T; Gustincich, Stefano; Freeman, Thomas C.; Mattick, John S.; Hume, David A

    2011-01-01

    Retrotransposons are mobile genetic elements that employ a germ line “copy-and-paste” mechanism to spread throughout metazoan genomes 1 . At least 50% of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease 2-3 . Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells 4-5 , excluding early embryo development and some malignancies 6-7 . Recent reports of L1 expressio...

  20. [Teaching experience in integrated course of human development and genetics].

    Science.gov (United States)

    Qiu, Guang-Rong; Li, Xiao-Ming; Chen, Fang-Jie; Li, Chun-Yi; Liu, Hong; Li, Fu-Cai; Jin, Chun-Lian; Sun, Gui-Yuan; Liu, Cai-Xia; Zhao, Yan-Yan; Sun, Kai-Lai

    2010-04-01

    Establishment of integrated course system in human development and genetics is an important part of course reformation, and the improvement of this system is achieved by integrating the content of course, stabilizing teaching force, building teaching materials and applying problem-based learning. Integrity-PBL teaching model is founded and proved to be feasible and effective by teaching practice. Therefore, it maybe play an important role in improving teaching effect and cultivating ability of students to analyse and solve problems.

  1. Molecular basis of telomere dysfunction in human genetic diseases.

    Science.gov (United States)

    Sarek, Grzegorz; Marzec, Paulina; Margalef, Pol; Boulton, Simon J

    2015-11-01

    Mutations in genes encoding proteins required for telomere structure, replication, repair and length maintenance are associated with several debilitating human genetic disorders. These complex telomere biology disorders (TBDs) give rise to critically short telomeres that affect the homeostasis of multiple organs. Furthermore, genome instability is often a hallmark of telomere syndromes, which are associated with increased cancer risk. Here, we summarize the molecular causes and cellular consequences of disease-causing mutations associated with telomere dysfunction.

  2. Human genetic variation and the gut microbiome in disease.

    Science.gov (United States)

    Hall, Andrew Brantley; Tolonen, Andrew C; Xavier, Ramnik J

    2017-08-21

    Taxonomic and functional changes to the composition of the gut microbiome have been implicated in multiple human diseases. Recent microbiome genome-wide association studies reveal that variants in many human genes involved in immunity and gut architecture are associated with an altered composition of the gut microbiome. Although many factors can affect the microbial organisms residing in the gut, a number of recent findings support the hypothesis that certain host genetic variants predispose an individual towards microbiome dysbiosis. This condition, in which the normal microbiome population structure is disturbed, is a key feature in disorders of metabolism and immunity.

  3. Recent genetic discoveries implicating ion channels in human cardiovascular diseases.

    Science.gov (United States)

    George, Alfred L

    2014-04-01

    The term 'channelopathy' refers to human genetic disorders caused by mutations in genes encoding ion channels or their interacting proteins. Recent advances in this field have been enabled by next-generation DNA sequencing strategies such as whole exome sequencing with several intriguing and unexpected discoveries. This review highlights important discoveries implicating ion channels or ion channel modulators in cardiovascular disorders including cardiac arrhythmia susceptibility, cardiac conduction phenotypes, pulmonary and systemic hypertension. These recent discoveries further emphasize the importance of ion channels in the pathophysiology of human disease and as important druggable targets.

  4. Overview of genetic analysis of human opioid receptors.

    Science.gov (United States)

    Spampinato, Santi M

    2015-01-01

    The human μ-opioid receptor gene (OPRM1), due to its genetic and structural variation, has been a target of interest in several pharmacogenetic studies. The μ-opioid receptor (MOR), encoded by OPRM1, contributes to regulate the analgesic response to pain and also controls the rewarding effects of many drugs of abuse, including opioids, nicotine, and alcohol. Genetic polymorphisms of opioid receptors are candidates for the variability of clinical opioid effects. The non-synonymous polymorphism A118G of the OPRM1 has been repeatedly associated with the efficacy of opioid treatments for pain and various types of dependence. Genetic analysis of human opioid receptors has evidenced the presence of numerous polymorphisms either in exonic or in intronic sequences as well as the presence of synonymous coding variants that may have important effects on transcription, mRNA stability, and splicing, thus affecting gene function despite not directly disrupting any specific residue. Genotyping of opioid receptors is still in its infancy and a relevant progress in this field can be achieved by using advanced gene sequencing techniques described in this review that allow the researchers to obtain vast quantities of data on human genomes and transcriptomes in a brief period of time and with affordable costs.

  5. Genetic Programming Neural Networks: A Powerful Bioinformatics Tool for Human Genetics.

    Science.gov (United States)

    Ritchie, Marylyn D; Motsinger, Alison A; Bush, William S; Coffey, Christopher S; Moore, Jason H

    2007-01-01

    The identification of genes that influence the risk of common, complex disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. This challenge is partly due to the limitations of parametric statistical methods for detecting genetic effects that are dependent solely or partially on interactions. We have previously introduced a genetic programming neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of genetic and gene-environment combinations associated with disease risk. Previous empirical studies suggest GPNN has excellent power for identifying gene-gene and gene-environment interactions. The goal of this study was to compare the power of GPNN to stepwise logistic regression (SLR) and classification and regression trees (CART) for identifying gene-gene and gene-environment interactions. SLR and CART are standard methods of analysis for genetic association studies. Using simulated data, we show that GPNN has higher power to identify gene-gene and gene-environment interactions than SLR and CART. These results indicate that GPNN may be a useful pattern recognition approach for detecting gene-gene and gene-environment interactions in studies of human disease.

  6. Genetic Markers of Human Evolution Are Enriched in Schizophrenia

    DEFF Research Database (Denmark)

    Srinivasan, Saurabh; Bettella, Francesco; Mattingsdal, Morten;

    2015-01-01

    and ancillary information on genetic variants. We used information from the evolutionary proxy measure called the Neanderthal selective sweep (NSS) score. RESULTS: Gene loci associated with schizophrenia are significantly (p = 7.30 × 10(-9)) more prevalent in genomic regions that are likely to have undergone...... recent positive selection in humans (i.e., with a low NSS score). Variants in brain-related genes with a low NSS score confer significantly higher susceptibility than variants in other brain-related genes. The enrichment is strongest for schizophrenia, but we cannot rule out enrichment for other......BACKGROUND: Why schizophrenia has accompanied humans throughout our history despite its negative effect on fitness remains an evolutionary enigma. It is proposed that schizophrenia is a by-product of the complex evolution of the human brain and a compromise for humans' language, creative thinking...

  7. Effect of anthropogenic landscape features on population genetic differentiation of Przewalski's gazelle: main role of human settlement.

    Directory of Open Access Journals (Sweden)

    Ji Yang

    Full Text Available Anthropogenic landscapes influence evolutionary processes such as population genetic differentiation, however, not every type of landscape features exert the same effect on a species, hence it is necessary to estimate their relative effect for species management and conservation. Przewalski's gazelle (Procapra przewalskii, which inhabits a human-altered area on Qinghai-Tibet Plateau, is one of the most endangered antelope species in the world. Here, we report a landscape genetic study on Przewalski's gazelle. We used skin and fecal samples of 169 wild gazelles collected from nine populations and thirteen microsatellite markers to assess the genetic effect of anthropogenic landscape features on this species. For comparison, the genetic effect of geographical distance and topography were also evaluated. We found significant genetic differentiation, six genetic groups and restricted dispersal pattern in Przewalski's gazelle. Topography, human settlement and road appear to be responsible for observed genetic differentiation as they were significantly correlated with both genetic distance measures [F(ST/(1-F(ST and F'(ST/(1-F'(ST] in Mantel tests. IBD (isolation by distance was also inferred as a significant factor in Mantel tests when genetic distance was measured as F(ST/(1-F(ST. However, using partial Mantel tests, AIC(c calculations, causal modeling and AMOVA analysis, we found that human settlement was the main factor shaping current genetic differentiation among those tested. Altogether, our results reveal the relative influence of geographical distance, topography and three anthropogenic landscape-type on population genetic differentiation of Przewalski's gazelle and provide useful information for conservation measures on this endangered species.

  8. Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss.

    Science.gov (United States)

    Sloan-Heggen, Christina M; Bierer, Amanda O; Shearer, A Eliot; Kolbe, Diana L; Nishimura, Carla J; Frees, Kathy L; Ephraim, Sean S; Shibata, Seiji B; Booth, Kevin T; Campbell, Colleen A; Ranum, Paul T; Weaver, Amy E; Black-Ziegelbein, E Ann; Wang, Donghong; Azaiez, Hela; Smith, Richard J H

    2016-04-01

    Hearing loss is the most common sensory deficit in humans, affecting 1 in 500 newborns. Due to its genetic heterogeneity, comprehensive diagnostic testing has not previously been completed in a large multiethnic cohort. To determine the aggregate contribution inheritance makes to non-syndromic hearing loss, we performed comprehensive clinical genetic testing with targeted genomic enrichment and massively parallel sequencing on 1119 sequentially accrued patients. No patient was excluded based on phenotype, inheritance or previous testing. Testing resulted in identification of the underlying genetic cause for hearing loss in 440 patients (39%). Pathogenic variants were found in 49 genes and included missense variants (49%), large copy number changes (18%), small insertions and deletions (18%), nonsense variants (8%), splice-site alterations (6%), and promoter variants (hearing loss or when the loss was congenital and symmetric. The spectrum of implicated genes showed wide ethnic variability. These findings support the more efficient utilization of medical resources through the development of evidence-based algorithms for the diagnosis of hearing loss.

  9. Human genetic variation: new challenges and opportunities for doping control.

    Science.gov (United States)

    Schneider, Angela J; Fedoruk, Matthew N; Rupert, Jim L

    2012-01-01

    Sport celebrates differences in competitors that lead to the often razor-thin margins between victory and defeat. The source of this variation is the interaction between the environment in which the athletes develop and compete and their genetic make-up. However, a darker side of sports may also be genetically influenced: some anti-doping tests are affected by the athlete's genotype. Genetic variation is an issue that anti-doping authorities must address as more is learned about the interaction between genotype and the responses to prohibited practices. To differentiate between naturally occurring deviations in indirect blood and urine markers from those potentially caused by doping, the "biological-passport" program uses intra-individual variability rather than population values to establish an athlete's expected physiological range. The next step in "personalized" doping control may be the inclusion of genetic data, both for the purposes of documenting an athlete's responses to doping agents and doping-control assays as well facilitating athlete and sample identification. Such applications could benefit "clean" athletes but will come at the expense of risks to privacy. This article reviews the instances where genetics has intersected with doping control, and briefly discusses the potential role, and ethical implications, of genotyping in the struggle to eliminate illicit ergogenic practices.

  10. Psychiatric genetic testing: Attitudes and intentions among future users and providers

    DEFF Research Database (Denmark)

    Laegsgaard, Mett Marri; Mors, Ole

    2008-01-01

    and counseling, we surveyed attitudes toward psychiatric genetic testing among 397 patients with a psychiatric diagnosis, 164 of their relatives and 100 medical and psychology students. The results showed widespread interest in psychiatric genetic testing of self and child, but less support for prenatal testing...... as a guide in this field, but the optimal utilization of genetic testing has also been recognized to depend on knowledge of the potential consumers' attitudes. To provide knowledge to inform the public debate on mental illness and genetics, and the future conducting of psychiatric genetic testing....... Psychiatric and somatic genetic testing attracted the same amounts of accept. General attitudes toward access to psychiatric genetic testing and information revealed substantial support for bioethical principles of autonomy and privacy. However, questions describing more specific situations revealed...

  11. Genetic and phenotypic consequences of introgression between humans and Neanderthals.

    Science.gov (United States)

    Wills, Christopher

    2011-01-01

    Strong evidence for introgression of Neanderthal genes into parts of the modern human gene pool has recently emerged. The evidence indicates that some populations of modern humans have received infusions of genes from two different groups of Neanderthals. One of these Neanderthal groups lived in the Middle East and Central Europe and the other group (the Denisovans) is known to have lived in Central Asia and was probably more widespread. This review examines two questions. First, how were these introgressions detected and what does the genetic evidence tell us about their nature and extent? We will see that an unknown but possibly large fraction of the entire Neanderthal gene complement may have survived in modern humans. Even though each modern European and Asian carries only a few percent of genes that can be traced back to Neanderthals, different individuals carry different subgroups of these introgressed genes. Second, what is the likelihood that this Neanderthal genetic legacy has had phenotypic effects on modern humans? We examine evidence for and against the possibility that some of the surviving fragments of Neanderthal genomes have been preserved by natural selection, and we explore the ways in which more evidence bearing on this question will become available in the future.

  12. Scaling up: human genetics as a Cold War network.

    Science.gov (United States)

    Lindee, Susan

    2014-09-01

    In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Genetic studies of two inherited human phenotypes : Hearing loss and monoamine oxidase activity

    OpenAIRE

    Balciuniene, Jorune

    2001-01-01

    This thesis focuses on the identification of genetic factors underlying two inherited human phenotypes: hearing loss and monoamine oxidase activity. Non-syndromic hearing loss segregating in a Swedish family was tested for linkage to 13 previously reported candidate loci for hearing disabilities. Linkage was found to two loci: DFNA12 (llq22-q24) and DFNA2 (lp32). A detailed analysis of the phenotypes and haplotypes shared by the affected individuals supported the hypothesis of digenic inheri...

  14. [Teaching design and practice of human blood type traits in genetics comprehensive laboratory course].

    Science.gov (United States)

    Zhao, Jian; Hu, Dongmei; Yu, Dade; Dong, Mingliang; Li, Yun; Fan, Yingming; Wang, Yanwei; Zhang, Jinfeng

    2016-05-01

    Comprehensive laboratory courses, which enable students to aptly apply theoretic knowledge and master experiment skills, play an important role in the present educational reform of laboratory courses. We utilized human ABO blood type as the experimental subject, and designed the experiment--"Molecular Genotyping of Human ABO Blood Type and Analysis of Population Genetic Equilibrium". In the experiment, DNA in mucosal cells is extracted from students' saliva, and each student's genotype is identified using a series of molecular genetics technologies, including PCR amplification of target fragments, enzymatic digestion, and electrophoretic separation. Then, taking the whole class as an analogous Mendel population, a survey of genotype frequency of ABO blood type is conducted, followed with analyses of various population genetic parameters using Popgene. Through the open laboratory course, students can not only master molecular genetic experimental skills, but also improve their understanding of theoretic knowledge through independent design and optimization of molecular techniques. After five years of research and practice, a stable experimental system of molecular genetics has been established to identify six genotypes of ABO blood types, namely I(A)I(A), I(A)i, I(B)I(B), I(B)i, I(A)I(B) and ii. Laboratory courses of molecular and population genetics have been integrated by calculating the frequencies of the six genotypes and three multiple alleles and testing population genetic equilibrium. The goal of the open laboratory course with independent design and implementation by the students has been achieved. This laboratory course has proved effective and received good reviews from the students. It could be applied as a genetics laboratory course for the biology majors directly, and its ideas and methods could be promoted and applied to other biological laboratory courses.

  15. Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information

    Directory of Open Access Journals (Sweden)

    Wang S Alex

    2010-01-01

    Full Text Available Abstract Background The genetic contributions to human common disorders and mouse genetic models of disease are complex and often overlapping. In common human diseases, unlike classical Mendelian disorders, genetic factors generally have small effect sizes, are multifactorial, and are highly pleiotropic. Likewise, mouse genetic models of disease often have pleiotropic and overlapping phenotypes. Moreover, phenotypic descriptions in the literature in both human and mouse are often poorly characterized and difficult to compare directly. Methods In this report, human genetic association results from the literature are summarized with regard to replication, disease phenotype, and gene specific results; and organized in the context of a systematic disease ontology. Similarly summarized mouse genetic disease models are organized within the Mammalian Phenotype ontology. Human and mouse disease and phenotype based gene sets are identified. These disease gene sets are then compared individually and in large groups through dendrogram analysis and hierarchical clustering analysis. Results Human disease and mouse phenotype gene sets are shown to group into disease and phenotypically relevant groups at both a coarse and fine level based on gene sharing. Conclusion This analysis provides a systematic and global perspective on the genetics of common human disease as compared to itself and in the context of mouse genetic models of disease.

  16. Human genetic differentiation across the Strait of Gibraltar

    Directory of Open Access Journals (Sweden)

    Sanchez-Mazas Alicia

    2010-08-01

    Full Text Available Abstract Background The Strait of Gibraltar is a crucial area in the settlement history of modern humans because it represents a possible connection between Africa and Europe. So far, genetic data were inconclusive about the fact that this strait constitutes a barrier to gene flow, as previous results were highly variable depending on the genetic locus studied. The present study evaluates the impact of the Gibraltar region in reducing gene flow between populations from North-Western Africa and South-Western Europe, by comparing formally various genetic loci. First, we compute several statistics of population differentiation. Then, we use an original simulation approach in order to infer the most probable evolutionary scenario for the settlement of the area, taking into account the effects of both demography and natural selection at some loci. Results We show that the genetic patterns observed today in the region of the Strait of Gibraltar may reflect an ancient population genetic structure which has not been completely erased by more recent events such as Neolithic migrations. Moreover, the differences observed among the loci (i.e. a strong genetic boundary revealed by the Y-chromosome polymorphism and, at the other extreme, no genetic differentiation revealed by HLA-DRB1 variation across the strait suggest specific evolutionary histories like sex-mediated migration and natural selection. By considering a model of balancing selection for HLA-DRB1, we here estimate a coefficient of selection of 2.2% for this locus (although weaker in Europe than in Africa, which is in line with what was estimated from synonymous versus non-synonymous substitution rates. Selection at this marker thus appears strong enough to leave a signature not only at the DNA level, but also at the population level where drift and migration processes were certainly relevant. Conclusions Our multi-loci approach using both descriptive analyses and Bayesian inferences lead to

  17. Automated test data generation for branch testing using incremental genetic algorithm

    Indian Academy of Sciences (India)

    T MANIKUMAR; A JOHN SANJEEV KUMAR; R MARUTHAMUTHU

    2016-09-01

    Cost of software testing can be reduced by automated test data generation to find a minimal set of data that has maximum coverage. Search-based software testing (SBST) is one of the techniques recently used for automated testing task. SBST makes use of control flow graph (CFG) and meta-heuristic search algorithms to accomplish the process. This paper focuses on test data generation for branch coverage. A major drawback in using meta-heuristic techniques is that the CFG paths have to be traversed from the starting node to end node for each automated test data. This kind of traversal could be improved by branch ordering, together with elitism. But still the population size and the number of iterations are maintained as the same to keep all the branches alive. In this paper, we present an incremental genetic algorithm (IGA) for branch coverage testing. Initially, a classical genetic algorithm (GA) is used to construct the population with the best parents for each branch node, and the IGA is started with these parents as the initial population. Hence, it is not necessary to maintain a huge population size and large number of iterations to cover all the branches. The performance is analyzed with five benchmark programs studied from the literature. The experimental results indicate that the proposed IGA search technique outperforms the other meta-heuristic search techniques in terms of memory usage and scalability.

  18. Human Papillomavirus Laboratory Testing: the Changing Paradigm

    Science.gov (United States)

    2016-01-01

    SUMMARY High-risk human papillomaviruses (HPVs) cause essentially all cervical cancers, most anal and oropharyngeal cancers, and some vaginal, vulvar, and penile cancers. Improved understanding of the pathogenesis of infection and the availability of newer tests are changing the approach to screening and diagnosis. Molecular tests to detect DNA from the most common high-risk HPVs are FDA approved for use in conjunction with cytology in cervical cancer screening programs. More-specific tests that detect RNA from high-risk HPV types are now also available. The use of molecular tests as the primary screening tests is being adopted in some areas. Genotyping to identify HPV16 and -18 has a recommended role in triaging patients for colposcopy who are high-risk HPV positive but have normal cytology. There are currently no recommended screening methods for anal, vulvar, vaginal, penile, or oropharyngeal HPV infections. HPV testing has limited utility in patients at high risk for anal cancer, but p16 immunohistochemistry is recommended to clarify lesions in tissue biopsy specimens that show moderate dysplasia or precancer mimics. HPV testing is recommended for oropharyngeal squamous cell tumors as a prognostic indicator. Ongoing research will help to improve the content of future guidelines for screening and diagnostic testing. PMID:26912568

  19. Influence of human genetic variation on nutritional requirements.

    Science.gov (United States)

    Stover, Patrick J

    2006-02-01

    Genetic variation is known to affect food tolerances among human subpopulations and may also influence dietary requirements, giving rise to the new field of nutritional genomics and raising the possibility of individualizing nutritional intake for optimal health and disease prevention on the basis of an individual's genome. However, because gene-diet interactions are complex and poorly understood, the use of genomic knowledge to adjust population-based dietary recommendations is not without risk. Whereas current recommendations target most of the population to prevent nutritional deficiencies, inclusion of genomic criteria may indicate subpopulations that may incur differential benefit or risk from generalized recommendations and fortification policies. Current efforts to identify gene alleles that affect nutrient utilization have been enhanced by the identification of genetic variations that have expanded as a consequence of selection under extreme conditions. Identification of genetic variation that arose as a consequence of diet as a selective pressure helps to identify gene alleles that affect nutrient utilization. Understanding the molecular mechanisms underlying gene-nutrient interactions and their modification by genetic variation is expected to result in dietary recommendations and nutritional interventions that optimize individual health.

  20. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  1. [Influence of genetic factors on human sexual orientation. Review].

    Science.gov (United States)

    Rodríguez-Larralde, Alvaro; Paradisi, Irene

    2009-09-01

    Human sexual orientation is a complex trait, influenced by several genes, experiential and sociocultural factors. These elements interact and produce a typical pattern of sexual orientation towards the opposite sex. Some exceptions exist, like bisexuality and homosexuality, which seem to be more frequent in males than females. Traditional methods for the genetic study of behavior multifactorial characteristics consist in detecting the presence of familial aggregation. In order to identify the importance of genetic and environmental factors in this aggregation, the concordance of the trait for monozygotic and dizygotic twins and for adopted sibs, reared together and apart, is compared. These types of studies have shown that familial aggregation is stronger for male than for female homosexuality. Based on the threshold method for multifactorial traits, and varying the frequency of homosexuality in the population between 4 and 10%, heritability estimates between 0.27 and 0.76 have been obtained. In 1993, linkage between homosexuality and chromosomal region Xq28 based on molecular approaches was reported. Nevertheless, this was not confirmed in later studies. Recently, a wide search of the genome has given significant or close to significant linkage values with regions 7q36, 8p12 and 10q26, which need to be studied more closely. Deviation in the proportion of X chromosome inactivation in mothers of homosexuals seems to favor the presence of genes related with sexual orientation in this chromosome. There is still much to be known about the genetics of human homosexuality.

  2. Role of phenotypic and genetic testing in managing clopidogrel therapy.

    Science.gov (United States)

    Chan, Noel C; Eikelboom, John W; Ginsberg, Jeffrey S; Lauw, Mandy N; Vanassche, Thomas; Weitz, Jeffrey I; Hirsh, Jack

    2014-07-31

    The P2Y12 inhibitors, clopidogrel, prasugrel, and ticagrelor, are administered in fixed doses without laboratory monitoring. Randomized trials in acute coronary syndrome have shown that prasugrel and ticagrelor are more effective than standard-dose clopidogrel. Nonetheless, standard-dose clopidogrel remains widely used because it causes less bleeding and is less expensive. Patients treated with standard-dose clopidogrel have substantial variability in platelet inhibition, which is partly explained by genetic polymorphisms encoding CYP2C19, the hepatic enzyme involved in biotransformation of clopidogrel to its active metabolite. Some advocate tailoring P2Y12 inhibitor therapy according to the results of routine laboratory testing. Although there is good evidence for analytic, biological, and clinical validity of several phenotypic and genotypic biomarkers, the benefit of a management strategy that incorporates routine biomarker testing over standard of care without such testing remains unproven. Appropriately designed, adequately powered trials are needed but face the challenges of feasibility, cost, and the progressive switch from clopidogrel to prasugrel or ticagrelor.

  3. Human copy number variation and complex genetic disease.

    Science.gov (United States)

    Girirajan, Santhosh; Campbell, Catarina D; Eichler, Evan E

    2011-01-01

    Copy number variants (CNVs) play an important role in human disease and population diversity. Advancements in technology have allowed for the analysis of CNVs in thousands of individuals with disease in addition to thousands of controls. These studies have identified rare CNVs associated with neuropsychiatric diseases such as autism, schizophrenia, and intellectual disability. In addition, copy number polymorphisms (CNPs) are present at higher frequencies in the population, show high diversity in copy number, sequence, and structure, and have been associated with multiple phenotypes, primarily related to immune or environmental response. However, the landscape of copy number variation still remains largely unexplored, especially for smaller CNVs and those embedded within complex regions of the human genome. An integrated approach including characterization of single nucleotide variants and CNVs in a large number of individuals with disease and normal genomes holds the promise of thoroughly elucidating the genetic basis of human disease and diversity.

  4. Attitudes toward genetic testing among the general population and relatives of patients with a severe genetic disease

    DEFF Research Database (Denmark)

    Hietala, M; Hakonen, A; Aro, A R

    1995-01-01

    In the present study we explore the attitudes of the Finnish population toward genetic testing by conducting a questionnaire study of a stratified sample of the population as well as of family members of patients with a severe hereditary disease, aspartylglucosaminuria (AGU). The questionnaire...... members of AGU patients have a favorable attitude toward genetic testing. However, a commonly expressed reason against testing was that test results might lead to discrimination in employment or insurance policies. Based on the responses, we predict that future genetic testing programs will most probably...... evaluated attitudes toward gene tests in general and also respondents' preparedness to undergo gene tests for predictive testing, carrier detection, prenatal diagnosis, and selective abortion, in theoretical situations. The results of the study indicate that both the Finnish population in general and family...

  5. Genetic Counseling and Evaluation for BRCA1/2 Testing

    Science.gov (United States)

    ... to Family Family Stories Diseases Genomic Resources Genetic Counseling for Hereditary Breast and Ovarian Cancer Recommend on ... mutation, your doctor may refer you for genetic counseling. Understanding and dealing with a strong family health ...

  6. Pathways and barriers to genetic testing and screening: Molecular genetics meets the high-risk family. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Duster, T.

    1998-11-01

    The proliferation of genetic screening and testing is requiring increasing numbers of Americans to integrate genetic knowledge and interventions into their family life and personal experience. This study examines the social processes that occur as families at risk for two of the most common autosomal recessive diseases, sickle cell disease (SC) and cystic fibrosis (CF), encounter genetic testing. Each of these diseases is found primarily in a different ethnic/racial group (CF in Americans of North European descent and SC in Americans of West African descent). This has permitted them to have a certain additional lens on the role of culture in integrating genetic testing into family life and reproductive planning. A third type of genetic disorder, the thalassemias was added to the sample in order to extent the comparative frame and to include other ethnic and racial groups.

  7. Oxytocin receptor genetic variation promotes human trust behavior

    Directory of Open Access Journals (Sweden)

    Frank eKrueger

    2012-02-01

    Full Text Available Given that human trust behavior is heritable and intranasal administration of oxytocin enhances trust, the oxytocin receptor (OXTR gene is an excellent candidate to investigate genetic contributions to individual variations in trust behavior. Although a single-nucleotide polymorphism involving an adenine (A/ guanine (G transition (rs53576 has been associated with socio-emotional phenotypes, its link to trust behavior is unclear. We combined genotyping of healthy male students with the administration of a trust game experiment. Our results show that a naturally occurring genetic variation (rs53576 in the OXTR gene is reliably associated with trust behavior rather than a general increase in trustworthy or risk behaviors. Individuals homozygous for the G allele (GG showed higher trust behavior than individuals with A allele carriers (AA/AG. Although the molecular functionality of this polymorphism is still unknown, future research should clarify how the OXTR gene interacts with other genes and the environment in promoting socio-emotional behaviors.

  8. Genetic engineering of human embryonic stem cells with lentiviral vectors.

    Science.gov (United States)

    Xiong, Chen; Tang, Dong-Qi; Xie, Chang-Qing; Zhang, Li; Xu, Ke-Feng; Thompson, Winston E; Chou, Wayne; Gibbons, Gary H; Chang, Lung-Ji; Yang, Li-Jun; Chen, Yuqing E

    2005-08-01

    Human embryonic stem (hES) cells present a valuable source of cells with a vast therapeutic potential. However, the low efficiency of directed differentiation of hES cells remains a major obstacle in their uses for regenerative medicine. While differentiation may be controlled by the genetic manipulation, effective and efficient gene transfer into hES cells has been an elusive goal. Here, we show stable and efficient genetic manipulations of hES cells using lentiviral vectors. This method resulted in the establishment of stable gene expression without loss of pluripotency in hES cells. In addition, lentiviral vectors were effective in conveying the expression of an U6 promoter-driven small interfering RNA (siRNA), which was effective in silencing its specific target. Taken together, our results suggest that lentiviral gene delivery holds great promise for hES cell research and application.

  9. Genetics of the dentofacial variation in human malocclusion.

    Science.gov (United States)

    Moreno Uribe, L M; Miller, S F

    2015-04-01

    Malocclusions affect individuals worldwide, resulting in compromised function and esthetics. Understanding the etiological factors contributing to the variation in dentofacial morphology associated with malocclusions is the key to develop novel treatment approaches. Advances in dentofacial phenotyping, which is the comprehensive characterization of hard and soft tissue variation in the craniofacial complex, together with the acquisition of large-scale genomic data have started to unravel genetic mechanisms underlying facial variation. Knowledge on the genetics of human malocclusion is limited even though results attained thus far are encouraging, with promising opportunities for future research. This review summarizes the most common dentofacial variations associated with malocclusions and reviews the current knowledge of the roles of genes in the development of malocclusions. Lastly, this review will describe ways to advance malocclusion research, following examples from the expanding fields of phenomics and genomic medicine, which aim to better patient outcomes.

  10. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  11. Recollections of J.B.S. Haldane, with special reference to Human Genetics in India

    Science.gov (United States)

    Dronamraju, Krishna R.

    2012-01-01

    This paper is a brief account of the scientific work of J.B.S. Haldane (1892–1964), with special reference to early research in Human Genetics. Brief descriptions of Haldane's background, his important contributions to the foundations of human genetics, his move to India from Great Britain and the research carried out in Human Genetics in India under his direction are outlined. Population genetic research on Y-linkage in man, inbreeding, color blindness and other aspects are described. PMID:22754215

  12. Fostering students' knowledge and argumentation skills through dilemmas in human genetics

    Science.gov (United States)

    Zohar, Anat; Nemet, Flora

    2002-01-01

    This study examined the outcomes of a unit that integrates explicit teaching of general reasoning patterns into the teaching of a specific science content. Specifically, this article examined the teaching of argumentation skills in the context of dilemmas in human genetics. Before instruction only a minority (16.2%) of the students referred to correct, specific biological knowledge in constructing arguments in the context of dilemmas in genetics. Approximately 90% of the students were successful in formulating simple arguments. An assessment that took place following instruction supported the conclusion that integrating explicit teaching of argumentation into the teaching of dilemmas in human genetics enhances performance in both biological knowledge and argumentation. An increase was found in the frequency of students who referred to correct, specific biological knowledge in constructing arguments. Students in the experimental group scored significantly higher than students in the comparison group in a test of genetics knowledge. An increase was also found in the quality of students' argumentation. Students were able to transfer the reasoning abilities taught in the context of genetics to the context of dilemmas taken from everyday life. The effects of metacognitive thinking and of changing students' thinking dispositions by modifying what is considered valuable in the class culture are discussed.

  13. Mapping the genetic architecture of gene expression in human liver.

    Directory of Open Access Journals (Sweden)

    Eric E Schadt

    2008-05-01

    Full Text Available Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large

  14. Tests for genetic interactions in type 1 diabetes

    DEFF Research Database (Denmark)

    Morahan, Grant; Mehta, Munish; James, Ian

    2011-01-01

    Interactions between genetic and environmental factors lead to immune dysregulation causing type 1 diabetes and other autoimmune disorders. Recently, many common genetic variants have been associated with type 1 diabetes risk, but each has modest individual effects. Familial clustering of type 1...... diabetes has not been explained fully and could arise from many factors, including undetected genetic variation and gene interactions....

  15. Predicting human genetic interactions from cancer genome evolution.

    Directory of Open Access Journals (Sweden)

    Xiaowen Lu

    Full Text Available Synthetic Lethal (SL genetic interactions play a key role in various types of biological research, ranging from understanding genotype-phenotype relationships to identifying drug-targets against cancer. Despite recent advances in empirical measuring SL interactions in human cells, the human genetic interaction map is far from complete. Here, we present a novel approach to predict this map by exploiting patterns in cancer genome evolution. First, we show that empirically determined SL interactions are reflected in various gene presence, absence, and duplication patterns in hundreds of cancer genomes. The most evident pattern that we discovered is that when one member of an SL interaction gene pair is lost, the other gene tends not to be lost, i.e. the absence of co-loss. This observation is in line with expectation, because the loss of an SL interacting pair will be lethal to the cancer cell. SL interactions are also reflected in gene expression profiles, such as an under representation of cases where the genes in an SL pair are both under expressed, and an over representation of cases where one gene of an SL pair is under expressed, while the other one is over expressed. We integrated the various previously unknown cancer genome patterns and the gene expression patterns into a computational model to identify SL pairs. This simple, genome-wide model achieves a high prediction power (AUC = 0.75 for known genetic interactions. It allows us to present for the first time a comprehensive genome-wide list of SL interactions with a high estimated prediction precision, covering up to 591,000 gene pairs. This unique list can potentially be used in various application areas ranging from biotechnology to medical genetics.

  16. Robotics for recombinant DNA and human genetics research

    Energy Technology Data Exchange (ETDEWEB)

    Beugelsdijk, T.J.

    1990-01-01

    In October of 1989, molecular biologists throughout the world formally embarked on ultimately determining the set of genetic instructions for a human being. Called by some the Manhattan Project'' a molecular biology, pursuit of this goal is projected to require approximately 3000 man years of effort over a 15-year period. The Humane Genome Initiative is a worldwide research effort that has the goal of analyzing the structure of human deoxyribonucleic acid (DNA) and determining the location of all human genes. The Department of Energy (DOE) has designated three of its national laboratories as centers for the Human Genome Project. These are Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Lawrence Berkeley Laboratory (LBL). These laboratories are currently working on different, but complementary technology development areas in support of the Human Genome Project. The robotics group at LANL is currently working at developing the technologies that address the problems associated with physical mapping. This article describes some of these problems and discusses some of the robotics approaches and engineering tolls applicable to their solution. 7 refs., 8 figs., 1 tab.

  17. [Survey on the attitude toward genetic testing of neurologists certified by the Japanese Society of Neurology].

    Science.gov (United States)

    Yoshida, Kunihiro; Ohata, Takako; Muto, Kaori; Tsuchiya, Atsushi; Sawada, Jinichi; Hazama, Takanori; Ikeda, Shu-Ichi; Toda, Tatsushi

    2013-01-01

    To clarify the attitude toward genetic testing for neuromuscular diseases, a questionnaire was sent to 4,762 neurologists certified by the Japanese Society of Neurology. By December 21, 2011, 1,493 questionnaires (31.4%) were returned. Of these, 1,233 (82.6%) had experienced genetic testing, but only 396 (26.5%) had referred to the guideline for genetic testing of the Japanese Society of Neurology (2009). The numbers of respondents who were positive, or more positive than negative for genetic testing for myotonic dystrophy type 1 (DM1), Huntington's disease (HD), and familial amyloid polyneuropathy (FAP) were 753 (50.4%), 915 (61.3%), and 980 (65.6%), respectively. The predominant reason for a positive attitude toward genetic testing was to confirm or exclude the diagnosis. Conversely, the predominant reason for a negative attitude toward genetic testing differed between the diseases. For DM1, it was to confirm the diagnosis without genetic testing. For HD, it was that genetic testing would not result in effective prevention or therapy. In FAP, it was that post-testing psychosocial support for the patient and their family was difficult. Common to DM1, HD, and FAP, a significant number of respondents (approximately 60%) felt it difficult to explain the negative aspects that might occur after the disclosure of test results. Concerning predictive or prenatal genetic testing, most respondents referred at-risk individuals to specialized genetic counseling clinics. In general, neurologists are likely to conduct genetic testing properly in consideration not only of the characteristics of the diseases but also of the circumstances of each patient and his or her family. To support neurologists who are involved in genetic testing, the guidelines should be more easily accessible. Many respondents wanted information on the institutions that provide genetic counseling and testing; however, financial support to such institutions is indispensable for fulfilling this requirement.

  18. To Test or Not to Test? The Role of Attitudes, Knowledge, and Religious Involvement among U.s. Adults on Intent-to-Obtain Adult Genetic Testing

    Science.gov (United States)

    Botoseneanu, Anda; Alexander, Jeffrey A.; Banaszak-Holl, Jane

    2011-01-01

    Genetic testing can advance cancer prevention if current screening behaviors improve. Increased prevalence of high-risk genotypes within specific religious groups, use of religious venues for recruiting to genetic screening, and ethical-religious considerations argue for exploring the role of religiosity in forming genetic testing decisions. This…

  19. A genetic basis for mechanosensory traits in humans.

    Science.gov (United States)

    Frenzel, Henning; Bohlender, Jörg; Pinsker, Katrin; Wohlleben, Bärbel; Tank, Jens; Lechner, Stefan G; Schiska, Daniela; Jaijo, Teresa; Rüschendorf, Franz; Saar, Kathrin; Jordan, Jens; Millán, José M; Gross, Manfred; Lewin, Gary R

    2012-01-01

    In all vertebrates hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. There is an extensive literature describing single gene mutations in humans that cause hearing impairment, but there are essentially none for touch. Here we first asked if touch sensitivity is a heritable trait and second whether there are common genes that influence different mechanosensory senses like hearing and touch in humans. Using a classical twin study design we demonstrate that touch sensitivity and touch acuity are highly heritable traits. Quantitative phenotypic measures of different mechanosensory systems revealed significant correlations between touch and hearing acuity in a healthy human population. Thus mutations in genes causing deafness genes could conceivably negatively influence touch sensitivity. In agreement with this hypothesis we found that a proportion of a cohort of congenitally deaf young adults display significantly impaired measures of touch sensitivity compared to controls. In contrast, blind individuals showed enhanced, not diminished touch acuity. Finally, by examining a cohort of patients with Usher syndrome, a genetically well-characterized deaf-blindness syndrome, we could show that recessive pathogenic mutations in the USH2A gene influence touch acuity. Control Usher syndrome cohorts lacking demonstrable pathogenic USH2A mutations showed no impairment in touch acuity. Our study thus provides comprehensive evidence that there are common genetic elements that contribute to touch and hearing and has identified one of these genes as USH2A.

  20. A genetic basis for mechanosensory traits in humans.

    Directory of Open Access Journals (Sweden)

    Henning Frenzel

    Full Text Available In all vertebrates hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. There is an extensive literature describing single gene mutations in humans that cause hearing impairment, but there are essentially none for touch. Here we first asked if touch sensitivity is a heritable trait and second whether there are common genes that influence different mechanosensory senses like hearing and touch in humans. Using a classical twin study design we demonstrate that touch sensitivity and touch acuity are highly heritable traits. Quantitative phenotypic measures of different mechanosensory systems revealed significant correlations between touch and hearing acuity in a healthy human population. Thus mutations in genes causing deafness genes could conceivably negatively influence touch sensitivity. In agreement with this hypothesis we found that a proportion of a cohort of congenitally deaf young adults display significantly impaired measures of touch sensitivity compared to controls. In contrast, blind individuals showed enhanced, not diminished touch acuity. Finally, by examining a cohort of patients with Usher syndrome, a genetically well-characterized deaf-blindness syndrome, we could show that recessive pathogenic mutations in the USH2A gene influence touch acuity. Control Usher syndrome cohorts lacking demonstrable pathogenic USH2A mutations showed no impairment in touch acuity. Our study thus provides comprehensive evidence that there are common genetic elements that contribute to touch and hearing and has identified one of these genes as USH2A.

  1. Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Ivana Antonucci

    2016-04-01

    Full Text Available In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers “in vitro”. In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.

  2. Blood groups and human groups: collecting and calibrating genetic data after World War Two.

    Science.gov (United States)

    Bangham, Jenny

    2014-09-01

    Arthur Mourant's The Distribution of the Human Blood Groups (1954) was an "indispensable" reference book on the "anthropology of blood groups" containing a vast collection of human genetic data. It was based on the results of blood-grouping tests carried out on half-a-million people and drew together studies on diverse populations around the world: from rural communities, to religious exiles, to volunteer transfusion donors. This paper pieces together sequential stages in the production of a small fraction of the blood-group data in Mourant's book, to examine how he and his colleagues made genetic data from people. Using sources from several collecting projects, I follow how blood was encountered, how it was inscribed, and how it was turned into a laboratory resource. I trace Mourant's analytical and representational strategies to make blood groups both credibly 'genetic' and understood as relevant to human ancestry, race and history. In this story, 'populations' were not simply given, but were produced through public health, colonial and post-colonial institutions, and by the labour and expertise of subjects, assistants and mediators. Genetic data were not self-evidently 'biological', but were shaped by existing historical and geographical identities, by political relationships, and by notions of kinship and belonging.

  3. Genetic identification of missing persons: DNA analysis of human remains and compromised samples.

    Science.gov (United States)

    Alvarez-Cubero, M J; Saiz, M; Martinez-Gonzalez, L J; Alvarez, J C; Eisenberg, A J; Budowle, B; Lorente, J A

    2012-01-01

    Human identification has made great strides over the past 2 decades due to the advent of DNA typing. Forensic DNA typing provides genetic data from a variety of materials and individuals, and is applied to many important issues that confront society. Part of the success of DNA typing is the generation of DNA databases to help identify missing persons and to develop investigative leads to assist law enforcement. DNA databases house DNA profiles from convicted felons (and in some jurisdictions arrestees), forensic evidence, human remains, and direct and family reference samples of missing persons. These databases are essential tools, which are becoming quite large (for example the US Database contains 10 million profiles). The scientific, governmental and private communities continue to work together to standardize genetic markers for more effective worldwide data sharing, to develop and validate robust DNA typing kits that contain the reagents necessary to type core identity genetic markers, to develop technologies that facilitate a number of analytical processes and to develop policies to make human identity testing more effective. Indeed, DNA typing is integral to resolving a number of serious criminal and civil concerns, such as solving missing person cases and identifying victims of mass disasters and children who may have been victims of human trafficking, and provides information for historical studies. As more refined capabilities are still required, novel approaches are being sought, such as genetic testing by next-generation sequencing, mass spectrometry, chip arrays and pyrosequencing. Single nucleotide polymorphisms offer the potential to analyze severely compromised biological samples, to determine the facial phenotype of decomposed human remains and to predict the bioancestry of individuals, a new focus in analyzing this type of markers.

  4. Genetic mapping of complex discrete human diseases by discriminant analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The objective of the present study is to propose and evaluate a novel multivariate approach for genetic mapping of complex categorical diseases. This approach results from an application of standard stepwise discriminant analysis to detect linkage based on the differential marker identity-by-descent (IBD) distributions among the different groups of sib pairs. Two major advantages of this method are that it allows for simultaneously testing all markers, together with other genetic and environmental factors in a single multivariate setting and it avoids explicitly modeling the complex relationship between the affection status of sib pairs and the underlying genetic determinants. The efficiency and properties of the method are demonstrated via simulations. The proposed multivariate approach has successfully located the true position(s) under various genetic scenarios. The more important finding is that using highly densely spaced markers (1~2 cM) leads to only a marginal loss of statistical efficiency of the proposed methods in terms of gene localization and statistical power. These results have well established its utility and advantages as a fine-mapping tool. A unique property of the proposed method is the ability to map multiple linked trait loci to their precise positions due to its sequential nature, as demonstrated via simulations.

  5. Human genetic susceptibility and infection with Leishmania peruviana

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.A.; Davis, C.R.; Collins, A. [and others

    1995-11-01

    Racial differences, familial clustering, and murine studies are suggestive of host genetic control of Leishmania infections. Complex segregation analysis has been carried out by use of the programs POINTER and COMDS and data from a total population survey, comprising 636 nuclear families, from an L. perurviana endemic area. The data support genetic components controlling susceptibility to clinical leishmaniasis, influencing severity of disease and resistance to disease among healthy individuals. A multifactorial model is favored over a sporadic model. Two-locus models provided the best fit to the data, the optimal model being a recessive gene (frequency .57) plus a modifier locus. Individuals infected at an early age and with recurrent lesions are genetically more susceptible than those infected with a single episode of disease at a later age. Among people with no lesions, those with a positive skin-test response are genetically less susceptible than those with a negative response. The possibility of the involvement of more than one gene together with environmental effects has implications for the design of future linkage studies. 31 refs., 7 tabs.

  6. Learners in dialogue. Teacher experise and learning in the context of genetic testing

    OpenAIRE

    2011-01-01

    Learners in Dialogue; this thesis aims at the exploration of teacher expertise for teachers who want to teach genetics in the context of genetic testing and at finding ways to foster teacher learning concerning this expertise. Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. A special focus was on moral reasoning because reasoning and decision-making based on genetic information in such test situations i...

  7. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans.

    Science.gov (United States)

    Verloop, Herman; Dekkers, Olaf M; Peeters, Robin P; Schoones, Jan W; Smit, Johannes W A

    2014-09-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation. © 2014 European Society of Endocrinology.

  8. Genetic engineering of mesenchymal stem cells and its application in human disease therapy.

    Science.gov (United States)

    Hodgkinson, Conrad P; Gomez, José A; Mirotsou, Maria; Dzau, Victor J

    2010-11-01

    The use of stem cells for tissue regeneration and repair is advancing both at the bench and bedside. Stem cells isolated from bone marrow are currently being tested for their therapeutic potential in a variety of clinical conditions including cardiovascular injury, kidney failure, cancer, and neurological and bone disorders. Despite the advantages, stem cell therapy is still limited by low survival, engraftment, and homing to damage area as well as inefficiencies in differentiating into fully functional tissues. Genetic engineering of mesenchymal stem cells is being explored as a means to circumvent some of these problems. This review presents the current understanding of the use of genetically engineered mesenchymal stem cells in human disease therapy with emphasis on genetic modifications aimed to improve survival, homing, angiogenesis, and heart function after myocardial infarction. Advancements in other disease areas are also discussed.

  9. What Mendel did not discover: exceptions in Mendelian genetics and their role in inherited human disease.

    Science.gov (United States)

    Hern, Laura M; Bidichandani, Sanjay I

    2004-01-01

    It has been one hundred and thirty-eight years after the initial publication of Mendel's laws of inheritance. Following a couple of decades of unprecedented progress in deciphering the molecular basis of human genetic disease, we have the luxury of hindsight to revisit Mendel's original discoveries in order to recognize variations in the themes that have otherwise endured the test of time. In this article we focus on diseases inherited in a Mendelian (or near Mendelian) fashion and describe deviations from the laws of Mendelian inheritance. We discuss relevant examples of inherited human disease and the underlying molecular mechanisms for the observed variations in Mendelian laws of inheritance.

  10. New Advances of Preimplantation and Prenatal Genetic Screening and Noninvasive Testing as a Potential Predictor of Health Status of Babies

    Directory of Open Access Journals (Sweden)

    Tanya Milachich

    2014-01-01

    Full Text Available The current morphologically based selection of human embryos for transfer cannot detect chromosome aneuploidies. So far, only biopsy techniques have been able to screen for chromosomal aneuploidies in the in vitro fertilization (IVF embryos. Preimplantation genetic diagnosis (PGD or screening (PGS involves the biopsy of oocyte polar bodies or embryonic cells and has become a routine clinical procedure in many IVF clinics worldwide, including recent development of comprehensive chromosome screening of all 23 pairs of chromosomes by microarrays for aneuploidy screening. The routine preimplantation and prenatal genetic diagnosis (PND require testing in an aggressive manner. These procedures may be invasive to the growing embryo and fetus and potentially could compromise the clinical outcome. Therefore the aim of this review is to summarize not only the new knowledge on preimplantation and prenatal genetic diagnosis in humans, but also on the development of potential noninvasive embryo and fetal testing that might play an important role in the future.

  11. Liberal or Conservative? Genetic Rhetoric, Disability, and Human Species Modification

    Directory of Open Access Journals (Sweden)

    Christopher F. Goodey

    2016-11-01

    Full Text Available A certain political rhetoric is implicit and sometimes explicit in the advocacy of human genetic modification (indicating here both the enhancement and the prevention of disability. The main claim is that it belongs to a liberal tradition. From a perspective supplied by the history and philosophy of science rather than by ethics, the content of that claim is examined to see if such a self-description is justified. The techniques are analyzed by which apparently liberal arguments get to be presented as “reasonable” in a juridical sense that draws on theories of law and rhetoric.

  12. The impact of preimplantation genetic diagnosis on human embryos

    Directory of Open Access Journals (Sweden)

    García-Ferreyra J.

    2016-12-01

    Full Text Available Chromosome abnormalities are extremely common in human oocytes and embryos and are associated with a variety of negative outcomes for both natural cycles and those using assisted reproduction techniques. Aneuploidies embryos may fail to implant in the uterus, miscarry, or lead to children with serious medical problems (e.g., Down syndrome. Preimplantation genetic diagnosis (PGD is a technique that allows the detection of aneuploidy in embryos and seeks to improve the clinical outcomes od assisted reproduction treatments, by ensuring that the embryos chosen for the transfer are chromosomally normal.

  13. A Novel WRN Frameshift Mutation Identified by Multiplex Genetic Testing in a Family with Multiple Cases of Cancer.

    Science.gov (United States)

    Yang, Liu; Wang, Guosheng; Zhao, Xinyi; Ye, Song; Shen, Peng; Wang, Weilin; Zheng, Shusen

    2015-01-01

    Next-generation sequencing technology allows simultaneous analysis of multiple susceptibility genes for clinical cancer genetics. In this study, multiplex genetic testing was conducted in a Chinese family with multiple cases of cancer to determine the variations in cancer predisposition genes. The family comprises a mother and her five daughters, of whom the mother and the eldest daughter have cancer and the secondary daughter died of cancer. We conducted multiplex genetic testing of 90 cancer susceptibility genes using the peripheral blood DNA of the mother and all five daughters. WRN frameshift mutation is considered a potential pathogenic variation according to the guidelines of the American College of Medical Genetics. A novel WRN frameshift mutation (p.N1370Tfs*23) was identified in the three cancer patients and in the youngest unaffected daughter. Other rare non-synonymous germline mutations were also detected in DICER and ELAC2. Functional mutations in WRN cause Werner syndrome, a human autosomal recessive disease characterized by premature aging and associated with genetic instability and increased cancer risk. Our results suggest that the WRN frameshift mutation is important in the surveillance of other members of this family, especially the youngest daughter, but the pathogenicity of the novel WRN frameshift mutation needs to be investigated further. Given its extensive use in clinical genetic screening, multiplex genetic testing is a promising tool in clinical cancer surveillance.

  14. A pseudoisochromatic test of color vision for human infants.

    Science.gov (United States)

    Mercer, Michele E; Drodge, Suzanne C; Courage, Mary L; Adams, Russell J

    2014-07-01

    Despite the development of experimental methods capable of measuring early human color vision, we still lack a procedure comparable to those used to diagnose the well-identified congenital and acquired color vision anomalies in older children, adults, and clinical patients. In this study, we modified a pseudoisochromatic test to make it more suitable for young infants. Using a forced choice preferential looking procedure, 216 3-to-23-mo-old babies were tested with pseudoisochromatic targets that fell on either a red/green or a blue/yellow dichromatic confusion axis. For comparison, 220 color-normal adults and 22 color-deficient adults were also tested. Results showed that all babies and adults passed the blue/yellow target but many of the younger infants failed the red/green target, likely due to the interaction of the lingering immaturities within the visual system and the small CIE vector distance within the red/green plate. However, older (17-23 mo) infants, color- normal adults and color-defective adults all performed according to expectation. Interestingly, performance on the red/green plate was better among female infants, well exceeding the expected rate of genetic dimorphism between genders. Overall, with some further modification, the test serves as a promising tool for the detection of early color vision anomalies in early human life.

  15. A Knowledge Base for Teaching Biology Situated in the Context of Genetic Testing

    Science.gov (United States)

    van der Zande, Paul; Waarlo, Arend Jan; Brekelmans, Mieke; Akkerman, Sanne F.; Vermunt, Jan D.

    2011-10-01

    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testing. The increasing body of scientific knowledge concerning genetic testing and the related consequences for decision-making indicate the societal relevance of such a situated learning approach. What content knowledge do biology teachers need for teaching genetics in the personal health context of genetic testing? This study describes the required content knowledge by exploring the educational practice and clinical genetic practices. Nine experienced teachers and 12 respondents representing the clinical genetic practices (clients, medical professionals, and medical ethicists) were interviewed about the biological concepts and ethical, legal, and social aspects (ELSA) of testing they considered relevant to empowering students as future health care clients. The ELSA suggested by the respondents were complemented by suggestions found in the literature on genetic counselling. The findings revealed that the required teacher knowledge consists of multiple layers that are embedded in specific genetic test situations: on the one hand, the knowledge of concepts represented by the curricular framework and some additional concepts (e.g. multifactorial and polygenic disorder) and, on the other hand, more knowledge of ELSA and generic characteristics of genetic test practice (uncertainty, complexity, probability, and morality). Suggestions regarding how to translate these characteristics, concepts, and ELSA into context-based genetics education are discussed.

  16. Genetics and Human Agency: Comment on Dar-Nimrod and Heine (2011)

    Science.gov (United States)

    Turkheimer, Eric

    2011-01-01

    Dar-Nimrod and Heine (2011) decried genetic essentialism without denying the importance of genetics in the genesis of human behavior, and although I agree on both counts, a deeper issue remains unaddressed: how should we adjust our cognitions about our own behavior in light of genetic influence, or is it perhaps not necessary to take genetics into…

  17. Genetics and Human Agency: Comment on Dar-Nimrod and Heine (2011)

    Science.gov (United States)

    Turkheimer, Eric

    2011-01-01

    Dar-Nimrod and Heine (2011) decried genetic essentialism without denying the importance of genetics in the genesis of human behavior, and although I agree on both counts, a deeper issue remains unaddressed: how should we adjust our cognitions about our own behavior in light of genetic influence, or is it perhaps not necessary to take genetics into…

  18. Alu repeats as markers for human population genetics

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.; Alegria-Hartman, M. [Lawrence Livermore National Lab., CA (United States); Bazan, H. [Louisiana State Univ., New Orleans, LA (United States). Medical Center] [and others

    1993-09-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 97.9% nucleotide identity with each other and an average of 98.9% nucleotide identity with the HS subfamily consensus sequence. HS Alu family members are thought to be derived from a single source ``master`` gene, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 in. and 3 in. unique flanking DNA sequences from each HS Alu that allows the locus to be assayed for the presence or absence of an Alu repeat. Individual HS Alu sequences were found to be either monomorphic or dimorphic for the presence or absence of each repeat. The monomorphic HS Alu family members inserted in the human genome after the human/great ape divergence (which is thought to have occurred 4--6 million years ago), but before the radiation of modem man. The dimorphic HS Alu sequences inserted in the human genome after the radiation of modem man (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project as well. HS Alu family member insertion dimorphism differs from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) because individuals share HS Alu family member insertions based upon identity by descent from a common ancestor as a result of a single event which occurred one time within the human population. The VNTR and RFLP polymorphisms may arise multiple times within a population and are identical by state only.

  19. Indiana Health Science Teachers: Their Human Genetics/Bioethics Educational Needs.

    Science.gov (United States)

    Hendrix, Jon R.; And Others

    1982-01-01

    Results from a human genetics/bioethics needs assessment questionnaire (N = 124 out of 300) mailed to Indiana health teachers are reported. Genetic topics and human genetic diseases/defects included in health science instruction are listed in two tables. Responses to 16 science/society statements (and statements themselves) are also reported. (SK)

  20. Genetic variants of the human dipeptide transporter PEPT1

    DEFF Research Database (Denmark)

    Anderle, Pascale; Nielsen, Carsten Uhd; Pinsonneault, Julia

    2006-01-01

    We tested whether genetic polymorphisms affect activity of the dipeptide transporter PEPT1, which mediates bioavailability of peptidomimetic drugs. All 23 exons and adjoining intronic sections of PEPT1 (SLC15A1) were sequenced in 247 individuals of various ethnic origins (Coriell collection). Of 38...... single nucleotide polymorphisms (SNPs), 21 occurred in intronic and non-coding regions and 17 in exonic coding region, of which nine were nonsynonymous. Eight nonsynonymous variants were cloned into expression vectors and functionally characterized after transient transfection into Cos7 and Chinese...... formation of a splice variant (PEPT1-RF). PEPT1-RF mRNA levels ranged from 2 to 44% of total PEPT1-related mRNA, with potential consequences for drug absorption. Together with previous results, this study reveals a relatively low level of genetic variability in polymorphisms affecting both protein function...

  1. An investigation of genetic counselors' testing recommendations: pedigree analysis and the use of multiplex breast cancer panel testing.

    Science.gov (United States)

    Lundy, Meghan G; Forman, Andrea; Valverde, Kathleen; Kessler, Lisa

    2014-08-01

    Genetic testing recommendations for hereditary breast and ovarian cancer involve pedigree analysis and consultation of testing guidelines. The testing landscape for hereditary cancer syndromes is shifting as multiplex panel tests become more widely integrated into clinical practice. The purpose of the current study was to assess how genetic counselors utilize pedigrees to make recommendations for genetic testing, to determine consistency of these recommendations with National Comprehensive Cancer Network (NCCN) Guidelines and to explore current use of multiplex panel testing. Sixty-nine genetic counselors were recruited through the National Society of Genetic Counselors Cancer Special Interest Group's Discussion Forum. Participation involved pedigree analysis and completion of an online questionnaire assessing testing recommendations and use of multiplex panel testing. Pedigree analysis and test recommendations were scored for consistency with NCCN guidelines. The average score was 12.83/15 indicating strong consistency with NCCN guidelines. Participants were more likely to consider multiplex testing when pedigrees demonstrated highly penetrant dominant inheritance but were not indicative of a particular syndrome. Participant concerns about multiplex panel testing include limited guidelines for both testing eligibility and medical management. This study demonstrates high utilization of pedigree analysis and raises new questions about its use in multiplex genetic testing.

  2. Complement regulators in human disease: lessons from modern genetics.

    Science.gov (United States)

    K Liszewski, M; Atkinson, J P

    2015-03-01

    First identified in human serum in the late 19th century as a 'complement' to antibodies in mediating bacterial lysis, the complement system emerged more than a billion years ago probably as the first humoral immune system. The contemporary complement system consists of nearly 60 proteins in three activation pathways (classical, alternative and lectin) and a terminal cytolytic pathway common to all. Modern molecular biology and genetics have not only led to further elucidation of the structure of complement system components, but have also revealed function-altering rare variants and common polymorphisms, particularly in regulators of the alternative pathway, that predispose to human disease by creating 'hyperinflammatory complement phenotypes'. To treat these 'complementopathies', a monoclonal antibody against the initiator of the membrane attack complex, C5, has received approval for use. Additional therapeutic reagents are on the horizon.

  3. Genetic control of human brain transcript expression in Alzheimer disease.

    Science.gov (United States)

    Webster, Jennifer A; Gibbs, J Raphael; Clarke, Jennifer; Ray, Monika; Zhang, Weixiong; Holmans, Peter; Rohrer, Kristen; Zhao, Alice; Marlowe, Lauren; Kaleem, Mona; McCorquodale, Donald S; Cuello, Cindy; Leung, Doris; Bryden, Leslie; Nath, Priti; Zismann, Victoria L; Joshipura, Keta; Huentelman, Matthew J; Hu-Lince, Diane; Coon, Keith D; Craig, David W; Pearson, John V; Heward, Christopher B; Reiman, Eric M; Stephan, Dietrich; Hardy, John; Myers, Amanda J

    2009-04-01

    We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal postmortem samples. We have now analyzed additional samples with a confirmed pathologic diagnosis of late-onset Alzheimer disease (LOAD; final n = 188 controls, 176 cases). Nine percent of the cortical transcripts that we analyzed had expression profiles correlated with their genotypes in the combined cohort, and approximately 5% of transcripts had SNP-transcript relationships that could distinguish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate-gene SNP-expression screens. This study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power for discovering risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease.

  4. Psychological aspects of human cloning and genetic manipulation: the identity and uniqueness of human beings.

    Science.gov (United States)

    Morales, N M

    2009-01-01

    Human cloning has become one of the most controversial debates about reproduction in Western civilization. Human cloning represents asexual reproduction, but the critics of human cloning argue that the result of cloning is not a new individual who is genetically unique. There is also awareness in the scientific community, including the medical community, that human cloning and the creation of clones are inevitable. Psychology and other social sciences, together with the natural sciences, will need to find ways to help the healthcare system, to be prepared to face the new challenges introduced by the techniques of human cloning. One of those challenges is to help the healthcare system to find specific standards of behaviour that could be used to help potential parents to interact properly with cloned babies or children created through genetic manipulation. In this paper, the concepts of personality, identity and uniqueness are discussed in relationship to the contribution of twin studies in these areas. The author argues that an individual created by human cloning techniques or any other type of genetic manipulation will not show the donor's characteristics to the extent of compromising uniqueness. Therefore, claims to such an effect are needlessly alarmist.

  5. Psychiatrists’ views of the genetic bases of mental disorders and behavioral traits and their utilization of genetic tests

    OpenAIRE

    Abbate, Kristopher J.; Chung, Wendy; Marder, Karen; Ottman, Ruth; Taber, Katherine Johansen; Leu, Cheng-Shiun; Appelbaum, Paul S.

    2014-01-01

    We examined how 372 psychiatrists view genetic aspects of mental disorders and behaviors, and use genetic tests (GTs). Most thought the genetic contribution was moderate/high for several disorders (e.g. bipolar, schizophrenia, depression, Alzheimer’s, intelligence, creativity, anxiety, suicidality). In the past 6 months, 14.1% ordered GTs, 18.3% discussed prenatal testing with patients, 36.0% initiated discussions about other GTs, 41.6% had patients ask about GTs, and 5.3% excluded GT results...

  6. Genetic Testing as a New Standard for Clinical Diagnosis of Color Vision Deficiencies

    Science.gov (United States)

    Davidoff, Candice; Neitz, Maureen; Neitz, Jay

    2016-01-01

    Purpose The genetics underlying inherited color vision deficiencies is well understood: causative mutations change the copy number or sequence of the long (L), middle (M), or short (S) wavelength sensitive cone opsin genes. This study evaluated the potential of opsin gene analyses for use in clinical diagnosis of color vision defects. Methods We tested 1872 human subjects using direct sequencing of opsin genes and a novel genetic assay that characterizes single nucleotide polymorphisms (SNPs) using the MassArray system. Of the subjects, 1074 also were given standard psychophysical color vision tests for a direct comparison with current clinical methods. Results Protan and deutan deficiencies were classified correctly in all subjects identified by MassArray as having red–green defects. Estimates of defect severity based on SNPs that control photopigment spectral tuning correlated with estimates derived from Nagel anomaloscopy. Conclusions The MassArray assay provides genetic information that can be useful in the diagnosis of inherited color vision deficiency including presence versus absence, type, and severity, and it provides information to patients about the underlying pathobiology of their disease. Translational Relevance The MassArray assay provides a method that directly analyzes the molecular substrates of color vision that could be used in combination with, or as an alternative to current clinical diagnosis of color defects. PMID:27622081

  7. Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations.

    Science.gov (United States)

    Marchi, Nina; Hegay, Tatyana; Mennecier, Philippe; Georges, Myriam; Laurent, Romain; Whitten, Mark; Endicott, Philipp; Aldashev, Almaz; Dorzhu, Choduraa; Nasyrova, Firuza; Chichlo, Boris; Ségurel, Laure; Heyer, Evelyne

    2017-04-01

    Sex-specific genetic structures have been previously documented worldwide in humans, even though causal factors have not always clearly been identified. In this study, we investigated the impact of ethnicity, geography and social organization on the sex-specific genetic structure in Inner Asia. Furthermore, we explored the process of ethnogenesis in multiple ethnic groups. We sampled DNA in Central and Northern Asia from 39 populations of Indo-Iranian and Turkic-Mongolic native speakers. We focused on genetic data of the Y chromosome and mitochondrial DNA. First, we compared the frequencies of haplogroups to South European and East Asian populations. Then, we investigated the genetic differentiation for eight Y-STRs and the HVS1 region, and tested for the effect of geography and ethnicity on such patterns. Finally, we reconstructed the male demographic history, inferred split times and effective population sizes of different ethnic groups. Based on the haplogroup data, we observed that the Indo-Iranian- and Turkic-Mongolic-speaking populations have distinct genetic backgrounds. However, each population showed consistent mtDNA and Y chromosome haplogroups patterns. As expected in patrilocal populations, we found that the Y-STRs were more structured than the HVS1. While ethnicity strongly influenced the genetic diversity on the Y chromosome, geography better explained that of the mtDNA. Furthermore, when looking at various ethnic groups, we systematically found a genetic split time older than historical records, suggesting a cultural rather than biological process of ethnogenesis. This study highlights that, in Inner Asia, specific cultural behaviors, especially patrilineality and patrilocality, leave a detectable signature on the sex-specific genetic structure. © 2017 Wiley Periodicals, Inc.

  8. Review of testing for human immunodeficiency virus.

    Science.gov (United States)

    Bylund, D J; Ziegner, U H; Hooper, D G

    1992-06-01

    The performance of HIV testing requires meticulous attention to preanalytic, analytic, and postanalytic variables, especially matters of patient confidentiality. Laboratory directors must pay strict attention to quality control and quality assurance practices. Careful attention to these considerations can produce a screening program in low-prevalence populations that has an extremely low false-positive rate, with a positive predictive value of greater than 99%. Issuing a clear and concise laboratory report to the clinician is important. The Fifth Consensus Conference on Testing for Human Retroviruses of the Association of State and Territorial Public Health Laboratory Directors, March 1990, has recommended that ELISA be reported as reactive or nonreactive; IFA as reactive, nonreactive, or nonspecific, and WB as reactive, nonreactive, or indeterminate. It is recommended that the terms positive and negative be reserved for the summary interpretation given at the conclusion of the HIV-1 antibody testing algorithm. The testing algorithm used for HIV antibody screening at Scripps Clinic is shown in Figure 3. Other algorithms for complete testing on a single sample only or on two separate samples are reported. We agree with others that the patient should not be counseled for infection with HIV until a reactive confirmatory test(s) establishes a positive diagnosis. Certain special situations in diagnostic testing deserve comment. Establishing the diagnosis of HIV infection can be difficult in seronegative persons with acute infection. Polymerase chain reaction, viral culture or antigen detection may be useful tests in this situation. However, careful interpretation of test results and close correlation with patient risk factors are important to establish the proper diagnosis. Reports of seronegative persons, some remaining seronegative over a protracted time, have raised concerns over the transfusional risk of HIV infection. Blood donor screening programs are using

  9. Genetic Markers of Human Evolution Are Enriched in Schizophrenia.

    Science.gov (United States)

    Srinivasan, Saurabh; Bettella, Francesco; Mattingsdal, Morten; Wang, Yunpeng; Witoelar, Aree; Schork, Andrew J; Thompson, Wesley K; Zuber, Verena; Winsvold, Bendik S; Zwart, John-Anker; Collier, David A; Desikan, Rahul S; Melle, Ingrid; Werge, Thomas; Dale, Anders M; Djurovic, Srdjan; Andreassen, Ole A

    2016-08-15

    Why schizophrenia has accompanied humans throughout our history despite its negative effect on fitness remains an evolutionary enigma. It is proposed that schizophrenia is a by-product of the complex evolution of the human brain and a compromise for humans' language, creative thinking, and cognitive abilities. We analyzed recent large genome-wide association studies of schizophrenia and a range of other human phenotypes (anthropometric measures, cardiovascular disease risk factors, immune-mediated diseases) using a statistical framework that draws on polygenic architecture and ancillary information on genetic variants. We used information from the evolutionary proxy measure called the Neanderthal selective sweep (NSS) score. Gene loci associated with schizophrenia are significantly (p = 7.30 × 10(-9)) more prevalent in genomic regions that are likely to have undergone recent positive selection in humans (i.e., with a low NSS score). Variants in brain-related genes with a low NSS score confer significantly higher susceptibility than variants in other brain-related genes. The enrichment is strongest for schizophrenia, but we cannot rule out enrichment for other phenotypes. The false discovery rate conditional on the evolutionary proxy points to 27 candidate schizophrenia susceptibility loci, 12 of which are associated with schizophrenia and other psychiatric disorders or linked to brain development. Our results suggest that there is a polygenic overlap between schizophrenia and NSS score, a marker of human evolution, which is in line with the hypothesis that the persistence of schizophrenia is related to the evolutionary process of becoming human. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Inference of distant genetic relations in humans using "1000 genomes".

    Science.gov (United States)

    Al-Khudhair, Ahmed; Qiu, Shuhao; Wyse, Meghan; Chowdhury, Shilpi; Cheng, Xi; Bekbolsynov, Dulat; Saha-Mandal, Arnab; Dutta, Rajib; Fedorova, Larisa; Fedorov, Alexei

    2015-01-07

    Nucleotide sequence differences on the whole-genome scale have been computed for 1,092 people from 14 populations publicly available by the 1000 Genomes Project. Total number of differences in genetic variants between 96,464 human pairs has been calculated. The distributions of these differences for individuals within European, Asian, or African origin were characterized by narrow unimodal peaks with mean values of 3.8, 3.5, and 5.1 million, respectively, and standard deviations of 0.1-0.03 million. The total numbers of genomic differences between pairs of all known relatives were found to be significantly lower than their respective population means and in reverse proportion to the distance of their consanguinity. By counting the total number of genomic differences it is possible to infer familial relations for people that share down to 6% of common loci identical-by-descent. Detection of familial relations can be radically improved when only very rare genetic variants are taken into account. Counting of total number of shared very rare single nucleotide polymorphisms (SNPs) from whole-genome sequences allows establishing distant familial relations for persons with eighth and ninth degrees of relationship. Using this analysis we predicted 271 distant familial pairwise relations among 1,092 individuals that have not been declared by 1000 Genomes Project. Particularly, among 89 British and 97 Chinese individuals we found three British-Chinese pairs with distant genetic relationships. Individuals from these pairs share identical-by-descent DNA fragments that represent 0.001%, 0.004%, and 0.01% of their genomes. With affordable whole-genome sequencing techniques, very rare SNPs should become important genetic markers for familial relationships and population stratification. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. G protein-coupled receptor mutations and human genetic disease.

    Science.gov (United States)

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  12. Somatic retrotransposition alters the genetic landscape of the human brain.

    Science.gov (United States)

    Baillie, J Kenneth; Barnett, Mark W; Upton, Kyle R; Gerhardt, Daniel J; Richmond, Todd A; De Sapio, Fioravante; Brennan, Paul M; Rizzu, Patrizia; Smith, Sarah; Fell, Mark; Talbot, Richard T; Gustincich, Stefano; Freeman, Thomas C; Mattick, John S; Hume, David A; Heutink, Peter; Carninci, Piero; Jeddeloh, Jeffrey A; Faulkner, Geoffrey J

    2011-10-30

    Retrotransposons are mobile genetic elements that use a germline 'copy-and-paste' mechanism to spread throughout metazoan genomes. At least 50 per cent of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and disease. Epigenetic and post-transcriptional suppression block retrotransposition in somatic cells, excluding early embryo development and some malignancies. Recent reports of L1 expression and copy number variation in the human brain suggest that L1 mobilization may also occur during later development. However, the corresponding integration sites have not been mapped. Here we apply a high-throughput method to identify numerous L1, Alu and SVA germline mutations, as well as 7,743 putative somatic L1 insertions, in the hippocampus and caudate nucleus of three individuals. Surprisingly, we also found 13,692 somatic Alu insertions and 1,350 SVA insertions. Our results demonstrate that retrotransposons mobilize to protein-coding genes differentially expressed and active in the brain. Thus, somatic genome mosaicism driven by retrotransposition may reshape the genetic circuitry that underpins normal and abnormal neurobiological processes.

  13. Human KIR repertoires: shaped by genetic diversity and evolution.

    Science.gov (United States)

    Manser, Angela R; Weinhold, Sandra; Uhrberg, Markus

    2015-09-01

    Killer cell immunoglobulin-like receptors (KIRs) on natural killer (NK) cells are crucially involved in the control of cancer development and virus infection by probing cells for proper expression of HLA class I. The clonally distributed expression of KIRs leads to great combinatorial diversity that develops in the presence of the evolutionary older CD94/NKG2A receptor to create highly stochastic but tolerant repertoires of NK cells. These repertoires are present at birth and are subsequently shaped by an individuals' immunological history toward recognition of self. The single most important factor that shapes functional NK cell repertoires is the genetic diversity of KIR, which is characterized by the presence of group A and B haplotypes with complementary gene content that are present in all human populations. Group A haplotypes constitute the minimal genetic entity that provides high affinity recognition of all major human leukocyte antigen class I-encoded ligands, whereas group B haplotypes contribute to the diversification of NK cell repertoires by providing sets of stimulatory KIR genes that modify NK cell responses. We suggest a cooperative model for the balancing selection of A and B haplotypes, which is driven by the need to provide a suitable corridor of repertoire complexity in which A/A individuals with only 16 different KIR combinations coexist with A/B and B/B donors expressing up to 2048 different clone types.

  14. An investigation of the statistical power of neutrality tests based on comparative and population genetic data

    DEFF Research Database (Denmark)

    Zhai, Weiwei; Nielsen, Rasmus; Slatkin, Montgomery

    2009-01-01

    In this report, we investigate the statistical power of several tests of selective neutrality based on patterns of genetic diversity within and between species. The goal is to compare tests based solely on population genetic data with tests using comparative data or a combination of comparative...... selection. The Hudson-Kreitman-Aguadé test is the most powerful test for detecting positive selection among the population genetic tests investigated, whereas McDonald-Kreitman test typically has more power to detect negative selection. We discuss our findings in the light of the discordant results obtained...

  15. Human Machine Interface Programming and Testing

    Science.gov (United States)

    Foster, Thomas Garrison

    2013-01-01

    Human Machine Interface (HMI) Programming and Testing is about creating graphical displays to mimic mission critical ground control systems in order to provide NASA engineers with the ability to monitor the health management of these systems in real time. The Health Management System (HMS) is an online interactive human machine interface system that monitors all Kennedy Ground Control Subsystem (KGCS) hardware in the field. The Health Management System is essential to NASA engineers because it allows remote control and monitoring of the health management systems of all the Programmable Logic Controllers (PLC) and associated field devices. KGCS will have equipment installed at the launch pad, Vehicle Assembly Building, Mobile Launcher, as well as the Multi-Purpose Processing Facility. I am designing graphical displays to monitor and control new modules that will be integrated into the HMS. The design of the display screen will closely mimic the appearance and functionality of the actual modules. There are many different field devices used to monitor health management and each device has its own unique set of health management related data, therefore each display must also have its own unique way to display this data. Once the displays are created, the RSLogix5000 application is used to write software that maps all the required data read from the hardware to the graphical display. Once this data is mapped to its corresponding display item, the graphical display and hardware device will be connected through the same network in order to test all possible scenarios and types of data the graphical display was designed to receive. Test Procedures will be written to thoroughly test out the displays and ensure that they are working correctly before being deployed to the field. Additionally, the Kennedy Ground Controls Subsystem's user manual will be updated to explain to the NASA engineers how to use the new module displays.

  16. [Non-invasive Genetic Prenatal Testing - A Serious Challenge for Society as a Whole].

    Science.gov (United States)

    Zerres, K

    2015-04-01

    Non-invasive genetic prenatal tests nowadays allow a highly reliable identification of pregnancies with foetal aneuploidies. Due to the general availability of these tests for all pregnant women, non-invasive genetic prenatal testing raises many ethical questions whieh can only be answered by a debate focused on society as a whole.

  17. Recommendations for quality improvement in genetic testing for cystic fibrosis European Concerted Action on Cystic Fibrosis

    NARCIS (Netherlands)

    Dequeker, E; Cuppens, H; Dodge, J; Estivill, [No Value; Goossens, M; Pignatti, PF; Scheffer, H; Schwartz, M; Schwarz, M; Tummler, B; Cassiman, JJ

    2000-01-01

    These recommendations for quality improvement of cystic fibrosis genetic diagnostic testing provide general guidelines for the molecular genetic testing of cystic fibrosis in patients/individuals. General strategies for testing as well as guidelines for laboratory procedures, internal and external q

  18. Choice of Reading Comprehension Test Influences the Outcomes of Genetic Analyses

    Science.gov (United States)

    Betjemann, Rebecca S.; Keenan, Janice M.; Olson, Richard K.; DeFries, John C.

    2011-01-01

    Does the choice of test for assessing reading comprehension influence the outcome of genetic analyses? A twin design compared two types of reading comprehension tests classified as primarily associated with word decoding (RC-D) or listening comprehension (RC-LC). For both types of tests, the overall genetic influence is high and nearly identical.…

  19. Recommendations for quality improvement in genetic testing for cystic fibrosis European Concerted Action on Cystic Fibrosis

    NARCIS (Netherlands)

    Dequeker, E; Cuppens, H; Dodge, J; Estivill, [No Value; Goossens, M; Pignatti, PF; Scheffer, H; Schwartz, M; Schwarz, M; Tummler, B; Cassiman, JJ

    2000-01-01

    These recommendations for quality improvement of cystic fibrosis genetic diagnostic testing provide general guidelines for the molecular genetic testing of cystic fibrosis in patients/individuals. General strategies for testing as well as guidelines for laboratory procedures, internal and external q

  20. Predictive genetic testing for cardiovascular diseases: impact on carrier children.

    Science.gov (United States)

    Meulenkamp, Tineke M; Tibben, Aad; Mollema, Eline D; van Langen, Irene M; Wiegman, Albert; de Wert, Guido M; de Beaufort, Inez D; Wilde, Arthur A M; Smets, Ellen M A

    2008-12-15

    We studied the experiences of children identified by family screening who were found to be a mutation carrier for a genetic cardiovascular disease (Long QT Syndrome (LQTS), Hypertrophic Cardiomyopathy (HCM), Familial Hypercholesterolemia (FH)). We addressed the (a) manner in which they perceive their carrier status, (b) impact on their daily lives, and (c) strategy used to cope with these consequences. Children (aged 8-18) who tested positive for LQTS (n=11), HCM (n=6) or FH (n=16), and their parents participated in semi-structured audiotaped interviews. Interview topics included illness perception, use of medication, lifestyle modifications, worries, and coping. Each interview was coded by two researchers. The qualitative analysis was guided by Leventhal's model of self-regulation. The children were overall quite articulate about the disease they were tested for, including its mode of inheritance. They expressed positive future health perceptions, but feelings of controllability varied. Adherence and side-effects were significant themes with regard to medication-use. Refraining from activities and maintaining a non-fat diet were themes concerning lifestyle modifications. Some children spontaneously reported worries about the possibility of dying and frustration about being different from peers. Children coped with these worries by expressing faith in the effectiveness of medication, trying to be similar to peers or, in contrast, emphasizing their "being different." Children generally appeared effective in the way they coped with their carrier status and its implications. Nevertheless, dealing with the daily implications of their condition remains difficult in some situations, warranting continued availability of psychosocial support.

  1. Identification of multiple genetic loci in the mouse controlling immobility time in the tail suspension and forced swimming tests.

    Science.gov (United States)

    Abou-Elnaga, Ahmed F; Torigoe, Daisuke; Fouda, Mohamed M; Darwish, Ragab A; Abou-Ismail, Usama A; Morimatsu, Masami; Agui, Takashi

    2015-05-01

    Depression is one of the most famous psychiatric disorders in humans in all over the countries and considered a complex neurobehavioral trait and difficult to identify causal genes. Tail suspension test (TST) and forced swimming test (FST) are widely used for assessing depression-like behavior and antidepressant activity in mice. A variety of antidepressant agents are known to reduce immobility time in both TST and FST. To identify genetic determinants of immobility duration in both tests, we analyzed 101 F2 mice from an intercross between C57BL/6 and DBA/2 strains. Quantitative trait locus (QTL) mapping using 106 microsatellite markers revealed three loci (two significant and one suggestive) and five suggestive loci controlling immobility time in the TST and FST, respectively. Results of QTL analysis suggest a broad description of the genetic architecture underlying depression, providing underpinnings for identifying novel molecular targets for antidepressants to clear the complex genetic mechanisms of depressive disorders.

  2. Technology assessment and resource allocation for predictive genetic testing: A study of the perspectives of Canadian genetic health care providers

    Directory of Open Access Journals (Sweden)

    Einsiedel Edna

    2009-06-01

    Full Text Available Abstract Background With a growing number of genetic tests becoming available to the health and consumer markets, genetic health care providers in Canada are faced with the challenge of developing robust decision rules or guidelines to allocate a finite number of public resources. The objective of this study was to gain Canadian genetic health providers' perspectives on factors and criteria that influence and shape resource allocation decisions for publically funded predictive genetic testing in Canada. Methods The authors conducted semi-structured interviews with 16 senior lab directors and clinicians at publically funded Canadian predictive genetic testing facilities. Participants were drawn from British Columbia, Alberta, Manitoba, Ontario, Quebec and Nova Scotia. Given the community sampled was identified as being relatively small and challenging to access, purposive sampling coupled with snowball sampling methodologies were utilized. Results Surveyed lab directors and clinicians indicated that predictive genetic tests were funded provincially by one of two predominant funding models, but they themselves played a significant role in how these funds were allocated for specific tests and services. They also rated and identified several factors that influenced allocation decisions and patients' decisions regarding testing. Lastly, participants provided recommendations regarding changes to existing allocation models and showed support for a national evaluation process for predictive testing. Conclusion Our findings suggest that largely local and relatively ad hoc decision making processes are being made in relation to resource allocations for predictive genetic tests and that a more coordinated and, potentially, national approach to allocation decisions in this context may be appropriate.

  3. Uptake of genetic counselling and predictive DNA testing in hypertrophic cardiomyopathy

    National Research Council Canada - National Science Library

    Christiaans, Imke; Birnie, Erwin; Bonsel, Gouke J; Wilde, Arthur A.M; van Langen, Irene M

    2008-01-01

    .... In 97 hypertrophic cardiomyopathy families with a sarcomere gene mutation we retrospectively determined uptake of genetic counselling and predictive DNA testing in relatives within 1 year after...

  4. Expertise for Teaching Biology Situated in the Context of Genetic Testing

    Science.gov (United States)

    van der Zande, Paul; Akkerman, Sanne F.; Brekelmans, Mieke; Waarlo, Arend Jan; Vermunt, Jan D.

    2012-01-01

    Contemporary genomics research will impact the daily practice of biology teachers who want to teach up-to-date genetics in secondary education. This article reports on a research project aimed at enhancing biology teachers' expertise for teaching genetics situated in the context of genetic testing. The increasing body of scientific knowledge…

  5. A Knowledge Base for Teaching Biology Situated in the Context of Genetic Testing

    Science.gov (United States)

    van der Zande, Paul; Waarlo, Arend Jan; Brekelmans, Mieke; Akkerman, Sanne F.; Vermunt, Jan D.

    2011-01-01

    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testing. The increasing body of scientific knowledge…

  6. Genetic Testing for Deafness--GJB2 and SLC26A4 as Causes of Deafness.

    Science.gov (United States)

    Smith, Richard J. H.; Robin, Nathaniel H.

    2002-01-01

    This article introduces the concept of genetic testing for deafness. Two genes that make appreciable contributions to the autosomal recessive non-syndromic deafness (ARNSD) genetic load are reviewed, GJB2 and SLC26A4. In addition, the unique aspects of genetic counseling for deafness and recurrence chance estimates are explained. (Contains…

  7. A Test of Genetic Algorithms in Relevance Feedback.

    Science.gov (United States)

    Lopez-Pujalte, Cristina; Guerrero Bote, Vicente P.; Moya Anegon, Felix de

    2002-01-01

    Discussion of information retrieval, query optimization techniques, and relevance feedback focuses on genetic algorithms, which are derived from artificial intelligence techniques. Describes an evaluation of different genetic algorithms using a residual collection method and compares results with the Ide dec-hi method (Salton and Buckley, 1990…

  8. Is genetic testing of value in predicting and treating obesity?

    Science.gov (United States)

    Ng, Maggie C Y; Bowden, Donald W

    2013-01-01

    Obesity is a multifactorial disease resulting from the interaction between genetic factors and lifestyle. Identification of rare genetic variations with strong effects on obesity has been useful in diagnosing and designing personalized therapy for early-onset or syndromic obesity. However, common variants identified in recent genome-wide association studies have limited clinical value.

  9. Is Genetic Testing of Value in Predicting and Treating Obesity?

    OpenAIRE

    Ng, Maggie C.Y.; Bowden, Donald W.

    2013-01-01

    Obesity is a multifactorial disease resulting from the interaction between genetic factors and lifestyle. Identification of rare genetic variations with strong effects on obesity has been useful in diagnosing and designing personalized therapy for early-onset or syndromic obesity. However, common variants identified in recent genome-wide association studies have limited clinical value.

  10. Proposal for a Test Protocol for Genetically Modified Plants

    DEFF Research Database (Denmark)

    Strandberg, B.; Kjær, C.

    1999-01-01

    The report contains the proceedings from the conference Genetically Modified Organisms in Nordic Habitats - Sustainable Use or Loss of Diversity? in Helsinki, 1998......The report contains the proceedings from the conference Genetically Modified Organisms in Nordic Habitats - Sustainable Use or Loss of Diversity? in Helsinki, 1998...

  11. Efficient derivation and genetic modifications of human pluripotent stem cells on engineered human feeder cell lines.

    Science.gov (United States)

    Zou, Chunlin; Chou, Bin-Kuan; Dowey, Sarah N; Tsang, Kitman; Huang, Xiaosong; Liu, Cyndi F; Smith, Cory; Yen, Jonathan; Mali, Prashant; Zhang, Yu Alex; Cheng, Linzhao; Ye, Zhaohui

    2012-08-10

    Derivation of pluripotent stem cells (iPSCs) induced from somatic cell types and the subsequent genetic modifications of disease-specific or patient-specific iPSCs are crucial steps in their applications for disease modeling as well as future cell and gene therapies. Conventional procedures of these processes require co-culture with primary mouse embryonic fibroblasts (MEFs) to support self-renewal and clonal growth of human iPSCs as well as embryonic stem cells (ESCs). However, the variability of MEF quality affects the efficiencies of all these steps. Furthermore, animal sourced feeders may hinder the clinical applications of human stem cells. In order to overcome these hurdles, we established immortalized human feeder cell lines by stably expressing human telomerase reverse transcriptase, Wnt3a, and drug resistance genes in adult mesenchymal stem cells. Here, we show that these immortalized human feeders support efficient derivation of virus-free, integration-free human iPSCs and long-term expansion of human iPSCs and ESCs. Moreover, the drug-resistance feature of these feeders also supports nonviral gene transfer and expression at a high efficiency, mediated by piggyBac DNA transposition. Importantly, these human feeders exhibit superior ability over MEFs in supporting homologous recombination-mediated gene targeting in human iPSCs, allowing us to efficiently target a transgene into the AAVS1 safe harbor locus in recently derived integration-free iPSCs. Our results have great implications in disease modeling and translational applications of human iPSCs, as these engineered human cell lines provide a more efficient tool for genetic modifications and a safer alternative for supporting self-renewal of human iPSCs and ESCs.

  12. Trypanosoma brucei gambiense Type 1 populations from human patients are clonal and display geographical genetic differentiation.

    Science.gov (United States)

    Morrison, Liam J; Tait, Andy; McCormack, Gillian; Sweeney, Lindsay; Black, Alana; Truc, Philippe; Likeufack, Anne C L; Turner, C Michael; MacLeod, Annette

    2008-12-01

    We have rigorously tested the hypothesis that Trypanosoma brucei gambiense Type 1 is composed of genetically homogenous populations by examining the parasite population present in Human African Trypanosomiasis (HAT) patients from the Democratic Republic of Congo (DRC) and Cameroon (CAM). We amplified eight microsatellite markers by PCR directly from blood spots on FTA filters, thereby avoiding the significant parasite selection inherent in the traditional isolation techniques of rodent inoculation or in vitro culture. All microsatellite markers were polymorphic, although for four markers there was only polymorphism between the DRC and CAM populations, not within populations, suggesting very limited genetic exchange. Within the largest population from the DRC, Hardy-Weinberg equilibrium is not evident at any loci. This evidence suggests a clonal population. However, there was significant sub-structuring between the DRC and CAM samples (F(ST) = 0.32), indicating that Trypanosoma brucei gambiense Type 1 has genetically distinct clades. The data combine to indicate that genetic exchange plays a very limited role. The finding of distinct clades in different places suggests the possibility that samples from humans with clinical signs represent clonal expansions from an underlying population that requires identifying and characterising.

  13. Mouse models for studying genetic influences on factors determining smoking cessation success in humans

    Science.gov (United States)

    Hall, F. Scott; Markou, Athina; Levin, Edward D.; Uhl, George R.

    2014-01-01

    Humans differ in their ability to quit using addictive substances, including nicotine, the major psychoactive ingredient in tobacco. For tobacco smoking, a substantial body of evidence, largely derived from twin studies, indicates that approximately half of these individual differences in ability to quit are heritable [1, 2], genetic influences that likely overlap with those for other addictive substances [3]. Both twin and molecular genetic studies support overlapping influences on nicotine addiction vulnerability and smoking cessation success, although there is little formal analysis of the twin data that supports this important point [2, 3]. None of the current datasets provides clear data concerning which heritable factors might provide robust dimensions around which individuals differ in ability to quit smoking. One approach to this problem is to test mice with genetic variations in genes that contain human variants that alter quit-success. This review considers which features of quit success should be included in a comprehensive approach to elucidating the genetics of quit success, and how those features may be modeled in mice. PMID:22304675

  14. Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Demontis, Ditte; Castro Dias Cuyabano, Beatriz;

    2016-01-01

    Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited...... power to detect genetic markers with small effects. Instead, aggregating genetic markers based on biological information might increase the power to identify sets of genetic markers of etiological significance. Several set test methods have been proposed: Here we propose a new set test derived from...... genomic best linear unbiased prediction (GBLUP), the covariance association test (CVAT). We compared the performance of CVAT to other commonly used set tests. The comparison was conducted using a simulated study population having the same genetic parameters as for schizophrenia. We found that CVAT...

  15. UNDERSTANDING THE HIGH MIND: HUMANS ARE STILL EVOLVING GENETICALLY

    Directory of Open Access Journals (Sweden)

    Blum K et al

    2011-01-01

    Full Text Available The total population of the United States at the turn of the 21 st century was 281,421,906. The total number of people above the age of 12 years old was estimated at 249 million. The National Institutes on Drug Abuse and the Substance Abuse and Mental Health Services Administration (SAMHSA have surveyed persons age 12 and older and found that in the year 2001, a total of 104 million people have used illegal drugs in their life (ever used, 32 million used a psychoactive drug in the past year (2000-2001 and 18 million used a psychoactive drug in the past 30 days. Interestingly this does not include Alcohol. We must ask then, who are the people that could just say NO? When almost half-of the US population have indulged in illegal drug practices, when our presidential candidates are forced to dodge the tricky question of their past history involving illegal drug use, and when almost every American has sloshed down a martini or two in their life time, there must be a reason, there must be a need, there must be a natural response for humans to imbibe at such high rates. There is even a more compelling question surrounding the millions who seek out high risk novelty. Why do millions have this innate drive in face of putting themselves in harms-way? Why are millions paying the price of their indiscretions in our jails, in hospitals, in wheel chairs and are lying dead in our cemeteries. What price must we pay for pleasure seeking or just plain getting “HIGH”? Maybe the answer lies within our brain. Maybe it is in our genome? Utilization of the candidate vs the common variant approach may be parsimonious as it relates to unraveling the addiction riddle. In this commentary we have discussed evidence, theories and conjecture about the “High Mind” and its relationship to evolutionary genetics and drug seeking behavior as impacted by genetic polymorphisms. We consider the meaning of recent findings in genetic research including an exploration of the

  16. Human teratogens and genetic phenocopies. Understanding pathogenesis through human genes mutation.

    Science.gov (United States)

    Cassina, Matteo; Cagnoli, Giulia A; Zuccarello, Daniela; Di Gianantonio, Elena; Clementi, Maurizio

    2017-01-01

    Exposure to teratogenic drugs during pregnancy is associated with a wide range of embryo-fetal anomalies and sometimes results in recurrent and recognizable patterns of malformations; however, the comprehension of the mechanisms underlying the pathogenesis of drug-induced birth defects is difficult, since teratogenesis is a multifactorial process which is always the result of a complex interaction between several environmental factors and the genetic background of both the mother and the fetus. Animal models have been extensively used to assess the teratogenic potential of pharmacological agents and to study their teratogenic mechanisms; however, a still open issue concerns how the information gained through animal models can be translated to humans. Instead, significant information can be obtained by the identification and analysis of human genetic syndromes characterized by clinical features overlapping with those observed in drug-induced embryopathies. Until now, genetic phenocopies have been reported for the embryopathies/fetopathies associated with prenatal exposure to warfarin, leflunomide, mycophenolate mofetil, fluconazole, thalidomide and ACE inhibitors. In most cases, genetic phenocopies are caused by mutations in genes encoding for the main targets of teratogens or for proteins belonging to the same molecular pathways. The aim of this paper is to review the proposed teratogenic mechanisms of these drugs, by the analysis of human monogenic disorders and their molecular pathogenesis.

  17. Men's values-based factors on prostate cancer risk genetic testing: A telephone survey

    Directory of Open Access Journals (Sweden)

    Li Yuelin

    2004-12-01

    Full Text Available Abstract Background While a definitive genetic test for Hereditary Prostate Cancer (HPC is not yet available, future HPC risk testing may become available. Past survey data have shown high interest in HPC testing, but without an in-depth analysis of its underlying rationale to those considering it. Methods Telephone computer-assisted interviews of 400 men were conducted in a large metropolitan East-coast city, with subsequent development of psychometric scales and their correlation with intention to receive testing. Results Approximately 82% of men interviewed expressed that they "probably" or "definitely" would get genetic testing for prostate cancer risk if offered now. Factor analysis revealed four distinct, meaningful factors for intention to receive genetic testing for prostate cancer risk. These factors reflected attitudes toward testing and were labeled "motivation to get testing," "consequences and actions after knowing the test result," "psychological distress," and "beliefs of favorable outcomes if tested" (α = 0.89, 0.73, 0.73, and 0.60, respectively. These factors accounted for 70% of the total variability. The domains of motivation (directly, consequences (inversely, distress (inversely, and positive expectations (directly all correlated with intention to receive genetic testing (p Conclusions Men have strong attitudes favoring genetic testing for prostate cancer risk. The factors most associated with testing intention include those noted in past cancer genetics studies, and also highlights the relevance in considering one's motivation and perception of positive outcomes in genetic decision-making.

  18. Psychometric testing and Human Resource Management

    Directory of Open Access Journals (Sweden)

    R. P. van der Merwe

    2002-09-01

    Full Text Available This is a cumulative report on the findings of various exploratory research that were done with regard to the practice of psychometric testing in the Eastern Cape. Recent and ongoing developments in the South African labour legislation, and especially the implications of the Employment Equity Act, highlight once again the importance of the validation of all instruments to be used for human assessment and selection purposes. Information was gathered to establish which psychometric tests are used, and for what purposes, in industry today. Biographical information on each organisation is supplied, including the number of employees. The role of psychometric testing in the selection procedure is discussed. The different tests used, as well as the test users, are also indicated. The findings of other, related research, as well as comments, recommendations and shortcomings, are discussed. Opsomming Hierdie is ‘n kumulatiewe verslag wat die resultate verstrek van verskeie verkennende ondersoeke wat gedoen is na die aanwending van psigometriese toetsing in die Oos-Kaap. Onlangse en voortdurende ontwikkelinge in die Suid-Afrikaanse arbeidswetgewing, en veral die implikasies van die Wet op Gelyke Indiensneming, beklemtoon weer eens die belangrikheid van die validering van enige instrumente wat gebruik word vir evaluerings- en keuringsdoeleindes van individue. Inligting is ingewin om te bepaal watter psigometriese toetse, sowel as vir watter doel, vandag in die bedryf gebruik word. Biografiese inligting oor die onderskeie organisasies, insluitende hul aantal werknemers, word verstrek. Die rol van psigometriese toetsing in die keuringsproses word bespreek. Die verskillende toetse wat deur die organisasies gebruik word, sowel as die toetsge-bruikers, word ook aangedui. Die bevindinge van ander, relevante navorsing, sowel as opmerkings, aanbevelings en tekortkominge word bespreek.

  19. Psychiatrists' views of the genetic bases of mental disorders and behavioral traits and their use of genetic tests.

    Science.gov (United States)

    Klitzman, Robert; Abbate, Kristopher J; Chung, Wendy K; Marder, Karen; Ottman, Ruth; Taber, Katherine Johansen; Leu, Cheng-Shiun; Appelbaum, Paul S

    2014-07-01

    We examined how 372 psychiatrists view genetic aspects of mental disorders and behaviors and use genetic tests (GTs). Most thought that the genetic contribution was moderate/high for bipolar disorder, schizophrenia, depression, Alzheimer's, intelligence, creativity, anxiety, and suicidality. In the past 6 months, 14.1% ordered GTs, 18.3% discussed prenatal testing with patients, 36.0% initiated discussions about other GTs, 41.6% had patients ask about GTs, and 5.3% excluded GT results from patient records. Many thought that GTs; were available for schizophrenia (24.3%) and major depression (19.6%). Women were more likely to report that patients asked about GTs; and were less certain about the degree of genetic contribution to several disorders. Psychiatrists perceive strong genetic bases for numerous disorders and traits, and many have discussed and ordered tests for GTs, but have relatively limited knowledge about available tests. These data suggest possible sex differences in psychiatrists' beliefs about genetic contributions to disorders and have implications for future research, education, policy, and care.

  20. Genetic testing and Alzheimer disease: recommendations of the Stanford Program in Genomics, Ethics, and Society.

    Science.gov (United States)

    McConnell, L M; Koenig, B A; Greely, H T; Raffin, T A

    1999-01-01

    Several genes associated with Alzheimer disease (AD) have been localized and cloned; two genetic tests are already commercially available, and new tests are being developed. Genetic testing for AD--either for disease prediction or for diagnosis--raises critical ethical concerns. The multidisciplinary Alzheimer Disease Working Group of the Stanford Program in Genomics, Ethics, and Society (PGES) presents comprehensive recommendations on genetic testing for AD. The Group concludes that under current conditions, genetic testing for AD prediction or diagnosis is only rarely appropriate. Criteria for judging the readiness of a test for introduction into routine clinical practice typically rely heavily on evaluation of technical efficacy. PGES recommends a broader and more comprehensive approach, considering: 1) the unique social and historical meanings of AD; 2) the availability of procedures to promote good surrogate decision making for incompetent patients and to safeguard confidentiality; 3) access to sophisticated genetic counselors able to communicate complex risk information and effectively convey the social costs and psychological burdens of testing, such as unintentional disclosure of predictive genetic information to family members; 4) protection from inappropriate advertising and marketing of genetic tests; and 5) recognition of the need for public education about the meaning and usefulness of predictive and diagnostic tests for AD. In this special issue of Genetic Testing, the PGES recommendations are published along with comprehensive background papers authored by Working Group members.

  1. The humankind genome: from genetic diversity to the origin of human diseases.

    Science.gov (United States)

    Belizário, Jose E

    2013-12-01

    Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease's etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.

  2. Parents' Attitudes toward Genetic Testing of Children for Health Conditions: A Systematic Review.

    Science.gov (United States)

    Lim, Qishan; McGill, Brittany C; Quinn, Veronica F; Tucker, Katherine M; Mizrahi, David; Farkas Patenaude, Andrea; Warby, Meera; Cohn, Richard J; Wakefield, Claire E

    2017-02-07

    This review assessed parents' attitudes toward childhood genetic testing for health conditions, with a focus on perceived advantages and disadvantages. We also evaluated the factors that influence parents' attitudes toward childhood genetic testing. We searched Medline, Medline In-Process, EMBASE, PsycINFO, Social Work Abstracts and CINAHL. We screened 945 abstracts and identified 21 studies representing the views of 3934 parents. Parents reported largely positive attitudes toward childhood genetic testing across different genetic tests with varying medical utility. Parents perceived a range of advantages and disadvantages of childhood genetic testing. Childhood genetic testing was viewed by most as beneficial. Parents' education level, genetic status, sex and socio-demographic status were associated with reported attitudes. This yielded some conflicting findings, indicating the need for further research. Genetic counseling remains essential to support this population in making well-informed decisions. Targeted interventions tailored to specific families with different socio-demographic characteristics may be useful. Further research on the long-term impact of childhood genetic testing on families is warranted.

  3. Importance of genetic evaluation and testing in pediatric cardiomyopathy

    Science.gov (United States)

    Tariq, Muhammad; Ware, Stephanie M

    2014-01-01

    Pediatric cardiomyopathies are clinically heterogeneous heart muscle disorders that are responsible for significant morbidity and mortality. Phenotypes include hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, left ventricular noncompaction and arrhythmogenic right ventricular cardiomyopathy. There is substantial evidence for a genetic contribution to pediatric cardiomyopathy. To date, more than 100 genes have been implicated in cardiomyopathy, but comprehensive genetic diagnosis has been problematic because of the large number of genes, the private nature of mutations, and difficulties in interpreting novel rare variants. This review will focus on current knowledge on the genetic etiologies of pediatric cardiomyopathy and their diagnostic relevance in clinical settings. Recent developments in sequencing technologies are greatly impacting the pace of gene discovery and clinical diagnosis. Understanding the genetic basis for pediatric cardiomyopathy and establishing genotype-phenotype correlations may help delineate the molecular and cellular events necessary to identify potential novel therapeutic targets for heart muscle dysfunction in children. PMID:25429328

  4. Importance of genetic evaluation and testing in pediatric cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Muhammad; Tariq; Stephanie; M; Ware

    2014-01-01

    Pediatric cardiomyopathies are clinically heterogeneous heart muscle disorders that are responsible for significant morbidity and mortality. Phenotypes include hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, left ventricular noncompaction and arrhythmogenic right ventricular cardiomyopathy. There is substantial evidence for a genetic contribution to pediatric cardiomyopathy. To date, more than 100 genes have been implicated in cardiomyopathy, but comprehensive genetic diagnosis has been problematic because of the large number of genes, the private nature of mutations, and difficulties in interpreting novel rare variants. This review will focus on current knowledge on the genetic etiologies of pediatric cardiomyopathy and their diagnostic relevance in clinical settings. Recent developments in sequencing technologies are greatly impacting the pace of gene discovery and clinical diagnosis. Understanding the genetic basis for pediatric cardiomyopathy and establishing genotypephenotype correlations may help delineate the molecular and cellular events necessary to identify potential novel therapeutic targets for heart muscle dysfunction in children.

  5. Genetic diversity of human blastocystis isolates in khorramabad, central iran.

    Directory of Open Access Journals (Sweden)

    Ebrahim Badparva

    2014-03-01

    Full Text Available There are some genetic differences in Blastocystis that show the existence of species or genotypes. One of these genes that help in identifying Blastocystis is SSUrRNA. The aim of this study was assessment of genetic diversity of Blastocystis by PCR with seven pairs of STS primers.This study was done on 511 stool samples collected from patients referred to the health care centers of Khorramabad, Central Iran, in 2012. Genomic DNA was extracted and in order to determine the Blastocystis subtype in contaminated samples, seven pairs of primers STS (subtype specific sequence-tagged site were used.Out of 511 samples, 33 (6.5% samples were infected with Blastocystis. Subtype (ST of 30 samples was identified and three subtypes 2, 3 and 4 were determined. Mix infection was reported 10% which 3.33% of the infection was for the mixture of ST 3 and ST5 and 6.67% was for the mixture of ST 2 and ST 3.The predominant subtype was ST3 that is the main human subtype. The dominance of ST2 and 5 are important in this study. This superiority has been reported in some of the studies in ST 2 which is different from the studies in other countries, because they have announced priorities of the ST1 and ST6 after ST3.

  6. Estimating Sampling Selection Bias in Human Genetics: A Phenomenological Approach

    Science.gov (United States)

    Risso, Davide; Taglioli, Luca; De Iasio, Sergio; Gueresi, Paola; Alfani, Guido; Nelli, Sergio; Rossi, Paolo; Paoli, Giorgio; Tofanelli, Sergio

    2015-01-01

    This research is the first empirical attempt to calculate the various components of the hidden bias associated with the sampling strategies routinely-used in human genetics, with special reference to surname-based strategies. We reconstructed surname distributions of 26 Italian communities with different demographic features across the last six centuries (years 1447–2001). The degree of overlapping between "reference founding core" distributions and the distributions obtained from sampling the present day communities by probabilistic and selective methods was quantified under different conditions and models. When taking into account only one individual per surname (low kinship model), the average discrepancy was 59.5%, with a peak of 84% by random sampling. When multiple individuals per surname were considered (high kinship model), the discrepancy decreased by 8–30% at the cost of a larger variance. Criteria aimed at maximizing locally-spread patrilineages and long-term residency appeared to be affected by recent gene flows much more than expected. Selection of the more frequent family names following low kinship criteria proved to be a suitable approach only for historically stable communities. In any other case true random sampling, despite its high variance, did not return more biased estimates than other selective methods. Our results indicate that the sampling of individuals bearing historically documented surnames (founders' method) should be applied, especially when studying the male-specific genome, to prevent an over-stratification of ancient and recent genetic components that heavily biases inferences and statistics. PMID:26452043

  7. Clinical Characteristics and Genetic Variability of Human Rhinovirus in Mexico

    Directory of Open Access Journals (Sweden)

    Hilda Montero

    2012-01-01

    Full Text Available Human rhinovirus (HRV is a leading cause of acute respiratory infection (ARI in young children and infants worldwide and has a high impact on morbidity and mortality in this population. Initially, HRV was classified into two species: HRV-A and HRV-B. Recently, a species called HRV-C and possibly another species, HRV-D, were identified. In Mexico, there is little information about the role of HRV as a cause of ARI, and the presence and importance of species such as HRV-C are not known. The aim of this study was to determine the clinical characteristics and genetic variability of HRV in Mexican children. Genetic characterization was carried out by phylogenetic analysis of the 5′-nontranslated region (5′-NTR of the HRV genome. The results show that the newly identified HRV-C is circulating in Mexican children more frequently than HRV-B but not as frequently as HRV-A, which was the most frequent species. Most of the cases of the three species of HRV were in children under 2 years of age, and all species were associated with very mild and moderate ARI.

  8. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach

    Science.gov (United States)

    Chaturvedi, Swati; Singh, Ashok K.; Maity, Siddhartha; Sarkar, Srimanta

    2016-01-01

    One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED) and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM) or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches. PMID:27051561

  9. Correlation of physical and genetic maps of human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, G.R.

    1991-01-01

    This project aimed to divide chromosome 16 into approximately 50 intervals of {approximately}2Mb in size by constructing a series of mouse/human somatic cell hybrids each containing a rearranged chromosome 16. Using these hybrids, DNA probes would be regionally mapped by Southern blot or PCR analysis. Preference would be given to mapping probes which demonstrated polymorphisms for which the CEPH panel of families had been typed. This would allow a correlation of the physical and linkage maps of this chromosome. The aims have been substantially achieved. 49 somatic cell hybrids have been constructed which have allowed definition of 46, and potentially 57, different physical intervals on the chromosome. 164 loci have been fully mapped into these intervals. A correlation of the physical and genetic maps of the chromosome is in an advanced stage of preparation. The somatic cell hybrids constructed have been widely distributed to groups working on chromosome 16 and other genome projects.

  10. Psychological impact of genetic testing for cancer susceptibility: an update of the literature.

    Science.gov (United States)

    Meiser, Bettina

    2005-12-01

    This article presents an overview of the rapidly evolving body of literature on the psychological impact of genetic testing for hereditary breast/ovarian cancer susceptibility, hereditary non-polyposis colorectal cancer (HNPCC) and familial adenomatous polyposis (FAP). Uptake of genetic testing for BRCA1/2 and HNPCC-related mutations is more consistently related to psychological factors, rather than sociodemographic variables. Most studies on the psychological impact of genetic testing amongst individuals who have never been affected by cancer demonstrate that non-carriers derive significant psychological benefits from genetic testing, while no adverse effects have been observed amongst carriers. These benefits are more clear-cut for HNPCC, compared to hereditary breast/ovarian cancer, reflecting differences in risk management options. The few studies available on individuals affected with cancer indicate that the impact of genetic testing is mediated and amplified by their former experience of cancer. Future directions and challenges of research in this area are reviewed. In particular, more empirical data are needed on the broader impact of genetic testing on those with inconclusive results or results of uncertain significance. As genetic testing is becoming available for other types of familial cancer, additional investigations will be needed as there is evidence to suggest that the impact of genetic testing may be unique to each type of familial cancer.

  11. The Role of the Family in Genetic Testing: Theoretical Perspectives, Current Knowledge, and Future Directions

    Science.gov (United States)

    Peterson, Susan K.

    2005-01-01

    This article addresses conceptual challenges and theoretical approaches for examining the role of the family in responding and adapting to genetic testing for inherited conditions. Using a family systems perspective, family-based constructs that are relevant to genetic testing may be organized into three domains: family communication, organization…

  12. Limitations of direct-to-consumer advertising for clinical genetic testing.

    Science.gov (United States)

    Gollust, Sarah E; Hull, Sara Chandros; Wilfond, Benjamin S

    2002-10-09

    Although direct-to-consumer (DTC) advertisements for pharmaceuticals have been appearing in the mass media for 20 years, DTC advertisements for genetic testing have only recently appeared. Advertisements for genetic testing can provide both consumers and physicians with information about test availability in an expanding market. However, 3 factors limit the value and appropriateness of advertisements: complex information, a complicated social context surrounding genetics, and a lack of consensus about the clinical utility of some tests. Consideration of several advertisements suggests that they overstate the value of genetic testing for consumers' clinical care. Furthermore, advertisements may provide misinformation about genetics, exaggerate consumers' risks, endorse a deterministic relationship between genes and disease, and reinforce associations between diseases and ethnic groups. Advertising motivated by factors other than evidence of the clinical value of genetic tests can manipulate consumers' behavior by exploiting their fears and worries. At this time, DTC advertisements are inappropriate, given the public's limited sophistication regarding genetics and the lack of comprehensive premarket review of tests or oversight of advertisement content. Existing Federal Trade Commission and Food and Drug Administration regulations for other types of health-related advertising should be applied to advertisements for genetic tests.

  13. Usefulness of Genetic Testing in PD and PD Trials: A Balanced Review.

    Science.gov (United States)

    Gasser, Thomas

    2015-01-01

    An increasing proportion of the individual and population risk to develop Parkinson's disease (PD) can be explained by genetic variants of different effect strength, forming a continuum from rare high penetrance gain or loss of function mutations to relatively common genetic risk variants that only mildly modify disease risk. In the coming years, further advances in molecular genetic technologies, in particular the increasing use of next generation sequencing, is likely to generate a wealth of new knowledge about the genetic basis of PD. Although specific treatments for PD based on the underlying genetic etiology will probably not be available in the near future, genetic testing is therefore likely to play an increasing role, both in the counselling of individual patients and their families with respect to the expected disease course and recurrence risks, and in the stratification of patient groups in clinical trials. Thus, the usefulness of genetic testing strongly depends on question asked and needs to be considered within each particular setting.

  14. Evaluating online direct-to-consumer marketing of genetic tests: informed choices or buyers beware?

    Science.gov (United States)

    Geransar, Rose; Einsiedel, Edna

    2008-03-01

    Commercialization of genetic technologies is expanding the horizons for the marketing and sales of genetic tests direct-to-consumers (DTCs). This study assesses the information provision and access requirements that are in place for genetic tests that are being advertised DTC over the Internet. Sets of key words specific to DTC genetic testing were entered into popular Internet search engines to generate a list of 24 companies engaging in DTC advertising. Company requirements for physician mediation, genetic counseling arrangements, and information provision were coded to develop categories for quantitative analysis within each variable. Results showed that companies offering risk assessment and diagnostic testing were most likely to require that testing be mediated by a clinician, and to recommend physician-arranged counseling. Companies offering enhancement testing were less likely to require physician mediation of services and more likely to provide long-distance genetic counseling. DTC advertisements often provided information on disease etiology; this was most common in the case of multifactorial diseases. The majority of companies cited outside sources to support the validity of claims about clinical utility of the tests being advertised; companies offering risk assessment tests most frequently cited all information sources. DTC advertising for genetic tests that lack independent professional oversight raises troubling questions about appropriate use and interpretation of these tests by consumers and carries implications for the standards of patient care. These implications are discussed in the context of a public healthcare system.

  15. Medical Students Knowledge and Attitude Towards Direct-To-Consumer Genetic Tests

    Directory of Open Access Journals (Sweden)

    Luca Giraldi

    2016-09-01

    Full Text Available Aims: This study reports on the attitudes of 179 Italian Medical Students to direct-to-consumer genetic test and to participation in research practices. Methods: Data were collected using a self-completion online questionnaire sent to 380 medical students at the faculty of Medicine of the Università Cattolica del Sacro Cuore in Rome, Italy. Questions pertained issues related to awareness and attitudes towards genetic testing, reactions to hypothetical results, and views about contributing to scientific research. Results: The response rate was 47.1%. Less than 50% of students were aware of DTC genetic test. Seventy-four percent of the sample were interested in undergoing DTC genetic test, and the main reason was being aware on genetic predisposition to diseases. Among those who were not willing to undergo a genetic test, the main reason was the lack of confidence in the results. In the hypothetical situations of an increased disease risk after undergoing DTC genetic testing, respondents would take actions to reduce that risk, while in the opposite scenario they would feel unaffected because of the probabilistic nature of the test. Conclusions: We reported a good level of awareness about DTC genetic test and a high interest in undergoing DTC genetic test in our sample. Nevertheless, opinions and reactions are strongly dependent by the hypothetical good or bad result that the test could provide and by the context whereby a genetic test could be performed. Respondents seem to be exposed to the risk of psychological harms, and a strong regulation regarding their use is required.

  16. Direct-to-consumer Genetic Testing: Changes in the EU Regulatory Landscape.

    Science.gov (United States)

    Slokenberga, Santa

    2015-12-01

    Rapid advances in genomics and technology have rendered genetic testing services easily accessible to consumers over the Internet in the form of direct-to-consumer genetic testing. In the EU, the IVD Directive has been animadverted for its inability to tackle the challenges direct-to-consumer genetic testing has posed. Currently, the EU legislation is in a transition state. It is thus, timely to assess, to what extent the proposed IVD Regulation is intended to address the performance requirements and utility of direct-to-consumer genetic tests, which are made available to consumers within the EU over the Internet, and discuss the developments vis-à-vis the IVD Directive. To compare with the IVD Directive, the IVD Regulation presents a major shift in how direct-to-consumer genetic testing is treated in the E U. It remains unclear, whether and how the EU requirements can be applied beyond the EU market.

  17. Evaluating the psychological effects of genetic testing in symptomatic patients: a systematic review.

    Science.gov (United States)

    Vansenne, Fleur; Bossuyt, Patrick M M; de Borgie, Corianne A J M

    2009-10-01

    Most research on the effects of genetic testing is performed in individuals at increased risk for a specific disease (presymptomatic subjects) but not in patients already affected by disease. If results of these studies in presymptomatic subjects can be applied to patients is unclear. We performed a systematic review to evaluate the effects of genetic testing in patients and describe the methodological instruments used. About 2611 articles were retrieved and 16 studies included. Studies reported great variety in designs, methods, and patient outcomes. In total, 2868 participants enrolled of which 62% were patients. Patients appeared to have a lower perceived general health and higher levels of anxiety and depression than presymptomatic subjects before genetic testing. In the long term no psychological impairment was shown. We conclude that patients differ from presymptomatic subjects and may be more vulnerable to negative effects of genetic testing. Conclusions from earlier research on presymptomatic genetic testing cannot be generalized to patients, and more standardized research is needed.

  18. Impact of genetic counseling and Connexin-26 and Connexin-30 testing on deaf identity and comprehension of genetic test results in a sample of deaf adults: a prospective, longitudinal study.

    Science.gov (United States)

    Palmer, Christina G S; Boudreault, Patrick; Baldwin, Erin E; Sinsheimer, Janet S

    2014-01-01

    Using a prospective, longitudinal study design, this paper addresses the impact of genetic counseling and testing for deafness on deaf adults and the Deaf community. This study specifically evaluated the effect of genetic counseling and Connexin-26 and Connexin-30 genetic test results on participants' deaf identity and understanding of their genetic test results. Connexin-26 and Connexin-30 genetic testing was offered to participants in the context of linguistically and culturally appropriate genetic counseling. Questionnaire data collected from 209 deaf adults at four time points (baseline, immediately following pre-test genetic counseling, 1-month following genetic test result disclosure, and 6-months after result disclosure) were analyzed. Four deaf identity orientations (hearing, marginal, immersion, bicultural) were evaluated using subscales of the Deaf Identity Development Scale-Revised. We found evidence that participants understood their specific genetic test results following genetic counseling, but found no evidence of change in deaf identity based on genetic counseling or their genetic test results. This study demonstrated that culturally and linguistically appropriate genetic counseling can improve deaf clients' understanding of genetic test results, and the formation of deaf identity was not directly related to genetic counseling or Connexin-26 and Connexin-30 genetic test results.

  19. Genetic toxicity assessment: employing the best science for human safety evaluation. Part II: Performances of the in vitro micronucleus test compared to the mouse lymphoma assay and the in vitro chromosome aberration assay.

    Science.gov (United States)

    Lorge, Elisabeth; Lambert, Carine; Gervais, Véronique; Becourt-Lhote, Nathalie; Delongeas, Jean-Luc; Claude, Nancy

    2007-04-01

    The in vitro micronucleus test is commonly used in the early stages of pharmaceutical development as a predictive tool for the regulatory mouse lymphoma assay or in vitro chromosome aberration test. The accumulated data from this assay leads to the suggestion that it could be used as an alternative to the chromosome aberration test or the mouse lymphoma assay in the regulatory genotoxicity battery. In this paper, we present the results of the in vitro micronucleus test on L5178Y mouse lymphoma cells with 25 compounds from Servier research and have compared these results to those obtained in the genotoxicity regulatory battery. All the negative compounds were also negative in the in vitro micronucleus assay. Among the 14 positive compounds, two of them, positive in the mouse lymphoma assay, were found negative in the in vitro micronucleus test. However, this apparent discordance was likely to be due to cytotoxicity- or high concentration-related false positive responses in the mouse lymphoma assay. In addition, we confirmed that the in vitro micronucleus assay is useful for detecting aneugens, especially, when cells in metaphasis and multinucleated cells are also scored and when cells are allowed to recover after the long treatment. On this series of compounds, the in vitro micronucleus assay showed high sensitivity and possibly a better specificity than the mouse lymphoma assay. Thus, the in vitro micronucleus assay was shown to be at least as adequate as the mouse lymphoma assay or the in vitro chromosome aberration test to be used in the standard genotoxicity battery.

  20. Scientific rationality, uncertainty and the governance of human genetics: an interview study with researchers at deCODE genetics.

    Science.gov (United States)

    Hjörleifsson, Stefán; Schei, Edvin

    2006-07-01

    Technology development in human genetics is fraught with uncertainty, controversy and unresolved moral issues, and industry scientists are sometimes accused of neglecting the implications of their work. The present study was carried out to elicit industry scientists' reflections on the relationship between commercial, scientific and ethical dimensions of present day genetics and the resources needed for robust governance of new technologies. Interviewing scientists of the company deCODE genetics in Iceland, we found that in spite of optimism, the informants revealed ambiguity and uncertainty concerning the use of human genetic technologies for the prevention of common diseases. They concurred that uncritical marketing of scientific success might cause exaggerated public expectations of health benefits from genetics, with the risk of backfiring and causing resistance to genetics in the population. On the other hand, the scientists did not address dilemmas arising from the commercial nature of their own employer. Although the scientists tended to describe public fear as irrational, they identified issues where scepticism might be well founded and explored examples where they, despite expert knowledge, held ambiguous or tentative personal views on the use of predictive genetic technologies. The rationality of science was not seen as sufficient to ensure beneficial governance of new technologies. The reflexivity and suspension of judgement demonstrated in the interviews exemplify productive features of moral deliberation in complex situations. Scientists should take part in dialogues concerning the governance of genetic technologies, acknowledge any vested interests, and use their expertise to highlight, not conceal the technical and moral complexity involved.

  1. Observers' reactions to genetic testing: the role of hindsight bias and judgements of responsibility.

    Science.gov (United States)

    Menec, V H; Weiner, B

    2000-08-01

    In 3 studies, we examined the effect of birth outcome on observers' reactions to genetic testing. Participants read a scenario in which a woman declined to take a genetic screening test and subsequently gave birth to a child with a genetic disorder (negative outcome) or a healthy child (positive outcome). Retrospective judgments of the likelihood that the child would have a genetic disorder were higher given negative than positive outcome knowledge under conditions of high genetic risk. Moreover, the more likely a negative outcome was perceived to be, the more responsible the mother was held for not taking the genetic screening test. Consistent with Weiner's (1993) theory, responsibility judgments were linked to displeasure and sympathy, with sympathy in turn being related to help judgments.

  2. Implementing rapid, robust, cost-effective, patient-centred, routine genetic testing in ovarian cancer patients.

    Science.gov (United States)

    George, Angela; Riddell, Daniel; Seal, Sheila; Talukdar, Sabrina; Mahamdallie, Shazia; Ruark, Elise; Cloke, Victoria; Slade, Ingrid; Kemp, Zoe; Gore, Martin; Strydom, Ann; Banerjee, Susana; Hanson, Helen; Rahman, Nazneen

    2016-07-13

    Advances in DNA sequencing have made genetic testing fast and affordable, but limitations of testing processes are impeding realisation of patient benefits. Ovarian cancer exemplifies the potential value of genetic testing and the shortcomings of current pathways to access testing. Approximately 15% of ovarian cancer patients have a germline BRCA1 or BRCA2 mutation which has substantial implications for their personal management and that of their relatives. Unfortunately, in most countries, routine implementation of BRCA testing for ovarian cancer patients has been inconsistent and largely unsuccessful. We developed a rapid, robust, mainstream genetic testing pathway in which testing is undertaken by the trained cancer team with cascade testing to relatives performed by the genetics team. 207 women with ovarian cancer were offered testing through the mainstream pathway. All accepted. 33 (16%) had a BRCA mutation. The result informed management of 79% (121/154) women with active disease. Patient and clinician feedback was very positive. The pathway offers a 4-fold reduction in time and 13-fold reduction in resource requirement compared to the conventional testing pathway. The mainstream genetic testing pathway we present is effective, efficient and patient-centred. It can deliver rapid, robust, large-scale, cost-effective genetic testing of BRCA1 and BRCA2 and may serve as an exemplar for other genes and other diseases.

  3. Cat Mammary Tumors: Genetic Models for the Human Counterpart

    Directory of Open Access Journals (Sweden)

    Filomena Adega

    2016-08-01

    Full Text Available The records are not clear, but Man has been sheltering the cat inside his home for over 12,000 years. The close proximity of this companion animal, however, goes beyond sharing the same roof; it extends to the great similarity found at the cellular and molecular levels. Researchers have found a striking resemblance between subtypes of feline mammary tumors and their human counterparts that goes from the genes to the pathways involved in cancer initiation and progression. Spontaneous cat mammary pre-invasive intraepithelial lesions (hyperplasias and neoplasias and malignant lesions seem to share a wide repertoire of molecular features with their human counterparts. In the present review, we tried to compile all the genetics aspects published (i.e., chromosomal alterations, critical cancer genes and their expression regarding cat mammary tumors, which support the cat as a valuable alternative in vitro cell and animal model (i.e., cat mammary cell lines and the spontaneous tumors, respectively, but also to present a critical point of view of some of the issues that really need to be investigated in future research.

  4. Pigmentation, pleiotropy, and genetic pathways in humans and mice

    Energy Technology Data Exchange (ETDEWEB)

    Barsh, G.S. [Stanford Univ., CA (United States)

    1995-10-01

    Some of the most striking polymorphisms in human populations affect the color of our eyes, hair, or skin. Despite some simple lessons from high school biology (blue eyes are recessive; brown are dominant), the genetic basis of such phenotypic variability has, for the most part, eluded Mendelian description. A logical place to search for the keys to understanding common variation in human pigmentation are genes in which defects cause uncommon conditions such as albinism or piebaldism. The area under this lamppost has recently gotten larger, with two articles, one in this issue of the Journal, that describe the map position for Hermansky-Pudlak syndrome (HPS) and with the recent cloning of a gene that causes X-linked ocular albinism (OA1). In addition, a series of three recent articles in Cell demonstrate (1) that defects in the gene encoding the endothelin B (ET{sub B}) receptor cause hypopigmentation and Hirschsprung disease in a Mennonite population and the mouse mutation piebald(s) and (2) that a defect in the edn3 gene, which encodes one of the ligands for the ET{sub B} receptor, causes the lethal spotting (ls) mouse mutation. 47 refs., 1 fig.

  5. Canonical Genetic Signatures of the Adult Human Brain

    Science.gov (United States)

    Hawrylycz, Michael; Miller, Jeremy A.; Menon, Vilas; Feng, David; Dolbeare, Tim; Guillozet-Bongaarts, Angela L.; Jegga, Anil G.; Aronow, Bruce J.; Lee, Chang-Kyu; Bernard, Amy; Glasser, Matthew F.; Dierker, Donna L.; Menche, Jörge; Szafer, Aaron; Collman, Forrest; Grange, Pascal; Berman, Kenneth A.; Mihalas, Stefan; Yao, Zizhen; Stewart, Lance; Barabási, Albert-László; Schulkin, Jay; Phillips, John; Ng, Lydia; Dang, Chinh; Haynor, David R.; Jones, Allan; Van Essen, David C.; Koch, Christof; Lein, Ed

    2015-01-01

    The structure and function of the human brain are highly stereotyped, implying a conserved molecular program responsible for its development, cellular structure, and function. We applied a correlation-based metric of “differential stability” (DS) to assess reproducibility of gene expression patterning across 132 structures in six individual brains, revealing meso-scale genetic organization. The highest DS genes are highly biologically relevant, with enrichment for brain-related biological annotations, disease associations, drug targets, and literature citations. Using high DS genes we identified 32 anatomically diverse and reproducible gene expression signatures, which represent distinct cell types, intracellular components, and/or associations with neurodevelopmental and neurodegenerative disorders. Genes in neuron-associated compared to non-neuronal networks showed higher preservation between human and mouse; however, many diversely-patterned genes displayed dramatic shifts in regulation between species. Finally, highly consistent transcriptional architecture in neocortex is correlated with resting state functional connectivity, suggesting a link between conserved gene expression and functionally relevant circuitry. PMID:26571460

  6. Variation in human recombination rates and its genetic determinants.

    Directory of Open Access Journals (Sweden)

    Adi Fledel-Alon

    Full Text Available BACKGROUND: Despite the fundamental role of crossing-over in the pairing and segregation of chromosomes during human meiosis, the rates and placements of events vary markedly among individuals. Characterizing this variation and identifying its determinants are essential steps in our understanding of the human recombination process and its evolution. STUDY DESIGN/RESULTS: Using three large sets of European-American pedigrees, we examined variation in five recombination phenotypes that capture distinct aspects of crossing-over patterns. We found that the mean recombination rate in males and females and the historical hotspot usage are significantly heritable and are uncorrelated with one another. We then conducted a genome-wide association study in order to identify loci that influence them. We replicated associations of RNF212 with the mean rate in males and in females as well as the association of Inversion 17q21.31 with the female mean rate. We also replicated the association of PRDM9 with historical hotspot usage, finding that it explains most of the genetic variance in this phenotype. In addition, we identified a set of new candidate regions for further validation. SIGNIFICANCE: These findings suggest that variation at broad and fine scales is largely separable and that, beyond three known loci, there is no evidence for common variation with large effects on recombination phenotypes.

  7. Development of a Streamlined Work Flow for Handling Patients' Genetic Testing Insurance Authorizations.

    Science.gov (United States)

    Uhlmann, Wendy R; Schwalm, Katie; Raymond, Victoria M

    2017-08-01

    Obtaining genetic testing insurance authorizations for patients is a complex, time-involved process often requiring genetic counselor (GC) and physician involvement. In an effort to mitigate this complexity and meet the increasing number of genetic testing insurance authorization requests, GCs formed a novel partnership with an industrial engineer (IE) and a patient services associate (PSA) to develop a streamlined work flow. Eight genetics clinics and five specialty clinics at the University of Michigan were surveyed to obtain benchmarking data. Tasks needed for genetic testing insurance authorization were outlined and time-saving work flow changes were introduced including 1) creation of an Excel password-protected shared database between GCs and PSAs, used for initiating insurance authorization requests, tracking and follow-up 2) instituting the PSAs sending GCs a pre-clinic email noting each patients' genetic testing insurance coverage 3) inclusion of test medical necessity documentation in the clinic visit summary note instead of writing a separate insurance letter and 4) PSAs development of a manual with insurance providers and genetic testing laboratories information. These work flow changes made it more efficient to request and track genetic testing insurance authorizations for patients, enhanced GCs and PSAs communication, and reduced tasks done by clinicians.

  8. The Australian joint inquiry into the Protection of Human Genetic Information.

    Science.gov (United States)

    Weisbrot, David

    2003-04-01

    The Australian Law Reform Commission (ALRC) and the Australian Health Ethics Committee are currently engaged in an inquiry into the Protection of Human Genetic Information. In particular, the Attorney-General and the Minister for Health and Ageing have asked us to focus, in relation to human genetic information and tissue samples, on how best to ensure world's best practice in relation to: privacy protection; protection against unlawful discrimination; and the maintenance of high ethical standards in medical research and clinical practice. While initial concerns and controversies have related mainly to aspects of medical research (e.g. consent; re-use of samples) and access to private insurance coverage, relevant issues arise in a wide variety of contexts, including: employment; medical practice; tissue banks and genetic databases; health administration; superannuation; access to government services (e.g. schools, nursing homes); law enforcement; and use by government authorities (e.g. for immigration purposes) or other bodies (e.g. by sports associations). Under the Australian federal system, it is also the case that laws and practices may vary across states and territories. For example, neonatal genetic testing is standard, but storage and retention policies for the resulting 'Guthrie cards' differ markedly. Similarly, some states have developed highly linked health information systems (e.g. incorporating hospitals, doctors' offices and public records), while others discourage such linkages owing to concerns about privacy. The challenge for Australia is to develop policies, standards and practices that promote the intelligent use of genetic information, while providing a level of security with which the community feels comfortable. The inquiry is presently reviewing the adequacy of existing laws and regulatory mechanisms, but recognizes that it will be even more important to develop a broad mix of strategies, such as community and professional education, and the

  9. Large-scale SNP analysis reveals clustered and continuous patterns of human genetic variation

    Directory of Open Access Journals (Sweden)

    Shriver Mark D

    2005-06-01

    Full Text Available Abstract Understanding the distribution of human genetic variation is an important foundation for research into the genetics of common diseases. Some of the alleles that modify common disease risk are themselves likely to be common and, thus, amenable to identification using gene-association methods. A problem with this approach is that the large sample sizes required for sufficient statistical power to detect alleles with moderate effect make gene-association studies susceptible to false-positive findings as the result of population stratification 12. Such type I errors can be eliminated by using either family-based association tests or methods that sufficiently adjust for population stratification 345. These methods require the availability of genetic markers that can detect and, thus, control for sources of genetic stratification among populations. In an effort to investigate population stratification and identify appropriate marker panels, we have analysed 11,555 single nucleotide polymorphisms in 203 individuals from 12 diverse human populations. Individuals in each population cluster to the exclusion of individuals from other populations using two clustering methods. Higher-order branching and clustering of the populations are consistent with the geographic origins of populations and with previously published genetic analyses. These data provide a valuable resource for the definition of marker panels to detect and control for population stratification in population-based gene identification studies. Using three US resident populations (European-American, African-American and Puerto Rican, we demonstrate how such studies can proceed, quantifying proportional ancestry levels and detecting significant admixture structure in each of these populations.

  10. Report: Human biochemical genetics: an insight into inborn errors of metabolism

    Institute of Scientific and Technical Information of China (English)

    YU Chunli; SCOTT C. Ronald

    2006-01-01

    Inborn errors of metabolism (IEM) include a broad spectrum of defects of various gene products that affect intermediary metabolism in the body. Studying the molecular and biochemical mechanisms of those inherited disorder, systematically summarizing the disease phenotype and natural history, providing diagnostic rationale and methodology and treatment strategy comprise the context of human biochemical genetics. This session focused on: (1) manifestations of representative metabolic disorders; (2) the emergent technology and application of newborn screening of metabolic disorders using tandem mass spectrometry; (3) principles of managing IEM; (4) the concept of carrier testing aiming prevention. Early detection of patients with IEM allows early intervention and more options for treatment.

  11. Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification.

    Science.gov (United States)

    Braam, Stefan R; Denning, Chris; Matsa, Elena; Young, Lorraine E; Passier, Robert; Mummery, Christine L

    2008-01-01

    Realizing the potential of human embryonic stem cells (hESCs) in research and commercial applications requires generic protocols for culture, expansion and genetic modification that function between multiple lines. Here we describe a feeder-free hESC culture protocol that was tested in 13 independent hESC lines derived in five different laboratories. The procedure is based on Matrigel adaptation in mouse embryonic fibroblast conditioned medium (CM) followed by monolayer culture of hESC. When combined, these techniques provide a robust hESC culture platform, suitable for high-efficiency genetic modification via plasmid transfection (using lipofection or electroporation), siRNA knockdown and viral transduction. In contrast to other available protocols, it does not require optimization for individual lines. hESC transiently expressing ectopic genes are obtained within 9 d and stable transgenic lines within 3 weeks.

  12. The psychological impact of predictive genetic testing for Huntington's disease: a systematic review of the literature.

    Science.gov (United States)

    Crozier, S; Robertson, N; Dale, M

    2015-02-01

    Huntington's disease (HD) is a neurodegenerative genetic condition for which a predictive genetic test by mutation analysis has been available since 1993. However, whilst revealing the future presence of the disease, testing may have an adverse psychological impact given that the disease is progressive, incurable and ultimately fatal. This review seeks to systematically explore the psychological impact of genetic testing for individuals undergoing pre-symptomatic mutation analysis. Three databases (Medline, PsycInfo and Scopus) were interrogated for studies utilising standardised measures to assess psychological impact following predictive genetic testing for HD. From 100 papers initially identified, eight articles were eligible for inclusion. Psychological impact of predictive genetic testing was not found to be associated with test result. No detrimental effect of predictive genetic testing on non-carriers was found, although the process was not found to be psychologically neutral. Fluctuation in levels of distress was found over time for carriers and non-carriers alike. Methodological weaknesses of published literature were identified, notably the needs of individuals not requesting genetic testing, as well as inadequate support for individuals registering elevated distress and declining post-test follow-up. Further assessment of these vulnerable individuals is warranted to establish the extent and type of future psychological support.

  13. Clear genetic distinctiveness between human- and pig-derived Trichuris based on analyses of mitochondrial datasets.

    Science.gov (United States)

    Liu, Guo-Hua; Gasser, Robin B; Su, Ang; Nejsum, Peter; Peng, Lifei; Lin, Rui-Qing; Li, Ming-Wei; Xu, Min-Jun; Zhu, Xing-Quan

    2012-01-01

    The whipworm, Trichuris trichiura, causes trichuriasis in ∼600 million people worldwide, mainly in developing countries. Whipworms also infect other animal hosts, including pigs (T. suis), dogs (T. vulpis) and non-human primates, and cause disease in these hosts, which is similar to trichuriasis of humans. Although Trichuris species are considered to be host specific, there has been considerable controversy, over the years, as to whether T. trichiura and T. suis are the same or distinct species. Here, we characterised the entire mitochondrial genomes of human-derived Trichuris and pig-derived Trichuris, compared them and then tested the hypothesis that the parasites from these two host species are genetically distinct in a phylogenetic analysis of the sequence data. Taken together, the findings support the proposal that T. trichiura and T. suis are separate species, consistent with previous data for nuclear ribosomal DNA. Using molecular analytical tools, employing genetic markers defined herein, future work should conduct large-scale studies to establish whether T. trichiura is found in pigs and T. suis in humans in endemic regions.

  14. Clear genetic distinctiveness between human- and pig-derived Trichuris based on analyses of mitochondrial datasets.

    Directory of Open Access Journals (Sweden)

    Guo-Hua Liu

    Full Text Available The whipworm, Trichuris trichiura, causes trichuriasis in ∼600 million people worldwide, mainly in developing countries. Whipworms also infect other animal hosts, including pigs (T. suis, dogs (T. vulpis and non-human primates, and cause disease in these hosts, which is similar to trichuriasis of humans. Although Trichuris species are considered to be host specific, there has been considerable controversy, over the years, as to whether T. trichiura and T. suis are the same or distinct species. Here, we characterised the entire mitochondrial genomes of human-derived Trichuris and pig-derived Trichuris, compared them and then tested the hypothesis that the parasites from these two host species are genetically distinct in a phylogenetic analysis of the sequence data. Taken together, the findings support the proposal that T. trichiura and T. suis are separate species, consistent with previous data for nuclear ribosomal DNA. Using molecular analytical tools, employing genetic markers defined herein, future work should conduct large-scale studies to establish whether T. trichiura is found in pigs and T. suis in humans in endemic regions.

  15. Diagnosis of Lynch Syndrome: Genetic Testing Identifies a Potentially Deadly Hereditary Disease

    Science.gov (United States)

    ... the sequencing can identify variants in a person’s genes—places where their genetic sequence differs from an expected sequence,” says Katie Lewis, a research coordinator at NIH’s National Human Genome ...

  16. Role of advanced neuroimaging, fluid biomarkers and genetic testing in the assessment of sport-related concussion: a systematic review.

    Science.gov (United States)

    McCrea, Michael; Meier, Timothy; Huber, Daniel; Ptito, Alain; Bigler, Erin; Debert, Chantel T; Manley, Geoff; Menon, David; Chen, Jen-Kai; Wall, Rachel; Schneider, Kathryn J; McAllister, Thomas

    2017-06-01

    To conduct a systematic review of published literature on advanced neuroimaging, fluid biomarkers and genetic testing in the assessment of sport-related concussion (SRC). Computerised searches of Medline, PubMed, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO, Scopus and Cochrane Library from 1 January 2000 to 31 December 2016 were done. There were 3222 articles identified. In addition to medical subject heading terms, a study was included if (1) published in English, (2) represented original research, (3) involved human research, (4) pertained to SRC and (5) involved data from neuroimaging, fluid biomarkers or genetic testing collected within 6 months of injury. Ninety-eight studies qualified for review (76 neuroimaging, 16 biomarkers and 6 genetic testing). Separate reviews were conducted for neuroimaging, biomarkers and genetic testing. A standardised data extraction tool was used to document study design, population, tests employed and key findings. Reviewers used a modified quality assessment of studies of diagnostic accuracy studies (QUADAS-2) tool to rate the risk of bias, and a modified Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to rate the overall level of evidence for each search. Results from the three respective reviews are compiled in separate tables and an interpretive summary of the findings is provided. Advanced neuroimaging, fluid biomarkers and genetic testing are important research tools, but require further validation to determine their ultimate clinical utility in the evaluation of SRC. Future research efforts should address current gaps that limit clinical translation. Ultimately, research on neurobiological and genetic aspects of SRC is predicted to have major translational significance to evidence-based approaches to clinical management of SRC, much like applied clinical research has had over the past 20 years. © Article author(s) (or their employer(s) unless otherwise

  17. [Constant or break? On the relations between human genetics and eugenics in the Twentieth Century].

    Science.gov (United States)

    Germann, Pascal

    2015-07-01

    The history of human genetics has been a neglected topic in history of science and medicine for a long time. Only recently, have medical historians begun to pay more attention to the history of human heredity. An important research question deals with the interconnections between human genetics and eugenics. This paper addresses this question: By focusing on a Swiss case study, the investigation of the heredity of goiter, I will argue that there existed close but also ambiguous relations between heredity research and eugenics in the twentieth century. Studies on human heredity often produced evidence that challenged eugenic aims and ideas. Concurrently, however, these studies fostered visions of genetic improvement of human populations.

  18. Determinism and free will in the age of genetics: Theoretical-legal concerns about predictive genetic tests

    Directory of Open Access Journals (Sweden)

    Salardi Silvia

    2012-01-01

    Full Text Available The paper deals with the use of predictive genetic tests in medical research. I limit my discussion to those advances in genetics which try to overcome the limits represented by our genetic make-up, in particular by gene mutations that lead, or could lead, to the development of genetic diseases. Besides the ethical issues concerning the topic of the current discussion, the reader will also find an evaluation of the legal provisions elaborated at the different levels of the legal order (international, European, and national. The aim of this evaluation is to find out which model of Law is being adopted in bioethical issues like the one discussed in this paper. The paper underlines and argues how Law can contribute (and has already contributed at the different levels: International, European, and national to value and to spread an ethics of responsibility.

  19. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum.

    Science.gov (United States)

    Gieger, Christian; Geistlinger, Ludwig; Altmaier, Elisabeth; Hrabé de Angelis, Martin; Kronenberg, Florian; Meitinger, Thomas; Mewes, Hans-Werner; Wichmann, H-Erich; Weinberger, Klaus M; Adamski, Jerzy; Illig, Thomas; Suhre, Karsten

    2008-11-01

    The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants that associate with changes in the homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations of frequent single nucleotide polymorphisms (SNPs) with considerable differences in the metabolic homeostasis of the human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy for enzymatic activity, up to 28% of the variance can be explained (p-values 10(-16) to 10(-21)). We identified four genetic variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD) where the corresponding metabolic phenotype (metabotype) clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.

  20. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum.

    Directory of Open Access Journals (Sweden)

    Christian Gieger

    2008-11-01

    Full Text Available The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants that associate with changes in the homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations of frequent single nucleotide polymorphisms (SNPs with considerable differences in the metabolic homeostasis of the human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy for enzymatic activity, up to 28% of the variance can be explained (p-values 10(-16 to 10(-21. We identified four genetic variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD where the corresponding metabolic phenotype (metabotype clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.