WorldWideScience

Sample records for human genetic testing

  1. [Quality assurance in human genetic testing].

    Science.gov (United States)

    Stuhrmann-Spangenberg, Manfred

    2015-02-01

    Advances in technical developments of genetic diagnostics for more than 50 years, as well as the fact that human genetic testing is usually performed only once in a lifetime, with additional impact for blood relatives, are determining the extraordinary importance of quality assurance in human genetic testing. Abidance of laws, directives, and guidelines plays a major role. This article aims to present the major laws, directives, and guidelines with respect to quality assurance of human genetic testing, paying careful attention to internal and external quality assurance. The information on quality assurance of human genetic testing was obtained through a web-based search of the web pages that are referred to in this article. Further information was retrieved from publications in the German Society of Human Genetics and through a PubMed-search using term quality + assurance + genetic + diagnostics. The most important laws, directives, and guidelines for quality assurance of human genetic testing are the gene diagnostics law (GenDG), the directive of the Federal Medical Council for quality control of clinical laboratory analysis (RiliBÄK), and the S2K guideline for human genetic diagnostics and counselling. In addition, voluntary accreditation under DIN EN ISO 15189:2013 offers a most recommended contribution towards quality assurance of human genetic testing. Legal restraints on quality assurance of human genetic testing as mentioned in § 5 GenDG are fulfilled once RiliBÄK requirements are followed.

  2. Genetic Testing and Its Implications: Human Genetics Researchers Grapple with Ethical Issues.

    Science.gov (United States)

    Rabino, Isaac

    2003-01-01

    Contributes systematic data on the attitudes of scientific experts who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. Finds that they are highly supportive of voluntary testing and the right to know one's genetic heritage. Calls for greater genetic literacy. (Contains 87 references.) (Author/NB)

  3. Genetic testing and its implications: human genetics researchers grapple with ethical issues.

    Science.gov (United States)

    Rabino, Isaac

    2003-01-01

    To better understand ethical issues involved in the field of human genetics and promote debate within the scientific community, the author surveyed scientists who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. This study contributes systematic data on attitudes of scientific experts. The survey finds respondents are highly supportive of voluntary testing and the right to know one's genetic heritage. The majority consider in utero testing and consequent pregnancy termination acceptable for cases involving likelihood of serious disease but disapprove for genetic reasons they consider arbitrary, leaving a gray area of distinguishing between treatment of disorders and enhancement still to be resolved. While safeguarding patient confidentiality versus protecting at-risk third parties (kin, reproductive partners) presents a dilemma, preserving privacy from misuse by institutional third parties (employers, insurers) garners strong consensus for legislation against discrimination. Finally, a call is made for greater genetic literacy.

  4. Swiss Federal Law on the Genetic Testing of Humans

    OpenAIRE

    森, 芳周

    2009-01-01

    To add an article against the misuse of a reproductive technology and a genetic engineering, theSwiss Federal Constitution was revised in 1992 through an initiative in 1987. On the basis of thisarticle of the constitution, the Reproductive Medicine Act and the Stem Cell Research Act wereenacted in turns; then, the Federal Law on the Genetic Testing of Humans was enacted in October2004. This paper treats a process of the revision of the constitution in 1992 and the enactment of thelaw in 2004....

  5. Application of Next Generation Sequencing on Genetic Testing

    DEFF Research Database (Denmark)

    Li, Jian

    The discovery of genetic factors behind increasing number of human diseases and the growth of education of genetic knowledge to the public make demands for genetic testing increase rapidly. However, traditional genetic testing methods cannot meet all kinds of the requirements. Next generation seq...

  6. Predictive genetic tests: problems and pitfalls.

    Science.gov (United States)

    Davis, J G

    1997-12-29

    The role that genetic factors play in medicine has expanded, owing to such recent advances as those made by the Human Genome Project and the work that has spun off from it. The project is focusing particularly on localization and characterization of recognized human genetic disorders, which in turn increases awareness of the potential for improved treatment of these disorders. Technical advances in genetic testing in the absence of effective treatment has presented the health profession with major ethical challenges. The example of the identification of the BRCA1 and BRCA2 genes in families at high risk for breast and ovarian cancer is presented to illustrate the issues of the sensitivity of the method, the degree of susceptibility a positive result implies, the need for and availability of counseling and patient education, and confidentiality of the test results. A compelling need exists for adequate education about medical genetics to raise the "literacy" rate among health professionals.

  7. A rigorous approach to facilitate and guarantee the correctness of the genetic testing management in human genome information systems.

    Science.gov (United States)

    Araújo, Luciano V; Malkowski, Simon; Braghetto, Kelly R; Passos-Bueno, Maria R; Zatz, Mayana; Pu, Calton; Ferreira, João E

    2011-12-22

    Recent medical and biological technology advances have stimulated the development of new testing systems that have been providing huge, varied amounts of molecular and clinical data. Growing data volumes pose significant challenges for information processing systems in research centers. Additionally, the routines of genomics laboratory are typically characterized by high parallelism in testing and constant procedure changes. This paper describes a formal approach to address this challenge through the implementation of a genetic testing management system applied to human genome laboratory. We introduced the Human Genome Research Center Information System (CEGH) in Brazil, a system that is able to support constant changes in human genome testing and can provide patients updated results based on the most recent and validated genetic knowledge. Our approach uses a common repository for process planning to ensure reusability, specification, instantiation, monitoring, and execution of processes, which are defined using a relational database and rigorous control flow specifications based on process algebra (ACP). The main difference between our approach and related works is that we were able to join two important aspects: 1) process scalability achieved through relational database implementation, and 2) correctness of processes using process algebra. Furthermore, the software allows end users to define genetic testing without requiring any knowledge about business process notation or process algebra. This paper presents the CEGH information system that is a Laboratory Information Management System (LIMS) based on a formal framework to support genetic testing management for Mendelian disorder studies. We have proved the feasibility and showed usability benefits of a rigorous approach that is able to specify, validate, and perform genetic testing using easy end user interfaces.

  8. Clinical Practice: Direct-to-consumer genetic testing: To test or not to ...

    African Journals Online (AJOL)

    In direct-to-consumer (DTC) genetic testing, laboratory-based genetic services are offered directly to the public without an independent healthcare professional being involved. The committee of the Southern African Society for Human Genetics (SASHG) appeals to the public and clinicians to be cautious when considering ...

  9. Health-related direct-to-consumer genetic testing: a review of companies' policies with regard to genetic testing in minors.

    Science.gov (United States)

    Borry, Pascal; Howard, Heidi C; Sénécal, Karine; Avard, Denise

    2010-03-01

    More and more companies are advertising and selling genetic tests directly to consumers. Considering the ethical, legal, and psychological concerns surrounding genetic testing in minors, a study of companies' websites was performed in order to describe and analyze their policies with respect to this issue. Of the 29 companies analyzed, 13 did not provide any information about this matter, eight companies allowed genetic testing upon parental request, four companies stated that their website is not directed to children under 18 years, and four companies suggested that in order to be tested, applicants should have reached the age of legal majority. If private companies offer genetic tests which are also offered in a clinical setting, can they be expected to adhere to the existing clinical guidelines with regard to these tests? If so, a certain ambiguity exists. Many companies are emphasizing in their disclaimers that their services are not medical services and should not be used as a basis for making medical decisions. Nonetheless, it remains debatable whether genetic testing in minors would be appropriate in this context. In line with the Advisory Committee on Genetic Testing, the Human Genetics Commission addressed the problem of non-consensual testing and recommended not to supply genetic testing services directly to those under the age of 16 or to those not able to make a competent decision regarding testing.

  10. The ethical implications of genetic testing in the classroom.

    Science.gov (United States)

    Taylor, Ann T S; Rogers, Jill Cellars

    2011-07-01

    The development of classroom experiments where students examine their own DNA is frequently described as an innovative teaching practice. Often these experiences involve students analyzing their genes for various polymorphisms associated with disease states, like an increased risk for developing cancer. Such experiments can muddy the distinction between classroom investigation and medical testing. Although the goals and issues surrounding classroom genotyping do not directly align with those of clinical testing, instructors can use the guidelines and standards established by the medical genetics community when evaluating the ethics of human genotyping. We developed a laboratory investigation and discussion which allowed undergraduate science students to explore current DNA manipulation techniques to isolate their p53 gene, followed by a dialogue probing the ethical implications of examining their sample for various polymorphisms. Students never conducted genotyping on their samples because of the ethical concerns presented in this paper, so the discussion replaced the actual genetic testing in the class. A science faculty member led the laboratory portion, while a genetic counselor facilitated the discussion of the ethical concepts underlying genetic counseling: autonomy, beneficence, confidentiality, and justice. In their final papers, students demonstrated an understanding of the practice guidelines established by the genetics community and acknowledged the ethical considerations inherent in p53 genotyping. Given the burgeoning market for personalized medicine, teaching undergraduates about the psychosocial and ethical dimensions of human genetic testing is important and timely. Moreover, incorporating a genetic counselor in the classroom discussion provided a rich and dynamic discussion of human genetic testing. Copyright © 2011 Wiley Periodicals, Inc.

  11. Public health genomics and genetic test evaluation: the challenge of conducting behavioural research on the utility of lifestyle-genetic tests.

    Science.gov (United States)

    Sanderson, Saskia C; Wardle, Jane; Humphries, Steve E

    2008-01-01

    Human genetics research is increasingly concerned with multifactorial conditions such as diabetes and heart disease, which are influenced not only by genetic but also lifestyle factors such as diet and smoking. Although the results of 'lifestyle-genetic' tests using this information could conceivably motivate lifestyle changes in the future, companies are already selling such tests and related lifestyle advice commercially. Some academics and lobby groups have condemned the companies for selling these tests in advance of scientific support. Others are concerned that the tests may not motivate lifestyle improvements, instead causing distress in people receiving adverse test results and complacency in those receiving reassuring results. There is currently no regulatory oversight of genetic test utility, despite consensus in the Public Health Genomics community that clinical utility (including psychological and behavioural impact) of all emerging genetic tests should be evaluated before being introduced for individual use. Clearly, empirical data in this area is much needed, to inform understanding of the potential utility of these tests, and of whether stricter regulation of commercial exploitation is needed. In this article, we review the current situation regarding lifestyle-genetic tests, and discuss the challenges inherent in conducting this kind of behavioural research in the genomics era. Copyright 2008 S. Karger AG, Basel.

  12. Public Health Genomics and Genetic Test Evaluation: The Challenge of Conducting Behavioural Research on the Utility of Lifestyle-Genetic Tests

    OpenAIRE

    Sanderson, Saskia C.; Wardle, Jane; Humphries, Steve E.

    2008-01-01

    Human genetics research is increasingly concerned with multifactorial conditions such as diabetes and heart disease, which are influenced not only by genetic but also lifestyle factors such as diet and smoking. Although the results of ‘lifestyle-genetic’ tests using this information could conceivably motivate lifestyle changes in the future, companies are already selling such tests and related lifestyle advice commercially. Some academics and lobby groups have condemned the companies for sell...

  13. Adults' perceptions of genetic counseling and genetic testing.

    Science.gov (United States)

    Houfek, Julia Fisco; Soltis-Vaughan, Brigette S; Atwood, Jan R; Reiser, Gwendolyn M; Schaefer, G Bradley

    2015-02-01

    This study described the perceptions of genetic counseling and testing of adults (N = 116) attending a genetic education program. Understanding perceptions of genetic counseling, including the importance of counseling topics, will contribute to patient-focused care as clinical genetic applications for common, complex disorders evolve. Participants completed a survey addressing: the importance of genetic counseling topics, benefits and negative effects of genetic testing, and sharing test results. Topics addressing practical information about genetic conditions were rated most important; topics involving conceptual genetic/genomic principles were rated least important. The most frequently identified benefit and negative effect of testing were prevention/early detection/treatment and psychological distress. Participants perceived that they were more likely to share test results with first-degree than other relatives. Findings suggest providing patients with practical information about genetic testing and genetic contributions to disease, while also determining whether their self-care abilities would be enhanced by teaching genetic/genomic principles. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Genetic testing for retinal dystrophies and dysfunctions: benefits, dilemmas and solutions.

    NARCIS (Netherlands)

    Koenekoop, R.K.; Lopez, I.; Hollander, A.I. den; Allikmets, R.; Cremers, F.P.M.

    2007-01-01

    Human retinal dystrophies have unparalleled genetic and clinical diversity and are currently linked to more than 185 genetic loci. Genotyping is a crucial exercise, as human gene-specific clinical trials to study photoreceptor rescue are on their way. Testing confirms the diagnosis at the molecular

  15. Evaluating human genetic diversity

    National Research Council Canada - National Science Library

    This book assesses the scientific value and merit of research on human genetic differences--including a collection of DNA samples that represents the whole of human genetic diversity--and the ethical...

  16. What Is Genetic Ancestry Testing?

    Science.gov (United States)

    ... What is genetic ancestry testing? What is genetic ancestry testing? Genetic ancestry testing, or genetic genealogy, is ... with other groups. For more information about genetic ancestry testing: The University of Utah provides video tutorials ...

  17. Genetics of human hydrocephalus

    Science.gov (United States)

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human

  18. What Is Genetic Ancestry Testing?

    Science.gov (United States)

    ... consumer genetic testing? What kinds of direct-to-consumer genetic tests are available? What is genetic ancestry testing? What are the benefits and risks of direct-to-consumer genetic testing? ...

  19. Feline genetics: clinical applications and genetic testing.

    Science.gov (United States)

    Lyons, Leslie A

    2010-11-01

    DNA testing for domestic cat diseases and appearance traits is a rapidly growing asset for veterinary medicine. Approximately 33 genes contain 50 mutations that cause feline health problems or alterations in the cat's appearance. A variety of commercial laboratories can now perform cat genetic diagnostics, allowing both the veterinary clinician and the private owner to obtain DNA test results. DNA is easily obtained from a cat via a buccal swab with a standard cotton bud or cytological brush, allowing DNA samples to be easily sent to any laboratory in the world. The DNA test results identify carriers of the traits, predict the incidence of traits from breeding programs, and influence medical prognoses and treatments. An overall goal of identifying these genetic mutations is the correction of the defect via gene therapies and designer drug therapies. Thus, genetic testing is an effective preventative medicine and a potential ultimate cure. However, genetic diagnostic tests may still be novel for many veterinary practitioners and their application in the clinical setting needs to have the same scrutiny as any other diagnostic procedure. This article will review the genetic tests for the domestic cat, potential sources of error for genetic testing, and the pros and cons of DNA results in veterinary medicine. Highlighted are genetic tests specific to the individual cat, which are a part of the cat's internal genome. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Host genetic variation impacts microbiome composition across human body sites.

    Science.gov (United States)

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T; Spector, Timothy D; Keinan, Alon; Ley, Ruth E; Gevers, Dirk; Clark, Andrew G

    2015-09-15

    The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale. Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes. Our results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

  1. Effectiveness of an online curriculum for medical students on genetics, genetic testing and counseling

    Directory of Open Access Journals (Sweden)

    Mary P. Metcalf

    2010-01-01

    Full Text Available Background: It is increasingly important that physicians have a thorough understanding of the basic science of human genetics and the ethical, legal and social implications (ELSI associated with genetic testing and counseling. Methods: The authors developed a series of web-based courses for medical students on these topics. The course modules are interactive, emphasize clinical case studies, and can easily be incorporated into existing medical school curricula. Results: Results of a ‘real world’ effectiveness trial indicate that the courses have a statistically significant effect on knowledge, attitude, intended behavior and self-efficacy related to genetic testing (p<0.001; N varies between 163 and 596 for each course. Conclusions: The results indicate that this curriculum is an effective tool for educating medical students on the ELSI associated with genetic testing and for promoting positive changes in students' confidence, counseling attitudes and behaviors.

  2. Genetic testing in asymptomatic minors: background considerations towards ESHG Recommendations

    DEFF Research Database (Denmark)

    Borry, Pascal; Evers-Kiebooms, Gerry; Cornel, Martina C

    2009-01-01

    Although various guidelines and position papers have discussed, in the past, the ethical aspects of genetic testing in asymptomatic minors, the European Society of Human Genetics had not earlier endorsed any set of guidelines exclusively focused on this issue. This paper has served as a backgroun...

  3. Human Genetics. Informational and Educational Materials, Vol. I, No. 1.

    Science.gov (United States)

    National Clearinghouse for Human Genetic Diseases (DHEW/PHS), Rockville, MD.

    This catalogue, prepared by the National Clearinghouse for Human Genetic Diseases, provides educational and informational materials on the latest advances in testing, diagnosing, counseling, and treating individuals with a concern for genetic diseases. The materials include books, brochures, pamphlets, journal articles, audio cassettes,…

  4. Genetic testing for patients with renal disease: procedures, pitfalls, and ethical considerations.

    Science.gov (United States)

    Korf, B R

    1999-07-01

    The Human Genome Project is rapidly producing insights into the molecular basis of human genetic disorders. The most immediate clinical benefit is the advent of new diagnostic methods. Molecular diagnostic tools are available for several genetic renal disorders and are in development for many more. Two general approaches to molecular diagnosis are linkage-based testing and direct mutation detection. The former is used when the gene has not been cloned but has been mapped in relation to polymorphic loci. Linkage-based testing is also helpful when a large diversity of mutations makes direct detection difficult. Limitations include the need to study multiple family members, the need for informative polymorphisms, and genetic heterogeneity. Direct mutation detection is limited by genetic heterogeneity and the need to distinguish nonpathogenic allelic variants from pathogenic mutations. Molecular testing raises a number of complex ethical issues, including those associated with prenatal or presymptomatic diagnosis. In addition, there are concerns about informed consent, privacy, genetic discrimination, and technology transfer for newly developed tests. Health professionals need to be aware of the technical and ethical implications of these new methods of testing, as well as the complexities in test interpretation, as molecular approaches are increasingly integrated into medical practice.

  5. Personalized medicine and human genetic diversity.

    Science.gov (United States)

    Lu, Yi-Fan; Goldstein, David B; Angrist, Misha; Cavalleri, Gianpiero

    2014-07-24

    Human genetic diversity has long been studied both to understand how genetic variation influences risk of disease and infer aspects of human evolutionary history. In this article, we review historical and contemporary views of human genetic diversity, the rare and common mutations implicated in human disease susceptibility, and the relevance of genetic diversity to personalized medicine. First, we describe the development of thought about diversity through the 20th century and through more modern studies including genome-wide association studies (GWAS) and next-generation sequencing. We introduce several examples, such as sickle cell anemia and Tay-Sachs disease that are caused by rare mutations and are more frequent in certain geographical populations, and common treatment responses that are caused by common variants, such as hepatitis C infection. We conclude with comments about the continued relevance of human genetic diversity in medical genetics and personalized medicine more generally. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. The future (r)evolution of preimplantation genetic diagnosis/human leukocyte antigen testing: ethical reflections.

    Science.gov (United States)

    de Wert, Guido; Liebaers, Inge; Van de Velde, Hilde

    2007-09-01

    There has been increasing support for combining preimplantation genetic diagnosis (PGD) for specific diseases with a test for human leukocyte antigens (HLA) because the generation of HLA-matched umbilical cord blood cells may save the life of a diseased sibling. To date, this procedure has taken place in the context of conceiving another child--PGD/HLA testing type 1. However, it may well become possible to perform PGD/HLA testing outside this context, that is, to select matched embryos from which embryonic stem cells could be derived and used in cell therapy--PGD/HLA testing type 2. A proactive ethical analysis is needed and is presented in this article. Although PGD/HLA testing type 1 can be morally justified, the risks, pitfalls, and practical limitations of this procedure make it necessary to develop alternative strategies. PGD/HLA testing type 2 may provide an alternative strategy. From an ethical point of view, the controversial issue is that this procedure creates embryos purely for instrumental use. However, given the dominant view that the preimplantation embryo has only limited moral value, this alternative may be as morally justified as PGD/HLA testing type 1.

  7. Protocols in human molecular genetics

    National Research Council Canada - National Science Library

    Mathew, Christopher G

    1991-01-01

    ... sequences has led to the development of DNA fingerprinting. The application of these techniques to the study of the human genome has culminated in major advances such as the cloning of the cystic fibrosis gene, the construction of genetic linkage maps of each human chromosome, the mapping of many genes responsible for human inherited disorders, genet...

  8. Human genetics in troubled times and places.

    Science.gov (United States)

    Harper, Peter S

    2018-01-01

    The development of human genetics world-wide during the twentieth century, especially across Europe, has occurred against a background of repeated catastrophes, including two world wars and the ideological problems and repression posed by Nazism and Communism. The published scientific literature gives few hints of these problems and there is a danger that they will be forgotten. The First World War was largely indiscriminate in its carnage, but World War 2 and the preceding years of fascism were associated with widespread migration, especially of Jewish workers expelled from Germany, and of their children, a number of whom would become major contributors to the post-war generation of human and medical geneticists in Britain and America. In Germany itself, eminent geneticists were also involved in the abuses carried out in the name of 'eugenics' and 'race biology'. However, geneticists in America, Britain and the rest of Europe were largely responsible for the ideological foundations of these abuses. In the Soviet Union, geneticists and genetics itself became the object of persecution from the 1930s till as late as the mid 1960s, with an almost complete destruction of the field during this time; this extended also to Eastern Europe and China as part of the influence of Russian communism. Most recently, at the end of the twentieth century, China saw a renewal of government sponsored eugenics programmes, now mostly discarded. During the post-world war 2 decades, human genetics research benefited greatly from recognition of the genetic dangers posed by exposure to radiation, following the atomic bomb explosions in Japan, atmospheric testing and successive accidental nuclear disasters in Russia. Documenting and remembering these traumatic events, now largely forgotten among younger workers, is essential if we are to fully understand the history of human genetics and avoid the repetition of similar disasters in the future. The power of modern human genetic and genomic

  9. Bio science: genetic genealogy testing and the pursuit of African ancestry.

    Science.gov (United States)

    Nelson, Alondra

    2008-10-01

    This paper considers the extent to which the geneticization of 'race' and ethnicity is the prevailing outcome of genetic testing for genealogical purposes. The decoding of the human genome precipitated a change of paradigms in genetics research, from an emphasis on genetic similarity to a focus on molecular-level differences among individuals and groups. This shift from lumping to splitting spurred ongoing disagreements among scholars about the significance of 'race' and ethnicity in the genetics era. I characterize these divergent perspectives as 'pragmatism' and 'naturalism'. Drawing upon ethnographic fieldwork and interviews, I argue that neither position fully accounts for how understandings of 'race' and ethnicity are being transformed with genetic genealogy testing. While there is some acquiescence to genetic thinking about ancestry, and by implication, 'race', among African-American and black British consumers of genetic genealogy testing, test-takers also adjudicate between sources of genealogical information and from these construct meaningful biographical narratives. Consumers engage in highly situated 'objective' and 'affiliative' self-fashioning, interpreting genetic test results in the context of their 'genealogical aspirations'. I conclude that issues of site, scale, and subjectification must be attended to if scholars are to understand whether and to what extent social identities are being transformed by recent developments in genetic science.

  10. Human genetics and sleep behavior.

    Science.gov (United States)

    Shi, Guangsen; Wu, David; Ptáček, Louis J; Fu, Ying-Hui

    2017-06-01

    Why we sleep remains one of the greatest mysteries in science. In the past few years, great advances have been made to better understand this phenomenon. Human genetics has contributed significantly to this movement, as many features of sleep have been found to be heritable. Discoveries about these genetic variations that affect human sleep will aid us in understanding the underlying mechanism of sleep. Here we summarize recent discoveries about the genetic variations affecting the timing of sleep, duration of sleep and EEG patterns. To conclude, we also discuss some of the sleep-related neurological disorders such as Autism Spectrum Disorder (ASD) and Alzheimer's Disease (AD) and the potential challenges and future directions of human genetics in sleep research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Genetic Testing for ALS

    Science.gov (United States)

    ... genetic counselor can help you work through the pros and cons of genetic testing based on your ... showing symptoms or what their progression will be. Technology is changing rapidly and costs of testing are ...

  12. Direct to consumer genetic testing-law and policy concerns in Ireland.

    Science.gov (United States)

    de Paor, Aisling

    2017-11-25

    With rapid scientific and technological advances, the past few years has witnessed the emergence of a new genetic era and a growing understanding of the genetic make-up of human beings. These advances have propelled the introduction of companies offering direct to consumer (DTC) genetic testing, which facilitates the direct provision of such tests to consumers, (for example, via the internet). Although DTC genetic testing offers benefits by enhancing consumer accessibility to such technology, promoting proactive healthcare and increasing genetic awareness, it presents a myriad of challenges, from an ethical, legal and regulatory perspective. As DTC genetic testing usually eliminates the need for a medical professional in accessing genetic tests, this lack of professional guidance and counselling may result in misinterpretation and confusion regarding results. In addition, an evident concern relates to the scientific validity and quality of these tests. A further problem arising is the lack or inadequacy of regulation in this field. Despite the increasing accessibility of DTC genetic testing, this legislative vacuum is apparent in Ireland, where there is no concrete legislation. This article explores the main ethical, legal and regulatory issues arising with the advent of rapid advances in DTC genetic testing in Ireland. Further, with inevitable future advances in genetic science, as well as increasing internet accessibility, the challenges presented are likely to become more amplified. In consideration of the ethical and legal challenges, this paper highlights the regulation of DTC genetic testing as a growing concern in Ireland, recognising its importance to both the scientific community as well as in respect of enhancing consumer confidence in such technologies.

  13. Annotating DNA variants is the next major goal for human genetics.

    Science.gov (United States)

    Cutting, Garry R

    2014-01-02

    Clinical genetic testing has undergone a dramatic transformation in the past two decades. Diagnostic laboratories that previously tested for well-established disease-causing DNA variants in a handful of genes have evolved into sequencing factories identifying thousands of variants of known and unknown medical consequence. Sorting out what does and does not cause disease in our genomes is the next great challenge in making genetics a central feature of healthcare. I propose that closing the gap in our ability to interpret variation responsible for Mendelian disorders provides a grand and unprecedented opportunity for geneticists. Human geneticists are well placed to coordinate a systematic evaluation of variants in collaboration with basic scientists and clinicians. Sharing of knowledge, data, methods, and tools will aid both researchers and healthcare workers in achieving their common goal of defining the pathogenic potential of variants. Generation of variant annotations will inform genetic testing and will deepen our understanding of gene and protein function, thereby aiding the search for molecular targeted therapies. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Direct-to-consumer genetic testing in Slovenia: availability, ethical dilemmas and legislation.

    Science.gov (United States)

    Vrecar, Irena; Peterlin, Borut; Teran, Natasa; Lovrecic, Luca

    2015-01-01

    Over the last few years, many private companies are advertising direct-to-consumer genetic testing (DTC GT), mostly with no or only minor clinical utility and validity of tests and without genetic counselling. International professional community does not approve provision of DTC GT and situation in some EU countries has been analysed already. The aim of our study was to analyse current situation in the field of DTC GT in Slovenia and related legal and ethical issues. Information was retrieved through internet search, performed independently by two authors, structured according to individual private company and the types of offered genetic testing. Five private companies and three Health Insurance Companies offer DTC GT and it is provided without genetic counselling. Available tests include testing for breast cancer, tests with other health-related information (complex diseases, drug responses) and other tests (nutrigenetic, ancestry, paternity). National legislation is currently being developed and Council of Experts in Medical Genetics has issued an opinion about Genetic Testing and Commercialization of Genetic Tests in Slovenia. Despite the fact that Slovenia has signed the Additional protocol to the convention on human rights and biomedicine, concerning genetic testing for health purposes, DTC GT in Slovenia is present and against all international recommendations. There is lack of or no medical supervision, clinical validity and utility of tests and inappropriate genetic testing of minors is available. There is urgent need for regulation of ethical, legal, and social aspects. National legislation on DTC GT is being prepared.

  15. Attitudes towards genetic testing: analysis of contradictions

    DEFF Research Database (Denmark)

    Jallinoja, P; Hakonen, A; Aro, A R

    1998-01-01

    A survey study was conducted among 1169 people to evaluate attitudes towards genetic testing in Finland. Here we present an analysis of the contradictions detected in people's attitudes towards genetic testing. This analysis focuses on the approval of genetic testing as an individual choice and o...... studies on attitudes towards genetic testing as well as in the health care context, e.g. in genetic counselling.......A survey study was conducted among 1169 people to evaluate attitudes towards genetic testing in Finland. Here we present an analysis of the contradictions detected in people's attitudes towards genetic testing. This analysis focuses on the approval of genetic testing as an individual choice...... and on the confidence in control of the process of genetic testing and its implications. Our analysis indicated that some of the respondents have contradictory attitudes towards genetic testing. It is proposed that contradictory attitudes towards genetic testing should be given greater significance both in scientific...

  16. New and emerging technologies for genetic toxicity testing.

    Science.gov (United States)

    Lynch, Anthony M; Sasaki, Jennifer C; Elespuru, Rosalie; Jacobson-Kram, David; Thybaud, Véronique; De Boeck, Marlies; Aardema, Marilyn J; Aubrecht, Jiri; Benz, R Daniel; Dertinger, Stephen D; Douglas, George R; White, Paul A; Escobar, Patricia A; Fornace, Albert; Honma, Masamitsu; Naven, Russell T; Rusling, James F; Schiestl, Robert H; Walmsley, Richard M; Yamamura, Eiji; van Benthem, Jan; Kim, James H

    2011-04-01

    The International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing established an Emerging Technologies and New Strategies Workgroup to review the current State of the Art in genetic toxicology testing. The aim of the workgroup was to identify promising technologies that will improve genotoxicity testing and assessment of in vivo hazard and risk, and that have the potential to help meet the objectives of the IVGT. As part of this initiative, HESI convened a workshop in Washington, DC in May 2008 to discuss mature, maturing, and emerging technologies in genetic toxicology. This article collates the abstracts of the New and Emerging Technologies Workshop together with some additional technologies subsequently considered by the workgroup. Each abstract (available in the online version of the article) includes a section addressed specifically to the strengths, weaknesses, opportunities, and threats associated with the respective technology. Importantly, an overview of the technologies and an indication of how their use might be aligned with the objectives of IVGT are presented. In particular, consideration was given with regard to follow-up testing of positive results in the standard IVGT tests (i.e., Salmonella Ames test, chromosome aberration assay, and mouse lymphoma assay) to add weight of evidence and/or provide mechanism of action for improved genetic toxicity risk assessments in humans. Copyright © 2010 Wiley-Liss, Inc.

  17. Genetics of Human and Canine Dilated Cardiomyopathy.

    Science.gov (United States)

    Simpson, Siobhan; Edwards, Jennifer; Ferguson-Mignan, Thomas F N; Cobb, Malcolm; Mongan, Nigel P; Rutland, Catrin S

    2015-01-01

    Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM) accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In this review the aetiology, epidemiology, and clinical characteristics of canine DCM are examined, along with highlighting possible different subtypes of canine DCM and their potential relevance to human DCM. Finally the current position of genetic research into canine and human DCM, including the genetic loci, is identified and the reasons many studies may have failed to find a genetic association with canine DCM are reviewed.

  18. Genetic Testing Registry

    Science.gov (United States)

    ... RefSeqGene UniGene All Genes & Expression Resources... Genetics & Medicine Bookshelf Database of Genotypes and Phenotypes (dbGaP) Genetic Testing ... ProtMap HomoloGene Protein Clusters All Homology Resources... Literature Bookshelf E-Utilities Journals in NCBI Databases MeSH Database ...

  19. Genetics of Human and Canine Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Siobhan Simpson

    2015-01-01

    Full Text Available Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In this review the aetiology, epidemiology, and clinical characteristics of canine DCM are examined, along with highlighting possible different subtypes of canine DCM and their potential relevance to human DCM. Finally the current position of genetic research into canine and human DCM, including the genetic loci, is identified and the reasons many studies may have failed to find a genetic association with canine DCM are reviewed.

  20. Genetic counseling and the ethical issues around direct to consumer genetic testing.

    Science.gov (United States)

    Hawkins, Alice K; Ho, Anita

    2012-06-01

    Over the last several years, direct to consumer(DTC) genetic testing has received increasing attention in the public, healthcare and academic realms. DTC genetic testing companies face considerable criticism and scepticism,particularly from the medical and genetic counseling community. This raises the question of what specific aspects of DTC genetic testing provoke concerns, and conversely,promises, for genetic counselors. This paper addresses this question by exploring DTC genetic testing through an ethic allens. By considering the fundamental ethical approaches influencing genetic counseling (the ethic of care and principle-based ethics) we highlight the specific ethical concerns raised by DTC genetic testing companies. Ultimately,when considering the ethics of DTC testing in a genetic counseling context, we should think of it as a balancing act. We need careful and detailed consideration of the risks and troubling aspects of such testing, as well as the potentially beneficial direct and indirect impacts of the increased availability of DTC genetic testing. As a result it is essential that genetic counselors stay informed and involved in the ongoing debate about DTC genetic testing and DTC companies. Doing so will ensure that the ethical theories and principles fundamental to the profession of genetic counseling are promoted not just in traditional counseling sessions,but also on a broader level. Ultimately this will help ensure that the public enjoys the benefits of an increasingly genetic based healthcare system.

  1. What Is Direct-to-Consumer Genetic Testing?

    Science.gov (United States)

    ... consumer genetic testing? What kinds of direct-to-consumer genetic tests are available? What is genetic ancestry testing? What are the benefits and risks of direct-to-consumer genetic testing? ...

  2. Teaching about genetic testing issues in the undergraduate classroom: a case study.

    Science.gov (United States)

    Rogers, Jill Cellars; Taylor, Ann T S

    2011-06-01

    Educating undergraduates about current genetic testing and genomics can involve novel and creative teaching practices. The higher education literature describes numerous pedagogical approaches in the laboratory designed to engage science and liberal arts students. Often these experiences involve students analyzing their own genes for various polymorphisms, some of which are associated with disease states such as an increased risk for developing cancer. While the literature acknowledges possible ethical ramifications of such laboratory exercises, authors do not present recommendations or rubrics for evaluating whether or not the testing is, in fact, ethical. In response, we developed a laboratory investigation and discussion which allowed undergraduate science students to explore current DNA manipulation techniques to isolate their p53 gene, followed by a dialogue probing the ethical implications of examining their sample for various polymorphisms. Students never conducted genotyping on their samples because of ethical concerns, so the discussion served to replace actual genetic testing in the class. A basic scientist led the laboratory portion of the assignment. A genetic counselor facilitated the discussion, which centered around existing ethical guidelines for clinical genetic testing and possible challenges of human genotyping outside the medical setting. In their final papers, students demonstrated an understanding of the practice guidelines established by the genetics community and acknowledged the ethical considerations inherent in p53 genotyping. Given the burgeoning market for personalized medicine, teaching undergraduates about the psychosocial and ethical dimensions of human gene testing seems important and timely, and introduces an additional role genetic counselors can play in educating consumers about genomics.

  3. Human genetic factors in tuberculosis: an update.

    Science.gov (United States)

    van Tong, Hoang; Velavan, Thirumalaisamy P; Thye, Thorsten; Meyer, Christian G

    2017-09-01

    Tuberculosis (TB) is a major threat to human health, especially in many developing countries. Human genetic variability has been recognised to be of great relevance in host responses to Mycobacterium tuberculosis infection and in regulating both the establishment and the progression of the disease. An increasing number of candidate gene and genome-wide association studies (GWAS) have focused on human genetic factors contributing to susceptibility or resistance to TB. To update previous reviews on human genetic factors in TB we searched the MEDLINE database and PubMed for articles from 1 January 2014 through 31 March 2017 and reviewed the role of human genetic variability in TB. Search terms applied in various combinations were 'tuberculosis', 'human genetics', 'candidate gene studies', 'genome-wide association studies' and 'Mycobacterium tuberculosis'. Articles in English retrieved and relevant references cited in these articles were reviewed. Abstracts and reports from meetings were also included. This review provides a recent summary of associations of polymorphisms of human genes with susceptibility/resistance to TB. © 2017 John Wiley & Sons Ltd.

  4. Genetics educational needs in China: physicians' experience and knowledge of genetic testing.

    Science.gov (United States)

    Li, Jing; Xu, Tengda; Yashar, Beverly M

    2015-09-01

    The aims of this study were to explore the relationship between physicians' knowledge and utilization of genetic testing and to explore genetics educational needs in China. An anonymous survey about experience, attitudes, and knowledge of genetic testing was conducted among physicians affiliated with Peking Union Medical College Hospital during their annual health evaluation. A personal genetics knowledge score was developed and predictors of personal genetics knowledge score were evaluated. Sixty-four physicians (33% male) completed the survey. Fifty-eight percent of them had used genetic testing in their clinical practice. Using a 4-point scale, mean knowledge scores of six common genetic testing techniques ranged from 1.7 ± 0.9 to 2.4 ± 1.0, and the average personal genetics knowledge score was 2.1 ± 0.8. In regression analysis, significant predictors of higher personal genetics knowledge score were ordering of genetic testing, utilization of pedigrees, higher medical degree, and recent genetics training (P education. This study demonstrated a sizable gap between Chinese physicians' knowledge and utilization of genetic testing. Participants had high self-perceived genetics educational needs. Development of genetics educational platforms is both warranted and desired in China.Genet Med 17 9, 757-760.

  5. Improving Molecular Genetic Test Utilization through Order Restriction, Test Review, and Guidance.

    Science.gov (United States)

    Riley, Jacquelyn D; Procop, Gary W; Kottke-Marchant, Kandice; Wyllie, Robert; Lacbawan, Felicitas L

    2015-05-01

    The ordering of molecular genetic tests by health providers not well trained in genetics may have a variety of untoward effects. These include the selection of inappropriate tests, the ordering of panels when the assessment of individual or fewer genes would be more appropriate, inaccurate result interpretation and inappropriate patient guidance, and significant unwarranted cost expenditure. We sought to improve the utilization of molecular genetic tests by requiring providers without specialty training in genetics to use genetic counselors and molecular genetic pathologists to assist in test selection. We used a genetic and genomic test review process wherein the laboratory-based genetic counselor performed the preanalytic assessment of test orders and test triage. Test indication and clinical findings were evaluated against the test panel composition, methods, and test limitations under the supervision of the molecular genetic pathologist. These test utilization management efforts resulted in a decrease in genetic test ordering and a gross cost savings of $1,531,913 since the inception of these programs in September 2011 through December 2013. The combination of limiting the availability of complex genetic tests and providing guidance regarding appropriate test strategies is an effective way to improve genetic tests, contributing to judicious use of limited health care resources. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Genetic Testing: MedlinePlus Health Topic

    Science.gov (United States)

    ... Your Family's Health (National Institutes of Health) - PDF Topic Image MedlinePlus Email Updates Get Genetic Testing updates ... testing and your cancer risk Karyotyping Related Health Topics Birth Defects Genetic Counseling Genetic Disorders Newborn Screening ...

  7. Clinical applications of preimplantation genetic testing.

    Science.gov (United States)

    Brezina, Paul R; Kutteh, William H

    2015-02-19

    Genetic diagnostic technologies are rapidly changing the way medicine is practiced. Preimplantation genetic testing is a well established application of genetic testing within the context of in vitro fertilization cycles. It involves obtaining a cell(s) from a developing embryo in culture, which is then subjected to genetic diagnostic analysis; the resulting information is used to guide which embryos are transferred into the uterus. The potential applications and use of this technology have increased in recent years. Experts agree that preimplantation genetic diagnosis is clinically appropriate for many known genetic disorders. However, some applications of such testing, such as preimplantation genetic screening for aneuploidy, remain controversial. Clinical data suggest that preimplantation genetic screening may be useful, but further studies are needed to quantify the size of the effect and who would benefit most. © BMJ Publishing Group Ltd 2015.

  8. Knowledge of Genetics and Attitudes toward Genetic Testing among College Students in Saudi Arabia.

    Science.gov (United States)

    Olwi, Duaa; Merdad, Leena; Ramadan, Eman

    2016-01-01

    Genetic testing has been gradually permeating the practice of medicine. Health-care providers may be confronted with new genetic approaches that require genetically informed decisions which will be influenced by patients' knowledge of genetics and their attitudes toward genetic testing. This study assesses the knowledge of genetics and attitudes toward genetic testing among college students. A cross-sectional study was conducted using a multistage stratified sample of 920 senior college students enrolled at King Abdulaziz University, Saudi Arabia. Information regarding knowledge of genetics, attitudes toward genetic testing, and sociodemographic data were collected using a self-administered questionnaire. In general, students had a good knowledge of genetics but lacked some fundamentals of genetics. The majority of students showed positive attitudes toward genetic testing, but some students showed negative attitudes toward certain aspects of genetic testing such as resorting to abortion in the case of an untreatable major genetic defect in an unborn fetus. The main significant predictors of knowledge were faculty, gender, academic year, and some prior awareness of 'genetic testing'. The main significant predictors of attitudes were gender, academic year, grade point average, and some prior awareness of 'genetic testing'. The knowledge of genetics among college students was higher than has been reported in other studies, and the attitudes toward genetic testing were fairly positive. Genetics educational programs that target youths may improve knowledge of genetics and create a public perception that further supports genetic testing. © 2016 S. Karger AG, Basel.

  9. Genetic testing in the epilepsies—Report of the ILAE Genetics Commission

    Science.gov (United States)

    Ottman, Ruth; Hirose, Shinichi; Jain, Satish; Lerche, Holger; Lopes-Cendes, Iscia; Noebels, Jeffrey L.; Serratosa, José; Zara, Federico; Scheffer, Ingrid E.

    2010-01-01

    SUMMARY In this report, the International League Against Epilepsy (ILAE) Genetics Commission discusses essential issues to be considered with regard to clinical genetic testing in the epilepsies. Genetic research on the epilepsies has led to the identification of more than 20 genes with a major effect on susceptibility to idiopathic epilepsies. The most important potential clinical application of these discoveries is genetic testing: the use of genetic information, either to clarify the diagnosis in people already known or suspected to have epilepsy (diagnostic testing), or to predict onset of epilepsy in people at risk because of a family history (predictive testing). Although genetic testing has many potential benefits, it also has potential harms, and assessment of these potential benefits and harms in particular situations is complex. Moreover, many treating clinicians are unfamiliar with the types of tests available, how to access them, how to decide whether they should be offered, and what measures should be used to maximize benefit and minimize harm to their patients. Because the field is moving rapidly, with new information emerging practically every day, we present a framework for considering the clinical utility of genetic testing that can be applied to many different syndromes and clinical contexts. Given the current state of knowledge, genetic testing has high0020clinical utility in few clinical contexts, but in some of these it carries implications for daily clinical practice. PMID:20100225

  10. Therapeutic Targets of Triglyceride Metabolism as Informed by Human Genetics.

    Science.gov (United States)

    Bauer, Robert C; Khetarpal, Sumeet A; Hand, Nicholas J; Rader, Daniel J

    2016-04-01

    Human genetics has contributed to the development of multiple drugs to treat hyperlipidemia and coronary artery disease (CAD), most recently including antibodies targeting PCSK9 to reduce LDL cholesterol. Despite these successes, a large burden of CAD remains. Genetic and epidemiological studies have suggested that circulating triglyceride (TG)-rich lipoproteins (TRLs) are a causal risk factor for CAD, presenting an opportunity for novel therapeutic strategies. We discuss recent unbiased human genetics testing, including genome-wide association studies (GWAS) and whole-genome or -exome sequencing, that have identified the lipoprotein lipase (LPL) and hepatic lipogenesis pathways as important mechanisms in the regulation of circulating TRLs. Further strengthening the causal relationship between TRLs and CAD, findings such as these may provide novel targets for much-needed potential therapeutic interventions. Copyright © 2016. Published by Elsevier Ltd.

  11. "Genetic exceptionalism" in medicine: clarifying the differences between genetic and nongenetic tests.

    Science.gov (United States)

    Green, Michael J; Botkin, Jeffrey R

    2003-04-01

    Predictive genetic tests are now available for assessing susceptibility to a variety of conditions, including breast and colon cancer, hemochromatosis, and Alzheimer and Huntington disease. Much controversy surrounds the application of these tests, stemming from their similarities to and differences from other tests commonly used in asymptomatic persons. Some have argued that genetic tests are unique and therefore justify special consideration with regard to informed consent and privacy. This paper examines the arguments for such "genetic exceptionalism" and concludes that no clear, significant distinctions between genetic and nongenetic tests justify a different approach to testing by clinicians. Nevertheless, with many genetic tests, the results may cause stigmatization, family discord, and psychological distress. Regardless of whether a test is genetic, when this combination of characteristics is present and when health care providers are not specifically trained to interpret results, testing should be performed with particular caution and the highest standards of informed consent and privacy protection should be applied.

  12. Archives: Egyptian Journal of Medical Human Genetics

    African Journals Online (AJOL)

    Items 1 - 34 of 34 ... Archives: Egyptian Journal of Medical Human Genetics. Journal Home > Archives: Egyptian Journal of Medical Human Genetics. Log in or Register to get access to full text downloads.

  13. An overview of human genetic privacy.

    Science.gov (United States)

    Shi, Xinghua; Wu, Xintao

    2017-01-01

    The study of human genomics is becoming a Big Data science, owing to recent biotechnological advances leading to availability of millions of personal genome sequences, which can be combined with biometric measurements from mobile apps and fitness trackers, and of human behavior data monitored from mobile devices and social media. With increasing research opportunities for integrative genomic studies through data sharing, genetic privacy emerges as a legitimate yet challenging concern that needs to be carefully addressed, not only for individuals but also for their families. In this paper, we present potential genetic privacy risks and relevant ethics and regulations for sharing and protecting human genomics data. We also describe the techniques for protecting human genetic privacy from three broad perspectives: controlled access, differential privacy, and cryptographic solutions. © 2016 New York Academy of Sciences.

  14. An overview of human genetic privacy

    Science.gov (United States)

    Shi, Xinghua; Wu, Xintao

    2016-01-01

    The study of human genomics is becoming a Big Data science, owing to recent biotechnological advances leading to availability of millions of personal genome sequences, which can be combined with biometric measurements from mobile apps and fitness trackers, and of human behavior data monitored from mobile devices and social media. With increasing research opportunities for integrative genomic studies through data sharing, genetic privacy emerges as a legitimate yet challenging concern that needs to be carefully addressed, not only for individuals but also for their families. In this paper, we present potential genetic privacy risks and relevant ethics and regulations for sharing and protecting human genomics data. We also describe the techniques for protecting human genetic privacy from three broad perspectives: controlled access, differential privacy, and cryptographic solutions. PMID:27626905

  15. Against Genetic Tests for Athletic Talent: The Primacy of the Phenotype.

    Science.gov (United States)

    Loland, Sigmund

    2015-09-01

    New insights into the genetics of sport performance lead to new areas of application. One area is the use of genetic tests to identify athletic talent. Athletic performances involve a high number of complex phenotypical traits. Based on the ACCE model (review of Analytic and Clinical validity, Clinical utility, and Ethical, legal and social implications), a critique is offered of the lack of validity and predictive power of genetic tests for talent. Based on the ideal of children's right to an open future, a moral argument is given against such tests on children and young athletes. A possible role of genetic tests in sport is proposed in terms of identifying predisposition for injury. In meeting ACCE requirements, such tests could improve individualised injury prevention and increase athlete health. More generally, limitations of science are discussed in the identification of talent and in the understanding of complex human performance phenotypes. An alternative approach to talent identification is proposed in terms of ethically sensitive, systematic and evidence-based holistic observation over time of relevant phenotypical traits by experienced observers. Talent identification in sport should be based on the primacy of the phenotype.

  16. Attitudes and Practices Among Internists Concerning Genetic Testing

    Science.gov (United States)

    Chung, Wendy; Marder, Karen; Shanmugham, Anita; Chin, Lisa J.; Stark, Meredith; Leu, Cheng-Shiun; Appelbaum, Paul S.

    2012-01-01

    Many questions remain concerning whether, when, and how physicians order genetic tests, and what factors are involved in their decisions. We surveyed 220 internists from two academic medical centers about their utilization of genetic testing. Rates of genetic utilizations varied widely by disease. Respondents were most likely to have ordered tests for Factor V Leiden (16.8%), followed by Breast/Ovarian Cancer (15.0%). In the past 6 months, 65% had counseled patients on genetic issues, 44% had ordered genetic tests, 38.5% had referred patients to a genetic counselor or geneticist, and 27.5% had received ads from commercial labs for genetic testing. Only 4.5% had tried to hide or disguise genetic information, and genetic discrimination. Only 53.4% knew of a geneticist/genetic counselor to whom to refer patients. Most rated their knowledge as very/somewhat poor concerning genetics (73.7%) and guidelines for genetic testing (87.1%). Most felt needs for more training on when to order tests (79%), and how to counsel patients (82%), interpret results (77.3%), and maintain privacy (80.6%). Physicians were more likely to have ordered a genetic test if patients inquired about genetic testing (pgenetic counselor to whom to refer patients (pgenetic counselor in the past 6 months, had more comfort counseling patients about testing (pgenetics, larger practices (pgenetic discrimination (pgenetic test was associated with patients inquiring about testing, having referred patients to a geneticist/genetic counselor and knowing how to order tests., These data suggest that physicians recognize their knowledge deficits, and are interested in training. These findings have important implications for future medical practice, research, and education. PMID:22585186

  17. Genetic testing in the epilepsies—Report of the ILAE Genetics Commission

    OpenAIRE

    Ottman, Ruth; Hirose, Shinichi; Jain, Satish; Lerche, Holger; Lopes-Cendes, Iscia; Noebels, Jeffrey L.; Serratosa, José; Zara, Federico; Scheffer, Ingrid E.

    2010-01-01

    In this report, the International League Against Epilepsy (ILAE) Genetics Commission discusses essential issues to be considered with regard to clinical genetic testing in the epilepsies. Genetic research on the epilepsies has led to the identification of more than 20 genes with a major effect on susceptibility to idiopathic epilepsies. The most important potential clinical application of these discoveries is genetic testing: the use of genetic information, either to clarify the diagnosis in ...

  18. Precision Medicine and Advancing Genetic Technologies—Disability and Human Rights Perspectives

    Directory of Open Access Journals (Sweden)

    Aisling de Paor

    2016-08-01

    Full Text Available Scientific and technological developments are propelling genetics and genetic technologies into the public sphere. Scientific and technological innovation is becoming more refined, resulting in an increase in the availability and use of genetic testing, and other cutting edge genetic technologies, including gene editing. These genetic advances not only signal a growing trend towards precision medicine, but also provoke consideration of the protection of genetic information as an emerging human rights concern. Particular ethical and legal issues arise from a disability perspective, including the potential for discrimination and privacy violations. In consideration of the intersection of genetics and disability, this article highlights the significant concerns raised as genetic science and technology advances, and the consequences for disability rights, particularly the core concepts of non-discrimination, and respect for diversity and difference. On examining international human rights perspectives, it looks particularly at the UN Convention on the Rights of Persons with Disabilities and how it may be used to guide best practice in this area. With an acknowledgement of historical abuses of genetic science, this article highlights the need to maintain caution as to the potential consequences of advancing genetic technologies on persons with disabilities and indeed on society as a whole.

  19. Unleashing the power of human genetic variation knowledge: New Zealand stakeholder perspectives.

    Science.gov (United States)

    Gu, Yulong; Warren, James Roy; Day, Karen Jean

    2011-01-01

    This study aimed to characterize the challenges in using genetic information in health care and to identify opportunities for improvement. Taking a grounded theory approach, semistructured interviews were conducted with 48 participants to collect multiple stakeholder perspectives on genetic services in New Zealand. Three themes emerged from the data: (1) four service delivery models were identified in operation, including both those expected models involving genetic counselors and variations that do not route through the formal genetic service program; (2) multiple barriers to sharing and using genetic information were perceived, including technological, organizational, institutional, legal, ethical, and social issues; and (3) impediments to wider use of genetic testing technology, including variable understanding of genetic test utilities among clinicians and the limited capacity of clinical genetic services. Targeting these problems, information technologies and knowledge management tools have the potential to support key tasks in genetic services delivery, improve knowledge processes, and enhance knowledge networks. Because of the effect of issues in genetic information and knowledge management, the potential of human genetic variation knowledge to enhance health care delivery has been put on a "leash."

  20. Genetic evidence for a Paleolithic human population expansion in Africa

    Science.gov (United States)

    Reich, David E.; Goldstein, David B.

    1998-01-01

    Human populations have undergone dramatic expansions in size, but other than the growth associated with agriculture, the dates and magnitudes of those expansions have never been resolved. Here, we introduce two new statistical tests for population expansion, which use variation at a number of unlinked genetic markers to study the demographic histories of natural populations. By analyzing genetic variation in various aboriginal populations from throughout the world, we show highly significant evidence for a major human population expansion in Africa, but no evidence of expansion outside of Africa. The inferred African expansion is estimated to have occurred between 49,000 and 640,000 years ago, certainly before the Neolithic expansions, and probably before the splitting of African and non-African populations. In showing a significant difference between African and non-African populations, our analysis supports the unique role of Africa in human evolutionary history, as has been suggested by most other genetic work. In addition, the missing signal in non-African populations may be the result of a population bottleneck associated with the emergence of these populations from Africa, as postulated in the “Out of Africa” model of modern human origins. PMID:9653150

  1. The psychological impact of genetic testing on parents.

    Science.gov (United States)

    Dinc, Leyla; Terzioglu, Fusun

    2006-01-01

    The aim of this descriptive study was to explore the psychological impact of genetic testing on parents whose children have been referred for genetic testing. Genetic tests enable individuals to be informed about their health status and to have the opportunity of early diagnosis and treatment of their diseases. However undergoing genetic testing and receiving a positive test result may also cause stress and anxiety. This descriptive study was carried out at the genetic departments of two university hospitals in Ankara. The sample of this study consisted of 128 individuals whose children have been referred for chromosomal analysis. Data were collected through using a semi-structured interview method with a data collection form and the anxiety inventory and analysed using the percentages and independent samples t-test. The majority of our participants experienced distress before genetic testing. Their general trait anxiety score before receiving the test results was 47.38, and following the test results the state anxiety score was 50.65. Having a previous child with an abnormality, a positive test result, and being a mother elevated the anxiety of individuals. This paper supports the findings of previous studies, which indicated that genetic test results might lead to anxiety in individuals and reveals the importance of genetic counselling. As the results of this study indicated, genetic testing causes distress and anxiety in individuals. Nurses can play an important role in minimizing anxiety of parents whose children undergo genetic testing by providing information about genetic testing and by taking part in the counselling process.

  2. Genetic testing for hearing impairment.

    Science.gov (United States)

    Topsakal, V; Van Camp, G; Van de Heyning, P

    2005-01-01

    For some patients, genetic testing can reveal the etiology of their hearing impairment, and can provide evidence for a medical diagnosis. However, a gap between fundamental genetic research on hereditary deafness and clinical otology emerges because of the steadily increasing number of discovered genes for hereditary hearing impairment (HHI) and the comparably low clinical differentiation of the HHIs. In an attempt to keep up with the scientific progress, this article enumerates the indications of genetic testing for HHI from a clinical point of view and describes the most frequently encountered HHIs in Belgium. Domains of recent scientific interest, molecular biological aspects, and some pitfalls with HHIs are highlighted. The overview comprises bilateral congenital hearing loss, late-onset progressive high frequency hearing loss, progressive bilateral cochleo-vestibular deficit, and progressive low frequency hearing loss. Also, several syndromal forms of HHI are summarized, and the availability of genetic tests mentioned. Finally, the requirements for successful linkage analysis, an important genetic research tool for localizing the potential genes of a trait on a chromosome, are briefly described.

  3. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.

    Science.gov (United States)

    Hamosh, Ada; Scott, Alan F; Amberger, Joanna S; Bocchini, Carol A; McKusick, Victor A

    2005-01-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.

  4. Novel technologies emerging for preimplantation genetic diagnosis and preimplantation genetic testing for aneuploidy.

    Science.gov (United States)

    Sermon, Karen

    2017-01-01

    Preimplantation genetic diagnosis (PGD) was introduced as an alternative to prenatal diagnosis: embryos cultured in vitro were analysed for a monogenic disease and only disease-free embryos were transferred to the mother, to avoid the termination of pregnancy with an affected foetus. It soon transpired that human embryos show a great deal of acquired chromosomal abnormalities, thought to explain the low success rate of IVF - hence preimplantation genetic testing for aneuploidy (PGT-A) was developed to select euploid embryos for transfer. Areas covered: PGD has followed the tremendous evolution in genetic analysis, with only a slight delay due to adaptations for diagnosis on small samples. Currently, next generation sequencing combining chromosome with single-base pair analysis is on the verge of becoming the golden standard in PGD and PGT-A. Papers highlighting the different steps in the evolution of PGD/PGT-A were selected. Expert commentary: Different methodologies used in PGD/PGT-A with their pros and cons are discussed.

  5. Genetics of Human and Canine Dilated Cardiomyopathy

    OpenAIRE

    Siobhan Simpson; Jennifer Edwards; Thomas F. N. Ferguson-Mignan; Malcolm Cobb; Nigel P. Mongan; Catrin S. Rutland

    2015-01-01

    Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM) accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In th...

  6. Ancestry Testing and the Practice of Genetic Counseling.

    Science.gov (United States)

    Kirkpatrick, Brianne E; Rashkin, Misha D

    2017-02-01

    Ancestry testing is a home DNA test with many dimensions; in some cases, the implications and outcomes of testing cross over into the health sphere. Common reasons for seeking ancestry testing include determining an estimate of customer's ethnic background, identifying genetic relatives, and securing a raw DNA data file that can be used for other purposes. As the ancestry test marketplace continues to grow, and third-party vendors empower the general public to analyze their own genetic material, the role of the genetic counselor is likely to evolve dramatically. Roles of the genetic counselor may include assisting clients with the interpretation of and adaptation to these results, as well as advising the companies involved in this sector on the ethical, legal, and social issues associated with testing. This paper reviews the history, fundamentals, intended uses, and unintended consequences of ancestry genetic testing. It also discusses the types of information in an ancestry testing result, situations that might involve a clinical genetic counselor, and the benefits, limitations, and functions that ancestry genetic testing can play in a clinical genetics setting.

  7. Human Genome Epidemiology : A scientific foundation for using genetic information to improve health and prevent disease

    Directory of Open Access Journals (Sweden)

    Stefania Boccia

    2005-03-01

    Full Text Available

    Human health is determined by the interplay of genetic factors and the environment. In this context the recent advances in human genomics are expected to play a central role in medicine and public health by providing genetic information for disease prediction and prevention.

    After the completion of the human genome sequencing, a fundamental step will be represented by the translation of these discoveries into meaningful actions to improve health and prevent diseases, and the field of epidemiology plays a central role in this effort. These are some of the issues addressed by Human Genome Epidemiology –A scientific foundation for using genetic information to improve health and prevent disease, a volume edited by Prof. M. Khoury, Prof. J. Little, Prof.W. Burke and published by Oxford university Press 2004.

    This book describes the important role that epidemiological methods play in the continuum from gene discovery to the development and application of genetic tests. The Authors calls this continuum human genome epidemiology (HuGE to denote an evolving field of inquiry that uses systematic applications of epidemiological methods to assess the impact of human genetic variation on health and disease.

    The book is divided into four sections and it is structured to allow readers to proceed systematically from the fundamentals of genome technology and discovery, to the epidemiological approaches, to gene characterisation, to the evaluation of genetic tests and their use in health services and public health.

  8. Preimplantation Genetic Testing in the 21st Century: Uncharted Territory

    Directory of Open Access Journals (Sweden)

    Paul R. Brezina MD, MBA

    2013-01-01

    Full Text Available The past hundred years have given birth to arguably the most profound changes in society, medicine, and technology the world has ever witnessed. Genetics is one such field that has enjoyed a meteoric rise during this time. Progressing from Mendelian genetics to the discovery of DNA to the ability to sequence the human genome, perhaps no other discipline holds more promise to affect future change than genetics. Technology currently exists to evaluate some of the genetic information held by developing embryos in the context of an in vitro fertilization (IVF cycle. This information is then used to determine which embryos are selected for uterine transfer. Many societies have enacted legislation to protect against possible abuses utilizing this technology. However, it is incumbent upon society to continue ensuring that preimplantation genetic diagnosis (PGD–-and genetic testing in general–-is applied in a way that utilizes its potential in a responsible manner to improve health care.

  9. Evaluating human genetic diversity

    National Research Council Canada - National Science Library

    ... into human evolution and origins and serving as a springboard for important medical research. It also addresses issues of confidentiality and individual privacy for participants in genetic diversity research studies.

  10. Marketing genetic tests: empowerment or snake oil?

    Science.gov (United States)

    Bowen, Deborah J; Battuello, Kathryn M; Raats, Monique

    2005-10-01

    Genetic tests are currently being offered to the general public with little oversight and regulation as to which tests are allowed to be sold clinically and little control over the marketing and promotion of sales and use. This article provides discussion and data to indicate that the general public holds high opinions of genetic testing and that current media outlets for public education on genetic testing are not adequate to increase accurate knowledge of genetics. The authors argue that more regulation is needed to control and correct this problem in the United States.

  11. Genetic testing for retinal dystrophies and dysfunctions: benefits, dilemmas and solutions.

    Science.gov (United States)

    Koenekoop, Robert K; Lopez, Irma; den Hollander, Anneke I; Allikmets, Rando; Cremers, Frans P M

    2007-07-01

    Human retinal dystrophies have unparalleled genetic and clinical diversity and are currently linked to more than 185 genetic loci. Genotyping is a crucial exercise, as human gene-specific clinical trials to study photoreceptor rescue are on their way. Testing confirms the diagnosis at the molecular level and allows for a more precise prognosis of the possible future clinical evolution. As treatments are gene-specific and the 'window of opportunity' is time-sensitive; accurate, rapid and cost-effective genetic testing will play an ever-increasing crucial role. The gold standard is sequencing but is fraught with excessive costs, time, manpower issues and finding non-pathogenic variants. Therefore, no centre offers testing of all currently 132 known genes. Several new micro-array technologies have emerged recently, that offer rapid, cost-effective and accurate genotyping. The new disease chips from Asper Ophthalmics (for Stargardt dystrophy, Leber congenital amaurosis [LCA], Usher syndromes and retinitis pigmentosa) offer an excellent first pass opportunity. All known mutations are placed on the chip and in 4 h a patient's DNA is screened. Identification rates (identifying at least one disease-associated mutation) are currently approximately 70% (Stargardt), approximately 60-70% (LCA) and approximately 45% (Usher syndrome subtype 1). This may be combined with genotype-phenotype correlations that suggest the causal gene from the clinical appearance (e.g. preserved para-arteriolar retinal pigment epithelium suggests the involvement of the CRB1 gene in LCA). As approximately 50% of the retinal dystrophy genes still await discovery, these technologies will improve dramatically as additional novel mutations are added. Genetic testing will then become standard practice to complement the ophthalmic evaluation.

  12. Basic Genetics: A Human Approach.

    Science.gov (United States)

    Biological Sciences Curriculum Study, Colorado Springs, CO. Center for Education in Human and Medical Genetics.

    This document (which has the form of a magazine) provides a variety of articles, stories, editorials, letters, interviews, and other types of magazine features (such as book reviews) which focus on human genetics. In addition to providing information about the principles of genetics, nearly all of the sections in the "magazine" address moral,…

  13. Ethics or Morals: Understanding Students' Values Related to Genetic Tests on Humans

    Science.gov (United States)

    Lindahl, Mats Gunnar

    2009-01-01

    To make meaning of scientific knowledge in such a way that concepts and values of the life-world are not threatened is difficult for students and laymen. Ethics and morals pertaining to the use of genetic tests for hereditary diseases have been investigated and discussed by educators, anthropologists, medical doctors and philosophers giving, at…

  14. Genetic counseling and testing for gynecological cancers ...

    African Journals Online (AJOL)

    undergraduates of universities in Ibadan to genetic counseling and testing (GCT) for ... questionnaire, information on their understanding of GCT, perception of implications, and ... by genetic counseling from suitably trained health-care providers and genetic testing of selected high-risk individuals ..... Multiple sexual partners.

  15. Approaches to quality management and accreditation in a genetic testing laboratory

    Science.gov (United States)

    Berwouts, Sarah; Morris, Michael A; Dequeker, Elisabeth

    2010-01-01

    Medical laboratories, and specifically genetic testing laboratories, provide vital medical services to different clients: clinicians requesting a test, patients from whom the sample was collected, public health and medical-legal instances, referral laboratories and authoritative bodies. All expect results that are accurate and obtained in an efficient and effective manner, within a suitable time frame and at acceptable cost. There are different ways of achieving the end results, but compliance with International Organization for Standardization (ISO) 15189, the international standard for the accreditation of medical laboratories, is becoming progressively accepted as the optimal approach to assuring quality in medical testing. We present recommendations and strategies designed to aid genetic testing laboratories with the implementation of a quality management system, including key aspects such as document control, external quality assessment, internal quality control, internal audit, management review, validation, as well as managing the human side of change. The focus is on pragmatic approaches to attain the levels of quality management and quality assurance required for accreditation according to ISO 15189, within the context of genetic testing. Attention is also given to implementing efficient and effective quality improvement. PMID:20720559

  16. A genetic atlas of human admixture history.

    Science.gov (United States)

    Hellenthal, Garrett; Busby, George B J; Band, Gavin; Wilson, James F; Capelli, Cristian; Falush, Daniel; Myers, Simon

    2014-02-14

    Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed by using genetic data alone and encompassing over 100 events occurring over the past 4000 years. We identified events whose dates and participants suggest they describe genetic impacts of the Mongol empire, Arab slave trade, Bantu expansion, first millennium CE migrations in Eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations.

  17. Personalized Genetic Testing and Norovirus Susceptibility

    Directory of Open Access Journals (Sweden)

    Natalie Prystajecky

    2014-01-01

    Full Text Available BACKGROUND: The availability of direct-to-consumer personalized genetic testing has enabled the public to access and interpret their own genetic information. Various genetic traits can be determined including resistance to norovirus through a nonsense mutation (G428A in the FUT2 gene. Although this trait is believed to confer resistance to the most dominant norovirus genotype (GII.4, the spectrum of resistance to other norovirus strains is unknown. The present report describes a cluster of symptomatic norovirus GI.6 infection in a family identified to have norovirus resistance through personalized genetic testing.

  18. Quality assurance practices in Europe: a survey of molecular genetic testing laboratories

    Science.gov (United States)

    Berwouts, Sarah; Fanning, Katrina; Morris, Michael A; Barton, David E; Dequeker, Elisabeth

    2012-01-01

    In the 2000s, a number of initiatives were taken internationally to improve quality in genetic testing services. To contribute to and update the limited literature available related to this topic, we surveyed 910 human molecular genetic testing laboratories, of which 291 (32%) from 29 European countries responded. The majority of laboratories were in the public sector (81%), affiliated with a university hospital (60%). Only a minority of laboratories was accredited (23%), and 26% was certified. A total of 22% of laboratories did not participate in external quality assessment (EQA) and 28% did not use reference materials (RMs). The main motivations given for accreditation were to improve laboratory profile (85%) and national recognition (84%). Nearly all respondents (95%) would prefer working in an accredited laboratory. In accredited laboratories, participation in EQA (Pquality assurance (Pquality implementation score (QIS), we showed that accredited laboratories (average score 92) comply better than certified laboratories (average score 69, Pquality indicators. We conclude that quality practices vary widely in European genetic testing laboratories. This leads to a potentially dangerous situation in which the quality of genetic testing is not consistently assured. PMID:22739339

  19. Confronting Science: The Dilemma of Genetic Testing.

    Science.gov (United States)

    Zallen, Doris T.

    1997-01-01

    Considers the opportunities and ethical issues involved in genetic testing. Reviews the history of genetics from the first discoveries of Gregor Mendel, through the spurious pseudo-science of eugenics, and up to the discovery of DNA by James Watson and Francis Crick. Explains how genetic tests are done. (MJP)

  20. Human genetic issues from scientific and Islamic perspectives | Alwi ...

    African Journals Online (AJOL)

    This paper aims at revealing the Human Genome Project (HGP) and human genetic issues arising from science and Islamic perspectives such as Darwin's evolutionary theory, human cloning and eugenics. Finally, issues arising from the applications of human genetic technology need to be addressed to the best possible ...

  1. Study of human genetic diversity : inferences on population origin and history

    OpenAIRE

    Haber, Marc, 1980-

    2013-01-01

    Patterns of human genetic diversity suggest that all modern humans originated from a small population in Africa that expanded rapidly 50,000 years ago to occupy the whole world. While moving into new environments, genetic drift and natural selection affected populations differently, creating genetic structure. By understanding the genetic structure of human populations, we can reconstruct human history and understand the genetic basis of diseases. The work presented here contributes to the on...

  2. A genetic atlas of human admixture history

    Science.gov (United States)

    Hellenthal, Garrett; Busby, George B.J.; Band, Gavin; Wilson, James F.; Capelli, Cristian

    2014-01-01

    Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed using genetic data alone and encompassing over 100 events occurring over the past 4,000 years. We identify events whose dates and participants suggest they describe genetic impacts of the Mongol Empire, Arab slave trade, Bantu expansion, first millennium CE migrations in eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations. PMID:24531965

  3. Human genetics of diabetic vascular complications

    Indian Academy of Sciences (India)

    Diabetic vascular complications (DVC) affecting several important organ systems of human body such as the cardiovascular system constitute a major public health problem. There is evidence demonstrating that genetic factors contribute to the risk of DVC genetic variants, structural variants, and epigenetic changes play ...

  4. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. European Society of Human Genetics and European Society of Human Reproduction and Embryology.

    Science.gov (United States)

    Harper, Joyce C; Geraedts, Joep; Borry, Pascal; Cornel, Martina C; Dondorp, Wybo; Gianaroli, Luca; Harton, Gary; Milachich, Tanya; Kääriäinen, Helena; Liebaers, Inge; Morris, Michael; Sequeiros, Jorge; Sermon, Karen; Shenfield, Françoise; Skirton, Heather; Soini, Sirpa; Spits, Claudia; Veiga, Anna; Vermeesch, Joris Robert; Viville, Stéphane; de Wert, Guido; Macek, Milan

    2013-11-01

    In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation - ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and provide

  5. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Science.gov (United States)

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  6. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Directory of Open Access Journals (Sweden)

    Wendy Gibson

    2015-03-01

    Full Text Available Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr responsible for sleeping sickness (Human African Trypanosomiasis, HAT in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  7. The Current Landscape of Genetic Testing in Cardiovascular Malformations: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Benjamin John Landis

    2016-07-01

    Full Text Available Human cardiovascular malformations (CVMs frequently have a genetic contribution. Through the application of novel technologies such as next generation sequencing, DNA sequence variants associated with CVMs are being identified at a rapid pace. While clinicians are now able to offer testing with next generation sequencing gene panels or whole exome sequencing to any patient with a CVM, the interpretation of genetic variation remains problematic. Variable phenotypic expression, reduced penetrance, inconsistent phenotyping methods, and the lack of high throughput functional testing of variants, contribute to these challenges. This article elaborates critical issues that impact the decision to broadly implement clinical molecular genetic testing in CVMs. Major benefits of testing include establishing a genetic diagnosis, facilitating cost-effective screening of family members who may have subclinical disease, predicting recurrence risk in offspring, enabling early diagnosis and anticipatory management of CV and non-CV disease phenotypes, predicting long term outcomes, and facilitating the development of novel therapies aimed at disease improvement or prevention. Limitations include financial cost, psychosocial cost, and ambiguity of interpretation of results. Multiplex families and patients with syndromic features are two groups where disease causation could potentially be firmly established. However, these account for the minority of the overall CVM population, and there is increasing recognition that genotypes previously associated with syndromes also exist in patients who lack non-CV findings. In all circumstances, ongoing dialogue between cardiologists and clinical geneticists will be needed to accurately interpret genetic testing and improve these patients’ health. This may be most effectively implemented by the creation and support of CV genetics services at centers committed to pursuing testing for patients.

  8. Behavior genetic modeling of human fertility

    DEFF Research Database (Denmark)

    Rodgers, J L; Kohler, H P; Kyvik, K O

    2001-01-01

    Behavior genetic designs and analysis can be used to address issues of central importance to demography. We use this methodology to document genetic influence on human fertility. Our data come from Danish twin pairs born from 1953 to 1959, measured on age at first attempt to get pregnant (First......Try) and number of children (NumCh). Behavior genetic models were fitted using structural equation modeling and DF analysis. A consistent medium-level additive genetic influence was found for NumCh, equal across genders; a stronger genetic influence was identified for FirstTry, greater for females than for males....... A bivariate analysis indicated significant shared genetic variance between NumCh and FirstTry....

  9. Insights into the genetic foundations of human communication.

    Science.gov (United States)

    Graham, Sarah A; Deriziotis, Pelagia; Fisher, Simon E

    2015-03-01

    The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior.

  10. Human Genetic Engineering: A Survey of Student Value Stances

    Science.gov (United States)

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  11. Current problems regarding abortion, prenatal genetic testing and managing pregnancy

    Directory of Open Access Journals (Sweden)

    Klajn-Tatić Vesna

    2011-01-01

    Full Text Available Current ethical and legal issues with regard to abortion, prenatal genetic testing and managing pregnancy are discussed in this paper. These problems are considered from the legal theory point of view as well as from the standpoint of the Serbian Law, the European Convention for the Protection of Human Rights and Fundamental Freedoms, European Court of Human Rights, legal regulations of several EU countries, the USA, Japan, and their judicial practice. First, the pregnancy termination standards that exist in Serbia are introduced. Then the following issues are explained separately: the pro life and pro choice approaches to abortion; abortion according to the legal approach as a way of survival; the moral and legal status of the fetus; prenatal genetic testing, and finally matters regarding managing pregnancy today. Moral and legal principals of autonomy, namely freedom of choice of the individual, privacy and self-determination give women the right to terminate unwanted pregnancies. In addition, the basic question is whether the right of the woman to abortion clashes with the rights of others. Firstly, with the right of the "fetus to life". Secondly, with the right of the state to intervene in the interest of protecting "the life of the fetus". Third, with the rights of the woman’s partner. The fetus has the moral right to life, but less in relation to the same right of the woman as well as in relation to her right to control her life and her physical and moral integrity. On the other hand, the value of the life of the fetus increases morally and legally with the maturity of gestation; from the third trimester, the interest of the state prevails in the protection of the "life of the fetus" except when the life or health of the pregnant woman are at risk. As regards the rights of the woman’s partner, namely the husband’s opinion, there is no legal significance. The law does not request his participation in the decision on abortion because

  12. Hereditary arrhythmias and cardiomyopathies: decision-making about genetic testing.

    Science.gov (United States)

    Louis, Clauden; Calamaro, Emily; Vinocur, Jeffrey M

    2018-01-01

    The modern field of clinical genetics has advanced beyond the traditional teachings familiar to most practicing cardiologists. Increased understanding of the roles of genetic testing may improve uptake and appropriateness of use. Clinical genetics has become integral to the management of patients with hereditary arrhythmia and cardiomyopathy diagnoses. Depending on the condition, genetic testing may be useful for diagnosis, prognosis, treatment, family screening, and reproductive planning. However, genetic testing is a powerful tool with potential for underuse, overuse, and misuse. In the absence of a substantial body of literature on how these guidelines are applied in clinical practice, we use a case-based approach to highlight key lessons and pitfalls. Importantly, in many scenarios genetic testing has become the standard of care supported by numerous class I recommendations; genetic counselors can improve accessibility to and appropriate use and application of testing. Optimal management of hereditary arrhythmias and cardiomyopathies incorporates genetic testing, applied as per consensus guidelines, with involvement of a multidisciplinary team.

  13. What Is Direct-to-Consumer Genetic Testing?

    Science.gov (United States)

    ... consumer genetic testing. Additional information about direct-to-consumer marketing of genetic tests and related research questions are ... for Links Data Files & API Site Map Subscribe Customer Support USA.gov Copyright Privacy Accessibility FOIA Viewers & ...

  14. What Are the Types of Genetic Tests?

    Science.gov (United States)

    ... or catastrophe victims, rule out or implicate a crime suspect, or establish biological relationships between people (for example, paternity). For more information about the uses of genetic testing: A Brief Primer on Genetic Testing , which ...

  15. What factors impact upon a woman’s decision to undertake genetic cancer testing?

    Directory of Open Access Journals (Sweden)

    Julie Anne Quinlivan

    2014-01-01

    Full Text Available Introduction: The advent of human genome project has lead to genetic tests that identify high-risk states for certain cancers. Many are privately marketed on the Internet. Despite the availability of tests, limited data has evaluated factors that lead to test uptake. The aim of the present study was to explore the attitudes of a cohort of new mothers towards uptake of a genetic cancer test with a 50% predictive value of cancer.Methods: A cross-sectional survey was undertaken. The project targeted women who had recently given birth at an Australian tertiary referral hospital. Women were asked about a theoretical blood test that detected an increased risk for the development of cancer. Attitudes and knowledge questionnaires were completed. Results: Of 232 consecutive women approached, 32 declined, giving a response rate of 86.2%. Only 63 (31.5% women stated they would have the test. Absence of religious belief, higher level of education, better knowledge of terms used in genetics, an absence of concern over emotional, employment and insurance discrimination and previous acceptance of Down syndrome screening in pregnancy were each associated with significantly higher rate of test uptake in univariate analysis (all pConclusion: Concern over discrimination and having made a prior decision to have genetic testing were the principal factors associated with decision-making.

  16. Genetics and human rights. Two histories: Restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil

    Science.gov (United States)

    Penchaszadeh, Victor B.; Schuler-Faccini, Lavinia

    2014-01-01

    Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to identity. In this article, we report the use of genetics to support the right to identity in two historical circumstances. First, we report the search, localization, DNA testing and genetic identification of 110 individuals who were appropriated as babies by the Argentine military dictatorship of 1976–1983 in the context of savage repression and egregious violations of human rights, including forced disappearance and suppression of identity. Second, we report on the repair of right-to-identity violations of hundreds of individuals that occurred during the process of compulsory isolation of patients with leprosy in Brazil through the Program “Reencontro”, which has led to the genetic identification of 158 pairs of individuals who previously did not have proof that they were siblings. The high value placed on genetic identification by victims of identity suppression did not counter the prevailing view that genetic factors were not more important than other factors (social, emotional, educational, cultural, spiritual) in determining the complex phenomenon of personal identity. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics for the benefit of mankind. PMID:24764764

  17. Genetics and human rights. Two histories: Restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil.

    Science.gov (United States)

    Penchaszadeh, Victor B; Schuler-Faccini, Lavinia

    2014-03-01

    Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to identity. In this article, we report the use of genetics to support the right to identity in two historical circumstances. First, we report the search, localization, DNA testing and genetic identification of 110 individuals who were appropriated as babies by the Argentine military dictatorship of 1976-1983 in the context of savage repression and egregious violations of human rights, including forced disappearance and suppression of identity. Second, we report on the repair of right-to-identity violations of hundreds of individuals that occurred during the process of compulsory isolation of patients with leprosy in Brazil through the Program "Reencontro", which has led to the genetic identification of 158 pairs of individuals who previously did not have proof that they were siblings. The high value placed on genetic identification by victims of identity suppression did not counter the prevailing view that genetic factors were not more important than other factors (social, emotional, educational, cultural, spiritual) in determining the complex phenomenon of personal identity. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics for the benefit of mankind.

  18. Genetics and human rights: Two histories: restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil

    Directory of Open Access Journals (Sweden)

    Victor B. Penchaszadeh

    2014-01-01

    Full Text Available Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to identity. In this article, we report the use of genetics to support the right to identity in two historical circumstances. First, we report the search, localization, DNA testing and genetic identification of 110 individuals who were appropriated as babies by the Argentine military dictatorship of 1976-1983 in the context of savage repression and egregious violations of human rights, including forced disappearance and suppression of identity. Second, we report on the repair of right-to-identity violations of hundreds of individuals that occurred during the process of compulsory isolation of patients with leprosy in Brazil through the Program "Reencontro", which has led to the genetic identification of 158 pairs of individuals who previously did not have proof that they were siblings. The high value placed on genetic identification by victims of identity suppression did not counter the prevailing view that genetic factors were not more important than other factors (social, emotional, educational, cultural, spiritual in determining the complex phenomenon of personal identity. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics for the benefit of mankind.

  19. Direct to consumer genetic testing and the libertarian right to test.

    Science.gov (United States)

    Loi, Michele

    2016-09-01

    I sketch a libertarian argument for the right to test in the context of 'direct to consumer' (DTC) genetic testing. A libertarian right to genetic tests, as defined here, relies on the idea of a moral right to self-ownership. I show how a libertarian right to test can be inferred from this general libertarian premise, at least as a prima facie right, shifting the burden of justification on regulators. I distinguish this distinctively libertarian position from some arguments based on considerations of utility or autonomy, which are sometimes labelled 'libertarian' because they oppose a tight regulation of the direct to consumer genetic testing sector. If one takes the libertarian right to test as a starting point, the whole discussion concerning autonomy and personal utility may be sidestepped. Finally, I briefly consider some considerations that justify the regulation of the DTC genetic testing market, compatible with the recognition of a prima facie right to test. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits.

    Directory of Open Access Journals (Sweden)

    Iksoo Huh

    Full Text Available Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively.

  1. The concept of human dignity in the ethics of genetic research.

    Science.gov (United States)

    Chan, David K

    2015-05-01

    Despite criticism that dignity is a vague and slippery concept, a number of international guidelines on bioethics have cautioned against research that is contrary to human dignity, with reference specifically to genetic technology. What is the connection between genetic research and human dignity? In this article, I investigate the concept of human dignity in its various historical forms, and examine its status as a moral concept. Unlike Kant's ideal concept of human dignity, the empirical or relational concept takes human dignity as something that is affected by one's circumstances and what others do. I argue that the dignity objection to some forms of genetic research rests on a view of human nature that gives humans a special status in nature - one that is threatened by the potential of genetic research to reduce individuals to their genetic endowment. I distinguish two main philosophical accounts of human nature. One of these, the Aristotelian view, is compatible with the use of genetic technology to help humans realize their inherent potential to a fuller extent. © 2014 John Wiley & Sons Ltd.

  2. Inauguration of the cameroonian society of human genetics.

    Science.gov (United States)

    Wonkam, Ambroise; Kenfack, Marcel Azabji; Bigoga, Jude; Nkegoum, Blaise; Muna, Wali

    2009-10-20

    The conjunction of "hard genetics" research centers, with well established biomedical and bioethics research groups, and the exceptional possibility to hold the 6th annual meeting of the African Society of Human Genetics (AfSHG, 13th-15th March 2009) was an excellent opportunity to get together in synergy the entire Cameroonian "DNA/RNA scientists" . This laid to the foundation of the Cameroonian Society of Human Genetics (CSHG) that was privilege to hold its inaugural meeting in conjunction to the 6th annual meeting of the AfSHG. The theme was "Human Origin, Genetic Diversity and Health". The AfSHG and CSHG invited leading African and international scientists in genomics and population genetics to review recent data and provide an understanding of the state-of-knowledge of Human Origin and Genetic Diversity. Overall one opening ceremony eight session, five keynote and guest speakers, 18 invited oral communications, 13 free oral communications, 43 posters and two social events could summarize the meeting. This year's conference was graced by the presence of one Nobel Prize winner Dr Richard Roberts (Physiology and Medicine 1993). The meeting registered up to ten contributions of Cameroonian scientists from the Diaspora (currently in USA, Belgium, Gambia, Sudan and Zimbabwe). Such Diaspora participation is an opportunity to generate collaborations with home country scientists and ultimately turn the "brain drain" to "brain circulation" that could reduce the impact of the migration of health professional from Africa. Interestingly, the personal implication of the Cameroonian Ministry of Public Heath who opened the meeting in the presence of the Secretary General of the Ministry of Higher Education and a representative of the Ministry of Scientific Research and Innovation was a wonderful opportunity for advocacy of genetic issues at the decision-makers level. Beyond our expectation, a major promise of the Cameroonian government was the creation of the National Human

  3. [Issues on business of genetic testing in near future].

    Science.gov (United States)

    Takada, Fumio

    2009-06-01

    Since 1990's, a business condition that company sells genetic testing services directly to consumers without through medical facility, so called "direct-to-consumers (DTC) genetic testing", has risen. They provide genetic testing for obesity, disease susceptibility or paternity, etc. There are serious problems in this kind of business. Most of the providers do not make sales with face-to-face selling, and do through internet instead. They do not provide genetic counseling by certified genetic counselor or clinical geneticist. Most DTC genetic testing services for disease susceptibility or predispositions including obesity, lack scientific validity, clinical validity and clinical utility. And also including paternity genetic testing, they all have risks of ethical legal and social issues (ELSI) in genetic discrimination and/or eugenics. The specific problem in Japan is that the healthcare section of the government still has not paid attention and not taken seriously the requirement to deploy safety net.

  4. Ethical principles and pitfalls of genetic testing for dementia.

    Science.gov (United States)

    Hedera, P

    2001-01-01

    Progress in the genetics of dementing disorders and the availability of clinical tests for practicing physicians increase the need for a better understanding of multifaceted issues associated with genetic testing. The genetics of dementia is complex, and genetic testing is fraught with many ethical concerns. Genetic testing can be considered for patients with a family history suggestive of a single gene disorder as a cause of dementia. Testing of affected patients should be accompanied by competent genetic counseling that focuses on probabilistic implications for at-risk first-degree relatives. Predictive testing of at-risk asymptomatic patients should be modeled after presymptomatic testing for Huntington's disease. Testing using susceptibility genes has only a limited diagnostic value at present because potential improvement in diagnostic accuracy does not justify potentially negative consequences for first-degree relatives. Predictive testing of unaffected subjects using susceptibility genes is currently not recommended because individual risk cannot be quantified and there are no therapeutic interventions for dementia in presymptomatic patients.

  5. The genetics of muscle atrophy and growth: the impact and implications of polymorphisms in animals and humans.

    Science.gov (United States)

    Gordon, Erynn S; Gordish Dressman, Heather A; Hoffman, Eric P

    2005-10-01

    Much of the vast diversity we see in animals and people is governed by genetic loci that have quantitative effects of phenotype (quantitative trait loci; QTLs). Here we review the current knowledge of the genetics of atrophy and hypertrophy in both animal husbandry (meat quantity and quality), and humans (muscle size and performance). The selective breeding of animals for meat has apparently led to a few genetic loci with strong effects, with different loci in different animals. In humans, muscle quantitative trait loci (QTLs) appear to be more complex, with few "major" loci identified to date, although this is likely to change in the near future. We describe how the same phenotypic traits we see as positive, greater lean muscle mass in cattle or a better exercise results in humans, can also have negative "side effects" given specific environmental challenges. We also discuss the strength and limitations of single nucleotide polymorphisms (SNP) association studies; what the reader should look for and expect in a published study. Lastly we discuss the ethical and societal implications of this genetic information. As more and more research into the genetic loci that dictate phenotypic traits become available, the ethical implications of testing for these loci become increasingly important. As a society, most accept testing for genetic diseases or susceptibility, but do we as easily accept testing to determine one's athletic potential to be an Olympic endurance runner, or quarterback on the high school football team.

  6. Implementation and utilization of genetic testing in personalized medicine

    Directory of Open Access Journals (Sweden)

    Abul-Husn NS

    2014-08-01

    Full Text Available Noura S Abul-Husn,1,* Aniwaa Owusu Obeng,2,3,* Saskia C Sanderson,1 Omri Gottesman,2 Stuart A Scott11Department of Genetics and Genomic Sciences, 2The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 3Department of Pharmacy, Mount Sinai Hospital, New York, NY, USA*These authors contributed equally to this manuscriptAbstract: Clinical genetic testing began over 30 years ago with the availability of mutation detection for sickle cell disease diagnosis. Since then, the field has dramatically transformed to include gene sequencing, high-throughput targeted genotyping, prenatal mutation detection, preimplantation genetic diagnosis, population-based carrier screening, and now genome-wide analyses using microarrays and next-generation sequencing. Despite these significant advances in molecular technologies and testing capabilities, clinical genetics laboratories historically have been centered on mutation detection for Mendelian disorders. However, the ongoing identification of deoxyribonucleic acid (DNA sequence variants associated with common diseases prompted the availability of testing for personal disease risk estimation, and created commercial opportunities for direct-to-consumer genetic testing companies that assay these variants. This germline genetic risk, in conjunction with other clinical, family, and demographic variables, are the key components of the personalized medicine paradigm, which aims to apply personal genomic and other relevant data into a patient's clinical assessment to more precisely guide medical management. However, genetic testing for disease risk estimation is an ongoing topic of debate, largely due to inconsistencies in the results, concerns over clinical validity and utility, and the variable mode of delivery when returning genetic results to patients in the absence of traditional counseling. A related class of genetic testing with analogous issues of clinical utility and

  7. Genetic testing in inherited polyposis syndromes - how and why?

    Science.gov (United States)

    Lee, G H; Payne, S J; Melville, A; Clark, S K

    2014-08-01

    There have been recent advances in genetic testing enabling accurate diagnosis of polyposis syndromes by identifying causative gene mutations, which is essential in the management of individuals with polyposis syndrome and predictive genetic testing of their extended families. There are some similarities in clinical presentation of various polyposis syndromes, which may pose a challenge to diagnosis. In this review, we discuss the clinical presentation of the main polyposis syndromes and the process of genetic testing, including the latest advancement and future of genetic testing. We aim to reiterate the importance of genetic testing in the management of polyposis syndromes, potential pitfalls associated with genetic testing and recommendations for healthcare professionals involved with the care of polyposis patients. Colorectal Disease © 2014 The Association of Coloproctology of Great Britain and Ireland.

  8. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.

    Science.gov (United States)

    Macdonald, Lynn E; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T; Yasenchak, Jason; Frendewey, David; Valenzuela, David M; Giallourakis, Cosmas C; Alt, Frederick W; Yancopoulos, George D; Murphy, Andrew J

    2014-04-08

    Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.

  9. Human population genetics and “ancestrality” business

    OpenAIRE

    André Langaney

    2009-01-01

    Following the foundation of theoretical population genetics by Wright, Fischer, Haldane and Malécot, in the first half of the 20th century, applied human population genetics developed with great success with the improvement and accumulation of new technologies to measure genetic polymorphism, first through protein polymorphisms since the 1960’s, then through DNA typing and sequencing since the 1980’s. The field of population genetics and biological anthropology was developed by a handful of d...

  10. Inauguration of the Cameroonian Society of Human Genetics

    Directory of Open Access Journals (Sweden)

    Jude Bigoga

    2009-10-01

    Full Text Available The conjunction of “hard genetics” research centers, with well established biomedical and bioethics research groups, and the exceptional possibility to hold the 6th annual meeting of the African Society of Human Genetics (AfSHG, 13th-15th March 2009 was an excellent opportunity to get together in synergy the entire Cameroonian “DNA/RNA scientists” . This laid to the foundation of the Cameroonian Society of Human Genetics (CSHG that was privilege to hold its inaugural meeting in conjunction to the 6th annual meeting of the AfSHG. The theme was "Human Origin, Genetic Diversity and Health”. The AfSHG and CSHG invited leading African and international scientists in genomics and population genetics to review recent data and provide an understanding of the state-of-knowledge of Human Origin and Genetic Diversity. Overall one opening ceremony eight session, five keynote and guest speakers, 18 invited oral communications, 13 free oral communications, 43 posters and two social events could summarize the meeting. This year’s conference was graced by the presence of one Nobel Prize winner Dr Richard Roberts (Physiology and Medicine 1993. The meeting registered up to ten contributions of Cameroonian scientists from the Diaspora (currently in USA, Belgium, Gambia, Sudan and Zimbabwe. Such Diaspora participation is an opportunity to generate collaborations with home country scientists and ultimately turn the “brain drain” to “brain circulation” that could reduce the impact of the migration of health professional from Africa. Interestingly, the personal implication of the Cameroonian Ministry of Public Heath who opened the meeting in the presence of the Secretary General of the Ministry of Higher Education and a representative of the Ministry of Scientific Research and Innovation was a wonderful opportunity for advocacy of genetic issues at the decision-makers level. Beyond our expectation, a major promise of the Cameroonian government was

  11. [Prenatal genetic counseling and instruction for deaf families by genetic test].

    Science.gov (United States)

    Han, Ming-yu; Huang, Sha-sha; Wang, Guo-jian; Yuan, Yong-yi; Kang, Dong-yang; Zhang, Xin; Dai, Pu

    2011-11-01

    Analyzed the molecular pathogenesis of probands by means of genetic test and assisted the local Family Planning Institute by providing prenatal genetic counseling and instruction for deaf families who eager to have more baby. Total of forty-three deaf families were recruited by two institutes for family planning from Guangzhou and Weifang. Forty-two families had one deaf child with normal hearing parents. One family was that parents and their child were all deaf. Genetic testing of GJB2, SLC26A4 and mitochondrial DNA (mtDNA) 12SrRNA were firstly performed in probands and their parents, following medical history, physical examination, auditory test and CT scan of temporal bone were completed. And then the genetic information and instruction were provided to each deaf family. Fifteen of these 43 families had positive results of genetic test. In fifteen families, one family was confirmed that the parents and their child all carried homozygous GJB2 mutations and the recurrence risk was 100%. Twelve families were confirmed that the probands carried homozygous/compound GJB2 or SLC26A4 mutations while their parents were GJB2 or SLC26A4 carriers, and the recurrence risk was 25%. One family was confirmed that the proband, diagnosed with enlarged vestibular aqueduct syndrome (EVAS) by CT scan, carried heterozygous SLC26A4 mutation from the mother, and the recurrence risk was still 25% based on the hereditary pattern of EVAS although another SLC26A4 mutation from the father was not found. One family was confirmed that the proband carried a heterozygous GJB2 mutation from the mother and the possibility to be GJB2 carrier for offsprings was 50%. The rest 28 families were that all probands and their parents did not carry GJB2, SLC26A4 and mtDNA 12SrRNA pathological mutation. Genetic testing can provide more accurate and useful prenatal genetic counseling and instruction to deaf families. Meanwhile, it is an ideal way to develop a cooperative relationship with the institute for

  12. Counseling Customers: Emerging Roles for Genetic Counselors in the Direct-to-Consumer Genetic Testing Market

    NARCIS (Netherlands)

    Harris, A.; Kelly, S.; Wyatt, S.

    2013-01-01

    Individuals now have access to an increasing number of internet resources offering personal genomics services. As the direct-to-consumer genetic testing (DTC GT) industry expands, critics have called for pre- and post-test genetic counseling to be included with the product. Several genetic testing

  13. Advances in human genetics

    Energy Technology Data Exchange (ETDEWEB)

    Harris, H.; Hirschhorn, K. (eds.)

    1993-01-01

    This book has five chapters covering peroxisomal diseases, X-linked immunodeficiencies, genetic mutations affecting human lipoproteins and their receptors and enzymes, genetic aspects of cancer, and Gaucher disease. The chapter on peroxisomes covers their discovery, structure, functions, disorders, etc. The chapter on X-linked immunodeficiencies discusses such diseases as agammaglobulinemia, severe combined immunodeficiency, Wiskott-Aldrich syndrome, animal models, linkage analysis, etc. Apolipoprotein formation, synthesis, gene regulation, proteins, etc. are the main focus of chapter 3. The chapter on cancer covers such topics as oncogene mapping and the molecular characterization of some recessive oncogenes. Gaucher disease is covered from its diagnosis, classification, and prevention, to its organ system involvement and molecular biology.

  14. Seeking perfection: a Kantian look at human genetic engineering.

    Science.gov (United States)

    Gunderson, Martin

    2007-01-01

    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.

  15. [Study on tests of genetics experiments in universities].

    Science.gov (United States)

    Jie, He; Hao, Zhang; Lili, Zhang

    2015-03-01

    Based on the present situation and the development of experiment tests in universities, we introduced a reform in tests of genetics experiments. According to the teaching goals and course contents of genetics experiment, the tests of genetics experiments contain four aspects on the performance of students: the adherence to the experimental procedures, the depth of participation in experiment, the quality of experiment report, and the mastery of experiment principles and skills, which account for 10 %, 20 %, 40 % and 30 % in the total scores, respectively. All four aspects were graded quantitatively. This evaluation system has been tested in our experiment teaching. The results suggest that it has an effect on the promotion of teaching in genetics experiments.

  16. Points to consider for prioritizing clinical genetic testing services

    DEFF Research Database (Denmark)

    Severin, Franziska; Borry, Pascal; Cornel, Martina C

    2015-01-01

    Given the cost constraints of the European health-care systems, criteria are needed to decide which genetic services to fund from the public budgets, if not all can be covered. To ensure that high-priority services are available equitably within and across the European countries, a shared set...... testing services available in the next decade. Ethically and economically reflected prioritization criteria are needed. Prioritization should be based on considerations of medical benefit, health need and costs. Medical benefit includes evidence of benefit in terms of clinical benefit, benefit......, following the principles of accountability for reasonableness. We provide points to consider to stimulate this debate across the EU and to serve as a reference for improving patient management.European Journal of Human Genetics advance online publication, 24 September 2014; doi:10.1038/ejhg.2014.190....

  17. The history and development of the Human Genetics Society of Australasia.

    Science.gov (United States)

    Sutherland, Grant R

    2008-08-01

    The Human Genetics Society of Australasia is a vibrant professional society with more than 900 members that promotes and regulates the practice of human and medical genetics in Australia and New Zealand. The growth of human genetics was stimulated by the development of diagnostic clinical cytogenetics laboratories in the early to mid 1960s. This coincided with the recognition by medical specialists, mainly pediatricians, that genetic disorders, especially inborn errors of metabolism and birth defects, were of clinical interest and potentially challenging areas for their skills. The organization of professionals in human genetics was slow to evolve. There was an early Western Australian Human Genetics Society, and the cytogenetics community had begun to meet annually from about 1966 but was coordinated by a mailing list rather than as a formal organization. In 1976, as part of the celebrations of the Centenary Year of the Adelaide Children's Hospital, a clinical genetics meeting involving several high profile international speakers and most of the senior medical geneticists in Australia and New Zealand along with the annual meeting of the loose-knit cytogeneticists group agreed that a small working group be charged with setting up a Human Genetics Society. The society was formally incorporated in South Australia in 1977.

  18. Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents.

    Science.gov (United States)

    Mayer, René E; Reischer, Georg H; Ixenmaier, Simone K; Derx, Julia; Blaschke, Alfred Paul; Ebdon, James E; Linke, Rita; Egle, Lukas; Ahmed, Warish; Blanch, Anicet R; Byamukama, Denis; Savill, Marion; Mushi, Douglas; Cristóbal, Héctor A; Edge, Thomas A; Schade, Margit A; Aslan, Asli; Brooks, Yolanda M; Sommer, Regina; Masago, Yoshifumi; Sato, Maria I; Taylor, Huw D; Rose, Joan B; Wuertz, Stefan; Shanks, Orin C; Piringer, Harald; Mach, Robert L; Savio, Domenico; Zessner, Matthias; Farnleitner, Andreas H

    2018-05-01

    Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4 400 000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log 10 7.2-8.0 marker equivalents (ME) 100 mL -1 ) and biologically treated wastewater samples (median log 10 4.6-6.0 ME 100 mL -1 ) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe.

  19. Review: domestic animal forensic genetics - biological evidence, genetic markers, analytical approaches and challenges.

    Science.gov (United States)

    Kanthaswamy, S

    2015-10-01

    This review highlights the importance of domestic animal genetic evidence sources, genetic testing, markers and analytical approaches as well as the challenges this field is facing in view of the de facto 'gold standard' human DNA identification. Because of the genetic similarity between humans and domestic animals, genetic analysis of domestic animal hair, saliva, urine, blood and other biological material has generated vital investigative leads that have been admitted into a variety of court proceedings, including criminal and civil litigation. Information on validated short tandem repeat, single nucleotide polymorphism and mitochondrial DNA markers and public access to genetic databases for forensic DNA analysis is becoming readily available. Although the fundamental aspects of animal forensic genetic testing may be reliable and acceptable, animal forensic testing still lacks the standardized testing protocols that human genetic profiling requires, probably because of the absence of monetary support from government agencies and the difficulty in promoting cooperation among competing laboratories. Moreover, there is a lack in consensus about how to best present the results and expert opinion to comply with court standards and bear judicial scrutiny. This has been the single most persistent challenge ever since the earliest use of domestic animal forensic genetic testing in a criminal case in the mid-1990s. Crime laboratory accreditation ensures that genetic test results have the courts' confidence. Because accreditation requires significant commitments of effort, time and resources, the vast majority of animal forensic genetic laboratories are not accredited nor are their analysts certified forensic examiners. The relevance of domestic animal forensic genetics in the criminal justice system is undeniable. However, further improvements are needed in a wide range of supporting resources, including standardized quality assurance and control protocols for sample

  20. Genetic testing in the European Union: does economic evaluation matter?

    Science.gov (United States)

    Antoñanzas, Fernando; Rodríguez-Ibeas, R; Hutter, M F; Lorente, R; Juárez, C; Pinillos, M

    2012-10-01

    We review the published economic evaluation studies applied to genetic technologies in the EU to know the main diseases addressed by these studies, the ways the studies were conducted and to assess the efficiency of these new technologies. The final aim of this review was to understand the possibilities of the economic evaluations performed up to date as a tool to contribute to decision making in this area. We have reviewed a set of articles found in several databases until March 2010. Literature searches were made in the following databases: PubMed; Euronheed; Centre for Reviews and Dissemination of the University of York-Health Technology Assessment, Database of Abstracts of Reviews of Effects, NHS Economic Evaluation Database; and Scopus. The algorithm was "(screening or diagnosis) and genetic and (cost or economic) and (country EU27)". We included studies if they met the following criteria: (1) a genetic technology was analysed; (2) human DNA must be tested for; (3) the analysis was a real economic evaluation or a cost study, and (4) the articles had to be related to any EU Member State. We initially found 3,559 papers on genetic testing but only 92 articles of economic analysis referred to a wide range of genetic diseases matched the inclusion criteria. The most studied diseases were as follows: cystic fibrosis (12), breast and ovarian cancer (8), hereditary hemochromatosis (6), Down's syndrome (7), colorectal cancer (5), familial hypercholesterolaemia (5), prostate cancer (4), and thrombophilia (4). Genetic tests were mostly used for screening purposes, and cost-effectiveness analysis is the most common type of economic study. The analysed gene technologies are deemed to be efficient for some specific population groups and screening algorithms according to the values of their cost-effectiveness ratios that were below the commonly accepted threshold of 30,000€. Economic evaluation of genetic technologies matters but the number of published studies is still

  1. What Are the Risks and Limitations of Genetic Testing?

    Science.gov (United States)

    ... the person who is tested. The possibility of genetic discrimination in employment or insurance is also a concern. (Refer to What is genetic discrimination? for additional information.) Genetic testing can provide only ...

  2. Perception of Genetic Testing for Deafness and Factors Associated with Interest in Genetic Testing Among Deaf People in a Selected Population in Sub-Saharan Africa.

    Science.gov (United States)

    Adedokun, Babatunde O; Yusuf, Bidemi O; Lasisi, J Taye; Jinadu, A A; Sunmonu, M T; Ashanke, A F; Lasisi, O Akeem

    2015-12-01

    Understanding the perceptions of genetic testing by members of the deaf community may help in planning deafness genetics research, especially so in the context of strong adherence to cultural values as found among native Africans. Among Yorubas in Nigeria, deafness is perceived to be caused by some offensive actions of the mother during pregnancy, spiritual attack, and childhood infections. We studied attitudes towards, and acceptance of genetic testing by the deaf community in Nigeria. Structured questionnaires were administered to individuals sampled from the Vocational Training Centre for the Deaf, the religious Community, and government schools, among others. The main survey items elicited information about the community in which the deaf people participate, their awareness of genetic testing, whether or not they view genetic testing as acceptable, and their understanding of the purpose of genetic testing. There were 150 deaf participants (61.3 % males, 38.7 % females) with mean age of 26.7 years ±9.8. A majority of survey respondents indicated they relate only with other members of the deaf community (78 %) and reported believing genetic testing does more good than harm (79.3 %); 57 % expressed interest in genetic testing. Interest in genetic testing for deafness or in genetic testing in pregnancy was not related to whether respondents relate primarily to the deaf or to the hearing community. However, a significantly higher number of male respondents and respondents with low education reported interest in genetic testing.

  3. WHO HAS TO UNDERGO CANCER GENETIC TESTING? A PERSPECTIVE.

    Directory of Open Access Journals (Sweden)

    Carmen Rinaldi

    2017-10-01

    Full Text Available Genetic testing is a medical tool employed to screen changes in genes linked to cancer and other genetic diseases. Genetic tests are available for breast, ovarian, colon, thyroid, and some other cancers and they represent the main tool for early identification of the “risk” subjects. The choice to undergo genetic testing by a healthy or affected cancer patient with family history of the cancer has to be the fruit of a careful and prudent assessment of the advantages and disadvantages discussed during oncogenetic counselling. The latter, in turn, in the case of a patient's positive and informed choice, must constantly affiliate the genetic testing, in order to preserve the prediction and information role of the test as much as possible.

  4. Hereditary melanoma and predictive genetic testing: why not?

    Science.gov (United States)

    Riedijk, S R; de Snoo, F A; van Dijk, S; Bergman, W; van Haeringen, A; Silberg, S; van Elderen, T M T; Tibben, A

    2005-09-01

    Since p16-Leiden presymptomatic testing for hereditary melanoma has become available in the Netherlands, the benefits and risks of offering such testing are evaluated. The current paper investigated why the non-participants were reluctant to participate in genetic testing. Sixty six eligible individuals, who were knowledgeable about the test but had not participated in genetic testing by January 2003, completed a self-report questionnaire assessing motivation, anxiety, family dynamics, risk knowledge and causal attributions. Non-participants reported anxiety levels below clinical significance. A principal components analysis on reasons for non-participation distinguished two underlying motives: emotional and rational motivation. Rational motivation for non-participation was associated with more accurate risk knowledge, the inclination to preselect mutation carriers within the family and lower scores on anxiety. Emotional motivation for non-participation was associated with disease misperceptions, hesitation to communicate unfavourable test results within the family and higher scores on anxiety. Rational and emotional motivation for non-participation in the genetic test for hereditary melanoma was found. Emotionally motivated individuals may be reluctant to disseminate genetic risk information. Rationally motivated individuals were better informed than emotionally motivated individuals. It is suggested that a leaflet is added to the invitation letter to enhance informed decision-making about genetic testing.

  5. An existential analysis of genetic engineering and human rights ...

    African Journals Online (AJOL)

    Genetic engineering for purposes of human enhancement poses risks that justify regulation. However, this paper argues philosophically that it is inappropriate to use human rights treaties to prohibit germ-line genetic engineering whether therapeutic or for purposes of enhancement. When also looked at existentially, the ...

  6. Genetically modified human bone marrow derived mesenchymal stem cells for improving the outcome of human islet transplantation.

    Directory of Open Access Journals (Sweden)

    Vaibhav Mundra

    Full Text Available The objective of this study was to determine the potential of human bone marrow derived mesenchymal stem cells (hBMSCs as gene carriers for improving the outcome of human islet transplantation. hBMSCs were characterized for the expression of phenotypic markers and transduced with Adv-hVEGF-hIL-1Ra to overexpress human vascular endothelial growth factor (hVEGF and human interleukin-1 receptor antagonist (hIL-1Ra. Human islets were co-cultured with hBMSCs overexpressing hVEGF and hIL-1Ra. Islet viability was determined by membrane fluorescent method and glucose stimulation test. Transduced hBMSCs and human islets were co-transplanted under the kidney capsule of NOD.Cg-Prkdc(scid Il2rg(tm1Wjl /SzJ (NSG diabetic mice and blood glucose levels were measured over time to demonstrate the efficacy of genetically modified hBMSCs. At the end of study, immunofluorescent staining of kidney section bearing islets was performed for insulin and von Willebrand Factor (vWF. hBMSCs were positive for the expression of CD73, CD90, CD105, CD146 and Stro-1 surface markers as determined by flow cytometry. Transduction of hBMSCs with adenovirus did not affect their stemness and differentiation potential as confirmed by mRNA levels of stem cell markers and adipogenic differentiation of transduced hBMSCs. hBMSCs were efficiently transduced with Adv-hVEGF-hIL-1Ra to overexpress hVEGF and hIL-1Ra. Live dead cell staining and glucose stimulation test have shown that transduced hBMSCs improved the viability of islets against cytokine cocktail. Co-transplantation of human islets with genetically modified hBMSCs improved the glycemic control of diabetic NSG mice as determined by mean blood glucose levels and intraperitoneal glucose tolerance test. Immunofluorescent staining of kidney sections was positive for human insulin and vWF. In conclusion, our results have demonstrated that hBMSCs may be used as gene carriers and nursing cells to improve the outcome of islet

  7. Evolving hard problems: Generating human genetics datasets with a complex etiology

    Directory of Open Access Journals (Sweden)

    Himmelstein Daniel S

    2011-07-01

    Full Text Available Abstract Background A goal of human genetics is to discover genetic factors that influence individuals' susceptibility to common diseases. Most common diseases are thought to result from the joint failure of two or more interacting components instead of single component failures. This greatly complicates both the task of selecting informative genetic variants and the task of modeling interactions between them. We and others have previously developed algorithms to detect and model the relationships between these genetic factors and disease. Previously these methods have been evaluated with datasets simulated according to pre-defined genetic models. Results Here we develop and evaluate a model free evolution strategy to generate datasets which display a complex relationship between individual genotype and disease susceptibility. We show that this model free approach is capable of generating a diverse array of datasets with distinct gene-disease relationships for an arbitrary interaction order and sample size. We specifically generate eight-hundred Pareto fronts; one for each independent run of our algorithm. In each run the predictiveness of single genetic variation and pairs of genetic variants have been minimized, while the predictiveness of third, fourth, or fifth-order combinations is maximized. Two hundred runs of the algorithm are further dedicated to creating datasets with predictive four or five order interactions and minimized lower-level effects. Conclusions This method and the resulting datasets will allow the capabilities of novel methods to be tested without pre-specified genetic models. This allows researchers to evaluate which methods will succeed on human genetics problems where the model is not known in advance. We further make freely available to the community the entire Pareto-optimal front of datasets from each run so that novel methods may be rigorously evaluated. These 76,600 datasets are available from http://discovery.dartmouth.edu/model_free_data/.

  8. Human genome and genetic sequencing research and informed consent

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi

    2003-01-01

    On March 29, 2001, the Ethical Guidelines for Human Genome and Genetic Sequencing Research were established. They have intended to serve as ethical guidelines for all human genome and genetic sequencing research practice, for the purpose of upholding respect for human dignity and rights and enforcing use of proper methods in the pursuit of human genome and genetic sequencing research, with the understanding and cooperation of the public. The RadGenomics Project has prepared a research protocol and informed consent document that follow these ethical guidelines. We have endeavored to protect the privacy of individual information, and have established a procedure for examination of research practices by an ethics committee. Here we report our procedure in order to offer this concept to the patients. (authors)

  9. Closure of population biobanks and direct-to-consumer genetic testing companies.

    Science.gov (United States)

    Zawati, Ma'n H; Borry, Pascal; Howard, Heidi Carmen

    2011-09-01

    Genetic research gained new momentum with the completion of the Human Genome Project in 2003. Formerly centered on the investigation of single-gene disorders, genetic research is increasingly targeting common complex diseases and in doing so is studying the whole genome, the environment and its impact on genomic variation. Consequently, biobanking initiatives have emerged around the world as a tool to sustain such progress. Whether they are small scale or longitudinal, public or private, commercial or non-commercial, biobanks should consider the possibility of closure. Interestingly, while raising important ethical issues, this topic has hardly been explored in the literature. Indeed, ethical issues associated with sale, insolvency, end of funding, or transfer of materials to other entities (which are all issues either related to or possible consequences of closure) are seldom the subject of discussion. In an attempt to fill this gap, this paper will discuss-using population and direct-to-consumer (DTC) genetic testing companies' biobanks as case studies-(1) international and national normative documents addressing the issue of closure and (2) the internal policies of population biobanks and DTC genetic testing companies. The analysis will inform the debate on biobank closure and elucidate the underlying ethical issues, which include, but are not limited to informed consent, storage and privacy.

  10. Frequently Asked Questions about Genetic Testing

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  11. Genetic Differences Between Humans and Great Apes -- Implications for the Evolution of Humans

    Science.gov (United States)

    Varki, Ajit

    2004-06-01

    At the level of individual protein sequences, humans are 97-100% identical to the great apes, our closest evolutionary relatives. The evolution of humans (and of human intelligence) from a common ancestor with the chimpanzee and bonobo involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of any differences found. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly with respect to a family of cell surface molecules called sialic acids, as well as in the metabolism of thyroid hormones. The hormone differences have potential consequences for human brain development. The differences in sialic acid biology have multiple implications for the human condition, ranging from susceptibility or resistance to microbial pathogens, effects on endogenous receptors in the immune system, and potential effects on placental signaling, expression of oncofetal antigens in cancers, consequences of dietary intake of animal foods, and development of the mammalian brain.

  12. Pitfalls in genetic testing

    DEFF Research Database (Denmark)

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah

    2016-01-01

    BACKGROUND: Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying...

  13. The need for interaction between assisted reproduction technology and genetics: recommendations of the European Societies of Human Genetics and Human Reproduction and Embryology.

    Science.gov (United States)

    2006-08-01

    Infertility and reproductive genetic risk are both increasing in our societies because of lifestyle changes and possibly environmental factors. Owing to the magnitude of the problem, they have implications not only at the individual and family levels but also at the community level. This leads to an increasing demand for access to assisted reproduction technology (ART) and genetic services, especially when the cause of infertility may be genetic in origin. The increasing application of genetics in reproductive medicine and vice versa requires closer collaboration between the two disciplines. ART and genetics are rapidly evolving fields where new technologies are currently introduced without sufficient knowledge of their potential long-term effects. As for any medical procedures, there are possible unexpected effects which need to be envisaged to make sure that the balance between benefits and risks is clearly on the benefit side. The development of ART and genetics as scientific activities is creating an opportunity to understand the early stages of human development, which is leading to new and challenging findings/knowledge. However, there are opinions against investigating the early stages of development in humans who deserve respect and attention. For all these reasons, these two societies, European Society of Human Genetics (ESHG) and European Society of Human Reproduction and Embryology (ESHRE), have joined efforts to explore the issues at stake and to set up recommendations to maximize the benefit for the couples in need and for the community.

  14. Human genetics: international projects and personalized medicine.

    Science.gov (United States)

    Apellaniz-Ruiz, Maria; Gallego, Cristina; Ruiz-Pinto, Sara; Carracedo, Angel; Rodríguez-Antona, Cristina

    2016-03-01

    In this article, we present the progress driven by the recent technological advances and new revolutionary massive sequencing technologies in the field of human genetics. We discuss this knowledge in relation with drug response prediction, from the germline genetic variation compiled in the 1000 Genomes Project or in the Genotype-Tissue Expression project, to the phenome-genome archives, the international cancer projects, such as The Cancer Genome Atlas or the International Cancer Genome Consortium, and the epigenetic variation and its influence in gene expression, including the regulation of drug metabolism. This review is based on the lectures presented by the speakers of the Symposium "Human Genetics: International Projects & New Technologies" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held on the 20th and 21st of April 2015.

  15. Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Ivana Antonucci

    2016-04-01

    Full Text Available In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers “in vitro”. In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.

  16. Testing for Genetically Modified Foods Using PCR

    Science.gov (United States)

    Taylor, Ann; Sajan, Samin

    2005-01-01

    The polymerase chain reaction (PCR) is a Nobel Prize-winning technique that amplifies a specific segment of DNA and is commonly used to test for the presence of genetic modifications. Students use PCR to test corn meal and corn-muffin mixes for the presence of a promoter commonly used in genetically modified foods, the cauliflower mosaic virus 35S…

  17. Population genetic testing for cancer susceptibility: founder mutations to genomes.

    Science.gov (United States)

    Foulkes, William D; Knoppers, Bartha Maria; Turnbull, Clare

    2016-01-01

    The current standard model for identifying carriers of high-risk mutations in cancer-susceptibility genes (CSGs) generally involves a process that is not amenable to population-based testing: access to genetic tests is typically regulated by health-care providers on the basis of a labour-intensive assessment of an individual's personal and family history of cancer, with face-to-face genetic counselling performed before mutation testing. Several studies have shown that application of these selection criteria results in a substantial proportion of mutation carriers being missed. Population-based genetic testing has been proposed as an alternative approach to determining cancer susceptibility, and aims for a more-comprehensive detection of mutation carriers. Herein, we review the existing data on population-based genetic testing, and consider some of the barriers, pitfalls, and challenges related to the possible expansion of this approach. We consider mechanisms by which population-based genetic testing for cancer susceptibility could be delivered, and suggest how such genetic testing might be integrated into existing and emerging health-care structures. The existing models of genetic testing (including issues relating to informed consent) will very likely require considerable alteration if the potential benefits of population-based genetic testing are to be fully realized.

  18. Animal models for human genetic diseases | Sharif | African Journal ...

    African Journals Online (AJOL)

    The study of human genetic diseases can be greatly aided by animal models because of their similarity to humans in terms of genetics. In addition to understand diverse aspects of basic biology, model organisms are extensively used in applied research in agriculture, industry, and also in medicine, where they are used to ...

  19. Understanding the impact of genetic testing for inherited retinal dystrophy.

    Science.gov (United States)

    Combs, Ryan; McAllister, Marion; Payne, Katherine; Lowndes, Jo; Devery, Sophie; Webster, Andrew R; Downes, Susan M; Moore, Anthony T; Ramsden, Simon; Black, Graeme; Hall, Georgina

    2013-11-01

    The capability of genetic technologies is expanding rapidly in the field of inherited eye disease. New genetic testing approaches will deliver a step change in the ability to diagnose and extend the possibility of targeted treatments. However, evidence is lacking about the benefits of genetic testing to support service planning. Here, we report qualitative data about retinal dystrophy families' experiences of genetic testing in United Kingdom. The data were part of a wider study examining genetic eye service provision. Twenty interviewees from families in which a causative mutation had been identified by a genetic eye clinic were recruited to the study. Fourteen interviewees had chosen to have a genetic test and five had not; one was uncertain. In-depth telephone interviews were conducted allowing a thorough exploration of interviewees' views and experiences of the benefits of genetic counselling and testing. Transcripts were analysed using thematic analysis. Both affected and unaffected interviewees expressed mainly positive views about genetic testing, highlighting benefits such as diagnostic confirmation, risk information, and better preparation for the future. Negative consequences included the burden of knowledge, moral dilemmas around reproduction, and potential impact on insurance. The offer of genetic testing was often taken up, but was felt unnecessary in some cases. Interviewees in the study reported many benefits, suggesting genetic testing should be available to this patient group. The benefits and risks identified will inform future evaluation of models of service delivery. This research was part of a wider study exploring experiences of families with retinal dystrophy.

  20. Awareness of Cancer Susceptibility Genetic Testing

    Science.gov (United States)

    Mai, Phuong L.; Vadaparampil, Susan Thomas; Breen, Nancy; McNeel, Timothy S.; Wideroff, Louise; Graubard, Barry I.

    2014-01-01

    Background Genetic testing for several cancer susceptibility syndromes is clinically available; however, existing data suggest limited population awareness of such tests. Purpose To examine awareness regarding cancer genetic testing in the U.S. population aged ≥25 years in the 2000, 2005, and 2010 National Health Interview Surveys. Methods The weighted percentages of respondents aware of cancer genetic tests, and percent changes from 2000–2005 and 2005–2010, overall and by demographic, family history, and healthcare factors were calculated. Interactions were used to evaluate the patterns of change in awareness between 2005 and 2010 among subgroups within each factor. To evaluate associations with awareness in 2005 and 2010, percentages were adjusted for covariates using multiple logistic regression. The analysis was performed in 2012. Results Awareness decreased from 44.4% to 41.5% (pAwareness increased between 2005 and 2010 in most subgroups, particularly among individuals in the South (p-interaction=0.03) or with a usual place of care (p-interaction=0.01). In 2005 and 2010, awareness was positively associated with personal or family cancer history and high perceived cancer risk, and inversely associated with racial/ethnic minorities, age 25–39 or ≥60 years, male gender, lower education and income levels, public or no health insurance, and no provider contact in 12 months. Conclusions Despite improvement from 2005 to 2010, ≤50% of the U.S. adult population was aware of cancer genetic testing in 2010. Notably, disparities persist for racial/ethnic minorities and individuals with limited health care access or income. PMID:24745633

  1. Psychiatric genetic testing: Attitudes and intentions among future users and providers

    DEFF Research Database (Denmark)

    Laegsgaard, Mett Marri; Mors, Ole

    2008-01-01

    as a guide in this field, but the optimal utilization of genetic testing has also been recognized to depend on knowledge of the potential consumers' attitudes. To provide knowledge to inform the public debate on mental illness and genetics, and the future conducting of psychiatric genetic testing....... Psychiatric and somatic genetic testing attracted the same amounts of accept. General attitudes toward access to psychiatric genetic testing and information revealed substantial support for bioethical principles of autonomy and privacy. However, questions describing more specific situations revealed......Psychiatric genetic research may eventually render possible psychiatric genetic testing. Whereas all genetic knowledge has certain characteristics raising ethical, legal, and social issues, psychiatric genetic knowledge adds more controversial issues. Ethical principles have been proposed...

  2. Genetic testing in the workplace: the employer's coin toss.

    Science.gov (United States)

    French, Samantha

    2002-09-05

    A toss of the coin by the modern-day employer reveals two options regarding genetic testing in the workplace. The employer may choose to take advantage of increasingly precise, available, and affordable genetic testing in order to ascertain the genetic characteristics--and deficiencies--of its employees. This outcome exposes the employer to a vast array of potential litigation and liability relating to the Americans with Disabilities Act, the Fourth Amendment, Title VII of the Civil Rights Act, and state legislation designed to protect genetic privacy. Alternatively, the employer may neglect to indulge in this trend of genetic testing and may face liability for employer negligence, violations of federal legislation such as OSHA regulations, and increased costs associated with insuring the health of genetically endangered employees. In the rapidly developing universe of genetic intelligence, the employer is faced with a staggering dilemma.

  3. Medical And Genetic Monitoring of Population Around Semipalatinsk Test-site

    International Nuclear Information System (INIS)

    Kayupova, N.A.; Svyatova, G.S.; Abildinova, G.Zh.

    1998-01-01

    Up to present, there is no one positive opinion about the effect of a small amount of ionizing radiation doses on the genetic system of a human being. In connection with it, the all-round medical and genetic researches conducted by a united methodical basis and intended to study general mutagen and teratogen radiation effects are of a certain significance. With that end in view, the medical and genetic testing of a number of rural population around Semipalatinsk test-site (STS) was conducted. The all-round methods of medical and genetic consequences evaluation were developed, and 'active revealing of the congenital fetation disease (CFD)' method was submitted for consideration. Aside from analysis of the general genetic and demographic data, outcomes of more than 160.000 confinements were studied, and a high frequency rate of the CFD of 'the strict recording' (6.11 per 1000 new-born children in areas of extreme radiation hazard) was discovered, that surely exceeded the similar index for the monitored areas (2.92 per 1000 new-born children). A higher frequency rate of the Down's syndrome and numerous CFD (1.66 and 1.07 per 1000 new-born children accordingly) were revealed as well. As a result of the cytogenetic monitoring of the tested population, it was ascertained that a total frequency rate of the aberrant cell emergence was equal to 4.9 per 100 cells, that is 3.9 times as much than the similar index for the monitored area. A high frequency rate of the markers induced by radiation was discovered, which proved the increased mutagen effect of the environment. Biological presentation of the radiation effect on population was conducted in two methods of the biological monitoring, and according to the frequency rate of the chromosomal aberrations in lymphocytes of peripheral blood, that are induced by radiation, and electro paramagnetic resonance of teeth enamel (Kazakhstan national Nuclear Center). The results of the medical and genetic research conducted were an

  4. Presymptomatic ALS genetic counseling and testing: Experience and recommendations.

    Science.gov (United States)

    Benatar, Michael; Stanislaw, Christine; Reyes, Eliana; Hussain, Sumaira; Cooley, Anne; Fernandez, Maria Catalina; Dauphin, Danielle D; Michon, Sara-Claude; Andersen, Peter M; Wuu, Joanne

    2016-06-14

    Remarkable advances in our understanding of the genetic contributions to amyotrophic lateral sclerosis (ALS) have sparked discussion and debate about whether clinical genetic testing should routinely be offered to patients with ALS. A related, but distinct, question is whether presymptomatic genetic testing should be offered to family members who may be at risk for developing ALS. Existing guidelines for presymptomatic counseling and testing are mostly based on small number of individuals, clinical judgment, and experience from other neurodegenerative disorders. Over the course of the last 8 years, we have provided testing and 317 genetic counseling sessions (including predecision, pretest, posttest, and ad hoc counseling) to 161 first-degree family members participating in the Pre-Symptomatic Familial ALS Study (Pre-fALS), as well as testing and 75 posttest counseling sessions to 63 individuals with familial ALS. Based on this experience, and the real-world challenges we have had to overcome in the process, we recommend an updated set of guidelines for providing presymptomatic genetic counseling and testing to people at high genetic risk for developing ALS. These recommendations are especially timely and relevant given the growing interest in studying presymptomatic ALS. © 2016 American Academy of Neurology.

  5. Acceptance of genetic testing in a general population

    DEFF Research Database (Denmark)

    Aro, A R; Hakonen, A; Hietala, M

    1997-01-01

    in favour of mandatory genetic testing than other respondents. Respondents with university education were more critical towards genetic testing and expressed their worry about eugenics more often than other education groups. In conclusion, there are age, education and gender related differences...

  6. Human genetics of infectious diseases: a unified theory

    Science.gov (United States)

    Casanova, Jean-Laurent; Abel, Laurent

    2007-01-01

    Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predisposing the individual to a principal or single type of infection is emerging. In parallel, several common infections have been shown to reflect the inheritance of one major susceptibility gene, at least in some populations. This novel causal relationship (one gene, one infection) blurs the distinction between patient-based Mendelian genetics and population-based complex genetics, and provides a unified conceptual frame for exploring the molecular genetic basis of infectious diseases in humans. PMID:17255931

  7. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...... of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images...

  8. Functional modules, mutational load and human genetic disease.

    Science.gov (United States)

    Zaghloul, Norann A; Katsanis, Nicholas

    2010-04-01

    The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Genetic and environmental factors in experimental and human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, S.; Takebe, H.; Gelboin, H.V.; MaChahon, B.; Matsushima, T.; Sugimura, T.

    1980-01-01

    Recently technological advances in assaying mutagenic principles have revealed that there are many mutagens in the environment, some of which might be carcinogenic to human beings. Other advances in genetics have shown that genetic factors might play an important role in the induction of cancer in human beings, e.g., the high incidence of skin cancers in patients with xeroderma pigmentosum. These proceedings deal with the relationships between genetic and environmental factors in carcinogenesis. The contributors cover mixed-function oxidases, pharmacogenetics, twin studies, DNA repair, immunology, and epidemiology.

  10. The humankind genome: from genetic diversity to the origin of human diseases.

    Science.gov (United States)

    Belizário, Jose E

    2013-12-01

    Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease's etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.

  11. Inferences of Recent and Ancient Human Population History Using Genetic and Non-Genetic Data

    Science.gov (United States)

    Kitchen, Andrew

    2008-01-01

    I have adopted complementary approaches to inferring human demographic history utilizing human and non-human genetic data as well as cultural data. These complementary approaches form an interdisciplinary perspective that allows one to make inferences of human history at varying timescales, from the events that occurred tens of thousands of years…

  12. The genetic component of human longevity

    DEFF Research Database (Denmark)

    Dato, Serena; Thinggaard, Mette Sørensen; De Rango, Francesco

    2018-01-01

    In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic...... pathway. We applied this approach to study the joint effect on longevity of SNPs belonging to three candidate pathways, the insulin/insulin-like growth factor signalling (IIS), DNA repair and pro/antioxidant. We analysed data from 1,058 tagging SNPs in 140 genes, collected in 1825 subjects (1......, was further found influencing longitudinal survival in nonagenarian females (p = .026). Results here presented highlight the validity of SNP-SNP interactions analyses for investigating the genetics of human longevity, confirming previously identified markers but also pointing to novel genes as central nodes...

  13. Generation of Genetically Modified Organotypic Skin Cultures Using Devitalized Human Dermis.

    Science.gov (United States)

    Li, Jingting; Sen, George L

    2015-12-14

    Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down. These genetically modified keratinocytes can then be used to regenerate human epidermis in organotypic skin cultures providing a powerful model to study genetic pathways impacting epidermal growth, differentiation, and disease progression. The protocols presented here describe methods to prepare devitalized human dermis as well as to genetically manipulate primary human keratinocytes in order to generate organotypic skin cultures. Regenerated human skin can be used in downstream applications such as gene expression profiling, immunostaining, and chromatin immunoprecipitations followed by high throughput sequencing. Thus, generation of these genetically modified organotypic skin cultures will allow the determination of genes that are critical for maintaining skin homeostasis.

  14. Privacy and equality in diagnostic genetic testing.

    Science.gov (United States)

    Nyrhinen, Tarja; Hietala, Marja; Puukka, Pauli; Leino-Kilpi, Helena

    2007-05-01

    This study aimed to determine the extent to which the principles of privacy and equality were observed during diagnostic genetic testing according to views held by patients or child patients' parents (n = 106) and by staff (n = 162) from three Finnish university hospitals. The data were collected through a structured questionnaire and analysed using the SAS 8.1 statistical software. In general, the two principles were observed relatively satisfactorily in clinical practice. According to patients/parents, equality in the post-analytic phase and, according to staff, privacy in the pre-analytic phase, involved the greatest ethical problems. The two groups differed in their views concerning pre-analytic privacy. Although there were no major problems regarding the two principles, the differences between the testing phases require further clarification. To enhance privacy protection and equality, professionals need to be given more genetics/ethics training, and patients individual counselling by genetics units staff, giving more consideration to patients' world-view, the purpose of the test and the test result.

  15. Environmental and genetic interactions in human cancer

    International Nuclear Information System (INIS)

    Paterson, M.C.

    Humans, depending upon their genetic make-up, differ in their susceptibility to the cancer-causing effects of extrinsic agents. Clinical and laboratory studies on the hereditary disorder, ataxia telangiectasia (AT) show that persons afflicted with this are cancer-prone and unusually sensitive to conventional radiotherapy. Their skin cells, when cultured, are hypersensitive to killing by ionizing radiation, being defective in the enzymatic repair of radiation-induced damange to the genetic material, deoxyribonucleic acid (DNA). This molecular finding implicates DNA damage and its imperfect repair as an early step in the induction of human cancer by radiation and other carcinogens. The parents of AT patients are clincally normal but their cultured cells are often moderately radiosensitive. The increased radiosensitivity of cultured cells offers a means of identifying a presumed cancer-prone subpopulation that should avoid undue exposure to certain carcinogens. The radioresponse of cells from patients with other cancer-associated genetic disorders and persons suspected of being genetically predisposed to radiation-induced cancer has also been measured. Increased cell killing by γ-rays appears in the complex genetic disease, tuberous sclerosis. Cells from cancer-stricken members of a leukemia-prone family are also radiosensitive, as are cells from one patient with radiation-associated breast cancer. These radiobiological data, taken together, strongly suggest that genetic factors can interact with extrinsic agents and thereby play a greater causative role in the development of common cancers in man than previously thought. (L.L.)

  16. The comparative radiation genetics of humans and mice

    International Nuclear Information System (INIS)

    Neel, J.V.

    1990-01-01

    The attempt by geneticists to predict the genetic consequences for humans of exposure to ionizing radiation has arguably been one of the most serious social responsibilities they have faced in the past half century. Important for its own sake, this issue also serves as a prototype for the effort to evaluate the ultimate genetic impact on ourselves of other human perturbations of the environment in which our species functions. Recently the authors have been developing the thesis that according to the results of studies on the children of survivors of the atomic bombings, humans may not be as sensitive to the genetic effects of radiation as has been projected by various committees on the basis of data from the most commonly employed paradigm, the laboratory mouse. In this paper, the authors attempt as detailed a comparison as space permits of the findings on humans and mice, presenting the data in a fashion that will enable those who at certain critical points in the argument wish to make other assumptions, to do so. The authors argue that a reconsideration that includes all the data now available on mice brings the estimate of the doubling dose for mice into satisfactory agreement with the higher estimate based on humans

  17. Impact of Genetic Counseling and Connexin-26 and Connexin-30 Testing on Deaf Identity and Comprehension of Genetic Test Results in a Sample of Deaf Adults: A Prospective, Longitudinal Study

    Science.gov (United States)

    Palmer, Christina G. S.; Boudreault, Patrick; Baldwin, Erin E.; Sinsheimer, Janet S.

    2014-01-01

    Using a prospective, longitudinal study design, this paper addresses the impact of genetic counseling and testing for deafness on deaf adults and the Deaf community. This study specifically evaluated the effect of genetic counseling and Connexin-26 and Connexin-30 genetic test results on participants' deaf identity and understanding of their genetic test results. Connexin-26 and Connexin-30 genetic testing was offered to participants in the context of linguistically and culturally appropriate genetic counseling. Questionnaire data collected from 209 deaf adults at four time points (baseline, immediately following pre-test genetic counseling, 1-month following genetic test result disclosure, and 6-months after result disclosure) were analyzed. Four deaf identity orientations (hearing, marginal, immersion, bicultural) were evaluated using subscales of the Deaf Identity Development Scale-Revised. We found evidence that participants understood their specific genetic test results following genetic counseling, but found no evidence of change in deaf identity based on genetic counseling or their genetic test results. This study demonstrated that culturally and linguistically appropriate genetic counseling can improve deaf clients' understanding of genetic test results, and the formation of deaf identity was not directly related to genetic counseling or Connexin-26 and Connexin-30 genetic test results. PMID:25375116

  18. Ethical and clinical practice considerations for genetic counselors related to direct-to-consumer marketing of genetic tests.

    Science.gov (United States)

    Wade, Christopher H; Wilfond, Benjamin S

    2006-11-15

    Several companies utilize direct-to-consumer (DTC) advertising for genetic tests and some, but not all, bypass clinician involvement by offering DTC purchase of the tests. This article examines how DTC marketing strategies may affect genetic counselors, using available cardiovascular disease susceptibility tests as an illustration. The interpretation of these tests is complex and includes consideration of clinical validity and utility, and the further complications of gene-environment interactions and pleiotropy. Although it is unclear to what extent genetic counselors will encounter clients who have been exposed to DTC marketing strategies, these strategies may influence genetic counseling interactions if they produce directed interest in specific tests and unrealistic expectations for the tests' capacity to predict disease. Often, a client's concern about risk for cardiovascular diseases is best addressed by established clinical tests and a family history assessment. Ethical dilemmas may arise for genetic counselors who consider whether to accept clients who request test interpretation or to order DTC-advertised tests that require a clinician's authorization. Genetic counselors' obligations to care for clients extend to interpreting DTC tests, although this obligation may be fulfilled by referral or consultation with specialists. Genetic counselors do not have an obligation to order DTC-advertised tests that have minimal clinical validity and utility at a client's request. This can be a justified restriction on autonomy based on consideration of risks to the client, the costs, and the implications for society. Published 2006 Wiley-Liss, Inc.

  19. Identifying genetic marker sets associated with phenotypes via an efficient adaptive score test

    KAUST Repository

    Cai, T.

    2012-06-25

    In recent years, genome-wide association studies (GWAS) and gene-expression profiling have generated a large number of valuable datasets for assessing how genetic variations are related to disease outcomes. With such datasets, it is often of interest to assess the overall effect of a set of genetic markers, assembled based on biological knowledge. Genetic marker-set analyses have been advocated as more reliable and powerful approaches compared with the traditional marginal approaches (Curtis and others, 2005. Pathways to the analysis of microarray data. TRENDS in Biotechnology 23, 429-435; Efroni and others, 2007. Identification of key processes underlying cancer phenotypes using biologic pathway analysis. PLoS One 2, 425). Procedures for testing the overall effect of a marker-set have been actively studied in recent years. For example, score tests derived under an Empirical Bayes (EB) framework (Liu and others, 2007. Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models. Biometrics 63, 1079-1088; Liu and others, 2008. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC bioinformatics 9, 292-2; Wu and others, 2010. Powerful SNP-set analysis for case-control genome-wide association studies. American Journal of Human Genetics 86, 929) have been proposed as powerful alternatives to the standard Rao score test (Rao, 1948. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Mathematical Proceedings of the Cambridge Philosophical Society, 44, 50-57). The advantages of these EB-based tests are most apparent when the markers are correlated, due to the reduction in the degrees of freedom. In this paper, we propose an adaptive score test which up- or down-weights the contributions from each member of the marker-set based on the Z-scores of

  20. Panel-Based Clinical Genetic Testing in 85 Children with Inherited Retinal Disease.

    Science.gov (United States)

    Taylor, Rachel L; Parry, Neil R A; Barton, Stephanie J; Campbell, Christopher; Delaney, Claire M; Ellingford, Jamie M; Hall, Georgina; Hardcastle, Claire; Morarji, Jiten; Nichol, Elisabeth J; Williams, Lindsi C; Douzgou, Sofia; Clayton-Smith, Jill; Ramsden, Simon C; Sharma, Vinod; Biswas, Susmito; Lloyd, I Chris; Ashworth, Jane L; Black, Graeme C; Sergouniotis, Panagiotis I

    2017-07-01

    To assess the clinical usefulness of genetic testing in a pediatric population with inherited retinal disease (IRD). Single-center retrospective case series. Eighty-five unrelated children with a diagnosis of isolated or syndromic IRD who were referred for clinical genetic testing between January 2014 and July 2016. Participants underwent a detailed ophthalmic examination, accompanied by electrodiagnostic testing (EDT) and dysmorphologic assessment where appropriate. Ocular and extraocular features were recorded using Human Phenotype Ontology terms. Subsequently, multigene panel testing (105 or 177 IRD-associated genes) was performed in an accredited diagnostic laboratory, followed by clinical variant interpretation. Diagnostic yield and clinical usefulness of genetic testing. Overall, 78.8% of patients (n = 67) received a probable molecular diagnosis; 7.5% (n = 5) of these had autosomal dominant disease, 25.4% (n = 17) had X-linked disease, and 67.2% (n = 45) had autosomal recessive disease. In a further 5.9% of patients (n = 5), a single heterozygous ABCA4 variant was identified; all these participants had a spectrum of clinical features consistent with ABCA4 retinopathy. Most participants (84.7%; n = 72) had undergone EDT and 81.9% (n = 59) of these patients received a probable molecular diagnosis. The genes most frequently mutated in the present cohort were CACNA1F and ABCA4, accounting for 14.9% (n = 10) and 11.9% (n = 8) of diagnoses respectively. Notably, in many cases, genetic testing helped to distinguish stationary from progressive IRD subtypes and to establish a precise diagnosis in a timely fashion. Multigene panel testing pointed to a molecular diagnosis in 84.7% of children with IRD. The diagnostic yield in the study population was significantly higher compared with that in previously reported unselected IRD cohorts. Approaches similar to the one described herein are expected to become a standard component of care in pediatric ophthalmology

  1. Does genetic diversity predict health in humans?

    Directory of Open Access Journals (Sweden)

    Hanne C Lie

    2009-07-01

    Full Text Available Genetic diversity, especially at genes important for immune functioning within the Major Histocompatibility Complex (MHC, has been associated with fitness-related traits, including disease resistance, in many species. Recently, genetic diversity has been associated with mate preferences in humans. Here we asked whether these preferences are adaptive in terms of obtaining healthier mates. We investigated whether genetic diversity (heterozygosity and standardized mean d(2 at MHC and nonMHC microsatellite loci, predicted health in 153 individuals. Individuals with greater allelic diversity (d(2 at nonMHC loci and at one MHC locus, linked to HLA-DRB1, reported fewer symptoms over a four-month period than individuals with lower d(2. In contrast, there were no associations between MHC or nonMHC heterozygosity and health. NonMHC-d(2 has previously been found to predict male preferences for female faces. Thus, the current findings suggest that nonMHC diversity may play a role in both natural and sexual selection acting on human populations.

  2. Animal models for human genetic diseases

    African Journals Online (AJOL)

    Sharif Sons

    The study of human genetic diseases can be greatly aided by animal models because of their similarity .... and gene targeting in embryonic stem cells) has been a powerful tool in .... endonucleases that are designed to make a doublestrand.

  3. Genetic Testing Accounts of Autonomy, Responsibility and Blame

    DEFF Research Database (Denmark)

    Arribas-Ayllon, M.; Sarangi, Srikant; Clarke, Angus

    Advances in molecular genetics have led to the increasing availability of genetic testing for a variety of inherited disorders. While this new knowledge presents many obvious health benefits to prospective individuals and their families it also raises complex ethical and moral dilemmas for famili......, the assessment of competence and maturity, the ability to engage in shared decision-making through acts of disclosure and choice, are just some of the issues that are examined in detail....... as well as genetic professionals. This book explores the ways in which genetic testing generates not only probabilities of potential futures, but also enjoys new forms of social, individual and professional responsibility. Concerns about confidentiality and informed consent involving children...

  4. Test- and behavior-specific genetic factors affect WKY hypoactivity in tests of emotionality.

    Science.gov (United States)

    Baum, Amber E; Solberg, Leah C; Churchill, Gary A; Ahmadiyeh, Nasim; Takahashi, Joseph S; Redei, Eva E

    2006-05-15

    Inbred Wistar-Kyoto rats consistently display hypoactivity in tests of emotional behavior. We used them to test the hypothesis that the genetic factors underlying the behavioral decision-making process will vary in different environmental contexts. The contexts used were the open-field test (OFT), a novel environment with no explicit threats present, and the defensive-burying test (DB), a habituated environment into which a threat has been introduced. Rearing, a voluntary behavior was measured in both tests, and our study was the first to look for genetic loci affecting grooming, a relatively automatic, stress-responsive stereotyped behavior. Quantitative trait locus analysis was performed on a population of 486 F2 animals bred from reciprocal inter-crosses. The genetic architectures of DB and OFT rearing, and of DB and OFT grooming, were compared. There were no common loci affecting grooming behavior in both tests. These different contexts produced the stereotyped behavior via different pathways, and genetic factors seem to influence the decision-making pathways and not the expression of the behavior. Three loci were found that affected rearing behavior in both tests. However, in both contexts, other loci had greater effects on the behavior. Our results imply that environmental context's effects on decision-making vary depending on the category of behavior.

  5. Test Anxiety and a High-Stakes Standardized Reading Comprehension Test: A Behavioral Genetics Perspective

    Science.gov (United States)

    Wood, Sarah G.; Hart, Sara A.; Little, Callie W.; Phillips, Beth M.

    2016-01-01

    Past research suggests that reading comprehension test performance does not rely solely on targeted cognitive processes such as word reading, but also on other nontarget aspects such as test anxiety. Using a genetically sensitive design, we sought to understand the genetic and environmental etiology of the association between test anxiety and…

  6. Assessment of genetic risk for human exposure to radiation. State of the art

    International Nuclear Information System (INIS)

    Shevchenko, V.A.

    2000-01-01

    Historical aspects of the conception of genetic risk of human irradiation for recent 40 years. Methodology of assessing the genetic risk of radiation exposure is based on the concept of hitting the target. To predict genetic risk of irradiation, the direct and indirect methods of assessment, extrapolation, integral and populational criteria of risk analysis is widely used. Combination of these methods permits to calculate the risk from human exposure on the basis of data obtained for mice. Method of doubling dose based on determination of the dose doubling the level of natural mutational process in humans is the main one used to predict the genetic risk. Till 1972 the main model for assessing the genetic risk was the human/mouse model (the use of data on the spontaneous human variability and data on the frequency of induced mutations in mice). In the period from 1972 till 1994 the mouse/mouse model was intensively elaborated in many laboratories. This model was also used in this period to analyse the genetic risk of human irradiation. Recent achievements associated with the study of molecular nature of many hereditary human diseases as well as the criticism of a fundamental principles of the mouse/mouse model for estimating the genetic risk on a new basis. Estimates of risk for the different classes of genetic diseases have been obtained using the doubling-dose method [ru

  7. How Can Consumers Be Sure a Genetic Test Is Valid and Useful?

    Science.gov (United States)

    ... a genetic test is valid and useful? How can consumers be sure a genetic test is valid ... particular gene or genetic change. In other words, can the test accurately detect whether a specific genetic ...

  8. Different differences: The use of ‘genetic ancestry’ versus race in biomedical human genetic research

    Science.gov (United States)

    Fujimura, Joan H.; Rajagopalan, Ramya

    2011-01-01

    This article presents findings from our ethnographic research on biomedical scientists’ studies of human genetic variation and common complex disease. We examine the socio-material work involved in genome-wide association studies (GWAS) and discuss whether, how, and when notions of race and ethnicity are or are not used. We analyze how researchers produce simultaneously different kinds of populations and population differences. Although many geneticists use race in their analyses, we find some who have invented a statistical genetics method and associated software that they use specifically to avoid using categories of race in their genetics analysis. Their method allows them to operationalize their concept of ‘genetic ancestry’ without resorting to notions of race and ethnicity. We focus on the construction and implementation of the software’s algorithms, and discuss the consequences and implications of the software technology for debates and policies around the use of race in genetics research. We also demonstrate that the production and use of their method involves a dynamic and fluid assemblage of actors in various disciplines responding to disciplinary and sociopolitical contexts and concerns. This assemblage also includes particular discourses on human history and geography as they become entangled with research on genetic markers and disease. We introduce the concept of ‘genome geography’, to analyze how some researchers studying human genetic variation ‘locate’ stretches of DNA in different places and times. The concept of genetic ancestry and the practice of genome geography rely on old discourses, but they also incorporate new technologies, infrastructures, and political and scientific commitments. Some of these new technologies provide opportunities to change some of our institutional and cultural forms and frames around notions of difference and similarity. Neverthless, we also highlight the slipperiness of genome geography and the

  9. Legislation on direct-to-consumer genetic testing in seven European countries.

    Science.gov (United States)

    Borry, Pascal; van Hellemondt, Rachel E; Sprumont, Dominique; Jales, Camilla Fittipaldi Duarte; Rial-Sebbag, Emmanuelle; Spranger, Tade Matthias; Curren, Liam; Kaye, Jane; Nys, Herman; Howard, Heidi

    2012-07-01

    An increasing number of private companies are now offering direct-to-consumer (DTC) genetic testing services. Although a lot of attention has been devoted to the regulatory framework of DTC genetic testing services in the USA, only limited information about the regulatory framework in Europe is available. We will report on the situation with regard to the national legislation on DTC genetic testing in seven European countries (Belgium, the Netherlands, Switzerland, Portugal, France, Germany, the United Kingdom). The paper will address whether these countries have legislation that specifically address the issue of DTC genetic testing or have relevant laws that is pertinent to the regulatory control of these services in their countries. The findings show that France, Germany, Portugal and Switzerland have specific legislation that defines that genetic tests can only be carried out by a medical doctor after the provision of sufficient information concerning the nature, meaning and consequences of the genetic test and after the consent of the person concerned. In the Netherlands, some DTC genetic tests could fall under legislation that provides the Minister the right to refuse to provide a license to operate if a test is scientifically unsound, not in accordance with the professional medical practice standards or if the expected benefit is not in balance with the (potential) health risks. Belgium and the United Kingdom allow the provision of DTC genetic tests.

  10. An overview of human genetic privacy

    OpenAIRE

    Shi, Xinghua; Wu, Xintao

    2016-01-01

    The study of human genomics is becoming a Big Data science, owing to recent biotechnological advances leading to availability of millions of personal genome sequences, which can be combined with biometric measurements from mobile apps and fitness trackers, and of human behavior data monitored from mobile devices and social media. With increasing research opportunities for integrative genomic studies through data sharing, genetic privacy emerges as a legitimate yet challenging concern that nee...

  11. Genetic effects on gene expression across human tissues

    NARCIS (Netherlands)

    Battle, Alexis; Brown, Christopher D.; Engelhardt, Barbara E.; Montgomery, Stephen B.; Aguet, François; Ardlie, Kristin G.; Cummings, Beryl B.; Gelfand, Ellen T.; Getz, Gad; Hadley, Kane; Handsaker, Robert E.; Huang, Katherine H.; Kashin, Seva; Karczewski, Konrad J.; Lek, Monkol; Li, Xiao; MacArthur, Daniel G.; Nedzel, Jared L.; Nguyen, Duyen T.; Noble, Michael S.; Segrè, Ayellet V.; Trowbridge, Casandra A.; Tukiainen, Taru; Abell, Nathan S.; Balliu, Brunilda; Barshir, Ruth; Basha, Omer; Bogu, Gireesh K.; Brown, Andrew; Castel, Stephane E.; Chen, Lin S.; Chiang, Colby; Conrad, Donald F.; Cox, Nancy J.; Damani, Farhan N.; Davis, Joe R.; Delaneau, Olivier; Dermitzakis, Emmanouil T.; Eskin, Eleazar; Ferreira, Pedro G.; Frésard, Laure; Gamazon, Eric R.; Garrido-Martín, Diego; Gewirtz, Ariel D. H.; Gliner, Genna; Gloudemans, Michael J.; Guigo, Roderic; Hall, Ira M.; Han, Buhm; He, Yuan

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression

  12. US system of oversight for genetic testing: a report from the Secretary's Advisory Committee on Genetics, Health and Society.

    Science.gov (United States)

    Ferreira-Gonzalez, Andrea; Teutsch, Steven; Williams, Marc S; Au, Sylvia M; Fitzgerald, Kevin T; Miller, Paul Steven; Fomous, Cathy

    2008-09-01

    As genetic testing technology is integrated into healthcare, increasingly detailed information about individual and population genetic variation is available to patients and providers. Health professionals use genetic testing to diagnose or assess the risk of disease in individuals, families and populations and to guide healthcare decisions. Consumers are beginning to explore personalized genomic services in an effort to learn more about their risk for common diseases. Scientific and technological advances in genetic testing, as with any newly introduced medical technology, present certain challenges to existing frameworks of oversight. In addition, the growing use of genetic testing will require a significant investment in evidence-based assessments to understand the validity and utility of these tests in clinical and personal decisionmaking. To optimize the use of genetic testing in healthcare, all sectors of the oversight system need to be strengthened and yet remain flexible in order to adapt to advances that will inevitably increase the range of genetic tests and methodologies.

  13. The genetic component of human longevity

    DEFF Research Database (Denmark)

    Dato, Serena; Thinggaard, Mette Sørensen; De Rango, Francesco

    2018-01-01

    In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic ...

  14. Commercial Genetic Testing and Its Governance in Chinese Society

    Science.gov (United States)

    Sui, Suli; Sleeboom-Faulkner, Margaret

    2015-01-01

    This paper provides an empirical account of commercial genetic testing in China. Commercial predictive genetic testing has emerged and is developing rapidly in China, but there is no strict and effective governance. This raises a number of serious social and ethical issues as a consequence of the enormous potential market for such tests. The paper…

  15. Genetic Engineering and Human Mental Ecology: Interlocking Effects and Educational Considerations

    OpenAIRE

    Affifi, Ramsey

    2017-01-01

    This paper describes some likely semiotic consequences of genetic engineering on what Gregory Bateson has called ?the mental ecology? (1979) of future humans, consequences that are less often raised in discussions surrounding the safety of GMOs (genetically modified organisms). The effects are as follows: an increased 1) habituation to the presence of GMOs in the environment, 2) normalization of empirically false assumptions grounding genetic reductionism, 3) acceptance that humans are capabl...

  16. Personalized medicine and access to genetic technologies.

    Science.gov (United States)

    den Exter, André

    2010-01-01

    Personalized medicine started after the Human Genome Project and is a relatively new concept that will dramatically change clinical practice. It offers clear clinical advantages by applying genetic diagnostic tests and then treating the patient with targeted medicines based on his or her genetic make-up. Its potential seems promising but there are quite a few legal concerns. One of these questions deals with the right to health care and access to genetic technologies. In this paper, the author explains the meaning of such a right to health care under international human rights law, its relevance for making genetic services eligible for public funding, how to cope with quality concerns of commercial testing, and finally, the patentability controversy and clinical access to genetic information. Apart from more traditional human rights concerns (consent, privacy, confidentiality) and genetics, States should be aware of the meaning of the equal access concept under international law and its consequences when introducing new technologies such genetic testing and services.

  17. ACOG Committee Opinion No. 409: Direct-to-consumer marketing of genetic testing.

    Science.gov (United States)

    2008-06-01

    Marketing of genetic testing, although similar to direct-to-consumer advertising of prescription drugs, raises additional concerns and considerations. These include issues of limited knowledge among patients and health care providers of available genetic tests, difficulty in interpretation of genetic testing results, lack of federal oversight of companies offering genetic testing, and issues of privacy and confidentiality. Until all of these considerations are addressed, direct or home genetic testing should be discouraged because of the potential harm of a misinterpreted or inaccurate result.

  18. Critical overview of applications of genetic testing in sport talent identification.

    Science.gov (United States)

    Roth, Stephen M

    2012-12-01

    Talent identification for future sport performance is of paramount interest for many groups given the challenges of finding and costs of training potential elite athletes. Because genetic factors have been implicated in many performance- related traits (strength, endurance, etc.), a natural inclination is to consider the addition of genetic testing to talent identification programs. While the importance of genetic factors to sport performance is generally not disputed, whether genetic testing can positively inform talent identification is less certain. The present paper addresses the science behind the genetic tests that are now commercially available (some under patent protection) and aimed at predicting future sport performance potential. Also discussed are the challenging ethical issues that emerge from the availability of these tests. The potential negative consequences associated with genetic testing of young athletes will very likely outweigh any positive benefit for sport performance prediction at least for the next several years. The paper ends by exploring the future possibilities for genetic testing as the science of genomics in sport matures over the coming decade(s).

  19. Blood groups and human groups: collecting and calibrating genetic data after World War Two.

    Science.gov (United States)

    Bangham, Jenny

    2014-09-01

    Arthur Mourant's The Distribution of the Human Blood Groups (1954) was an "indispensable" reference book on the "anthropology of blood groups" containing a vast collection of human genetic data. It was based on the results of blood-grouping tests carried out on half-a-million people and drew together studies on diverse populations around the world: from rural communities, to religious exiles, to volunteer transfusion donors. This paper pieces together sequential stages in the production of a small fraction of the blood-group data in Mourant's book, to examine how he and his colleagues made genetic data from people. Using sources from several collecting projects, I follow how blood was encountered, how it was inscribed, and how it was turned into a laboratory resource. I trace Mourant's analytical and representational strategies to make blood groups both credibly 'genetic' and understood as relevant to human ancestry, race and history. In this story, 'populations' were not simply given, but were produced through public health, colonial and post-colonial institutions, and by the labour and expertise of subjects, assistants and mediators. Genetic data were not self-evidently 'biological', but were shaped by existing historical and geographical identities, by political relationships, and by notions of kinship and belonging. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  20. Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease

    Science.gov (United States)

    Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.

    2014-01-01

    Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772

  1. Genetic Testing in Psychiatry: A Review of Attitudes and Beliefs

    Science.gov (United States)

    Lawrence, Ryan E; Appelbaum, Paul S.

    2012-01-01

    The advent of genetic testing for psychiatric conditions raises difficult questions about when and how the tests should be used. Development of policies regarding these issues may be informed in a variety of ways by the views of key stakeholders: patients, family members, healthcare professionals, and the general public. Here we review empirical studies of attitudes towards genetic testing among these groups. Patients and family members show strong interest in diagnostic and predictive genetic testing, and to a considerable extent psychiatrists share their enthusiasm. Prenatal test utilization seems likely to depend both on parental views on abortion and the seriousness of the disorder. Parents show a surprising degree of interest in predictive testing of children, even when there are no preventive interventions available. Many persons report themselves ready to alter their lifestyles and plans for marriage and family in response to test results. Respondents also fear negative consequences, from discrimination to being unable to cope with knowledge of their “genetic fate.” Empirical studies of beliefs about genetic testing suggest tests are likely to be embraced widely, but the studies have methodologic limitations, reducing the certainty of their conclusions, and indicating a need for further research with more representative samples. PMID:22168293

  2. Pitfalls in genetic testing: the story of missed SCN1A mutations.

    Science.gov (United States)

    Djémié, Tania; Weckhuysen, Sarah; von Spiczak, Sarah; Carvill, Gemma L; Jaehn, Johanna; Anttonen, Anna-Kaisa; Brilstra, Eva; Caglayan, Hande S; de Kovel, Carolien G; Depienne, Christel; Gaily, Eija; Gennaro, Elena; Giraldez, Beatriz G; Gormley, Padhraig; Guerrero-López, Rosa; Guerrini, Renzo; Hämäläinen, Eija; Hartmann, Corinna; Hernandez-Hernandez, Laura; Hjalgrim, Helle; Koeleman, Bobby P C; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R; Leu, Costin; Marini, Carla; McMahon, Jacinta M; Mei, Davide; Møller, Rikke S; Muhle, Hiltrud; Myers, Candace T; Nava, Caroline; Serratosa, Jose M; Sisodiya, Sanjay M; Stephani, Ulrich; Striano, Pasquale; van Kempen, Marjan J A; Verbeek, Nienke E; Usluer, Sunay; Zara, Federico; Palotie, Aarno; Mefford, Heather C; Scheffer, Ingrid E; De Jonghe, Peter; Helbig, Ingo; Suls, Arvid

    2016-07-01

    Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and NGS affect the molecular diagnosis of patients. Since mutations in SCN1A, the major gene implicated in epilepsy, are found in the majority of Dravet syndrome (DS) patients, we focused on missed SCN1A mutations. We sent out a survey to 16 genetic centers performing SCN1A testing. We collected data on 28 mutations initially missed using Sanger sequencing. All patients were falsely reported as SCN1A mutation-negative, both due to technical limitations and human errors. We illustrate the pitfalls of Sanger sequencing and most importantly provide evidence that SCN1A mutations are an even more frequent cause of DS than already anticipated.

  3. 130 FEMINISM AND HUMAN GENETIC ENGINEERING: A ...

    African Journals Online (AJOL)

    Ike Odimegwu

    genetic engineering to reconstruct the life of the human person. Negatively .... height, beauty or intelligence. Apart from ... cloning and stem-cell researches, artificial insemination. ..... form of manufacturing children involving their quality control.

  4. Psychological aspects of human cloning and genetic manipulation: the identity and uniqueness of human beings.

    Science.gov (United States)

    Morales, N M

    2009-01-01

    Human cloning has become one of the most controversial debates about reproduction in Western civilization. Human cloning represents asexual reproduction, but the critics of human cloning argue that the result of cloning is not a new individual who is genetically unique. There is also awareness in the scientific community, including the medical community, that human cloning and the creation of clones are inevitable. Psychology and other social sciences, together with the natural sciences, will need to find ways to help the healthcare system, to be prepared to face the new challenges introduced by the techniques of human cloning. One of those challenges is to help the healthcare system to find specific standards of behaviour that could be used to help potential parents to interact properly with cloned babies or children created through genetic manipulation. In this paper, the concepts of personality, identity and uniqueness are discussed in relationship to the contribution of twin studies in these areas. The author argues that an individual created by human cloning techniques or any other type of genetic manipulation will not show the donor's characteristics to the extent of compromising uniqueness. Therefore, claims to such an effect are needlessly alarmist.

  5. Research for genetic instability of human genome

    International Nuclear Information System (INIS)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M.; Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author)

  6. Genetic Testing between Private and Public Interests: Some Legal and Ethical Reflections.

    Science.gov (United States)

    Sándor, Judit

    2018-01-01

    In Europe, there is a wide variety of genetic tests that various private companies offer to patients or to consumers. More and more people have become curious about their genetic predisposition and susceptibility. Most public health-care systems, however, are not adequately prepared for responding to these new demands and to the results of these genetic tests as, quite often, there is no available therapy for the identified genetic condition. This discrepancy between the newly emerging expectations and the insufficient responses contributes to a further rift between the public and private sectors of health care. Individual genetic test results may also trigger the need for personalized medicine and may open up a competition between the two fields in offering further genetic tests and medical exams. Pro-active patients may need a different kind of information on genetic tests and their implications. In this context, how should the public health system deal with the challenges of private testing? Will private genetic testing transform health care from a solidarity-based system to an individualistic one? In this paper, I would like to explore the emerging legal and ethical issues related to genetic testing and the relevant legal framework that has developed so far. In the conclusion, I will examine the possibilities of further legal development.

  7. An Adaptive Genetic Association Test Using Double Kernel Machines.

    Science.gov (United States)

    Zhan, Xiang; Epstein, Michael P; Ghosh, Debashis

    2015-10-01

    Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study.

  8. Ethics or Morals: Understanding Students' Values Related to Genetic Tests on Humans

    Science.gov (United States)

    Lindahl, Mats Gunnar

    2009-10-01

    To make meaning of scientific knowledge in such a way that concepts and values of the life-world are not threatened is difficult for students and laymen. Ethics and morals pertaining to the use of genetic tests for hereditary diseases have been investigated and discussed by educators, anthropologists, medical doctors and philosophers giving, at least in part, diverging results. This study investigates how students explain and understand their argumentation about dilemmas concerning gene testing for the purpose to reduce hereditary diseases. Thirteen students were interviewed about their views on this issue. Qualitative analysis was done primarily by relating students’ argumentation to their movements between ethics and morals as opposing poles. Students used either objective or subjective knowledge but had difficulties to integrate them. They tried to negotiate ethic arguments using utilitarian motives and medical knowledge with sympathy or irrational and personal arguments. They discussed the embryo’s moral status to decide if it was replaceable in a social group or not. The educational implications of the students’ use of knowledge in personal arguments are discussed.

  9. Genetic testing and counselling in inherited eye disease

    DEFF Research Database (Denmark)

    Brøndum-Nielsen, Karen; Jensen, Hanne; Timshel, Susanne

    2013-01-01

    Advances in genetics have made genetic testing in patients with inherited eye disease increasingly accessible, and the initiation of clinical intervention trials makes it increasingly clinically relevant. Based on a multidisciplinary collaboration between ophthalmologists and clinical geneticists...

  10. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes.

    Science.gov (United States)

    Driver, John P; Chen, Yi-Guang; Mathews, Clayton E

    2012-01-01

    Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.

  11. Genetic tests obtainable through pharmacies: the good, the bad, and the ugly.

    Science.gov (United States)

    Patrinos, George P; Baker, Darrol J; Al-Mulla, Fahd; Vasiliou, Vasilis; Cooper, David N

    2013-07-08

    Genomic medicine seeks to exploit an individual's genomic information in the context of guiding the clinical decision-making process. In the post-genomic era, a range of novel molecular genetic testing methodologies have emerged, allowing the genetic testing industry to grow at a very rapid pace. As a consequence, a considerable number of different private diagnostic testing laboratories now provide a wide variety of genetic testing services, often employing a direct-to-consumer (DTC) business model to identify mutations underlying (or associated with) common Mendelian disorders, to individualize drug response, to attempt to determine an individual's risk of a multitude of complex (multifactorial) diseases, or even to determine a person's identity. Recently, we have noted a novel trend in the provision of private molecular genetic testing services, namely saliva and buccal swab collection kits (for deoxyribonucleic acid (DNA) isolation) being offered for sale over the counter by pharmacies. This situation is somewhat different from the standard DTC genetic testing model, since pharmacists are healthcare professionals who are supposedly qualified to give appropriate advice to their clients. There are, however, a number of issues to be addressed in relation to the marketing of DNA collection kits for genetic testing through pharmacies, namely a requirement for regulatory clearance, the comparative lack of appropriate genetics education of the healthcare professionals involved, and most importantly, the lack of awareness on the part of both the patients and the general public with respect to the potential benefits or otherwise of the various types of genetic test offered, which may result in confusion as to which test could be beneficial in their own particular case. We believe that some form of genetic counseling should ideally be integrated into, and made inseparable from, the genetic testing process, while pharmacists should be obliged to receive some basic

  12. Assessment of genetic risk for human exposure to radiation

    International Nuclear Information System (INIS)

    Sevcenko, V.A.; Rubanovic, A.V.

    2002-01-01

    Full text: The methodology of assessing the genetic risk of radiation exposure is based on the concept of 'hitting the target' in development of which N.V. Timofeeff-Ressovsky has played and important role. To predict genetic risk posed by irradiation, the U N Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has worked out direct and indirect methods of assessment, extrapolation, integral and palpitation criteria of risk analysis that together permit calculating the risk from human exposure on the basis of data obtained for mice. Based on the reports of UNSCEAR for the period from 1958 to 2001 the paper presents a retrospective analysis of the use of direct methods and the doubling dose method for quantitative determination of the genetic risk of human exposure expressed as different hereditary diseases. As early as 1962 UNSCEAR estimated the doubling dose (a dose causing as many mutations as those occurring spontaneously during one generation) at 1 Gy for cases of exposure to ionizing radiations with low LET at a low dose rate and this value was confirmed in the next UNSCEAR reports up to now. For cases of acute irradiation the doubling dose was estimated at 0,3-0,4 Gy for the period under review. The paper considers the evolution of the concepts of human natural hereditary variability which is a basis for assessing the risk of exposure by the doubling dose method. The level of human natural genetic variability per 1 000 000 newborns is estimated at 738 000 hereditary diseases including mendelian, chromosomal and multifactorial ones. The greatest difficulties in assessing the doubling dose value were found to occur in the case of multifactorial diseases the pheno typical expression of which depends on mutational events in polygenic systems and on numerous environmental factors. The introduction in calculations of the potential recoverability correction factor (RPCF) made it possible to assess the genetic risk taking into account this class of

  13. Attitudes about regulation among direct-to-consumer genetic testing customers.

    Science.gov (United States)

    Bollinger, Juli Murphy; Green, Robert C; Kaufman, David

    2013-05-01

    The first regulatory rulings by the U.S. Food and Drug Administration on direct-to-consumer (DTC) genetic testing services are expected soon. As the process of regulating these and other genetic tests moves ahead, it is important to understand the preferences of DTC genetic testing customers about the regulation of these products. An online survey of customers of three DTC genetic testing companies was conducted 2-8 months after they had received their results. Participants were asked about the importance of regulating the companies selling DTC genetic tests. Most of the 1,046 respondents responded that it would be important to have a nongovernmental (84%) or governmental agency (73%) monitor DTC companies' claims to ensure the consistency with scientific evidence. However, 66% also felt that it was important that DTC tests be available without governmental oversight. Nearly, all customers favored a policy to ensure that insurers and law enforcement officials could not access their information. Although many DTC customers want access to genetic testing services without restrictions imposed by the government regulation, most also favor an organization operating alongside DTC companies that will ensure that the claims made by the companies are consistent with sound scientific evidence. This seeming contradiction may indicate that DTC customers want to ensure that they have unfettered access to high-quality information. Additionally, policies to help ensure privacy of data would be welcomed by customers, despite relatively high confidence in the companies.

  14. Morphological and Genetic Diversity of Trichuris spp. recovered from Humans and Pigs

    DEFF Research Database (Denmark)

    Nissen, Sofie; Nejsum, Peter; Christensen, Henrik

    2009-01-01

    The nematodes, Trichuris suis and Trichuris trichiura are believed to be two separate but closely related species. The aim of our study was to examine the morphological and genetic diversity of Trichuris spp. recovered from pigs and humans. Sympatric worm material isolated from 10 humans and 5 pigs...... found in pig-derived worms (31% of the human-derived worms, consensus sequence 531 nucleotides long). The results indicated that the nematodes found in pigs belong to a genetically distinct species (T. suis) whereas the nematodes in humans showed considerable genetic variability either related...... to ancestral polymorphism or more recent cross-breeding between T. trichiura and T. suis....

  15. Genetic Testing between Private and Public Interests: Some Legal and Ethical Reflections

    Directory of Open Access Journals (Sweden)

    Judit Sándor

    2018-01-01

    Full Text Available In Europe, there is a wide variety of genetic tests that various private companies offer to patients or to consumers. More and more people have become curious about their genetic predisposition and susceptibility. Most public health-care systems, however, are not adequately prepared for responding to these new demands and to the results of these genetic tests as, quite often, there is no available therapy for the identified genetic condition. This discrepancy between the newly emerging expectations and the insufficient responses contributes to a further rift between the public and private sectors of health care. Individual genetic test results may also trigger the need for personalized medicine and may open up a competition between the two fields in offering further genetic tests and medical exams. Pro-active patients may need a different kind of information on genetic tests and their implications. In this context, how should the public health system deal with the challenges of private testing? Will private genetic testing transform health care from a solidarity-based system to an individualistic one? In this paper, I would like to explore the emerging legal and ethical issues related to genetic testing and the relevant legal framework that has developed so far. In the conclusion, I will examine the possibilities of further legal development.

  16. Molecular biology of breast cancer metastasis: Genetic regulation of human breast carcinoma metastasis

    International Nuclear Information System (INIS)

    Welch, Danny R; Steeg, Patricia S; Rinker-Schaeffer, Carrie W

    2000-01-01

    The present is an overview of recent data that describes the genetic underpinnings of the suppression of cancer metastasis. Despite the explosion of new information about the genetics of cancer, only six human genes have thus far been shown to suppress metastasis functionally. Not all have been shown to be functional in breast carcinoma. Several additional genes inhibit various steps of the metastatic cascade, but do not necessarily block metastasis when tested using in vivo assays. The implications of this are discussed. Two recently discovered metastasis suppressor genes block proliferation of tumor cells at a secondary site, offering a new target for therapeutic intervention

  17. Awareness and uptake of direct-to-consumer genetic testing among cancer cases, their relatives, and controls: the Northwest Cancer Genetics Network.

    Science.gov (United States)

    Hall, Taryn O; Renz, Anne D; Snapinn, Katherine W; Bowen, Deborah J; Edwards, Karen L

    2012-07-01

    To determine if awareness of, interest in, and use of direct-to-consumer (DTC) genetic testing is greater in a sample of high-risk individuals (cancer cases and their relatives), compared to controls. Participants were recruited from the Northwest Cancer Genetics Network. A follow-up survey was mailed to participants to assess DTC genetic testing awareness, interest, and use. One thousand two hundred sixty-seven participants responded to the survey. Forty-nine percent of respondents were aware of DTC genetic testing. Of those aware, 19% indicated interest in obtaining and testing. Additional information supplied by respondents who reported use of DTC genetic tests indicated that 55% of these respondents likely engaged in clinical genetic testing, rather than DTC genetic testing. Awareness of DTC genetic testing was greater in our sample of high-risk individuals than in controls and population-based studies. Although interest in and use of these tests among cases in our sample were equivalent to other population-based studies, interest in testing was higher among relatives and people who self-referred for a registry focused on cancer than among cases and controls. Additionally, our results suggest that there may be some confusion about what constitutes DTC genetic testing.

  18. Genetic & epigenetic approach to human obesity

    Directory of Open Access Journals (Sweden)

    K Rajender Rao

    2014-01-01

    Full Text Available Obesity is an important clinical and public health challenge, epitomized by excess adipose tissue accumulation resulting from an imbalance in energy intake and energy expenditure. It is a forerunner for a variety of other diseases such as type-2-diabetes (T2D, cardiovascular diseases, some types of cancer, stroke, hyperlipidaemia and can be fatal leading to premature death. Obesity is highly heritable and arises from the interplay of multiple genes and environmental factors. Recent advancements in Genome-wide association studies (GWAS have shown important steps towards identifying genetic risks and identification of genetic markers for lifestyle diseases, especially for a metabolic disorder like obesity. According to the 12 th u0 pdate of Human Obesity Gene Map there are 253 quantity trait loci (QTL for obesity related phenotypes from 61 genome wide scan studies. Contribution of genetic propensity of individual ethnic and racial variations in obesity is an active area of research. Further, understanding its complexity as to how these variations could influence ones susceptibility to become or remain obese will lead us to a greater understanding of how obesity occurs and hopefully, how to prevent and treat this condition. In this review, various strategies adapted for such an analysis based on the recent advances in genome wide and functional variations in human obesity are discussed.

  19. Assessing the readiness of precision medicine interoperabilty: An exploratory study of the National Institutes of Health genetic testing registry.

    Science.gov (United States)

    Ronquillo, Jay G; Weng, Chunhua; Lester, William T

    2017-11-17

      Precision medicine involves three major innovations currently taking place in healthcare:  electronic health records, genomics, and big data.  A major challenge for healthcare providers, however, is understanding the readiness for practical application of initiatives like precision medicine.   To better understand the current state and challenges of precision medicine interoperability using a national genetic testing registry as a starting point, placed in the context of established interoperability formats.   We performed an exploratory analysis of the National Institutes of Health Genetic Testing Registry.  Relevant standards included Health Level Seven International Version 3 Implementation Guide for Family History, the Human Genome Organization Gene Nomenclature Committee (HGNC) database, and Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT).  We analyzed the distribution of genetic testing laboratories, genetic test characteristics, and standardized genome/clinical code mappings, stratified by laboratory setting. There were a total of 25472 genetic tests from 240 laboratories testing for approximately 3632 distinct genes.  Most tests focused on diagnosis, mutation confirmation, and/or risk assessment of germline mutations that could be passed to offspring.  Genes were successfully mapped to all HGNC identifiers, but less than half of tests mapped to SNOMED CT codes, highlighting significant gaps when linking genetic tests to standardized clinical codes that explain the medical motivations behind test ordering.  Conclusion:  While precision medicine could potentially transform healthcare, successful practical and clinical application will first require the comprehensive and responsible adoption of interoperable standards, terminologies, and formats across all aspects of the precision medicine pipeline.

  20. Assessing the readiness of precision medicine interoperabilty: An exploratory study of the National Institutes of Health genetic testing registry

    Directory of Open Access Journals (Sweden)

    Jay G Ronquillo

    2017-11-01

    Full Text Available Background:  Precision medicine involves three major innovations currently taking place in healthcare:  electronic health records, genomics, and big data.  A major challenge for healthcare providers, however, is understanding the readiness for practical application of initiatives like precision medicine. Objective:  To better understand the current state and challenges of precision medicine interoperability using a national genetic testing registry as a starting point, placed in the context of established interoperability formats. Methods:  We performed an exploratory analysis of the National Institutes of Health Genetic Testing Registry.  Relevant standards included Health Level Seven International Version 3 Implementation Guide for Family History, the Human Genome Organization Gene Nomenclature Committee (HGNC database, and Systematized Nomenclature of Medicine – Clinical Terms (SNOMED CT.  We analyzed the distribution of genetic testing laboratories, genetic test characteristics, and standardized genome/clinical code mappings, stratified by laboratory setting. Results: There were a total of 25472 genetic tests from 240 laboratories testing for approximately 3632 distinct genes.  Most tests focused on diagnosis, mutation confirmation, and/or risk assessment of germline mutations that could be passed to offspring.  Genes were successfully mapped to all HGNC identifiers, but less than half of tests mapped to SNOMED CT codes, highlighting significant gaps when linking genetic tests to standardized clinical codes that explain the medical motivations behind test ordering.   Conclusion:  While precision medicine could potentially transform healthcare, successful practical and clinical application will first require the comprehensive and responsible adoption of interoperable standards, terminologies, and formats across all aspects of the precision medicine pipeline.

  1. Developing genetic competency in undergraduate nursing students through the context of human disease and the constructivist framework

    Science.gov (United States)

    Tribble, Leta Meole

    Nowhere is the influence of genetics more extensively seen than in medicine. More precise diagnostic testing, prevention methods, and risk counseling have resulted from recent decades of genetics research, including the Human Genome Project (HGP). The expansion in genetics knowledge and related technologies will drive a major paradigm shift from diagnosis and treatment to preventive medicine. Resulting from this predicted shift are educational challenges for healthcare professionals including both physicians and nurses. The largest group of healthcare providers is registered professional nurses whose work allows a unique and holistic view of patients and families, often caring for patients throughout the life span. Nurses need to understand basic genetic concepts including the role of genes in common diseases, to identify individuals at risk through the collection of informed family histories, to provide information about genetic testing and informed consent, and to know when and how to make appropriate referrals to genetic specialists. The purpose of this study was to expand the clinical application and use of genetic principles in patient management and care. To do this, a survey of South Carolina nursing educators from twenty two nursing programs was conducted to determine the extent of genetic content in the curriculum. The second part of the study was teaching a semester course in human genetics to undergraduate nursing students, a need identified in the literature review and supported by results of the nursing programs survey. Through the use of clinical case studies, PBL activities, and "shrink wrapped" lectures, all congruent with the constructivist viewpoint of learning, student's objective post-intervention measurements indicated significant improvement in content knowledge with an effect size of 1.6 and significant improvement in their ability to analyze and draw the family history in a pedigree format. An attitudinal tool used to assess student

  2. Human genetics in Johannesburg, South Africa: Past, present and ...

    African Journals Online (AJOL)

    Genetic screening was then initiated for the Jewish community because of their high carrier rate for Tay-Sachs disease. Educational courses in human genetics were offered at Wits Medical School, and medical as well as other health professionals began to be trained. Research, supported by national and international ...

  3. Human fertility, molecular genetics, and natural selection in modern societies.

    Directory of Open Access Journals (Sweden)

    Felix C Tropf

    Full Text Available Research on genetic influences on human fertility outcomes such as number of children ever born (NEB or the age at first childbirth (AFB has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758, results show significant additive genetic effects on both traits explaining 10% (SE = 5 of the variance in the NEB and 15% (SE = 4 in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of -0.62 (SE = 0.27, p-value = 0.02. This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size.

  4. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  5. Charcot-Marie-Tooth disease: frequency of genetic subtypes and guidelines for genetic testing.

    LENUS (Irish Health Repository)

    Murphy, Sinead M

    2012-07-01

    Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous group of diseases with approximately 45 different causative genes described. The aims of this study were to determine the frequency of different genes in a large cohort of patients with CMT and devise guidelines for genetic testing in practice.

  6. Implications of genetic testing for the insurance industry: the UK example.

    Science.gov (United States)

    Raeburn, Sandy

    2002-01-01

    This report summarises the controversy of genetic tests and insurance, with a focus on the UK situation during the past decade. UK experience provides insight for future strategies to help people with genetic disadvantages make insurance provision for themselves and their families. Non-disclosure of genetic test results (already carried out for clinical purposes) may not benefit people at risk of genetic disorders or with positive genetic tests. The pressure of geneticists over a decade to prevent disclosure to insurers may have masked opportunities to use insurance to provide help for people with genetic disadvantages. To seize the opportunities now, there must be collaboration, not conflict. Politicians, geneticists, social scientists and all elements of the insurance industry can contribute to wise solutions.

  7. Human genetics of infectious diseases: between proof of principle and paradigm.

    Science.gov (United States)

    Alcaïs, Alexandre; Abel, Laurent; Casanova, Jean-Laurent

    2009-09-01

    The observation that only a fraction of individuals infected by infectious agents develop clinical disease raises fundamental questions about the actual pathogenesis of infectious diseases. Epidemiological and experimental evidence is accumulating to suggest that human genetics plays a major role in this process. As we discuss here, human predisposition to infectious diseases seems to cover a continuous spectrum from monogenic to polygenic inheritance. Although many studies have provided proof of principle that infectious diseases may result from various types of inborn errors of immunity, the genetic determinism of most infectious diseases in most patients remains unclear. However, in the future, studies in human genetics are likely to establish a new paradigm for infectious diseases.

  8. Ethical issues in predictive genetic testing: a public health perspective.

    Science.gov (United States)

    Fulda, K G; Lykens, K

    2006-03-01

    As a result of the increase in genetic testing and the fear of discrimination by insurance companies, employers, and society as a result of genetic testing, the disciplines of ethics, public health, and genetics have converged. Whether relatives of someone with a positive predictive genetic test should be notified of the results and risks is a matter urgently in need of debate. Such a debate must encompass the moral and ethical obligations of the diagnosing physician and the patient. The decision to inform or not will vary depending on what moral theory is used. Utilising the utilitarian and libertarian theories produces different outcomes. The principles of justice and non-maleficence will also play an important role in the decision.

  9. Genetic parameters on Bali cattle progeny test population

    Science.gov (United States)

    Hariansyah, A. R.; Raharjo, A.; Zainuri, A.; Parwoto, Y.; Prasetiyo, D.; Prastowo, S.; Widyas, N.

    2018-03-01

    Bali cattle (Bos javanicus) is Indonesian indigenous cattle with having superior genetics potential on fitness traits in tropical environment and low feed quality. Bali Cattle Breeding Center Pulukan Indonesia conducted progeny test per annum in order to select bulls using offspring’s phenotype. This paper aimed to estimate the genetic parameters of yearling weight in Bali cattle progeny test populations and to observe the variation between periods in the above breeding center. Data were collected from the year of 2013 to 2014. There were four bulls (3 tests, 1 AI control) in 2013 and five bulls (4 tests, 1 AI) in 2014. Thirty breeding females were allocated per paddock per bull and allowed to mate naturally. In total 80 and 104 offspring’s records were obtained from 2013 and 2014 data, respectively. We built half-sib family model to estimate the additive genetic variance due to the sire and later estimate the breeding value (EBV) of each sire. Results showed that in 2013 the heritability (h2) for yearling weight was 0.19 while in 2014 was 0.79. In both years, tested bulls had higher EBV compared to the control bulls. The remarkable difference of heritability between years was due to the variations among bull candidates which might differ every year with regards to their origins. The fact that the EBV of tested bulls were higher than the control bulls gave us insight that despite the conservation policy and the continuous departure of Bali cattle bulls outside the Island, the population could still maintain its genetic quality.

  10. Research for genetic instability of human genome

    Energy Technology Data Exchange (ETDEWEB)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M. (National Inst. of Radiological Sciences, Chiba (Japan)); Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author).

  11. Dynamics and ethics of comprehensive preimplantation genetic testing: a review of the challenges.

    Science.gov (United States)

    Hens, Kristien; Dondorp, Wybo; Handyside, Alan H; Harper, Joyce; Newson, Ainsley J; Pennings, Guido; Rehmann-Sutter, Christoph; de Wert, Guido

    2013-01-01

    Genetic testing of preimplantation embryos has been used for preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS). Microarray technology is being introduced in both these contexts, and whole genome sequencing of blastomeres is also expeted to become possible soon. The amount of extra information such tests will yield may prove to be beneficial for embryo selection, will also raise various ethical issues. We present an overview of the developments and an agenda-setting exploration of the ethical issues. The paper is a joint endeavour by the presenters at an explorative 'campus meeting' organized by the European Society of Human Reproduction and Embryology in cooperation with the department of Health, Ethics & Society of the Maastricht University (The Netherlands). The increasing amount and detail of information that new screening techniques such as microarrays and whole genome sequencing offer does not automatically coincide with an increasing understanding of the prospects of an embryo. From a technical point of view, the future of comprehensive embryo testing may go together with developments in preconception carrier screening. From an ethical point of view, the increasing complexity and amount of information yielded by comprehensive testing techniques will lead to challenges to the principle of reproductive autonomy and the right of the child to an open future, and may imply a possible larger responsibility of the clinician towards the welfare of the future child. Combinations of preconception carrier testing and embryo testing may solve some of these ethical questions but could introduce others. As comprehensive testing techniques are entering the IVF clinic, there is a need for a thorough rethinking of traditional ethical paradigms regarding medically assisted reproduction.

  12. Genetic testing and your cancer risk

    Science.gov (United States)

    ... patientinstructions/000842.htm Genetic testing and your cancer risk To use the sharing features on this page, ... urac.org). URAC's accreditation program is an independent audit to verify that A.D.A.M. follows ...

  13. Privacy and confidentiality measures in genetic testing and counselling: arguing on genetic exceptionalism again?

    Science.gov (United States)

    Witt, Magdalena M; Witt, Michał P

    2016-11-01

    Medical confidentiality in clinical genetics poses an important question about its scope, which would be in line with professional ethics and simple honesty. It is already known that the maintenance of absolute anonymity, bearing in mind the current progress of genetic techniques, is virtually impossible. On the other hand, our insight into the information contained in the human genome is increasing. This mini-review presents the authors' standpoint regarding this complex and difficult issue.

  14. Expertise for Teaching Biology Situated in the Context of Genetic Testing

    Science.gov (United States)

    Van der Zande, Paul; Akkerman, Sanne F.; Brekelmans, Mieke; Waarlo, Arend Jan; Vermunt, Jan D.

    2012-07-01

    Contemporary genomics research will impact the daily practice of biology teachers who want to teach up-to-date genetics in secondary education. This article reports on a research project aimed at enhancing biology teachers' expertise for teaching genetics situated in the context of genetic testing. The increasing body of scientific knowledge concerning genetic testing and the related consequences for decision-making indicate the societal relevance of an educational approach based on situated learning. What expertise do biology teachers need for teaching genetics in the personal health context of genetic testing? This article describes the required expertise by exploring the educational practice. Nine experienced teachers were interviewed about the pedagogical content, moral and interpersonal expertise areas concerning how to teach genetics in the personal health context of genetic testing, and the lessons of five of them were observed. The findings showed that the required teacher expertise encompasses specific pedagogical content expertise, interpersonal expertise and a preference for teacher roles and teaching approaches for the moral aspects of teaching in this context. A need for further development of teaching and learning activities for (reflection on) moral reasoning came to the fore. Suggestions regarding how to apply this expertise into context-based genetics education are discussed.

  15. Genetics and Human Agency: Comment on Dar-Nimrod and Heine (2011)

    Science.gov (United States)

    Turkheimer, Eric

    2011-01-01

    Dar-Nimrod and Heine (2011) decried genetic essentialism without denying the importance of genetics in the genesis of human behavior, and although I agree on both counts, a deeper issue remains unaddressed: how should we adjust our cognitions about our own behavior in light of genetic influence, or is it perhaps not necessary to take genetics into…

  16. A Human Capital Model of Educational Test Scores

    DEFF Research Database (Denmark)

    McIntosh, James; D. Munk, Martin

    Latent class Poisson count models are used to analyze a sample of Danish test score results from a cohort of individuals born in 1954-55 and tested in 1968. The procedure takes account of unobservable effects as well as excessive zeros in the data. The bulk of unobservable effects are uncorrelated...... with observable parental attributes and, thus, are environmental rather than genetic in origin. We show that the test scores measure manifest or measured ability as it has evolved over the life of the respondent and is, thus, more a product of the human capital formation process than some latent or fundamental...... measure of pure cognitive ability. We find that variables which are not closely associated with traditional notions of intelligence explain a significant proportion of the variation in test scores. This adds to the complexity of interpreting test scores and suggests that school culture, attitudes...

  17. Direct-to-Consumer Genetic Testing: Helping Patients Make Informed Choices
.

    Science.gov (United States)

    Mahon, Suzanne M

    2018-02-01

    Using direct-to-consumer genetic testing (DTCGT), individuals can order a genetic test, collect and submit a saliva sample, and obtain results about their genetic risk for a variety of traits and health conditions without involving a healthcare provider. Potential benefits of DTCGT include personal control over genetic information and health management decisions, whereas potential risks include misinterpretation of results, psychosocial distress, and lack of informed consent. Oncology nurses can provide education, support, and advocacy to enable patients to truly understand the positives and negatives associated with DTCGT.
.

  18. Biomarkers of genetic damage in human populations exposed to pesticides

    International Nuclear Information System (INIS)

    Aiassa, Delia; Manas, Fernando; Bosch, Beatriz; Gentile, Natalia; Bernardi, Natali; Gorla, Nora

    2012-01-01

    The effect of pesticides on human, animal and environmental health has been cause of concern in the scientific community for a long time. Numerous studies have reported that pesticides are not harmless and that their use can lead to harmful biological effects in the medium and long term, in exposed human and animals, and their offspring. The importance of early detection of genetic damage is that it allows us to take the necessary measures to reduce or eliminate the exposure to the deleterious agent when damage is still reversible, and thus to prevent and to diminish the risk of developing tumors or other alterations. In this paper we reviewed the main concepts in the field, the usefulness of genotoxicity studies and we compiled studies performed during the last twenty years on genetic monitoring of people occupationally exposed to pesticides. we think that genotoxicity tests, including that include chromosomal aberrations, micronucleus, sister chromatid exchanges and comet assays, should be considered as essential tools in the implementation of complete medical supervision for people exposed to potential environmental pollutants, particularly for those living in the same place as others who were others have already developed some type of malignancy. This action is particularly important at early stages to prevent the occurrence of tumors, especially from environmental origins.

  19. Pathways and barriers to genetic testing and screening: Molecular genetics meets the high-risk family. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Duster, T.

    1998-11-01

    The proliferation of genetic screening and testing is requiring increasing numbers of Americans to integrate genetic knowledge and interventions into their family life and personal experience. This study examines the social processes that occur as families at risk for two of the most common autosomal recessive diseases, sickle cell disease (SC) and cystic fibrosis (CF), encounter genetic testing. Each of these diseases is found primarily in a different ethnic/racial group (CF in Americans of North European descent and SC in Americans of West African descent). This has permitted them to have a certain additional lens on the role of culture in integrating genetic testing into family life and reproductive planning. A third type of genetic disorder, the thalassemias was added to the sample in order to extent the comparative frame and to include other ethnic and racial groups.

  20. The NIH genetic testing registry: a new, centralized database of genetic tests to enable access to comprehensive information and improve transparency.

    Science.gov (United States)

    Rubinstein, Wendy S; Maglott, Donna R; Lee, Jennifer M; Kattman, Brandi L; Malheiro, Adriana J; Ovetsky, Michael; Hem, Vichet; Gorelenkov, Viatcheslav; Song, Guangfeng; Wallin, Craig; Husain, Nora; Chitipiralla, Shanmuga; Katz, Kenneth S; Hoffman, Douglas; Jang, Wonhee; Johnson, Mark; Karmanov, Fedor; Ukrainchik, Alexander; Denisenko, Mikhail; Fomous, Cathy; Hudson, Kathy; Ostell, James M

    2013-01-01

    The National Institutes of Health Genetic Testing Registry (GTR; available online at http://www.ncbi.nlm.nih.gov/gtr/) maintains comprehensive information about testing offered worldwide for disorders with a genetic basis. Information is voluntarily submitted by test providers. The database provides details of each test (e.g. its purpose, target populations, methods, what it measures, analytical validity, clinical validity, clinical utility, ordering information) and laboratory (e.g. location, contact information, certifications and licenses). Each test is assigned a stable identifier of the format GTR000000000, which is versioned when the submitter updates information. Data submitted by test providers are integrated with basic information maintained in National Center for Biotechnology Information's databases and presented on the web and through FTP (ftp.ncbi.nih.gov/pub/GTR/_README.html).

  1. Resources for human genetics on the World Wide Web.

    Science.gov (United States)

    Osborne, L R; Lee, J R; Scherer, S W

    1997-09-01

    A little over a century ago, the HMS Beagle sailed the Pacific Ocean bringing Charles Darwin to the perfect environment in which to piece together his observations forming the theory of evolution. Now, geneticists and laypeople alike surf the equally formidable waters of the internet in search of enlightenment. Here, we attempt to help you navigate towards resources for human genetics by providing maps to three destinations: The Human Genome Project (Box 1), education (Box 2), and human genetic diseases (Box 3). For each, we highlight a few sites that we consider are the most informative and original. A more extensive list containing other useful sites has been compiled and posted on a 'jump site' at: http:/(/)www.cgdn.generes.ca/.

  2. New Advances of Preimplantation and Prenatal Genetic Screening and Noninvasive Testing as a Potential Predictor of Health Status of Babies

    Directory of Open Access Journals (Sweden)

    Tanya Milachich

    2014-01-01

    Full Text Available The current morphologically based selection of human embryos for transfer cannot detect chromosome aneuploidies. So far, only biopsy techniques have been able to screen for chromosomal aneuploidies in the in vitro fertilization (IVF embryos. Preimplantation genetic diagnosis (PGD or screening (PGS involves the biopsy of oocyte polar bodies or embryonic cells and has become a routine clinical procedure in many IVF clinics worldwide, including recent development of comprehensive chromosome screening of all 23 pairs of chromosomes by microarrays for aneuploidy screening. The routine preimplantation and prenatal genetic diagnosis (PND require testing in an aggressive manner. These procedures may be invasive to the growing embryo and fetus and potentially could compromise the clinical outcome. Therefore the aim of this review is to summarize not only the new knowledge on preimplantation and prenatal genetic diagnosis in humans, but also on the development of potential noninvasive embryo and fetal testing that might play an important role in the future.

  3. New Advances of Preimplantation and Prenatal Genetic Screening and Noninvasive Testing as a Potential Predictor of Health Status of Babies

    Science.gov (United States)

    2014-01-01

    The current morphologically based selection of human embryos for transfer cannot detect chromosome aneuploidies. So far, only biopsy techniques have been able to screen for chromosomal aneuploidies in the in vitro fertilization (IVF) embryos. Preimplantation genetic diagnosis (PGD) or screening (PGS) involves the biopsy of oocyte polar bodies or embryonic cells and has become a routine clinical procedure in many IVF clinics worldwide, including recent development of comprehensive chromosome screening of all 23 pairs of chromosomes by microarrays for aneuploidy screening. The routine preimplantation and prenatal genetic diagnosis (PND) require testing in an aggressive manner. These procedures may be invasive to the growing embryo and fetus and potentially could compromise the clinical outcome. Therefore the aim of this review is to summarize not only the new knowledge on preimplantation and prenatal genetic diagnosis in humans, but also on the development of potential noninvasive embryo and fetal testing that might play an important role in the future. PMID:24783200

  4. Ethical issues in predictive genetic testing: a public health perspective

    Science.gov (United States)

    Fulda, K G; Lykens, K

    2006-01-01

    As a result of the increase in genetic testing and the fear of discrimination by insurance companies, employers, and society as a result of genetic testing, the disciplines of ethics, public health, and genetics have converged. Whether relatives of someone with a positive predictive genetic test should be notified of the results and risks is a matter urgently in need of debate. Such a debate must encompass the moral and ethical obligations of the diagnosing physician and the patient. The decision to inform or not will vary depending on what moral theory is used. Utilising the utilitarian and libertarian theories produces different outcomes. The principles of justice and non‐maleficence will also play an important role in the decision. PMID:16507657

  5. Fine-scaled human genetic structure revealed by SNP microarrays.

    Science.gov (United States)

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  6. Genetic determination of human facial morphology: links between cleft-lips and normal variation.

    Science.gov (United States)

    Boehringer, Stefan; van der Lijn, Fedde; Liu, Fan; Günther, Manuel; Sinigerova, Stella; Nowak, Stefanie; Ludwig, Kerstin U; Herberz, Ruth; Klein, Stefan; Hofman, Albert; Uitterlinden, Andre G; Niessen, Wiro J; Breteler, Monique M B; van der Lugt, Aad; Würtz, Rolf P; Nöthen, Markus M; Horsthemke, Bernhard; Wieczorek, Dagmar; Mangold, Elisabeth; Kayser, Manfred

    2011-11-01

    Recent genome-wide association studies have identified single nucleotide polymorphisms (SNPs) associated with non-syndromic cleft lip with or without cleft palate (NSCL/P), and other previous studies showed distinctly differing facial distance measurements when comparing unaffected relatives of NSCL/P patients with normal controls. Here, we test the hypothesis that genetic loci involved in NSCL/P also influence normal variation in facial morphology. We tested 11 SNPs from 10 genomic regions previously showing replicated evidence of association with NSCL/P for association with normal variation of nose width and bizygomatic distance in two cohorts from Germany (N=529) and the Netherlands (N=2497). The two most significant associations found were between nose width and SNP rs1258763 near the GREM1 gene in the German cohort (P=6 × 10(-4)), and between bizygomatic distance and SNP rs987525 at 8q24.21 near the CCDC26 gene (P=0.017) in the Dutch sample. A genetic prediction model explained 2% of phenotype variation in nose width in the German and 0.5% of bizygomatic distance variation in the Dutch cohort. Although preliminary, our data provide a first link between genetic loci involved in a pathological facial trait such as NSCL/P and variation of normal facial morphology. Moreover, we present a first approach for understanding the genetic basis of human facial appearance, a highly intriguing trait with implications on clinical practice, clinical genetics, forensic intelligence, social interactions and personal identity.

  7. The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach

    Directory of Open Access Journals (Sweden)

    Amr T. M. Saeb

    2016-01-01

    Full Text Available Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases.

  8. Measuring the genetic influence on human life span: gene-environment interaction and sex-specific genetic effects

    DEFF Research Database (Denmark)

    Tan, Qihua; De Benedictis, G; Yashin, Annatoli

    2001-01-01

    New approaches are needed to explore the different ways in which genes affect the human life span. One needs to assess the genetic effects themselves, as well as gene–environment interactions and sex dependency. In this paper, we present a new model that combines both genotypic and demographicinf......New approaches are needed to explore the different ways in which genes affect the human life span. One needs to assess the genetic effects themselves, as well as gene–environment interactions and sex dependency. In this paper, we present a new model that combines both genotypic...

  9. Genetic test utilization and diagnostic yield in adult patients with neurological disorders.

    Science.gov (United States)

    Bardakjian, Tanya M; Helbig, Ingo; Quinn, Colin; Elman, Lauren B; McCluskey, Leo F; Scherer, Steven S; Gonzalez-Alegre, Pedro

    2018-03-28

    To determine the diagnostic yield of different genetic test modalities in adult patients with neurological disorders, we evaluated all adult patients seen for genetic diagnostic evaluation in the outpatient neurology practice at the University of Pennsylvania between January 2016 and April 2017 as part of the newly created Penn Neurogenetics Program. Subjects were identified through our electronic medical system as those evaluated by the Program's single clinical genetic counselor in that period. A total of 377 patients were evaluated by the Penn Neurogenetics Program in different settings and genetic testing recommended. Of those, 182 (48%) were seen in subspecialty clinic setting and 195 (52%) in a General Neurogenetics Clinic. Genetic testing was completed in over 80% of patients in whom it was recommended. The diagnostic yield was 32% across disease groups. Stratified by testing modality, the yield was highest with directed testing (50%) and array comparative genomic hybridization (45%), followed by gene panels and exome testing (25% each). In conclusion, genetic testing can be successfully requested in clinic in a large majority of adult patients. Age is not a limiting factor for a genetic diagnostic evaluation and the yield of clinical testing across phenotypes (almost 30%) is consistent with previous phenotype-focused or research-based studies. These results should inform the development of specific guidelines for clinical testing and serve as evidence to improve reimbursement by insurance payers.

  10. Fever in the test tube--towards a human(e) pyrogen test.

    Science.gov (United States)

    Schindler, Stephanie; Fennrich, Stefan; Crameri, Reto; Jungi, Thomas W; Montag, Thomas; Hartung, Thomas

    2007-01-01

    The human whole blood IL-1 test exploits the reaction of monocytes/macrophages for the detection of pyrogens: human whole blood taken from healthy volunteers is incubated in the presence of the test sample in any form, be it a solution, a powder or even solid material. Pyrogenic contaminations initiate the release of the "endogenous pyrogen" Interleukin-1beta determined by ELISA after incubation. In order to understand any differences between the pyrogenic activity in this test and the existing live rabbit test (species differences versus aberrant response of the particular blood sample), the rabbit whole blood test was developed. This approach could also help to avoid the use of putatively infectious human blood for pyrogen testing in vitro.

  11. Antigenic and genetic variability of human metapneumoviruses

    NARCIS (Netherlands)

    S. Herfst (Sander); L. Sprong; P.A. Cane; E. Forleo-Neto; A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); R.L. de Swart (Rik); B.G. van den Hoogen (Bernadette)

    2004-01-01

    textabstractHuman metapneumovirus (HMPV) is a member of the subfamily Pneumovirinae within the family Paramyxo- viridae. Other members of this subfamily, respiratory syncytial virus and avian pneumovirus, can be divided into subgroups on the basis of genetic or antigenic differences or both. For

  12. Genetic differences between avian and human isolates of Candida dubliniensis.

    LENUS (Irish Health Repository)

    McManus, Brenda A

    2009-09-01

    When Candida dubliniensis isolates obtained from seabird excrement and from humans in Ireland were compared by using multilocus sequence typing, 13 of 14 avian isolates were genetically distinct from human isolates. The remaining avian isolate was indistinguishable from a human isolate, suggesting that transmission may occur between humans and birds.

  13. Attitudes Toward Breast Cancer Genetic Testing in Five Special Population Groups.

    Science.gov (United States)

    Ramirez, Amelie G; Chalela, Patricia; Gallion, Kipling J; Muñoz, Edgar; Holden, Alan E; Burhansstipanov, Linda; Smith, Selina A; Wong-Kim, Evaon; Wyatt, Stephen W; Suarez, Lucina

    2015-01-01

    This study examined interest in and attitudes toward genetic testing in 5 different population groups. The survey included African American, Asian American, Latina, Native American, and Appalachian women with varying familial histories of breast cancer. A total of 49 women were interviewed in person. Descriptive and nonparametric statistical techniques were used to assess ethnic group differences. Overall, interest in testing was high. All groups endorsed more benefits than risks. There were group differences regarding endorsement of specific benefits and risks: testing to "follow doctor recommendations" (p=0.017), "concern for effects on family" (p=0.044), "distrust of modern medicine" (p=0.036), "cost" (p=0.025), and "concerns about communication of results to others" (p=0.032). There was a significant inverse relationship between interest and genetic testing cost (p<0.050), with the exception of Latinas, who showed the highest level of interest regardless of increasing cost. Cost may be an important barrier to obtaining genetic testing services, and participants would benefit by genetic counseling that incorporates the unique cultural values and beliefs of each group to create an individualized, culturally competent program. Further research about attitudes toward genetic testing is needed among Asian Americans, Native Americans, and Appalachians for whom data are severely lacking. Future study of the different Latina perceptions toward genetic testing are encouraged.

  14. Articulated Human Motion Tracking Using Sequential Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Li

    2013-01-01

    Full Text Available We formulate human motion tracking as a high-dimensional constrained optimization problem. A novel generative method is proposed for human motion tracking in the framework of evolutionary computation. The main contribution is that we introduce immune genetic algorithm (IGA for pose optimization in latent space of human motion. Firstly, we perform human motion analysis in the learnt latent space of human motion. As the latent space is low dimensional and contents the prior knowledge of human motion, it makes pose analysis more efficient and accurate. Then, in the search strategy, we apply IGA for pose optimization. Compared with genetic algorithm and other evolutionary methods, its main advantage is the ability to use the prior knowledge of human motion. We design an IGA-based method to estimate human pose from static images for initialization of motion tracking. And we propose a sequential IGA (S-IGA algorithm for motion tracking by incorporating the temporal continuity information into the traditional IGA. Experimental results on different videos of different motion types show that our IGA-based pose estimation method can be used for initialization of motion tracking. The S-IGA-based motion tracking method can achieve accurate and stable tracking of 3D human motion.

  15. Impact of presymptomatic genetic testing for hereditary ataxia and neuromuscular disorders.

    Science.gov (United States)

    Smith, Corrine O; Lipe, Hillary P; Bird, Thomas D

    2004-06-01

    With the exception of Huntington disease, the psychological and psychosocial impact of DNA testing for neurogenetic disorders has not been well studied. To evaluate the psychosocial impact of genetic testing for autosomal dominant forms of hereditary ataxia and neuromuscular disorders. Patients Fifty subjects at risk for autosomal dominant forms of spinocerebellar ataxia (n = 11), muscular dystrophy (n = 28), and hereditary neuropathy (n = 12). A prospective, descriptive, observational study in a university setting of individuals who underwent genetic counseling and DNA testing. Participants completed 3 questionnaires before testing and at regular intervals after testing. The questionnaire set included the Revised Impact of Event Scale, the Hospital Anxiety and Depression Scale, demographic information, and an assessment of attitudes and feelings about genetic testing. Thirty-nine subjects (78%) completed 6 months to 5 years of posttest follow-up. Common reasons for pursuing genetic testing were to provide an explanation for symptoms, emotional relief, and information for future planning. Thirty-four (68%) had positive and 16 (32%) had negative genetic results. In those with a positive result, 26 (76%) had nonspecific signs or symptoms of the relevant disorder. Forty-two participants (84%) felt genetic testing was beneficial. Groups with positive and negative test results coped well with results. However, 13 subjects (10 with positive and 3 with negative results) reported elevated anxiety levels, and 3 (1 with positive and 2 with negative results) expressed feelings of depression during the follow-up period. The test result was not predictive of anxiety or depression. Most individuals find neurogenetic testing to be beneficial, regardless of the result. Anxiety or depression may persist in some persons with positive or negative test results. Testing can have a demonstrable impact on family planning and interpersonal relationships. Further studies are needed to

  16. Fetal magnetic resonance imaging and human genetics

    International Nuclear Information System (INIS)

    Hengstschlaeger, Markus

    2006-01-01

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data

  17. Fetal magnetic resonance imaging and human genetics

    Energy Technology Data Exchange (ETDEWEB)

    Hengstschlaeger, Markus [Medical Genetics, Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)]. E-mail: markus.hengstschlaeger@meduniwien.ac.at

    2006-02-15

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data.

  18. Understanding human genetic variation in the era of high-throughput sequencing

    OpenAIRE

    Knight, Julian C.

    2010-01-01

    The EMBO/EMBL symposium ‘Human Variation: Cause and Consequence' highlighted advances in understanding the molecular basis of human genetic variation and its myriad implications for biology, human origins and disease.

  19. Genetic Testing: Understanding the Personal Stories.

    Science.gov (United States)

    DuBois, James M

    2015-01-01

    Twelve personal narratives address the challenges, benefits, and pitfalls of genetic testing. Three commentary articles explore these stories and suggest lessons that can be learned from them. The commentators come from backgrounds that include bioethics, public health, psychology, and philosophy.

  20. The human pain genetics database: an interview with Luda Diatchenko.

    Science.gov (United States)

    Diatchenko, Luda

    2018-06-05

    Luda Diatchenko, MD, PhD is a Canada Excellence Research Chair in Human Pain Genetics, Professor, Faculty of Medicine, Department of Anesthesia and Faculty of Dentistry at McGill University, Alan Edwards Centre for Research on Pain. She earned her MD and PhD in the field of molecular biology from the Russian State Medical University. She started her career in industry, she was a Leader of the RNA Expression Group at Clontech, Inc., and subsequently, Director of Gene Discovery at Attagene, Inc. During this time, she was actively involved in the development of several widely used and widely cited molecular tools for the analysis of gene expression and regulation. Her academic career started at 2000 in the Center for Neurosensory Disorders at University of North Carolina. Her research since then is focused on determining the cellular and molecular biological mechanisms by which functional genetic variations impact human pain perception and risk of development of chronic pain conditions, enabling new approaches to identify new drug targets, treatment responses to analgesics and diagnostic. Multiple collaborative activities allow the Diatchenko group to take basic genetic findings all the way from human association studies, through molecular and cellular mechanisms to animal models and ultimately to human clinical trials. In total, she has authored or co-authored over 120 peer-reviewed research papers in journals, ten book chapters and edited a book in human pain genetics. She is a member and an active officer of several national and international scientific societies, including the International Association for the Study of Pain and the American Pain Society.

  1. A global reference for human genetic variation

    DEFF Research Database (Denmark)

    Auton, Adam; Abecasis, Goncalo R.; M. Altshuler, David

    2015-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals ...

  2. Testing the Structure of Hydrological Models using Genetic Programming

    Science.gov (United States)

    Selle, B.; Muttil, N.

    2009-04-01

    Genetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that genetic programming can be used to test the structure hydrological models and to identify dominant processes in hydrological systems. To test this, genetic programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, water table depths and water ponding times during surface irrigation. Using genetic programming, a simple model of deep percolation was consistently evolved in multiple model runs. This simple and interpretable model confirmed the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that genetic programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  3. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography.

    Directory of Open Access Journals (Sweden)

    Ruth Hershberg

    2008-12-01

    Full Text Available Mycobacterium tuberculosis infects one third of the human world population and kills someone every 15 seconds. For more than a century, scientists and clinicians have been distinguishing between the human- and animal-adapted members of the M. tuberculosis complex (MTBC. However, all human-adapted strains of MTBC have traditionally been considered to be essentially identical. We surveyed sequence diversity within a global collection of strains belonging to MTBC using seven megabase pairs of DNA sequence data. We show that the members of MTBC affecting humans are more genetically diverse than generally assumed, and that this diversity can be linked to human demographic and migratory events. We further demonstrate that these organisms are under extremely reduced purifying selection and that, as a result of increased genetic drift, much of this genetic diversity is likely to have functional consequences. Our findings suggest that the current increases in human population, urbanization, and global travel, combined with the population genetic characteristics of M. tuberculosis described here, could contribute to the emergence and spread of drug-resistant tuberculosis.

  4. Attitudes toward genetic testing among the general population and relatives of patients with a severe genetic disease

    DEFF Research Database (Denmark)

    Hietala, M; Hakonen, A; Aro, A R

    1995-01-01

    evaluated attitudes toward gene tests in general and also respondents' preparedness to undergo gene tests for predictive testing, carrier detection, prenatal diagnosis, and selective abortion, in theoretical situations. The results of the study indicate that both the Finnish population in general and family...... members of AGU patients have a favorable attitude toward genetic testing. However, a commonly expressed reason against testing was that test results might lead to discrimination in employment or insurance policies. Based on the responses, we predict that future genetic testing programs will most probably...

  5. GAPscreener: An automatic tool for screening human genetic association literature in PubMed using the support vector machine technique

    Directory of Open Access Journals (Sweden)

    Khoury Muin J

    2008-04-01

    Full Text Available Abstract Background Synthesis of data from published human genetic association studies is a critical step in the translation of human genome discoveries into health applications. Although genetic association studies account for a substantial proportion of the abstracts in PubMed, identifying them with standard queries is not always accurate or efficient. Further automating the literature-screening process can reduce the burden of a labor-intensive and time-consuming traditional literature search. The Support Vector Machine (SVM, a well-established machine learning technique, has been successful in classifying text, including biomedical literature. The GAPscreener, a free SVM-based software tool, can be used to assist in screening PubMed abstracts for human genetic association studies. Results The data source for this research was the HuGE Navigator, formerly known as the HuGE Pub Lit database. Weighted SVM feature selection based on a keyword list obtained by the two-way z score method demonstrated the best screening performance, achieving 97.5% recall, 98.3% specificity and 31.9% precision in performance testing. Compared with the traditional screening process based on a complex PubMed query, the SVM tool reduced by about 90% the number of abstracts requiring individual review by the database curator. The tool also ascertained 47 articles that were missed by the traditional literature screening process during the 4-week test period. We examined the literature on genetic associations with preterm birth as an example. Compared with the traditional, manual process, the GAPscreener both reduced effort and improved accuracy. Conclusion GAPscreener is the first free SVM-based application available for screening the human genetic association literature in PubMed with high recall and specificity. The user-friendly graphical user interface makes this a practical, stand-alone application. The software can be downloaded at no charge.

  6. [Analysis of 14 individuals who requested predictive genetic testing for hereditary neuromuscular diseases].

    Science.gov (United States)

    Yoshida, Kunihiro; Tamai, Mariko; Kubota, Takeo; Kawame, Hiroshi; Amano, Naoji; Ikeda, Shu-ichi; Fukushima, Yoshimitsu

    2002-02-01

    Predictive genetic testing for hereditary neuromuscular diseases is a delicate issue for individuals at risk and their families, as well as for medical staff because these diseases are often late-onset and intractable. Therefore careful pre- and post-test genetic counseling and psychosocial support should be provided along with such genetic testing. The Division of Clinical and Molecular Genetics was established at our hospital in May 1996 to provide skilled professional genetic counseling. Since its establishment, 14 individuals have visited our clinic to request predictive genetic testing for hereditary neuromuscular diseases (4 for myotonic dystrophy, 6 for spinocerebellar ataxia, 3 for Huntington's disease, and 1 for Alzheimer's disease). The main reasons for considering testing were to remove uncertainty about the genetic status and to plan for the future. Nine of 14 individuals requested testing for making decisions about a forthcoming marriage or pregnancy (family planning). Other reasons raised by the individuals included career or financial planning, planning for their own health care, and knowing the risk for their children. At the first genetic counseling session, all of the individuals expressed hopes of not being a gene carrier and of escaping from fear of disease, and seemed not to be mentally well prepared for an increased-risk result. To date, 7 of the 14 individuals have received genetic testing and only one, who underwent predictive genetic testing for spinocerebellar ataxia, was given an increased-risk result. The seven individuals including the one with an increased-risk result, have coped well with their new knowledge about their genetic status after the testing results were disclosed. None of them has expressed regret. In pre-test genetic counseling sessions, we consider it quite important not only to determine the psychological status of the individual, but also to make the individual try to anticipate the changes in his/her life upon

  7. [Genetic predisposition to breast and ovarian cancer: importance of test results].

    Science.gov (United States)

    Julian-Reynier, Claire

    2011-01-01

    Oncogenetic consultations and predictive BRCA1/2 testing are intertwined processes and the specific impact of these genetic tests if performed alone through direct-to-consumer offers remains unknown. Noteworthy, the expectations of patients vary with their own status, whether they are affected or not by breast cancer at the time genetic testing is performed. The prescription of genetic tests for BCRA mutations has doubled in France between 2003 and 2009. There is a consensus on the fact that genetic results disclosure led to a significant increase in the knowledge and understanding that the patients have of the genetic risk and also changed the medical follow-up of these patients. Evaluating the psychological burden of tests disclosure did not reveal any major distress in patients who are followed by high-quality multidisciplinary teams. Longitudinal cohorts studies have now evaluated the perception and behaviour of these patients, and observed sociodemographic as well as geographic and psychosocial differences both in the acceptation of prophylactic strategies such as surgery, and time to surgery. © 2011 médecine/sciences - Inserm / SRMS.

  8. The mobile genetic element Alu in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Novick, G.E. [Florida International Univ., Miami, FL (United States); Batzer, M.A.; Deininger, P.L. [Louisiana State Univ. Medical Center, New Orleans, LA (United States)] [and others

    1996-01-01

    Genetic material has been traditionally envisioned as relatively static with the exception of occasional, often deleterious mutations. The sequence DNA-to-RNA-to-protein represented for many years the central dogma relating gene structure and function. Recently, the field of molecular genetics has provided revolutionary information on the dynamic role of repetitive elements in the function of the genetic material and the evolution of humans and other organisms. Alu sequences represent the largest family of short interspersed repetitive elements (SINEs) in humans, being present in an excess of 500,000 copies per haploid genome. Alu elements, as well as the other repetitive elements, were once considered to be useless. Today, the biology of Alu transposable elements is being widely examined in order to determine the molecular basis of a growing number of identified diseases and to provide new directions in genome mapping and biomedical research. 66 refs., 5 figs.

  9. Derivation of novel genetically diverse human embryonic stem cell lines.

    Science.gov (United States)

    Stefanova, Valentina T; Grifo, James A; Hansis, Christoph

    2012-06-10

    Human embryonic stem cells (hESCs) have the potential to revolutionize many biomedical fields ranging from basic research to disease modeling, regenerative medicine, drug discovery, and toxicity testing. A multitude of hESC lines have been derived worldwide since the first 5 lines by Thomson et al. 13 years ago, but many of these are poorly characterized, unavailable, or do not represent desired traits, thus making them unsuitable for application purposes. In order to provide the scientific community with better options, we have derived 12 new hESC lines at New York University from discarded genetically normal and abnormal embryos using the latest techniques. We examined the genetic status of the NYUES lines in detail as well as their molecular and cellular features and DNA fingerprinting profile. Furthermore, we differentiated our hESCs into the tissues most affected by a specific condition or into clinically desired cell types. To our knowledge, a number of characteristics of our hESCs have not been previously reported, for example, mutation for alpha thalassemia X-linked mental retardation syndrome, linkage to conditions with a genetic component such as asthma or poor sperm morphology, and novel combinations of ethnic backgrounds. Importantly, all of our undifferentiated euploid female lines tested to date did not show X chromosome inactivation, believed to result in superior potency. We continue to derive new hESC lines and add them to the NIH registry and other registries. This should facilitate the use of our hESCs and lead to advancements for patient-benefitting applications.

  10. Perceived genetic knowledge, attitudes towards genetic testing, and the relationship between these among patients with a chronic disease

    NARCIS (Netherlands)

    Morren, M.; Rijken, M.; Baanders, A.N.; Bensing, J.

    2007-01-01

    Objective: Genetics increasingly permeate everyday medicine. When patients want to make informed decisions about genetic testing, they require genetic knowledge. This study examined the genetic knowledge and attitudes of patients with chronic diseases, and the relationship between both. In addition,

  11. Perceived genetic knowledge, attitudes toward genetic testing, and the relationship between these among patients with a chronic disease.

    NARCIS (Netherlands)

    Morren, M.; Rijken, M.; Baanders, A.N.; Bensing, J.

    2007-01-01

    OBJECTIVE: Genetics increasingly permeate everyday medicine. When patients want to make informed decisions about genetic testing, they require genetic knowledge. This study examined the genetic knowledge and attitudes of patients with chronic diseases, and the relationship between both. In addition,

  12. Direct-to-consumer genetic testing: perceptions, problems, and policy responses.

    Science.gov (United States)

    Caulfield, Timothy; McGuire, Amy L

    2012-01-01

    Direct-to-consumer (DTC) genetic testing has attracted a great amount of attention from policy makers, the scientific community, professional groups, and the media. Although it is unclear what the public demand is for these services, there does appear to be public interest in personal genetic risk information. As a result, many commentators have raised a variety of social, ethical, and regulatory issues associated with this emerging industry, including privacy issues, ensuring that DTC companies provide accurate information about the risks and limitations of their services, the possible adverse impact of DTC genetic testing on healthcare systems, and concern about how individuals may interpret and react to genetic risk information.

  13. Systematic documentation and analysis of human genetic variation using the microattribution approach

    Science.gov (United States)

    Giardine, Belinda; Borg, Joseph; Higgs, Douglas R.; Peterson, Kenneth R.; Maglott, Donna; Basak, A. Nazli; Clark, Barnaby; Faustino, Paula; Felice, Alex E.; Francina, Alain; Gallivan, Monica V. E.; Georgitsi, Marianthi; Gibbons, Richard J.; Giordano, Piero C.; Harteveld, Cornelis L.; Joly, Philippe; Kanavakis, Emmanuel; Kollia, Panagoula; Menzel, Stephan; Miller, Webb; Moradkhani, Kamran; Old, John; Papachatzopoulou, Adamantia; Papadakis, Manoussos N.; Papadopoulos, Petros; Pavlovic, Sonja; Philipsen, Sjaak; Radmilovic, Milena; Riemer, Cathy; Schrijver, Iris; Stojiljkovic, Maja; Thein, Swee Lay; Traeger-Synodinos, Jan; Tully, Ray; Wada, Takahito; Waye, John; Wiemann, Claudia; Zukic, Branka; Chui, David H. K.; Wajcman, Henri; Hardison, Ross C.; Patrinos, George P.

    2013-01-01

    We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to these disorders, and then implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories 1. A total of 1,941 unique genetic variants in 37 genes, encoding globins (HBA2, HBA1, HBG2, HBG1, HBD, HBB) and other erythroid proteins (ALOX5AP, AQP9, ARG2, ASS1, ATRX, BCL11A, CNTNAP2, CSNK2A1, EPAS1, ERCC2, FLT1, GATA1, GPM6B, HAO2, HBS1L, KDR, KL, KLF1, MAP2K1, MAP3K5, MAP3K7, MYB, NOS1, NOS2, NOS3, NOX3, NUP133, PDE7B, SMAD3, SMAD6, and TOX) are currently documented in these databases with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants and now provides a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The large repository of previously reported data, together with more recent data, acquired by microattribution, demonstrates how the comprehensive documentation of human variation will provide key insights into normal biological processes and how these are perturbed in human genetic disease. Using the microattribution process set out here, datasets which took decades to accumulate for the globin genes could be assembled rapidly for other genes and disease systems. The principles established here for the globin gene system will serve as a model for other systems and the analysis of other common and/or complex human genetic diseases. PMID:21423179

  14. The genetics of human longevity: an intricacy of genes, environment, culture and microbiome.

    Science.gov (United States)

    Dato, Serena; Rose, Giuseppina; Crocco, Paolina; Monti, Daniela; Garagnani, Paolo; Franceschi, Claudio; Passarino, Giuseppe

    2017-07-01

    Approximately one-quarter of the variation in lifespan in developed countries can be attributed to genetic factors. However, even large population based studies investigating genetic influence on human lifespan have been disappointing, identifying only a few genes accounting for genetic susceptibility to longevity. Some environmental and lifestyle determinants associated with longevity have been identified, which interplay with genetic factors in an intricate way. The study of gene-environment and gene-gene interactions can significantly improve our chance to disentangle this complex scenario. In this review, we first describe the most recent approaches for genetic studies of longevity, from those enriched with health parameters and frailty measures to pathway-based and SNP-SNP interaction analyses. Then, we go deeper into the concept of "environmental influences" in human aging and longevity, focusing on the contribution of life style changes, social and cultural influences, as important determinants of survival differences among individuals in a population. Finally, we discuss the contribution of the microbiome in human longevity, as an example of complex interaction between organism and environment. In conclusion, evidences collected from the latest studies on human longevity provide a support for the collection of life-long genetic and environmental/lifestyle variables with beneficial or detrimental effects on health, to improve our understanding of the determinants of human lifespan. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Ethical and Social Implications of Genetic Testing for Communication Disorders

    Science.gov (United States)

    Arnos, Kathleen S.

    2008-01-01

    Advances in genetics and genomics have quickly led to clinical applications to human health which have far-reaching consequences at the individual and societal levels. These new technologies have allowed a better understanding of the genetic factors involved in a wide range of disorders. During the past decade, incredible progress has been made in…

  16. A population genetic interpretation of GWAS findings for human quantitative traits

    Science.gov (United States)

    Bullaughey, Kevin; Hudson, Richard R.; Sella, Guy

    2018-01-01

    Human genome-wide association studies (GWASs) are revealing the genetic architecture of anthropomorphic and biomedical traits, i.e., the frequencies and effect sizes of variants that contribute to heritable variation in a trait. To interpret these findings, we need to understand how genetic architecture is shaped by basic population genetics processes—notably, by mutation, natural selection, and genetic drift. Because many quantitative traits are subject to stabilizing selection and because genetic variation that affects one trait often affects many others, we model the genetic architecture of a focal trait that arises under stabilizing selection in a multidimensional trait space. We solve the model for the phenotypic distribution and allelic dynamics at steady state and derive robust, closed-form solutions for summary statistics of the genetic architecture. Our results provide a simple interpretation for missing heritability and why it varies among traits. They predict that the distribution of variances contributed by loci identified in GWASs is well approximated by a simple functional form that depends on a single parameter: the expected contribution to genetic variance of a strongly selected site affecting the trait. We test this prediction against the results of GWASs for height and body mass index (BMI) and find that it fits the data well, allowing us to make inferences about the degree of pleiotropy and mutational target size for these traits. Our findings help to explain why the GWAS for height explains more of the heritable variance than the similarly sized GWAS for BMI and to predict the increase in explained heritability with study sample size. Considering the demographic history of European populations, in which these GWASs were performed, we further find that most of the associations they identified likely involve mutations that arose shortly before or during the Out-of-Africa bottleneck at sites with selection coefficients around s = 10−3. PMID

  17. The medical examination in United States immigration applications: the potential use of genetic testing leads to heightened privacy concerns.

    Science.gov (United States)

    Burroughs, A Maxwell

    2005-01-01

    The medical examination has been an integral part of the immigration application process since the passing of the Immigration Act of 1891. Failing the medical examination can result in denial of the application. Over the years the medical examination has been expanded to include questioning about diseases that are scientifically shown to be rooted in an individual's genetic makeup. Recent advances in the fields of genomics and bioinformatics are making accurate and precise screening for these conditions a reality. Government policymakers will soon be faced with decisions regarding whether or not to sanction the use of these newly-developed genetic tests in the immigration application procedure. The terror threat currently facing the United States may ultimately bolster the argument in favor of genetic testing and/or DNA collection of applicants. However, the possibility of a government mandate requiring genetic testing raises a host of ethical issues; including the threat of eugenics and privacy concerns. Genetic testing has the ability to uncover a wealth of sensitive medical information about an individual and currently there are no medical information privacy protections afforded to immigration applicants. This article examines the potential for genetic testing in the immigration application process and the ethical issues surrounding this testing. In particular, this article explores the existing framework of privacy protections afforded to individuals living in the United States and how this and newly-erected standards like those released by the Health and Human Services (HHS) might apply to individuals seeking to immigrate to the United States.

  18. Genetical genomic determinants of alcohol consumption in rats and humans

    Directory of Open Access Journals (Sweden)

    Mangion Jonathan

    2009-10-01

    Full Text Available Abstract Background We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs. Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations. Results In the HXB/BXH recombinant inbred (RI rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption. Conclusion Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume

  19. Genetic alterations affecting cholesterol metabolism and human fertility.

    Science.gov (United States)

    DeAngelis, Anthony M; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle

    2014-11-01

    Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. © 2014 by the Society for the Study of Reproduction, Inc.

  20. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  1. Ethical Concerns About Human Genetic Enhancement in the Malay Science Fiction Novels.

    Science.gov (United States)

    Isa, Noor Munirah; Hj Safian Shuri, Muhammad Fakhruddin

    2018-02-01

    Advancements in science and technology have not only brought hope to humankind to produce disease-free offspring, but also offer possibilities to genetically enhance the next generation's traits and capacities. Human genetic enhancement, however, raises complex ethical questions, such as to what extent should it be allowed? It has been a great challenge for humankind to develop robust ethical guidelines for human genetic enhancement that address both public concerns and needs. We believe that research about public concerns is necessary prior to developing such guidelines, yet the issues have not been thoroughly investigated in many countries, including Malaysia. Since the novel often functions as a medium for the public to express their concerns, this paper explores ethical concerns about human genetic enhancement expressed in four Malay science fiction novels namely Klon, Leksikon Ledang, Transgenesis Bisikan Rimba and Transgenik Sifar. Religion has a strong influence on the worldview of the Malays therefore some concerns such as playing God are obviously religious. Association of the negative image of scientists as well as the private research companies with the research on human genetic enhancement reflects the authors' concerns about the main motivations for conducting such research and the extent to which such research will benefit society.

  2. Health and genetic ancestry testing: time to bridge the gap.

    Science.gov (United States)

    Smart, Andrew; Bolnick, Deborah A; Tutton, Richard

    2017-01-09

    It is becoming increasingly difficult to keep information about genetic ancestry separate from information about health, and consumers of genetic ancestry tests are becoming more aware of the potential health risks associated with particular ancestral lineages. Because some of the proposed associations have received little attention from oversight agencies and professional genetic associations, scientific developments are currently outpacing governance regimes for consumer genetic testing. We highlight the recent and unremarked upon emergence of biomedical studies linking markers of genetic ancestry to disease risks, and show that this body of scientific research is becoming part of public discourse connecting ancestry and health. For instance, data on genome-wide ancestry informative markers are being used to assess health risks, and we document over 100 biomedical research articles that propose associations between mitochondrial DNA and Y chromosome markers of genetic ancestry and a wide variety of disease risks. Taking as an example an association between coronary heart disease and British men belonging to Y chromosome haplogroup I, we show how this science was translated into mainstream and online media, and how it circulates among consumers of genetic tests for ancestry. We find wide variations in how the science is interpreted, which suggests the potential for confusion or misunderstanding. We recommend that stakeholders involved in creating and using estimates of genetic ancestry reconsider their policies for communicating with each other and with the public about the health implications of ancestry information.

  3. Egyptian Journal of Medical Human Genetics - Vol 14, No 3 (2013)

    African Journals Online (AJOL)

    Egyptian Journal of Medical Human Genetics - Vol 14, No 3 (2013) ... Comparative study: Parameters of gait in Down syndrome versus matched obese and ... episodes in a Japanese child: Clinical, radiological and molecular genetic analysis ...

  4. Direct to consumer genetic testing and the libertarian right to test.

    Science.gov (United States)

    Bonython, Wendy Elizabeth; Arnold, Bruce Baer

    2017-08-20

    Loi recently proposed a libertarian right to direct to consumer genetic testing (DTCGT)- independent of autonomy or utility-reflecting Cohen's work on self-ownership and Hohfeld's model of jural relations. Cohen's model of libertarianism dealt principally with self-ownership of the physical body. Although Loi adequately accounts for the physical properties of DNA, DNA is also an informational substrate, highly conserved within families. Information about the genome of relatives of the person undergoing testing may be extrapolated without requiring direct engagement with their personal physical copy of the genome, triggering rights and interests of relatives that may differ from the rights and interests of others, that is, individual consumers, testing providers and regulators. Loi argued that regulatory interference with exercise of the right required justification, whereas prima facie exercise of the right did not. Justification of regulatory interference could include 'conflict with other people's rights', 'aggressive' use of the genome and 'harming others'. Harms potentially experienced by relatives as a result of the individual's exercise of a right to test include breach of genetic privacy, violation of their right to determine when, and if, they undertake genetic testing and discrimination. Such harms may justify regulatory intervention, in the event they are recognised; motives driving 'aggressive' use of the genome may also be relevant. Each of the above criteria requires clarification, as potential redundancies and tensions exist between them, with different implications affecting different groups of rights holders. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Genetics of Human Sexual Behavior: Where We Are, Where We Are Going.

    Science.gov (United States)

    Jannini, Emmanuele A; Burri, Andrea; Jern, Patrick; Novelli, Giuseppe

    2015-04-01

    One of the never-ending debates in the developing field of sexual medicine is the extent to which genetics and experiences (i.e., "nature and nurture") contribute to sexuality. The debate continues despite the fact that these two sides have different abilities to create a scientific environment to support their cause. Contemporary genetics has produced plenty of recent evidence, however, not always confirmed or sufficiently robust. On the other hand, the more traditional social theorists, frequently without direct evidence confirming their positions, criticize, sometimes with good arguments, the methods and results of the other side. The aim of this article is to critically evaluate existent evidence that used genetic approaches to understand human sexuality. An expert in sexual medicine (E.A.J.), an expert in medical genetics (G.N.), and two experts in genetic epidemiology and quantitative genetics, with particular scientific experience in female sexual dysfunction (A.B.) and in premature ejaculation (P.J.), contributed to this review. Expert opinion supported by critical review of the currently available literature. The existing literature on human sexuality provides evidence that many sexuality-related behaviors previously considered to be the result of cultural influences (such as mating strategies, attractiveness and sex appeal, propensity to fidelity or infidelity, and sexual orientation) or dysfunctions (such as premature ejaculation or female sexual dysfunction) seem to have a genetic component. Current evidence from genetic epidemiologic studies underlines the existence of biological and congenital factors regulating male and female sexuality. However, these relatively recent findings ask for replication in methodologically more elaborated studies. Clearly, increased research efforts are needed to further improve understanding the genetics of human sexuality. Jannini EA, Burri A, Jern P, and Novelli G. Genetics of human sexual behavior: Where we are, where

  6. Facial averageness and genetic quality: Testing heritability, genetic correlation with attractiveness, and the paternal age effect.

    Science.gov (United States)

    Lee, Anthony J; Mitchem, Dorian G; Wright, Margaret J; Martin, Nicholas G; Keller, Matthew C; Zietsch, Brendan P

    2016-01-01

    Popular theory suggests that facial averageness is preferred in a partner for genetic benefits to offspring. However, whether facial averageness is associated with genetic quality is yet to be established. Here, we computed an objective measure of facial averageness for a large sample ( N = 1,823) of identical and nonidentical twins and their siblings to test two predictions from the theory that facial averageness reflects genetic quality. First, we use biometrical modelling to estimate the heritability of facial averageness, which is necessary if it reflects genetic quality. We also test for a genetic association between facial averageness and facial attractiveness. Second, we assess whether paternal age at conception (a proxy of mutation load) is associated with facial averageness and facial attractiveness. Our findings are mixed with respect to our hypotheses. While we found that facial averageness does have a genetic component, and a significant phenotypic correlation exists between facial averageness and attractiveness, we did not find a genetic correlation between facial averageness and attractiveness (therefore, we cannot say that the genes that affect facial averageness also affect facial attractiveness) and paternal age at conception was not negatively associated with facial averageness. These findings support some of the previously untested assumptions of the 'genetic benefits' account of facial averageness, but cast doubt on others.

  7. Development of a Streamlined Work Flow for Handling Patients' Genetic Testing Insurance Authorizations.

    Science.gov (United States)

    Uhlmann, Wendy R; Schwalm, Katie; Raymond, Victoria M

    2017-08-01

    Obtaining genetic testing insurance authorizations for patients is a complex, time-involved process often requiring genetic counselor (GC) and physician involvement. In an effort to mitigate this complexity and meet the increasing number of genetic testing insurance authorization requests, GCs formed a novel partnership with an industrial engineer (IE) and a patient services associate (PSA) to develop a streamlined work flow. Eight genetics clinics and five specialty clinics at the University of Michigan were surveyed to obtain benchmarking data. Tasks needed for genetic testing insurance authorization were outlined and time-saving work flow changes were introduced including 1) creation of an Excel password-protected shared database between GCs and PSAs, used for initiating insurance authorization requests, tracking and follow-up 2) instituting the PSAs sending GCs a pre-clinic email noting each patients' genetic testing insurance coverage 3) inclusion of test medical necessity documentation in the clinic visit summary note instead of writing a separate insurance letter and 4) PSAs development of a manual with insurance providers and genetic testing laboratories information. These work flow changes made it more efficient to request and track genetic testing insurance authorizations for patients, enhanced GCs and PSAs communication, and reduced tasks done by clinicians.

  8. African Americans' opinions about human-genetics research.

    Science.gov (United States)

    Achter, Paul; Parrott, Roxanne; Silk, Kami

    2004-03-01

    Research on attitudes toward genetics and medicine registers skepticism among minority communities, but the reasons for this skepticism are not well known. In the past, studies linked mistrust of the medical system to historical ethics violations involving minority groups and to suspicions about ideological premise and political intent. To assess public knowledge, attitudes, and behavior regarding human-genetics research, we surveyed 858 Americans onsite in four community settings or online in a geographically nonspecific manner. Compared to participants as a whole, African Americans were significantly more likely to believe that clinical trials might be dangerous and that the federal government knowingly conducted unethical research, including studies in which risky vaccines were administered to prison populations. However, African Americans were also significantly more likely to believe that the federal government worked to prevent environmental exposure to toxicants harmful to people with genetic vulnerabilities. Our data suggest that most Americans trust government to act ethically in sponsoring and conducting research, including genetics research, but that African Americans are particularly likely to see government as powerfully protective in some settings yet selectively disingenuous in others.

  9. Eugenics and Mandatory Informed Prenatal Genetic Testing: A Unique Perspective from China.

    Science.gov (United States)

    Zhang, Di; Ng, Vincent H; Wang, Zhaochen; Zhai, Xiaomei; Lie, Reidar K

    2016-08-01

    The application of genetic technologies in China, especially in the area of prenatal genetic testing, is rapidly increasing in China. In the wealthy regions of China, prenatal genetic testing is already very widely adopted. We argue that the government should actively promote prenatal genetic testing to the poor areas of the country. In fact, the government should prioritize resources first to make prenatal genetic testing a standard routine care with an opt-out model in these area. Healthcare professions would be required to inform pregnant women about the availability of genetic testing and provide free testing on a routine basis unless the parents choose not to do so. We argue that this proposal will allow parents to make a more informed decision about their reproductive choices. Secondarily, this proposal will attract more healthcare professionals and other healthcare resources to improve the healthcare infrastructures in the less-developed regions of the country. This will help to reduce the inequity of accessing healthcare services between in different regions of China. We further argue that this policy proposal is not practicing eugenics. © 2015 John Wiley & Sons Ltd.

  10. Darkness in El Dorado: human genetics on trial

    Indian Academy of Sciences (India)

    Unknown

    Human Genetics Research Division, University of Southampton, Southampton SO16 6YD, UK. A recent ..... advice' he acknowledges in his book (p. xviii), leading to revision .... Venezuelan government, held his team back from giving medical ...

  11. Testing the structure of a hydrological model using Genetic Programming

    Science.gov (United States)

    Selle, Benny; Muttil, Nitin

    2011-01-01

    SummaryGenetic Programming is able to systematically explore many alternative model structures of different complexity from available input and response data. We hypothesised that Genetic Programming can be used to test the structure of hydrological models and to identify dominant processes in hydrological systems. To test this, Genetic Programming was used to analyse a data set from a lysimeter experiment in southeastern Australia. The lysimeter experiment was conducted to quantify the deep percolation response under surface irrigated pasture to different soil types, watertable depths and water ponding times during surface irrigation. Using Genetic Programming, a simple model of deep percolation was recurrently evolved in multiple Genetic Programming runs. This simple and interpretable model supported the dominant process contributing to deep percolation represented in a conceptual model that was published earlier. Thus, this study shows that Genetic Programming can be used to evaluate the structure of hydrological models and to gain insight about the dominant processes in hydrological systems.

  12. [Genetic counseling and testing for families with Alzheimer's disease].

    Science.gov (United States)

    Kowalska, Anna

    2004-01-01

    With the identification of the genes responsible for autosomal dominant early-onset familial Alzheimer's disease (FAD genes), there is a considerable interest in the application of this genetic information in medical practice through genetic testing and counseling. Pathogenic mutations in the PSEN1 and PSEN2 genes encoding presenilin-1 and -2, and the APP gene encoding amyloid b precursor protein, account for 18-50% of familial EOAD cases with autosomal dominant pattern of inheritance. A clinical algorithm of genetic testing and counseling proposed for families with AD has been presented here. A screening for mutations in the APP, PSEN1, and PSEN2 genes is available to individuals with AD symptoms and at-risk children or siblings of patients with early-onset disease determined by a known mutation. In an early-onset family, a known mutation in an affected patient puts the siblings and children at a 50% risk of inheriting the same mutation. The goal of genetic testing is to identify at-risk individuals in order to facilitate early and effective treatments in the symptomatic person based on an individual's genotype and strategies to delay the onset of disease in the presymptomatic mutation carriers. However, there are several arguments against the use of genetic testing both presymptomatically (unpredictable psychological consequences of information about a genetic defect for family members) and as a diagnostic tool for the differential diagnosis of dementia in general practice (a risk of errors in an interpretation of mutation penetrance and its secondary effects on family members, especially for novel mutations; the possibility of coexistence of another form of dementia at the presence of a mutation). Currently, APOE genotyping for presymptomatic individuals with a family history of late-onset disease is not recommended. The APOE4 allele may only confer greater risk for disease, but its presence is not conclusive for the development of AD.

  13. Mapping genetic influences on the corticospinal motor system in humans

    DEFF Research Database (Denmark)

    Cheeran, B J; Ritter, C; Rothwell, J C

    2009-01-01

    of the contribution of single nucleotide polymorphisms (SNP) and variable number tandem repeats. In humans, the corticospinal motor system is essential to the acquisition of fine manual motor skills which require a finely tuned coordination of activity in distal forelimb muscles. Here we review recent brain mapping......It is becoming increasingly clear that genetic variations account for a certain amount of variance in the acquisition and maintenance of different skills. Until now, several levels of genetic influences were examined, ranging from global heritability estimates down to the analysis...... studies that have begun to explore the influence of functional genetic variation as well as mutations on function and structure of the human corticospinal motor system, and also the clinical implications of these studies. Transcranial magnetic stimulation of the primary motor hand area revealed...

  14. Utilization of genetic testing among children with developmental disabilities in the United States

    Directory of Open Access Journals (Sweden)

    Kiely B

    2016-07-01

    Full Text Available Bridget Kiely, Sujit Vettam, Andrew Adesman Division of Developmental and Behavioral Pediatrics, Department of Pediatrics, Steven and Alexandra Cohen Children’s Medical Center of New York, New Hyde Park, NY, USA Purpose: Several professional societies recommend that genetic testing be routinely included in the etiologic workup of children with developmental disabilities. The aim of this study was to determine the rate at which genetic testing is performed in this population, based on data from a nationally representative survey.Methods: Data were analyzed from the Survey of Pathways to Diagnosis and Services, a telephone-based survey of parents and guardians of US school-age children with current or past developmental conditions. This study included 3,371 respondents who indicated that their child had an autism spectrum disorder (ASD, intellectual disability (ID, and/or developmental delay (DD at the time of survey administration. History of genetic testing was assessed based on report by the parent/s. Children were divided into the following five mutually exclusive condition groups: ASD with ID; ASD with DD, without ID; ASD only, without ID or DD; ID without ASD; and DD only, without ID or ASD. Logistic regression was used to assess the demographic correlates of genetic testing, to compare the rates of genetic testing across groups, and to examine associations between genetic testing and use of other health-care services.Results: Overall, 32% of this sample had a history of genetic testing, including 34% of all children with ASD and 43% of those with ID. After adjusting for demographics, children with ASD + ID were more than seven times as likely as those with ASD only, and more than twice as likely as those who had ID without ASD, to have undergone genetic testing. Prior specialist care (developmental pediatrician or neurologist and access to all needed providers within the previous year were associated with higher odds of genetic testing

  15. [A survey of willingness about genetic counseling and tests in patients of epithelial ovarian cancer].

    Science.gov (United States)

    Li, L; Qiu, L; Wu, M

    2017-11-21

    Objective: To analyze patients' tendency towards genetics counseling and tests based on a prospective cohort study on hereditary ovarian cancer. Methods: From February 2017 to June 2017, among 220 cases of epithelial ovarian cancer in Peking Union Medical College Hospital, we collected epidemiological, pathological and tendency towards genetics counseling and tests via medical records and questionnaire.All patients would get education about hereditary ovarian cancer by pamphlets and WeChat.If they would receive further counseling, a face to face interview and tests will be given. Results: Among all 220 patients, 10 (4.5%) denied further counseling.For 210 patients receiving genetic counseling, 170 (81%) accepted genetic tests.In multivariate analysis, risk factors relevant to acceptance of genetic tests included: being charged by physicians of gynecologic oncology for diagnosis and treatment, receiving counseling in genetic counseling clinics, and having family history of breast cancer.For patients denying genetic tests, there were many subjective reasons, among which, "still not understanding genetic tests" (25%) and "unable bear following expensive targeting medicine" . Conclusions: High proportion patients of epithelial ovarian cancer would accept genetic counseling and tests.Genetic counseling clinics for gynecologic oncology would further improve genetic tests for patients.

  16. Pharmacogenetic testing through the direct-to-consumer genetic testing company 23andMe.

    Science.gov (United States)

    Lu, Mengfei; Lewis, Cathryn M; Traylor, Matthew

    2017-06-19

    Rapid advances in scientific research have led to an increase in public awareness of genetic testing and pharmacogenetics. Direct-to-consumer (DTC) genetic testing companies, such as 23andMe, allow consumers to access their genetic information directly through an online service without the involvement of healthcare professionals. Here, we evaluate the clinical relevance of pharmacogenetic tests reported by 23andMe in their UK tests. The research papers listed under each 23andMe report were evaluated, extracting information on effect size, sample size and ethnicity. A wider literature search was performed to provide a fuller assessment of the pharmacogenetic test and variants were matched to FDA recommendations. Additional evidence from CPIC guidelines, PharmGKB, and Dutch Pharmacogenetics Working Group was reviewed to determine current clinical practice. The value of the tests across ethnic groups was determined, including information on linkage disequilibrium between the tested SNP and causal pharmacogenetic variant, where relevant. 23andMe offers 12 pharmacogenetic tests to their UK customers, some of which are in standard clinical practice, and others which are less widely applied. The clinical validity and clinical utility varies extensively between tests. The variants tested are likely to have different degrees of sensitivity due to different risk allele frequencies and linkage disequilibrium patterns across populations. The clinical relevance depends on the ethnicity of the individual and variability of pharmacogenetic markers. Further research is required to determine causal variants and provide more complete assessment of drug response and side effects. 23andMe reports provide some useful pharmacogenetics information, mirroring clinical tests that are in standard use. Other tests are unspecific, providing limited guidance and may not be useful for patients without professional interpretation. Nevertheless, DTC companies like 23andMe act as a powerful

  17. Genetic testing in congenital heart disease:A clinical approach

    Institute of Scientific and Technical Information of China (English)

    Marie A Chaix; Gregor Andelfinger; Paul Khairy

    2016-01-01

    Congenital heart disease(CHD) is the most common type of birth defect. Traditionally, a polygenic model defined by the interaction of multiple genes and environmental factors was hypothesized to account for different forms of CHD. It is now understood that the contribution of genetics to CHD extends beyond a single unified paradigm. For example, monogenic models and chromosomal abnormalities have been associated with various syndromic and non-syndromic forms of CHD. In such instances, genetic investigation and testing may potentially play an important role in clinical care. A family tree with a detailed phenotypic description serves as the initial screening tool to identify potentially inherited defects and to guide further genetic investigation. The selection of a genetic test is contingent upon the particular diagnostic hypothesis generated by clinical examination. Genetic investigation in CHD may carry the potential to improve prognosis by yielding valuable information with regards to personalized medical care, confidence in the clinical diagnosis, and/or targeted patient followup. Moreover, genetic assessment may serve as a tool to predict recurrence risk, define the pattern of inheritance within a family, and evaluate the need for further family screening. In some circumstances, prenatal or preimplantation genetic screening could identify fetuses or embryos at high risk for CHD. Although genetics may appear to constitute a highly specialized sector of cardiology, basic knowledge regarding inheritance patterns, recurrence risks, and available screening and diagnostic tools, including their strengths and limitations, could assist the treating physician in providing sound counsel.

  18. Computational Integration of Human Genetic Data to Evaluate AOP-Specific Susceptibility

    Science.gov (United States)

    There is a need for approaches to efficiently evaluate human genetic variability and susceptibility related to environmental chemical exposure. Direct estimation of the genetic contribution to variability in susceptibility to environmental chemicals is only possible in special ca...

  19. Analogs of human genetic skin disease in domesticated animals

    Directory of Open Access Journals (Sweden)

    Justin Finch, MD

    2017-09-01

    The genetic skin diseases we will review are pigmentary mosaicism, piebaldism, albinism, Griscelli syndrome, ectodermal dysplasias, Waardenburg syndrome, and mucinosis in both humans and domesticated animals.

  20. MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.

    Science.gov (United States)

    Wang, Julia; Al-Ouran, Rami; Hu, Yanhui; Kim, Seon-Young; Wan, Ying-Wooi; Wangler, Michael F; Yamamoto, Shinya; Chao, Hsiao-Tuan; Comjean, Aram; Mohr, Stephanie E; Perrimon, Norbert; Liu, Zhandong; Bellen, Hugo J

    2017-06-01

    One major challenge encountered with interpreting human genetic variants is the limited understanding of the functional impact of genetic alterations on biological processes. Furthermore, there remains an unmet demand for an efficient survey of the wealth of information on human homologs in model organisms across numerous databases. To efficiently assess the large volume of publically available information, it is important to provide a concise summary of the most relevant information in a rapid user-friendly format. To this end, we created MARRVEL (model organism aggregated resources for rare variant exploration). MARRVEL is a publicly available website that integrates information from six human genetic databases and seven model organism databases. For any given variant or gene, MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER. Importantly, it curates model organism-specific databases to concurrently display a concise summary regarding the human gene homologs in budding and fission yeast, worm, fly, fish, mouse, and rat on a single webpage. Experiment-based information on tissue expression, protein subcellular localization, biological process, and molecular function for the human gene and homologs in the seven model organisms are arranged into a concise output. Hence, rather than visiting multiple separate databases for variant and gene analysis, users can obtain important information by searching once through MARRVEL. Altogether, MARRVEL dramatically improves efficiency and accessibility to data collection and facilitates analysis of human genes and variants by cross-disciplinary integration of 18 million records available in public databases to facilitate clinical diagnosis and basic research. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Genetic engineering in nonhuman primates for human disease modeling.

    Science.gov (United States)

    Sato, Kenya; Sasaki, Erika

    2018-02-01

    Nonhuman primate (NHP) experimental models have contributed greatly to human health research by assessing the safety and efficacy of newly developed drugs, due to their physiological and anatomical similarities to humans. To generate NHP disease models, drug-inducible methods, and surgical treatment methods have been employed. Recent developments in genetic and developmental engineering in NHPs offer new options for producing genetically modified disease models. Moreover, in recent years, genome-editing technology has emerged to further promote this trend and the generation of disease model NHPs has entered a new era. In this review, we summarize the generation of conventional disease model NHPs and discuss new solutions to the problem of mosaicism in genome-editing technology.

  2. The New World of Human Genetics: A dialogue between Practitioners & the General Public on Ethical, Legal & Social Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Amy

    2014-12-08

    The history and reasons for launching the Human Genome project and the current uses of genetic human material; Identifying and discussing the major issues stemming directly from genetic research and therapy-including genetic discrimination, medical/ person privacy, allocation of government resources and individual finances, and the effect on the way in which we perceive the value of human life; Discussing the sometimes hidden ethical, social and legislative implications of genetic research and therapy such as informed consent, screening and preservation of genetic materials, efficacy of medical procedures, the role of the government, and equal access to medical coverage.

  3. [Leprosy, a pillar of human genetics of infectious diseases].

    Science.gov (United States)

    Gaschignard, J; Scurr, E; Alcaïs, A

    2013-06-01

    Despite a natural reservoir of Mycobacterium leprae limited to humans and free availability of an effective antibiotic treatment, more than 200,000 people develop leprosy each year. This disease remains a major cause of disability and social stigma worldwide. The cause of this constant incidence is currently unknown and indicates that important aspects of the complex relationship between the pathogen and its human host remain to be discovered. An important contribution of host genetics to susceptibility to leprosy has long been suggested to account for the considerable variability between individuals sustainably exposed to M. leprae. Given the inability to cultivate M. leprae in vitro and in the absence of relevant animal model, genetic epidemiology is the main strategy used to identify the genes and, consequently, the immunological pathways involved in protective immunity to M. leprae. Recent genome-wide studies have identified new pathophysiological pathways which importance is only beginning to be understood. In addition, the prism of human genetics placed leprosy at the crossroads of other common diseases such as Crohn's disease, asthma or myocardial infarction. Therefore, novel lights on the pathogenesis of many common diseases could eventually emerge from the detailed understanding of a disease of the shadows. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. Are Adolescents with ADHD Interested in Genetic Testing for Nicotine Addiction Susceptibility?

    Directory of Open Access Journals (Sweden)

    Linda J. Herbert

    2010-04-01

    Full Text Available It has been well-established that some adolescents diagnosed with attention-deficit/hyperactivity disorder (ADHD are at increased risk for cigarette smoking. Current research on the genetic basis of this association could ultimately translate into genetic tests capable of identifying smoking-prone adolescents with ADHD. In this study we examined 81 ADHD affected adolescents’ (age 13–21 interest in genetic testing for nicotine addiction susceptibility. Fifty-seven percent of adolescents indicated a fair amount of interest or more in testing. Most adolescents indicated that the personal information revealed from testing would be either useful (29% or interesting (37%. Implications for genetically-informed smoking prevention and cessation interventions in high risk adolescents with ADHD are discussed.

  5. The commercialization of human genetic information and related circumstances within Turkish law.

    Science.gov (United States)

    Memiş, Tekin

    2011-01-01

    Today, human genetic information is used for commercial purposes as well. This means, based on the case, the direct or indirect commercialization of genetic information. In this study, this specific issue is analyzed in light of the new legal regulations as to the subject in the Turkish Law. Specifically, this study focuses on the issue of whether the commercialization of genetic information is allowed under the Turkish Law. This study also attempts to clarify the issue of whether there is any limitations for the commercialization of genetic information in the Turkish Law provided that the commercialization of genetic information is permitted. Prior to this legal analysis, the problems of the legal ownership for genetic information and of whether genetic information should be considered as an organ of human body is discussed. Accordingly, relevant Turkish laws and regulations are individually analyzed within this context. In the mean time legal regulations of some countries in this respect are taken into account with a comparative approach. In the end a general evaluation and suggestions are provided to the reader.

  6. Technology assessment and resource allocation for predictive genetic testing: A study of the perspectives of Canadian genetic health care providers

    Directory of Open Access Journals (Sweden)

    Einsiedel Edna

    2009-06-01

    Full Text Available Abstract Background With a growing number of genetic tests becoming available to the health and consumer markets, genetic health care providers in Canada are faced with the challenge of developing robust decision rules or guidelines to allocate a finite number of public resources. The objective of this study was to gain Canadian genetic health providers' perspectives on factors and criteria that influence and shape resource allocation decisions for publically funded predictive genetic testing in Canada. Methods The authors conducted semi-structured interviews with 16 senior lab directors and clinicians at publically funded Canadian predictive genetic testing facilities. Participants were drawn from British Columbia, Alberta, Manitoba, Ontario, Quebec and Nova Scotia. Given the community sampled was identified as being relatively small and challenging to access, purposive sampling coupled with snowball sampling methodologies were utilized. Results Surveyed lab directors and clinicians indicated that predictive genetic tests were funded provincially by one of two predominant funding models, but they themselves played a significant role in how these funds were allocated for specific tests and services. They also rated and identified several factors that influenced allocation decisions and patients' decisions regarding testing. Lastly, participants provided recommendations regarding changes to existing allocation models and showed support for a national evaluation process for predictive testing. Conclusion Our findings suggest that largely local and relatively ad hoc decision making processes are being made in relation to resource allocations for predictive genetic tests and that a more coordinated and, potentially, national approach to allocation decisions in this context may be appropriate.

  7. Human genetics after the bomb: Archives, clinics, proving grounds and board rooms.

    Science.gov (United States)

    Lindee, Susan

    2016-02-01

    In this paper I track the history of post-1945 human genetics and genomics emphasizing the importance of ideas about risk to the scientific study and medical management of human heredity. Drawing on my own scholarship as it is refracted through important new work by other scholars both junior and senior, I explore how radiation risk and then later disease risk mattered to the development of genetics and genomics, particularly in the United States. In this context I excavate one of the central ironies of post-war human genetics: while studies of DNA as the origin and cause of diseases have been lavishly supported by public institutions and private investment around the world, the day-to-day labor of intensive clinical innovation has played a far more important role in the actual human experience of genetic disease and genetic risk for affected families. This has implications for the archival record, where clinical interactions are less readily accessible to historians. This paper then suggests that modern genomics grew out of radiation risk; that it was and remains a risk assessment science; that it is temporally embedded as a form of both prediction and historical reconstruction; and that it has become a big business focused more on risk and prediction (which can be readily marketed) than on effective clinical intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Human genetics and genomics a decade after the release of the draft sequence of the human genome

    Science.gov (United States)

    2011-01-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605

  9. Genetics in the courts

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, Heather; Drell, Dan

    2000-12-01

    Various: (1)TriState 2000 Genetics in the Courts (2) Growing impact of the new genetics on the courts (3)Human testing (4) Legal analysis - in re G.C. (5) Legal analysis - GM ''peanots'', and (6) Legal analysis for State vs Miller

  10. Merits and pitfalls of genetic testing in a hypertrophic cardiomyopathy clinic.

    Science.gov (United States)

    Arad, Michael; Monserrat, Lorenzo; Haron-Khun, Shiraz; Seidman, Jonathan G; Seidman, Christine E; Arbustini, Eloisa; Glikson, Michael; Freimark, Dov

    2014-11-01

    Hypertrophic cardiomyopathy (HCM) is a familial disease with autosomal dominant inheritance and age-dependent penetrance, caused primarily by mutations of sarcomere genes. Because the clinical variability of HCM is related to its genetic heterogeneity, genetic studies may improve the diagnosis and prognostic evaluation in HCM. To analyze the impact of genetic diagnosis on the clinical management of HCM. Genetic studies were performed for either research or clinical reasons. Once the disease-causing mutation was identified, the management plan was reevaluated. Family members were invited to receive genetic counseling and encouraged to be tested for the mutation. Ten mutations in sarcomere protein genes were identified in 9 probands: 2 novel and 8 previously described. Advanced heart failure or sudden death in a young person prompted the genetic study in 8 of the 9 families. Of 98 relatives available for genotyping, only 53 (54%) agreed to be tested. The compliance was higher in families with sudden death and lower in what appeared to be sporadic HCM or elderly-onset disease. Among the healthy we identified 9 carriers and 19 non-carriers. In 6 individuals the test result resolved an uncertainty about "possible HCM." In several cases the genetic result was also used for family planning and played a role in decisions on cardioverter-defibrillator implantation. Recurrence of a same mutation in different families created an opportunity to apply the information from the literature for risk stratification of individual patients. We suggest that the clinical context determines the indication for genetic testing and interpretation of the results.

  11. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  12. Identification of multiple genetic loci in the mouse controlling immobility time in the tail suspension and forced swimming tests.

    Science.gov (United States)

    Abou-Elnaga, Ahmed F; Torigoe, Daisuke; Fouda, Mohamed M; Darwish, Ragab A; Abou-Ismail, Usama A; Morimatsu, Masami; Agui, Takashi

    2015-05-01

    Depression is one of the most famous psychiatric disorders in humans in all over the countries and considered a complex neurobehavioral trait and difficult to identify causal genes. Tail suspension test (TST) and forced swimming test (FST) are widely used for assessing depression-like behavior and antidepressant activity in mice. A variety of antidepressant agents are known to reduce immobility time in both TST and FST. To identify genetic determinants of immobility duration in both tests, we analyzed 101 F2 mice from an intercross between C57BL/6 and DBA/2 strains. Quantitative trait locus (QTL) mapping using 106 microsatellite markers revealed three loci (two significant and one suggestive) and five suggestive loci controlling immobility time in the TST and FST, respectively. Results of QTL analysis suggest a broad description of the genetic architecture underlying depression, providing underpinnings for identifying novel molecular targets for antidepressants to clear the complex genetic mechanisms of depressive disorders.

  13. Genetic Tests for Ability?: Talent Identification and the Value of an Open Future

    Science.gov (United States)

    Miah, Andy; Rich, Emma

    2006-01-01

    This paper explores the prospect of genetic tests for performance in physical activity and sports practices. It investigates the terminology associated with genetics, testing, selection and ability as a means towards a socio-ethical analysis of its value within sport, education and society. Our argument suggests that genetic tests need not even be…

  14. Improved genetic manipulation of human embryonic stem cells.

    NARCIS (Netherlands)

    Braam, S.R.; Denning, C.; van den Brink, S.; Kats, P.; Hochstenbach, R.; Passier, R.; Mummery, C.L.

    2008-01-01

    Low efficiency of transfection limits the ability to genetically manipulate human embryonic stem cells (hESCs), and differences in cell derivation and culture methods require optimization of transfection protocols. We transiently transferred multiple independent hESC lines with different growth

  15. Immunotoxicity testing using human primary leukocytes: An adjunct approach for the evaluation of human risk.

    Science.gov (United States)

    Phadnis-Moghe, Ashwini S; Kaminski, Norbert E

    2017-04-01

    Historically, immunotoxicity testing for chemicals, pesticides and pharmaceuticals has relied heavily on animal models to identify effects on the immune system followed by extrapolation to humans. Substantial progress has been made in the past decade on understanding human immune cell regulation, adaptive and innate immune responses and its modulation. The human immune system is complex and there exists diversity within composition, localization, and activation of different immune cell types between individuals. The inherent variation in human populations owing to genetics and environment can have a significant influence on the response of the immune system to infectious agents, drugs, chemicals and other environmental factors. Several recent reports have highlighted that mouse models of sepsis and inflammation are poorly predictive of human disease physiology and pathology. Rodent and human immune cells differ in the expression of cell surface proteins and phenotypes expressed in disease models, which may significantly influence the mechanism of action of xenobiotics and susceptibility yielding a different profile of activity across animal species. In the light of these differences and recent trends toward precision medicine, personalized therapies and the 3Rs (reduce, replace and refine animal use) approaches, the importance of using 'all human' model systems cannot be overstated. Hence, this opinion piece aims to discuss new models used to assess the effects of environmental contaminants and immune modulators on the immune response in human cells, the advantages and challenges of using human primary cells in immunotoxicology research and the implication for the future of immunotoxicity testing.

  16. Genetic line comparisons and genetic parameters for endoparasite infections and test-day milk production traits.

    Science.gov (United States)

    May, Katharina; Brügemann, Kerstin; Yin, Tong; Scheper, Carsten; Strube, Christina; König, Sven

    2017-09-01

    Keeping dairy cows in grassland systems relies on detailed analyses of genetic resistance against endoparasite infections, including between- and within-breed genetic evaluations. The objectives of this study were (1) to compare different Black and White dairy cattle selection lines for endoparasite infections and (2) the estimation of genetic (co)variance components for endoparasite and test-day milk production traits within the Black and White cattle population. A total of 2,006 fecal samples were taken during 2 farm visits in summer and autumn 2015 from 1,166 cows kept in 17 small- and medium-scale organic and conventional German grassland farms. Fecal egg counts were determined for gastrointestinal nematodes (FEC-GIN) and flukes (FEC-FLU), and fecal larvae counts for the bovine lungworm Dictyocaulus viviparus (FLC-DV). The lowest values for gastrointestinal nematode infections were identified for genetic lines adopted to pasture-based production systems, especially selection lines from New Zealand. Heritabilities were low for FEC-GIN (0.05-0.06 ± 0.04) and FLC-DV (0.05 ± 0.04), but moderate for FEC-FLU (0.33 ± 0.06). Almost identical heritabilities were estimated for different endoparasite trait transformations (log-transformation, square root). The genetic correlation between FEC-GIN and FLC-DV was 1.00 ± 0.60, slightly negative between FEC-GIN and FEC-FLU (-0.10 ± 0.27), and close to zero between FLC-DV and FEC-FLU (0.03 ± 0.30). Random regression test-day models on a continuous time scale [days in milk (DIM)] were applied to estimate genetic relationships between endoparasite and longitudinal test-day production traits. Genetic correlations were negative between FEC-GIN and milk yield (MY) until DIM 85, and between FEC-FLU and MY until DIM 215. Genetic correlations between FLC-DV and MY were negative throughout lactation, indicating improved disease resistance for high-productivity cows. Genetic relationships between FEC-GIN and FEC-FLU with milk

  17. Genetic variation in the Cytb gene of human cerebral Taenia solium cysticerci recovered from clinically and radiologically heterogeneous patients with neurocysticercosis

    Directory of Open Access Journals (Sweden)

    Hector Palafox-Fonseca

    2013-11-01

    Full Text Available Neurocysticercosis (NC is a clinically and radiologically heterogeneous parasitic disease caused by the establishment of larval Taenia solium in the human central nervous system. Host and/or parasite variations may be related to this observed heterogeneity. Genetic differences between pig and human-derived T. solium cysticerci have been reported previously. In this study, 28 cysticerci were surgically removed from 12 human NC patients, the mitochondrial gene that encodes cytochrome b was amplified from the cysticerci and genetic variations that may be related to NC heterogeneity were characterised. Nine different haplotypes (Ht, which were clustered in four haplogroups (Hg, were identified. Hg 3 and 4 exhibited a tendency to associate with age and gender, respectively. However, no significant associations were found between NC heterogeneity and the different T. solium cysticerci Ht or Hg. Parasite variants obtained from patients with similar NC clinical or radiological features were genetically closer than those found in groups of patients with a different NC profile when using the Mantel test. Overall, this study establishes the presence of genetic differences in the Cytb gene of T. solium isolated from human cysticerci and suggests that parasite variation could contribute to NC heterogeneity.

  18. Autobiologies on YouTube: Narratives of Direct-to-Consumer Genetic Testing

    Science.gov (United States)

    Harris, Anna; Kelly, Susan E.; Wyatt, Sally

    2014-01-01

    Despite a growing personal genomics market, little is known about how people engage with the possibilities offered by direct-to-consumer (DTC) genetic testing. In order to help address this gap, this study deploys narrative analysis of YouTube videos posted by individuals who have purchased DTC genetic testing for disease. Genetic testing is said to be contributing to new states of illness, where individuals may become “patients-in-waiting.” In the videos analyzed, we found a new form of storytelling about this ambiguous state of illness, which we refer to as autobiology. Autobiology – the study of, and story about, one's own biology – concerns narratives of sense-making through forms of biological practice, as well as wayfaring narratives which interweave genetic markers and family histories of disease. These autobiologies – part of a broader shift toward public stories about genetics and other healthcare technologies – exhibit playfulness, as well as being bound with consumerist practices. PMID:24772003

  19. Genetic testing in congenital heart disease: A clinical approach

    Science.gov (United States)

    Chaix, Marie A; Andelfinger, Gregor; Khairy, Paul

    2016-01-01

    Congenital heart disease (CHD) is the most common type of birth defect. Traditionally, a polygenic model defined by the interaction of multiple genes and environmental factors was hypothesized to account for different forms of CHD. It is now understood that the contribution of genetics to CHD extends beyond a single unified paradigm. For example, monogenic models and chromosomal abnormalities have been associated with various syndromic and non-syndromic forms of CHD. In such instances, genetic investigation and testing may potentially play an important role in clinical care. A family tree with a detailed phenotypic description serves as the initial screening tool to identify potentially inherited defects and to guide further genetic investigation. The selection of a genetic test is contingent upon the particular diagnostic hypothesis generated by clinical examination. Genetic investigation in CHD may carry the potential to improve prognosis by yielding valuable information with regards to personalized medical care, confidence in the clinical diagnosis, and/or targeted patient follow-up. Moreover, genetic assessment may serve as a tool to predict recurrence risk, define the pattern of inheritance within a family, and evaluate the need for further family screening. In some circumstances, prenatal or preimplantation genetic screening could identify fetuses or embryos at high risk for CHD. Although genetics may appear to constitute a highly specialized sector of cardiology, basic knowledge regarding inheritance patterns, recurrence risks, and available screening and diagnostic tools, including their strengths and limitations, could assist the treating physician in providing sound counsel. PMID:26981213

  20. 'Battling my biology': psychological effects of genetic testing for risk of weight gain.

    Science.gov (United States)

    Meisel, S F; Wardle, J

    2014-04-01

    The availability of genetic tests for multifactorial conditions such as obesity raises concerns that higher-risk results could lead to fatalistic reactions or lower-risk results to complacency. No study has investigated the effects of genetic test feedback for the risk of obesity in non-clinical samples. The present study explored psychological and behavioral reactions to genetic test feedback for a weight related gene (FTO) in a volunteer sample (n = 18) using semi-structured interviews. Respondents perceived the gene test result as scientifically objective; removing some of the emotion attached to the issue of weight control. Those who were struggling with weight control reported relief of self-blame. There was no evidence for either complacency or fatalism; all respondents emphasized the importance of lifestyle choices in long-term weight management, although they recognized the role of both genes and environment. Regardless of the test result, respondents evaluated the testing positively and found it motivating and informative. Genetic test feedback for risk of weight gain may offer psychological benefits beyond its objectively limited clinical utility. As the role of genetic counselors is likely to expand, awareness of reasons for genetic testing for common, complex conditions and reactions to the test result is important.

  1. Are we ready for genetic testing for primary open-angle glaucoma?

    Science.gov (United States)

    Khawaja, Anthony P; Viswanathan, Ananth C

    2018-05-01

    Following a dramatic reduction in the cost of genotyping technology in recent years, there have been significant advances in the understanding of the genetic basis of glaucoma. Glaucoma patients represent around a quarter of all outpatient activity in the UK hospital eye service and are a huge burden for the National Health Service. A potential benefit of genetic testing is personalised glaucoma management, allowing direction of our limited healthcare resources to the glaucoma patients who most need it. Our review aims to summarise recent discoveries in the field of glaucoma genetics and to discuss their potential clinical utility. While genome-wide association studies have now identified over ten genes associated with primary open-angle glaucoma (POAG), individually, variants in these genes are not predictive of POAG in populations. There are data suggesting some of these POAG variants are associated with conversion from ocular hypertension to POAG and visual field progression among POAG patients. However, these studies have not been replicated yet and such genetic testing is not currently justified in clinical care. In contrast, genetic testing for inherited early-onset disease in relatives of POAG patients with a known genetic mutation is of clear benefit; this can support either regular review to commence early treatment when the disease develops, or discharge from ophthalmology services of relatives who do not carry the mutation. Genetic testing for POAG at a population level is not currently justified.

  2. [Views of Icelandic women towards genetic counseling - and testing of BRCA2 mutations].

    Science.gov (United States)

    Jonsdottir, Thordis; Valdimarsdottir, Heiddis; Tryggvadottir, Laufey; Lund, Sigrun Helga; Thordardottir, Marianna; Magnusson, Magnus Karl; Valdimarsdottir, Unnur

    2018-01-01

    Introduction The aim of this study was to explore the attitudes of Icelandic women towards existing genetic information, genetic counseling and genetic testing for BRCA mutations which dramatically increase risk for aggressive cancers. Materials and methods Women attending the cancer prevention clinic in Reykjavik, capital of Iceland, from October 12th until November 20th 2015 received an invitation to participate. Participation involved answering a short online questionnaire about background, family history of cancer as well as attitudes towards genetic counseling, BRCA testing and preventive use of such information. Descriptive statistics and chi-square tests were used to describe differences in attitudes towards those questions between subgroups of women. Results 1129 women (69% response rate) answered the questionnaire. Mean age was 47 years (span 21-76 years). Around half (47%) had heard fairly much about the mutations. Independent of family history of cancer, the majority of women were positive towards receiving genetic counseling (79%) and to undergo genetic testing (83%) for BRCA mutation with younger women being more interested than older women. On the other hand, only 4% of the women had already received genetic counseling and 7% undergone genetic testing. Women with family history of cancer were more knowledgeable about BRCA mutations (pcounseling and testing for BRCA mutations although half of them worry that a positive result might affect their health insurance. Nevertheless, almost all women believe that existing genetic information should be used to inform carriers for preventive purposes.

  3. Internet-Based Direct-to-Consumer Genetic Testing: A Systematic Review.

    Science.gov (United States)

    Covolo, Loredana; Rubinelli, Sara; Ceretti, Elisabetta; Gelatti, Umberto

    2015-12-14

    Direct-to-consumer genetic tests (DTC-GT) are easily purchased through the Internet, independent of a physician referral or approval for testing, allowing the retrieval of genetic information outside the clinical context. There is a broad debate about the testing validity, their impact on individuals, and what people know and perceive about them. The aim of this review was to collect evidence on DTC-GT from a comprehensive perspective that unravels the complexity of the phenomenon. A systematic search was carried out through PubMed, Web of Knowledge, and Embase, in addition to Google Scholar according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist with the key term "Direct-to-consumer genetic test." In the final sample, 118 articles were identified. Articles were summarized in five categories according to their focus on (1) knowledge of, attitude toward use of, and perception of DTC-GT (n=37), (2) the impact of genetic risk information on users (n=37), (3) the opinion of health professionals (n=20), (4) the content of websites selling DTC-GT (n=16), and (5) the scientific evidence and clinical utility of the tests (n=14). Most of the articles analyzed the attitude, knowledge, and perception of DTC-GT, highlighting an interest in using DTC-GT, along with the need for a health care professional to help interpret the results. The articles investigating the content analysis of the websites selling these tests are in agreement that the information provided by the companies about genetic testing is not completely comprehensive for the consumer. Given that risk information can modify consumers' health behavior, there are surprisingly few studies carried out on actual consumers and they do not confirm the overall concerns on the possible impact of DTC-GT. Data from studies that investigate the quality of the tests offered confirm that they are not informative, have little predictive power, and do not measure genetic risk

  4. Analysis of the genetic basis of disease in the context of worldwide human relationships and migration.

    Directory of Open Access Journals (Sweden)

    Erik Corona

    2013-05-01

    Full Text Available Genetic diversity across different human populations can enhance understanding of the genetic basis of disease. We calculated the genetic risk of 102 diseases in 1,043 unrelated individuals across 51 populations of the Human Genome Diversity Panel. We found that genetic risk for type 2 diabetes and pancreatic cancer decreased as humans migrated toward East Asia. In addition, biliary liver cirrhosis, alopecia areata, bladder cancer, inflammatory bowel disease, membranous nephropathy, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, and vitiligo have undergone genetic risk differentiation. This analysis represents a large-scale attempt to characterize genetic risk differentiation in the context of migration. We anticipate that our findings will enable detailed analysis pertaining to the driving forces behind genetic risk differentiation.

  5. Genetic testing for exercise prescription and injury prevention: AIS-Athlome consortium-FIMS joint statement.

    Science.gov (United States)

    Vlahovich, Nicole; Hughes, David C; Griffiths, Lyn R; Wang, Guan; Pitsiladis, Yannis P; Pigozzi, Fabio; Bachl, Nobert; Eynon, Nir

    2017-11-14

    There has been considerable growth in basic knowledge and understanding of how genes are influencing response to exercise training and predisposition to injuries and chronic diseases. On the basis of this knowledge, clinical genetic tests may in the future allow the personalisation and optimisation of physical activity, thus providing an avenue for increased efficiency of exercise prescription for health and disease. This review provides an overview of the current status of genetic testing for the purposes of exercise prescription and injury prevention. As such there are a variety of potential uses for genetic testing, including identification of risks associated with participation in sport and understanding individual response to particular types of exercise. However, there are many challenges remaining before genetic testing has evidence-based practical applications; including adoption of international standards for genomics research, as well as resistance against the agendas driven by direct-to-consumer genetic testing companies. Here we propose a way forward to develop an evidence-based approach to support genetic testing for exercise prescription and injury prevention. Based on current knowledge, there is no current clinical application for genetic testing in the area of exercise prescription and injury prevention, however the necessary steps are outlined for the development of evidence-based clinical applications involving genetic testing.

  6. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias-Vasquez, A.; Desrivières, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Biks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.K.; Cuellar-Partida, G.; den Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santiañez, R.; Rose, E.J.; Salami, A.; Sämann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J.; van Eijk, K.R.; Walters, R.K.; Westlye, L.T.; Welan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.H.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.G.A.M.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.M.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.A.M.; Reese McKay, D.; Needham, M.; Nugent, A.C.; Pütz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; van der Marel, S.S.L.; van Hulzen, K.J.E.; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; de Zubicaray, G.I.; Dillman, A.; Duggirala, R.; Dyer, T.D.; Erk, S.; Fedko, I.O.; Ferrucci, L.; Foroud, T.M.; Fox, P.T.; Fukunaga, M.; Gibbs, J.R.; Göring, H.H.H.; Green, R.C.; Guelfi, S.; Hansell, N.K.; Hartman, C.A.; Hegenscheid, K.; Heinz, A.; Hernandez, D.G.; Heslenfeld, D.J.; Hoekstra, P.J.; Holsboer, F.; Homuth, G.; Hottenga, J.J.; Ikeda, M.; Jack, C.R., Jr.; Jenkinson, M.; Johnson, R.; Kanai, R.; Keil, M.; Kent, J.W. Jr.; Kochunov, P.; Kwok, J.B.; Lawrie, S.M.; Liu, X.; Longo, D.L.; McMahon, K.L.; Meisenzahl, E.; Melle, I.; Mohnke, S.; Montgomery, G.W.; Mostert, J.C.; Mühleisen, T.W.; Nalls, M.A.; Nichols, T.E.; Nilsson, L.G.; Nöthen, M.M.; Ohi, K.; Olvera, R.L.; Perez-Iglesias, R.; Pike, G.B.; Potkin, S.G.; Reinvang, I.; Reppermund, S.; Rietschel, M.; Romanczuk-Seiferth, N.; Rosen, G.D.; Rujescu, D.; Schnell, K.; Schofield, P.R.; Smith, C.; Steen, V.M.; Sussmann, J.E.; Thalamuthu, A.; Toga, A.W.; Traynor, B.J.; Troncoso, J.; Turner, J.A.; Valdés Hernández, M.C.; van t Ent, D.; van der Brug, M.; van der Wee, N.J.A.; van Tol, M.J.; Veltman, D.J.; Wassink, T.H.; Westmann, E.; Zielke, R.H.; Zonderman, A.B.; Ashbrook, D.G.; Hager, R.; Lu, L.; McMahon, F.J.; Morris, D.W.; Williams, R.W.; Brunner, H.G.; Buckner, R.L.; Buitelaar, J.K.; Cahn, W.; Calhoun, V.D.; Cavalleri, G.L.; Crespo-Facorro, B.; Dale, A.M.; Davies, G.E.; Delanty, N.; Depondt, C.; Djurovic, S.; Drevets, W.C.; Espeseth, T.; Gollub, R.L.; Ho, B.C.; Hoffmann, W.; Hosten, N.; Kahn, R.S.; Le Hellard, S.; Meyer-Lindenberg, A.; Müller-Myhsok, B.; Nauck, M.; Nyberg, L.; Pandolfo, M.; Penninx, B.W.J.H.; Roffman, J.L.; Sisodiya, SM; Smoller, J.W.; van Bokhoven, H.; van Haren, N.E.M.; Völzke, H.; Walter, H.; Weiner, M.W.; Wen, W.; White, T.; Agartz, I.; Andreassen, O.A.; Blangero, J.; Boomsma, D.I.; Brouwer, R.M.; Cannon, D.M.; Cookson, M.R.; de Geus, E.J.C.; Deary, I.J.; Donohoe, G.; Fernandez, G.; Fisher, S.E.; Francks, C.; Glahn, D.C.; Grabe, H.J.; Gruber, O.; Hardy, J.; Hashimoto, R.; Hulshoff Pol, H.E.; Jönsson, E.G.; Kloszewska, I.; Lovestone, S.; Mattay, V.S.; Mecocci, P.; McDonald, C.; McIntosh, A.M.; Ophoff, R.A.; Paus, T.; Pausova, Z.; Ryten, M.; Sachdev, P.S.; Saykin, A.J.; Simmons, A.; Singleton, A.; Soininen, H.; Wardlaw, J.M.; Weale, M.E.; Weinberger, D.R.; Adams, H.H.H.; Launer, L.J.; Seiler, S.; Schmidt, R.; Chauhan, G.; Satizabal, C.L.; Becker, J.T.; Yanek, L.; van der Lee, S.J.; Ebling, M.; Fischl, B.; Longstreth, Jr. W.T.; Greve, D.; Schmidt, H.; Nyquist, P.; Vinke, L.N.; van Duijn, C.M.; Xue, L.; Mazoyer, B.; Bis, J.C.; Gudnason, V.; Seshadri, S.; Arfan Ikram, M.; Martin, N.G.; Wright, M.J.; Schumann, G.; Franke, B.; Thompson, P.M.; Medland, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  7. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); L.T. Strike (Lachlan); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  8. Inauguration of the Cameroonian Society of Human Genetics ...

    African Journals Online (AJOL)

    CSHG) that was privilege to hold its inaugural meeting in conjunction to the 6th annual meeting of the AfSHG. The theme was "Human Origin, Genetic Diversity and Health”. The AfSHG and CSHG invited leading African and international scientists in ...

  9. Human genetics for non-scientists: Practical workshops for policy makers and opinion leaders

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    These workshops form part of a series of workshops that the Banbury and the DNA Learning Centers of Cold Spring Harbor Laboratory have held for a number of years, introducing genetics, and the ways in which scientific research is done, to non-scientists. The purpose of the workshops as stated in the grant application was: {open_quotes}Our objective is to foster a better understanding of the societal impact of human genome research by providing basic information on genetics to non-scientists whose professions or special interests interface with genetic technology.... Participants will be chosen for their interest in human genetics and for their roles as opinion leaders in their own communities. Primary care physicians are of particular interest to us for this series of workshops.{close_quotes} Two workshops were held under this grant. The first was held in 21-24 April, 1994 and attended by 20 participants, and the second was held 16-19 November, 1995, and attended by 16 participants. In each case, there was a combination of concept lectures on the foundations of human molecular genetics; lectures by invited specialists; and laboratory experiments to introduce non-scientists to the techniques used in molecular genetics.

  10. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus.

    Science.gov (United States)

    Sulaiman, Irshad M; Ortega, Ynes; Simpson, Steven; Kerdahi, Khalil

    2014-03-01

    Cyclospora cayetanensis is an apicocomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in humans. In recent years, this human-pathogenic parasite has led to several foodborne outbreaks in the United States and Canada, mostly associated with imported produce. Understanding the biology and epidemiology of C. cayetanensis is difficult because little is known about its origin, possible zoonotic reservoirs, and genetic relationships with other coccidian parasites. Recently, we developed a 70kDa heat shock protein (HSP70) gene based nested PCR protocol for detection of C. cayetanensis parasite and sequenced the PCR products of 16 human isolates from Nepal, Mexico, and Peru. In this study, we have characterized the regions of 18S ribosomal RNA (rRNA) gene of 17 human C. cayetanensis isolates for molecular detection, and also to ascertain the genetic diversity of this parasite. The 18S rRNA primer sets were further tested by PCR amplification followed by nucleotide sequencing of the PCR amplified products of previously characterized C. cayetanensis isolates from three endemic regions at HSP70 locus. Although no genetic polymorphism was observed at the regions of HSP70 locus characterized in our previous study, the data analysis of this study revealed a minor genetic diversity at the 18S rRNA locus among the C. cayetanensis isolates. The 18S rRNA gene-based nested PCR protocol provides a useful genetic marker for the detection of C. cayetanensis parasite and confirms it as a genetically distinct species in genus Cyclospora. The results also supported lack of geographic segregation and existence of genetically homogeneous population for the C. cayetanensis parasites both at the HSP70 as well as at the18S rRNA loci. Published by Elsevier B.V.

  11. An integrated map of genetic variation from 1.092 human genomes

    DEFF Research Database (Denmark)

    Abecasis, Goncalo R.; Auton, Adam; Brooks, Lisa D.

    2012-01-01

    By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination ...

  12. Human Genetics of Diabetic Retinopathy: Current Perspectives

    Directory of Open Access Journals (Sweden)

    Daniel P. K. Ng

    2010-01-01

    Full Text Available Diabetic retinopathy (DR is a most severe microvascular complication which, if left unchecked, can be sight-threatening. With the global prevalence of diabetes being relentlessly projected to rise to 438 million subjects by 2030, DR will undoubtedly pose a major public health concern. Efforts to unravel the human genetics of DR have been undertaken using the candidate gene and linkage approaches, while GWAS efforts are still lacking. Aside from evidence for a few genes including aldose reductase and vascular endothelial growth factor, the genetics of DR remain poorly elucidated. Nevertheless, the promise of impactful scientific discoveries may be realized if concerted and collaborative efforts are mounted to identify the genes for DR. Harnessing new genetic technologies and resources such as the upcoming 1000 Genomes Project will help advance this field of research, and potentially lead to a rich harvest of insights into the biological mechanisms underlying this debilitating complication.

  13. A population-based survey in Australia of men's and women's perceptions of genetic risk and predictive genetic testing and implications for primary care.

    Science.gov (United States)

    Taylor, S

    2011-01-01

    Community attitudes research regarding genetic issues is important when contemplating the potential value and utilisation of predictive testing for common diseases in mainstream health services. This article aims to report population-based attitudes and discuss their relevance to integrating genetic services in primary health contexts. Men's and women's attitudes were investigated via population-based omnibus telephone survey in Queensland, Australia. Randomly selected adults (n = 1,230) with a mean age of 48.8 years were interviewed regarding perceptions of genetic determinants of health; benefits of genetic testing that predict 'certain' versus 'probable' future illness; and concern, if any, regarding potential misuse of genetic test information. Most (75%) respondents believed genetic factors significantly influenced health status; 85% regarded genetic testing positively although attitudes varied with age. Risk-based information was less valued than certainty-based information, but women valued risk information significantly more highly than men. Respondents reported 'concern' (44%) and 'no concern' (47%) regarding potential misuse of genetic information. This study contributes important population-based data as most research has involved selected individuals closely impacted by genetic disorders. While community attitudes were positive regarding genetic testing, genetic literacy is important to establish. The nature of gender differences regarding risk perception merits further study and has policy and service implications. Community concern about potential genetic discrimination must be addressed if health benefits of testing are to be maximised. Larger questions remain in scientific, policy, service delivery, and professional practice domains before predictive testing for common disorders is efficacious in mainstream health care. Copyright © 2011 S. Karger AG, Basel.

  14. Direct-to-consumer genetic testing: To test or not to test, that is the ...

    African Journals Online (AJOL)

    significant resources that have been invested in basic biomedical .... knowledge, could be misled into thinking that genetic testing can be done for any .... strands of hair, bubble gum or cigarette butts. .... Lesage S, Ibanez P, Lohmann E, et al.

  15. EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease.

    Science.gov (United States)

    Losekoot, Monique; van Belzen, Martine J; Seneca, Sara; Bauer, Peter; Stenhouse, Susan A R; Barton, David E

    2013-05-01

    Huntington disease (HD) is caused by the expansion of an unstable polymorphic trinucleotide (CAG)n repeat in exon 1 of the HTT gene, which translates into an extended polyglutamine tract in the protein. Laboratory diagnosis of HD involves estimation of the number of CAG repeats. Molecular genetic testing for HD is offered in a wide range of laboratories both within and outside the European community. In order to measure the quality and raise the standard of molecular genetic testing in these laboratories, the European Molecular Genetics Quality Network has organized a yearly external quality assessment (EQA) scheme for molecular genetic testing of HD for over 10 years. EQA compares a laboratory's output with a fixed standard both for genotyping and reporting of the results to the referring physicians. In general, the standard of genotyping is very high but the clarity of interpretation and reporting of the test result varies more widely. This emphasizes the need for best practice guidelines for this disorder. We have therefore developed these best practice guidelines for genetic testing for HD to assist in testing and reporting of results. The analytical methods and the potential pitfalls of molecular genetic testing are highlighted and the implications of the different test outcomes for the consultand and his or her family members are discussed.

  16. Ethical Issues with Genetic Testing for Tay-Sachs.

    Science.gov (United States)

    Clayton, Tricia

    Several genetic disorders are specific to Jewish heritage; one of the most devastating is Tay-Sachs disease.Tay-Sachs is a fatal hereditary disease, causing progressive neurological problems for which there is no cure. Ethical issues surrounding genetic testing for Tay-Sachs within the Jewish community continue to be complex and multifaceted. A perspective of Tay-Sachs, using rights-based ethics and virtue ethics as a theoretical framework, is explored.

  17. Genetics of human body size and shape: pleiotropic and independent genetic determinants of adiposity.

    Science.gov (United States)

    Livshits, G; Yakovenko, K; Ginsburg, E; Kobyliansky, E

    1998-01-01

    The present study utilized pedigree data from three ethnically different populations of Kirghizstan, Turkmenia and Chuvasha. Principal component analysis was performed on a matrix of genetic correlations between 22 measures of adiposity, including skinfolds, circumferences and indices. Findings are summarized as follows: (1) All three genetic matrices were not positive definite and the first four factors retained even after exclusion RG > or = 1.0, explained from 88% to 97% of the total additive genetic variation in the 22 trials studied. This clearly emphasizes the massive involvement of pleiotropic gene effects in the variability of adiposity traits. (2) Despite the quite natural differences in pairwise correlations between the adiposity traits in the three ethnically different samples under study, factor analysis revealed a common basic pattern of covariability for the adiposity traits. In each of the three samples, four genetic factors were retained, namely, the amount of subcutaneous fat, the total body obesity, the pattern of distribution of subcutaneous fat and the central adiposity distribution. (3) Genetic correlations between the retained four factors were virtually non-existent, suggesting that several independent genetic sources may be governing the variation of adiposity traits. (4) Variance decomposition analysis on the obtained genetic factors leaves no doubt regarding the substantial familial and (most probably genetic) effects on variation of each factor in each studied population. The similarity of results in the three different samples indicates that the findings may be deemed valid and reliable descriptions of the genetic variation and covariation pattern of adiposity traits in the human species.

  18. Genetic Testing for Respiratory Disease: Are We There Yet?

    Directory of Open Access Journals (Sweden)

    Peter D Paré

    2012-01-01

    Full Text Available The human genome project promised a revolution in health care – the development of ‘personalized medicine’, where knowledge of an individual’s genetic code enables the prediction of risk for specific diseases and the potential to alter that risk based on preventive measures and lifestyle modification. The present brief review provides a report card on the progress toward that goal with respect to respiratory disease. Should generalized population screening for genetic risk factors for respiratory disease be instituted? Or not?

  19. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum.

    Directory of Open Access Journals (Sweden)

    Christian Gieger

    2008-11-01

    Full Text Available The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants that associate with changes in the homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations of frequent single nucleotide polymorphisms (SNPs with considerable differences in the metabolic homeostasis of the human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy for enzymatic activity, up to 28% of the variance can be explained (p-values 10(-16 to 10(-21. We identified four genetic variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD where the corresponding metabolic phenotype (metabotype clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.

  20. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  1. Perceptions regarding genetic testing in populations at risk for nephropathy.

    Science.gov (United States)

    Freedman, Barry I; Fletcher, Alison J; Sanghani, Vivek R; Spainhour, Mitzie; Graham, Angelina W; Russell, Gregory B; Cooke Bailey, Jessica N; Iltis, Ana S; King, Nancy M P

    2013-01-01

    Population ancestry-based differences exist in genetic risk for many kidney diseases. Substantial debate remains regarding returning genetic test results to participants. African-Americans (AAs) and European-Americans (EAs) at risk for end-stage kidney disease were queried for views on the value and use of genetic testing in research. A standardized survey regarding attitudes toward genetic testing was administered to 130 individuals (64 AA, 66 EA) with first-degree relatives on dialysis. Fisher's exact test was used to assess differences in participant attitudes between population groups. Mean (SD) age of surveyed AAs and EAs was 45.5 (12.8) and 50.5 (14.4) years, respectively (p = 0.04), with similar familial relationships (p = 0.22). AAs and EAs wished to know their test results if risk could be: (1) reduced by diet or exercise (100 and 98%, p = 0.99); (2) reduced by medical treatment (100 and 98%, p = 0.99), or (3) if no treatments were available (90 and 82%, p = 0.21). If informed they lacked a disease susceptibility variant, 87% of AAs and 88% of EAs would be extremely or pretty likely to inform family members (p = 0.84). If informed they had a disease susceptibility variant, 92% of AAs and 89% of EAs would be extremely or pretty likely to inform their family (p = 0.43). Attitudes toward obtaining and using genetic test results for disease in research contexts were similar in AAs and EAs at risk for end-stage kidney disease. A substantial majority would want information regardless of available treatments and would share the information with the family. These results have important implications for patient care, study design and the informed consent process. © 2013 S. Karger AG, Basel.

  2. The impact of direct-to-consumer marketing of cancer genetic testing on women according to their genetic risk.

    Science.gov (United States)

    Lowery, Jan T; Byers, Tim; Axell, Lisen; Ku, Lisa; Jacobellis, Jillian

    2008-12-01

    To assess the impact of direct-to-consumer marketing for genetic testing among women of varying genetic risk for breast and ovarian cancer. Telephone surveys were conducted with 315 women in Denver, Colorado, one target audience for the Myriad BRACAnalysis ad campaign. Genetic risk was determined from personal and family history and grouped by probability of having a BRCA1/2 mutation (low or =10%). High-risk women were more knowledgeable about BRACAnalysis and more likely to recall the media ads than were low-risk women (60 vs. 39%, P audience. Concern about breast cancer was not appreciably increased. A large percentage of low-risk women (not candidates for testing) expressed interest in testing, suggesting the campaign was too broad. A campaign targeted at high-risk women, who may benefit from testing might be preferred.

  3. Genetic Testing for Wolfram Syndrome Mutations in a Sample of 71 Patients with Hereditary Optic Neuropathy and Negative Genetic Test Results for OPA1/OPA3/LHON.

    Science.gov (United States)

    Galvez-Ruiz, Alberto; Galindo-Ferreiro, Alicia; Schatz, Patrik

    2018-04-01

    In this study, the authors present a sample of 71 patients with hereditary optic neuropathy and negative genetic test results for OPA1/OPA3/LHON. All of these patients later underwent genetic testing to rule out WFS. As a result, 53 patients (74.7%) were negative and 18 patients (25.3%) were positive for some type of mutation or variation in the WFS gene. The authors believe that this study is interesting because it shows that a sizeable percentage (25.3%) of patients with hereditary optic 25 neuropathy and negative genetic test results for OPA1/OPA3/LHON had WFS mutations or variants.

  4. Genetic test feedback with weight control advice: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Meisel Susanne F

    2012-12-01

    Full Text Available Abstract Background Genetic testing for risk of weight gain is already available over the internet despite uncertain benefits and concerns about adverse emotional or behavioral effects. Few studies have assessed the effect of adding genetic test feedback to weight control advice, even though one of the proposed applications of genetic testing is to stimulate preventive action. This study will investigate the motivational effect of adding genetic test feedback to simple weight control advice in a situation where weight gain is relatively common. Methods/design First-year university students (n = 800 will be randomized to receive either 1 their personal genetic test result for a gene (FTO related to weight gain susceptibility in addition to a leaflet with simple weight control advice (‘Feedback + Advice’ group, FA, or 2 only the leaflet containing simple weight control advice (‘Advice Only’ group, AO. Motivation to avoid weight gain and active use of weight control strategies will be assessed one month after receipt of the leaflet with or without genetic test feedback. Weight and body fat will be measured at baseline and eight months follow-up. We will also assess short-term psychological reactions to the genetic test result. In addition, we will explore interactions between feedback condition and gene test status. Discussion We hope to provide a first indication of the clinical utility of weight-related genetic test feedback in the prevention context. Trial registration Current controlled trials ISRCTN91178663

  5. Scaling up: human genetics as a Cold War network.

    Science.gov (United States)

    Lindee, Susan

    2014-09-01

    In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Reliability of genetic bottleneck tests for detecting recent population declines

    NARCIS (Netherlands)

    Peery, M. Zachariah; Kirby, Rebecca; Reid, Brendan N.; Stoelting, Ricka; Doucet-Beer, Elena; Robinson, Stacie; Vasquez-Carrillo, Catalina; Pauli, Jonathan N.; Palsboll, Per J.

    The identification of population bottlenecks is critical in conservation because populations that have experienced significant reductions in abundance are subject to a variety of genetic and demographic processes that can hasten extinction. Genetic bottleneck tests constitute an appealing and

  7. [Constant or break? On the relations between human genetics and eugenics in the Twentieth Century].

    Science.gov (United States)

    Germann, Pascal

    2015-07-01

    The history of human genetics has been a neglected topic in history of science and medicine for a long time. Only recently, have medical historians begun to pay more attention to the history of human heredity. An important research question deals with the interconnections between human genetics and eugenics. This paper addresses this question: By focusing on a Swiss case study, the investigation of the heredity of goiter, I will argue that there existed close but also ambiguous relations between heredity research and eugenics in the twentieth century. Studies on human heredity often produced evidence that challenged eugenic aims and ideas. Concurrently, however, these studies fostered visions of genetic improvement of human populations.

  8. The impact of advances in human molecular biology on radiation genetic risk estimation in man

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1996-01-01

    This paper provides an overview of the conceptual framework, the data base, methods and assumptions used thus far to assess the genetic risks of exposure of human populations to ionising radiation. These are then re-examined in the contemporary context of the rapidly expanding knowledge of the molecular biology of human mendelian diseases. This re-examination reveals that (i) many of the assumptions used thus far in radiation genetic risk estimation may not be fully valid and (ii) the current genetic risk estimates are probably conservative, but provide an adequate margin of safety for radiological protection. The view is expressed that further advances in the field of genetic risk estimation will be largely driven by advances in the molecular biology of human genetic diseases. (author). 37 refs., 5 tabs

  9. Genetic loading on human loving styles.

    Science.gov (United States)

    Emanuele, Enzo; Brondino, Natascia; Pesenti, Sara; Re, Simona; Geroldi, Diego

    2007-12-01

    It has been hypothesized that cerebral neurotransmitters such as dopamine and serotonin could play a role in human romantic bonding. However, no data on the genetic basis of human romantic love are currently available. To address this issue, we looked for associations between markers in neurotransmitter genes (the serotonin transporter gene, 5-HTT; the serotonin receptor 2A, 5HT2A; the dopamine D2 receptor gene, DRD2; and the dopamine D4 receptor gene, DRD4) and the six styles of love as conceptualized by Lee (Eros, Ludus, Storge, Pragma, Mania and Agape). A total of 350 healthy young adults (165 males and 185 females, mean age: 24.1+/-3.9 years, range 18-32 years) filled the 24-item Love Attitudes Scale (LAS) and were genotyped for the following six polymorphic markers: the serotonin transporter-linked polymorphic region (5-HTTLPR), the 5HT2A T102C and C516T polymorphisms, the DRD2 TaqI A and TaqI B variants, and the DRD4 exon 3 VNTR polymorphism. Statistical analysis revealed a significant association between the DRD2 TaqI A genotypes and "Eros" (a loving style characterized by a tendency to develop intense emotional experiences based on the physical attraction to the partner), as well as between the C516T 5HT2A polymorphism and "Mania" (a possessive and dependent romantic attachment, characterized by self-defeating emotions). These associations were present in both sexes and remained significant even after adjustment for potential confounders. Our data provide the first evidence of a possible genetic loading on human loving styles.

  10. Internet-Based Direct-to-Consumer Genetic Testing: A Systematic Review

    Science.gov (United States)

    Rubinelli, Sara; Ceretti, Elisabetta; Gelatti, Umberto

    2015-01-01

    Background Direct-to-consumer genetic tests (DTC-GT) are easily purchased through the Internet, independent of a physician referral or approval for testing, allowing the retrieval of genetic information outside the clinical context. There is a broad debate about the testing validity, their impact on individuals, and what people know and perceive about them. Objective The aim of this review was to collect evidence on DTC-GT from a comprehensive perspective that unravels the complexity of the phenomenon. Methods A systematic search was carried out through PubMed, Web of Knowledge, and Embase, in addition to Google Scholar according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist with the key term “Direct-to-consumer genetic test.” Results In the final sample, 118 articles were identified. Articles were summarized in five categories according to their focus on (1) knowledge of, attitude toward use of, and perception of DTC-GT (n=37), (2) the impact of genetic risk information on users (n=37), (3) the opinion of health professionals (n=20), (4) the content of websites selling DTC-GT (n=16), and (5) the scientific evidence and clinical utility of the tests (n=14). Most of the articles analyzed the attitude, knowledge, and perception of DTC-GT, highlighting an interest in using DTC-GT, along with the need for a health care professional to help interpret the results. The articles investigating the content analysis of the websites selling these tests are in agreement that the information provided by the companies about genetic testing is not completely comprehensive for the consumer. Given that risk information can modify consumers’ health behavior, there are surprisingly few studies carried out on actual consumers and they do not confirm the overall concerns on the possible impact of DTC-GT. Data from studies that investigate the quality of the tests offered confirm that they are not informative, have little predictive

  11. [Survey on the attitude toward genetic testing of neurologists certified by the Japanese Society of Neurology].

    Science.gov (United States)

    Yoshida, Kunihiro; Ohata, Takako; Muto, Kaori; Tsuchiya, Atsushi; Sawada, Jinichi; Hazama, Takanori; Ikeda, Shu-Ichi; Toda, Tatsushi

    2013-01-01

    To clarify the attitude toward genetic testing for neuromuscular diseases, a questionnaire was sent to 4,762 neurologists certified by the Japanese Society of Neurology. By December 21, 2011, 1,493 questionnaires (31.4%) were returned. Of these, 1,233 (82.6%) had experienced genetic testing, but only 396 (26.5%) had referred to the guideline for genetic testing of the Japanese Society of Neurology (2009). The numbers of respondents who were positive, or more positive than negative for genetic testing for myotonic dystrophy type 1 (DM1), Huntington's disease (HD), and familial amyloid polyneuropathy (FAP) were 753 (50.4%), 915 (61.3%), and 980 (65.6%), respectively. The predominant reason for a positive attitude toward genetic testing was to confirm or exclude the diagnosis. Conversely, the predominant reason for a negative attitude toward genetic testing differed between the diseases. For DM1, it was to confirm the diagnosis without genetic testing. For HD, it was that genetic testing would not result in effective prevention or therapy. In FAP, it was that post-testing psychosocial support for the patient and their family was difficult. Common to DM1, HD, and FAP, a significant number of respondents (approximately 60%) felt it difficult to explain the negative aspects that might occur after the disclosure of test results. Concerning predictive or prenatal genetic testing, most respondents referred at-risk individuals to specialized genetic counseling clinics. In general, neurologists are likely to conduct genetic testing properly in consideration not only of the characteristics of the diseases but also of the circumstances of each patient and his or her family. To support neurologists who are involved in genetic testing, the guidelines should be more easily accessible. Many respondents wanted information on the institutions that provide genetic counseling and testing; however, financial support to such institutions is indispensable for fulfilling this requirement.

  12. Genetically-modified pig mesenchymal stromal cells: xenoantigenicity and effect on human T-cell xenoresponses.

    Science.gov (United States)

    Ezzelarab, Mohamed; Ezzelarab, Corin; Wilhite, Tyler; Kumar, Goutham; Hara, Hidetaka; Ayares, David; Cooper, David K C

    2011-01-01

    Mesenchymal stromal cells (MSC) are being investigated as immunomodulatory therapy in the field of transplantation, particularly islet transplantation. While MSC can regenerate across species barriers, the immunoregulatory influence of genetically modified pig MSC (pMSC) on the human and non-human primate T-cell responses has not been studied. Mesenchymal stromal cells from wild-type (WT), α1,3-galactosyltransferase gene knockout (GTKO) and GTKO pigs transgenic for the human complement-regulatory protein CD46 (GTKO/CD46) were isolated and tested for differentiation. Antibody binding and T-cell responses to WT and GTKO pMSC in comparison with GTKO pig aortic endothelial cells (pAEC) were investigated. The expression of swine leukocyte antigen (SLA) class II (SLA II) was tested. Costimulatory molecules CD80 and CD86 mRNA levels were measured. Human T-cell proliferation and the production of pro-inflammatory cytokines in response to GTKO and GTKO/CD46 pMSC in comparison with human MSC (hMSC) were evaluated. α1,3-galactosyltransferase gene knockout and GTKO/CD46 pMSC isolation and differentiation were achieved in vitro. Binding of human antibodies and T-cell responses were lower to GTKO than those to WT pMSC. Human and baboon (naïve and sensitized) antibody binding were significantly lower to GTKO pMSC than to GTKO pAEC. Before activation, human CD4(+) T-cell response to GTKO pMSC was significantly weaker than that to GTKO pAEC, even after pIFN-γ activation. More than 99% of GTKO/CD46 pMSC expressed hCD46. Human peripheral blood mononuclear cells and CD4(+) T-cell responses to GTKO and GTKO/CD46 pMSC were comparable with those to hMSC, and all were significantly lower than to GTKO pAEC. GTKO/CD46 pMSC downregulated human T-cell proliferation as efficiently as hMSC. The level of proinflammatory cytokines IL-2, IFN-γ, TNF-α, and sCD40L correlated with the downregulation of T-cell proliferation by all types of MSC. Genetically modified pMSC is significantly less

  13. Comparison of Fluorescence In Situ Hybridization and Chromogenic In Situ Hybridization for Low and High Throughput HER2 Genetic Testing

    Science.gov (United States)

    Poulsen, Tim S.; Espersen, Maiken L. M.; Kofoed, Vibeke; Dabetic, Tanja; Høgdall, Estrid; Balslev, Eva

    2013-01-01

    The purpose was to evaluate and compare 5 different HER2 genetic assays with different characteristics that could affect the performance to analyze the human epidermal growth factor 2 (HER2) gene copy number under low and high throughput conditions. The study included 108 tissue samples from breast cancer patients with HER2 immunohistochemistry (IHC) results scored as 0/1+, 2+, and 3+. HER2 genetic status was analysed using chromogenic in situ hybridization (CISH) and fluorescence in situ hybridization (FISH). Scoring results were documented through digital image analysis. The cancer region of interest was identified from a serial H&E stained slide following tissue cores were transferred to a tissue microarrays (TMA). When using TMA in a routine flow, all patients will be tested for HER2 status with IHC followed by CISH or FISH, thereby providing individual HER2 results. In conclusion, our results show that the differences between the HER2 genetic assays do not have an effect on the analytic performance and the CISH technology is superior to high throughput HER2 genetic testing due to scanning speed, while the IQ-FISH may still be a choice for fast low throughput HER2 genetic testing. PMID:24383005

  14. Monkey-based research on human disease: the implications of genetic differences.

    Science.gov (United States)

    Bailey, Jarrod

    2014-11-01

    Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90-93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer's disease, Parkinson's disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists. 2014 FRAME.

  15. An audit of clinical service examining the uptake of genetic testing by at-risk family members.

    Science.gov (United States)

    Forrest, Laura; Delatycki, Martin; Curnow, Lisette; Gen Couns, M; Skene, Loane; Aitken, Maryanne

    2012-01-01

    The aim of this study was to investigate the uptake of genetic testing by at-risk family members for four genetic conditions: chromosomal translocations, fragile X syndrome, Huntington disease, and spinal muscular atrophy. A clinical audit was undertaken using genetics files from Genetic Health Services Victoria. Data were extracted from the files regarding the number of at-risk family members and the proportion tested. Information was also collected about whether discussion of at-risk family members and family communication during the genetic consultation was recorded. The proportion of at-risk family members who had genetic testing ranged from 11% to 18%. First-degree family members were most frequently tested and the proportion of testing decreased by degree of relatedness to the proband. Smaller families were significantly more likely to have genetic testing for all conditions except Huntington disease. Female at-risk family members were significantly more likely to have testing for fragile X syndrome. The majority of at-risk family members do not have genetic testing. Family communication is likely to influence the uptake of genetic testing by at-risk family members and therefore it is important that families are supported while communicating to ensure that at-risk family members are able to make informed decisions about genetic testing.

  16. Should Australia Ban the Use of Genetic Test Results in Life Insurance?

    OpenAIRE

    Tiller, Jane; Otlowski, Margaret; Lacaze, Paul

    2017-01-01

    Under current Australian regulation, life insurance companies can require applicants to disclose all genetic test results, including results from research or direct-to-consumer tests. Life insurers can then use this genetic information in underwriting and policy decisions for mutually rated products, including life, permanent disability, and total income protection insurance. Over the past decade, many countries have implemented moratoria or legislative bans on the use of genetic information ...

  17. Building capacity for human genetics and genomics research in Trinidad and Tobago

    Directory of Open Access Journals (Sweden)

    Allana Roach

    Full Text Available Advances in human genetics and genomic sciences and the corresponding explosion of biomedical technologies have deepened current understanding of human health and revolutionized medicine. In developed nations, this has led to marked improvements in disease risk stratification and diagnosis. These advances have also led to targeted intervention strategies aimed at promoting disease prevention, prolonging disease onset, and mitigating symptoms, as in the well-known case of breast cancer and the BRCA1 gene. In contrast, in the developing nation of Trinidad and Tobago, this scientific revolution has not translated into the development and application of effective genomics-based interventions for improving public health. While the reasons for this are multifactorial, the underlying basis may be rooted in the lack of pertinence of internationally driven genomics research to the local public health needs in the country, as well as a lack of relevance of internationally conducted genetics research to the genetic and environmental contexts of the population. Indeed, if Trinidad and Tobago is able to harness substantial public health benefit from genetics/genomics research, then there is a dire need, in the near future, to build local capacity for the conduct and translation of such research. Specifically, it is essential to establish a national human genetics/genomics research agenda in order to build sustainable human capacity through education and knowledge transfer and to generate public policies that will provide the basis for the creation of a mutually beneficial framework (including partnerships with more developed nations that is informed by public health needs and contextual realities of the nation.

  18. Predictive Psychiatric Genetic Testing in Minors: An Exploration of the Non-Medical Benefits.

    Science.gov (United States)

    Manzini, Arianna; Vears, Danya F

    2018-03-01

    Predictive genetic testing for susceptibility to psychiatric conditions is likely to become part of standard practice. Because the onset of most psychiatric diseases is in late adolescence or early adulthood, testing minors could lead to early identification that may prevent or delay the development of these disorders. However, due to their complex aetiology, psychiatric genetic testing does not provide the immediate medical benefits that current guidelines require for testing minors. While several authors have argued non-medical benefits may play a crucial role in favour of predictive testing for other conditions, little research has explored such a role in psychiatric disorders. This paper outlines the potential non-medical benefits and harms of psychiatric genetic testing in minors in order to consider whether the non-medical benefits could ever make such testing appropriate. Five non-medical themes arise in the literature: psychological impacts, autonomy/self-determination, implications of the biomedical approach, use of financial and intellectual resources, and discrimination. Non-medical benefits were prominent in all of them, suggesting that psychiatric genetic testing in minors may be appropriate in some circumstances. Further research needs to empirically assess these potential non-medical benefits, incorporate minors in the debate, and include normative reflection to evaluate the very purposes and motivations of psychiatric genetic testing in minors.

  19. Evaluating online direct-to-consumer marketing of genetic tests: informed choices or buyers beware?

    Science.gov (United States)

    Geransar, Rose; Einsiedel, Edna

    2008-03-01

    Commercialization of genetic technologies is expanding the horizons for the marketing and sales of genetic tests direct-to-consumers (DTCs). This study assesses the information provision and access requirements that are in place for genetic tests that are being advertised DTC over the Internet. Sets of key words specific to DTC genetic testing were entered into popular Internet search engines to generate a list of 24 companies engaging in DTC advertising. Company requirements for physician mediation, genetic counseling arrangements, and information provision were coded to develop categories for quantitative analysis within each variable. Results showed that companies offering risk assessment and diagnostic testing were most likely to require that testing be mediated by a clinician, and to recommend physician-arranged counseling. Companies offering enhancement testing were less likely to require physician mediation of services and more likely to provide long-distance genetic counseling. DTC advertisements often provided information on disease etiology; this was most common in the case of multifactorial diseases. The majority of companies cited outside sources to support the validity of claims about clinical utility of the tests being advertised; companies offering risk assessment tests most frequently cited all information sources. DTC advertising for genetic tests that lack independent professional oversight raises troubling questions about appropriate use and interpretation of these tests by consumers and carries implications for the standards of patient care. These implications are discussed in the context of a public healthcare system.

  20. Functional characterization of genetic enzyme variations in human lipoxygenases

    Directory of Open Access Journals (Sweden)

    Thomas Horn

    2013-01-01

    Full Text Available Mammalian lipoxygenases play a role in normal cell development and differentiation but they have also been implicated in the pathogenesis of cardiovascular, hyperproliferative and neurodegenerative diseases. As lipid peroxidizing enzymes they are involved in the regulation of cellular redox homeostasis since they produce lipid hydroperoxides, which serve as an efficient source for free radicals. There are various epidemiological correlation studies relating naturally occurring variations in the six human lipoxygenase genes (SNPs or rare mutations to the frequency for various diseases in these individuals, but for most of the described variations no functional data are available. Employing a combined bioinformatical and enzymological strategy, which included structural modeling and experimental site-directed mutagenesis, we systematically explored the structural and functional consequences of non-synonymous genetic variations in four different human lipoxygenase genes (ALOX5, ALOX12, ALOX15, and ALOX15B that have been identified in the human 1000 genome project. Due to a lack of a functional expression system we resigned to analyze the functionality of genetic variations in the hALOX12B and hALOXE3 gene. We found that most of the frequent non-synonymous coding SNPs are located at the enzyme surface and hardly alter the enzyme functionality. In contrast, genetic variations which affect functional important amino acid residues or lead to truncated enzyme variations (nonsense mutations are usually rare with a global allele frequency<0.1%. This data suggest that there appears to be an evolutionary pressure on the coding regions of the lipoxygenase genes preventing the accumulation of loss-of-function variations in the human population.

  1. Hopefulness predicts resilience after hereditary colorectal cancer genetic testing: a prospective outcome trajectories study

    OpenAIRE

    Chu Annie TW; Bonanno George A; Ho Judy WC; Ho Samuel MY; Chan Emily MS

    2010-01-01

    Abstract Background - Genetic testing for hereditary colorectal cancer (HCRC) had significant psychological consequences for test recipients. This prospective longitudinal study investigated the factors that predict psychological resilience in adults undergoing genetic testing for HCRC. Methods - A longitudinal study was carried out from April 2003 to August 2006 on Hong Kong Chinese HCRC family members who were recruited and offered genetic testing by the Hereditary Gastrointestinal Cancer R...

  2. Non-genetic health professionals' attitude towards, knowledge of and skills in discussing and ordering genetic testing for hereditary cancer

    NARCIS (Netherlands)

    Douma, Kirsten F. L.; Smets, Ellen M. A.; Allain, Dawn C.

    2016-01-01

    Non-genetic health professionals (NGHPs) have insufficient knowledge of cancer genetics, express educational needs and are unprepared to counsel their patients regarding their genetic test results. So far, it is unclear how NGHPs perceive their own communication skills. This study was undertaken to

  3. Support Seeking or Familial Obligation: An Investigation of Motives for Disclosing Genetic Test Results.

    Science.gov (United States)

    Greenberg, Marisa; Smith, Rachel A

    2016-01-01

    Genetic test results reveal not only personal information about a person's likelihood of certain medical conditions but also information about the person's genetic relatives. Given the familial nature of genetic information, one's obligation to protect family members may be a motive for disclosing genetic test results, but this claim has not been methodically tested. Existing models of disclosure decision making presume self-interested motives, such as seeking social support, instead of other-interested motives, like familial obligation. This study investigated young adults' (N = 173) motives to share a genetic-based health condition, alpha-1 antitrypsin deficiency, after reading a hypothetical vignette. Results show that social support and familial obligation were both reported as motives for disclosure. In fact, some participants reported familial obligation as their primary motivator for disclosure. Finally, stronger familial obligation predicted increased likelihood of disclosing hypothetical genetic test results. Implications of these results were discussed in reference to theories of disclosure decision-making models and the practice of genetic disclosures.

  4. Genetic human prion disease modelled in PrP transgenic Drosophila.

    Science.gov (United States)

    Thackray, Alana M; Cardova, Alzbeta; Wolf, Hanna; Pradl, Lydia; Vorberg, Ina; Jackson, Walker S; Bujdoso, Raymond

    2017-09-20

    Inherited human prion diseases, such as fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD), are associated with autosomal dominant mutations in the human prion protein gene PRNP and accumulation of PrP Sc , an abnormal isomer of the normal host protein PrP C , in the brain of affected individuals. PrP Sc is the principal component of the transmissible neurotoxic prion agent. It is important to identify molecular pathways and cellular processes that regulate prion formation and prion-induced neurotoxicity. This will allow identification of possible therapeutic interventions for individuals with, or at risk from, genetic human prion disease. Increasingly, Drosophila has been used to model human neurodegenerative disease. An important unanswered question is whether genetic prion disease with concomitant spontaneous prion formation can be modelled in Drosophila We have used pUAST/PhiC31-mediated site-directed mutagenesis to generate Drosophila transgenic for murine or hamster PrP (prion protein) that carry single-codon mutations associated with genetic human prion disease. Mouse or hamster PrP harbouring an FFI (D178N) or fCJD (E200K) mutation showed mild Proteinase K resistance when expressed in Drosophila Adult Drosophila transgenic for FFI or fCJD variants of mouse or hamster PrP displayed a spontaneous decline in locomotor ability that increased in severity as the flies aged. Significantly, this mutant PrP-mediated neurotoxic fly phenotype was transferable to recipient Drosophila that expressed the wild-type form of the transgene. Collectively, our novel data are indicative of the spontaneous formation of a PrP-dependent neurotoxic phenotype in FFI- or CJD-PrP transgenic Drosophila and show that inherited human prion disease can be modelled in this invertebrate host. © 2017 The Author(s).

  5. Factors Motivating Individuals to Consider Genetic Testing for Type 2 Diabetes Risk Prediction.

    Directory of Open Access Journals (Sweden)

    Jennifer Wessel

    Full Text Available The purpose of this study was to identify attitudes and perceptions of willingness to participate in genetic testing for type 2 diabetes (T2D risk prediction in the general population. Adults (n = 598 were surveyed on attitudes about utilizing genetic testing to predict future risk of T2D. Participants were recruited from public libraries (53%, online registry (37% and a safety net hospital emergency department (10%. Respondents were 37 ± 11 years old, primarily White (54%, female (69%, college educated (46%, with an annual income ≥$25,000 (56%. Half of participants were interested in genetic testing for T2D (52% and 81% agreed/strongly agreed genetic testing should be available to the public. Only 57% of individuals knew T2D is preventable. A multivariate model to predict interest in genetic testing was adjusted for age, gender, recruitment location and BMI; significant predictors were motivation (high perceived personal risk of T2D [OR = 4.38 (1.76, 10.9]; family history [OR = 2.56 (1.46, 4.48]; desire to know risk prior to disease onset [OR = 3.25 (1.94, 5.42]; and knowing T2D is preventable [OR = 2.11 (1.24, 3.60], intention (if the cost is free [OR = 10.2 (4.27, 24.6]; and learning T2D is preventable [OR = 5.18 (1.95, 13.7] and trust of genetic testing results [OR = 0.03 (0.003, 0.30]. Individuals are interested in genetic testing for T2D risk which offers unique information that is personalized. Financial accessibility, validity of the test and availability of diabetes prevention programs were identified as predictors of interest in T2D testing.

  6. Cost-Effectiveness Analysis of Different Genetic Testing Strategies for Lynch Syndrome in Taiwan.

    Directory of Open Access Journals (Sweden)

    Ying-Erh Chen

    Full Text Available Patients with Lynch syndrome (LS have a significantly increased risk of developing colorectal cancer (CRC and other cancers. Genetic screening for LS among patients with newly diagnosed CRC aims to identify mutations in the disease-causing genes (i.e., the DNA mismatch repair genes in the patients, to offer genetic testing for relatives of the patients with the mutations, and then to provide early prevention for the relatives with the mutations. Several genetic tests are available for LS, such as DNA sequencing for MMR genes and tumor testing using microsatellite instability and immunohistochemical analyses. Cost-effectiveness analyses of different genetic testing strategies for LS have been performed in several studies from different countries such as the US and Germany. However, a cost-effectiveness analysis for the testing has not yet been performed in Taiwan. In this study, we evaluated the cost-effectiveness of four genetic testing strategies for LS described in previous studies, while population-specific parameters, such as the mutation rates of the DNA mismatch repair genes and treatment costs for CRC in Taiwan, were used. The incremental cost-effectiveness ratios based on discounted life years gained due to genetic screening were calculated for the strategies relative to no screening and to the previous strategy. Using the World Health Organization standard, which was defined based on Taiwan's Gross Domestic Product per capita, the strategy based on immunohistochemistry as a genetic test followed by BRAF mutation testing was considered to be highly cost-effective relative to no screening. Our probabilistic sensitivity analysis results also suggest that the strategy has a probability of 0.939 of being cost-effective relative to no screening based on the commonly used threshold of $50,000 to determine cost-effectiveness. To the best of our knowledge, this is the first cost-effectiveness analysis for evaluating different genetic testing

  7. Pre-test genetic counseling services for hereditary breast and ovarian cancer delivered by non-genetics professionals in the state of Florida.

    Science.gov (United States)

    Vadaparampil, S T; Scherr, C L; Cragun, D; Malo, T L; Pal, T

    2015-05-01

    Genetic counseling and testing for hereditary breast and ovarian cancer now includes practitioners from multiple healthcare professions, specialties, and settings. This study examined whether non-genetics professionals (NGPs) perform guideline-based patient intake and informed consent before genetic testing. NGPs offering BRCA testing services in Florida (n = 386) were surveyed about clinical practices. Among 81 respondents (response rate = 22%), approximately half reported: sometimes scheduling a separate session for pre-test counseling lasting 11-30 min prior to testing, discussing familial implications of testing, benefits and limitations of risk management options, and discussing the potential psychological impact and insurance-related issues. Few constructed a three-generation pedigree, discussed alternative hereditary cancer syndromes, or the meaning of a variant result. This lack of adherence to guideline-based practice may result in direct harm to patients and their family members. NGPs who are unable to deliver guideline adherent cancer genetics services should focus on identification and referral of at-risk patients to in person or telephone services provided by genetics professionals. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Valenced action/inhibition learning in humans is modulated by a genetic variant linked to dopamine D2 receptor expression

    Directory of Open Access Journals (Sweden)

    Anni eRichter

    2014-08-01

    Full Text Available Motivational salience plays an important role in shaping human behavior, but recent studies demonstrate that human performance is not uniformly improved by motivation. Instead, action has been shown to dominate valence in motivated tasks, and it is particularly difficult for humans to learn the inhibition of an action to obtain a reward, but the neural mechanism behind this behavioral specificity is yet unclear. In all mammals, including humans, the monoamine neurotransmitter dopamine is particularly important in the neural manifestation of appetitively motivated behavior, and the human dopamine system is subject to considerable genetic variability. The well-studied TaqIA restriction fragment length polymorphism (rs1800497 has previously been shown to affect striatal dopamine metabolism. In this study we investigated a potential effect of this genetic variation on motivated action/inhibition learning. Two independent cohorts consisting of 87 and 95 healthy participants, respectively, were tested using the previously described valenced go/no-go learning paradigm in which participants learned the reward-associated no-go condition significantly worse than all other conditions. This effect was modulated by the TaqIA polymorphism, with carriers of the A1 allele showing a diminished learning-related performance enhancement in the rewarded no-go condition compared to the A2 homozygotes. This result highlights a modulatory role for genetic variability of the dopaminergic system in individual learning differences of action-valence interaction.

  9. Gaps in Incorporating Germline Genetic Testing Into Treatment Decision-Making for Early-Stage Breast Cancer.

    Science.gov (United States)

    Kurian, Allison W; Li, Yun; Hamilton, Ann S; Ward, Kevin C; Hawley, Sarah T; Morrow, Monica; McLeod, M Chandler; Jagsi, Reshma; Katz, Steven J

    2017-07-10

    Purpose Genetic testing for breast cancer risk is evolving rapidly, with growing use of multiple-gene panels that can yield uncertain results. However, little is known about the context of such testing or its impact on treatment. Methods A population-based sample of patients with breast cancer diagnosed in 2014 to 2015 and identified by two SEER registries (Georgia and Los Angeles) were surveyed about genetic testing experiences (N = 3,672; response rate, 68%). Responses were merged with SEER data. A patient subgroup at higher pretest risk of pathogenic mutation carriage was defined according to genetic testing guidelines. Patients' attending surgeons were surveyed about genetic testing and results management. We examined patterns and correlates of genetic counseling and testing and the impact of results on bilateral mastectomy (BLM) use. Results Six hundred sixty-six patients reported genetic testing. Although two thirds of patients were tested before surgical treatment, patients without private insurance more often experienced delays. Approximately half of patients (57% at higher pretest risk, 42% at average risk) discussed results with a genetic counselor. Patients with pathogenic mutations in BRCA1/2 or another gene had the highest rates of BLM (higher risk, 80%; average risk, 85%); however, BLM was also common among patients with genetic variants of uncertain significance (VUS; higher risk, 43%; average risk, 51%). Surgeons' confidence in discussing testing increased with volume of patients with breast cancer, but many surgeons (higher volume, 24%; lower volume, 50%) managed patients with BRCA1/2 VUS the same as patients with BRCA1/2 pathogenic mutations. Conclusion Many patients with breast cancer are tested without ever seeing a genetic counselor. Half of average-risk patients with VUS undergo BLM, suggesting a limited understanding of results that some surgeons share. These findings emphasize the need to address challenges in personalized communication

  10. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    the focal GM and WM densities of each twin are correlated with the psychometric intelligence quotient of his/her cotwin. Genes influenced individual differences in left and right superior occipitofrontal fascicle (heritability up to 0.79 and 0.77), corpus callosum (0.82, 0.80), optic radiation (0.69, 0.......79), corticospinal tract (0.78, 0.79), medial frontal cortex (0.78, 0.83), superior frontal cortex (0.76, 0.80), superior temporal cortex (0.80, 0.77), left occipital cortex (0.85), left postcentral cortex (0.83), left posterior cingulate cortex (0.83), right parahippocampal cortex (0.69), and amygdala (0.80, 0......Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...

  11. Colloquium paper: uniquely human evolution of sialic acid genetics and biology.

    Science.gov (United States)

    Varki, Ajit

    2010-05-11

    Darwinian evolution of humans from our common ancestors with nonhuman primates involved many gene-environment interactions at the population level, and the resulting human-specific genetic changes must contribute to the "Human Condition." Recent data indicate that the biology of sialic acids (which directly involves less than 60 genes) shows more than 10 uniquely human genetic changes in comparison with our closest evolutionary relatives. Known outcomes are tissue-specific changes in abundant cell-surface glycans, changes in specificity and/or expression of multiple proteins that recognize these glycans, and novel pathogen regimes. Specific events include Alu-mediated inactivation of the CMAH gene, resulting in loss of synthesis of the Sia N-glycolylneuraminic acid (Neu5Gc) and increase in expression of the precursor N-acetylneuraminic acid (Neu5Ac); increased expression of alpha2-6-linked Sias (likely because of changed expression of ST6GALI); and multiple changes in SIGLEC genes encoding Sia-recognizing Ig-like lectins (Siglecs). The last includes binding specificity changes (in Siglecs -5, -7, -9, -11, and -12); expression pattern changes (in Siglecs -1, -5, -6, and -11); gene conversion (SIGLEC11); and deletion or pseudogenization (SIGLEC13, SIGLEC14, and SIGLEC16). A nongenetic outcome of the CMAH mutation is human metabolic incorporation of foreign dietary Neu5Gc, in the face of circulating anti-Neu5Gc antibodies, generating a novel "xeno-auto-antigen" situation. Taken together, these data suggest that both the genes associated with Sia biology and the related impacts of the environment comprise a relative "hot spot" of genetic and physiological changes in human evolution, with implications for uniquely human features both in health and disease.

  12. Exploring dispositional tendencies to seek online information about direct-to-consumer genetic testing.

    Science.gov (United States)

    Paquin, Ryan S; Richards, Adam S; Koehly, Laura M; McBride, Colleen M

    2012-12-01

    Varying perspectives exist regarding the implications of genetic susceptibility testing for common disease, with some anticipating adverse effects and others expecting positive outcomes; however, little is known about the characteristics of people who are most likely to be interested in direct-to-consumer genetic testing. To that end, this study examines the association of individual dispositional differences with health risk perceptions and online information seeking related to a free genetic susceptibility test. Healthy adults enrolled in a large health maintenance organization were surveyed by telephone. Eligible participants (N = 1,959) were given access to a secure website that provided risk and benefit information about a genetic susceptibility test and given the option to be tested. Neuroticism was associated with increased perceptions of disease risk but not with logging on. Those scoring high in conscientiousness were more likely to log on. We found no evidence that neuroticism, a dispositional characteristic commonly linked to adverse emotional response, was predictive of online genetic information seeking in this sample of healthy adults.

  13. Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer in Women

    Science.gov (United States)

    ... their family history of cancer. Depending on a woman’s family history, the doctor or nurse may then use a ... against routine genetic counseling or BRCA testing of women whose family history is not associated with an increased risk for ...

  14. Analyzing age-specific genetic effects on human extreme age survival in cohort-based longitudinal studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Jacobsen, Rune; Sørensen, Mette

    2013-01-01

    The analysis of age-specific genetic effects on human survival over extreme ages is confronted with a deceleration pattern in mortality that deviates from traditional survival models and sparse genetic data available. As human late life is a distinct phase of life history, exploring the genetic...... effects on extreme age survival can be of special interest to evolutionary biology and health science. We introduce a non-parametric survival analysis approach that combines population survival information with individual genotype data in assessing the genetic effects in cohort-based longitudinal studies...

  15. Ethical issues in the use of genetic testing of patients with schizophrenia and their families.

    Science.gov (United States)

    DeLisi, Lynn E

    2014-05-01

    This review outlines the positive and negative aspects of DNA testing and provides an account of the issues particularly relevant to schizophrenia. Modern technology has changed the field of medicine so rapidly that patients and their families have become much more independent in their healthcare decisions than in the previous decade. Simply by finding information on the Internet, they gain knowledge about disease diagnosis, treatment options and their side-effects. No medical field likely has been more affected and more controversial than that of genetics. It is now possible to sequence the individual human genome and detect single nucleotide variations, microdeletions and duplications within it. Commercial companies have sprung up in a similar manner to the software or electronic industries and have begun to market direct-to-consumer DNA testing. Much of this may be performed to satisfy curiosity about one's ancestry; but commercially available results that appear incidentally can also be distributed to the consumer. Ethicists, genetics researchers, clinicians and government agencies are currently in discussion about concerns raised about commercially available DNA testing, while at the same time recognizing its value in some instances to be able to predict very serious disabilities.

  16. Genetics & sport: bioethical concerns.

    Science.gov (United States)

    Miah, Andy

    2012-12-01

    This paper provides an overview of the ethical issues pertaining to the use of genetic insights and techniques in sport. Initially, it considers a range of scientific findings that have stimulated debate about the ethical issues associated with genetics applied to sport. It also outlines some of the early policy responses to these discoveries from world leading sports organizations, along with knowledge about actual use of gene technologies in sport. Subsequently, it considers the challenges with distinguishing between therapeutic use and human enhancement within genetic science, which is a particularly important issue for the world of sport. Next, particular attention is given to the use of genetic information, which raises questions about the legitimacy and reliability of genetic tests, along with the potential public value of having DNA databanks to economize in health care. Finally, the ethics of gene transfer are considered, inviting questions into the values of sport and humanity. It argues that, while gene modification may seem conceptually similar to other forms of doping, the requirements upon athletes are such that new forms of enhancement become increasingly necessary to discover. Insofar as genetic science is able to create safer, more effective techniques of human modification, then it may be an appealing route through which to modify athletes to safeguard the future of elite sports as enterprises of human excellence.

  17. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  18. Rural-urban and racial-ethnic differences in awareness of direct-to-consumer genetic testing.

    Science.gov (United States)

    Salloum, Ramzi G; George, Thomas J; Silver, Natalie; Markham, Merry-Jennifer; Hall, Jaclyn M; Guo, Yi; Bian, Jiang; Shenkman, Elizabeth A

    2018-02-23

    Access to direct-to-consumer genetic testing services has increased in recent years. However, disparities in knowledge and awareness of these services are not well documented. We examined awareness of genetic testing services by rural/urban and racial/ethnic status. Analyses were conducted using pooled cross-sectional data from 4 waves (2011-2014) of the Health Information National Trends Survey (HINTS). Descriptive statistics compared sample characteristics and information sources by rural/urban residence. Logistic regression was used to examine the relationship between geography, racial/ethnic status, and awareness of genetic testing, controlling for sociodemographic characteristics. Of 13,749 respondents, 16.7% resided in rural areas, 13.8% were Hispanic, and 10.1% were non-Hispanic black. Rural residents were less likely than urban residents to report awareness of genetic testing (OR = 0.74, 95% CI = 0.63-0.87). Compared with non-Hispanic whites, racial/ethnic minorities were less likely to be aware of genetic testing: Hispanic (OR = 0.68, 95% CI = 0.56-0.82); and non-Hispanic black (OR = 0.74, 95% CI = 0.61-0.90). Rural-urban and racial-ethnic differences exist in awareness of direct-to-consumer genetic testing. These differences may translate into disparities in the uptake of genetic testing, health behavior change, and disease prevention through precision and personalized medicine.

  19. Environmental chemical mutagens and genetic risks: Lessons from radiation genetics

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1996-01-01

    The last three decades have witnessed substantial progress in the development and use of a variety of in vitro and in vivo assay systems for the testing of environmental chemicals which may pose a mutagenic hazard to humans. This is also true of basic studies in chemical mutagenesis on mechanisms, DNA repair, molecular dosimetry, structure-activity relationships, etc. However, the field of quantitative evaluation of genetic risks of environmental chemicals to humans is still in it infancy. This commentary addresses the question of how our experience in estimating genetic risks of exposure to ionizing radiation can be helpful in similar endeavors with environmental chemical mutagens. 24 refs., 3 tabs

  20. Type VI secretion systems of human gut Bacteroidales segregate into three genetic architectures, two of which are contained on mobile genetic elements.

    Science.gov (United States)

    Coyne, Michael J; Roelofs, Kevin G; Comstock, Laurie E

    2016-01-15

    Type VI secretion systems (T6SSs) are contact-dependent antagonistic systems employed by Gram negative bacteria to intoxicate other bacteria or eukaryotic cells. T6SSs were recently discovered in a few Bacteroidetes strains, thereby extending the presence of these systems beyond Proteobacteria. The present study was designed to analyze in a global nature the diversity, abundance, and properties of T6SSs in the Bacteroidales, the most predominant Gram negative bacterial order of the human gut. By performing extensive bioinformatics analyses and creating hidden Markov models for Bacteroidales Tss proteins, we identified 130 T6SS loci in 205 human gut Bacteroidales genomes. Of the 13 core T6SS proteins of Proteobacteria, human gut Bacteroidales T6SS loci encode orthologs of nine, and an additional five other core proteins not present in Proteobacterial T6SSs. The Bacteroidales T6SS loci segregate into three distinct genetic architectures with extensive DNA identity between loci of a given genetic architecture. We found that divergent DNA regions of a genetic architecture encode numerous types of effector and immunity proteins and likely include new classes of these proteins. TheT6SS loci of genetic architecture 1 are contained on highly similar integrative conjugative elements (ICEs), as are the T6SS loci of genetic architecture 2, whereas the T6SS loci of genetic architecture 3 are not and are confined to Bacteroides fragilis. Using collections of co-resident Bacteroidales strains from human subjects, we provide evidence for the transfer of genetic architecture 1 T6SS loci among co-resident Bacteroidales species in the human gut. However, we also found that established ecosystems can harbor strains with distinct T6SS of all genetic architectures. This is the first study to comprehensively analyze of the presence and diversity of T6SS loci within an order of bacteria and to analyze T6SSs of bacteria from a natural community. These studies demonstrate that more than

  1. Recent developments in genetics and medically assisted reproduction: from research to clinical applications.

    Science.gov (United States)

    Harper, J C; Aittomäki, K; Borry, P; Cornel, M C; de Wert, G; Dondorp, W; Geraedts, J; Gianaroli, L; Ketterson, K; Liebaers, I; Lundin, K; Mertes, H; Morris, M; Pennings, G; Sermon, K; Spits, C; Soini, S; van Montfoort, A P A; Veiga, A; Vermeesch, J R; Viville, S; Macek, M

    2018-01-01

    Two leading European professional societies, the European Society of Human Genetics and the European Society for Human Reproduction and Embryology, have worked together since 2004 to evaluate the impact of fast research advances at the interface of assisted reproduction and genetics, including their application into clinical practice. In September 2016, the expert panel met for the third time. The topics discussed highlighted important issues covering the impacts of expanded carrier screening, direct-to-consumer genetic testing, voiding of the presumed anonymity of gamete donors by advanced genetic testing, advances in the research of genetic causes underlying male and female infertility, utilisation of massively parallel sequencing in preimplantation genetic testing and non-invasive prenatal screening, mitochondrial replacement in human oocytes, and additionally, issues related to cross-generational epigenetic inheritance following IVF and germline genome editing. The resulting paper represents a consensus of both professional societies involved.

  2. Genetic evidence for natural selection in humans in the contemporary United States.

    Science.gov (United States)

    Beauchamp, Jonathan P

    2016-07-12

    Recent findings from molecular genetics now make it possible to test directly for natural selection by analyzing whether genetic variants associated with various phenotypes have been under selection. I leverage these findings to construct polygenic scores that use individuals' genotypes to predict their body mass index, educational attainment (EA), glucose concentration, height, schizophrenia, total cholesterol, and (in females) age at menarche. I then examine associations between these scores and fitness to test whether natural selection has been occurring. My study sample includes individuals of European ancestry born between 1931 and 1953 who participated in the Health and Retirement Study, a representative study of the US population. My results imply that natural selection has been slowly favoring lower EA in both females and males, and are suggestive that natural selection may have favored a higher age at menarche in females. For EA, my estimates imply a rate of selection of about -1.5 mo of education per generation (which pales in comparison with the increases in EA observed in contemporary times). Although they cannot be projected over more than one generation, my results provide additional evidence that humans are still evolving-albeit slowly, especially compared with the rapid changes that have occurred over the past few generations due to cultural and environmental factors.

  3. Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.

    Science.gov (United States)

    Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P

    2009-12-01

    Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.

  4. From animal models to human disease: a genetic approach for personalized medicine in ALS.

    Science.gov (United States)

    Picher-Martel, Vincent; Valdmanis, Paul N; Gould, Peter V; Julien, Jean-Pierre; Dupré, Nicolas

    2016-07-11

    Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disease in adults. Classical ALS is characterized by the death of upper and lower motor neurons leading to progressive paralysis. Approximately 10 % of ALS patients have familial form of the disease. Numerous different gene mutations have been found in familial cases of ALS, such as mutations in superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43), fused in sarcoma (FUS), C9ORF72, ubiquilin-2 (UBQLN2), optineurin (OPTN) and others. Multiple animal models were generated to mimic the disease and to test future treatments. However, no animal model fully replicates the spectrum of phenotypes in the human disease and it is difficult to assess how a therapeutic effect in disease models can predict efficacy in humans. Importantly, the genetic and phenotypic heterogeneity of ALS leads to a variety of responses to similar treatment regimens. From this has emerged the concept of personalized medicine (PM), which is a medical scheme that combines study of genetic, environmental and clinical diagnostic testing, including biomarkers, to individualized patient care. In this perspective, we used subgroups of specific ALS-linked gene mutations to go through existing animal models and to provide a comprehensive profile of the differences and similarities between animal models of disease and human disease. Finally, we reviewed application of biomarkers and gene therapies relevant in personalized medicine approach. For instance, this includes viral delivering of antisense oligonucleotide and small interfering RNA in SOD1, TDP-43 and C9orf72 mice models. Promising gene therapies raised possibilities for treating differently the major mutations in familial ALS cases.

  5. "Be ready against cancer, now": direct-to-consumer advertising for genetic testing.

    Science.gov (United States)

    William-Jones, Bryn

    2006-04-01

    A recent addition to the debate about the benefits and harms of direct-to-consumer (DTC) advertising of medicines and pharmaceuticals is a growing critique of DTC marketing and sale of genetic tests. Academic and policy literatures exploring this issue have, however, tended to focus on the sale of genetic tests, paying rather less attention to the particular implications of advertising. The globalization of broadcast media and ever increasing access to the Internet mean that public exposure to advertising for medical technologies is a reality that national regulatory bodies will be hard pressed to constrain. Working through a case study detailing Myriad Genetics' 2002 pilot advertising campaign for their BRACAnalysis genetic susceptibility test for hereditary breast and ovarian cancer, this paper highlights some of the diverse and often overlooked and unregulated approaches to DTC advertising, and the associated social, ethical and policy implications.

  6. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine.

    Science.gov (United States)

    Burridge, Paul W; Sharma, Arun; Wu, Joseph C

    2015-01-01

    Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine.

  7. Tracking Dengue Virus Intra-host Genetic Diversity during Human-to-Mosquito Transmission.

    Directory of Open Access Journals (Sweden)

    Shuzhen Sim

    Full Text Available Dengue virus (DENV infection of an individual human or mosquito host produces a dynamic population of closely-related sequences. This intra-host genetic diversity is thought to offer an advantage for arboviruses to adapt as they cycle between two very different host species, but it remains poorly characterized. To track changes in viral intra-host genetic diversity during horizontal transmission, we infected Aedes aegypti mosquitoes by allowing them to feed on DENV2-infected patients. We then performed whole-genome deep-sequencing of human- and matched mosquito-derived DENV samples on the Illumina platform and used a sensitive variant-caller to detect single nucleotide variants (SNVs within each sample. >90% of SNVs were lost upon transition from human to mosquito, as well as from mosquito abdomen to salivary glands. Levels of viral diversity were maintained, however, by the regeneration of new SNVs at each stage of transmission. We further show that SNVs maintained across transmission stages were transmitted as a unit of two at maximum, suggesting the presence of numerous variant genomes carrying only one or two SNVs each. We also present evidence for differences in selection pressures between human and mosquito hosts, particularly on the structural and NS1 genes. This analysis provides insights into how population drops during transmission shape RNA virus genetic diversity, has direct implications for virus evolution, and illustrates the value of high-coverage, whole-genome next-generation sequencing for understanding viral intra-host genetic diversity.

  8. Genetic testing facilitates prepubertal diagnosis of congenital hypogonadotropic hypogonadism.

    Science.gov (United States)

    Xu, C; Lang-Muritano, M; Phan-Hug, F; Dwyer, A A; Sykiotis, G P; Cassatella, D; Acierno, J; Mohammadi, M; Pitteloud, N

    2017-08-01

    Neonatal micropenis and cryptorchidism raise the suspicion of congenital hypogonadotropic hypogonadism (CHH), a rare genetic disorder caused by gonadotropin-releasing hormone deficiency. Low plasma testosterone levels and low gonadotropins during minipuberty provide a clinical diagnostic clue, yet these tests are seldomly performed in general practice. We report a male neonate with no family history of reproductive disorders who was born with micropenis and cryptorchidism. Hormonal testing at age 2.5 months showed low testosterone (0.3 nmol/L) and undetectable gonadotropins (luteinizing hormone and follicle-stimulating hormone both <0.5 U/L), suggestive of CHH. Genetic testing identified a de novo, heterozygous mutation in fibroblast growth factor receptor 1 (FGFR1 p.L630P). L630 resides on the ATP binding cleft of the FGFR1 tyrosine kinase domain, and L630P is predicted to cause a complete loss of receptor function. Cell-based assays confirmed that L630P abolishes FGF8 signaling activity. Identification of a loss-of-function de novo FGFR1 mutation in this patient confirms the diagnosis of CHH, allowing for a timely hormonal treatment to induce pubertal development. Therefore, genetic testing can complement clinical and hormonal assessment for a timely diagnosis of CHH in childhood. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Genetics of human sensitivity to ultraviolet radiation

    Science.gov (United States)

    Cleaver, James E.

    1994-07-01

    the major human health effects of solar and artificial UV light occur from the UVB and UVC wavelength ranges and involve a variety of short-term and long-term deleterious changes to the skin and eyes. the more important initial damage to cellular macromolecules involves dimerization of adjacent pyrimidines in DNA to produce cyclobutane pyrimidine dimes, (6-4) pyrimidine- pyrimidone, and (6-4) dewar photoproducts. these photoproducts can be repaired by a genetically regulated enzyme system (nucleotide excision repair) which removes oligonucleotides 29-30 nucleotides long that contain the photoproducts, and synthesizes replacement patches. At least a dozen gene products are involved in the process of recognizing photoproducts in DNA, altering local DNA helicity and cleaving the polynucleotide chain at defined positions either side of a photoproduct. Hereditary mutations in many of these genes are recognized in the human genetic disorders xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). Several of the gene products have other functions involving the regulation of gene transcription which accounts for the complex clinical presentation of repair deficient diseases that involve sensitivity of the skin and eyes to UV light, increased solar carcinogenesis (in XP), demyelination, and ganglial calcification (in CS), hair abnormalities (in TTD), and developmental and neurological abnormalities

  10. Good laboratory practices for biochemical genetic testing and newborn screening for inherited metabolic disorders.

    Science.gov (United States)

    2012-04-06

    Biochemical genetic testing and newborn screening are essential laboratory services for the screening, detection, diagnosis, and monitoring of inborn errors of metabolism or inherited metabolic disorders. Under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) regulations, laboratory testing is categorized on the basis of the level of testing complexity as either waived (i.e., from routine regulatory oversight) or nonwaived testing (which includes tests of moderate and high complexity). Laboratories that perform biochemical genetic testing are required by CLIA regulations to meet the general quality systems requirements for nonwaived testing and the personnel requirements for high-complexity testing. Laboratories that perform public health newborn screening are subject to the same CLIA regulations and applicable state requirements. As the number of inherited metabolic diseases that are included in state-based newborn screening programs continues to increase, ensuring the quality of performance and delivery of testing services remains a continuous challenge not only for public health laboratories and other newborn screening facilities but also for biochemical genetic testing laboratories. To help ensure the quality of laboratory testing, CDC collaborated with the Centers for Medicare & Medicaid Services, the Food and Drug Administration, the Health Resources and Services Administration, and the National Institutes of Health to develop guidelines for laboratories to meet CLIA requirements and apply additional quality assurance measures for these areas of genetic testing. This report provides recommendations for good laboratory practices that were developed based on recommendations from the Clinical Laboratory Improvement Advisory Committee, with additional input from the Secretary's Advisory Committee on Genetics, Health, and Society; the Secretary's Advisory Committee on Heritable Disorders in Newborns and Children; and representatives of newborn

  11. Metabolic Interactions of Purine Derivatives with Human ABC Transporter ABCG2: Genetic Testing to Assess Gout Risk.

    Science.gov (United States)

    Ishikawa, Toshihisa; Aw, Wanping; Kaneko, Kiyoko

    2013-11-04

    In mammals, excess purine nucleosides are removed from the body by breakdown in the liver and excretion from the kidneys. Uric acid is the end product of purine metabolism in humans. Two-thirds of uric acid in the human body is normally excreted through the kidney, whereas one-third undergoes uricolysis (decomposition of uric acid) in the gut. Elevated serum uric acid levels result in gout and could be a risk factor for cardiovascular disease and diabetes. Recent studies have shown that human ATP-binding cassette transporter ABCG2 plays a role of renal excretion of uric acid. Two non-synonymous single nucleotide polymorphisms (SNPs), i.e., 421C>A (major) and 376C>T (minor), in the ABCG2 gene result in impaired transport activity, owing to ubiquitination-mediated proteosomal degradation and truncation of ABCG2, respectively. These genetic polymorphisms are associated with hyperuricemia and gout. Allele frequencies of those SNPs are significantly higher in Asian populations than they are in African and Caucasian populations. A rapid and isothermal genotyping method has been developed to detect the SNP 421C>A, where one drop of peripheral blood is sufficient for the detection. Development of simple genotyping methods would serve to improve prevention and early therapeutic intervention for high-risk individuals in personalized healthcare.

  12. Privacy Threats and Practical Solutions for Genetic Risk Tests

    OpenAIRE

    Barman, Ludovic; El Graini, Mohammed-Taha; Raisaro, Jean Louis; Ayday, Erman; Hubaux, Jean-Pierre

    2015-01-01

    Recently, several solutions have been proposed to address the complex challenge of protecting individuals’ genetic data during personalized medicine tests. In this short paper, we analyze different privacy threats and propose simple countermeasures for the generic architecture mainly used in the literature. In particular, we present and evaluate a new practical solution against a critical attack of a malicious medical center trying to actively infer raw genetic information of patients.

  13. Using human genetics to predict the effects and side-effects of drugs

    DEFF Research Database (Denmark)

    Stender, Stefan; Tybjærg-Hansen, Anne

    2016-01-01

    PURPOSE OF REVIEW: 'Genetic proxies' are increasingly being used to predict the effects of drugs. We present an up-to-date overview of the use of human genetics to predict effects and adverse effects of lipid-targeting drugs. RECENT FINDINGS: LDL cholesterol lowering variants in HMG-Coenzyme A re...

  14. Verification of consumers' experiences and perceptions of genetic discrimination and its impact on utilization of genetic testing.

    Science.gov (United States)

    Barlow-Stewart, Kristine; Taylor, Sandra D; Treloar, Susan A; Stranger, Mark; Otlowski, Margaret

    2009-03-01

    To undertake a systematic process of verification of consumer accounts of alleged genetic discrimination. Verification of incidents reported in life insurance and other contexts that met the criteria of genetic discrimination, and the impact of fear of such treatment, was determined, with consent, through interview, document analysis and where appropriate, direct contact with the third party involved. The process comprised obtaining evidence that the alleged incident was accurately reported and determining whether the decision or action seemed to be justifiable and/or ethical. Reported incidents of genetic discrimination were verified in life insurance access, underwriting and coercion (9), applications for worker's compensation (1) and early release from prison (1) and in two cases of fear of discrimination impacting on access to genetic testing. Relevant conditions were inherited cancer susceptibility (8), Huntington disease (3), hereditary hemochromatosis (1), and polycystic kidney disease (1). In two cases, the reversal of an adverse underwriting decision to standard rate after intervention with insurers by genetics health professionals was verified. The mismatch between consumer and third party accounts in three life insurance incidents involved miscommunication or lack of information provision by financial advisers. These first cases of verified genetic discrimination make it essential for policies and guidelines to be developed and implemented to ensure appropriate use of genetic test results in insurance underwriting, to promote education and training in the financial industry, and to provide support for consumers and health professionals undertaking challenges of adverse decisions.

  15. Genetic testing for BRCA1: effects of a randomised study of knowledge provision on interest in testing and long term test uptake; implications for the NICE guidelines.

    Science.gov (United States)

    Hall, Julia; Gray, Susan; A'Hern, Roger; Shanley, Susan; Watson, Maggie; Kash, Kathryn; Croyle, Robert; Eeles, Rosalind

    2009-01-01

    Interest in searching for mutations in BRCA1 and BRCA2 is high. Knowledge regarding these genes and the advantages and limitations of genetic testing is limited. It is unknown whether increasing knowledge about breast cancer genetic testing alters interest in testing. Three hundred and seventy nine women (260 with a family history of breast cancer; 119 with breast cancer) from The Royal Marsden NHS Foundation Trust were randomised to receive or not receive written educational information on cancer genetics. A questionnaire was completed assessing interest in BRCA1 testing and knowledge on breast cancer genetics and screening. Actual uptake of BRCA1 testing is reported with a six year follow-up. Eighty nine percent of women at risk of breast cancer and 76% of women with breast cancer were interested in BRCA1 testing (P testing, the families of 66% of the at risk group and 13% of the women with breast cancer would be eligible for testing (probability of BRCA1 mutation >or=20%). Within six years of randomisation, genetic testing was actually undertaken on 12 women, only 10 of whom would now be eligible, on the NICE guidelines. There is strong interest in BRCA1 testing. Despite considerable ignorance of factors affecting the inheritance of breast cancer, education neither reduced nor increased interest to undergo testing. The NICE guidelines successfully triage those with a high breast cancer risk to be managed in cancer genetics clinics.

  16. Hopes and Expectations Regarding Genetic Testing for Schizophrenia Among Young Adults at Clinical High-Risk for Psychosis.

    Science.gov (United States)

    Friesen, Phoebe; Lawrence, Ryan E; Brucato, Gary; Girgis, Ragy R; Dixon, Lisa

    2016-11-01

    Genetic tests for schizophrenia could introduce both risks and benefits. Little is known about the hopes and expectations of young adults at clinical high-risk for psychosis concerning genetic testing for schizophrenia, despite the fact that these youth could be among those highly affected by such tests. We conducted semistructured interviews with 15 young adults at clinical high-risk for psychosis to ask about their interest, expectations, and hopes regarding genetic testing for schizophrenia. Most participants reported a high level of interest in genetic testing for schizophrenia, and the majority said they would take such a test immediately if it were available. Some expressed far-reaching expectations for a genetic test, such as predicting symptom severity and the timing of symptom onset. Several assumed that genetic testing would be accompanied by interventions to prevent schizophrenia. Participants anticipated mixed reactions on finding out they had a genetic risk for schizophrenia, suggesting that they might feel both a sense of relief and a sense of hopelessness. We suggest that genetic counseling could play an important role in counteracting a culture of genetic over-optimism and helping young adults at clinical high-risk for psychosis understand the limitations of genetic testing. Counseling sessions could also invite individuals to explore how receiving genetic risk information might impact their well-being, as early evidence suggests that some psychological factors help individuals cope, whereas others heighten distress related to genetic test results.

  17. Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations.

    Science.gov (United States)

    Marchi, Nina; Hegay, Tatyana; Mennecier, Philippe; Georges, Myriam; Laurent, Romain; Whitten, Mark; Endicott, Philipp; Aldashev, Almaz; Dorzhu, Choduraa; Nasyrova, Firuza; Chichlo, Boris; Ségurel, Laure; Heyer, Evelyne

    2017-04-01

    Sex-specific genetic structures have been previously documented worldwide in humans, even though causal factors have not always clearly been identified. In this study, we investigated the impact of ethnicity, geography and social organization on the sex-specific genetic structure in Inner Asia. Furthermore, we explored the process of ethnogenesis in multiple ethnic groups. We sampled DNA in Central and Northern Asia from 39 populations of Indo-Iranian and Turkic-Mongolic native speakers. We focused on genetic data of the Y chromosome and mitochondrial DNA. First, we compared the frequencies of haplogroups to South European and East Asian populations. Then, we investigated the genetic differentiation for eight Y-STRs and the HVS1 region, and tested for the effect of geography and ethnicity on such patterns. Finally, we reconstructed the male demographic history, inferred split times and effective population sizes of different ethnic groups. Based on the haplogroup data, we observed that the Indo-Iranian- and Turkic-Mongolic-speaking populations have distinct genetic backgrounds. However, each population showed consistent mtDNA and Y chromosome haplogroups patterns. As expected in patrilocal populations, we found that the Y-STRs were more structured than the HVS1. While ethnicity strongly influenced the genetic diversity on the Y chromosome, geography better explained that of the mtDNA. Furthermore, when looking at various ethnic groups, we systematically found a genetic split time older than historical records, suggesting a cultural rather than biological process of ethnogenesis. This study highlights that, in Inner Asia, specific cultural behaviors, especially patrilineality and patrilocality, leave a detectable signature on the sex-specific genetic structure. © 2017 Wiley Periodicals, Inc.

  18. [Social engineers--providers--bioethicists. Human genetics experts in West-Germany and Denmark between 1950 and 1990].

    Science.gov (United States)

    Thomaschke, Dirk

    2013-01-01

    The author compares the history of human genetics in the Federal Republic of Germany and Denmark from the 1950s to the 1980s. The paper combines a discourse analysis with the exploration of human genetics experts' subject forms along the lines of current considerations within cultural studies. In the 1950s and 1960s, human geneticists acted in close cooperation with other political, judicial and administrative expert groups. They monitored the 'overall genetic development' of the population and cautioned about 'genetic crises'. Laypersons were supposed to submit to 'objectively reasonable' behavioral patterns--to their own as well as society's benefit. In the 1970s, the experts turned into 'providers' of a 'precise, purely medical, diagnostic service'. The patients mainly appeared as 'de-personalized' sources of a common human demand for 'safe eugenic information'. In the 1980s, the demand and supply paradigm manifested psychological and ethical side effects. Human geneticists became aware of the social and historical interrelations of their research and practices. The results of this study contribute to a more complex understanding of the dominant 'individualization narrative' of human genetics history. In this context, the development in Germany and Denmark displays two complementary forms of a transnational discourse.

  19. The ecological imperative and its application to ethical issues in human genetic technology

    Directory of Open Access Journals (Sweden)

    W. Malcolm Byrnes

    2003-08-01

    Full Text Available As a species, we are on the cusp of being able to alter that which makes us uniquely human, our genome. Two new genetic technologies, embryo selection and germline engineering, are either in use today or may be developed in the future. Embryo selection acts to alter the human gene pool, reducing genetic diversity, while germline engineering will have the ability to alter directly the genomes of engineered individuals. Our genome has come to be what it is through an evolutionary process extending over millions of years, a process that has involved exceedingly complex and unpredictable interactions between ourselves or our ancestors and myriad other life forms within Earth's biosphere. In this paper, the ecological imperativ e, which states that we must not alter the human genome or the collective human genetic inheritance, will be introduced. It will be argued based on ecological principles that embryo selection and germline engineering are unethical and unwise because they will diminish our survivability as a species, will disrupt our relationship with the natural world, and will destroy the very basis of that which makes us human.

  20. First systematic experience of preimplantation genetic diagnosis for single-gene disorders, and/or preimplantation human leukocyte antigen typing, combined with 24-chromosome aneuploidy testing.

    Science.gov (United States)

    Rechitsky, Svetlana; Pakhalchuk, Tatiana; San Ramos, Geraldine; Goodman, Adam; Zlatopolsky, Zev; Kuliev, Anver

    2015-02-01

    To study the feasibility, accuracy, and reproductive outcome of 24-chromosome aneuploidy testing (24-AT), combined with preimplantation genetic diagnosis (PGD) for single-gene disorders (SGDs) or human leukocyte antigen (HLA) typing in the same biopsy sample. Retrospective study. Preimplantation genetic diagnosis center. A total of 238 PGD patients, average age 36.8 years, for whom 317 combined PGD cycles were performed, involving 105 different conditions, with or without HLA typing. Whole-genome amplification product, obtained in 24-AT, was used for PGD and/or HLA typing in the same blastomere or blastocyst biopsy samples. Proportion of the embryos suitable for transfer detected in these blastomere or blastocyst samples, and the resulting pregnancy and spontaneous abortion rates. Embryos suitable for transfer were detected in 42% blastocyst and 25.1% blastomere samples, with a total of 280 unaffected, HLA-matched euploid embryos detected for transfer in 212 cycles (1.3 embryos per transfer), resulting in 145 (68.4%) unaffected pregnancies and birth of 149 healthy, HLA-matched children. This outcome is significantly different from that of our 2,064 PGD cycle series without concomitant 24-AT, including improved pregnancy (68.4% vs. 45.4%) and 3-fold spontaneous abortion reduction (5.5% vs. 15%) rates. The introduced combined approach is a potential universal PGD test, which in addition to achieving extremely high diagnostic accuracy, significantly improves reproductive outcomes of PGD for SGDs and HLA typing in patients of advanced reproductive age. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Health-related direct-to-consumer genetic tests: a public health assessment and analysis of practices related to Internet-based tests for risk of thrombosis.

    Science.gov (United States)

    Goddard, K A B; Robitaille, J; Dowling, N F; Parrado, A R; Fishman, J; Bradley, L A; Moore, C A; Khoury, M J

    2009-01-01

    Recent years have seen increased concern about direct-to-consumer (DTC) genetic testing (i.e., the sale and use of genetic tests without involving a health care provider). Numerous professional organizations have developed policies in this area. However, little systematic evidence exists to inform public policy about these tests. We conducted a systematic search to identify genetic tests that are sold DTC without involving a health care provider. We evaluated the practices of companies offering DTC genetic tests for risk of thrombosis using criteria from multiple sources and a minimal set of key practices. We identified 84 instances of currently available health-related DTC genetic tests sold on 27 Web sites; the most common were for pharmacogenomics (12), risk of thrombosis (10), and nutrigenomics (10). For the DTC genetic tests for risk of thrombosis, we found low adherence to recommendations. Online information was frequently incomplete and had low agreement with professional recommendations. Our findings document the rapid growth in the availability of health-related DTC genetic tests and highlight the need to improve the delivery of DTC genetic tests. A major implication of this study is the need for the scientific and medical community to develop consistent recommendations to increase their impact. Copyright 2008 S. Karger AG, Basel.

  2. Do patents impede the provision of genetic tests in Australia?

    Science.gov (United States)

    Nicol, Dianne; Liddicoat, John

    2013-06-01

    Health policy and law reform agencies lack a sound evidence base of the impacts of patents on innovation and access to healthcare to assist them in their deliberations. This paper reports the results of a survey of managers of Australian genetic testing laboratories that asked a series of questions relating to the tests they perform, whether they pay to access patented inventions and whether they have received notifications from patent holders about patents associated with particular tests. Some diagnostics facilities are exposed to patent costs, but they are all located in the private sector. No public hospitals reported paying licence fees or royalties beyond those included in the price of commercial test kits. Some respondents reported having received enforcement notices from patent holders, but almost all related to the widely known breast cancer-associated patents. Respondents were also asked for their views on the most effective mechanisms to protect their ability to provide genetic tests now and in the future. Going to the media, paying licence fees, ignoring patent rights and relying on the government to take action were widely seen as most effective. Litigation and applications for compulsory licences were seen as some of the least effective mechanisms. These results provide an evidence base for development of health policy and law reform. What is known about the topic? The impact of patents on the delivery of genetic testing services remains unclear in Australia. What does this paper add? The survey reported in this paper suggests that, aside from well-known enforcement actions relating to the breast cancer associated patents, there is little evidence that providers of genetic testing services are being exposed to aggressive patent-enforcement practices. What are the implications for practitioners? Although patent-enforcement actions may increase in the future, a range of strategies are available to providers of testing services to protect them against

  3. Attitudes Towards Prenatal Genetic Counseling, Prenatal Genetic Testing, and Termination of Pregnancy among Southeast and East Asian Women in the United States.

    Science.gov (United States)

    Tsai, Ginger J; Cameron, Carrie A; Czerwinski, Jennifer L; Mendez-Figueroa, Hector; Peterson, Susan K; Noblin, Sarah Jane

    2017-10-01

    Recognizing the heterogeneity of the Asian population with regards to acculturation, education, health awareness, and cultural values is vital for tailoring culturally sensitive and appropriate care. Prior studies show that cultural values influence perceptions of genetics within Asian populations. The reputation of the family unit factors into decisions such as pregnancy termination and disclosure of family medical history, and the nondirective model of American genetic counseling may conflict with the historical Asian model of paternalistic health care. Previous studies also provide conflicting evidence regarding correlations between education, acculturation, age, and awareness and perceptions of genetic testing. The aims of this study were to describe attitudes towards prenatal genetics among Southeast and East Asian women living in the United States for varying amounts of time and to explore sociocultural factors influencing those attitudes. Twenty-three Asian women who were members of Asian cultural organizations in the United States were interviewed via telephone about their attitudes towards prenatal genetic counseling, prenatal genetic testing, and termination of pregnancy. Responses were transcribed and coded for common themes using a thematic analysis approach. Four major themes emerged. In general, participants: (1) had diverse expectations for genetic counselors; (2) tended to weigh risks and benefits with regards to genetic testing decisions; (3) had mixed views on termination for lethal and non-lethal genetic conditions; and (4) identified cultural factors which influenced testing and termination such as lack of available resources, societal shame and stigma, and family pressure. These findings may allow prenatal genetic counselors to gain a richer, more nuanced understanding of their Asian patients and to offer culturally tailored prenatal genetic counseling.

  4. Teachers' Conceptions About the Genetic Determinism of Human Behaviour: A Survey in 23 Countries

    Science.gov (United States)

    Castéra, Jérémy; Clément, Pierre

    2014-02-01

    This work analyses the answers to a questionnaire from 8,285 in-service and pre-service teachers from 23 countries, elaborated by the Biohead-Citizen research project, to investigate teachers' conceptions related to the genetic determinism of human behaviour. A principal components analysis is used to assess the main trends in all the interviewed teachers' conceptions. This illustrates that innatism is present in two distinct ways: in relation to individuals (e.g. genetic determinism to justify intellectual likeness between individuals such as twins) or in relation to groups of humans (e.g. genetic determinism to justify gender differences or the superiority of some human ethnic groups). A between-factor analysis discriminates between countries, showing very significant differences. There is more innatism among teachers' conceptions in African countries and Lebanon than in European countries, Brazil and Australia. Among the other controlled parameters, only two are significantly independent of the country: the level of training and the level of knowledge of biology. A co-inertia analysis shows a strong correlation between non-citizen attitudes towards and innatist conceptions of genetic determinism regarding human groups. We discuss these findings and their implications for education.

  5. Polymorphic microsatellite markers for genetic studies of African ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... Many wild animal species lack informative genetic markers for analysing genetic variation and ... which act as important buffer zones between human and wildlife. ..... amplification tests of ungulate primers in the endangered.

  6. Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics.

    Science.gov (United States)

    Simpson, Siobhan; Dunning, Mark David; de Brot, Simone; Grau-Roma, Llorenç; Mongan, Nigel Patrick; Rutland, Catrin Sian

    2017-10-24

    Osteosarcoma (OSA) is a rare cancer in people. However OSA incidence rates in dogs are 27 times higher than in people. Prognosis in both species is relatively poor, with 5 year OSA survival rates in people not having improved in decades. For dogs, 1 year survival rates are only around ~ 45%. Improved and novel treatment regimens are urgently required to improve survival in both humans and dogs with OSA. Utilising information from genetic studies could assist in this in both species, with the higher incidence rates in dogs contributing to the dog population being a good model of human disease. This review compares the clinical characteristics, gross morphology and histopathology, aetiology, epidemiology, and genetics of canine and human OSA. Finally, the current position of canine OSA genetic research is discussed and areas for additional work within the canine population are identified.

  7. Understanding of and attitudes to genetic testing for inherited retinal disease: a patient perspective.

    Science.gov (United States)

    Willis, T A; Potrata, B; Ahmed, M; Hewison, J; Gale, R; Downey, L; McKibbin, M

    2013-09-01

    The views of people with inherited retinal disease are important to help develop health policy and plan services. This study aimed to record levels of understanding of and attitudes to genetic testing for inherited retinal disease, and views on the availability of testing. Telephone questionnaires comprising quantitative and qualitative items were completed with adults with inherited retinal disease. Participants were recruited via postal invitation (response rate 48%), approach at clinic or newsletters of relevant charitable organisations. Questionnaires were completed with 200 participants. Responses indicated that participants' perceived understanding of genetic testing for inherited retinal disease was variable. The majority (90%) considered testing to be good/very good and would be likely to undergo genetic testing (90%) if offered. Most supported the provision of diagnostic (97%) and predictive (92%) testing, but support was less strong for testing as part of reproductive planning. Most (87%) agreed with the statement that testing should be offered only after the individual has received genetic counselling from a professional. Subgroup analyses revealed differences associated with participant age, gender, education level and ethnicity (p<0.02). Participants reported a range of perceived benefits (eg, family planning, access to treatment) and risks (eg, impact upon family relationships, emotional consequences). Adults with inherited retinal disease strongly support the provision of publicly funded genetic testing. Support was stronger for diagnostic and predictive testing than for testing as part of reproductive planning.

  8. The ethics of human genetic intervention: a postmodern perspective.

    Science.gov (United States)

    Dyer, A R

    1997-03-01

    Gene therapy for a particular disease like Parkinson's involves ethical principles worked out for other diseases. The major ethical issues for gene therapy (and the corresponding ethical principles) are safety (nonmalfeasance), efficacy (beneficence), informed consent (autonomy), and allocation of resources (justice). Yet genetic engineering (germ-line interventions or interventions to enhance human potentialities) raises emotions and fears that might cause resistance to gene therapies. Looking at these technologies in a postmodern perspective helps one to appreciate the issues at stake in social and cultural change with a new technology such as gene therapy. While "modern" technology and ethics have focused on the autonomy of the individual, we are beginning to see a lessening of such emphasis on individualism and autonomy and more emphasis on the health of the population. Such a social change could cause technologies about which society may currently be cautious (such as human genetic interventions) to become more acceptable or even expected.

  9. Testing the Children: Do Non-Genetic Health-Care Providers Differ in Their Decision to Advise Genetic Presymptomatic Testing on Minors? A Cross-Sectional Study in Five Countries in the European Union

    NARCIS (Netherlands)

    Plass, Anne Marie C.; Baars, Marieke J. H.; Cornel, Martina C.; Julian-Reynier, Claire; Nippert, Irmgard; Harris, Hillary; Kristoffersson, Ulf; Schmidtke, Jörg; Anionwu, Elizabeth N.; Benjamin, Caroline; Challen, Kirsty; Harris, Rodney; ten Kate, Leo P.

    2009-01-01

    Background: Within Europe many guidelines exist regarding the genetic testing of minors. Predictive and presymptomatic genetic testing of minors is recommended for disorders for which medical intervention/preventive measures exist, and for which early detection improves future medical health. Aim:

  10. Testing the children: do non-genetic health-care providers differ in their decision to advise genetic presymptomatic testing on minors? A cross-sectional study in five countries in the European Union.

    NARCIS (Netherlands)

    Plass, A.M.C.; Baars, M.J.H.; Cornel, M.C.; Julian-Reynier, C.; Nippert, I.; Harris, H.; Kristoffersson, U.; Schmidtke, J.; Anionwu, E.N.; Benjamin, C.; Challen, K.; Harris, R.; Kate, L.P. ten

    2009-01-01

    BACKGROUND: Within Europe many guidelines exist regarding the genetic testing of minors. Predictive and presymptomatic genetic testing of minors is recommended for disorders for which medical intervention/preventive measures exist, and for which early detection improves future medical health. AIM:

  11. Anthropogenics: human influence on global and genetic homogenization of parasite populations.

    Science.gov (United States)

    Zarlenga, Dante S; Hoberg, Eric; Rosenthal, Benjamin; Mattiucci, Simonetta; Nascetti, Giuseppe

    2014-12-01

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This includes the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been challenging. In-depth comparisons among parasite populations extending to landscape-level processes affecting disease emergence have remained elusive. New research methods have enhanced our capacity to discern human impact, where the tools of population genetics and molecular epidemiology have begun to shed light on our historical and ongoing influence. Only since the 1990s have parasitologists coupled morphological diagnosis, long considered the basis of surveillance and biodiversity studies, with state-of-the-art tools enabling variation to be examined among, and within, parasite populations. Prior to this time, populations were characterized only by phenotypic attributes such as virulence, infectivity, host range, and geographical location. The advent of genetic/molecular methodologies (multilocus allozyme electrophoresis, polymerase chain reaction-DNA [PCR-DNA] fragments analysis, DNA sequencing, DNA microsatellites, single nucleotide polymorphisms, etc.) have transformed our abilities to reveal variation among, and within, populations at local, regional, landscape, and global scales, and thereby enhanced our understanding of the biosphere. Numerous factors can affect population structure among parasites, e.g., evolutionary and ecological history, mode of reproduction and transmission, host dispersal, and life-cycle complexity. Although such influences can vary considerably among parasite taxa, anthropogenic factors are demonstrably perturbing parasite fauna. Minimal genetic structure among many geographically distinct (isolated) populations is a hallmark of human activity, hastened by geographic introductions, environmental perturbation, and global warming. Accelerating

  12. Personal Narratives of Genetic Testing: Expectations, Emotions, and Impact on Self and Family.

    Science.gov (United States)

    Anderson, Emily E; Wasson, Katherine

    2015-01-01

    The stories in this volume shed light on the potential of narrative inquiry to fill gaps in knowledge, particularly given the mixed results of quantitative research on patient views of and experiences with genetic and genomic testing. Published studies investigate predictors of testing (particularly risk perceptions and worry); psychological and behavioral responses to testing; and potential impact on the health care system (e.g., when patients bring DTC genetic test results to their primary care provider). Interestingly, these themes did not dominate the narratives published in this issue. Rather, these narratives included consistent themes of expectations and looking for answers; complex emotions; areas of contradiction and conflict; and family impact. More narrative research on patient experiences with genetic testing may fill gaps in knowledge regarding how patients define the benefits of testing, changes in psychological and emotional reactions to test results over time, and the impact of testing on families.

  13. Insects feeding on cadavers as an alternative source of human genetic material

    Directory of Open Access Journals (Sweden)

    Rafał Skowronek

    2015-03-01

    Full Text Available In some criminal cases, the use of classical sources of human genetic material is difficult or even impossible. One solution may be the use of insects, especially blowfly larvae which feed on corpses. A recent review of case reports and experimental studies available in biomedical databases has shown that insects can be a valuable source of human mitochondrial and genomic deoxyribonucleic acid (DNA, allowing for an effective analysis of hypervariable region (HVR sequences and short tandem repeat (STR profiles, respectively. The optimal source of human DNA is the crop (a part of the gut of active third-instar blowfly larvae. Pupae and insect faeces can be also used in forensic genetic practice instead of the contents of the alimentary tract.

  14. [Genetic expertise and the penal process].

    Science.gov (United States)

    Choclán Montalvo, J A

    1998-01-01

    The author reflects on the major forensic biology issues related to human genome analysis. He also discusses, from the comparative law perspective, the extent to which genetic test evidence is binding on judges. He concludes with a discussion of the influence of genetic research on people's fundamental rights.

  15. Advances in genetic detection of kidney disease

    International Nuclear Information System (INIS)

    Dosekun, Akinsan K.; Foringer, John R.; Kone, Bruce C.

    2003-01-01

    The Human Genome Project has provided a vast amount of molecular genetic information for the analysis of normal and diseased genes. This new information provides new opportunities for precise diagnosis, assessment of predisposition and risk factors and novel therapeutic strategies. At the same time, this constantly expanding knowledge base represents on e of the most difficult challenges in molecular medicine. For monogenic disease nearly 2000 human disease genes have thus for been identified. Most of these conditions are characterized by large mutational variation and even greater phenotypic variation. In nephrology, several genetic diseases have been elucidated that provide new insight into the structure, function and developmental biology of the glomerulus, tubules and urogenital tracts, as well as renal cell tumors. Great improvements in the diagnostic resolution of genetic diseases have been achieved, such that single base pair mutations can be readily detected. Because of accurate diagnosis and risk assessment, genetic testing may be valuable in improving disease management and preventive care when genotype-specific therapies are available. Moreover, such testing may identify de novo mutations and potentially aid in understanding the disease process. This review summarizes recent advances in the renal genetic database and methods for genetic testing of renal diseases. (author)

  16. Ethical, legal and social implications of prenatal and preimplantation genetic testing for cancer susceptibility.

    Science.gov (United States)

    Wang, C-W; Hui, E C

    2009-01-01

    With the progress in cancer genetics and assisted reproductive technologies, it is now possible for cancer gene mutation carriers not only to reduce cancer mortality through the targeting of surveillance and preventive therapies, but also to avoid the birth of at-risk babies through the choice of different means of reproduction. Thus, the incidence of hereditary cancer syndromes may be decreased in the future. The integration of cancer genetic testing and assisted reproductive technologies raises certain ethical, legal and social issues beyond either genetic testing or assisted reproductive technology itself. In this paper, the reproductive decisions/choices of at-risk young couples and the ethical, legal and social concerns of prenatal genetic testing and preimplantation genetic diagnosis for susceptibility to hereditary cancer syndromes are discussed. Specifically, three ethical principles related to the integration of cancer genetic testing and assisted reproductive technologies, i.e. informed choice, beneficence to children and social justice, and their implications for the responsible translation of these medical techniques into common practice of preventive medicine are highlighted.

  17. Human genetics in troubled times and places

    OpenAIRE

    Harper, Peter S.

    2017-01-01

    The development of human genetics world-wide during the twentieth century, especially across Europe, has occurred against a background of repeated catastrophes, including two world wars and the ideological problems and repression posed by Nazism and Communism. The published scientific literature gives few hints of these problems and there is a danger that they will be forgotten. The First World War was largely indiscriminate in its carnage, but World War 2 and the preceding years of fascism w...

  18. [The development of molecular human genetics and its significance for perspectives of modern medicine].

    Science.gov (United States)

    Coutelle, C; Speer, A; Grade, K; Rosenthal, A; Hunger, H D

    1989-01-01

    The introduction of molecular human genetics has become a paradigma for the application of genetic engineering in medicine. The main principles of this technology are the isolation of molecular probes, their application in hybridization reactions, specific gene-amplification by the polymerase chain reaction, and DNA sequencing reactions. These methods are used for the analysis of monogenic diseases by linkage studies and the elucidation of the molecular defect causing these conditions, respectively. They are also the basis for genomic diagnosis of monogenic diseases, introduced into the health care system of the GDR by a national project on Duchenne/Becker muscular dystrophy, Cystic Fibrosis and Phenylketonuria. The rapid development of basic research on the molecular analysis of the human genome and genomic diagnosis indicates, that human molecular genetics is becoming a decisive basic discipline of modern medicine.

  19. Role of genetic testing for inherited prostate cancer risk: Philadelphia prostate cancer consensus conference 2017

    NARCIS (Netherlands)

    V.N. Giri (Veda); Knudsen, K.E. (Karen E.); Kelly, W.K. (William K.); Abida, W. (Wassim); G.L. Andriole (Gerald); C.H. Bangma (Chris); Bekelman, J.E. (Justin E.); Benson, M.C. (Mitchell C.); A. Blanco (Amie); Burnett, A. (Arthur); Catalona, W.J. (William J.); Cooney, K.A. (Kathleen A.); M.R. Cooperberg (Matthew); D. Crawford (David); Den, R.B. (Robert B.); Dicker, A.P. (Adam P.); S. Eggener (Scott); N.E. Fleshner (Neil); Freedman, M.L. (Matthew L.); F. Hamdy (Freddie); Hoffman-Censits, J. (Jean); Hurwitz, M.D. (Mark D.); Hyatt, C. (Colette); Isaacs, W.B. (William B.); Kane, C.J. (Christopher J.); Kantoff, P. (Philip); R.J. Karnes (Jeffrey); Karsh, L.I. (Lawrence I.); Klein, E.A. (Eric A.); Lin, D.W. (Daniel W.); Loughlin, K.R. (Kevin R.); Lu-Yao, G. (Grace); Malkowicz, S.B. (S. Bruce); Mann, M.J. (Mark J.); Mark, J.R. (James R.); McCue, P.A. (Peter A.); Miner, M.M. (Martin M.); Morgan, T. (Todd); Moul, J.W. (Judd W.); Myers, R.E. (Ronald E.); Nielsen, S.M. (Sarah M.); Obeid, E. (Elias); Pavlovich, C.P. (Christian P.); Peiper, S.C. (Stephen C.); D.F. Penson (David F.); D.P. Petrylak (Daniel P); Pettaway, C.A. (Curtis A.); R. Pilarski (Robert); P. Pinto (Peter); Poage, W. (Wendy); Raj, G.V. (Ganesh V.); R. Rebbeck (Timothy); M. Robson (Mark); Rosenberg, M.T. (Matt T.); Sandler, H. (Howard); A.O. Sartor (Oliver); Schaeffer, E. (Edward); Schwartz, G.F. (Gordon F.); Shahin, M.S. (Mark S.); N.D. Shore (Neal); Shuch, B. (Brian); Soule, H.R. (Howard R.); S.A. Tomlins (Scott A); Trabulsi, E.J. (Edouard J.); Uzzo, R. (Robert); Griend, D.J.V. (Donald J. Vander); P.C. Walsh (Patrick); Weil, C.J. (Carol J.); Wender, R. (Richard); Gomella, L.G. (Leonard G.)

    2018-01-01

    textabstractPurpose: Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-driven working framework for comprehensive genetic evaluation of inherited PCA in the multigene testing era addressing genetic counseling,

  20. The ecological imperative and its application to ethical issues in human genetic technology

    OpenAIRE

    W. Malcolm Byrnes

    2003-01-01

    As a species, we are on the cusp of being able to alter that which makes us uniquely human, our genome. Two new genetic technologies, embryo selection and germline engineering, are either in use today or may be developed in the future. Embryo selection acts to alter the human gene pool, reducing genetic diversity, while germline engineering will have the ability to alter directly the genomes of engineered individuals. Our genome has come to be what it is through an evolutionary process extend...

  1. 76 FR 72424 - Submission for OMB Review; Comment Request Information Program on the Genetic Testing Registry

    Science.gov (United States)

    2011-11-23

    ... particular tests; and (3) facilitating genetic and genomic data-sharing for research and new scientific...; Comment Request Information Program on the Genetic Testing Registry AGENCY: National Institutes of Health... currently valid OMB control number. Proposed Collection: Title: The Genetic Testing Registry; Type of...

  2. An investigation of the statistical power of neutrality tests based on comparative and population genetic data

    DEFF Research Database (Denmark)

    Zhai, Weiwei; Nielsen, Rasmus; Slatkin, Montgomery

    2009-01-01

    In this report, we investigate the statistical power of several tests of selective neutrality based on patterns of genetic diversity within and between species. The goal is to compare tests based solely on population genetic data with tests using comparative data or a combination of comparative...... and population genetic data. We show that in the presence of repeated selective sweeps on relatively neutral background, tests based on the d(N)/d(S) ratios in comparative data almost always have more power to detect selection than tests based on population genetic data, even if the overall level of divergence...... selection. The Hudson-Kreitman-Aguadé test is the most powerful test for detecting positive selection among the population genetic tests investigated, whereas McDonald-Kreitman test typically has more power to detect negative selection. We discuss our findings in the light of the discordant results obtained...

  3. The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies

    Science.gov (United States)

    Barnett, Ian; Mukherjee, Rajarshi; Lin, Xihong

    2017-01-01

    It is of substantial interest to study the effects of genes, genetic pathways, and networks on the risk of complex diseases. These genetic constructs each contain multiple SNPs, which are often correlated and function jointly, and might be large in number. However, only a sparse subset of SNPs in a genetic construct is generally associated with the disease of interest. In this article, we propose the generalized higher criticism (GHC) to test for the association between an SNP set and a disease outcome. The higher criticism is a test traditionally used in high-dimensional signal detection settings when marginal test statistics are independent and the number of parameters is very large. However, these assumptions do not always hold in genetic association studies, due to linkage disequilibrium among SNPs and the finite number of SNPs in an SNP set in each genetic construct. The proposed GHC overcomes the limitations of the higher criticism by allowing for arbitrary correlation structures among the SNPs in an SNP-set, while performing accurate analytic p-value calculations for any finite number of SNPs in the SNP-set. We obtain the detection boundary of the GHC test. We compared empirically using simulations the power of the GHC method with existing SNP-set tests over a range of genetic regions with varied correlation structures and signal sparsity. We apply the proposed methods to analyze the CGEM breast cancer genome-wide association study. Supplementary materials for this article are available online. PMID:28736464

  4. Integrating common and rare genetic variation in diverse human populations.

    Science.gov (United States)

    Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Dermitzakis, Emmanouil; Schaffner, Stephen F; Yu, Fuli; Peltonen, Leena; Dermitzakis, Emmanouil; Bonnen, Penelope E; Altshuler, David M; Gibbs, Richard A; de Bakker, Paul I W; Deloukas, Panos; Gabriel, Stacey B; Gwilliam, Rhian; Hunt, Sarah; Inouye, Michael; Jia, Xiaoming; Palotie, Aarno; Parkin, Melissa; Whittaker, Pamela; Yu, Fuli; Chang, Kyle; Hawes, Alicia; Lewis, Lora R; Ren, Yanru; Wheeler, David; Gibbs, Richard A; Muzny, Donna Marie; Barnes, Chris; Darvishi, Katayoon; Hurles, Matthew; Korn, Joshua M; Kristiansson, Kati; Lee, Charles; McCarrol, Steven A; Nemesh, James; Dermitzakis, Emmanouil; Keinan, Alon; Montgomery, Stephen B; Pollack, Samuela; Price, Alkes L; Soranzo, Nicole; Bonnen, Penelope E; Gibbs, Richard A; Gonzaga-Jauregui, Claudia; Keinan, Alon; Price, Alkes L; Yu, Fuli; Anttila, Verneri; Brodeur, Wendy; Daly, Mark J; Leslie, Stephen; McVean, Gil; Moutsianas, Loukas; Nguyen, Huy; Schaffner, Stephen F; Zhang, Qingrun; Ghori, Mohammed J R; McGinnis, Ralph; McLaren, William; Pollack, Samuela; Price, Alkes L; Schaffner, Stephen F; Takeuchi, Fumihiko; Grossman, Sharon R; Shlyakhter, Ilya; Hostetter, Elizabeth B; Sabeti, Pardis C; Adebamowo, Clement A; Foster, Morris W; Gordon, Deborah R; Licinio, Julio; Manca, Maria Cristina; Marshall, Patricia A; Matsuda, Ichiro; Ngare, Duncan; Wang, Vivian Ota; Reddy, Deepa; Rotimi, Charles N; Royal, Charmaine D; Sharp, Richard R; Zeng, Changqing; Brooks, Lisa D; McEwen, Jean E

    2010-09-02

    Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called 'HapMap 3', includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of human disease, and serves as a step towards a high-resolution map of the landscape of human genetic variation.

  5. Estimation of Genetic Parameters for First Lactation Monthly Test-day Milk Yields using Random Regression Test Day Model in Karan Fries Cattle

    Directory of Open Access Journals (Sweden)

    Ajay Singh

    2016-06-01

    Full Text Available A single trait linear mixed random regression test-day model was applied for the first time for analyzing the first lactation monthly test-day milk yield records in Karan Fries cattle. The test-day milk yield data was modeled using a random regression model (RRM considering different order of Legendre polynomial for the additive genetic effect (4th order and the permanent environmental effect (5th order. Data pertaining to 1,583 lactation records spread over a period of 30 years were recorded and analyzed in the study. The variance component, heritability and genetic correlations among test-day milk yields were estimated using RRM. RRM heritability estimates of test-day milk yield varied from 0.11 to 0.22 in different test-day records. The estimates of genetic correlations between different test-day milk yields ranged 0.01 (test-day 1 [TD-1] and TD-11 to 0.99 (TD-4 and TD-5. The magnitudes of genetic correlations between test-day milk yields decreased as the interval between test-days increased and adjacent test-day had higher correlations. Additive genetic and permanent environment variances were higher for test-day milk yields at both ends of lactation. The residual variance was observed to be lower than the permanent environment variance for all the test-day milk yields.

  6. Metabolic Interactions of Purine Derivatives with Human ABC Transporter ABCG2: Genetic Testing to Assess Gout Risk

    Directory of Open Access Journals (Sweden)

    Kiyoko Kaneko

    2013-11-01

    Full Text Available In mammals, excess purine nucleosides are removed from the body by breakdown in the liver and excretion from the kidneys. Uric acid is the end product of purine metabolism in humans. Two-thirds of uric acid in the human body is normally excreted through the kidney, whereas one-third undergoes uricolysis (decomposition of uric acid in the gut. Elevated serum uric acid levels result in gout and could be a risk factor for cardiovascular disease and diabetes. Recent studies have shown that human ATP-binding cassette transporter ABCG2 plays a role of renal excretion of uric acid. Two non-synonymous single nucleotide polymorphisms (SNPs, i.e., 421C>A (major and 376C>T (minor, in the ABCG2 gene result in impaired transport activity, owing to ubiquitination-mediated proteosomal degradation and truncation of ABCG2, respectively. These genetic polymorphisms are associated with hyperuricemia and gout. Allele frequencies of those SNPs are significantly higher in Asian populations than they are in African and Caucasian populations. A rapid and isothermal genotyping method has been developed to detect the SNP 421C>A, where one drop of peripheral blood is sufficient for the detection. Development of simple genotyping methods would serve to improve prevention and early therapeutic intervention for high-risk individuals in personalized healthcare.

  7. Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement

    Science.gov (United States)

    Webborn, Nick; Williams, Alun; McNamee, Mike; Bouchard, Claude; Pitsiladis, Yannis; Ahmetov, Ildus; Ashley, Euan; Byrne, Nuala; Camporesi, Silvia; Collins, Malcolm; Dijkstra, Paul; Eynon, Nir; Fuku, Noriyuki; Garton, Fleur C; Hoppe, Nils; Holm, Søren; Kaye, Jane; Klissouras, Vassilis; Lucia, Alejandro; Maase, Kamiel; Moran, Colin; North, Kathryn N; Pigozzi, Fabio; Wang, Guan

    2015-01-01

    The general consensus among sport and exercise genetics researchers is that genetic tests have no role to play in talent identification or the individualised prescription of training to maximise performance. Despite the lack of evidence, recent years have witnessed the rise of an emerging market of direct-to-consumer marketing (DTC) tests that claim to be able to identify children's athletic talents. Targeted consumers include mainly coaches and parents. There is concern among the scientific community that the current level of knowledge is being misrepresented for commercial purposes. There remains a lack of universally accepted guidelines and legislation for DTC testing in relation to all forms of genetic testing and not just for talent identification. There is concern over the lack of clarity of information over which specific genes or variants are being tested and the almost universal lack of appropriate genetic counselling for the interpretation of the genetic data to consumers. Furthermore independent studies have identified issues relating to quality control by DTC laboratories with different results being reported from samples from the same individual. Consequently, in the current state of knowledge, no child or young athlete should be exposed to DTC genetic testing to define or alter training or for talent identification aimed at selecting gifted children or adolescents. Large scale collaborative projects, may help to develop a stronger scientific foundation on these issues in the future. PMID:26582191

  8. Long term human impacts on genetic structure of Italian walnut inferred by SSR markers

    Science.gov (United States)

    Paola Pollegioni; Keith Woeste; Irene Olimpieri; Danilo Marandola; Francesco Cannata; Maria E Malvolti

    2011-01-01

    Life history traits, historic factors, and human activities can all shape the genetic diversity of a species. In Italy, walnut (Juglans regia L.) has a long history of cultivation both for wood and edible nuts. To better understand the genetic variability of current Italian walnut resources, we analyzed the relationships among the genetic structure...

  9. Should Australia Ban the Use of Genetic Test Results in Life Insurance?

    Science.gov (United States)

    Tiller, Jane; Otlowski, Margaret; Lacaze, Paul

    2017-01-01

    Under current Australian regulation, life insurance companies can require applicants to disclose all genetic test results, including results from research or direct-to-consumer tests. Life insurers can then use this genetic information in underwriting and policy decisions for mutually rated products, including life, permanent disability, and total income protection insurance. Over the past decade, many countries have implemented moratoria or legislative bans on the use of genetic information by life insurers. The Australian government, by contrast, has not reviewed regulation since 2005 when it failed to ensure implementation of recommendations made by the Australian Law Reform Commission. In that time, the Australian life insurance industry has been left to self-regulate its use of genetic information. As a result, insurance fears in Australia now are leading to deterred uptake of genetic testing by at-risk individuals and deterred participation in medical research, both of which have been documented. As the potential for genomic medicine grows, public trust and engagement are critical for successful implementation. Concerns around life insurance may become a barrier to the development of genomic health care, research, and public health initiatives in Australia, and the issue should be publicly addressed. We argue a moratorium on the use of genetic information by life insurers should be enacted while appropriate longer term policy is determined and implemented.

  10. Should Australia Ban the Use of Genetic Test Results in Life Insurance?

    Directory of Open Access Journals (Sweden)

    Jane Tiller

    2017-12-01

    Full Text Available Under current Australian regulation, life insurance companies can require applicants to disclose all genetic test results, including results from research or direct-to-consumer tests. Life insurers can then use this genetic information in underwriting and policy decisions for mutually rated products, including life, permanent disability, and total income protection insurance. Over the past decade, many countries have implemented moratoria or legislative bans on the use of genetic information by life insurers. The Australian government, by contrast, has not reviewed regulation since 2005 when it failed to ensure implementation of recommendations made by the Australian Law Reform Commission. In that time, the Australian life insurance industry has been left to self-regulate its use of genetic information. As a result, insurance fears in Australia now are leading to deterred uptake of genetic testing by at-risk individuals and deterred participation in medical research, both of which have been documented. As the potential for genomic medicine grows, public trust and engagement are critical for successful implementation. Concerns around life insurance may become a barrier to the development of genomic health care, research, and public health initiatives in Australia, and the issue should be publicly addressed. We argue a moratorium on the use of genetic information by life insurers should be enacted while appropriate longer term policy is determined and implemented.

  11. [Malignant Melanoma - from Classical Histology towards Molecular Genetic Testing].

    Science.gov (United States)

    Ryška, A; Horký, O; Berkovcová, J; Tichá, I; Kalinová, M; Matějčková, M; Bóday, Á; Drábek, J; Martínek, P; Šimová, J; Sieglová, K; Vošmiková, H

    Malignant melanoma is - in comparison with other skin tumors - a relatively rare malignant neoplasm with highly aggressive biologic behavior and variable prognosis. Recent data in pathology and molecular diagnostics indicate that malignant melanoma is in fact not a single entity but a group of different neoplasms with variable etiopathogenesis, biologic behavior and prognosis. New therapeutic options using targeted treatment blocking MAPK signaling pathway require testing of BRAF gene mutation status. This helps to select patients with highest probability of benefit from this treatment. This article summarizes information on the correlation of morphological findings with genetic changes, discusses the representation of individual genetic types in various morphological subgroups and deals with the newly proposed genetic classification of melanoma and the current possibilities, pitfalls and challenges in BRAF testing of malignant melanoma. It also describes the current testing situation in the Czech Republic - the methods used, the representation of BRAF mutations in the tested population and the future of testing. It also shows the limitations of the BRAF and MEK targeted treatment concept resulting from the heterogeneity of the tumor population. Mechanisms of acquired resistance to MAPK pathway inhibitors, possibilities of their detection, and issues of combination of targeted therapy and immunotherapy are discussed.Key words: malignant melanoma - BRAF - mutation - molecular targeted therapy - tumor microenvironment - tumor heterogeneity This work was supported by projects PROGRES Q40/11, BBMRICZ LM2015089, SVV 260398 and GACR 17-10331S. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers.Submitted: 28. 3. 2017Accepted: 16. 5. 2017.

  12. Human genetics of infectious diseases: a unified theory

    OpenAIRE

    Casanova, Jean-Laurent; Abel, Laurent

    2007-01-01

    Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predispos...

  13. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine.

    Science.gov (United States)

    Stenson, Peter D; Mort, Matthew; Ball, Edward V; Shaw, Katy; Phillips, Andrew; Cooper, David N

    2014-01-01

    The Human Gene Mutation Database (HGMD®) is a comprehensive collection of germline mutations in nuclear genes that underlie, or are associated with, human inherited disease. By June 2013, the database contained over 141,000 different lesions detected in over 5,700 different genes, with new mutation entries currently accumulating at a rate exceeding 10,000 per annum. HGMD was originally established in 1996 for the scientific study of mutational mechanisms in human genes. However, it has since acquired a much broader utility as a central unified disease-oriented mutation repository utilized by human molecular geneticists, genome scientists, molecular biologists, clinicians and genetic counsellors as well as by those specializing in biopharmaceuticals, bioinformatics and personalized genomics. The public version of HGMD (http://www.hgmd.org) is freely available to registered users from academic institutions/non-profit organizations whilst the subscription version (HGMD Professional) is available to academic, clinical and commercial users under license via BIOBASE GmbH.

  14. [Ethical challenges of genetic manipulation and research with animals].

    Science.gov (United States)

    Rodríguez Yunta, Eduardo

    2012-01-01

    Research with animals presents ethical questions both for being used as models of human diseases and for being a prerequisite for trials in humans, as in the introduction of genetic modifications. Some of these questions refer to the fact that, as models, they do not fully represent the human condition; that conducting toxicity tests causes great harm to animals; that their nature is altered by genetic modifications and that introducing genetically modified organisms is a risk. The use of animals in research for the benefit of humans imposes the moral responsibility to respect them, not making them suffer unnecessarily, since they are living beings capable of feeling.

  15. Monitoring Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes with Genetically Encoded Calcium and Voltage Fluorescent Reporters

    Directory of Open Access Journals (Sweden)

    Rami Shinnawi

    2015-10-01

    Full Text Available The advent of the human-induced pluripotent stem cell (hiPSC technology has transformed biomedical research, providing new tools for human disease modeling, drug development, and regenerative medicine. To fulfill its unique potential in the cardiovascular field, efficient methods should be developed for high-resolution, large-scale, long-term, and serial functional cellular phenotyping of hiPSC-derived cardiomyocytes (hiPSC-CMs. To achieve this goal, we combined the hiPSC technology with genetically encoded voltage (ArcLight and calcium (GCaMP5G fluorescent indicators. Expression of ArcLight and GCaMP5G in hiPSC-CMs permitted to reliably follow changes in transmembrane potential and intracellular calcium levels, respectively. This allowed monitoring short- and long-term changes in action-potential and calcium-handling properties and the development of arrhythmias in response to several pharmaceutical agents and in hiPSC-CMs derived from patients with different inherited arrhythmogenic syndromes. Combining genetically encoded fluorescent reporters with hiPSC-CMs may bring a unique value to the study of inherited disorders, developmental biology, and drug development and testing.

  16. Genetic influence of radiation measured by the effect on the mutation rate of human minisatellite genes

    International Nuclear Information System (INIS)

    Kodaira, Mieko

    2002-01-01

    Human minisatellite genes are composed from 0.1-30 kb with a high frequency of polymorphism. The genes exist in mammalian genomes and mice's ones are well studied after irradiation of their gonad cells by X-ray and γ-ray. Following five reports concerning the significant and/or insignificant increases of the mutation rate of the genes post A-bomb exposure, Chernobyl accident and nuclear weapons test in Semipalatinsk are reviewed and discussed on the subject number, exposed dose, problems of the control group, regions examined of loci and exposure conditions. Genetic influences of radiation examined by the author's facility are not recognized in the mutation rate (3.21% vs 4.94% in the control) of minisatellite genes in children of A-bomb survivors and their parents. The mutation rates are 4.27 vs 2.52% (positive influence) and 4.2-6.01% vs 3.5-6.34% in Chernobyl, and 4.3 (parents) and 3.8% (F 1 ) vs 2.5% (positive). Mutation of human minisatellite genes can be an important measure of genetic influences at the medical level. (K.H.)

  17. Cost sharing and hereditary cancer risk: predictors of willingness-to-pay for genetic testing.

    Science.gov (United States)

    Matro, Jennifer M; Ruth, Karen J; Wong, Yu-Ning; McCully, Katen C; Rybak, Christina M; Meropol, Neal J; Hall, Michael J

    2014-12-01

    Increasing use of predictive genetic testing to gauge hereditary cancer risk has been paralleled by rising cost-sharing practices. Little is known about how demographic and psychosocial factors may influence individuals' willingness-to-pay for genetic testing. The Gastrointestinal Tumor Risk Assessment Program Registry includes individuals presenting for genetic risk assessment based on personal/family cancer history. Participants complete a baseline survey assessing cancer history and psychosocial items. Willingness-to-pay items include intention for: genetic testing only if paid by insurance; testing with self-pay; and amount willing-to-pay ($25-$2,000). Multivariable models examined predictors of willingness-to-pay out-of-pocket (versus only if paid by insurance) and willingness-to-pay a smaller versus larger sum (≤$200 vs. ≥$500). All statistical tests are two-sided (α = 0.05). Of 385 evaluable participants, a minority (42%) had a personal cancer history, while 56% had ≥1 first-degree relative with colorectal cancer. Overall, 21.3% were willing to have testing only if paid by insurance, and 78.7% were willing-to-pay. Predictors of willingness-to-pay were: 1) concern for positive result; 2) confidence to control cancer risk; 3) fewer perceived barriers to colorectal cancer screening; 4) benefit of testing to guide screening (all p testing (all p testing, and anticipate benefits to reducing cancer risk. Identifying factors associated with willingness-to-pay for genetic services is increasingly important as testing is integrated into routine cancer care.

  18. A genetic basis for mechanosensory traits in humans.

    Directory of Open Access Journals (Sweden)

    Henning Frenzel

    Full Text Available In all vertebrates hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. There is an extensive literature describing single gene mutations in humans that cause hearing impairment, but there are essentially none for touch. Here we first asked if touch sensitivity is a heritable trait and second whether there are common genes that influence different mechanosensory senses like hearing and touch in humans. Using a classical twin study design we demonstrate that touch sensitivity and touch acuity are highly heritable traits. Quantitative phenotypic measures of different mechanosensory systems revealed significant correlations between touch and hearing acuity in a healthy human population. Thus mutations in genes causing deafness genes could conceivably negatively influence touch sensitivity. In agreement with this hypothesis we found that a proportion of a cohort of congenitally deaf young adults display significantly impaired measures of touch sensitivity compared to controls. In contrast, blind individuals showed enhanced, not diminished touch acuity. Finally, by examining a cohort of patients with Usher syndrome, a genetically well-characterized deaf-blindness syndrome, we could show that recessive pathogenic mutations in the USH2A gene influence touch acuity. Control Usher syndrome cohorts lacking demonstrable pathogenic USH2A mutations showed no impairment in touch acuity. Our study thus provides comprehensive evidence that there are common genetic elements that contribute to touch and hearing and has identified one of these genes as USH2A.

  19. Routine human-competitive machine intelligence by means of genetic programming

    Science.gov (United States)

    Koza, John R.; Streeter, Matthew J.; Keane, Martin

    2004-01-01

    Genetic programming is a systematic method for getting computers to automatically solve a problem. Genetic programming starts from a high-level statement of what needs to be done and automatically creates a computer program to solve the problem. The paper demonstrates that genetic programming (1) now routinely delivers high-return human-competitive machine intelligence; (2) is an automated invention machine; (3) can automatically create a general solution to a problem in the form of a parameterized topology; and (4) has delivered a progression of qualitatively more substantial results in synchrony with five approximately order-of-magnitude increases in the expenditure of computer time. Recent results involving the automatic synthesis of the topology and sizing of analog electrical circuits and controllers demonstrate these points.

  20. What is the role of genetic testing in movement disorders practice?

    Science.gov (United States)

    Schneider, Susanne A; Klein, Christine

    2011-08-01

    Genetic testing holds many promises in movement disorders, but also pitfalls that require careful consideration for meaningful results. These include the primary indication for testing in the first place, concerns regarding the implications of symptomatic, presymptomatic, and susceptibility testing, the mutation frequency in the gene of interest, the general lack of neuroprotective treatment options for neurodegenerative movement disorders, the prognosis of the condition diagnosed, and patient confidentiality concerns. Furthermore, new technical achievements and the available technical expertise, feasibility of specific gene testing, and its coverage through a health insurance carrier should be considered. Guidelines for testing have been established by some disease societies to advise clinicians and in parallel legal regulations are being adjusted at a national and international level. We review these and other critical points and recent developments regarding genetic testing in the field of movement disorders.

  1. Patterns of Cancer Genetic Testing: A Randomized Survey of Oregon Clinicians

    International Nuclear Information System (INIS)

    Cox, S. L.; Zlot, A. I.; Silvey, S. K.; Silvey, S. K.

    2012-01-01

    Introduction. Appropriate use of genetic tests for population-based cancer screening, diagnosis of inherited cancers, and guidance of cancer treatment can improve health outcomes. We investigated clinicians’ use and knowledge of eight breast, ovarian, and colorectal cancer genetic tests. Methods. We conducted a randomized survey of 2,191 Oregon providers, asking about their experience with fecal DNA, OncoVue, BRCA, MMR, CYP2D6, tumor gene expression profiling, UGT1A1, and KRAS. Results. Clinicians reported low confidence in their knowledge of medical genetics; most confident were OB-GYNs and specialists. Clinicians were more likely to have ordered/recommended BRCA and MMR than the other tests, and OB-GYNs were twice as likely to have ordered/recommended BRCA testing than primary care providers. Less than 10% of providers ordered/recommended OncoVue, fecal DNA, CYP2D6, or UGT1A1; less than 30% ordered/recommended tumor gene expression profiles or KRAS. The most common reason for not ordering/recommending these tests was lack of familiarity. Conclusions. Use of appropriate, evidence-based testing can help reduce incidence and mortality of certain cancers, but these tests need to be better integrated into clinical practice. Continued evaluation of emerging technologies, dissemination of findings, and an increase in provider confidence and knowledge are necessary to achieve this end.

  2. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene.

    Science.gov (United States)

    Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua

    2006-02-01

    To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  3. A Value-Based Medicine cost-utility analysis of genetic testing for neovascular macular degeneration.

    Science.gov (United States)

    Brown, Gary C; Brown, Melissa M; Lieske, Heidi B; Lieske, Philip A; Brown, Kathryn S

    2015-01-01

    There is a dearth of patient, preference-based cost-effectiveness analyses evaluating genetic testing for neovascular age-related macular degeneration (NVAMD). A Value-Based Medicine, 12-year, combined-eye model, cost-utility analysis evaluated genetic testing of Category 3 AMD patients at age 65 for progression to NVAMD. The benefit of genetic testing was predicated upon the fact that early-treatment ranibizumab therapy (baseline vision 20/40-20/80) for NVAMD confers greater patient value than late-treatment (baseline vision ≤20/160). Published genetic data and MARINA Study ranibizumab therapy data were utilized in the analysis. Patient value (quality-of-life gain) and financial value (2012 US real dollar) outcomes were discounted at 3 % annually. Genetic testing-enabled, early-treatment ranibizumab therapy per patient conferred mean 20/40 -1 vision, a 0.845 QALY gain and 14.1 % quality-of-life gain over sham therapy. Late-treatment ranibizumab therapy conferred mean 20/160 +2 vision, a 0.250 QALY gain and 4.2 % quality-of-life gain over sham therapy. The gain from early-treatment over late-treatment was 0.595 QALY (10.0 % quality-of-life gain). The per-patient cost for genetic testing/closer monitoring was $2205 per screened person, $2.082 billion for the 944,000 estimated new Category 3 AMD patients annually. Genetic testing/monitoring costs per early-treatment patient totaled $66,180. Costs per early-treatment patient included: genetic testing costs: $66,180 + direct non-ophthalmic medical costs: -$40,914 + caregiver costs: -$172,443 + employment costs: -$14,098 = a net societal cost saving of $160,582 per early treatment patient. When genetic screening facilitated an incremental 12,965 (8.0 %) of the 161,754, new annual NVAMD patients aged ≥65 in the US to undergo early-treatment ranibizumab therapy, each additional patient treated accrued an overall, net financial gain for society of $160,582. Genetic screening was cost-effective, using World

  4. Genetics of the pig tapeworm in madagascar reveal a history of human dispersal and colonization.

    Science.gov (United States)

    Yanagida, Tetsuya; Carod, Jean-François; Sako, Yasuhito; Nakao, Minoru; Hoberg, Eric P; Ito, Akira

    2014-01-01

    An intricate history of human dispersal and geographic colonization has strongly affected the distribution of human pathogens. The pig tapeworm Taenia solium occurs throughout the world as the causative agent of cysticercosis, one of the most serious neglected tropical diseases. Discrete genetic lineages of T. solium in Asia and Africa/Latin America are geographically disjunct; only in Madagascar are they sympatric. Linguistic, archaeological and genetic evidence has indicated that the people in Madagascar have mixed ancestry from Island Southeast Asia and East Africa. Hence, anthropogenic introduction of the tapeworm from Southeast Asia and Africa had been postulated. This study shows that the major mitochondrial haplotype of T. solium in Madagascar is closely related to those from the Indian Subcontinent. Parasitological evidence presented here, and human genetics previously reported, support the hypothesis of an Indian influence on Malagasy culture coinciding with periods of early human migration onto the island. We also found evidence of nuclear-mitochondrial discordance in single tapeworms, indicating unexpected cross-fertilization between the two lineages of T. solium. Analyses of genetic and geographic populations of T. solium in Madagascar will shed light on apparently rapid evolution of this organism driven by recent (<2,000 yr) human migrations, following tens of thousands of years of geographic isolation.

  5. Cost-effectiveness of MODY genetic testing: translating genomic advances into practical health applications.

    Science.gov (United States)

    Naylor, Rochelle N; John, Priya M; Winn, Aaron N; Carmody, David; Greeley, Siri Atma W; Philipson, Louis H; Bell, Graeme I; Huang, Elbert S

    2014-01-01

    OBJECTIVE To evaluate the cost-effectiveness of a genetic testing policy for HNF1A-, HNF4A-, and GCK-MODY in a hypothetical cohort of type 2 diabetic patients 25-40 years old with a MODY prevalence of 2%. RESEARCH DESIGN AND METHODS We used a simulation model of type 2 diabetes complications based on UK Prospective Diabetes Study data, modified to account for the natural history of disease by genetic subtype to compare a policy of genetic testing at diabetes diagnosis versus a policy of no testing. Under the screening policy, successful sulfonylurea treatment of HNF1A-MODY and HNF4A-MODY was modeled to produce a glycosylated hemoglobin reduction of -1.5% compared with usual care. GCK-MODY received no therapy. Main outcome measures were costs and quality-adjusted life years (QALYs) based on lifetime risk of complications and treatments, expressed as the incremental cost-effectiveness ratio (ICER) (USD/QALY). RESULTS The testing policy yielded an average gain of 0.012 QALYs and resulted in an ICER of 205,000 USD. Sensitivity analysis showed that if the MODY prevalence was 6%, the ICER would be ~50,000 USD. If MODY prevalence was >30%, the testing policy was cost saving. Reducing genetic testing costs to 700 USD also resulted in an ICER of ~50,000 USD. CONCLUSIONS Our simulated model suggests that a policy of testing for MODY in selected populations is cost-effective for the U.S. based on contemporary ICER thresholds. Higher prevalence of MODY in the tested population or decreased testing costs would enhance cost-effectiveness. Our results make a compelling argument for routine coverage of genetic testing in patients with high clinical suspicion of MODY.

  6. Yeast Augmented Network Analysis (YANA: a new systems approach to identify therapeutic targets for human genetic diseases [v1; ref status: indexed, http://f1000r.es/3gk

    Directory of Open Access Journals (Sweden)

    David J. Wiley

    2014-06-01

    Full Text Available Genetic interaction networks that underlie most human diseases are highly complex and poorly defined. Better-defined networks will allow identification of a greater number of therapeutic targets. Here we introduce our Yeast Augmented Network Analysis (YANA approach and test it with the X-linked spinal muscular atrophy (SMA disease gene UBA1. First, we express UBA1 and a mutant variant in fission yeast and use high-throughput methods to identify fission yeast genetic modifiers of UBA1. Second, we analyze available protein-protein interaction network databases in both fission yeast and human to construct UBA1 genetic networks. Third, from these networks we identified potential therapeutic targets for SMA. Finally, we validate one of these targets in a vertebrate (zebrafish SMA model. This study demonstrates the power of combining synthetic and chemical genetics with a simple model system to identify human disease gene networks that can be exploited for treating human diseases.

  7. Discovery and resolve: the Human Genetics Society of Australasia Oration 2011.

    Science.gov (United States)

    Pearn, John

    2011-10-01

    Human genetics spans every facet of biology from molecular science, through laboratory and clinical practice, to psychology and anthropology. In each of these areas, the history of human genetics has been punctuated by paradigm shifts in knowledge. Each such new concept has been received with skepticism, often with perplexity, and sometimes with frank incredulity. Such comprise the datum milestones along the path leading to our present corpus of genetic knowledge. In parallel to the personal threats to Copernicus and Galileo in the field of astronomy in the 17th century, almost all genetic discoveries of the 19th and 20th centuries were seen as challenges to the received wisdom, and sometimes the social order, of their time and place. Researchers, scientists and clinicians encountering such new and often-heretical paradigm shifts have required considerable resolve to promote and publish their work. Just as in the field of astronomy, new directions in genetics have threatened not only the reputations and sometimes the careers of scientists, but also have been challenges to fundamental religious and sociological beliefs in society more broadly. Examples followed the discovery of biological sexual dimorphism (in plants as well as animals) by Nehemiah Grew (1641-1712). Darwinian evolution, Mendel's First and Second Laws, the existence of mitochondrial genes, apoptosis and its genetic basis, and uniparental disomy are more recent examples. Many of these new revelations, which today have led to the current understanding of fundamental biology, were discovered by individuals working in relative isolation. To promote and publish findings that fundamentally challenge received wisdom continues to require considerable resolve, if not courage. Herein lies a message for all clinicians and researchers.

  8. Genetics and human rights: Two histories: restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil

    OpenAIRE

    Penchaszadeh, Victor B.; Schuler-Faccini, Lavinia

    2014-01-01

    Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to i...

  9. Field of Genes: An Investigation of Sports-Related Genetic Testing

    Science.gov (United States)

    Wagner, Jennifer K.; Royal, Charmaine D.

    2012-01-01

    Sports-related genetic testing is a sector of the diverse direct-to-consumer (DTC) industry that has not yet been examined thoroughly by academic scholars. A systematic search was used to identify companies in this sector and content analysis of online information was performed. More than a dozen companies were identified. Marketing practices observed generally did not target parents for child testing, and marketing images were mild compared to images used in popular media. Information was provided at a high reading level (industry-wide Flesh-Kincaid Grade Levels > 11). While ~75% of companies provide privacy policies and terms of service prior to purchase and ~40% provide scientific citations for their tests, e-commerce generally may adequately protect DTC genetics consumers without new federal legislation or regulation. PMID:25562204

  10. Incremental cost-effectiveness of algorithm-driven genetic testing versus no testing for Maturity Onset Diabetes of the Young (MODY) in Singapore.

    Science.gov (United States)

    Nguyen, Hai Van; Finkelstein, Eric Andrew; Mital, Shweta; Gardner, Daphne Su-Lyn

    2017-11-01

    Offering genetic testing for Maturity Onset Diabetes of the Young (MODY) to all young patients with type 2 diabetes has been shown to be not cost-effective. This study tests whether a novel algorithm-driven genetic testing strategy for MODY is incrementally cost-effective relative to the setting of no testing. A decision tree was constructed to estimate the costs and effectiveness of the algorithm-driven MODY testing strategy and a strategy of no genetic testing over a 30-year time horizon from a payer's perspective. The algorithm uses glutamic acid decarboxylase (GAD) antibody testing (negative antibodies), age of onset of diabetes (30 years) to stratify the population of patients with diabetes into three subgroups, and testing for MODY only among the subgroup most likely to have the mutation. Singapore-specific costs and prevalence of MODY obtained from local studies and utility values sourced from the literature are used to populate the model. The algorithm-driven MODY testing strategy has an incremental cost-effectiveness ratio of US$93 663 per quality-adjusted life year relative to the no testing strategy. If the price of genetic testing falls from US$1050 to US$530 (a 50% decrease), it will become cost-effective. Our proposed algorithm-driven testing strategy for MODY is not yet cost-effective based on established benchmarks. However, as genetic testing prices continue to fall, this strategy is likely to become cost-effective in the near future. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes.

    Science.gov (United States)

    Rohde, Palle Duun; Demontis, Ditte; Cuyabano, Beatriz Castro Dias; Børglum, Anders D; Sørensen, Peter

    2016-08-01

    Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited power to detect genetic markers with small effects. Instead, aggregating genetic markers based on biological information might increase the power to identify sets of genetic markers of etiological significance. Several set test methods have been proposed: Here we propose a new set test derived from genomic best linear unbiased prediction (GBLUP), the covariance association test (CVAT). We compared the performance of CVAT to other commonly used set tests. The comparison was conducted using a simulated study population having the same genetic parameters as for schizophrenia. We found that CVAT was among the top performers. When extending CVAT to utilize a mixture of SNP effects, we found an increase in power to detect the causal sets. Applying the methods to a Danish schizophrenia case-control data set, we found genomic evidence for association of schizophrenia with vitamin A metabolism and immunological responses, which previously have been implicated with schizophrenia based on experimental and observational studies. Copyright © 2016 by the Genetics Society of America.

  12. Medical and lay attitudes towards genetic screening and testing in Finland

    DEFF Research Database (Denmark)

    Toiviainen, Hanna; Jallinoja, Piia; Aro, Arja R

    2003-01-01

    The purpose of this study was to compare physicians', midwives' and lay people's attitudes towards genetic screening and testing to find out whether medical education and experience influence attitudes of genetic screening and testing. The study was based on comparison of answers to joint questions...... in three different cross-sectional postal surveys between October 1996 and April 1998 in Finland. Target groups were physicians (study base n=772, response rate 74%, including gynaecologists, paediatricians, general practitioners and clinical geneticists), midwives and public health nurses (collectively...

  13. Knowledge, attitudes and preferences regarding genetic testing for smoking cessation. A cross-sectional survey among Dutch smokers.

    Science.gov (United States)

    Quaak, Marieke; Smerecnik, Chris; van Schooten, Frederik J; de Vries, Hein; van Schayck, Constant P

    2012-01-01

    Objectives Recent research strongly suggests that genetic variation influences smokers' ability to stop. Therefore, the use of (pharmaco) genetic testing may increase cessation rates. This study aims to assess the intention of smokers concerning undergoing genetic testing for smoking cessation and their knowledge, attitudes and preferences about this subject. Design Online cross-sectional survey. Setting Database internet research company of which every inhabitant of the Netherlands of ≥12 years with an email address and capable of understanding Dutch can become a member. Participants 587 of 711 Dutch smokers aged ≥18 years, daily smokers for ≥5 years and smoke on average ≥10 cigarettes/day (response rate=83%). Primary and secondary outcome measures Smokers' knowledge, attitudes and preferences and their intention to undergo genetic testing for smoking cessation. Results Knowledge on the influence of genetic factors in smoking addiction and cessation was found to be low. Smokers underestimated their chances of having a genetic predisposition and the influence of this on smoking cessation. Participants perceived few disadvantages, some advantages and showed moderate self-efficacy towards undergoing a genetic test and dealing with the results. Smokers were mildly interested in receiving information and participating in genetic testing, especially when offered by their general practitioner (GP). Conclusions For successful implementation of genetic testing for smoking in general practice, several issues should be addressed, such as the knowledge on smoking cessation, genetics and genetic testing (including advantages and disadvantages) and the influence of genetics on smoking addiction and cessation. Furthermore, smokers allocate their GPs a crucial role in the provision of information and the delivery of a genetic test for smoking; however, it is unclear whether GPs will be able and willing to take on this role.

  14. Knowledge, attitudes and preferences regarding genetic testing for smoking cessation. A cross-sectional survey among Dutch smokers

    Science.gov (United States)

    Smerecnik, Chris; van Schooten, Frederik J; de Vries, Hein; van Schayck, Constant P

    2012-01-01

    Objectives Recent research strongly suggests that genetic variation influences smokers' ability to stop. Therefore, the use of (pharmaco) genetic testing may increase cessation rates. This study aims to assess the intention of smokers concerning undergoing genetic testing for smoking cessation and their knowledge, attitudes and preferences about this subject. Design Online cross-sectional survey. Setting Database internet research company of which every inhabitant of the Netherlands of ≥12 years with an email address and capable of understanding Dutch can become a member. Participants 587 of 711 Dutch smokers aged ≥18 years, daily smokers for ≥5 years and smoke on average ≥10 cigarettes/day (response rate=83%). Primary and secondary outcome measures Smokers' knowledge, attitudes and preferences and their intention to undergo genetic testing for smoking cessation. Results Knowledge on the influence of genetic factors in smoking addiction and cessation was found to be low. Smokers underestimated their chances of having a genetic predisposition and the influence of this on smoking cessation. Participants perceived few disadvantages, some advantages and showed moderate self-efficacy towards undergoing a genetic test and dealing with the results. Smokers were mildly interested in receiving information and participating in genetic testing, especially when offered by their general practitioner (GP). Conclusions For successful implementation of genetic testing for smoking in general practice, several issues should be addressed, such as the knowledge on smoking cessation, genetics and genetic testing (including advantages and disadvantages) and the influence of genetics on smoking addiction and cessation. Furthermore, smokers allocate their GPs a crucial role in the provision of information and the delivery of a genetic test for smoking; however, it is unclear whether GPs will be able and willing to take on this role. PMID:22223839

  15. Genetic counseling and cascade genetic testing in Lynch syndrome.

    Science.gov (United States)

    Hampel, Heather

    2016-07-01

    Lynch syndrome is the most common cause of inherited colorectal and endometrial cancers. Individuals with Lynch syndrome have a 10-80 % lifetime risk for colorectal cancer and a 15-60 % lifetime risk for endometrial cancer. Both cancers are preventable through chemoprevention, intensive cancer surveillance, and risk-reducing surgery options. Efforts to identify as many individuals with Lynch syndrome as possible will prevent cancers and save lives. This includes the traditional cancer genetic counseling model whereby individuals with and without cancer are evaluated for a possible Lynch syndrome diagnosis based on their personal and family history of colon polyps and cancers. It also includes universal tumor screening for Lynch syndrome whereby all individuals with colorectal or endometrial cancer are screened for tumor features of Lynch syndrome at the time of diagnosis. Those with tumors suspicious for Lynch syndrome are referred for cancer genetic counseling regardless of their family history of cancer. This two approaches must be maximized to attain high patient reach. Finally, and perhaps most importantly, cascade testing among the at-risk relatives of those diagnosed with Lynch syndrome is critically important to maximize the diagnosis of individuals with Lynch syndrome. In fact, the cost-effectiveness of universal tumor screening for Lynch syndrome relies entirely on counseling and testing as many at-risk individuals as possible since young unaffected individuals stand to benefit the most from an early diagnosis of Lynch syndrome. This approach must be optimized to achieve high family reach. It will take a concerted effort from patients, clinicians and public health officials to improve current approaches to the diagnosis of Lynch syndrome and the prevention and treatment of Lynch syndrome-associated cancer but these lessons can be applied to other conditions as the ultimate example of personalized medicine.

  16. Owning genetic information and gene enhancement techniques: why privacy and property rights may undermine social control of the human genome.

    Science.gov (United States)

    Moore, A D

    2000-04-01

    In this article I argue that the proper subjects of intangible property claims include medical records, genetic profiles, and gene enhancement techniques. Coupled with a right to privacy these intangible property rights allow individuals a zone of control that will, in most cases, justifiably exclude governmental or societal invasions into private domains. I argue that the threshold for overriding privacy rights and intangible property rights is higher, in relation to genetic enhancement techniques and sensitive personal information, than is commonly suggested. Once the bar is raised, so-to-speak, the burden of overriding it is formidable. Thus many policy decisions that have been recently proposed or enacted--citywide audio and video surveillance, law enforcement DNA sweeps, genetic profiling, national bans on genetic testing and enhancement of humans, to name a few--will have to be backed by very strong arguments.

  17. Random genetic drift, natural selection, and noise in human cranial evolution.

    Science.gov (United States)

    Roseman, Charles C

    2016-08-01

    This study assesses the extent to which relationships among groups complicate comparative studies of adaptation in recent human cranial variation and the extent to which departures from neutral additive models of evolution hinder the reconstruction of population relationships among groups using cranial morphology. Using a maximum likelihood evolutionary model fitting approach and a mixed population genomic and cranial data set, I evaluate the relative fits of several widely used models of human cranial evolution. Moreover, I compare the goodness of fit of models of cranial evolution constrained by genomic variation to test hypotheses about population specific departures from neutrality. Models from population genomics are much better fits to cranial variation than are traditional models from comparative human biology. There is not enough evolutionary information in the cranium to reconstruct much of recent human evolution but the influence of population history on cranial variation is strong enough to cause comparative studies of adaptation serious difficulties. Deviations from a model of random genetic drift along a tree-like population history show the importance of environmental effects, gene flow, and/or natural selection on human cranial variation. Moreover, there is a strong signal of the effect of natural selection or an environmental factor on a group of humans from Siberia. The evolution of the human cranium is complex and no one evolutionary process has prevailed at the expense of all others. A holistic unification of phenome, genome, and environmental context, gives us a strong point of purchase on these problems, which is unavailable to any one traditional approach alone. Am J Phys Anthropol 160:582-592, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Genetic horoscopes: is it all in the genes? Points for regulatory control of direct-to-consumer genetic testing

    NARCIS (Netherlands)

    Patch, C.; Sequeiros, J.; Cornel, M.C.

    2009-01-01

    The development of tests for genetic susceptibility to common complex diseases has raised concerns. These concerns relate to evaluation of the scientific and clinical validity and utility of the tests, quality assurance of laboratories and testing services, advice and protection for the consumer and

  19. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  20. Genetics and bioethics: how our thinking has changed since 1969.

    Science.gov (United States)

    Walters, LeRoy

    2012-02-01

    In 1969, the field of human genetics was in its infancy. Amniocentesis was a new technique for prenatal diagnosis, and a newborn genetic screening program had been established in one state. There were also concerns about the potential hazards of genetic engineering. A research group at the Hastings Center and Paul Ramsey pioneered in the discussion of genetics and bioethics. Two principal techniques have emerged as being of enduring importance: human gene transfer research and genetic testing and screening. This essay tracks the development and use of these techniques and considers the ethical issues that they raise.

  1. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    Science.gov (United States)

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  2. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans.

    Science.gov (United States)

    Verloop, Herman; Dekkers, Olaf M; Peeters, Robin P; Schoones, Jan W; Smit, Johannes W A

    2014-09-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation. © 2014 European Society of Endocrinology.

  3. Genetic population structure accounts for contemporary ecogeographic patterns in tropic and subtropic-dwelling humans.

    Science.gov (United States)

    Hruschka, Daniel J; Hadley, Craig; Brewis, Alexandra A; Stojanowski, Christopher M

    2015-01-01

    Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

  4. Genetic population structure accounts for contemporary ecogeographic patterns in tropic and subtropic-dwelling humans.

    Directory of Open Access Journals (Sweden)

    Daniel J Hruschka

    Full Text Available Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28. However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74. Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

  5. Brief Communication: Quantitative- and molecular-genetic differentiation in humans and chimpanzees: implications for the evolutionary processes underlying cranial diversification.

    Science.gov (United States)

    Weaver, Timothy D

    2014-08-01

    Estimates of the amount of genetic differentiation in humans among major geographic regions (e.g., Eastern Asia vs. Europe) from quantitative-genetic analyses of cranial measurements closely match those from classical- and molecular-genetic markers. Typically, among-region differences account for ∼10% of the total variation. This correspondence is generally interpreted as evidence for the importance of neutral evolutionary processes (e.g., genetic drift) in generating among-region differences in human cranial form, but it was initially surprising because human cranial diversity was frequently assumed to show a strong signature of natural selection. Is the human degree of similarity of cranial and DNA-sequence estimates of among-region genetic differentiation unusual? How do comparisons with other taxa illuminate the evolutionary processes underlying cranial diversification? Chimpanzees provide a useful starting point for placing the human results in a broader comparative context, because common chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) are the extant species most closely related to humans. To address these questions, I used 27 cranial measurements collected on a sample of 861 humans and 263 chimpanzees to estimate the amount of genetic differentiation between pairs of groups (between regions for humans and between species or subspecies for chimpanzees). Consistent with previous results, the human cranial estimates are quite similar to published DNA-sequence estimates. In contrast, the chimpanzee cranial estimates are much smaller than published DNA-sequence estimates. It appears that cranial differentiation has been limited in chimpanzees relative to humans. © 2014 Wiley Periodicals, Inc.

  6. Evolutionary anthropology and genes: investigating the genetics of human evolution from excavated skeletal remains.

    Science.gov (United States)

    Anastasiou, Evilena; Mitchell, Piers D

    2013-10-01

    The development of molecular tools for the extraction, analysis and interpretation of DNA from the remains of ancient organisms (paleogenetics) has revolutionised a range of disciplines as diverse as the fields of human evolution, bioarchaeology, epidemiology, microbiology, taxonomy and population genetics. The paper draws attention to some of the challenges associated with the extraction and interpretation of ancient DNA from archaeological material, and then reviews the influence of paleogenetics on the field of human evolution. It discusses the main contributions of molecular studies to reconstructing the evolutionary and phylogenetic relationships between extinct hominins (human ancestors) and anatomically modern humans. It also explores the evidence for evolutionary changes in the genetic structure of anatomically modern humans in recent millennia. This breadth of research has led to discoveries that would never have been possible using traditional approaches to human evolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Direct-to-consumer genetic testing for predicting sports performance and talent identification: Consensus statement.

    Science.gov (United States)

    Webborn, Nick; Williams, Alun; McNamee, Mike; Bouchard, Claude; Pitsiladis, Yannis; Ahmetov, Ildus; Ashley, Euan; Byrne, Nuala; Camporesi, Silvia; Collins, Malcolm; Dijkstra, Paul; Eynon, Nir; Fuku, Noriyuki; Garton, Fleur C; Hoppe, Nils; Holm, Søren; Kaye, Jane; Klissouras, Vassilis; Lucia, Alejandro; Maase, Kamiel; Moran, Colin; North, Kathryn N; Pigozzi, Fabio; Wang, Guan

    2015-12-01

    The general consensus among sport and exercise genetics researchers is that genetic tests have no role to play in talent identification or the individualised prescription of training to maximise performance. Despite the lack of evidence, recent years have witnessed the rise of an emerging market of direct-to-consumer marketing (DTC) tests that claim to be able to identify children's athletic talents. Targeted consumers include mainly coaches and parents. There is concern among the scientific community that the current level of knowledge is being misrepresented for commercial purposes. There remains a lack of universally accepted guidelines and legislation for DTC testing in relation to all forms of genetic testing and not just for talent identification. There is concern over the lack of clarity of information over which specific genes or variants are being tested and the almost universal lack of appropriate genetic counselling for the interpretation of the genetic data to consumers. Furthermore independent studies have identified issues relating to quality control by DTC laboratories with different results being reported from samples from the same individual. Consequently, in the current state of knowledge, no child or young athlete should be exposed to DTC genetic testing to define or alter training or for talent identification aimed at selecting gifted children or adolescents. Large scale collaborative projects, may help to develop a stronger scientific foundation on these issues in the future. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. The psychological complexity of predictive testing for late onset neurogenetic diseases and hereditary cancers: implications for multidisciplinary counselling and for genetic education.

    Science.gov (United States)

    Evers-Kiebooms, G; Welkenhuysen, M; Claes, E; Decruyenaere, M; Denayer, L

    2000-09-01

    Increasing knowledge about the human genome has resulted in the availability of a steadily increasing number of predictive DNA-tests for two major categories of diseases: neurogenetic diseases and hereditary cancers. The psychological complexity of predictive testing for these late onset diseases requires careful consideration. It is the main aim of the present paper to describe this psychological complexity, which necessitates an adequate and systematic multidisciplinary approach, including psychological counselling, as well as ongoing education of professionals and of the general public. Predictive testing for neurogenetic diseases--in an adequate counselling context--so far elicits optimism regarding the short- and mid-term impact of the predictive test result. The psychosocial impact has been most widely studied for Huntington's disease. Longitudinal studies are of the utmost importance in evaluating the long-term impact of predictive testing for neurogenetic diseases on the tested person and his/her family. Given the more recent experience with predictive DNA-testing for hereditary cancers, fewer published scientific data are available. Longitudinal research on the mid- and long-term psychological impact of the predictive test result is essential. Decision making regarding health surveillance or preventive surgery after being detected as a carrier of one of the relevant mutations should receive special attention. Tailoring the professional approach--inside and outside genetic centres--to the families' needs is a continuous challenge. Even if a continuous effort is made, several important questions remain unanswered, last but not least the question regarding the best strategy to guarantee that the availability of predictive genetic testing results in a reduction of suffering caused by genetic disease and in an improvement of the quality of life of families confronted with genetic disease.

  9. Inter-embodiment and the experience of genetic testing for familial hypercholesterolaemia.

    Science.gov (United States)

    Jenkins, Nicholas; Lawton, Julia; Douglas, Margaret; Hallowell, Nina

    2013-05-01

    In this article we explore the concept of inter-embodiment and its potential for advancing sociological research into illness biography and genetic identity. Inter-embodiment theory views embodied knowledge as produced through relations between bodies, as opposed to originating from within the body or as the product of relations between disembodied selves. Drawing on a qualitative study in which we interviewed 38 individuals about their experiences of discovering they had high cholesterol and undergoing genetic testing for familial hypercholesterolaemia (FH), we discuss how their narratives may be understood from an inter-embodiment perspective. The participants frequently talked at length about their family histories of high cholesterol and cardiovascular disease. Through these accounts, we develop the concept of the family corpus in order to highlight the role body networks play in shaping lay constructions of genetic identity and a familial disease biography. The notion of a family corpus, we argue, is useful in understanding why genetic testing for FH was experienced as either biographical re-enforcement or as biographical disruption. We conclude by discussing the implications of our findings for future sociological research into illness biography and genetic identity. © 2012 The Authors. Sociology of Health & Illness © 2012 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.

  10. [Genetic profiling of Giardia intestinalis by polimerase chain in human and dogs samples of Colombian Caribean Coast].

    Science.gov (United States)

    Arroyo-Salgado, Bárbara; Buelvas-Montes, Yaleyvis; Villalba-Vizcaíno, Vivian; Salomón-Arzuza, Octavio

    2014-01-01

    Giardia intestinalis (G. Intestinalis) is a protozoan that causes diarrheal disease and malabsorption syndrome in humans and other mammals. It presents a high genetic diversity evidenced in the recognition of 7 genotypes (A-G). Genotypes A and B are commonly associated to humans and domestic animals such as dogs. The aim of this study was to conduct a preliminary genetic characterization of G. intestinalis in humans and dogs from two cities on the Caribbean coast of Colombia. Sampling areas were selected according to the highest numbers of acute diarrheal disease. Stool samples were collected from children under 7 years old, with positive medical tests for G. intestinalis. Cysts were purified by sucrose gradient and DNA samples were isolated by extraction with organic solvents. Molecular characterization was performed by amplifying the gene triose phosphate isomerase (tpi) by using a semi-nested PCR. A total of 202 samples of DNA were obtained; of these, 111 were positive in coproparasitological analysis (13 dogs and 98 children). Genotype distribution in positive samples was: 5.1% belonged to genotype A and 92.3% to genotype B. Genotype B was present in humans and animals. The most common genotype in both human and animal samples was genotype B, suggesting a zoonotic transmission cycle. Copyright © 2012 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  11. Somatic retrotransposition alters the genetic landscape of the human brain

    NARCIS (Netherlands)

    Baillie, J.K.; Barnett, M.W.; Upton, K.R.; Gerhardt, D.J.; Richmond, T.A.; De Sapio, F.; Brennan, P.; Rizzu, P.; Smith, S.; Fell, M.; Talbot, R.T.; Gustincich, S.; Freeman, T.C.; Mattick, J.S.; Hume, D.A.; Heutink, P.; Carninci, P.; Jeddeloh, J.A.; Faulkner, G.J.

    2011-01-01

    Retrotransposons are mobile genetic elements that use a germline 'copy-and-paste' mechanism to spread throughout metazoan genomes1. At least 50 per cent of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and

  12. Decisional Outcomes of Maternal Disclosure of BRCA1/2 Genetic Test Results to Children

    Science.gov (United States)

    Tercyak, Kenneth P.; Mays, Darren; DeMarco, Tiffani A.; Peshkin, Beth N.; Valdimarsdottir, Heiddis B.; Schneider, Katherine A.; Garber, Judy E.; Patenaude, Andrea Farkas

    2013-01-01

    Background Although BRCA1/2 genetic testing is discouraged in minors, mothers may disclose their own results to their children. Factors affecting patients’ disclosure decisions and patient outcomes of disclosure are largely unknown. Methods Mothers (N = 221) of children ages 8-21 enrolled in this prospective study of family communication about cancer genetic testing. Patients underwent BRCA1/2 genetic counseling and testing, and completed standardized behavioral assessments prior to and 1-month following receipt of their results. Results Most patients (62.4%) disclosed BRCA1/2 test results to their child. Patients were more likely to disclose if they received negative or uninformative vs. positive results (OR = 3.11; 95% CI = 1.11 - 8.71; P = .03), their child was ≥ 13 years of age vs. younger (OR = 5.43; 95% CI = 2.18 - 13.53; P Post-decision satisfaction about disclosure was lowest among nondisclosing patients (P information is perceived as beneficial. Satisfaction with disclosure decision-making remains lowest among nondisclosing and conflicted patients. Family communication decision support adjuncts to genetic counseling are needed to help ameliorate these effects. Impact This study describes the prevalence of family communication about maternal BRCA1/2 genetic testing with minor children, and decisions and outcomes of disclosure. PMID:23825307

  13. The development of Metacognition test in genetics laboratory for undergraduate students

    Science.gov (United States)

    A-nongwech, Nattapong; Pruekpramool, Chaninan

    2018-01-01

    The purpose of this research was to develop a Metacognition test in a Genetics Laboratory for undergraduate students. The participants were 30 undergraduate students of a Rajabhat university in Rattanakosin group in the second semester of the 2016 academic year using purposive sampling. The research instrument consisted of 1) Metacognition test and 2) a Metacognition test evaluation form for experts focused on three main points which were an accurate evaluation form of content, a consistency between Metacognition experiences and questions and the appropriateness of the test. The quality of the test was analyzed by using the Index of Consistency (IOC), discrimination and reliability. The results of developing Metacognition test were summarized as 1) The result of developing Metacognition test in a Genetics Laboratory for undergraduate students found that the Metacognition test contained 56 items of open - ended questions. The test composed of 1) four scientific situations, 2) fourteen items of open - ended questions in each scientific situation for evaluating components of Metacognition. The components of Metacognition consisted of Metacognitive knowledge, which were divided into person knowledge, task knowledge and strategy knowledge and Metacognitive experience, which were divided into planning, monitoring and evaluating, and 3) fourteen items of scoring criteria divided into four scales. 2) The results of the item analysis of Metacognition in Genetics Laboratory for undergraduate students found that Index of Consistency between Metacognitive experiences and questions were in the range between 0.75 - 1.00. An accuracy of content equaled 1.00. The appropriateness of the test equaled 1.00 in all situations and items. The discrimination of the test was in the range between 0.00 - 0.73. Furthermore, the reliability of the test equaled 0.97.

  14. Socioeconomic influences on the effects of a genetic testing direct-to-consumer marketing campaign.

    Science.gov (United States)

    Bowen, D J; Harris, J; Jorgensen, C M; Myers, M F; Kuniyuki, A

    2010-01-01

    Direct-to-consumer marketing of genetic tests is beginning to appear in select markets, and little independent evaluation has been conducted on the effects of this marketing on consumer attitudes or behavior. The purpose of this paper is to identify the effects of socioeconomic status on women's reactions to such a campaign, including knowledge of the test, perceptions of personal risk, communications with others about the test, and interest in pursuing the test. The only United States provider of genetic testing for breast and ovarian cancer susceptibility (BRCA1/2 testing) conducted a pilot marketing campaign that targeted women aged 25-54 and their health care providers in 2 cities, Atlanta, Ga., and Denver, Colo. The design for the evaluation was a post campaign consumer survey, based on a cross-sectional stratified random sample of women in the 2 intervention sites and 2 comparison sites. The campaign had no differential impact by socioeconomic status. However, there was a consistent relationship between socioeconomic status and several outcome variables, including knowledge of the test, beliefs about the test, and desire to know about genetic risk. These data indicate that socioeconomic status may play a role in uptake of genetic services, regardless of response to a media campaign. Copyright 2009 S. Karger AG, Basel.

  15. Health Orientation, Knowledge, and Attitudes toward Genetic Testing and Personalized Genomic Services: Preliminary Data from an Italian Sample

    Directory of Open Access Journals (Sweden)

    Serena Oliveri

    2016-01-01

    Full Text Available Objective. The study aims at assessing personality tendencies and orientations that could be closely correlated with knowledge, awareness, and interest toward undergoing genetic testing. Methods. A sample of 145 subjects in Italy completed an online survey, investigating demographic data, health orientation, level of perceived knowledge about genetic risk, genetic screening, and personal attitudes toward direct to consumer genetic testing (DTCGT. Results. Results showed that respondents considered genetic assessment to be helpful for disease prevention, but they were concerned that results could affect their life planning with little clinical utility. Furthermore, a very high percentage of respondents (67% had never heard about genetic testing directly available to the public. Data showed that personality tendencies, such as personal health consciousness, health internal control, health esteem, and confidence, motivation to avoid unhealthiness and motivation for healthiness affected the uptake of genetic information and the interest in undergoing genetic testing. Conclusions. Public knowledge and attitudes toward genetic risk and genetic testing among European countries, along with individual personality and psychological tendencies that could affect these attitudes, remain unexplored. The present study constitutes one of the first attempts to investigate how such personality tendencies could motivation to undergo genetic testing and engagement in lifestyle changes.

  16. ALDH1A2 (RALDH2 genetic variation in human congenital heart disease

    Directory of Open Access Journals (Sweden)

    Mesquita Sonia MF

    2009-11-01

    Full Text Available Abstract Background Signaling by the vitamin A-derived morphogen retinoic acid (RA is required at multiple steps of cardiac development. Since conversion of retinaldehyde to RA by retinaldehyde dehydrogenase type II (ALDH1A2, a.k.a RALDH2 is critical for cardiac development, we screened patients with congenital heart disease (CHDs for genetic variation at the ALDH1A2 locus. Methods One-hundred and thirty-three CHD patients were screened for genetic variation at the ALDH1A2 locus through bi-directional sequencing. In addition, six SNPs (rs2704188, rs1441815, rs3784259, rs1530293, rs1899430 at the same locus were studied using a TDT-based association approach in 101 CHD trios. Observed mutations were modeled through molecular mechanics (MM simulations using the AMBER 9 package, Sander and Pmemd programs. Sequence conservation of observed mutations was evaluated through phylogenetic tree construction from ungapped alignments containing ALDH8 s, ALDH1Ls, ALDH1 s and ALDH2 s. Trees were generated by the Neighbor Joining method. Variations potentially affecting splicing mechanisms were cloned and functional assays were designed to test splicing alterations using the pSPL3 splicing assay. Results We describe in Tetralogy of Fallot (TOF the mutations Ala151Ser and Ile157Thr that change non-polar to polar residues at exon 4. Exon 4 encodes part of the highly-conserved tetramerization domain, a structural motif required for ALDH oligomerization. Molecular mechanics simulation studies of the two mutations indicate that they hinder tetramerization. We determined that the SNP rs16939660, previously associated with spina bifida and observed in patients with TOF, does not affect splicing. Moreover, association studies performed with classical models and with the transmission disequilibrium test (TDT design using single marker genotype, or haplotype information do not show differences between cases and controls. Conclusion In summary, our screen indicates that

  17. Distance learning training in genetics and genomics testing for Italian health professionals: results of a pre and post-test evaluation

    Directory of Open Access Journals (Sweden)

    Maria Benedetta Michelazzo

    2015-09-01

    Full Text Available BackgroundProgressive advances in technologies for DNA sequencing and decreasing costs are allowing an easier diffusion of genetic and genomic tests. Physicians’ knowledge and confidence on the topic is often low and not suitable for manage this challenge. Tailored educational programs are required to reach a more and more appropriate use of genetic technologies.MethodsA distance learning course has been created by experts from different Italian medical associations with the support of the Italian Ministry of Health. The course was directed to professional figures involved in prescription and interpretation of genetic tests. A pretest-post-test study design was used to assess knowledge improvement. We analyzed the proportion of correct answers for each question pre and post-test, as well as the mean score difference stratified by gender, age, professional status and medical specialty.ResultsWe reported an improvement in the proportion of correct answers for 12 over 15 questions of the test. The overall mean score to the questions significantly increased in the post-test, from 9.44 to 12.49 (p-value < 0.0001. In the stratified analysis we reported an improvement in the knowledge of all the groups except for geneticists; the pre-course mean score of this group was already very high and did not improve significantly.ConclusionDistance learning is effective in improving the level of genetic knowledge. In the future, it will be useful to analyze which specialists have more advantage from genetic education, in order to plan more tailored education for medical professionals.

  18. Illusions of scientific legitimacy: misrepresented science in the direct-to-consumer genetic-testing marketplace.

    Science.gov (United States)

    Vashlishan Murray, Amy B; Carson, Michael J; Morris, Corey A; Beckwith, Jon

    2010-11-01

    Marketers of genetic tests often openly or implicitly misrepresent the utility of genetic information. Scientists who are well aware of the current limitations to the utility of such tests are best placed to publicly counter misrepresentations of the science. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method

    Science.gov (United States)

    Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen

    2008-01-01

    In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…

  20. Decision-making about prenatal genetic testing among pregnant Korean-American women.

    Science.gov (United States)

    Jun, Myunghee; Thongpriwan, Vipavee; Choi, Jeeyae; Sook Choi, Kyung; Anderson, Gwen

    2018-01-01

    to understand the prenatal genetic testing decision-making processes among pregnant Korean-American women. a qualitative, descriptive research design. referrals and snowball sampling techniques were used to recruit 10 Korean-American women who had been recommended for amniocentesis during pregnancy in the United States (U.S.). All participants were born in Korea and had immigrated to the U.S. The number of years living in the U.S. ranged from 4 to 11 (M=5.7). various regional areas of the U.S. the researchers conducted face-to-face or phone interviews using semi-structured interview guides. The interviews were conducted in the Korean language and lasted approximately 50-100minutes. The interview guides focused on the decision-making process and experiences with prenatal genetic testing, as well as reflections on the decisions. Four core themes emerged related to the participants' decision-making processes, according to their descriptions. These themes are (1) facing the challenges of decision-making, (2) seeking support, (3) determining one's preferred role in the decision-making process, and (4) feeling uncomfortable with the degree of patient autonomy in U.S. health care. researchers concluded that many distinctive factors influence the decision-making processes used by pregnant Korean-American women. The results have the potential to improve shared decision-making practices regarding prenatal genetic testing. clinicians need to understand the sociocultural underpinnings of pregnant Korean-American immigrants regarding prenatal genetic screening and testing as an initial step to engage these patients in shared decision-making. Published by Elsevier Ltd.

  1. Environmental Contamination Genetic Consequences Monitoring on the Former Semipalatinsk Test Site: General Approach

    International Nuclear Information System (INIS)

    Seisebaev, A.T.; Bakhtin, M.M.; Zhapbasov, R.Zh.

    1998-01-01

    For an objective assessment of nuclear test consequences for the environment it is necessary, together with the investigation of radiation situation, to study live biological systems, particularly the genetic effects of chronic ionizing radiation. The long staying of plants and animals on the territories with the elevated radiation background level can lead to the change of organism genetic system. In this connection the monitoring of chronically exposed natural populations is of particular interest and can serve as the objective indicator of the scale of natural biota genetic damage. Basing on the results obtained during plant and animal studies one can indirectly assess the hazard of people genetic damage. Besides, studying the mutational process on natural populations exposed to the chronic ionizing radiation one can reveal new regularities, which are impossible to be detected in the laboratory conditions, and new aspects of radiation genetics. The issue of radiation adaptation of organisms affected by the various doses of ionizing radiation is very acute. The prerequisite of organism adaptation to the certain radiation background is genetic heterogeneity of individuals comprising the population and selection of radiation-induced individuals, which are the carriers of the mutation of high radioresistance. The uniqueness of the Semipalatinsk Test site and the necessity of long-term investigations of the nuclear test consequences for the environment demand the elaboration of principles for organization and utilization of natural population genetic monitoring. Radiation-genetic monitoring is the long-term observation of palpitation gene pool conditions, assessment and forecast of their spatial and time alteration, determination of limits of changes admitted under the condition of environmental radioactive contamination. It includes a series of the main research directions and has quite certain methodological peculiarities. In this paper we discuss the tasks of

  2. Valuing the benefits of genetic testing for retinitis pigmentosa: a pilot application of the contingent valuation method.

    Science.gov (United States)

    Eden, Martin; Payne, Katherine; Combs, Ryan M; Hall, Georgina; McAllister, Marion; Black, Graeme C M

    2013-08-01

    Technological advances present an opportunity for more people with, or at risk of, developing retinitis pigmentosa (RP) to be offered genetic testing. Valuation of these tests using current evaluative frameworks is problematic since benefits may be derived from diagnostic information rather than improvements in health. This pilot study aimed to explore if contingent valuation method (CVM) can be used to value the benefits of genetic testing for RP. CVM was used to elicit willingness-to-pay (WTP) values for (1) genetic counselling and (2) genetic counselling with genetic testing. Telephone and face-to-face interviews with a purposive sample of individuals with (n=25), and without (n=27), prior experience of RP were used to explore the feasibility and validity of CVM in this context. Faced with a hypothetical scenario, the majority of participants stated that they would seek genetic counselling and testing in the context of RP. Between participant groups, respondents offered similar justifications for stated WTP values. Overall stated WTP was higher for genetic counselling plus testing (median=£524.00) compared with counselling alone (median=£224.50). Between-group differences in stated WTP were statistically significant; participants with prior knowledge of the condition were willing to pay more for genetic ophthalmology services. Participants were able to attach a monetary value to the perceived potential benefit that genetic testing offered regardless of prior experience of the condition. This exploratory work represents an important step towards evaluating these services using formal cost-benefit analysis.

  3. Genetics of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Kerner B

    2014-02-01

    Full Text Available Berit Kerner Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA Abstract: Bipolar disorder is a common, complex genetic disorder, but the mode of transmission remains to be discovered. Many researchers assume that common genomic variants carry some risk for manifesting the disease. The research community has celebrated the first genome-wide significant associations between common single nucleotide polymorphisms (SNPs and bipolar disorder. Currently, attempts are under way to translate these findings into clinical practice, genetic counseling, and predictive testing. However, some experts remain cautious. After all, common variants explain only a very small percentage of the genetic risk, and functional consequences of the discovered SNPs are inconclusive. Furthermore, the associated SNPs are not disease specific, and the majority of individuals with a “risk” allele are healthy. On the other hand, population-based genome-wide studies in psychiatric disorders have rediscovered rare structural variants and mutations in genes, which were previously known to cause genetic syndromes and monogenic Mendelian disorders. In many Mendelian syndromes, psychiatric symptoms are prevalent. Although these conditions do not fit the classic description of any specific psychiatric disorder, they often show nonspecific psychiatric symptoms that cross diagnostic boundaries, including intellectual disability, behavioral abnormalities, mood disorders, anxiety disorders, attention deficit, impulse control deficit, and psychosis. Although testing for chromosomal disorders and monogenic Mendelian disorders is well established, testing for common variants is still controversial. The standard concept of genetic testing includes at least three broad criteria that need to be fulfilled before new genetic tests should be introduced: analytical validity, clinical validity, and clinical utility. These criteria are

  4. Consumer preferences for the predictive genetic test for Alzheimer disease.

    Science.gov (United States)

    Huang, Ming-Yi; Huston, Sally A; Perri, Matthew

    2014-04-01

    The purpose of this study was to assess consumer preferences for predictive genetic testing for Alzheimer disease in the United States. A rating conjoint analysis was conducted using an anonymous online survey distributed by Qualtrics to a general population panel in April 2011 in the United States. The study design included three attributes: Accuracy (40%, 80%, and 100%), Treatment Availability (Cure is available/Drug for symptom relief but no cure), and Anonymity (Anonymous/Not anonymous). A total of 12 scenarios were used to elicit people's preference, assessed by an 11-point scale. The respondents also indicated their highest willingness-to-pay (WTP) for each scenario through open-ended questions. A total of 295 responses were collected over 4 days. The most important attribute for the aggregate model was Accuracy, contributing 64.73% to the preference rating. Treatment Availability and Anonymity contributed 20.72% and 14.59%, respectively, to the preference rating. The median WTP for the highest-rating scenario (Accuracy 100%, a cure is available, test result is anonymous) was $100 (mean = $276). The median WTP for the lowest-rating scenario (40% accuracy, no cure but drugs for symptom relief, not anonymous) was zero (mean = $34). The results of this study highlight attributes people find important when making the hypothetical decision to obtain an AD genetic test. These results should be of interests to policy makers, genetic test developers and health care providers.

  5. The influence of health care policies and health care system distrust on willingness to undergo genetic testing.

    Science.gov (United States)

    Armstrong, Katrina; Putt, Mary; Halbert, Chanita Hughes; Grande, David; Schwartz, Jerome Sanford; Liao, Kaijun; Marcus, Noora; Demeter, Mirar Bristol; Shea, Judy

    2012-05-01

    As the potential role of genetic testing in disease prevention and management grows, so does concern about differences in uptake of genetic testing across social and racial groups. Characteristics of how genetic tests are delivered may influence willingness to undergo testing and, if they affect population subgroups differently, alter disparities in testing. Conjoint analysis study of the effect of 3 characteristics of genetic test delivery (ie, attributes) on willingness to undergo genetic testing for cancer risk. Data were collected using a random digit dialing survey of 128 African American and 209 white individuals living in the United States. Measures included conjoint scenarios, the Revised Health Care System Distrust Scale (including the values and competence subscales), health insurance coverage, and sociodemographic characteristics. The 3 attributes studied were disclosure of test results to the health insurer, provision of the test by a specialist or primary care doctor, and race-specific or race-neutral marketing. In adjusted analyses, disclosure of test results to insurers, having to get the test from a specialist, and race-specific marketing were all inversely associated with willingness to undergo the genetic test, with the greatest effect for the disclosure attribute. Racial differences in willingness to undergo testing were not statistically significant (P=0.07) and the effect of the attributes on willingness to undergo testing did not vary by patient race. However, the decrease in willingness to undergo testing with insurance disclosure was greater among individuals with high values distrust (P=0.03), and the decrease in willingness to undergo testing from specialist access was smaller among individuals with high competence distrust (P=0.03). Several potentially modifiable characteristics of how genetic tests are delivered are associated with willingness to undergo testing. The effect of 2 of these characteristics vary according to the level of

  6. Significance testing in ridge regression for genetic data

    Directory of Open Access Journals (Sweden)

    De Iorio Maria

    2011-09-01

    Full Text Available Abstract Background Technological developments have increased the feasibility of large scale genetic association studies. Densely typed genetic markers are obtained using SNP arrays, next-generation sequencing technologies and imputation. However, SNPs typed using these methods can be highly correlated due to linkage disequilibrium among them, and standard multiple regression techniques fail with these data sets due to their high dimensionality and correlation structure. There has been increasing interest in using penalised regression in the analysis of high dimensional data. Ridge regression is one such penalised regression technique which does not perform variable selection, instead estimating a regression coefficient for each predictor variable. It is therefore desirable to obtain an estimate of the significance of each ridge regression coefficient. Results We develop and evaluate a test of significance for ridge regression coefficients. Using simulation studies, we demonstrate that the performance of the test is comparable to that of a permutation test, with the advantage of a much-reduced computational cost. We introduce the p-value trace, a plot of the negative logarithm of the p-values of ridge regression coefficients with increasing shrinkage parameter, which enables the visualisation of the change in p-value of the regression coefficients with increasing penalisation. We apply the proposed method to a lung cancer case-control data set from EPIC, the European Prospective Investigation into Cancer and Nutrition. Conclusions The proposed test is a useful alternative to a permutation test for the estimation of the significance of ridge regression coefficients, at a much-reduced computational cost. The p-value trace is an informative graphical tool for evaluating the results of a test of significance of ridge regression coefficients as the shrinkage parameter increases, and the proposed test makes its production computationally feasible.

  7. Mapping public policy on genetics.

    Science.gov (United States)

    Weisfeld, N E

    2002-06-01

    The mapping of the human genome and related advances in genetics are stimulating the development of public policies on genetics. Certain notions that currently prevail in public policy development overall--including the importance of protecting privacy of information, an interest in cost-effectiveness, and the power of the anecdote--will help determine the future of public policy on genetics. Information areas affected include discrimination by insurers and employers, confidentiality, genetic databanks, genetic testing in law enforcement, and court-ordered genetic testing in civil cases. Service issues address clinical standards, insurance benefits, allocation of resources, and screening of populations at risk. Supply issues encompass funding of research and clinical positions. Likely government actions include, among others: (1) Requiring individual consent for the disclosure of personal information, except when such consent would impose inordinate costs; (2) licensing genetic databases; (3) allowing courts to use personal information in cases where a refusal to use such information would offend the public; (4) mandating health insurers to pay for cost-effective genetic services; (5) funding pharmaceutical research to develop tailored products to prevent or treat diseases; and (6) funding training programs.

  8. Human impacts on genetic diversity in forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Ledig, F T [Inst. of Forest Genetics, Southwest Forest and Range Experiment Station, USDA Forest Service, Berkeley (US)

    1992-01-01

    Humans have converted forest to agricultural and urban uses, exploited species, fragmented wildlands, changed the demographic structure of forests, altered habitat, degraded the environment with atmospheric and soil pollutants, introduced exotic pests and competitors, and domesticated favored species. None of these activities is new; perhaps with the exception of atmospheric pollution, they date back to prehistory. All have impacted genetic diversity by their influence on the evolutionary processes of extinction, selection, drift, gene flow, and mutation, sometimes increasing diversity, as int he case of domestication, but often reducing it. Even in the absence of changes in diversity, mating systems were altered, changing the genetic structure of populations. Demographic changes influenced selection by increasing the incidence of disease. Introduction of exotic diseases, insects, mammalian herbivores, and competing vegetation has had the best-documented effects on genetic diversity, reducing both species diversity and intraspecific diversity. Deforestation has operated on a vast scale to reduce diversity by direct elimination of locally-adapted populations. Atmospheric pollution and global warming will be a major threat in the near future, particularly because forests are fragmented and migration is impeded. Past impacts can be estimated with reference to expert knowledge, but hard data are often laching. Baselines are needed to quantify future impacts and provide an early warning of problems. Genetic inventories of indicator species can provide the baselines against which to measure changes in diversity. (author) (44 refs.).

  9. Egyptian Journal of Medical Human Genetics - Vol 13, No 2 (2012)

    African Journals Online (AJOL)

    Egyptian Journal of Medical Human Genetics - Vol 13, No 2 (2012) ... as independent indicators for B-CLL: Correlation to response to treatment and disease ... Profile of disorders of sexual differentiation in the Northeast region of Cairo, Egypt ...

  10. Human genetics of infectious diseases: between proof of principle and paradigm

    OpenAIRE

    Alcaïs, Alexandre; Abel, Laurent; Casanova, Jean-Laurent

    2009-01-01

    The observation that only a fraction of individuals infected by infectious agents develop clinical disease raises fundamental questions about the actual pathogenesis of infectious diseases. Epidemiological and experimental evidence is accumulating to suggest that human genetics plays a major role in this process. As we discuss here, human predisposition to infectious diseases seems to cover a continuous spectrum from monogenic to polygenic inheritance. Although many studies have provided proo...

  11. Mouse-human experimental epigenetic analysis unmasks dietary targets and genetic liability for diabetic phenotypes

    Science.gov (United States)

    Multhaup, Michael L.; Seldin, Marcus; Jaffe, Andrew E.; Lei, Xia; Kirchner, Henriette; Mondal, Prosenjit; Li, Yuanyuan; Rodriguez, Varenka; Drong, Alexander; Hussain, Mehboob; Lindgren, Cecilia; McCarthy, Mark; Näslund, Erik; Zierath, Juleen R.; Wong, G. William; Feinberg, Andrew P.

    2015-01-01

    SUMMARY Using a functional approach to investigate the epigenetics of Type 2 Diabetes (T2D), we combine three lines of evidence – diet-induced epigenetic dysregulation in mouse, epigenetic conservation in humans, and T2D clinical risk evidence – to identify genes implicated in T2D pathogenesis through epigenetic mechanisms related to obesity. Beginning with dietary manipulation of genetically homogeneous mice, we identify differentially DNA-methylated genomic regions. We then replicate these results in adipose samples from lean and obese patients pre- and post-Roux-en-Y gastric bypass, identifying regions where both the location and direction of methylation change is conserved. These regions overlap with 27 genetic T2D risk loci, only one of which was deemed significant by GWAS alone. Functional analysis of genes associated with these regions revealed four genes with roles in insulin resistance, demonstrating the potential general utility of this approach for complementing conventional human genetic studies by integrating cross-species epigenomics and clinical genetic risk. PMID:25565211

  12. Natural selection affects multiple aspects of genetic variation at putatively peutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui

    2011-01-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries...... these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination...... and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations...

  13. A Systematic Review of Genetic Testing and Lifestyle Behaviour Change: Are We Using High-Quality Genetic Interventions and Considering Behaviour Change Theory?

    Science.gov (United States)

    Horne, Justine; Madill, Janet; O'Connor, Colleen; Shelley, Jacob; Gilliland, Jason

    2018-04-10

    Studying the impact of genetic testing interventions on lifestyle behaviour change has been a priority area of research in recent years. Substantial heterogeneity exists in the results and conclusions of this literature, which has yet to be explained using validated behaviour change theory and an assessment of the quality of genetic interventions. The theory of planned behaviour (TPB) helps to explain key contributors to behaviour change. It has been hypothesized that personalization could be added to this theory to help predict changes in health behaviours. This systematic review provides a detailed, comprehensive identification, assessment, and summary of primary research articles pertaining to lifestyle behaviour change (nutrition, physical activity, sleep, and smoking) resulting from genetic testing interventions. The present review further aims to provide in-depth analyses of studies conducted to date within the context of the TPB and the quality of genetic interventions provided to participants while aiming to determine whether or not genetic testing facilitates changes in lifestyle habits. This review is timely in light of a recently published "call-to-action" paper, highlighting the need to incorporate the TPB into personalized healthcare behaviour change research. Three bibliographic databases, one key website, and article reference lists were searched for relevant primary research articles. The PRISMA Flow Diagram and PRISMA Checklist were used to guide the search strategy and manuscript preparation. Out of 32,783 titles retrieved, 26 studies met the inclusion criteria. Three quality assessments were conducted and included: (1) risk of bias, (2) quality of genetic interventions, and (3) consideration of theoretical underpinnings - primarily the TPB. Risk of bias in studies was overall rated to be "fair." Consideration of the TPB was "poor," with no study making reference to this validated theory. While some studies (n = 11; 42%) made reference to other

  14. The Double Helix: Applying an Ethic of Care to the Duty to Warn Genetic Relatives of Genetic Information.

    Science.gov (United States)

    Weaver, Meaghann

    2016-03-01

    Genetic testing reveals information about a patient's health status and predictions about the patient's future wellness, while also potentially disclosing health information relevant to other family members. With the increasing availability and affordability of genetic testing and the integration of genetics into mainstream medicine, the importance of clarifying the scope of confidentiality and the rules regarding disclosure of genetic findings to genetic relatives is prime. The United Nations International Declaration on Human Genetic Data urges an appreciation for principles of equality, justice, solidarity and responsibility in the context of genetic testing, including a commitment to honoring the privacy and security of the person tested. Considering this global mandate and recent professional statements in the context of a legal amendment to patient privacy policies in Australia, a fresh scrutiny of the legal history of a physician's duty to warn is warranted. This article inquiries whether there may be anything ethically or socially amiss with a potential future recommendation for health professionals or patients to universally disclose particular cancer predisposition genetic diagnosis to genetic family members. While much of the discussion remains applicable to all genetic diagnosis, the article focuses on the practice of disclosure within the context of BRCA1/2 diagnosis. An 'ethic of care' interpretation of legal tradition and current practice will serve to reconcile law and medical policy on the issue of physician disclosure of genetic results to family members without patient consent. © 2015 John Wiley & Sons Ltd.

  15. Genetic Testing in Intellectual Disability Psychiatry: Opinions and Practices of UK Child and Intellectual Disability Psychiatrists

    Science.gov (United States)

    Wolfe, Kate; Stueber, Kerstin; McQuillin, Andrew; Jichi, Fatima; Patch, Christine; Flinter, Frances; Strydom, André; Bass, Nick

    2018-01-01

    Background: An increasing number of genetic causes of intellectual disabilities (ID) are identifiable by clinical genetic testing, offering the prospect of bespoke patient management. However, little is known about the practices of psychiatrists and their views on genetic testing. Method: We undertook an online survey of 215 psychiatrists, who…

  16. [Advantages and disadvantages of direct-to-consumer genetic tests].

    Science.gov (United States)

    Christiansen, Camilla Worm; Gerdes, Anne-Marie Axø

    2017-03-13

    Direct-to-consumer genetic tests are sold over the internet to consumers all over the world - including Denmark. No regulation of these tests has been introduced neither in Denmark nor in Europe, even though they have been on the market since 2007. Such tests have several advantages, but indeed also a long list of potential disadvantages, which are most often ignored, and among these is insufficient training of general practitioners in performing the necessary counselling but also the risk of increased expenses to unnecessary follow-up consultations.

  17. Gender-specific association of ADA genetic polymorphism with human longevity.

    Science.gov (United States)

    Napolioni, Valerio; Lucarini, Nazzareno

    2010-08-01

    Aim of this study was to investigate whether the polymorphic ADA (Adenosine Deaminase, EC 3.5.4.4) gene, which determines the cellular level of adenosine and plays a crucial role in the regulation of the immune system and in the control of metabolic rates, is involved in longevity. 884 unrelated healthy individuals (age range 10-106 years, 400 males and 484 females) from central Italy were studied. ADA genotyping was performed by RFLP-PCR. Frequency distributions were compared using the chi-square test and a three-way contingency table analysis by a log linear model was applied to test independence between the variables. We found that ADA influences human life-span in a sex and age specific way. An increased frequency of ADA*2 carriers was found in males aged 80-85, and a decreased frequency in males over 85 (chi(2) = 13.93; df = 3; P = 0.003); significant differences among the age groups was not found in females. A strong interaction among age groups, ADA genotype and sex (G = 15.086; df = 3; P = 0.0017) was found. Males aged 80-85 could be protected from ischemic stroke by higher levels of adenosine (determined by the ADA*2 allele). The decrease of ADA*2 carriers in males over 85 may depend essentially on immunological factors; reduced levels of adenosine protect from asthma and other pulmonary diseases and lead to a reduced activation of inflammatory cells and pro-inflammatory cytokines production. Moreover, the low level of adenosine may potentiate the activity of NK and other cellular effectors against tumor cells. The negligible effect of ADA genetic polymorphism in females suggest a marginal influence of genetic factors in determining longevity in this sex, confirming previous reports.

  18. Accelerating Precision Drug Development and Drug Repurposing by Leveraging Human Genetics.

    Science.gov (United States)

    Pulley, Jill M; Shirey-Rice, Jana K; Lavieri, Robert R; Jerome, Rebecca N; Zaleski, Nicole M; Aronoff, David M; Bastarache, Lisa; Niu, Xinnan; Holroyd, Kenneth J; Roden, Dan M; Skaar, Eric P; Niswender, Colleen M; Marnett, Lawrence J; Lindsley, Craig W; Ekstrom, Leeland B; Bentley, Alan R; Bernard, Gordon R; Hong, Charles C; Denny, Joshua C

    2017-04-01

    The potential impact of using human genetic data linked to longitudinal electronic medical records on drug development is extraordinary; however, the practical application of these data necessitates some organizational innovations. Vanderbilt has created resources such as an easily queried database of >2.6 million de-identified electronic health records linked to BioVU, which is a DNA biobank with more than 230,000 unique samples. To ensure these data are used to maximally benefit and accelerate both de novo drug discovery and drug repurposing efforts, we created the Accelerating Drug Development and Repurposing Incubator, a multidisciplinary think tank of experts in various therapeutic areas within both basic and clinical science as well as experts in legal, business, and other operational domains. The Incubator supports a diverse pipeline of drug indication finding projects, leveraging the natural experiment of human genetics.

  19. A Clinical Perspective on Ethical Issues in Genetic Testing

    NARCIS (Netherlands)

    Sijmons, R. H.; Van Langen, I. M.; Sijmons, J. G.

    2011-01-01

    Genetic testing is traditionally preceded by counselling to discuss its advantages and disadvantages with individuals so they can make informed decisions. The new technique of whole genome or exome sequencing, which is currently only used in research settings, can identify many gene mutations,

  20. A CRISPR New World: Attitudes in the Public toward Innovations in Human Genetic Modification.

    Science.gov (United States)

    Weisberg, Steven M; Badgio, Daniel; Chatterjee, Anjan

    2017-01-01

    The potential to genetically modify human germlines has reached a critical tipping point with recent applications of CRISPR-Cas9. Even as researchers, clinicians, and ethicists weigh the scientific and ethical repercussions of these advances, we know virtually nothing about public attitudes on the topic. Understanding such attitudes will be critical to determining the degree of broad support there might be for any public policy or regulation developed for genetic modification research. To fill this gap, we gave an online survey to a large (2,493 subjects) and diverse sample of Americans. Respondents supported genetic modification research, although demographic variables influenced these attitudes-conservatives, women, African-Americans, and older respondents, while supportive, were more cautious than liberals, men, other ethnicities, and younger respondents. Support was also was slightly muted when the risks (unanticipated mutations and possibility of eugenics) were made explicit. The information about genetic modification was also presented as contrasting vignettes, using one of five frames: genetic editing, engineering, hacking, modification, or surgery. Despite the fact that the media and academic use of frames describing the technology varies, these frames did not influence people's attitudes. These data contribute a current snapshot of public attitudes to inform policy with regard to human genetic modification.

  1. A CRISPR New World: Attitudes in the Public toward Innovations in Human Genetic Modification

    Directory of Open Access Journals (Sweden)

    Steven M. Weisberg

    2017-05-01

    Full Text Available The potential to genetically modify human germlines has reached a critical tipping point with recent applications of CRISPR-Cas9. Even as researchers, clinicians, and ethicists weigh the scientific and ethical repercussions of these advances, we know virtually nothing about public attitudes on the topic. Understanding such attitudes will be critical to determining the degree of broad support there might be for any public policy or regulation developed for genetic modification research. To fill this gap, we gave an online survey to a large (2,493 subjects and diverse sample of Americans. Respondents supported genetic modification research, although demographic variables influenced these attitudes—conservatives, women, African-Americans, and older respondents, while supportive, were more cautious than liberals, men, other ethnicities, and younger respondents. Support was also was slightly muted when the risks (unanticipated mutations and possibility of eugenics were made explicit. The information about genetic modification was also presented as contrasting vignettes, using one of five frames: genetic editing, engineering, hacking, modification, or surgery. Despite the fact that the media and academic use of frames describing the technology varies, these frames did not influence people’s attitudes. These data contribute a current snapshot of public attitudes to inform policy with regard to human genetic modification.

  2. Egyptian Journal of Medical Human Genetics - Vol 11, No 1 (2010)

    African Journals Online (AJOL)

    Egyptian Journal of Medical Human Genetics - Vol 11, No 1 (2010) ... Gene polymorphisms of TNF-α and IL-10 related to rheumatic heart disease · EMAIL ... with familial Mediterranean fever · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  3. Public Attitudes toward Human Genetic Manipulation: A Revitalization of Eugenics?

    Science.gov (United States)

    Veglia, Geremia; And Others

    The purpose of this investigation was to measure the attitudes of college students across the United States concerning the possible use of genetic manipulation, especially in terms of enhancing human physical and intellectual characteristics. The instrument used was divided into three general areas of inquiry: the first, designed to measure the…

  4. Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human α-lactalbumin in genetically modified cow milk.

    Science.gov (United States)

    Tao, Chenyu; Zhang, Qingde; Feng, Na; Shi, Deshi; Liu, Bang

    2016-03-01

    The qualitative and quantitative declaration of food ingredients is important to consumers, especially for genetically modified food as it experiences a rapid increase in sales. In this study, we designed an accurate and rapid detection system using colloidal gold immunochromatographic strip assay (GICA) methods to detect genetically modified cow milk. First, we prepared 2 monoclonal antibodies for human α-lactalbumin (α-LA) and measured their antibody titers; the one with the higher titer was used for further experiments. Then, we found the optimal pH value and protein amount of GICA for detection of pure milk samples. The developed strips successfully detected genetically modified cow milk and non-modified cow milk. To determine the sensitivity of GICA, a quantitative ELISA system was used to determine the exact amount of α-LA, and then genetically modified milk was diluted at different rates to test the sensitivity of GICA; the sensitivity was 10 μg/mL. Our results demonstrated that the applied method was effective to detect human α-LA in cow milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. A case report of Fanconi anemia diagnosed by genetic testing followed by prenatal diagnosis.

    Science.gov (United States)

    Lee, Hwa Jeen; Park, Seungman; Kang, Hyoung Jin; Jun, Jong Kwan; Lee, Jung Ae; Lee, Dong Soon; Park, Sung Sup; Seong, Moon-Woo

    2012-09-01

    Fanconi anemia (FA) is a rare genetic disorder affecting multiple body systems. Genetic testing, including prenatal testing, is a prerequisite for the diagnosis of many clinical conditions. However, genetic testing is complicated for FA because there are often many genes that are associated with its development, and large deletions, duplications, or sequence variations are frequently found in some of these genes. This study describes successful genetic testing for molecular diagnosis, and subsequent prenatal diagnosis, of FA in a patient and his family in Korea. We analyzed all exons and flanking regions of the FANCA, FANCC, and FANCG genes for mutation identification and subsequent prenatal diagnosis. Multiplex ligation-dependent probe amplification analysis was performed to detect large deletions or duplications in the FANCA gene. Molecular analysis revealed two mutations in the FANCA gene: a frameshift mutation c.2546delC and a novel splice-site mutation c.3627-1G>A. The FANCA mutations were separately inherited from each parent, c.2546delC was derived from the father, whereas c.3627-1G>A originated from the mother. The amniotic fluid cells were c.3627-1G>A heterozygotes, suggesting that the fetus was unaffected. This is the first report of genetic testing that was successfully applied to molecular diagnosis of a patient and subsequent prenatal diagnosis of FA in a family in Korea.

  6. Trends and Gaps in Awareness of Direct-to-Consumer Genetic Tests From 2007 to 2014.

    Science.gov (United States)

    Apathy, Nate C; Menser, Terri; Keeran, Lindsay M; Ford, Eric W; Harle, Christopher A; Huerta, Timothy R

    2018-06-01

    Direct-to-consumer genetic tests for inherited disease risks have gained recent approvals from the Food and Drug Administration, and interest in these tests has continued to grow. Broad use of these tests coupled with planning and discussion with health providers regarding genetic risks and potential protective behavior changes have been proposed as preventive tools to reduce health disparities and improve equity in health outcomes. However, awareness of direct-to-consumer genetic testing has historically demonstrated differences by education, income, and race; these disparities could jeopardize potential benefits by limiting access and use. The national survey data from the Health Information National Trends Survey was analyzed to understand how overall awareness of direct-to-consumer genetic testing and disparities in awareness across sociodemographic groups have changed since 2007. The findings showed persistent disparities, as well as a widening gap in awareness between Hispanics and non-Hispanic whites (OR 2007 =1.52, OR 2014 =0.58, p change =0.0056), despite overall increases in awareness over time. Given these findings, policies regulating direct-to-consumer genetic tests should prioritize equitable distribution of benefits by including provisions that counteract prevailing disparities in awareness. Copyright © 2018 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Recommendations for quality improvement in genetic testing for cystic fibrosis European Concerted Action on Cystic Fibrosis

    NARCIS (Netherlands)

    Dequeker, E; Cuppens, H; Dodge, J; Estivill, [No Value; Goossens, M; Pignatti, PF; Scheffer, H; Schwartz, M; Schwarz, M; Tummler, B; Cassiman, JJ

    These recommendations for quality improvement of cystic fibrosis genetic diagnostic testing provide general guidelines for the molecular genetic testing of cystic fibrosis in patients/individuals. General strategies for testing as well as guidelines for laboratory procedures, internal and external

  8. Attitudes about Future Genetic Testing for Posttraumatic Stress Disorder and Addiction among Community-Based Veterans

    Directory of Open Access Journals (Sweden)

    Michelle R. Lent

    2017-05-01

    Full Text Available This study explored attitudes toward hypothetical genetic testing for posttraumatic stress disorder (PTSD and addiction among veterans. We surveyed a random sample of community-based veterans (n = 700 by telephone. One year later, we asked the veterans to provide a DNA sample for analysis and 41.9% of them returned the DNA samples. Overall, most veterans were not interested in genetic testing neither for PTSD (61.7% nor for addiction (68.7%. However, bivariate analyses suggested there was an association between having the condition of interest and the likelihood of genetic testing on a 5-point scale (p < 0.001 for PTSD; p = 0.001 for alcohol dependence. While ordinal regressions confirmed these associations, the models with the best statistical fit were bivariate models of whether the veteran would likely test or not. Using logistic regressions, significant predictors for PTSD testing were receiving recent mental health treatment, history of a concussion, younger age, having PTSD, having alcohol dependence, currently taking opioids for pain, and returning the DNA sample during the follow-up. For addiction testing, significant predictors were history of concussion, younger age, psychotropic medication use, having alcohol dependence, and currently taking opioids for pain. Altogether, 25.9% of veterans reported that they would have liked to have known their genetic results before deployment, 15.6% reported after deployment, and 58.6% reported they did not want to know neither before nor after deployment. As advancements in genetic testing continue to evolve, our study suggests that consumer attitudes toward genetic testing for mental disorders are complex and better understanding of these attitudes and beliefs will be crucial to successfully promote utilization.

  9. Genetic regulation of pituitary gland development in human and mouse.

    Science.gov (United States)

    Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C A F; Dattani, Mehul T

    2009-12-01

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.

  10. Impact of literacy and numeracy on motivation for behavior change after diabetes genetic risk testing.

    Science.gov (United States)

    Vassy, Jason L; O'Brien, Kelsey E; Waxler, Jessica L; Park, Elyse R; Delahanty, Linda M; Florez, Jose C; Meigs, James B; Grant, Richard W

    2012-01-01

    Type 2 diabetes genetic risk testing might motivate at-risk patients to adopt diabetes prevention behaviors. However, the influence of literacy and numeracy on patient response to diabetes genetic risk is unknown. The authors investigated the association of health literacy, genetic literacy, and health numeracy with patient responses to diabetes genetic risk. and Measurements Overweight patients at high phenotypic risk for type 2 diabetes were recruited for a clinical trial of diabetes genetic risk testing. At baseline, participants predicted how their motivation for lifestyle modification to prevent diabetes might change in response to hypothetical scenarios of receiving "high" and "low" genetic risk results. Responses were analyzed according to participants' health literacy, genetic literacy, and health numeracy. Two-thirds (67%) of participants (n = 175) reported very high motivation to prevent diabetes. Despite high health literacy (92% at high school level), many participants had limited health numeracy (30%) and genetic literacy (38%). Almost all (98%) reported that high-risk genetic results would increase their motivation for lifestyle modification. In contrast, response to low-risk genetic results varied. Higher levels of health literacy (P = 0.04), genetic literacy (P = 0.02), and health numeracy (P = 0.02) were associated with an anticipated decrease in motivation for lifestyle modification in response to low-risk results. While patients reported that high-risk genetic results would motivate them to adopt healthy lifestyle changes, response to low-risk results varied by patient numeracy and literacy. However, anticipated responses may not correlate with true behavior change. If future research justifies the clinical use of genetic testing to motivate behavior change, it may be important to assess how patient characteristics modify that motivational effect.

  11. Genetic Markers of Human Evolution Are Enriched in Schizophrenia

    DEFF Research Database (Denmark)

    Srinivasan, Saurabh; Bettella, Francesco; Mattingsdal, Morten

    2016-01-01

    BACKGROUND: Why schizophrenia has accompanied humans throughout our history despite its negative effect on fitness remains an evolutionary enigma. It is proposed that schizophrenia is a by-product of the complex evolution of the human brain and a compromise for humans' language, creative thinking...... and ancillary information on genetic variants. We used information from the evolutionary proxy measure called the Neanderthal selective sweep (NSS) score. RESULTS: Gene loci associated with schizophrenia are significantly (p = 7.30 × 10(-9)) more prevalent in genomic regions that are likely to have undergone...... phenotypes. The false discovery rate conditional on the evolutionary proxy points to 27 candidate schizophrenia susceptibility loci, 12 of which are associated with schizophrenia and other psychiatric disorders or linked to brain development. CONCLUSIONS: Our results suggest that there is a polygenic overlap...

  12. The human noncoding genome defined by genetic diversity.

    Science.gov (United States)

    di Iulio, Julia; Bartha, Istvan; Wong, Emily H M; Yu, Hung-Chun; Lavrenko, Victor; Yang, Dongchan; Jung, Inkyung; Hicks, Michael A; Shah, Naisha; Kirkness, Ewen F; Fabani, Martin M; Biggs, William H; Ren, Bing; Venter, J Craig; Telenti, Amalio

    2018-03-01

    Understanding the significance of genetic variants in the noncoding genome is emerging as the next challenge in human genomics. We used the power of 11,257 whole-genome sequences and 16,384 heptamers (7-nt motifs) to build a map of sequence constraint for the human species. This build differed substantially from traditional maps of interspecies conservation and identified regulatory elements among the most constrained regions of the genome. Using new Hi-C experimental data, we describe a strong pattern of coordination over 2 Mb where the most constrained regulatory elements associate with the most essential genes. Constrained regions of the noncoding genome are up to 52-fold enriched for known pathogenic variants as compared to unconstrained regions (21-fold when compared to the genome average). This map of sequence constraint across thousands of individuals is an asset to help interpret noncoding elements in the human genome, prioritize variants and reconsider gene units at a larger scale.

  13. HSP90 Shapes the Consequences of Human Genetic Variation.

    Science.gov (United States)

    Karras, Georgios I; Yi, Song; Sahni, Nidhi; Fischer, Máté; Xie, Jenny; Vidal, Marc; D'Andrea, Alan D; Whitesell, Luke; Lindquist, Susan

    2017-02-23

    HSP90 acts as a protein-folding buffer that shapes the manifestations of genetic variation in model organisms. Whether HSP90 influences the consequences of mutations in humans, potentially modifying the clinical course of genetic diseases, remains unknown. By mining data for >1,500 disease-causing mutants, we found a strong correlation between reduced phenotypic severity and a dominant (HSP90 ≥ HSP70) increase in mutant engagement by HSP90. Examining the cancer predisposition syndrome Fanconi anemia in depth revealed that mutant FANCA proteins engaged predominantly by HSP70 had severely compromised function. In contrast, the function of less severe mutants was preserved by a dominant increase in HSP90 binding. Reducing HSP90's buffering capacity with inhibitors or febrile temperatures destabilized HSP90-buffered mutants, exacerbating FA-related chemosensitivities. Strikingly, a compensatory FANCA somatic mutation from an "experiment of nature" in monozygotic twins both prevented anemia and reduced HSP90 binding. These findings provide one plausible mechanism for the variable expressivity and environmental sensitivity of genetic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Human immunodeficiency virus type-1 (HIV-1) genetic diversity and ...

    African Journals Online (AJOL)

    The presence of human immunodeficiency virus (HIV) type-1 diversity has an impact on vaccine efficacy and drug resistance. It is important to know the circulating genetic variants and associated drug-resistance mutations in the context of scale up of antiretroviral therapy (ART) in Nigeria. The objective of this study was to ...

  15. Genetic testing for cystic fibrosis in adult patients

    Directory of Open Access Journals (Sweden)

    Marina Mencinger

    2006-02-01

    Full Text Available Background: Cystic fibrosis (CF is an autosomal recessive disease caused by mutations in gene encoding cystic fibrosis transmembrane regulator (CFTR protein. Over 1400 mutations found in the gene contribute to the complexity of the CF phenotypes ranging from a classic multiorgan disease commonly involving respiratory, gastrointestinal and reproductive tract to mild and monosymptomatic presentations. Pilocarpine iontophoresis is considered as standard diagnostic test for CF, but it often fails in atypical forms of CF.Methods: In order to provide an additional diagnostic test to assure the diagnosis and provide patients with a proper medical care, we performed a genetic testing on 16 adults suspected to have atypical form of CF. Following counselling, parents of patients with possible homozygote variant of mutations were tested. On a personal request testing was also performed in an adult sibling of a patient with two known mutations to investigate possible carrier hood. The allele specific polymerase chain reaction method (PCR was used to detect 29 most common mutations in the cftr gene.Results: The diagnosis was proved in 3 individuals, a homozygote for Δ F508, and two compound heterozygotes Δ F508/R1162X and Δ F508/3849+10kbC>T. In three cases only one mutation was found: I148T, 2789+5G>A and Δ F508 in a heterozygote form.Conclusions: The genetic testing for CF is a valuable diagnostic tool in atypical forms of CF. Exclusion of possible differential diagnosis is warranted because of a variable CF phenotype. In cases where only one or no mutation was detected a necessity of whole gene sequencing is indicated to exclude rare mutations and polymorphisms that could be implicated in the pathogenesis of atypical CF.

  16. Comparing ESC and iPSC?Based Models for Human Genetic Disorders

    OpenAIRE

    Halevy, Tomer; Urbach, Achia

    2014-01-01

    Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients’ somatic cells, and the ne...

  17. Testing Genetic Pleiotropy with GWAS Summary Statistics for Marginal and Conditional Analyses.

    Science.gov (United States)

    Deng, Yangqing; Pan, Wei

    2017-12-01

    There is growing interest in testing genetic pleiotropy, which is when a single genetic variant influences multiple traits. Several methods have been proposed; however, these methods have some limitations. First, all the proposed methods are based on the use of individual-level genotype and phenotype data; in contrast, for logistical, and other, reasons, summary statistics of univariate SNP-trait associations are typically only available based on meta- or mega-analyzed large genome-wide association study (GWAS) data. Second, existing tests are based on marginal pleiotropy, which cannot distinguish between direct and indirect associations of a single genetic variant with multiple traits due to correlations among the traits. Hence, it is useful to consider conditional analysis, in which a subset of traits is adjusted for another subset of traits. For example, in spite of substantial lowering of low-density lipoprotein cholesterol (LDL) with statin therapy, some patients still maintain high residual cardiovascular risk, and, for these patients, it might be helpful to reduce their triglyceride (TG) level. For this purpose, in order to identify new therapeutic targets, it would be useful to identify genetic variants with pleiotropic effects on LDL and TG after adjusting the latter for LDL; otherwise, a pleiotropic effect of a genetic variant detected by a marginal model could simply be due to its association with LDL only, given the well-known correlation between the two types of lipids. Here, we develop a new pleiotropy testing procedure based only on GWAS summary statistics that can be applied for both marginal analysis and conditional analysis. Although the main technical development is based on published union-intersection testing methods, care is needed in specifying conditional models to avoid invalid statistical estimation and inference. In addition to the previously used likelihood ratio test, we also propose using generalized estimating equations under the

  18. Understanding of BRCA1/2 genetic tests results: the importance of objective and subjective numeracy.

    Science.gov (United States)

    Hanoch, Yaniv; Miron-Shatz, Talya; Rolison, Jonathan J; Ozanne, Elissa

    2014-10-01

    The majority of women (71%) who undergo BRCA1/2 testing-designed to identify genetic mutations associated with increased risk of cancer-receive results that are termed 'ambiguous' or 'uninformative negative'. How women interpret these results and the association with numerical ability was examined. In this study, 477 women at increased risk for breast and ovarian cancer were recruited via the Cancer Genetics Network. They were presented with information about the four different possible BRCA1/2 test results-positive, true negative, ambiguous and uninformative negative-and asked to indicate which of six options represents the best response. Participants were then asked which treatment options they thought a woman receiving the results should discuss with her doctor. Finally, participants completed measures of objective and subjective numeracy. Almost all of the participants correctly interpreted the positive and negative BRCA1/2 genetic test results. However, they encountered difficulties interpreting the uninformative and ambiguous BRCA1/2 genetic test results. Participants were almost equally likely to think either that the woman had learned nothing from the test result or that she was as likely to develop cancer as the average woman. Highly numerate participants were more likely to correctly interpret inconclusive test results (ambiguous, OR = 1.62; 95% CI [1.28, 2.07]; p psychological ramifications of genetic testing, healthcare professionals should consider devoting extra effort to ensuring proper comprehension of ambiguous and uninformative negative test results by women. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Nuclear genetic diversity in human lice (Pediculus humanus reveals continental differences and high inbreeding among worldwide populations.

    Directory of Open Access Journals (Sweden)

    Marina S Ascunce

    Full Text Available Understanding the evolution of parasites is important to both basic and applied evolutionary biology. Knowledge of the genetic structure of parasite populations is critical for our ability to predict how an infection can spread through a host population and for the design of effective control methods. However, very little is known about the genetic structure of most human parasites, including the human louse (Pediculus humanus. This species is composed of two ecotypes: the head louse (Pediculus humanus capitis De Geer, and the clothing (body louse (Pediculus humanus humanus Linnaeus. Hundreds of millions of head louse infestations affect children every year, and this number is on the rise, in part because of increased resistance to insecticides. Clothing lice affect mostly homeless and refugee-camp populations and although they are less prevalent than head lice, the medical consequences are more severe because they vector deadly bacterial pathogens. In this study we present the first assessment of the genetic structure of human louse populations by analyzing the nuclear genetic variation at 15 newly developed microsatellite loci in 93 human lice from 11 sites in four world regions. Both ecotypes showed heterozygote deficits relative to Hardy-Weinberg equilibrium and high inbreeding values, an expected pattern given their parasitic life history. Bayesian clustering analyses assigned lice to four distinct genetic clusters that were geographically structured. The low levels of gene flow among louse populations suggested that the evolution of insecticide resistance in lice would most likely be affected by local selection pressures, underscoring the importance of tailoring control strategies to population-specific genetic makeup and evolutionary history. Our panel of microsatellite markers provides powerful data to investigate not only ecological and evolutionary processes in lice, but also those in their human hosts because of the long

  20. Variation in healthcare services for specialist genetic testing and implications for planning genetic services: the example of inherited retinal dystrophy in the English NHS.

    Science.gov (United States)

    Harrison, Mark; Birch, Stephen; Eden, Martin; Ramsden, Simon; Farragher, Tracey; Payne, Katherine; Hall, Georgina; Black, Graeme Cm

    2015-04-01

    This study aims to identify and quantify the extent of current variation in service provision of a genetic testing service for dominant and X-linked retinal dystrophies in the English National Health Service (NHS). National audit data (all test requests and results (n = 1839) issued between 2003 and 2011) and survey of English regional genetic testing services were used. Age- and gender-adjusted standardised testing rates were calculated using indirect standardisation, and survey responses were transcribed verbatim and data collated and summarised. The cumulative incidence rate of testing in England was 4.5 per 100,000 population for males and 2.6 per 100,000 population for females. The standardised testing rate (STR) varied widely between regions of England, being particularly low in the North-east (STR 0.485), with half as many tests as expected based on the size and demographic distribution of the population and high in the South-east (STR 1.355), with 36 % more tests than expected. Substantial and significantly different rates of testing were found between regional populations. Specific policy mechanisms to promote, monitor and evaluate the regional distribution of access to genetic and genomic testing are required. However, commissioners will require information on the scope and role of genetic services and the population at risk of the conditions for which patients are tested.