WorldWideScience

Sample records for human genetic code

  1. A genetic code alteration is a phenotype diversity generator in the human pathogen Candida albicans.

    Directory of Open Access Journals (Sweden)

    Isabel Miranda

    Full Text Available BACKGROUND: The discovery of genetic code alterations and expansions in both prokaryotes and eukaryotes abolished the hypothesis of a frozen and universal genetic code and exposed unanticipated flexibility in codon and amino acid assignments. It is now clear that codon identity alterations involve sense and non-sense codons and can occur in organisms with complex genomes and proteomes. However, the biological functions, the molecular mechanisms of evolution and the diversity of genetic code alterations remain largely unknown. In various species of the genus Candida, the leucine CUG codon is decoded as serine by a unique serine tRNA that contains a leucine 5'-CAG-3'anticodon (tRNA(CAG(Ser. We are using this codon identity redefinition as a model system to elucidate the evolution of genetic code alterations. METHODOLOGY/PRINCIPAL FINDINGS: We have reconstructed the early stages of the Candida genetic code alteration by engineering tRNAs that partially reverted the identity of serine CUG codons back to their standard leucine meaning. Such genetic code manipulation had profound cellular consequences as it exposed important morphological variation, altered gene expression, re-arranged the karyotype, increased cell-cell adhesion and secretion of hydrolytic enzymes. CONCLUSION/SIGNIFICANCE: Our study provides the first experimental evidence for an important role of genetic code alterations as generators of phenotypic diversity of high selective potential and supports the hypothesis that they speed up evolution of new phenotypes.

  2. Orion: Detecting regions of the human non-coding genome that are intolerant to variation using population genetics.

    Science.gov (United States)

    Gussow, Ayal B; Copeland, Brett R; Dhindsa, Ryan S; Wang, Quanli; Petrovski, Slavé; Majoros, William H; Allen, Andrew S; Goldstein, David B

    2017-01-01

    There is broad agreement that genetic mutations occurring outside of the protein-coding regions play a key role in human disease. Despite this consensus, we are not yet capable of discerning which portions of non-coding sequence are important in the context of human disease. Here, we present Orion, an approach that detects regions of the non-coding genome that are depleted of variation, suggesting that the regions are intolerant of mutations and subject to purifying selection in the human lineage. We show that Orion is highly correlated with known intolerant regions as well as regions that harbor putatively pathogenic variation. This approach provides a mechanism to identify pathogenic variation in the human non-coding genome and will have immediate utility in the diagnostic interpretation of patient genomes and in large case control studies using whole-genome sequences.

  3. Genetic coding and gene expression - new Quadruplet genetic coding model

    Science.gov (United States)

    Shankar Singh, Rama

    2012-07-01

    Successful demonstration of human genome project has opened the door not only for developing personalized medicine and cure for genetic diseases, but it may also answer the complex and difficult question of the origin of life. It may lead to making 21st century, a century of Biological Sciences as well. Based on the central dogma of Biology, genetic codons in conjunction with tRNA play a key role in translating the RNA bases forming sequence of amino acids leading to a synthesized protein. This is the most critical step in synthesizing the right protein needed for personalized medicine and curing genetic diseases. So far, only triplet codons involving three bases of RNA, transcribed from DNA bases, have been used. Since this approach has several inconsistencies and limitations, even the promise of personalized medicine has not been realized. The new Quadruplet genetic coding model proposed and developed here involves all four RNA bases which in conjunction with tRNA will synthesize the right protein. The transcription and translation process used will be the same, but the Quadruplet codons will help overcome most of the inconsistencies and limitations of the triplet codes. Details of this new Quadruplet genetic coding model and its subsequent potential applications including relevance to the origin of life will be presented.

  4. What Froze the Genetic Code?

    Directory of Open Access Journals (Sweden)

    Lluís Ribas de Pouplana

    2017-04-01

    Full Text Available The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

  5. What Froze the Genetic Code?

    Science.gov (United States)

    Ribas de Pouplana, Lluís; Torres, Adrian Gabriel; Rafels-Ybern, Àlbert

    2017-04-05

    The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

  6. Computation of the Genetic Code

    Science.gov (United States)

    Kozlov, Nicolay N.; Kozlova, Olga N.

    2018-03-01

    One of the problems in the development of mathematical theory of the genetic code (summary is presented in [1], the detailed -to [2]) is the problem of the calculation of the genetic code. Similar problems in the world is unknown and could be delivered only in the 21st century. One approach to solving this problem is devoted to this work. For the first time provides a detailed description of the method of calculation of the genetic code, the idea of which was first published earlier [3]), and the choice of one of the most important sets for the calculation was based on an article [4]. Such a set of amino acid corresponds to a complete set of representations of the plurality of overlapping triple gene belonging to the same DNA strand. A separate issue was the initial point, triggering an iterative search process all codes submitted by the initial data. Mathematical analysis has shown that the said set contains some ambiguities, which have been founded because of our proposed compressed representation of the set. As a result, the developed method of calculation was limited to the two main stages of research, where the first stage only the of the area were used in the calculations. The proposed approach will significantly reduce the amount of computations at each step in this complex discrete structure.

  7. Human growth hormone-related latrogenic Creutzfeldt-Jakob disease: Search for a genetic susceptibility by analysis of the PRNP coding region

    Energy Technology Data Exchange (ETDEWEB)

    Jaegly, A.; Boussin, F.; Deslys, J.P. [CEA/CRSSA/DSV/DPTE, Fontenay-aux-Roses (France)] [and others

    1995-05-20

    The human PRNP gene encoding PrP is located on chromosome 20 and consists of two exons and a single intron. The open reading frame is entirely fitted into the second exon. Genetic studies indicate that all of the familial and several sporadic forms of TSSEs are associated with mutations in the PRNP 759-bp coding region. Moreover, homozygosity at codon 129, a locus harboring a polymorphism among the general population, was proposed as a genetic susceptibility marker for both sporadic and iatrogenic CJD. To assess whether additional genetic predisposition markers exist in the PRNP gene, the authors sequenced the PRNP coding region of 17 of the 32 French patients who developed a hGH-related CJD.

  8. Evolutionary implications of genetic code deviations

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1986-07-01

    By extending the standard genetic code into a temperature dependent regime, we propose a train of molecular events leading to alternative coding. The first few examples of these deviations have already been reported in some ciliated protozoans and Gram positive bacteria. A possible range of further alternative coding, still within the context of universality, is pointed out. (author)

  9. Evaluating human genetic diversity

    National Research Council Canada - National Science Library

    This book assesses the scientific value and merit of research on human genetic differences--including a collection of DNA samples that represents the whole of human genetic diversity--and the ethical...

  10. MouSensor: A Versatile Genetic Platform to Create Super Sniffer Mice for Studying Human Odor Coding

    Directory of Open Access Journals (Sweden)

    Charlotte D’Hulst

    2016-07-01

    Full Text Available Typically, ∼0.1% of the total number of olfactory sensory neurons (OSNs in the main olfactory epithelium express the same odorant receptor (OR in a singular fashion and their axons coalesce into homotypic glomeruli in the olfactory bulb. Here, we have dramatically increased the total number of OSNs expressing specific cloned OR coding sequences by multimerizing a 21-bp sequence encompassing the predicted homeodomain binding site sequence, TAATGA, known to be essential in OR gene choice. Singular gene choice is maintained in these “MouSensors.” In vivo synaptopHluorin imaging of odor-induced responses by known M71 ligands shows functional glomerular activation in an M71 MouSensor. Moreover, a behavioral avoidance task demonstrates that specific odor detection thresholds are significantly decreased in multiple transgenic lines, expressing mouse or human ORs. We have developed a versatile platform to study gene choice and axon identity, to create biosensors with great translational potential, and to finally decode human olfaction.

  11. MouSensor: A Versatile Genetic Platform to Create Super Sniffer Mice for Studying Human Odor Coding.

    Science.gov (United States)

    D'Hulst, Charlotte; Mina, Raena B; Gershon, Zachary; Jamet, Sophie; Cerullo, Antonio; Tomoiaga, Delia; Bai, Li; Belluscio, Leonardo; Rogers, Matthew E; Sirotin, Yevgeniy; Feinstein, Paul

    2016-07-26

    Typically, ∼0.1% of the total number of olfactory sensory neurons (OSNs) in the main olfactory epithelium express the same odorant receptor (OR) in a singular fashion and their axons coalesce into homotypic glomeruli in the olfactory bulb. Here, we have dramatically increased the total number of OSNs expressing specific cloned OR coding sequences by multimerizing a 21-bp sequence encompassing the predicted homeodomain binding site sequence, TAATGA, known to be essential in OR gene choice. Singular gene choice is maintained in these "MouSensors." In vivo synaptopHluorin imaging of odor-induced responses by known M71 ligands shows functional glomerular activation in an M71 MouSensor. Moreover, a behavioral avoidance task demonstrates that specific odor detection thresholds are significantly decreased in multiple transgenic lines, expressing mouse or human ORs. We have developed a versatile platform to study gene choice and axon identity, to create biosensors with great translational potential, and to finally decode human olfaction. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. HOW TO REPRESENT THE GENETIC CODE?

    Directory of Open Access Journals (Sweden)

    N.S. Santos-Magalhães

    2004-05-01

    Full Text Available The advent of molecular genetic comprises a true revolution of far-reaching consequences for human-kind, which evolved into a specialized branch of the modern-day Biochemistry. The analysis of specicgenomic information are gaining wide-ranging interest because of their signicance to the early diag-nosis of disease, and the discovery of modern drugs. In order to take advantage of a wide assortmentof signal processing (SP algorithms, the primary step of modern genomic SP involves convertingsymbolic-DNA sequences into complex-valued signals. How to represent the genetic code? Despitebeing extensively known, the DNA mapping into proteins is one of the relevant discoveries of genetics.The genetic code (GC is revisited in this work, addressing other descriptions for it, which can beworthy for genomic SP. Three original representations are discussed. The inner-to-outer map buildson the unbalanced role of nucleotides of a codon. A two-dimensional-Gray genetic representationis oered as a structured map that can help interpreting DNA spectrograms or scalograms. Theseare among the powerful visual tools for genome analysis, which depends on the choice of the geneticmapping. Finally, the world-chart for the GC is investigated. Evoking the cyclic structure of thegenetic mapping, it can be folded joining the left-right borders, and the top-bottom frontiers. As aresult, the GC can be drawn on the surface of a sphere resembling a world-map. Eight parallels oflatitude are required (four in each hemisphere as well as four meridians of longitude associated tofour corresponding anti-meridians. The tropic circles have 11.25o, 33.75o, 56.25o, and 78.5o (Northand South. Starting from an arbitrary Greenwich meridian, the meridians of longitude can be plottedat 22.5o, 67.5o, 112.5o, and 157.5o (East and West. Each triplet is assigned to a single point on thesurface that we named Nirenberg-Kohamas Earth. Despite being valuable, usual representations forthe GC can be

  13. The Genetic Code: Yesterday, Today and Tomorrow

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 12. The Genetic Code: Yesterday, Today and Tomorrow. Jiqiang Ling Dieter Söll. General Article Volume 17 Issue 12 December 2012 pp 1136-1142. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Mathematical fundamentals for the noise immunity of the genetic code.

    Science.gov (United States)

    Fimmel, Elena; Strüngmann, Lutz

    2018-02-01

    Symmetry is one of the essential and most visible patterns that can be seen in nature. Starting from the left-right symmetry of the human body, all types of symmetry can be found in crystals, plants, animals and nature as a whole. Similarly, principals of symmetry are also some of the fundamental and most useful tools in modern mathematical natural science that play a major role in theory and applications. As a consequence, it is not surprising that the desire to understand the origin of life, based on the genetic code, forces us to involve symmetry as a mathematical concept. The genetic code can be seen as a key to biological self-organisation. All living organisms have the same molecular bases - an alphabet consisting of four letters (nitrogenous bases): adenine, cytosine, guanine, and thymine. Linearly ordered sequences of these bases contain the genetic information for synthesis of proteins in all forms of life. Thus, one of the most fascinating riddles of nature is to explain why the genetic code is as it is. Genetic coding possesses noise immunity which is the fundamental feature that allows to pass on the genetic information from parents to their descendants. Hence, since the time of the discovery of the genetic code, scientists have tried to explain the noise immunity of the genetic information. In this chapter we will discuss recent results in mathematical modelling of the genetic code with respect to noise immunity, in particular error-detection and error-correction. We will focus on two central properties: Degeneracy and frameshift correction. Different amino acids are encoded by different quantities of codons and a connection between this degeneracy and the noise immunity of genetic information is a long standing hypothesis. Biological implications of the degeneracy have been intensively studied and whether the natural code is a frozen accident or a highly optimised product of evolution is still controversially discussed. Symmetries in the structure of

  15. Evaluating human genetic diversity

    National Research Council Canada - National Science Library

    ... into human evolution and origins and serving as a springboard for important medical research. It also addresses issues of confidentiality and individual privacy for participants in genetic diversity research studies.

  16. Genetics of human hydrocephalus

    Science.gov (United States)

    Williams, Michael A.; Rigamonti, Daniele

    2006-01-01

    Human hydrocephalus is a common medical condition that is characterized by abnormalities in the flow or resorption of cerebrospinal fluid (CSF), resulting in ventricular dilatation. Human hydrocephalus can be classified into two clinical forms, congenital and acquired. Hydrocephalus is one of the complex and multifactorial neurological disorders. A growing body of evidence indicates that genetic factors play a major role in the pathogenesis of hydrocephalus. An understanding of the genetic components and mechanism of this complex disorder may offer us significant insights into the molecular etiology of impaired brain development and an accumulation of the cerebrospinal fluid in cerebral compartments during the pathogenesis of hydrocephalus. Genetic studies in animal models have started to open the way for understanding the underlying pathology of hydrocephalus. At least 43 mutants/loci linked to hereditary hydrocephalus have been identified in animal models and humans. Up to date, 9 genes associated with hydrocephalus have been identified in animal models. In contrast, only one such gene has been identified in humans. Most of known hydrocephalus gene products are the important cytokines, growth factors or related molecules in the cellular signal pathways during early brain development. The current molecular genetic evidence from animal models indicate that in the early development stage, impaired and abnormal brain development caused by abnormal cellular signaling and functioning, all these cellular and developmental events would eventually lead to the congenital hydrocephalus. Owing to our very primitive knowledge of the genetics and molecular pathogenesis of human hydrocephalus, it is difficult to evaluate whether data gained from animal models can be extrapolated to humans. Initiation of a large population genetics study in humans will certainly provide invaluable information about the molecular and cellular etiology and the developmental mechanisms of human

  17. Genetic Code Analysis Toolkit: A novel tool to explore the coding properties of the genetic code and DNA sequences

    Science.gov (United States)

    Kraljić, K.; Strüngmann, L.; Fimmel, E.; Gumbel, M.

    2018-01-01

    The genetic code is degenerated and it is assumed that redundancy provides error detection and correction mechanisms in the translation process. However, the biological meaning of the code's structure is still under current research. This paper presents a Genetic Code Analysis Toolkit (GCAT) which provides workflows and algorithms for the analysis of the structure of nucleotide sequences. In particular, sets or sequences of codons can be transformed and tested for circularity, comma-freeness, dichotomic partitions and others. GCAT comes with a fertile editor custom-built to work with the genetic code and a batch mode for multi-sequence processing. With the ability to read FASTA files or load sequences from GenBank, the tool can be used for the mathematical and statistical analysis of existing sequence data. GCAT is Java-based and provides a plug-in concept for extensibility. Availability: Open source Homepage:http://www.gcat.bio/

  18. Representation mutations from standard genetic codes

    Science.gov (United States)

    Aisah, I.; Suyudi, M.; Carnia, E.; Suhendi; Supriatna, A. K.

    2018-03-01

    Graph is widely used in everyday life especially to describe model problem and describe it concretely and clearly. In addition graph is also used to facilitate solve various kinds of problems that are difficult to be solved by calculation. In Biology, graph can be used to describe the process of protein synthesis in DNA. Protein has an important role for DNA (deoxyribonucleic acid) or RNA (ribonucleic acid). Proteins are composed of amino acids. In this study, amino acids are related to genetics, especially the genetic code. The genetic code is also known as the triplet or codon code which is a three-letter arrangement of DNA nitrogen base. The bases are adenine (A), thymine (T), guanine (G) and cytosine (C). While on RNA thymine (T) is replaced with Urasil (U). The set of all Nitrogen bases in RNA is denoted by N = {C U, A, G}. This codon works at the time of protein synthesis inside the cell. This codon also encodes the stop signal as a sign of the stop of protein synthesis process. This paper will examine the process of protein synthesis through mathematical studies and present it in three-dimensional space or graph. The study begins by analysing the set of all codons denoted by NNN such that to obtain geometric representations. At this stage there is a matching between the sets of all nitrogen bases N with Z 2 × Z 2; C=(\\overline{0},\\overline{0}),{{U}}=(\\overline{0},\\overline{1}),{{A}}=(\\overline{1},\\overline{0}),{{G}}=(\\overline{1},\\overline{1}). By matching the algebraic structure will be obtained such as group, group Klein-4,Quotien group etc. With the help of Geogebra software, the set of all codons denoted by NNN can be presented in a three-dimensional space as a multicube NNN and also can be represented as a graph, so that can easily see relationship between the codon.

  19. A Realistic Model under which the Genetic Code is Optimal

    NARCIS (Netherlands)

    Buhrman, H.; van der Gulik, P.T.S.; Klau, G.W.; Schaffner, C.; Speijer, D.; Stougie, L.

    2013-01-01

    The genetic code has a high level of error robustness. Using values of hydrophobicity scales as a proxy for amino acid character, and the mean square measure as a function quantifying error robustness, a value can be obtained for a genetic code which reflects the error robustness of that code. By

  20. Flexibility of the genetic code with respect to DNA structure

    DEFF Research Database (Denmark)

    Baisnée, P. F.; Baldi, Pierre; Brunak, Søren

    2001-01-01

    Motivation. The primary function of DNA is to carry genetic information through the genetic code. DNA, however, contains a variety of other signals related, for instance, to reading frame, codon bias, pairwise codon bias, splice sites and transcription regulation, nucleosome positioning and DNA...... structure. Here we study the relationship between the genetic code and DNA structure and address two questions. First, to which degree does the degeneracy of the genetic code and the acceptable amino acid substitution patterns allow for the superimposition of DNA structural signals to protein coding...... sequences? Second, is the origin or evolution of the genetic code likely to have been constrained by DNA structure? Results. We develop an index for code flexibility with respect to DNA structure. Using five different di- or tri-nucleotide models of sequence-dependent DNA structure, we show...

  1. Advances in human genetics

    Energy Technology Data Exchange (ETDEWEB)

    Harris, H.; Hirschhorn, K. (eds.)

    1993-01-01

    This book has five chapters covering peroxisomal diseases, X-linked immunodeficiencies, genetic mutations affecting human lipoproteins and their receptors and enzymes, genetic aspects of cancer, and Gaucher disease. The chapter on peroxisomes covers their discovery, structure, functions, disorders, etc. The chapter on X-linked immunodeficiencies discusses such diseases as agammaglobulinemia, severe combined immunodeficiency, Wiskott-Aldrich syndrome, animal models, linkage analysis, etc. Apolipoprotein formation, synthesis, gene regulation, proteins, etc. are the main focus of chapter 3. The chapter on cancer covers such topics as oncogene mapping and the molecular characterization of some recessive oncogenes. Gaucher disease is covered from its diagnosis, classification, and prevention, to its organ system involvement and molecular biology.

  2. A multiobjective approach to the genetic code adaptability problem.

    Science.gov (United States)

    de Oliveira, Lariza Laura; de Oliveira, Paulo S L; Tinós, Renato

    2015-02-19

    The organization of the canonical code has intrigued researches since it was first described. If we consider all codes mapping the 64 codes into 20 amino acids and one stop codon, there are more than 1.51×10(84) possible genetic codes. The main question related to the organization of the genetic code is why exactly the canonical code was selected among this huge number of possible genetic codes. Many researchers argue that the organization of the canonical code is a product of natural selection and that the code's robustness against mutations would support this hypothesis. In order to investigate the natural selection hypothesis, some researches employ optimization algorithms to identify regions of the genetic code space where best codes, according to a given evaluation function, can be found (engineering approach). The optimization process uses only one objective to evaluate the codes, generally based on the robustness for an amino acid property. Only one objective is also employed in the statistical approach for the comparison of the canonical code with random codes. We propose a multiobjective approach where two or more objectives are considered simultaneously to evaluate the genetic codes. In order to test our hypothesis that the multiobjective approach is useful for the analysis of the genetic code adaptability, we implemented a multiobjective optimization algorithm where two objectives are simultaneously optimized. Using as objectives the robustness against mutation with the amino acids properties polar requirement (objective 1) and robustness with respect to hydropathy index or molecular volume (objective 2), we found solutions closer to the canonical genetic code in terms of robustness, when compared with the results using only one objective reported by other authors. Using more objectives, more optimal solutions are obtained and, as a consequence, more information can be used to investigate the adaptability of the genetic code. The multiobjective approach

  3. National Society of Genetic Counselors Code of Ethics.

    Science.gov (United States)

    2018-02-01

    This document is the revised Code of Ethics of the National Society of Genetic Counselors (NSGC) that was adopted in April 2017 after majority vote of the full membership of the NSGC. The explication of the revisions is published in this volume of the Journal of Genetic Counseling. This is the fourth revision to the Code of Ethics since its original adoption in 1992.

  4. A symbiotic liaison between the genetic and epigenetic code

    Directory of Open Access Journals (Sweden)

    Holger eHeyn

    2014-05-01

    Full Text Available With rapid advances in sequencing technologies, we are undergoing a paradigm shift from hypothesis- to data-driven research. Genome-wide profiling efforts gave informative insights into biological processes; however, considering the wealth of variation, the major challenge remains their meaningful interpretation. In particular sequence variation in non-coding contexts is often challenging to interpret. Here, data integration approaches for the identification of functional genetic variability represent a likely solution. Exemplary, functional linkage analysis integrating genotype and expression data determined regulatory quantitative trait loci (QTL and proposed causal relationships. In addition to gene expression, epigenetic regulation and specifically DNA methylation was established as highly valuable surrogate mark for functional variance of the genetic code. Epigenetic modification served as powerful mediator trait to elucidate mechanisms forming phenotypes in health and disease. Particularly, integrative studies of genetic and DNA methylation data yet guided interpretation strategies of risk genotypes, but also proved their value for physiological traits, such as natural human variation and aging. This Perspective seeks to illustrate the power of data integration in the genomic era exemplified by DNA methylation quantitative trait loci (meQTLs. However, the model is further extendable to virtually all traceable molecular traits.

  5. Protocols in human molecular genetics

    National Research Council Canada - National Science Library

    Mathew, Christopher G

    1991-01-01

    ... sequences has led to the development of DNA fingerprinting. The application of these techniques to the study of the human genome has culminated in major advances such as the cloning of the cystic fibrosis gene, the construction of genetic linkage maps of each human chromosome, the mapping of many genes responsible for human inherited disorders, genet...

  6. Multiplexed coding in the human basal ganglia

    Science.gov (United States)

    Andres, D. S.; Cerquetti, D.; Merello, M.

    2016-04-01

    A classic controversy in neuroscience is whether information carried by spike trains is encoded by a time averaged measure (e.g. a rate code), or by complex time patterns (i.e. a time code). Here we apply a tool to quantitatively analyze the neural code. We make use of an algorithm based on the calculation of the temporal structure function, which permits to distinguish what scales of a signal are dominated by a complex temporal organization or a randomly generated process. In terms of the neural code, this kind of analysis makes it possible to detect temporal scales at which a time patterns coding scheme or alternatively a rate code are present. Additionally, finding the temporal scale at which the correlation between interspike intervals fades, the length of the basic information unit of the code can be established, and hence the word length of the code can be found. We apply this algorithm to neuronal recordings obtained from the Globus Pallidus pars interna from a human patient with Parkinson’s disease, and show that a time pattern coding and a rate coding scheme co-exist at different temporal scales, offering a new example of multiplexed neuronal coding.

  7. A search for symmetries in the genetic code

    International Nuclear Information System (INIS)

    Hornos, J.E.M.; Hornos, Y.M.M.

    1991-01-01

    A search for symmetries based on the classification theorem of Cartan for the compact simple Lie algebras is performed to verify to what extent the genetic code is a manifestation of some underlying symmetry. An exact continuous symmetry group cannot be found to reproduce the present, universal code. However a unique approximate symmetry group is compatible with codon assignment for the fundamental amino acids and the termination codon. In order to obtain the actual genetic code, the symmetry must be slightly broken. (author). 27 refs, 3 figs, 6 tabs

  8. The evolution of the mitochondrial genetic code in arthropods revisited.

    Science.gov (United States)

    Abascal, Federico; Posada, David; Zardoya, Rafael

    2012-04-01

    A variant of the invertebrate mitochondrial genetic code was previously identified in arthropods (Abascal et al. 2006a, PLoS Biol 4:e127) in which, instead of translating the AGG codon as serine, as in other invertebrates, some arthropods translate AGG as lysine. Here, we revisit the evolution of the genetic code in arthropods taking into account that (1) the number of arthropod mitochondrial genomes sequenced has triplicated since the original findings were published; (2) the phylogeny of arthropods has been recently resolved with confidence for many groups; and (3) sophisticated probabilistic methods can be applied to analyze the evolution of the genetic code in arthropod mitochondria. According to our analyses, evolutionary shifts in the genetic code have been more common than previously inferred, with many taxonomic groups displaying two alternative codes. Ancestral character-state reconstruction using probabilistic methods confirmed that the arthropod ancestor most likely translated AGG as lysine. Point mutations at tRNA-Lys and tRNA-Ser correlated with the meaning of the AGG codon. In addition, we identified three variables (GC content, number of AGG codons, and taxonomic information) that best explain the use of each of the two alternative genetic codes.

  9. [Criminal code and assisted human reproduction].

    Science.gov (United States)

    Cortés Bechiarelli, Emilio

    2009-01-01

    The Spanish Criminal Code punishes in the article 161 the crime of assisted reproduction of the woman without her assent as a form of crime relative to the genetic manipulation. The crime protects a specific area of the freedom of decision of the woman, which is the one that she has dealing with the right to the procreation at the moment of being fertilized. The sentence would include the damages to the health provoked by the birth or the abortion. The crime is a common one--everyone can commit it--and it is not required a result of pregnancy, but it is consumed by the mere intervention on the body of the woman, and its interpretation is contained on the Law 14/2006, of may 26, on technologies of human assisted reproduction. The aim of the work is to propose to consider valid the assent given by the sixteen-year-old women (and older) in coherence with the Project of Law about sexual and reproductive health and voluntary interruption of the pregnancy that is studied at this moment, in Spain, in order to harmonize the legal systems.

  10. Unnatural reactive amino acid genetic code additions

    Energy Technology Data Exchange (ETDEWEB)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, Christopher J.; Schultz, Peter G.

    2017-10-25

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  11. Quantum algorithms and the genetic code

    Indian Academy of Sciences (India)

    the process of replication. One generation of organisms produces the next generation, which is essentially a copy of itself. The self-similarity is maintained by the hereditary information—the genetic code—that is passed on from one generation to the next. The long chains of DNA molecules residing in the nuclei of the cells ...

  12. Basic Genetics: A Human Approach.

    Science.gov (United States)

    Biological Sciences Curriculum Study, Colorado Springs, CO. Center for Education in Human and Medical Genetics.

    This document (which has the form of a magazine) provides a variety of articles, stories, editorials, letters, interviews, and other types of magazine features (such as book reviews) which focus on human genetics. In addition to providing information about the principles of genetics, nearly all of the sections in the "magazine" address moral,…

  13. Deciphering the genetic regulatory code using an inverse error control coding framework.

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel; May, Elebeoba Eni; Brown, William Michael; Johnston, Anna Marie; Watson, Jean-Paul

    2005-03-01

    We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.

  14. Human genetics and sleep behavior.

    Science.gov (United States)

    Shi, Guangsen; Wu, David; Ptáček, Louis J; Fu, Ying-Hui

    2017-06-01

    Why we sleep remains one of the greatest mysteries in science. In the past few years, great advances have been made to better understand this phenomenon. Human genetics has contributed significantly to this movement, as many features of sleep have been found to be heritable. Discoveries about these genetic variations that affect human sleep will aid us in understanding the underlying mechanism of sleep. Here we summarize recent discoveries about the genetic variations affecting the timing of sleep, duration of sleep and EEG patterns. To conclude, we also discuss some of the sleep-related neurological disorders such as Autism Spectrum Disorder (ASD) and Alzheimer's Disease (AD) and the potential challenges and future directions of human genetics in sleep research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Real coded genetic algorithm for fuzzy time series prediction

    Science.gov (United States)

    Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.

    2017-10-01

    Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.

  16. On the Organizational Dynamics of the Genetic Code

    KAUST Repository

    Zhang, Zhang

    2011-06-07

    The organization of the canonical genetic code needs to be thoroughly illuminated. Here we reorder the four nucleotides—adenine, thymine, guanine and cytosine—according to their emergence in evolution, and apply the organizational rules to devising an algebraic representation for the canonical genetic code. Under a framework of the devised code, we quantify codon and amino acid usages from a large collection of 917 prokaryotic genome sequences, and associate the usages with its intrinsic structure and classification schemes as well as amino acid physicochemical properties. Our results show that the algebraic representation of the code is structurally equivalent to a content-centric organization of the code and that codon and amino acid usages under different classification schemes were correlated closely with GC content, implying a set of rules governing composition dynamics across a wide variety of prokaryotic genome sequences. These results also indicate that codons and amino acids are not randomly allocated in the code, where the six-fold degenerate codons and their amino acids have important balancing roles for error minimization. Therefore, the content-centric code is of great usefulness in deciphering its hitherto unknown regularities as well as the dynamics of nucleotide, codon, and amino acid compositions.

  17. On the Organizational Dynamics of the Genetic Code

    KAUST Repository

    Zhang, Zhang; Yu, Jun

    2011-01-01

    The organization of the canonical genetic code needs to be thoroughly illuminated. Here we reorder the four nucleotides—adenine, thymine, guanine and cytosine—according to their emergence in evolution, and apply the organizational rules to devising an algebraic representation for the canonical genetic code. Under a framework of the devised code, we quantify codon and amino acid usages from a large collection of 917 prokaryotic genome sequences, and associate the usages with its intrinsic structure and classification schemes as well as amino acid physicochemical properties. Our results show that the algebraic representation of the code is structurally equivalent to a content-centric organization of the code and that codon and amino acid usages under different classification schemes were correlated closely with GC content, implying a set of rules governing composition dynamics across a wide variety of prokaryotic genome sequences. These results also indicate that codons and amino acids are not randomly allocated in the code, where the six-fold degenerate codons and their amino acids have important balancing roles for error minimization. Therefore, the content-centric code is of great usefulness in deciphering its hitherto unknown regularities as well as the dynamics of nucleotide, codon, and amino acid compositions.

  18. [Direct genetic manipulation and criminal code in Venezuela: absolute criminal law void?].

    Science.gov (United States)

    Cermeño Zambrano, Fernando G De J

    2002-01-01

    The judicial regulation of genetic biotechnology applied to the human genome is of big relevance currently in Venezuela due to the drafting of an innovative bioethical law in the country's parliament. This article will highlight the constitutional normative of Venezuela's 1999 Constitution regarding this subject, as it establishes the framework from which this matter will be legally regulated. The approach this article makes towards the genetic biotechnology applied to the human genome is made taking into account the Venezuelan penal law and by highlighting the violent genetic manipulations that have criminal relevance. The genetic biotechnology applied to the human genome has another important relevance as a consequence of the reformulation of the Venezuelan Penal Code discussed by the country's National Assembly. Therefore, a concise study of the country's penal code will be made in this article to better understand what judicial-penal properties have been protected by the Venezuelan penal legislation. This last step will enable us to identify the penal tools Venezuela counts on to face direct genetic manipulations. We will equally indicate the existing punitive loophole and that should be covered by the penal legislator. In conclusion, this essay concerns criminal policy, referred to the direct genetic manipulations on the human genome that haven't been typified in Venezuelan law, thus discovering a genetic biotechnology paradise.

  19. Origins of gene, genetic code, protein and life

    Indian Academy of Sciences (India)

    Unknown

    have concluded that newly-born genes are products of nonstop frames (NSF) ... research to determine tertiary structures of proteins such ... the present earth, is favourable for new genes to arise, if ..... NGG) in the universal genetic code table, cannot satisfy ..... which has been proposed to explain the development of life on.

  20. The Search for Symmetries in the Genetic Code:

    Science.gov (United States)

    Antoneli, Fernando; Forger, Michael; Hornos, José Eduardo M.

    We give a full classification of the possible schemes for obtaining the distribution of multiplets observed in the standard genetic code by symmetry breaking in the context of finite groups, based on an extended notion of partial symmetry breaking that incorporates the intuitive idea of "freezing" first proposed by Francis Crick, which is given a precise mathematical meaning.

  1. CMCpy: Genetic Code-Message Coevolution Models in Python

    Science.gov (United States)

    Becich, Peter J.; Stark, Brian P.; Bhat, Harish S.; Ardell, David H.

    2013-01-01

    Code-message coevolution (CMC) models represent coevolution of a genetic code and a population of protein-coding genes (“messages”). Formally, CMC models are sets of quasispecies coupled together for fitness through a shared genetic code. Although CMC models display plausible explanations for the origin of multiple genetic code traits by natural selection, useful modern implementations of CMC models are not currently available. To meet this need we present CMCpy, an object-oriented Python API and command-line executable front-end that can reproduce all published results of CMC models. CMCpy implements multiple solvers for leading eigenpairs of quasispecies models. We also present novel analytical results that extend and generalize applications of perturbation theory to quasispecies models and pioneer the application of a homotopy method for quasispecies with non-unique maximally fit genotypes. Our results therefore facilitate the computational and analytical study of a variety of evolutionary systems. CMCpy is free open-source software available from http://pypi.python.org/pypi/CMCpy/. PMID:23532367

  2. Programming peptidomimetic syntheses by translating genetic codes designed de novo.

    Science.gov (United States)

    Forster, Anthony C; Tan, Zhongping; Nalam, Madhavi N L; Lin, Hening; Qu, Hui; Cornish, Virginia W; Blacklow, Stephen C

    2003-05-27

    Although the universal genetic code exhibits only minor variations in nature, Francis Crick proposed in 1955 that "the adaptor hypothesis allows one to construct, in theory, codes of bewildering variety." The existing code has been expanded to enable incorporation of a variety of unnatural amino acids at one or two nonadjacent sites within a protein by using nonsense or frameshift suppressor aminoacyl-tRNAs (aa-tRNAs) as adaptors. However, the suppressor strategy is inherently limited by compatibility with only a small subset of codons, by the ways such codons can be combined, and by variation in the efficiency of incorporation. Here, by preventing competing reactions with aa-tRNA synthetases, aa-tRNAs, and release factors during translation and by using nonsuppressor aa-tRNA substrates, we realize a potentially generalizable approach for template-encoded polymer synthesis that unmasks the substantially broader versatility of the core translation apparatus as a catalyst. We show that several adjacent, arbitrarily chosen sense codons can be completely reassigned to various unnatural amino acids according to de novo genetic codes by translating mRNAs into specific peptide analog polymers (peptidomimetics). Unnatural aa-tRNA substrates do not uniformly function as well as natural substrates, revealing important recognition elements for the translation apparatus. Genetic programming of peptidomimetic synthesis should facilitate mechanistic studies of translation and may ultimately enable the directed evolution of small molecules with desirable catalytic or pharmacological properties.

  3. On coding genotypes for genetic markers with multiple alleles in genetic association study of quantitative traits

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2011-09-01

    Full Text Available Abstract Background In genetic association study of quantitative traits using F∞ models, how to code the marker genotypes and interpret the model parameters appropriately is important for constructing hypothesis tests and making statistical inferences. Currently, the coding of marker genotypes in building F∞ models has mainly focused on the biallelic case. A thorough work on the coding of marker genotypes and interpretation of model parameters for F∞ models is needed especially for genetic markers with multiple alleles. Results In this study, we will formulate F∞ genetic models under various regression model frameworks and introduce three genotype coding schemes for genetic markers with multiple alleles. Starting from an allele-based modeling strategy, we first describe a regression framework to model the expected genotypic values at given markers. Then, as extension from the biallelic case, we introduce three coding schemes for constructing fully parameterized one-locus F∞ models and discuss the relationships between the model parameters and the expected genotypic values. Next, under a simplified modeling framework for the expected genotypic values, we consider several reduced one-locus F∞ models from the three coding schemes on the estimability and interpretation of their model parameters. Finally, we explore some extensions of the one-locus F∞ models to two loci. Several fully parameterized as well as reduced two-locus F∞ models are addressed. Conclusions The genotype coding schemes provide different ways to construct F∞ models for association testing of multi-allele genetic markers with quantitative traits. Which coding scheme should be applied depends on how convenient it can provide the statistical inferences on the parameters of our research interests. Based on these F∞ models, the standard regression model fitting tools can be used to estimate and test for various genetic effects through statistical contrasts with the

  4. The genetic code as a periodic table: algebraic aspects.

    Science.gov (United States)

    Bashford, J D; Jarvis, P D

    2000-01-01

    The systematics of indices of physico-chemical properties of codons and amino acids across the genetic code are examined. Using a simple numerical labelling scheme for nucleic acid bases, A=(-1,0), C=(0,-1), G=(0,1), U=(1,0), data can be fitted as low order polynomials of the six coordinates in the 64-dimensional codon weight space. The work confirms and extends the recent studies by Siemion et al. (1995. BioSystems 36, 231-238) of the conformational parameters. Fundamental patterns in the data such as codon periodicities, and related harmonics and reflection symmetries, are here associated with the structure of the set of basis monomials chosen for fitting. Results are plotted using the Siemion one-step mutation ring scheme, and variants thereof. The connections between the present work, and recent studies of the genetic code structure using dynamical symmetry algebras, are pointed out.

  5. The "Wow! signal" of the terrestrial genetic code

    Science.gov (United States)

    shCherbak, Vladimir I.; Makukov, Maxim A.

    2013-05-01

    It has been repeatedly proposed to expand the scope for SETI, and one of the suggested alternatives to radio is the biological media. Genomic DNA is already used on Earth to store non-biological information. Though smaller in capacity, but stronger in noise immunity is the genetic code. The code is a flexible mapping between codons and amino acids, and this flexibility allows modifying the code artificially. But once fixed, the code might stay unchanged over cosmological timescales; in fact, it is the most durable construct known. Therefore it represents an exceptionally reliable storage for an intelligent signature, if that conforms to biological and thermodynamic requirements. As the actual scenario for the origin of terrestrial life is far from being settled, the proposal that it might have been seeded intentionally cannot be ruled out. A statistically strong intelligent-like "signal" in the genetic code is then a testable consequence of such scenario. Here we show that the terrestrial code displays a thorough precision-type orderliness matching the criteria to be considered an informational signal. Simple arrangements of the code reveal an ensemble of arithmetical and ideographical patterns of the same symbolic language. Accurate and systematic, these underlying patterns appear as a product of precision logic and nontrivial computing rather than of stochastic processes (the null hypothesis that they are due to chance coupled with presumable evolutionary pathways is rejected with P-value < 10-13). The patterns are profound to the extent that the code mapping itself is uniquely deduced from their algebraic representation. The signal displays readily recognizable hallmarks of artificiality, among which are the symbol of zero, the privileged decimal syntax and semantical symmetries. Besides, extraction of the signal involves logically straightforward but abstract operations, making the patterns essentially irreducible to any natural origin. Plausible ways of

  6. Archives: Egyptian Journal of Medical Human Genetics

    African Journals Online (AJOL)

    Items 1 - 34 of 34 ... Archives: Egyptian Journal of Medical Human Genetics. Journal Home > Archives: Egyptian Journal of Medical Human Genetics. Log in or Register to get access to full text downloads.

  7. Interrelations of codes in human semiotic systems.

    OpenAIRE

    Somov, Georgij

    2016-01-01

    Codes can be viewed as mechanisms that enable relations of signs and their components, i.e., semiosis is actualized. The combinations of these relations produce new relations as new codes are building over other codes. Structures appear in the mechanisms of codes. Hence, codes can be described as transformations of structures from some material systems into others. Structures belong to different carriers, but exist in codes in their "pure" form. Building of codes over other codes fosters t...

  8. Human Motion Capture Data Tailored Transform Coding.

    Science.gov (United States)

    Junhui Hou; Lap-Pui Chau; Magnenat-Thalmann, Nadia; Ying He

    2015-07-01

    Human motion capture (mocap) is a widely used technique for digitalizing human movements. With growing usage, compressing mocap data has received increasing attention, since compact data size enables efficient storage and transmission. Our analysis shows that mocap data have some unique characteristics that distinguish themselves from images and videos. Therefore, directly borrowing image or video compression techniques, such as discrete cosine transform, does not work well. In this paper, we propose a novel mocap-tailored transform coding algorithm that takes advantage of these features. Our algorithm segments the input mocap sequences into clips, which are represented in 2D matrices. Then it computes a set of data-dependent orthogonal bases to transform the matrices to frequency domain, in which the transform coefficients have significantly less dependency. Finally, the compression is obtained by entropy coding of the quantized coefficients and the bases. Our method has low computational cost and can be easily extended to compress mocap databases. It also requires neither training nor complicated parameter setting. Experimental results demonstrate that the proposed scheme significantly outperforms state-of-the-art algorithms in terms of compression performance and speed.

  9. On Francis Crick, the genetic code, and a clever kid.

    Science.gov (United States)

    Goldstein, Bob

    2018-04-02

    A few years ago, Francis Crick's son told me a story that I can't get out of my mind. I had contacted Michael Crick by email while digging through the background of the researchers who had cracked the genetic code in the 1960s. Francis had died in 2004, and I was contacting some of the people who knew him when he was struggling to decipher the code. Francis didn't appear to struggle often - he is known mostly for his successes - and, as it turns out, this one well-known struggle may have had a clue sitting just barely out of sight. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Quantum control using genetic algorithms in quantum communication: superdense coding

    International Nuclear Information System (INIS)

    Domínguez-Serna, Francisco; Rojas, Fernando

    2015-01-01

    We present a physical example model of how Quantum Control with genetic algorithms is applied to implement the quantum superdense code protocol. We studied a model consisting of two quantum dots with an electron with spin, including spin-orbit interaction. The electron and the spin get hybridized with the site acquiring two degrees of freedom, spin and charge. The system has tunneling and site energies as time dependent control parameters that are optimized by means of genetic algorithms to prepare a hybrid Bell-like state used as a transmission channel. This state is transformed to obtain any state of the four Bell basis as required by superdense protocol to transmit two bits of classical information. The control process protocol is equivalent to implement one of the quantum gates in the charge subsystem. Fidelities larger than 99.5% are achieved for the hybrid entangled state preparation and the superdense operations. (paper)

  11. [Quality assurance in human genetic testing].

    Science.gov (United States)

    Stuhrmann-Spangenberg, Manfred

    2015-02-01

    Advances in technical developments of genetic diagnostics for more than 50 years, as well as the fact that human genetic testing is usually performed only once in a lifetime, with additional impact for blood relatives, are determining the extraordinary importance of quality assurance in human genetic testing. Abidance of laws, directives, and guidelines plays a major role. This article aims to present the major laws, directives, and guidelines with respect to quality assurance of human genetic testing, paying careful attention to internal and external quality assurance. The information on quality assurance of human genetic testing was obtained through a web-based search of the web pages that are referred to in this article. Further information was retrieved from publications in the German Society of Human Genetics and through a PubMed-search using term quality + assurance + genetic + diagnostics. The most important laws, directives, and guidelines for quality assurance of human genetic testing are the gene diagnostics law (GenDG), the directive of the Federal Medical Council for quality control of clinical laboratory analysis (RiliBÄK), and the S2K guideline for human genetic diagnostics and counselling. In addition, voluntary accreditation under DIN EN ISO 15189:2013 offers a most recommended contribution towards quality assurance of human genetic testing. Legal restraints on quality assurance of human genetic testing as mentioned in § 5 GenDG are fulfilled once RiliBÄK requirements are followed.

  12. Amino acid fermentation at the origin of the genetic code

    Directory of Open Access Journals (Sweden)

    de Vladar Harold P

    2012-02-01

    Full Text Available Abstract There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can

  13. Amino acid fermentation at the origin of the genetic code.

    Science.gov (United States)

    de Vladar, Harold P

    2012-02-10

    There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments

  14. Amino acid fermentation at the origin of the genetic code

    Science.gov (United States)

    2012-01-01

    There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments

  15. Decoding the non-coding genome: elucidating genetic risk outside the coding genome.

    Science.gov (United States)

    Barr, C L; Misener, V L

    2016-01-01

    Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  16. Genetics of Human and Canine Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Siobhan Simpson

    2015-01-01

    Full Text Available Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In this review the aetiology, epidemiology, and clinical characteristics of canine DCM are examined, along with highlighting possible different subtypes of canine DCM and their potential relevance to human DCM. Finally the current position of genetic research into canine and human DCM, including the genetic loci, is identified and the reasons many studies may have failed to find a genetic association with canine DCM are reviewed.

  17. Genetics of Human and Canine Dilated Cardiomyopathy.

    Science.gov (United States)

    Simpson, Siobhan; Edwards, Jennifer; Ferguson-Mignan, Thomas F N; Cobb, Malcolm; Mongan, Nigel P; Rutland, Catrin S

    2015-01-01

    Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM) accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In this review the aetiology, epidemiology, and clinical characteristics of canine DCM are examined, along with highlighting possible different subtypes of canine DCM and their potential relevance to human DCM. Finally the current position of genetic research into canine and human DCM, including the genetic loci, is identified and the reasons many studies may have failed to find a genetic association with canine DCM are reviewed.

  18. Personalized medicine and human genetic diversity.

    Science.gov (United States)

    Lu, Yi-Fan; Goldstein, David B; Angrist, Misha; Cavalleri, Gianpiero

    2014-07-24

    Human genetic diversity has long been studied both to understand how genetic variation influences risk of disease and infer aspects of human evolutionary history. In this article, we review historical and contemporary views of human genetic diversity, the rare and common mutations implicated in human disease susceptibility, and the relevance of genetic diversity to personalized medicine. First, we describe the development of thought about diversity through the 20th century and through more modern studies including genome-wide association studies (GWAS) and next-generation sequencing. We introduce several examples, such as sickle cell anemia and Tay-Sachs disease that are caused by rare mutations and are more frequent in certain geographical populations, and common treatment responses that are caused by common variants, such as hepatitis C infection. We conclude with comments about the continued relevance of human genetic diversity in medical genetics and personalized medicine more generally. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  19. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  20. Arbitrariness is not enough: towards a functional approach to the genetic code.

    Science.gov (United States)

    Lacková, Ľudmila; Matlach, Vladimír; Faltýnek, Dan

    2017-12-01

    Arbitrariness in the genetic code is one of the main reasons for a linguistic approach to molecular biology: the genetic code is usually understood as an arbitrary relation between amino acids and nucleobases. However, from a semiotic point of view, arbitrariness should not be the only condition for definition of a code, consequently it is not completely correct to talk about "code" in this case. Yet we suppose that there exist a code in the process of protein synthesis, but on a higher level than the nucleic bases chains. Semiotically, a code should be always associated with a function and we propose to define the genetic code not only relationally (in basis of relation between nucleobases and amino acids) but also in terms of function (function of a protein as meaning of the code). Even if the functional definition of meaning in the genetic code has been discussed in the field of biosemiotics, its further implications have not been considered. In fact, if the function of a protein represents the meaning of the genetic code (the sign's object), then it is crucial to reconsider the notion of its expression (the sign) as well. In our contribution, we will show that the actual model of the genetic code is not the only possible and we will propose a more appropriate model from a semiotic point of view.

  1. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments.

    Science.gov (United States)

    Santos, José; Monteagudo, Angel

    2011-02-21

    As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the fact that the best possible codes show the patterns of the

  2. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments

    Directory of Open Access Journals (Sweden)

    Monteagudo Ángel

    2011-02-01

    Full Text Available Abstract Background As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Results Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Conclusions Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the

  3. Genetics of Human and Canine Dilated Cardiomyopathy

    OpenAIRE

    Siobhan Simpson; Jennifer Edwards; Thomas F. N. Ferguson-Mignan; Malcolm Cobb; Nigel P. Mongan; Catrin S. Rutland

    2015-01-01

    Cardiovascular disease is a leading cause of death in both humans and dogs. Dilated cardiomyopathy (DCM) accounts for a large number of these cases, reported to be the third most common form of cardiac disease in humans and the second most common in dogs. In human studies of DCM there are more than 50 genetic loci associated with the disease. Despite canine DCM having similar disease progression to human DCM studies into the genetic basis of canine DCM lag far behind those of human DCM. In th...

  4. Human genetics of diabetic vascular complications

    Indian Academy of Sciences (India)

    Diabetic vascular complications (DVC) affecting several important organ systems of human body such as the cardiovascular system constitute a major public health problem. There is evidence demonstrating that genetic factors contribute to the risk of DVC genetic variants, structural variants, and epigenetic changes play ...

  5. Animal models for human genetic diseases

    African Journals Online (AJOL)

    Sharif Sons

    The study of human genetic diseases can be greatly aided by animal models because of their similarity .... and gene targeting in embryonic stem cells) has been a powerful tool in .... endonucleases that are designed to make a doublestrand.

  6. 130 FEMINISM AND HUMAN GENETIC ENGINEERING: A ...

    African Journals Online (AJOL)

    Ike Odimegwu

    genetic engineering to reconstruct the life of the human person. Negatively .... height, beauty or intelligence. Apart from ... cloning and stem-cell researches, artificial insemination. ..... form of manufacturing children involving their quality control.

  7. Probable relationship between partitions of the set of codons and the origin of the genetic code.

    Science.gov (United States)

    Salinas, Dino G; Gallardo, Mauricio O; Osorio, Manuel I

    2014-03-01

    Here we study the distribution of randomly generated partitions of the set of amino acid-coding codons. Some results are an application from a previous work, about the Stirling numbers of the second kind and triplet codes, both to the cases of triplet codes having four stop codons, as in mammalian mitochondrial genetic code, and hypothetical doublet codes. Extending previous results, in this work it is found that the most probable number of blocks of synonymous codons, in a genetic code, is similar to the number of amino acids when there are four stop codons, as well as it could be for a primigenious doublet code. Also it is studied the integer partitions associated to patterns of synonymous codons and it is shown, for the canonical code, that the standard deviation inside an integer partition is one of the most probable. We think that, in some early epoch, the genetic code might have had a maximum of the disorder or entropy, independent of the assignment between codons and amino acids, reaching a state similar to "code freeze" proposed by Francis Crick. In later stages, maybe deterministic rules have reassigned codons to amino acids, forming the natural codes, such as the canonical code, but keeping the numerical features describing the set partitions and the integer partitions, like a "fossil numbers"; both kinds of partitions about the set of amino acid-coding codons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression.

    Science.gov (United States)

    Jiang, Xiaoou; Yu, Han; Teo, Cui Rong; Tan, Genim Siu Xian; Goh, Sok Chin; Patel, Parasvi; Chua, Yiqiang Kevin; Hameed, Nasirah Banu Sahul; Bertoletti, Antonio; Patzel, Volker

    2016-09-01

    Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.

  9. Human genetic factors in tuberculosis: an update.

    Science.gov (United States)

    van Tong, Hoang; Velavan, Thirumalaisamy P; Thye, Thorsten; Meyer, Christian G

    2017-09-01

    Tuberculosis (TB) is a major threat to human health, especially in many developing countries. Human genetic variability has been recognised to be of great relevance in host responses to Mycobacterium tuberculosis infection and in regulating both the establishment and the progression of the disease. An increasing number of candidate gene and genome-wide association studies (GWAS) have focused on human genetic factors contributing to susceptibility or resistance to TB. To update previous reviews on human genetic factors in TB we searched the MEDLINE database and PubMed for articles from 1 January 2014 through 31 March 2017 and reviewed the role of human genetic variability in TB. Search terms applied in various combinations were 'tuberculosis', 'human genetics', 'candidate gene studies', 'genome-wide association studies' and 'Mycobacterium tuberculosis'. Articles in English retrieved and relevant references cited in these articles were reviewed. Abstracts and reports from meetings were also included. This review provides a recent summary of associations of polymorphisms of human genes with susceptibility/resistance to TB. © 2017 John Wiley & Sons Ltd.

  10. Behavior genetic modeling of human fertility

    DEFF Research Database (Denmark)

    Rodgers, J L; Kohler, H P; Kyvik, K O

    2001-01-01

    Behavior genetic designs and analysis can be used to address issues of central importance to demography. We use this methodology to document genetic influence on human fertility. Our data come from Danish twin pairs born from 1953 to 1959, measured on age at first attempt to get pregnant (First......Try) and number of children (NumCh). Behavior genetic models were fitted using structural equation modeling and DF analysis. A consistent medium-level additive genetic influence was found for NumCh, equal across genders; a stronger genetic influence was identified for FirstTry, greater for females than for males....... A bivariate analysis indicated significant shared genetic variance between NumCh and FirstTry....

  11. Property and Human Genetic Information

    DEFF Research Database (Denmark)

    Nielsen, Morten Ebbe Juul; Kongsholm, Nana Cecilie Halmsted; Schovsbo, Jens Hemmingsen

    2018-01-01

    Do donors (of samples from which genetic information is derived) have some sort of pre-legal (moral) or legal property right tothat information? In this paper, we address this question from both a moral philosophical and a legal point of view. We argue thatphilosophical theories about property do...

  12. Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal

    Science.gov (United States)

    Zamudio, Gabriel S.; José, Marco V.

    2018-03-01

    In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.

  13. Code system to compute radiation dose in human phantoms

    International Nuclear Information System (INIS)

    Ryman, J.C.; Cristy, M.; Eckerman, K.F.; Davis, J.L.; Tang, J.S.; Kerr, G.D.

    1986-01-01

    Monte Carlo photon transport code and a code using Monte Carlo integration of a point kernel have been revised to incorporate human phantom models for an adult female, juveniles of various ages, and a pregnant female at the end of the first trimester of pregnancy, in addition to the adult male used earlier. An analysis code has been developed for deriving recommended values of specific absorbed fractions of photon energy. The computer code system and calculational method are described, emphasizing recent improvements in methods

  14. An overview of human genetic privacy.

    Science.gov (United States)

    Shi, Xinghua; Wu, Xintao

    2017-01-01

    The study of human genomics is becoming a Big Data science, owing to recent biotechnological advances leading to availability of millions of personal genome sequences, which can be combined with biometric measurements from mobile apps and fitness trackers, and of human behavior data monitored from mobile devices and social media. With increasing research opportunities for integrative genomic studies through data sharing, genetic privacy emerges as a legitimate yet challenging concern that needs to be carefully addressed, not only for individuals but also for their families. In this paper, we present potential genetic privacy risks and relevant ethics and regulations for sharing and protecting human genomics data. We also describe the techniques for protecting human genetic privacy from three broad perspectives: controlled access, differential privacy, and cryptographic solutions. © 2016 New York Academy of Sciences.

  15. An overview of human genetic privacy

    Science.gov (United States)

    Shi, Xinghua; Wu, Xintao

    2016-01-01

    The study of human genomics is becoming a Big Data science, owing to recent biotechnological advances leading to availability of millions of personal genome sequences, which can be combined with biometric measurements from mobile apps and fitness trackers, and of human behavior data monitored from mobile devices and social media. With increasing research opportunities for integrative genomic studies through data sharing, genetic privacy emerges as a legitimate yet challenging concern that needs to be carefully addressed, not only for individuals but also for their families. In this paper, we present potential genetic privacy risks and relevant ethics and regulations for sharing and protecting human genomics data. We also describe the techniques for protecting human genetic privacy from three broad perspectives: controlled access, differential privacy, and cryptographic solutions. PMID:27626905

  16. Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes

    KAUST Repository

    Alam, Tanvir

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  17. The "periodic table" of the genetic code: A new way to look at the code and the decoding process.

    Science.gov (United States)

    Komar, Anton A

    2016-01-01

    Henri Grosjean and Eric Westhof recently presented an information-rich, alternative view of the genetic code, which takes into account current knowledge of the decoding process, including the complex nature of interactions between mRNA, tRNA and rRNA that take place during protein synthesis on the ribosome, and it also better reflects the evolution of the code. The new asymmetrical circular genetic code has a number of advantages over the traditional codon table and the previous circular diagrams (with a symmetrical/clockwise arrangement of the U, C, A, G bases). Most importantly, all sequence co-variances can be visualized and explained based on the internal logic of the thermodynamics of codon-anticodon interactions.

  18. The coevolution of genes and genetic codes: Crick's frozen accident revisited.

    Science.gov (United States)

    Sella, Guy; Ardell, David H

    2006-09-01

    The standard genetic code is the nearly universal system for the translation of genes into proteins. The code exhibits two salient structural characteristics: it possesses a distinct organization that makes it extremely robust to errors in replication and translation, and it is highly redundant. The origin of these properties has intrigued researchers since the code was first discovered. One suggestion, which is the subject of this review, is that the code's organization is the outcome of the coevolution of genes and genetic codes. In 1968, Francis Crick explored the possible implications of coevolution at different stages of code evolution. Although he argues that coevolution was likely to influence the evolution of the code, he concludes that it falls short of explaining the organization of the code we see today. The recent application of mathematical modeling to study the effects of errors on the course of coevolution, suggests a different conclusion. It shows that coevolution readily generates genetic codes that are highly redundant and similar in their error-correcting organization to the standard code. We review this recent work and suggest that further affirmation of the role of coevolution can be attained by investigating the extent to which the outcome of coevolution is robust to other influences that were present during the evolution of the code.

  19. Codon size reduction as the origin of the triplet genetic code.

    Directory of Open Access Journals (Sweden)

    Pavel V Baranov

    Full Text Available The genetic code appears to be optimized in its robustness to missense errors and frameshift errors. In addition, the genetic code is near-optimal in terms of its ability to carry information in addition to the sequences of encoded proteins. As evolution has no foresight, optimality of the modern genetic code suggests that it evolved from less optimal code variants. The length of codons in the genetic code is also optimal, as three is the minimal nucleotide combination that can encode the twenty standard amino acids. The apparent impossibility of transitions between codon sizes in a discontinuous manner during evolution has resulted in an unbending view that the genetic code was always triplet. Yet, recent experimental evidence on quadruplet decoding, as well as the discovery of organisms with ambiguous and dual decoding, suggest that the possibility of the evolution of triplet decoding from living systems with non-triplet decoding merits reconsideration and further exploration. To explore this possibility we designed a mathematical model of the evolution of primitive digital coding systems which can decode nucleotide sequences into protein sequences. These coding systems can evolve their nucleotide sequences via genetic events of Darwinian evolution, such as point-mutations. The replication rates of such coding systems depend on the accuracy of the generated protein sequences. Computer simulations based on our model show that decoding systems with codons of length greater than three spontaneously evolve into predominantly triplet decoding systems. Our findings suggest a plausible scenario for the evolution of the triplet genetic code in a continuous manner. This scenario suggests an explanation of how protein synthesis could be accomplished by means of long RNA-RNA interactions prior to the emergence of the complex decoding machinery, such as the ribosome, that is required for stabilization and discrimination of otherwise weak triplet codon

  20. Property and Human Genetic Information

    DEFF Research Database (Denmark)

    Nielsen, Morten Ebbe Juul; Kongsholm, Nana Cecilie Halmsted; Schovsbo, Jens Hemmingsen

    2018-01-01

    Do donors (of samples from which genetic information is derived) have some sort of pre-legal (moral) or legal property right to that information? In this paper, we address this question from both a moral philosophical and a legal point of view. We argue that philosophical theories about property do...... innovation in society. A balancing of interest must take place and we have to make sure that patent protection serves general societal interests and not just those of special interest groups be that inventors or donors....

  1. Critical roles for a genetic code alteration in the evolution of the genus Candida.

    Science.gov (United States)

    Silva, Raquel M; Paredes, João A; Moura, Gabriela R; Manadas, Bruno; Lima-Costa, Tatiana; Rocha, Rita; Miranda, Isabel; Gomes, Ana C; Koerkamp, Marian J G; Perrot, Michel; Holstege, Frank C P; Boucherie, Hélian; Santos, Manuel A S

    2007-10-31

    During the last 30 years, several alterations to the standard genetic code have been discovered in various bacterial and eukaryotic species. Sense and nonsense codons have been reassigned or reprogrammed to expand the genetic code to selenocysteine and pyrrolysine. These discoveries highlight unexpected flexibility in the genetic code, but do not elucidate how the organisms survived the proteome chaos generated by codon identity redefinition. In order to shed new light on this question, we have reconstructed a Candida genetic code alteration in Saccharomyces cerevisiae and used a combination of DNA microarrays, proteomics and genetics approaches to evaluate its impact on gene expression, adaptation and sexual reproduction. This genetic manipulation blocked mating, locked yeast in a diploid state, remodelled gene expression and created stress cross-protection that generated adaptive advantages under environmental challenging conditions. This study highlights unanticipated roles for codon identity redefinition during the evolution of the genus Candida, and strongly suggests that genetic code alterations create genetic barriers that speed up speciation.

  2. A genetic atlas of human admixture history

    Science.gov (United States)

    Hellenthal, Garrett; Busby, George B.J.; Band, Gavin; Wilson, James F.; Capelli, Cristian

    2014-01-01

    Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed using genetic data alone and encompassing over 100 events occurring over the past 4,000 years. We identify events whose dates and participants suggest they describe genetic impacts of the Mongol Empire, Arab slave trade, Bantu expansion, first millennium CE migrations in eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations. PMID:24531965

  3. A genetic atlas of human admixture history.

    Science.gov (United States)

    Hellenthal, Garrett; Busby, George B J; Band, Gavin; Wilson, James F; Capelli, Cristian; Falush, Daniel; Myers, Simon

    2014-02-14

    Modern genetic data combined with appropriate statistical methods have the potential to contribute substantially to our understanding of human history. We have developed an approach that exploits the genomic structure of admixed populations to date and characterize historical mixture events at fine scales. We used this to produce an atlas of worldwide human admixture history, constructed by using genetic data alone and encompassing over 100 events occurring over the past 4000 years. We identified events whose dates and participants suggest they describe genetic impacts of the Mongol empire, Arab slave trade, Bantu expansion, first millennium CE migrations in Eastern Europe, and European colonialism, as well as unrecorded events, revealing admixture to be an almost universal force shaping human populations.

  4. Genetic hotels for the standard genetic code: evolutionary analysis based upon novel three-dimensional algebraic models.

    Science.gov (United States)

    José, Marco V; Morgado, Eberto R; Govezensky, Tzipe

    2011-07-01

    Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.

  5. How American Nurses Association Code of Ethics informs genetic/genomic nursing.

    Science.gov (United States)

    Tluczek, Audrey; Twal, Marie E; Beamer, Laura Curr; Burton, Candace W; Darmofal, Leslie; Kracun, Mary; Zanni, Karen L; Turner, Martha

    2018-01-01

    Members of the Ethics and Public Policy Committee of the International Society of Nurses in Genetics prepared this article to assist nurses in interpreting the American Nurses Association (2015) Code of Ethics for Nurses with Interpretive Statements (Code) within the context of genetics/genomics. The Code explicates the nursing profession's norms and responsibilities in managing ethical issues. The nearly ubiquitous application of genetic/genomic technologies in healthcare poses unique ethical challenges for nursing. Therefore, authors conducted literature searches that drew from various professional resources to elucidate implications of the code in genetic/genomic nursing practice, education, research, and public policy. We contend that the revised Code coupled with the application of genomic technologies to healthcare creates moral obligations for nurses to continually refresh their knowledge and capacities to translate genetic/genomic research into evidence-based practice, assure the ethical conduct of scientific inquiry, and continually develop or revise national/international guidelines that protect the rights of individuals and populations within the context of genetics/genomics. Thus, nurses have an ethical responsibility to remain knowledgeable about advances in genetics/genomics and incorporate emergent evidence into their work.

  6. Genetic variation in an individual human exome.

    Directory of Open Access Journals (Sweden)

    Pauline C Ng

    2008-08-01

    Full Text Available There is much interest in characterizing the variation in a human individual, because this may elucidate what contributes significantly to a person's phenotype, thereby enabling personalized genomics. We focus here on the variants in a person's 'exome,' which is the set of exons in a genome, because the exome is believed to harbor much of the functional variation. We provide an analysis of the approximately 12,500 variants that affect the protein coding portion of an individual's genome. We identified approximately 10,400 nonsynonymous single nucleotide polymorphisms (nsSNPs in this individual, of which approximately 15-20% are rare in the human population. We predict approximately 1,500 nsSNPs affect protein function and these tend be heterozygous, rare, or novel. Of the approximately 700 coding indels, approximately half tend to have lengths that are a multiple of three, which causes insertions/deletions of amino acids in the corresponding protein, rather than introducing frameshifts. Coding indels also occur frequently at the termini of genes, so even if an indel causes a frameshift, an alternative start or stop site in the gene can still be used to make a functional protein. In summary, we reduced the set of approximately 12,500 nonsilent coding variants by approximately 8-fold to a set of variants that are most likely to have major effects on their proteins' functions. This is our first glimpse of an individual's exome and a snapshot of the current state of personalized genomics. The majority of coding variants in this individual are common and appear to be functionally neutral. Our results also indicate that some variants can be used to improve the current NCBI human reference genome. As more genomes are sequenced, many rare variants and non-SNP variants will be discovered. We present an approach to analyze the coding variation in humans by proposing multiple bioinformatic methods to hone in on possible functional variation.

  7. Junk DNA and the long non-coding RNA twist in cancer genetics

    NARCIS (Netherlands)

    H. Ling (Hui); K. Vincent; M. Pichler; R. Fodde (Riccardo); I. Berindan-Neagoe (Ioana); F.J. Slack (Frank); G.A. Calin (George)

    2015-01-01

    textabstractThe central dogma of molecular biology states that the flow of genetic information moves from DNA to RNA to protein. However, in the last decade this dogma has been challenged by new findings on non-coding RNAs (ncRNAs) such as microRNAs (miRNAs). More recently, long non-coding RNAs

  8. Chromatin remodeling: the interface between extrinsic cues and the genetic code?

    Science.gov (United States)

    Ezzat, Shereen

    2008-10-01

    The successful completion of the human genome project ushered a new era of hope and skepticism. However, the promise of finding the fundamental basis of human traits and diseases appears less than fulfilled. The original premise was that the DNA sequence of every gene would allow precise characterization of critical differences responsible for altered cellular functions. The characterization of intragenic mutations in cancers paved the way for early screening and the design of targeted therapies. However, it has also become evident that unmasking genetic codes alone cannot explain the diversity of disease phenotypes within a population. Further, classic genetics has not been able to explain the differences that have been observed among identical twins or even cloned animals. This new reality has re-ignited interest in the field of epigenetics. While traditionally defined as heritable changes that can alter gene expression without affecting the corresponding DNA sequence, this definition has come into question. The extent to which epigenetic change can also be acquired in response to chemical stimuli represents an exciting dimension in the "nature vs nurture" debate. In this review I will describe a series of studies in my laboratory that illustrate the significance of epigenetics and its potential clinical implications.

  9. Environmental and genetic interactions in human cancer

    International Nuclear Information System (INIS)

    Paterson, M.C.

    Humans, depending upon their genetic make-up, differ in their susceptibility to the cancer-causing effects of extrinsic agents. Clinical and laboratory studies on the hereditary disorder, ataxia telangiectasia (AT) show that persons afflicted with this are cancer-prone and unusually sensitive to conventional radiotherapy. Their skin cells, when cultured, are hypersensitive to killing by ionizing radiation, being defective in the enzymatic repair of radiation-induced damange to the genetic material, deoxyribonucleic acid (DNA). This molecular finding implicates DNA damage and its imperfect repair as an early step in the induction of human cancer by radiation and other carcinogens. The parents of AT patients are clincally normal but their cultured cells are often moderately radiosensitive. The increased radiosensitivity of cultured cells offers a means of identifying a presumed cancer-prone subpopulation that should avoid undue exposure to certain carcinogens. The radioresponse of cells from patients with other cancer-associated genetic disorders and persons suspected of being genetically predisposed to radiation-induced cancer has also been measured. Increased cell killing by γ-rays appears in the complex genetic disease, tuberous sclerosis. Cells from cancer-stricken members of a leukemia-prone family are also radiosensitive, as are cells from one patient with radiation-associated breast cancer. These radiobiological data, taken together, strongly suggest that genetic factors can interact with extrinsic agents and thereby play a greater causative role in the development of common cancers in man than previously thought. (L.L.)

  10. JPEG2000 COMPRESSION CODING USING HUMAN VISUAL SYSTEM MODEL

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang; Wu Chengke

    2005-01-01

    In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distortion. The novelty is that the method of visual weighting is not lifting the coefficients in wavelet domain, but is complemented by code stream organization. It remains all the features of Embedded Block Coding with Optimized Truncation (EBCOT) such as resolution progressive, good robust for error bit spread and compatibility of lossless compression. Well performed than other methods, it keeps the shortest standard codestream and decompression time and owns the ability of VIsual Progressive (VIP) coding.

  11. An overview of human genetic privacy

    OpenAIRE

    Shi, Xinghua; Wu, Xintao

    2016-01-01

    The study of human genomics is becoming a Big Data science, owing to recent biotechnological advances leading to availability of millions of personal genome sequences, which can be combined with biometric measurements from mobile apps and fitness trackers, and of human behavior data monitored from mobile devices and social media. With increasing research opportunities for integrative genomic studies through data sharing, genetic privacy emerges as a legitimate yet challenging concern that nee...

  12. Human genetics: international projects and personalized medicine.

    Science.gov (United States)

    Apellaniz-Ruiz, Maria; Gallego, Cristina; Ruiz-Pinto, Sara; Carracedo, Angel; Rodríguez-Antona, Cristina

    2016-03-01

    In this article, we present the progress driven by the recent technological advances and new revolutionary massive sequencing technologies in the field of human genetics. We discuss this knowledge in relation with drug response prediction, from the germline genetic variation compiled in the 1000 Genomes Project or in the Genotype-Tissue Expression project, to the phenome-genome archives, the international cancer projects, such as The Cancer Genome Atlas or the International Cancer Genome Consortium, and the epigenetic variation and its influence in gene expression, including the regulation of drug metabolism. This review is based on the lectures presented by the speakers of the Symposium "Human Genetics: International Projects & New Technologies" from the VII Conference of the Spanish Pharmacogenetics and Pharmacogenomics Society, held on the 20th and 21st of April 2015.

  13. National Society of Genetic Counselors Code of Ethics: Explication of 2017 Revisions.

    Science.gov (United States)

    Senter, Leigha; Bennett, Robin L; Madeo, Anne C; Noblin, Sarah; Ormond, Kelly E; Schneider, Kami Wolfe; Swan, Kelli; Virani, Alice

    2018-02-01

    The Code of Ethics (COE) of the National Society of Genetic Counselors (NSGC) was adopted in 1992 and was later revised and adopted in 2006. In 2016, the NSGC Code of Ethics Review Task Force (COERTF) was convened to review the COE. The COERTF reviewed ethical codes written by other professional organizations and suggested changes that would better reflect the current and evolving nature of the genetic counseling profession. The COERTF received input from the society's legal counsel, Board of Directors, and members-at-large. A revised COE was proposed to the membership and approved and adopted in April 2017. The revisions and rationale for each are presented.

  14. The genetic component of human longevity

    DEFF Research Database (Denmark)

    Dato, Serena; Thinggaard, Mette Sørensen; De Rango, Francesco

    2018-01-01

    In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic ...

  15. A global reference for human genetic variation

    DEFF Research Database (Denmark)

    Auton, Adam; Abecasis, Goncalo R.; M. Altshuler, David

    2015-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals ...

  16. Antigenic and genetic variability of human metapneumoviruses

    NARCIS (Netherlands)

    S. Herfst (Sander); L. Sprong; P.A. Cane; E. Forleo-Neto; A.D.M.E. Osterhaus (Albert); R.A.M. Fouchier (Ron); R.L. de Swart (Rik); B.G. van den Hoogen (Bernadette)

    2004-01-01

    textabstractHuman metapneumovirus (HMPV) is a member of the subfamily Pneumovirinae within the family Paramyxo- viridae. Other members of this subfamily, respiratory syncytial virus and avian pneumovirus, can be divided into subgroups on the basis of genetic or antigenic differences or both. For

  17. Efficient Dual Domain Decoding of Linear Block Codes Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Ahmed Azouaoui

    2012-01-01

    Full Text Available A computationally efficient algorithm for decoding block codes is developed using a genetic algorithm (GA. The proposed algorithm uses the dual code in contrast to the existing genetic decoders in the literature that use the code itself. Hence, this new approach reduces the complexity of decoding the codes of high rates. We simulated our algorithm in various transmission channels. The performance of this algorithm is investigated and compared with competitor decoding algorithms including Maini and Shakeel ones. The results show that the proposed algorithm gives large gains over the Chase-2 decoding algorithm and reach the performance of the OSD-3 for some quadratic residue (QR codes. Further, we define a new crossover operator that exploits the domain specific information and compare it with uniform and two point crossover. The complexity of this algorithm is also discussed and compared to other algorithms.

  18. SHEAN (Simplified Human Error Analysis code) and automated THERP

    International Nuclear Information System (INIS)

    Wilson, J.R.

    1993-01-01

    One of the most widely used human error analysis tools is THERP (Technique for Human Error Rate Prediction). Unfortunately, this tool has disadvantages. The Nuclear Regulatory Commission, realizing these drawbacks, commissioned Dr. Swain, the author of THERP, to create a simpler, more consistent tool for deriving human error rates. That effort produced the Accident Sequence Evaluation Program Human Reliability Analysis Procedure (ASEP), which is more conservative than THERP, but a valuable screening tool. ASEP involves answering simple questions about the scenario in question, and then looking up the appropriate human error rate in the indicated table (THERP also uses look-up tables, but four times as many). The advantages of ASEP are that human factors expertise is not required, and the training to use the method is minimal. Although not originally envisioned by Dr. Swain, the ASEP approach actually begs to be computerized. That WINCO did, calling the code SHEAN, for Simplified Human Error ANalysis. The code was done in TURBO Basic for IBM or IBM-compatible MS-DOS, for fast execution. WINCO is now in the process of comparing this code against THERP for various scenarios. This report provides a discussion of SHEAN

  19. Functional characterization of genetic enzyme variations in human lipoxygenases

    Directory of Open Access Journals (Sweden)

    Thomas Horn

    2013-01-01

    Full Text Available Mammalian lipoxygenases play a role in normal cell development and differentiation but they have also been implicated in the pathogenesis of cardiovascular, hyperproliferative and neurodegenerative diseases. As lipid peroxidizing enzymes they are involved in the regulation of cellular redox homeostasis since they produce lipid hydroperoxides, which serve as an efficient source for free radicals. There are various epidemiological correlation studies relating naturally occurring variations in the six human lipoxygenase genes (SNPs or rare mutations to the frequency for various diseases in these individuals, but for most of the described variations no functional data are available. Employing a combined bioinformatical and enzymological strategy, which included structural modeling and experimental site-directed mutagenesis, we systematically explored the structural and functional consequences of non-synonymous genetic variations in four different human lipoxygenase genes (ALOX5, ALOX12, ALOX15, and ALOX15B that have been identified in the human 1000 genome project. Due to a lack of a functional expression system we resigned to analyze the functionality of genetic variations in the hALOX12B and hALOXE3 gene. We found that most of the frequent non-synonymous coding SNPs are located at the enzyme surface and hardly alter the enzyme functionality. In contrast, genetic variations which affect functional important amino acid residues or lead to truncated enzyme variations (nonsense mutations are usually rare with a global allele frequency<0.1%. This data suggest that there appears to be an evolutionary pressure on the coding regions of the lipoxygenase genes preventing the accumulation of loss-of-function variations in the human population.

  20. De novo origin of human protein-coding genes.

    Directory of Open Access Journals (Sweden)

    Dong-Dong Wu

    2011-11-01

    Full Text Available The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA-seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes.

  1. De Novo Origin of Human Protein-Coding Genes

    Science.gov (United States)

    Wu, Dong-Dong; Irwin, David M.; Zhang, Ya-Ping

    2011-01-01

    The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes. PMID:22102831

  2. Open Genetic Code: on open source in the life sciences

    OpenAIRE

    Deibel, Eric

    2014-01-01

    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life sciences refers to access, sharing and collaboration as informatic practices. This includes open source as an experimental model and as a more sophisticated approach of genetic engineering. The first ...

  3. Symmetries in Genetic Systems and the Concept of Geno-Logical Coding

    Directory of Open Access Journals (Sweden)

    Sergey V. Petoukhov

    2016-12-01

    Full Text Available The genetic code of amino acid sequences in proteins does not allow understanding and modeling of inherited processes such as inborn coordinated motions of living bodies, innate principles of sensory information processing, quasi-holographic properties, etc. To be able to model these phenomena, the concept of geno-logical coding, which is connected with logical functions and Boolean algebra, is put forward. The article describes basic pieces of evidence in favor of the existence of the geno-logical code, which exists in p­arallel with the known genetic code of amino acid sequences but which serves for transferring inherited processes along chains of generations. These pieces of evidence have been received due to the analysis of symmetries in structures of molecular-genetic systems. The analysis has revealed a close connection of the genetic system with dyadic groups of binary numbers and with other mathematical objects, which are related with dyadic groups: Walsh functions (which are algebraic characters of dyadic groups, bit-reversal permutations, logical holography, etc. These results provide a new approach for mathematical modeling of genetic structures, which uses known mathematical formalisms from technological fields of noise-immunity coding of information, binary analysis, logical holography, and digital devices of artificial intellect. Some opportunities for a development of algebraic-logical biology are opened.

  4. The Graph, Geometry and Symmetries of the Genetic Code with Hamming Metric

    Directory of Open Access Journals (Sweden)

    Reijer Lenstra

    2015-07-01

    Full Text Available The similarity patterns of the genetic code result from similar codons encoding similar messages. We develop a new mathematical model to analyze these patterns. The physicochemical characteristics of amino acids objectively quantify their differences and similarities; the Hamming metric does the same for the 64 codons of the codon set. (Hamming distances equal the number of different codon positions: AAA and AAC are at 1-distance; codons are maximally at 3-distance. The CodonPolytope, a 9-dimensional geometric object, is spanned by 64 vertices that represent the codons and the Euclidian distances between these vertices correspond one-to-one with intercodon Hamming distances. The CodonGraph represents the vertices and edges of the polytope; each edge equals a Hamming 1-distance. The mirror reflection symmetry group of the polytope is isomorphic to the largest permutation symmetry group of the codon set that preserves Hamming distances. These groups contain 82,944 symmetries. Many polytope symmetries coincide with the degeneracy and similarity patterns of the genetic code. These code symmetries are strongly related with the face structure of the polytope with smaller faces displaying stronger code symmetries. Splitting the polytope stepwise into smaller faces models an early evolution of the code that generates this hierarchy of code symmetries. The canonical code represents a class of 41,472 codes with equivalent symmetries; a single class among an astronomical number of symmetry classes comprising all possible codes.

  5. Human Genetics of Diabetic Retinopathy: Current Perspectives

    Directory of Open Access Journals (Sweden)

    Daniel P. K. Ng

    2010-01-01

    Full Text Available Diabetic retinopathy (DR is a most severe microvascular complication which, if left unchecked, can be sight-threatening. With the global prevalence of diabetes being relentlessly projected to rise to 438 million subjects by 2030, DR will undoubtedly pose a major public health concern. Efforts to unravel the human genetics of DR have been undertaken using the candidate gene and linkage approaches, while GWAS efforts are still lacking. Aside from evidence for a few genes including aldose reductase and vascular endothelial growth factor, the genetics of DR remain poorly elucidated. Nevertheless, the promise of impactful scientific discoveries may be realized if concerted and collaborative efforts are mounted to identify the genes for DR. Harnessing new genetic technologies and resources such as the upcoming 1000 Genomes Project will help advance this field of research, and potentially lead to a rich harvest of insights into the biological mechanisms underlying this debilitating complication.

  6. Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?

    Science.gov (United States)

    Kubyshkin, Vladimir; Budisa, Nediljko

    2017-08-01

    The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Human Genetic Engineering: A Survey of Student Value Stances

    Science.gov (United States)

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  8. Human genetics in troubled times and places.

    Science.gov (United States)

    Harper, Peter S

    2018-01-01

    The development of human genetics world-wide during the twentieth century, especially across Europe, has occurred against a background of repeated catastrophes, including two world wars and the ideological problems and repression posed by Nazism and Communism. The published scientific literature gives few hints of these problems and there is a danger that they will be forgotten. The First World War was largely indiscriminate in its carnage, but World War 2 and the preceding years of fascism were associated with widespread migration, especially of Jewish workers expelled from Germany, and of their children, a number of whom would become major contributors to the post-war generation of human and medical geneticists in Britain and America. In Germany itself, eminent geneticists were also involved in the abuses carried out in the name of 'eugenics' and 'race biology'. However, geneticists in America, Britain and the rest of Europe were largely responsible for the ideological foundations of these abuses. In the Soviet Union, geneticists and genetics itself became the object of persecution from the 1930s till as late as the mid 1960s, with an almost complete destruction of the field during this time; this extended also to Eastern Europe and China as part of the influence of Russian communism. Most recently, at the end of the twentieth century, China saw a renewal of government sponsored eugenics programmes, now mostly discarded. During the post-world war 2 decades, human genetics research benefited greatly from recognition of the genetic dangers posed by exposure to radiation, following the atomic bomb explosions in Japan, atmospheric testing and successive accidental nuclear disasters in Russia. Documenting and remembering these traumatic events, now largely forgotten among younger workers, is essential if we are to fully understand the history of human genetics and avoid the repetition of similar disasters in the future. The power of modern human genetic and genomic

  9. Human resources managers as custodians of the King III code

    Directory of Open Access Journals (Sweden)

    Frank de Beer

    2015-05-01

    Full Text Available The objective of this research was to perform an exploratory study on the knowledge and understanding of the King III code among Human Resources (HR managers in South African companies. The King III code is a comprehensive international corporate governance regime which addresses the financial, social, ethical and environmental practices of organisations. HR management plays a role in managing corporate governance by using the King III code as a guideline. The main research questions were: Does HR management know, understand, apply, and have the ability to use the King III code in terms of ethical decision-making? What role does HR management play in corporate governance? A random sample of available HR managers, senior HR consultants and HR directors was taken and semi-structured interviews were conducted. The results indicated that the respondents had no in-depth knowledge of the King III code. They did not fully understand the King III code and its implications nor did they use it to ensure ethical management. The themes most emphasised by the participants were: culture, reward and remuneration, policies and procedures and performance management. The participants emphasised the importance of these items  and HR’s role in managing them.

  10. The genetic component of human longevity

    DEFF Research Database (Denmark)

    Dato, Serena; Thinggaard, Mette Sørensen; De Rango, Francesco

    2018-01-01

    In human longevity studies, single nucleotide polymorphism (SNP) analysis identified a large number of genetic variants with small effects, yet not easily replicable in different populations. New insights may come from the combined analysis of different SNPs, especially when grouped by metabolic...... pathway. We applied this approach to study the joint effect on longevity of SNPs belonging to three candidate pathways, the insulin/insulin-like growth factor signalling (IIS), DNA repair and pro/antioxidant. We analysed data from 1,058 tagging SNPs in 140 genes, collected in 1825 subjects (1......, was further found influencing longitudinal survival in nonagenarian females (p = .026). Results here presented highlight the validity of SNP-SNP interactions analyses for investigating the genetics of human longevity, confirming previously identified markers but also pointing to novel genes as central nodes...

  11. Human genetics in troubled times and places

    OpenAIRE

    Harper, Peter S.

    2017-01-01

    The development of human genetics world-wide during the twentieth century, especially across Europe, has occurred against a background of repeated catastrophes, including two world wars and the ideological problems and repression posed by Nazism and Communism. The published scientific literature gives few hints of these problems and there is a danger that they will be forgotten. The First World War was largely indiscriminate in its carnage, but World War 2 and the preceding years of fascism w...

  12. Non-codingRNA sequence variations in human chronic lymphocytic leukemia and colorectal cancer.

    Science.gov (United States)

    Wojcik, Sylwia E; Rossi, Simona; Shimizu, Masayoshi; Nicoloso, Milena S; Cimmino, Amelia; Alder, Hansjuerg; Herlea, Vlad; Rassenti, Laura Z; Rai, Kanti R; Kipps, Thomas J; Keating, Michael J; Croce, Carlo M; Calin, George A

    2010-02-01

    Cancer is a genetic disease in which the interplay between alterations in protein-coding genes and non-coding RNAs (ncRNAs) plays a fundamental role. In recent years, the full coding component of the human genome was sequenced in various cancers, whereas such attempts related to ncRNAs are still fragmentary. We screened genomic DNAs for sequence variations in 148 microRNAs (miRNAs) and ultraconserved regions (UCRs) loci in patients with chronic lymphocytic leukemia (CLL) or colorectal cancer (CRC) by Sanger technique and further tried to elucidate the functional consequences of some of these variations. We found sequence variations in miRNAs in both sporadic and familial CLL cases, mutations of UCRs in CLLs and CRCs and, in certain instances, detected functional effects of these variations. Furthermore, by integrating our data with previously published data on miRNA sequence variations, we have created a catalog of DNA sequence variations in miRNAs/ultraconserved genes in human cancers. These findings argue that ncRNAs are targeted by both germ line and somatic mutations as well as by single-nucleotide polymorphisms with functional significance for human tumorigenesis. Sequence variations in ncRNA loci are frequent and some have functional and biological significance. Such information can be exploited to further investigate on a genome-wide scale the frequency of genetic variations in ncRNAs and their functional meaning, as well as for the development of new diagnostic and prognostic markers for leukemias and carcinomas.

  13. Research for genetic instability of human genome

    Energy Technology Data Exchange (ETDEWEB)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M. (National Inst. of Radiological Sciences, Chiba (Japan)); Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author).

  14. Research for genetic instability of human genome

    International Nuclear Information System (INIS)

    Hori, T.; Takahashi, E.; Tsuji, H.; Yamauchi, M.; Murata, M.

    1992-01-01

    In the present review paper, the potential relevance of chromosomal fragile sites to carcinogenesis and mutagenesis is discussed based on our own and other's studies. Recent evidence indicate that fragile sites may act as predisposition factors involved in chromosomal instability of the human genome and that the sites may be preferential targets for various DNA damaging agents including ionizing radiation. It is also demonstrated that some critical genomic rearrangements at the fragile sites may contribute towards oncogenesis and that individuals carrying heritable form of fragile site may be at the risk. Although clinical significance of autosomal fragile sites has been a matter of discussion, a fragile site of the X chromosome is known to be associated with an X-linked genetic diseases, called fragile X syndrome. Molecular events leading to the fragile X syndrome have recently been elucidated. The fragile X genotype can be characterized by an increased amount of p(CCG)n repeat DNA sequence in the FMR-1 gene and the repeated sequences are shown to be unstable in both meiosis and mitosis. These repeats might exhibit higher mutation rate than is generally seen in the human genome. Further studies on the fragile sites in molecular biology and radiation biology will yield relevant data to the molecular mechanisms of genetic instability of the human genome as well as to better assessment of genetic effect of ionizing radiation. (author)

  15. The Impact of Diagnostic Code Misclassification on Optimizing the Experimental Design of Genetic Association Studies

    Directory of Open Access Journals (Sweden)

    Steven J. Schrodi

    2017-01-01

    Full Text Available Diagnostic codes within electronic health record systems can vary widely in accuracy. It has been noted that the number of instances of a particular diagnostic code monotonically increases with the accuracy of disease phenotype classification. As a growing number of health system databases become linked with genomic data, it is critically important to understand the effect of this misclassification on the power of genetic association studies. Here, I investigate the impact of this diagnostic code misclassification on the power of genetic association studies with the aim to better inform experimental designs using health informatics data. The trade-off between (i reduced misclassification rates from utilizing additional instances of a diagnostic code per individual and (ii the resulting smaller sample size is explored, and general rules are presented to improve experimental designs.

  16. A Novel Real-coded Quantum-inspired Genetic Algorithm and Its Application in Data Reconciliation

    Directory of Open Access Journals (Sweden)

    Gao Lin

    2012-06-01

    Full Text Available Traditional quantum-inspired genetic algorithm (QGA has drawbacks such as premature convergence, heavy computational cost, complicated coding and decoding process etc. In this paper, a novel real-coded quantum-inspired genetic algorithm is proposed based on interval division thinking. Detailed comparisons with some similar approaches for some standard benchmark functions test validity of the proposed algorithm. Besides, the proposed algorithm is used in two typical nonlinear data reconciliation problems (distilling process and extraction process and simulation results show its efficiency in nonlinear data reconciliation problems.

  17. RNA-DNA sequence differences spell genetic code ambiguities

    DEFF Research Database (Denmark)

    Bentin, Thomas; Nielsen, Michael L

    2013-01-01

    A recent paper in Science by Li et al. 2011(1) reports widespread sequence differences in the human transcriptome between RNAs and their encoding genes termed RNA-DNA differences (RDDs). The findings could add a new layer of complexity to gene expression but the study has been criticized. ...

  18. FitSKIRT: genetic algorithms to automatically fit dusty galaxies with a Monte Carlo radiative transfer code

    Science.gov (United States)

    De Geyter, G.; Baes, M.; Fritz, J.; Camps, P.

    2013-02-01

    We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC 4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different models and techniques and the complexity and degeneracies in the parameter space, we find reasonable agreement between the different models. We conclude that the FitSKIRT method allows comparison between different models and geometries in a quantitative manner and minimizes the need of human intervention and biasing. The high level of automation makes it an ideal tool to use on larger sets of observed data.

  19. Open Genetic Code: on open source in the life sciences.

    Science.gov (United States)

    Deibel, Eric

    2014-01-01

    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life sciences refers to access, sharing and collaboration as informatic practices. This includes open source as an experimental model and as a more sophisticated approach of genetic engineering. The first section discusses the greater flexibly in regard of patenting and the relationship to the introduction of open source in the life sciences. The main argument is that the ownership of knowledge in the life sciences should be reconsidered in the context of the centrality of DNA in informatic formats. This is illustrated by discussing a range of examples of open source models. The second part focuses on open source in synthetic biology as exemplary for the re-materialization of information into food, energy, medicine and so forth. The paper ends by raising the question whether another kind of alternative might be possible: one that looks at open source as a model for an alternative to the commodification of life that is understood as an attempt to comprehensively remove the restrictions from the usage of DNA in any of its formats.

  20. Does genetic diversity predict health in humans?

    Directory of Open Access Journals (Sweden)

    Hanne C Lie

    2009-07-01

    Full Text Available Genetic diversity, especially at genes important for immune functioning within the Major Histocompatibility Complex (MHC, has been associated with fitness-related traits, including disease resistance, in many species. Recently, genetic diversity has been associated with mate preferences in humans. Here we asked whether these preferences are adaptive in terms of obtaining healthier mates. We investigated whether genetic diversity (heterozygosity and standardized mean d(2 at MHC and nonMHC microsatellite loci, predicted health in 153 individuals. Individuals with greater allelic diversity (d(2 at nonMHC loci and at one MHC locus, linked to HLA-DRB1, reported fewer symptoms over a four-month period than individuals with lower d(2. In contrast, there were no associations between MHC or nonMHC heterozygosity and health. NonMHC-d(2 has previously been found to predict male preferences for female faces. Thus, the current findings suggest that nonMHC diversity may play a role in both natural and sexual selection acting on human populations.

  1. Genetic & epigenetic approach to human obesity

    Directory of Open Access Journals (Sweden)

    K Rajender Rao

    2014-01-01

    Full Text Available Obesity is an important clinical and public health challenge, epitomized by excess adipose tissue accumulation resulting from an imbalance in energy intake and energy expenditure. It is a forerunner for a variety of other diseases such as type-2-diabetes (T2D, cardiovascular diseases, some types of cancer, stroke, hyperlipidaemia and can be fatal leading to premature death. Obesity is highly heritable and arises from the interplay of multiple genes and environmental factors. Recent advancements in Genome-wide association studies (GWAS have shown important steps towards identifying genetic risks and identification of genetic markers for lifestyle diseases, especially for a metabolic disorder like obesity. According to the 12 th u0 pdate of Human Obesity Gene Map there are 253 quantity trait loci (QTL for obesity related phenotypes from 61 genome wide scan studies. Contribution of genetic propensity of individual ethnic and racial variations in obesity is an active area of research. Further, understanding its complexity as to how these variations could influence ones susceptibility to become or remain obese will lead us to a greater understanding of how obesity occurs and hopefully, how to prevent and treat this condition. In this review, various strategies adapted for such an analysis based on the recent advances in genome wide and functional variations in human obesity are discussed.

  2. Frozen Accident Pushing 50: Stereochemistry, Expansion, and Chance in the Evolution of the Genetic Code.

    Science.gov (United States)

    Koonin, Eugene V

    2017-05-23

    Nearly 50 years ago, Francis Crick propounded the frozen accident scenario for the evolution of the genetic code along with the hypothesis that the early translation system consisted primarily of RNA. Under the frozen accident perspective, the code is universal among modern life forms because any change in codon assignment would be highly deleterious. The frozen accident can be considered the default theory of code evolution because it does not imply any specific interactions between amino acids and the cognate codons or anticodons, or any particular properties of the code. The subsequent 49 years of code studies have elucidated notable features of the standard code, such as high robustness to errors, but failed to develop a compelling explanation for codon assignments. In particular, stereochemical affinity between amino acids and the cognate codons or anticodons does not seem to account for the origin and evolution of the code. Here, I expand Crick's hypothesis on RNA-only translation system by presenting evidence that this early translation already attained high fidelity that allowed protein evolution. I outline an experimentally testable scenario for the evolution of the code that combines a distinct version of the stereochemical hypothesis, in which amino acids are recognized via unique sites in the tertiary structure of proto-tRNAs, rather than by anticodons, expansion of the code via proto-tRNA duplication, and the frozen accident.

  3. Unassigned Codons, Nonsense Suppression, and Anticodon Modifications in the Evolution of the Genetic Code

    NARCIS (Netherlands)

    P.T.S. van der Gulik (Peter); W.D. Hoff (Wouter)

    2011-01-01

    htmlabstractThe origin of the genetic code is a central open problem regarding the early evolution of life. Here, we consider two undeveloped but important aspects of possible scenarios for the evolutionary pathway of the translation machinery: the role of unassigned codons in early stages

  4. Human genetic issues from scientific and Islamic perspectives | Alwi ...

    African Journals Online (AJOL)

    This paper aims at revealing the Human Genome Project (HGP) and human genetic issues arising from science and Islamic perspectives such as Darwin's evolutionary theory, human cloning and eugenics. Finally, issues arising from the applications of human genetic technology need to be addressed to the best possible ...

  5. Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Jianyong Liu

    2015-01-01

    Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.

  6. Genetic Testing and Its Implications: Human Genetics Researchers Grapple with Ethical Issues.

    Science.gov (United States)

    Rabino, Isaac

    2003-01-01

    Contributes systematic data on the attitudes of scientific experts who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. Finds that they are highly supportive of voluntary testing and the right to know one's genetic heritage. Calls for greater genetic literacy. (Contains 87 references.) (Author/NB)

  7. Genetics of human sensitivity to ultraviolet radiation

    Science.gov (United States)

    Cleaver, James E.

    1994-07-01

    the major human health effects of solar and artificial UV light occur from the UVB and UVC wavelength ranges and involve a variety of short-term and long-term deleterious changes to the skin and eyes. the more important initial damage to cellular macromolecules involves dimerization of adjacent pyrimidines in DNA to produce cyclobutane pyrimidine dimes, (6-4) pyrimidine- pyrimidone, and (6-4) dewar photoproducts. these photoproducts can be repaired by a genetically regulated enzyme system (nucleotide excision repair) which removes oligonucleotides 29-30 nucleotides long that contain the photoproducts, and synthesizes replacement patches. At least a dozen gene products are involved in the process of recognizing photoproducts in DNA, altering local DNA helicity and cleaving the polynucleotide chain at defined positions either side of a photoproduct. Hereditary mutations in many of these genes are recognized in the human genetic disorders xeroderma pigmentosum (XP), Cockayne syndrome (CS), and trichothiodystrophy (TTD). Several of the gene products have other functions involving the regulation of gene transcription which accounts for the complex clinical presentation of repair deficient diseases that involve sensitivity of the skin and eyes to UV light, increased solar carcinogenesis (in XP), demyelination, and ganglial calcification (in CS), hair abnormalities (in TTD), and developmental and neurological abnormalities

  8. Towards A Genetic Business Code For Growth in the South African Transport Industry

    Directory of Open Access Journals (Sweden)

    J.H. Vermeulen

    2003-11-01

    Full Text Available As with each living organism, it is proposed that an organisation possesses a genetic code. In the fast-changing business environment it would be invaluable to know what constitutes organisational growth and success in terms of such a code. To identify this genetic code a quantitative methodological framework, supplemented by a qualitative approach, was used and the views of top management in the Transport Industry were solicited. The Repertory Grid was used as the primary data-collection method. Through a phased data-analysis process an integrated profile of first- and second-order constructs, and opposite poles, was compiled. By utilising deductive and inductive strategies three strands of a Genetic Business Growth Code were identified, namely a Leadership Strand, Organisational Architecture Strand and Internal Orientation Strand. The study confirmed the value of a Genetic Business Code for growth in the Transport Industry. Opsomming Daar word voorgestel dat ’n organisasie, soos elke lewende organisme, oor ’n genetiese kode beskik. In die snelveranderende sake-omgewing sal dit onskatbaar wees om te weet wat organisasiegroei en –sukses veroorsaak. ’n Kwantitatiewe metodologie-raamwerk, aangevul deur ’n kwalitatiewe benadering is gebruik om hierdie genetiese kode te identifiseer, en die menings van topbestuur in die Vervoerbedryf is ingewin met behulp van die “Repertory Grid" as die vernaamste metode van data-insameling. ’n Geïntegreerde profiel van eerste- en tweedeordekonstrukte, met hulle teenoorgestelde pole, is opgestel. Drie stringe van ’n Genetiese Sakegroeikode, nl. ’n Leierskapstring, die Organisasieargitektuur-string en die Innerlike-ingesteldheidstring is geïdentifiseer deur deduktiewe en induktiewe strategieë te gebruik. Die studie bevestig die waarde van ’n Genetiese Sakekode vir groei in die Vervoerbedryf.

  9. Genetic loading on human loving styles.

    Science.gov (United States)

    Emanuele, Enzo; Brondino, Natascia; Pesenti, Sara; Re, Simona; Geroldi, Diego

    2007-12-01

    It has been hypothesized that cerebral neurotransmitters such as dopamine and serotonin could play a role in human romantic bonding. However, no data on the genetic basis of human romantic love are currently available. To address this issue, we looked for associations between markers in neurotransmitter genes (the serotonin transporter gene, 5-HTT; the serotonin receptor 2A, 5HT2A; the dopamine D2 receptor gene, DRD2; and the dopamine D4 receptor gene, DRD4) and the six styles of love as conceptualized by Lee (Eros, Ludus, Storge, Pragma, Mania and Agape). A total of 350 healthy young adults (165 males and 185 females, mean age: 24.1+/-3.9 years, range 18-32 years) filled the 24-item Love Attitudes Scale (LAS) and were genotyped for the following six polymorphic markers: the serotonin transporter-linked polymorphic region (5-HTTLPR), the 5HT2A T102C and C516T polymorphisms, the DRD2 TaqI A and TaqI B variants, and the DRD4 exon 3 VNTR polymorphism. Statistical analysis revealed a significant association between the DRD2 TaqI A genotypes and "Eros" (a loving style characterized by a tendency to develop intense emotional experiences based on the physical attraction to the partner), as well as between the C516T 5HT2A polymorphism and "Mania" (a possessive and dependent romantic attachment, characterized by self-defeating emotions). These associations were present in both sexes and remained significant even after adjustment for potential confounders. Our data provide the first evidence of a possible genetic loading on human loving styles.

  10. Codon usage and expression level of human mitochondrial 13 protein coding genes across six continents.

    Science.gov (United States)

    Chakraborty, Supriyo; Uddin, Arif; Mazumder, Tarikul Huda; Choudhury, Monisha Nath; Malakar, Arup Kumar; Paul, Prosenjit; Halder, Binata; Deka, Himangshu; Mazumder, Gulshana Akthar; Barbhuiya, Riazul Ahmed; Barbhuiya, Masuk Ahmed; Devi, Warepam Jesmi

    2017-12-02

    The study of codon usage coupled with phylogenetic analysis is an important tool to understand the genetic and evolutionary relationship of a gene. The 13 protein coding genes of human mitochondria are involved in electron transport chain for the generation of energy currency (ATP). However, no work has yet been reported on the codon usage of the mitochondrial protein coding genes across six continents. To understand the patterns of codon usage in mitochondrial genes across six different continents, we used bioinformatic analyses to analyze the protein coding genes. The codon usage bias was low as revealed from high ENC value. Correlation between codon usage and GC3 suggested that all the codons ending with G/C were positively correlated with GC3 but vice versa for A/T ending codons with the exception of ND4L and ND5 genes. Neutrality plot revealed that for the genes ATP6, COI, COIII, CYB, ND4 and ND4L, natural selection might have played a major role while mutation pressure might have played a dominant role in the codon usage bias of ATP8, COII, ND1, ND2, ND3, ND5 and ND6 genes. Phylogenetic analysis indicated that evolutionary relationships in each of 13 protein coding genes of human mitochondria were different across six continents and further suggested that geographical distance was an important factor for the origin and evolution of 13 protein coding genes of human mitochondria. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  11. Race, genetics, and human reproductive strategies.

    Science.gov (United States)

    Rushton, J P

    1996-02-01

    The international literature on racial differences is reviewed, novel data are reported, and a distinct pattern is found. People of east Asian ancestry and people of African ancestry average at opposite ends of a continuum, with people of European ancestry averaging intermediately, albeit with much variability within each major race. The racial matrix emerges from measures taken of reproductive behavior, sex hormones, twinning rate, speed of physical maturation, personality, family stability, brain size, intelligence, law abidingness, and social organization. An evolutionary theory of human reproduction is proposed, familiar to biologists as the r-K scale of reproductive strategies. At one end of this scale are r-strategies, which emphasize high reproductive rates; at the other end are K-strategies, which emphasize high levels of parental investment. This scale is generally used to compare the life histories of widely disparate species, but here it is used to describe the immensely smaller variations among human races. It is hypothesized that, again on average, Mongoloid people are more K-selected than Caucasoids, who are more K-selected than Negroids. The r-K scale of reproductive strategies is also mapped on to human evolution. Genetic distances indicate that Africans emerged from the ancestral hominid line about 200,000 years ago, with an African/non-African split about 110,000 years ago, and a Caucasoid/Mongoloid split about 41,000 years ago. Such an ordering fits with and explains how and why the variables cluster.

  12. Automation of RELAP5 input calibration and code validation using genetic algorithm

    International Nuclear Information System (INIS)

    Phung, Viet-Anh; Kööp, Kaspar; Grishchenko, Dmitry; Vorobyev, Yury; Kudinov, Pavel

    2016-01-01

    Highlights: • Automated input calibration and code validation using genetic algorithm is presented. • Predictions generally overlap experiments for individual system response quantities (SRQs). • It was not possible to predict simultaneously experimental maximum flow rate and oscillation period. • Simultaneous consideration of multiple SRQs is important for code validation. - Abstract: Validation of system thermal-hydraulic codes is an important step in application of the codes to reactor safety analysis. The goal of the validation process is to determine how well a code can represent physical reality. This is achieved by comparing predicted and experimental system response quantities (SRQs) taking into account experimental and modelling uncertainties. Parameters which are required for the code input but not measured directly in the experiment can become an important source of uncertainty in the code validation process. Quantification of such parameters is often called input calibration. Calibration and uncertainty quantification may become challenging tasks when the number of calibrated input parameters and SRQs is large and dependencies between them are complex. If only engineering judgment is employed in the process, the outcome can be prone to so called “user effects”. The goal of this work is to develop an automated approach to input calibration and RELAP5 code validation against data on two-phase natural circulation flow instability. Multiple SRQs are used in both calibration and validation. In the input calibration, we used genetic algorithm (GA), a heuristic global optimization method, in order to minimize the discrepancy between experimental and simulation data by identifying optimal combinations of uncertain input parameters in the calibration process. We demonstrate the importance of the proper selection of SRQs and respective normalization and weighting factors in the fitness function. In the code validation, we used maximum flow rate as the

  13. Automation of RELAP5 input calibration and code validation using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Phung, Viet-Anh, E-mail: vaphung@kth.se [Division of Nuclear Power Safety, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden); Kööp, Kaspar, E-mail: kaspar@safety.sci.kth.se [Division of Nuclear Power Safety, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden); Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se [Division of Nuclear Power Safety, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden); Vorobyev, Yury, E-mail: yura3510@gmail.com [National Research Center “Kurchatov Institute”, Kurchatov square 1, Moscow 123182 (Russian Federation); Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se [Division of Nuclear Power Safety, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden)

    2016-04-15

    Highlights: • Automated input calibration and code validation using genetic algorithm is presented. • Predictions generally overlap experiments for individual system response quantities (SRQs). • It was not possible to predict simultaneously experimental maximum flow rate and oscillation period. • Simultaneous consideration of multiple SRQs is important for code validation. - Abstract: Validation of system thermal-hydraulic codes is an important step in application of the codes to reactor safety analysis. The goal of the validation process is to determine how well a code can represent physical reality. This is achieved by comparing predicted and experimental system response quantities (SRQs) taking into account experimental and modelling uncertainties. Parameters which are required for the code input but not measured directly in the experiment can become an important source of uncertainty in the code validation process. Quantification of such parameters is often called input calibration. Calibration and uncertainty quantification may become challenging tasks when the number of calibrated input parameters and SRQs is large and dependencies between them are complex. If only engineering judgment is employed in the process, the outcome can be prone to so called “user effects”. The goal of this work is to develop an automated approach to input calibration and RELAP5 code validation against data on two-phase natural circulation flow instability. Multiple SRQs are used in both calibration and validation. In the input calibration, we used genetic algorithm (GA), a heuristic global optimization method, in order to minimize the discrepancy between experimental and simulation data by identifying optimal combinations of uncertain input parameters in the calibration process. We demonstrate the importance of the proper selection of SRQs and respective normalization and weighting factors in the fitness function. In the code validation, we used maximum flow rate as the

  14. Analogs of human genetic skin disease in domesticated animals

    Directory of Open Access Journals (Sweden)

    Justin Finch, MD

    2017-09-01

    The genetic skin diseases we will review are pigmentary mosaicism, piebaldism, albinism, Griscelli syndrome, ectodermal dysplasias, Waardenburg syndrome, and mucinosis in both humans and domesticated animals.

  15. Comprehensive reconstruction andvisualization of non-coding regulatorynetworks in human

    Directory of Open Access Journals (Sweden)

    Vincenzo eBonnici

    2014-12-01

    Full Text Available Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs. Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established online repositories. The interactions involve RNA, DNA, proteins and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command line and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape.

  16. Pervasive hitchhiking at coding and regulatory sites in humans.

    Directory of Open Access Journals (Sweden)

    James J Cai

    2009-01-01

    Full Text Available Much effort and interest have focused on assessing the importance of natural selection, particularly positive natural selection, in shaping the human genome. Although scans for positive selection have identified candidate loci that may be associated with positive selection in humans, such scans do not indicate whether adaptation is frequent in general in humans. Studies based on the reasoning of the MacDonald-Kreitman test, which, in principle, can be used to evaluate the extent of positive selection, suggested that adaptation is detectable in the human genome but that it is less common than in Drosophila or Escherichia coli. Both positive and purifying natural selection at functional sites should affect levels and patterns of polymorphism at linked nonfunctional sites. Here, we search for these effects by analyzing patterns of neutral polymorphism in humans in relation to the rates of recombination, functional density, and functional divergence with chimpanzees. We find that the levels of neutral polymorphism are lower in the regions of lower recombination and in the regions of higher functional density or divergence. These correlations persist after controlling for the variation in GC content, density of simple repeats, selective constraint, mutation rate, and depth of sequencing coverage. We argue that these results are most plausibly explained by the effects of natural selection at functional sites -- either recurrent selective sweeps or background selection -- on the levels of linked neutral polymorphism. Natural selection at both coding and regulatory sites appears to affect linked neutral polymorphism, reducing neutral polymorphism by 6% genome-wide and by 11% in the gene-rich half of the human genome. These findings suggest that the effects of natural selection at linked sites cannot be ignored in the study of neutral human polymorphism.

  17. Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding

    Science.gov (United States)

    Carter, Charles W; Wills, Peter R

    2018-01-01

    Abstract Genetic coding is generally thought to have required ribozymes whose functions were taken over by polypeptide aminoacyl-tRNA synthetases (aaRS). Two discoveries about aaRS and their interactions with tRNA substrates now furnish a unifying rationale for the opposite conclusion: that the key processes of the Central Dogma of molecular biology emerged simultaneously and naturally from simple origins in a peptide•RNA partnership, eliminating the epistemological utility of a prior RNA world. First, the two aaRS classes likely arose from opposite strands of the same ancestral gene, implying a simple genetic alphabet. The resulting inversion symmetries in aaRS structural biology would have stabilized the initial and subsequent differentiation of coding specificities, rapidly promoting diversity in the proteome. Second, amino acid physical chemistry maps onto tRNA identity elements, establishing reflexive, nanoenvironmental sensing in protein aaRS. Bootstrapping of increasingly detailed coding is thus intrinsic to polypeptide aaRS, but impossible in an RNA world. These notions underline the following concepts that contradict gradual replacement of ribozymal aaRS by polypeptide aaRS: 1) aaRS enzymes must be interdependent; 2) reflexivity intrinsic to polypeptide aaRS production dynamics promotes bootstrapping; 3) takeover of RNA-catalyzed aminoacylation by enzymes will necessarily degrade specificity; and 4) the Central Dogma’s emergence is most probable when replication and translation error rates remain comparable. These characteristics are necessary and sufficient for the essentially de novo emergence of a coupled gene–replicase–translatase system of genetic coding that would have continuously preserved the functional meaning of genetically encoded protein genes whose phylogenetic relationships match those observed today. PMID:29077934

  18. Analysis of genetic code ambiguity arising from nematode-specific misacylated tRNAs.

    Directory of Open Access Journals (Sweden)

    Kiyofumi Hamashima

    Full Text Available The faithful translation of the genetic code requires the highly accurate aminoacylation of transfer RNAs (tRNAs. However, it has been shown that nematode-specific V-arm-containing tRNAs (nev-tRNAs are misacylated with leucine in vitro in a manner that transgresses the genetic code. nev-tRNA(Gly (CCC and nev-tRNA(Ile (UAU, which are the major nev-tRNA isotypes, could theoretically decode the glycine (GGG codon and isoleucine (AUA codon as leucine, causing GGG and AUA codon ambiguity in nematode cells. To test this hypothesis, we investigated the functionality of nev-tRNAs and their impact on the proteome of Caenorhabditis elegans. Analysis of the nucleotide sequences in the 3' end regions of the nev-tRNAs showed that they had matured correctly, with the addition of CCA, which is a crucial posttranscriptional modification required for tRNA aminoacylation. The nuclear export of nev-tRNAs was confirmed with an analysis of their subcellular localization. These results show that nev-tRNAs are processed to their mature forms like common tRNAs and are available for translation. However, a whole-cell proteome analysis found no detectable level of nev-tRNA-induced mistranslation in C. elegans cells, suggesting that the genetic code is not ambiguous, at least under normal growth conditions. Our findings indicate that the translational fidelity of the nematode genetic code is strictly maintained, contrary to our expectations, although deviant tRNAs with misacylation properties are highly conserved in the nematode genome.

  19. ANT: Software for Generating and Evaluating Degenerate Codons for Natural and Expanded Genetic Codes.

    Science.gov (United States)

    Engqvist, Martin K M; Nielsen, Jens

    2015-08-21

    The Ambiguous Nucleotide Tool (ANT) is a desktop application that generates and evaluates degenerate codons. Degenerate codons are used to represent DNA positions that have multiple possible nucleotide alternatives. This is useful for protein engineering and directed evolution, where primers specified with degenerate codons are used as a basis for generating libraries of protein sequences. ANT is intuitive and can be used in a graphical user interface or by interacting with the code through a defined application programming interface. ANT comes with full support for nonstandard, user-defined, or expanded genetic codes (translation tables), which is important because synthetic biology is being applied to an ever widening range of natural and engineered organisms. The Python source code for ANT is freely distributed so that it may be used without restriction, modified, and incorporated in other software or custom data pipelines.

  20. Genetically modified plants and human health.

    Science.gov (United States)

    Key, Suzie; Ma, Julian K-C; Drake, Pascal Mw

    2008-06-01

    Genetically modified (or GM) plants have attracted a large amount of media attention in recent years and continue to do so. Despite this, the general public remains largely unaware of what a GM plant actually is or what advantages and disadvantages the technology has to offer, particularly with regard to the range of applications for which they can be used. From the first generation of GM crops, two main areas of concern have emerged, namely risk to the environment and risk to human health. As GM plants are gradually being introduced into the European Union there is likely to be increasing public concern regarding potential health issues. Although it is now commonplace for the press to adopt 'health campaigns', the information they publish is often unreliable and unrepresentative of the available scientific evidence. We consider it important that the medical profession should be aware of the state of the art, and, as they are often the first port of call for a concerned patient, be in a position to provide an informed opinion. This review will examine how GM plants may impact on human health both directly - through applications targeted at nutrition and enhancement of recombinant medicine production - but also indirectly, through potential effects on the environment. Finally, it will examine the most important opposition currently facing the worldwide adoption of this technology: public opinion.

  1. Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability.

    Science.gov (United States)

    Santos, José; Monteagudo, Ángel

    2017-03-27

    The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.

  2. Human population genetics and “ancestrality” business

    OpenAIRE

    André Langaney

    2009-01-01

    Following the foundation of theoretical population genetics by Wright, Fischer, Haldane and Malécot, in the first half of the 20th century, applied human population genetics developed with great success with the improvement and accumulation of new technologies to measure genetic polymorphism, first through protein polymorphisms since the 1960’s, then through DNA typing and sequencing since the 1980’s. The field of population genetics and biological anthropology was developed by a handful of d...

  3. An existential analysis of genetic engineering and human rights ...

    African Journals Online (AJOL)

    Genetic engineering for purposes of human enhancement poses risks that justify regulation. However, this paper argues philosophically that it is inappropriate to use human rights treaties to prohibit germ-line genetic engineering whether therapeutic or for purposes of enhancement. When also looked at existentially, the ...

  4. Animal models for human genetic diseases | Sharif | African Journal ...

    African Journals Online (AJOL)

    The study of human genetic diseases can be greatly aided by animal models because of their similarity to humans in terms of genetics. In addition to understand diverse aspects of basic biology, model organisms are extensively used in applied research in agriculture, industry, and also in medicine, where they are used to ...

  5. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes.

    Science.gov (United States)

    Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin

    2016-07-01

    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including "codon capture," "genome streamlining," and "ambiguous intermediate" theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNA(Ala) containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. © 2016 Mühlhausen et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Proton absorbed dose distribution in human eye simulated by SRNA-2KG code

    International Nuclear Information System (INIS)

    Ilic, R. D.; Pavlovic, R.

    2004-01-01

    The model of Monte Carlo SRNA code is described together with some numerical experiments to show feasibility of this code to be used in proton therapy, especially for tree dimensional proton absorption dose calculation in human eye. (author) [sr

  7. Genetic differences between avian and human isolates of Candida dubliniensis.

    LENUS (Irish Health Repository)

    McManus, Brenda A

    2009-09-01

    When Candida dubliniensis isolates obtained from seabird excrement and from humans in Ireland were compared by using multilocus sequence typing, 13 of 14 avian isolates were genetically distinct from human isolates. The remaining avian isolate was indistinguishable from a human isolate, suggesting that transmission may occur between humans and birds.

  8. Coding potential of the products of alternative splicing in human.

    KAUST Repository

    Leoni, Guido

    2011-01-20

    BACKGROUND: Analysis of the human genome has revealed that as much as an order of magnitude more of the genomic sequence is transcribed than accounted for by the predicted and characterized genes. A number of these transcripts are alternatively spliced forms of known protein coding genes; however, it is becoming clear that many of them do not necessarily correspond to a functional protein. RESULTS: In this study we analyze alternative splicing isoforms of human gene products that are unambiguously identified by mass spectrometry and compare their properties with those of isoforms of the same genes for which no peptide was found in publicly available mass spectrometry datasets. We analyze them in detail for the presence of uninterrupted functional domains, active sites as well as the plausibility of their predicted structure. We report how well each of these strategies and their combination can correctly identify translated isoforms and derive a lower limit for their specificity, that is, their ability to correctly identify non-translated products. CONCLUSIONS: The most effective strategy for correctly identifying translated products relies on the conservation of active sites, but it can only be applied to a small fraction of isoforms, while a reasonably high coverage, sensitivity and specificity can be achieved by analyzing the presence of non-truncated functional domains. Combining the latter with an assessment of the plausibility of the modeled structure of the isoform increases both coverage and specificity with a moderate cost in terms of sensitivity.

  9. Coding potential of the products of alternative splicing in human.

    KAUST Repository

    Leoni, Guido; Le Pera, Loredana; Ferrè , Fabrizio; Raimondo, Domenico; Tramontano, Anna

    2011-01-01

    BACKGROUND: Analysis of the human genome has revealed that as much as an order of magnitude more of the genomic sequence is transcribed than accounted for by the predicted and characterized genes. A number of these transcripts are alternatively spliced forms of known protein coding genes; however, it is becoming clear that many of them do not necessarily correspond to a functional protein. RESULTS: In this study we analyze alternative splicing isoforms of human gene products that are unambiguously identified by mass spectrometry and compare their properties with those of isoforms of the same genes for which no peptide was found in publicly available mass spectrometry datasets. We analyze them in detail for the presence of uninterrupted functional domains, active sites as well as the plausibility of their predicted structure. We report how well each of these strategies and their combination can correctly identify translated isoforms and derive a lower limit for their specificity, that is, their ability to correctly identify non-translated products. CONCLUSIONS: The most effective strategy for correctly identifying translated products relies on the conservation of active sites, but it can only be applied to a small fraction of isoforms, while a reasonably high coverage, sensitivity and specificity can be achieved by analyzing the presence of non-truncated functional domains. Combining the latter with an assessment of the plausibility of the modeled structure of the isoform increases both coverage and specificity with a moderate cost in terms of sensitivity.

  10. Inferences of Recent and Ancient Human Population History Using Genetic and Non-Genetic Data

    Science.gov (United States)

    Kitchen, Andrew

    2008-01-01

    I have adopted complementary approaches to inferring human demographic history utilizing human and non-human genetic data as well as cultural data. These complementary approaches form an interdisciplinary perspective that allows one to make inferences of human history at varying timescales, from the events that occurred tens of thousands of years…

  11. Seeking perfection: a Kantian look at human genetic engineering.

    Science.gov (United States)

    Gunderson, Martin

    2007-01-01

    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.

  12. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...... of specific GM areas in the brain have been studied, the heritability of focal WM is unknown. Similarly, it is unresolved whether there is a common genetic origin of focal GM and WM structures with intelligence. We explored the genetic influence on focal GM and WM densities in magnetic resonance brain images...

  13. Egyptian Journal of Medical Human Genetics

    African Journals Online (AJOL)

    ... and genetic counseling as well as advances in prevention and treatment of genetic disorders. ... Clinical application of genomics and next generation sequencing ... vectors and SIN channels further relieves the limitations of gene therapy ... 3 gene in Malaysian subjects with neovascular age-related macular degeneration ...

  14. An Order Coding Genetic Algorithm to Optimize Fuel Reloads in a Nuclear Boiling Water Reactor

    International Nuclear Information System (INIS)

    Ortiz, Juan Jose; Requena, Ignacio

    2004-01-01

    A genetic algorithm is used to optimize the nuclear fuel reload for a boiling water reactor, and an order coding is proposed for the chromosomes and appropriate crossover and mutation operators. The fitness function was designed so that the genetic algorithm creates fuel reloads that, on one hand, satisfy the constrictions for the radial power peaking factor, the minimum critical power ratio, and the maximum linear heat generation rate while optimizing the effective multiplication factor at the beginning and end of the cycle. To find the values of these variables, a neural network trained with the behavior of a reactor simulator was used to predict them. The computation time is therefore greatly decreased in the search process. We validated this method with data from five cycles of the Laguna Verde Nuclear Power Plant in Mexico

  15. Host genetic variation impacts microbiome composition across human body sites.

    Science.gov (United States)

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T; Spector, Timothy D; Keinan, Alon; Ley, Ruth E; Gevers, Dirk; Clark, Andrew G

    2015-09-15

    The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale. Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes. Our results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

  16. Visual Coding of Human Bodies: Perceptual Aftereffects Reveal Norm-Based, Opponent Coding of Body Identity

    Science.gov (United States)

    Rhodes, Gillian; Jeffery, Linda; Boeing, Alexandra; Calder, Andrew J.

    2013-01-01

    Despite the discovery of body-selective neural areas in occipitotemporal cortex, little is known about how bodies are visually coded. We used perceptual adaptation to determine how body identity is coded. Brief exposure to a body (e.g., anti-Rose) biased perception toward an identity with opposite properties (Rose). Moreover, the size of this…

  17. Fetal magnetic resonance imaging and human genetics

    International Nuclear Information System (INIS)

    Hengstschlaeger, Markus

    2006-01-01

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data

  18. Fetal magnetic resonance imaging and human genetics

    Energy Technology Data Exchange (ETDEWEB)

    Hengstschlaeger, Markus [Medical Genetics, Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)]. E-mail: markus.hengstschlaeger@meduniwien.ac.at

    2006-02-15

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data.

  19. Insights into the genetic foundations of human communication.

    Science.gov (United States)

    Graham, Sarah A; Deriziotis, Pelagia; Fisher, Simon E

    2015-03-01

    The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior.

  20. Genetic testing and its implications: human genetics researchers grapple with ethical issues.

    Science.gov (United States)

    Rabino, Isaac

    2003-01-01

    To better understand ethical issues involved in the field of human genetics and promote debate within the scientific community, the author surveyed scientists who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. This study contributes systematic data on attitudes of scientific experts. The survey finds respondents are highly supportive of voluntary testing and the right to know one's genetic heritage. The majority consider in utero testing and consequent pregnancy termination acceptable for cases involving likelihood of serious disease but disapprove for genetic reasons they consider arbitrary, leaving a gray area of distinguishing between treatment of disorders and enhancement still to be resolved. While safeguarding patient confidentiality versus protecting at-risk third parties (kin, reproductive partners) presents a dilemma, preserving privacy from misuse by institutional third parties (employers, insurers) garners strong consensus for legislation against discrimination. Finally, a call is made for greater genetic literacy.

  1. The standard genetic code and its relation to mutational pressure: robustness and equilibrium criteria

    International Nuclear Information System (INIS)

    Hernandez Caceres, Jose Luis; Hong, Rolando; Martinez Ortiz, Carlos; Sautie Castellanos, Miguel; Valdes, Kiria; Guevara Erra, Ramon

    2004-10-01

    Under the assumption of even point mutation pressure on the DNA strand, rates for transitions from one amino acid into another were assessed. Nearly 25% of all mutations were silent. About 48% of the mutations from a given amino acid stream either into the same amino acid or into an amino acid of the same class. These results suggest a great stability of the Standard Genetic Code respect to mutation load. Concepts from chemical equilibrium theory are applicable into this case provided that mutation rate constants are given. It was obtained that unequal synonymic codon usage may lead to changes in the equilibrium concentrations. Data from real biological species showed that several amino acids are close to the respective equilibrium concentration. However in all the cases the concentration of leucine nearly doubled its equilibrium concentration, whereas for the stop command (Term) it was about 10 times lower. The overall distance from equilibrium for a set of species suggests that eukaryotes are closer to equilibrium than prokaryotes, and the HIV virus was closest to equilibrium among 15 species. We obtained that contemporary species are closer to the equilibrium than the Last Universal Common Ancestor (LUCA) was. Similarly, nonpreserved regions in proteins are closer to equilibrium than the preserved ones. We suggest that this approach can be useful for exploring some aspects of biological evolution in the framework of Standard Genetic Code properties. (author)

  2. Human Genetics. Informational and Educational Materials, Vol. I, No. 1.

    Science.gov (United States)

    National Clearinghouse for Human Genetic Diseases (DHEW/PHS), Rockville, MD.

    This catalogue, prepared by the National Clearinghouse for Human Genetic Diseases, provides educational and informational materials on the latest advances in testing, diagnosing, counseling, and treating individuals with a concern for genetic diseases. The materials include books, brochures, pamphlets, journal articles, audio cassettes,…

  3. Human genetics in Johannesburg, South Africa: Past, present and ...

    African Journals Online (AJOL)

    Genetic screening was then initiated for the Jewish community because of their high carrier rate for Tay-Sachs disease. Educational courses in human genetics were offered at Wits Medical School, and medical as well as other health professionals began to be trained. Research, supported by national and international ...

  4. Darkness in El Dorado: human genetics on trial

    Indian Academy of Sciences (India)

    Unknown

    Human Genetics Research Division, University of Southampton, Southampton SO16 6YD, UK. A recent ..... advice' he acknowledges in his book (p. xviii), leading to revision .... Venezuelan government, held his team back from giving medical ...

  5. Mapping the Plasticity of the E. coli Genetic Code with Orthogonal Pair Directed Sense Codon Reassignment.

    Science.gov (United States)

    Schmitt, Margaret A; Biddle, Wil; Fisk, John Domenic

    2018-04-18

    The relative quantitative importance of the factors that determine the fidelity of translation is largely unknown, which makes predicting the extent to which the degeneracy of the genetic code can be broken challenging. Our strategy of using orthogonal tRNA/aminoacyl tRNA synthetase pairs to precisely direct the incorporation of a single amino acid in response to individual sense and nonsense codons provides a suite of related data with which to examine the plasticity of the code. Each directed sense codon reassignment measurement is an in vivo competition experiment between the introduced orthogonal translation machinery and the natural machinery in E. coli. This report discusses 20 new, related genetic codes, in which a targeted E. coli wobble codon is reassigned to tyrosine utilizing the orthogonal tyrosine tRNA/aminoacyl tRNA synthetase pair from Methanocaldococcus jannaschii. One at a time, reassignment of each targeted sense codon to tyrosine is quantified in cells by measuring the fluorescence of GFP variants in which the essential tyrosine residue is encoded by a non-tyrosine codon. Significantly, every wobble codon analyzed may be partially reassigned with efficiencies ranging from 0.8% to 41%. The accumulation of the suite of data enables a qualitative dissection of the relative importance of the factors affecting the fidelity of translation. While some correlation was observed between sense codon reassignment and either competing endogenous tRNA abundance or changes in aminoacylation efficiency of the altered orthogonal system, no single factor appears to predominately drive translational fidelity. Evaluation of relative cellular fitness in each of the 20 quantitatively-characterized proteome-wide tyrosine substitution systems suggests that at a systems level, E. coli is robust to missense mutations.

  6. A nuclear reload optimization approach using a real coded genetic algorithm with random keys

    International Nuclear Information System (INIS)

    Lima, Alan M.M. de; Schirru, Roberto; Medeiros, Jose A.C.C.

    2009-01-01

    The fuel reload of a Pressurized Water Reactor is made whenever the burn up of the fuel assemblies in the nucleus of the reactor reaches a certain value such that it is not more possible to maintain a critical reactor producing energy at nominal power. The problem of fuel reload optimization consists on determining the positioning of the fuel assemblies within the nucleus of the reactor in an optimized way to minimize the cost benefit relationship of fuel assemblies cost per maximum burn up, and also satisfying symmetry and safety restrictions. The fuel reload optimization problem difficulty grows exponentially with the number of fuel assemblies in the nucleus of the reactor. During decades the fuel reload optimization problem was solved manually by experts that used their knowledge and experience to build configurations of the reactor nucleus, and testing them to verify if safety restrictions of the plant are satisfied. To reduce this burden, several optimization techniques have been used, included the binary code genetic algorithm. In this work we show the use of a real valued coded approach of the genetic algorithm, with different recombination methods, together with a transformation mechanism called random keys, to transform the real values of the genes of each chromosome in a combination of discrete fuel assemblies for evaluation of the reload optimization. Four different recombination methods were tested: discrete recombination, intermediate recombination, linear recombination and extended linear recombination. For each of the 4 recombination methods 10 different tests using different seeds for the random number generator were conducted 10 generating, totaling 40 tests. The results of the application of the genetic algorithm are shown with formulation of real numbers for the problem of the nuclear reload of the plant Angra 1 type PWR. Since the best results in the literature for this problem were found by the parallel PSO we will it use for comparison

  7. Genetic and environmental factors in experimental and human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, S.; Takebe, H.; Gelboin, H.V.; MaChahon, B.; Matsushima, T.; Sugimura, T.

    1980-01-01

    Recently technological advances in assaying mutagenic principles have revealed that there are many mutagens in the environment, some of which might be carcinogenic to human beings. Other advances in genetics have shown that genetic factors might play an important role in the induction of cancer in human beings, e.g., the high incidence of skin cancers in patients with xeroderma pigmentosum. These proceedings deal with the relationships between genetic and environmental factors in carcinogenesis. The contributors cover mixed-function oxidases, pharmacogenetics, twin studies, DNA repair, immunology, and epidemiology.

  8. Genetic Expeditions with Haploid Human Cells

    NARCIS (Netherlands)

    Jae, L.T.

    2015-01-01

    Random mutagenesis followed by phenotypic selection (forward genetics) is among the most powerful tools to elucidate the molecular basis of intricate biological processes and has been used in a suite of model organisms throughout the last century. However, its application to cultured mammalian cells

  9. Genetic coding and united-hypercomplex systems in the models of algebraic biology.

    Science.gov (United States)

    Petoukhov, Sergey V

    2017-08-01

    Structured alphabets of DNA and RNA in their matrix form of representations are connected with Walsh functions and a new type of systems of multidimensional numbers. This type generalizes systems of complex numbers and hypercomplex numbers, which serve as the basis of mathematical natural sciences and many technologies. The new systems of multi-dimensional numbers have interesting mathematical properties and are called in a general case as "systems of united-hypercomplex numbers" (or briefly "U-hypercomplex numbers"). They can be widely used in models of multi-parametrical systems in the field of algebraic biology, artificial life, devices of biological inspired artificial intelligence, etc. In particular, an application of U-hypercomplex numbers reveals hidden properties of genetic alphabets under cyclic permutations in their doublets and triplets. A special attention is devoted to the author's hypothesis about a multi-linguistic in DNA-sequences in a relation with an ensemble of U-numerical sub-alphabets. Genetic multi-linguistic is considered as an important factor to provide noise-immunity properties of the multi-channel genetic coding. Our results attest to the conformity of the algebraic properties of the U-numerical systems with phenomenological properties of the DNA-alphabets and with the complementary device of the double DNA-helix. It seems that in the modeling field of algebraic biology the genetic-informational organization of living bodies can be considered as a set of united-hypercomplex numbers in some association with the famous slogan of Pythagoras "the numbers rule the world". Copyright © 2017 Elsevier B.V. All rights reserved.

  10. An atlas of human long non-coding RNAs with accurate 5′ ends

    KAUST Repository

    Hon, Chung-Chau

    2017-02-28

    Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5′ ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters. Incorporating genetic and expression data, we show that lncRNAs overlapping trait-associated single nucleotide polymorphisms are specifically expressed in cell types relevant to the traits, implicating these lncRNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential roles in transcriptional regulation. Combining these findings with conservation data, we identify 19,175 potentially functional lncRNAs in the human genome.

  11. Genome-wide identification of coding and non-coding conserved sequence tags in human and mouse genomes

    Directory of Open Access Journals (Sweden)

    Maggi Giorgio P

    2008-06-01

    Full Text Available Abstract Background The accurate detection of genes and the identification of functional regions is still an open issue in the annotation of genomic sequences. This problem affects new genomes but also those of very well studied organisms such as human and mouse where, despite the great efforts, the inventory of genes and regulatory regions is far from complete. Comparative genomics is an effective approach to address this problem. Unfortunately it is limited by the computational requirements needed to perform genome-wide comparisons and by the problem of discriminating between conserved coding and non-coding sequences. This discrimination is often based (thus dependent on the availability of annotated proteins. Results In this paper we present the results of a comprehensive comparison of human and mouse genomes performed with a new high throughput grid-based system which allows the rapid detection of conserved sequences and accurate assessment of their coding potential. By detecting clusters of coding conserved sequences the system is also suitable to accurately identify potential gene loci. Following this analysis we created a collection of human-mouse conserved sequence tags and carefully compared our results to reliable annotations in order to benchmark the reliability of our classifications. Strikingly we were able to detect several potential gene loci supported by EST sequences but not corresponding to as yet annotated genes. Conclusion Here we present a new system which allows comprehensive comparison of genomes to detect conserved coding and non-coding sequences and the identification of potential gene loci. Our system does not require the availability of any annotated sequence thus is suitable for the analysis of new or poorly annotated genomes.

  12. References to Human Rights in Codes of Ethics for Psychologists: Critical Issues and Recommendations. Part 1

    Directory of Open Access Journals (Sweden)

    Жанель Готье

    2018-12-01

    Full Text Available There are codes of ethics in psychology that explicitly refer to human rights. There are also psychologists interested in the protection and promotion of human rights who are calling for the explicit inclusion of references to human rights in all psychology ethics codes. Yet, references to human rights in ethics documents have rarely been the focus of attention in psychological ethics. This article represents the first part of a two-part article series focusing on critical issues associated with the inclusion of references to human rights in the ethical codes of psychologists, and recommendations about how psychological ethics and the human rights movement can work together in serving humanity. The first part of the article series examines issues pertaining to the interpretation of references to human rights in codes of ethics for psychologists, and the justifications for including these references in psychological ethics codes. The second part of the article series examines how the Universal Declaration of Ethical Principles for Psychologists can be used to extend or supplement codes of ethics in psychology, how ethical principles and human rights differ and complement each other, and how psychological ethics and the human rights movement can work together in serving humanity and improving the welfare of both persons and peoples.

  13. Photoactivatable Mussel-Based Underwater Adhesive Proteins by an Expanded Genetic Code.

    Science.gov (United States)

    Hauf, Matthias; Richter, Florian; Schneider, Tobias; Faidt, Thomas; Martins, Berta M; Baumann, Tobias; Durkin, Patrick; Dobbek, Holger; Jacobs, Karin; Möglich, Andreas; Budisa, Nediljko

    2017-09-19

    Marine mussels exhibit potent underwater adhesion abilities under hostile conditions by employing 3,4-dihydroxyphenylalanine (DOPA)-rich mussel adhesive proteins (MAPs). However, their recombinant production is a major biotechnological challenge. Herein, a novel strategy based on genetic code expansion has been developed by engineering efficient aminoacyl-transfer RNA synthetases (aaRSs) for the photocaged noncanonical amino acid ortho-nitrobenzyl DOPA (ONB-DOPA). The engineered ONB-DOPARS enables in vivo production of MAP type 5 site-specifically equipped with multiple instances of ONB-DOPA to yield photocaged, spatiotemporally controlled underwater adhesives. Upon exposure to UV light, these proteins feature elevated wet adhesion properties. This concept offers new perspectives for the production of recombinant bioadhesives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Genetic effects on gene expression across human tissues

    NARCIS (Netherlands)

    Battle, Alexis; Brown, Christopher D.; Engelhardt, Barbara E.; Montgomery, Stephen B.; Aguet, François; Ardlie, Kristin G.; Cummings, Beryl B.; Gelfand, Ellen T.; Getz, Gad; Hadley, Kane; Handsaker, Robert E.; Huang, Katherine H.; Kashin, Seva; Karczewski, Konrad J.; Lek, Monkol; Li, Xiao; MacArthur, Daniel G.; Nedzel, Jared L.; Nguyen, Duyen T.; Noble, Michael S.; Segrè, Ayellet V.; Trowbridge, Casandra A.; Tukiainen, Taru; Abell, Nathan S.; Balliu, Brunilda; Barshir, Ruth; Basha, Omer; Bogu, Gireesh K.; Brown, Andrew; Castel, Stephane E.; Chen, Lin S.; Chiang, Colby; Conrad, Donald F.; Cox, Nancy J.; Damani, Farhan N.; Davis, Joe R.; Delaneau, Olivier; Dermitzakis, Emmanouil T.; Eskin, Eleazar; Ferreira, Pedro G.; Frésard, Laure; Gamazon, Eric R.; Garrido-Martín, Diego; Gewirtz, Ariel D. H.; Gliner, Genna; Gloudemans, Michael J.; Guigo, Roderic; Hall, Ira M.; Han, Buhm; He, Yuan

    2017-01-01

    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression

  15. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants.

    Science.gov (United States)

    Fu, Wenqing; O'Connor, Timothy D; Jun, Goo; Kang, Hyun Min; Abecasis, Goncalo; Leal, Suzanne M; Gabriel, Stacey; Rieder, Mark J; Altshuler, David; Shendure, Jay; Nickerson, Deborah A; Bamshad, Michael J; Akey, Joshua M

    2013-01-10

    Establishing the age of each mutation segregating in contemporary human populations is important to fully understand our evolutionary history and will help to facilitate the development of new approaches for disease-gene discovery. Large-scale surveys of human genetic variation have reported signatures of recent explosive population growth, notable for an excess of rare genetic variants, suggesting that many mutations arose recently. To more quantitatively assess the distribution of mutation ages, we resequenced 15,336 genes in 6,515 individuals of European American and African American ancestry and inferred the age of 1,146,401 autosomal single nucleotide variants (SNVs). We estimate that approximately 73% of all protein-coding SNVs and approximately 86% of SNVs predicted to be deleterious arose in the past 5,000-10,000 years. The average age of deleterious SNVs varied significantly across molecular pathways, and disease genes contained a significantly higher proportion of recently arisen deleterious SNVs than other genes. Furthermore, European Americans had an excess of deleterious variants in essential and Mendelian disease genes compared to African Americans, consistent with weaker purifying selection due to the Out-of-Africa dispersal. Our results better delimit the historical details of human protein-coding variation, show the profound effect of recent human history on the burden of deleterious SNVs segregating in contemporary populations, and provide important practical information that can be used to prioritize variants in disease-gene discovery.

  16. Human genome and genetic sequencing research and informed consent

    International Nuclear Information System (INIS)

    Iwakawa, Mayumi

    2003-01-01

    On March 29, 2001, the Ethical Guidelines for Human Genome and Genetic Sequencing Research were established. They have intended to serve as ethical guidelines for all human genome and genetic sequencing research practice, for the purpose of upholding respect for human dignity and rights and enforcing use of proper methods in the pursuit of human genome and genetic sequencing research, with the understanding and cooperation of the public. The RadGenomics Project has prepared a research protocol and informed consent document that follow these ethical guidelines. We have endeavored to protect the privacy of individual information, and have established a procedure for examination of research practices by an ethics committee. Here we report our procedure in order to offer this concept to the patients. (authors)

  17. From chemical metabolism to life: the origin of the genetic coding process

    Directory of Open Access Journals (Sweden)

    Antoine Danchin

    2017-06-01

    Full Text Available Looking for origins is so much rooted in ideology that most studies reflect opinions that fail to explore the first realistic scenarios. To be sure, trying to understand the origins of life should be based on what we know of current chemistry in the solar system and beyond. There, amino acids and very small compounds such as carbon dioxide, dihydrogen or dinitrogen and their immediate derivatives are ubiquitous. Surface-based chemical metabolism using these basic chemicals is the most likely beginning in which amino acids, coenzymes and phosphate-based small carbon molecules were built up. Nucleotides, and of course RNAs, must have come to being much later. As a consequence, the key question to account for life is to understand how chemical metabolism that began with amino acids progressively shaped into a coding process involving RNAs. Here I explore the role of building up complementarity rules as the first information-based process that allowed for the genetic code to emerge, after RNAs were substituted to surfaces to carry over the basic metabolic pathways that drive the pursuit of life.

  18. Human genetics of infectious diseases: a unified theory

    Science.gov (United States)

    Casanova, Jean-Laurent; Abel, Laurent

    2007-01-01

    Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predisposing the individual to a principal or single type of infection is emerging. In parallel, several common infections have been shown to reflect the inheritance of one major susceptibility gene, at least in some populations. This novel causal relationship (one gene, one infection) blurs the distinction between patient-based Mendelian genetics and population-based complex genetics, and provides a unified conceptual frame for exploring the molecular genetic basis of infectious diseases in humans. PMID:17255931

  19. Human genetics of diabetic vascular complications

    Indian Academy of Sciences (India)

    Abstract. Diabetic vascular complications (DVC) affecting several important organ systems of human body such as the ..... cohort with nominal significance, and a recent meta-analysis ..... Whereas it is generally thought that lysine acetylation is.

  20. Genetics of human body size and shape: pleiotropic and independent genetic determinants of adiposity.

    Science.gov (United States)

    Livshits, G; Yakovenko, K; Ginsburg, E; Kobyliansky, E

    1998-01-01

    The present study utilized pedigree data from three ethnically different populations of Kirghizstan, Turkmenia and Chuvasha. Principal component analysis was performed on a matrix of genetic correlations between 22 measures of adiposity, including skinfolds, circumferences and indices. Findings are summarized as follows: (1) All three genetic matrices were not positive definite and the first four factors retained even after exclusion RG > or = 1.0, explained from 88% to 97% of the total additive genetic variation in the 22 trials studied. This clearly emphasizes the massive involvement of pleiotropic gene effects in the variability of adiposity traits. (2) Despite the quite natural differences in pairwise correlations between the adiposity traits in the three ethnically different samples under study, factor analysis revealed a common basic pattern of covariability for the adiposity traits. In each of the three samples, four genetic factors were retained, namely, the amount of subcutaneous fat, the total body obesity, the pattern of distribution of subcutaneous fat and the central adiposity distribution. (3) Genetic correlations between the retained four factors were virtually non-existent, suggesting that several independent genetic sources may be governing the variation of adiposity traits. (4) Variance decomposition analysis on the obtained genetic factors leaves no doubt regarding the substantial familial and (most probably genetic) effects on variation of each factor in each studied population. The similarity of results in the three different samples indicates that the findings may be deemed valid and reliable descriptions of the genetic variation and covariation pattern of adiposity traits in the human species.

  1. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  2. Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code.

    Science.gov (United States)

    Yinda, Claude Kwe; Ghogomu, Stephen Mbigha; Conceição-Neto, Nádia; Beller, Leen; Deboutte, Ward; Vanhulle, Emiel; Maes, Piet; Van Ranst, Marc; Matthijnssens, Jelle

    2018-01-01

    Most human emerging infectious diseases originate from wildlife and bats are a major reservoir of viruses, a few of which have been highly pathogenic to humans. In some regions of Cameroon, bats are hunted and eaten as a delicacy. This close proximity between human and bats provides ample opportunity for zoonotic events. To elucidate the viral diversity of Cameroonian fruit bats, we collected and metagenomically screened eighty-seven fecal samples of Eidolon helvum and Epomophorus gambianus fruit bats. The results showed a plethora of known and novel viruses. Phylogenetic analyses of the eleven gene segments of the first complete bat rotavirus H genome, showed clearly separated clusters of human, porcine, and bat rotavirus H strains, not indicating any recent interspecies transmission events. Additionally, we identified and analyzed a bat bastrovirus genome (a novel group of recently described viruses, related to astroviruses and hepatitis E viruses), confirming their recombinant nature, and provide further evidence of additional recombination events among bat bastroviruses. Interestingly, picobirnavirus-like RNA-dependent RNA polymerase gene segments were identified using an alternative mitochondrial genetic code, and further principal component analyses suggested that they may have a similar lifestyle to mitoviruses, a group of virus-like elements known to infect the mitochondria of fungi. Although identified bat coronavirus, parvovirus, and cyclovirus strains belong to established genera, most of the identified partitiviruses and densoviruses constitute putative novel genera in their respective families. Finally, the results of the phage community analyses of these bats indicate a very diverse geographically distinct bat phage population, probably reflecting different diets and gut bacterial ecosystems.

  3. Inauguration of the cameroonian society of human genetics.

    Science.gov (United States)

    Wonkam, Ambroise; Kenfack, Marcel Azabji; Bigoga, Jude; Nkegoum, Blaise; Muna, Wali

    2009-10-20

    The conjunction of "hard genetics" research centers, with well established biomedical and bioethics research groups, and the exceptional possibility to hold the 6th annual meeting of the African Society of Human Genetics (AfSHG, 13th-15th March 2009) was an excellent opportunity to get together in synergy the entire Cameroonian "DNA/RNA scientists" . This laid to the foundation of the Cameroonian Society of Human Genetics (CSHG) that was privilege to hold its inaugural meeting in conjunction to the 6th annual meeting of the AfSHG. The theme was "Human Origin, Genetic Diversity and Health". The AfSHG and CSHG invited leading African and international scientists in genomics and population genetics to review recent data and provide an understanding of the state-of-knowledge of Human Origin and Genetic Diversity. Overall one opening ceremony eight session, five keynote and guest speakers, 18 invited oral communications, 13 free oral communications, 43 posters and two social events could summarize the meeting. This year's conference was graced by the presence of one Nobel Prize winner Dr Richard Roberts (Physiology and Medicine 1993). The meeting registered up to ten contributions of Cameroonian scientists from the Diaspora (currently in USA, Belgium, Gambia, Sudan and Zimbabwe). Such Diaspora participation is an opportunity to generate collaborations with home country scientists and ultimately turn the "brain drain" to "brain circulation" that could reduce the impact of the migration of health professional from Africa. Interestingly, the personal implication of the Cameroonian Ministry of Public Heath who opened the meeting in the presence of the Secretary General of the Ministry of Higher Education and a representative of the Ministry of Scientific Research and Innovation was a wonderful opportunity for advocacy of genetic issues at the decision-makers level. Beyond our expectation, a major promise of the Cameroonian government was the creation of the National Human

  4. Human Rights in Natural Science and Technology Professions’ Codes of Ethics?

    OpenAIRE

    Haugen, Hans Morten

    2013-01-01

    Abstract: No global professional codes for the natural science and technology professions exist. In light of how the application of new technology can affect individuals and communities, this discrepancy warrants greater scrutiny. This article analyzes the most relevant processes and seeks to explain why these processes have not resulted in global codes. Moreover, based on a human rights approach, the article gives recommendations on the future process and content of codes for ...

  5. Human fertility, molecular genetics, and natural selection in modern societies.

    Directory of Open Access Journals (Sweden)

    Felix C Tropf

    Full Text Available Research on genetic influences on human fertility outcomes such as number of children ever born (NEB or the age at first childbirth (AFB has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758, results show significant additive genetic effects on both traits explaining 10% (SE = 5 of the variance in the NEB and 15% (SE = 4 in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of -0.62 (SE = 0.27, p-value = 0.02. This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size.

  6. Inauguration of the Cameroonian Society of Human Genetics

    Directory of Open Access Journals (Sweden)

    Jude Bigoga

    2009-10-01

    Full Text Available The conjunction of “hard genetics” research centers, with well established biomedical and bioethics research groups, and the exceptional possibility to hold the 6th annual meeting of the African Society of Human Genetics (AfSHG, 13th-15th March 2009 was an excellent opportunity to get together in synergy the entire Cameroonian “DNA/RNA scientists” . This laid to the foundation of the Cameroonian Society of Human Genetics (CSHG that was privilege to hold its inaugural meeting in conjunction to the 6th annual meeting of the AfSHG. The theme was "Human Origin, Genetic Diversity and Health”. The AfSHG and CSHG invited leading African and international scientists in genomics and population genetics to review recent data and provide an understanding of the state-of-knowledge of Human Origin and Genetic Diversity. Overall one opening ceremony eight session, five keynote and guest speakers, 18 invited oral communications, 13 free oral communications, 43 posters and two social events could summarize the meeting. This year’s conference was graced by the presence of one Nobel Prize winner Dr Richard Roberts (Physiology and Medicine 1993. The meeting registered up to ten contributions of Cameroonian scientists from the Diaspora (currently in USA, Belgium, Gambia, Sudan and Zimbabwe. Such Diaspora participation is an opportunity to generate collaborations with home country scientists and ultimately turn the “brain drain” to “brain circulation” that could reduce the impact of the migration of health professional from Africa. Interestingly, the personal implication of the Cameroonian Ministry of Public Heath who opened the meeting in the presence of the Secretary General of the Ministry of Higher Education and a representative of the Ministry of Scientific Research and Innovation was a wonderful opportunity for advocacy of genetic issues at the decision-makers level. Beyond our expectation, a major promise of the Cameroonian government was

  7. A Trio of Human Molecular Genetics PCR Assays

    Science.gov (United States)

    Reinking, Jeffrey L.; Waldo, Jennifer T.; Dinsmore, Jannett

    2013-01-01

    This laboratory exercise demonstrates three different analytical forms of the polymerase chain reaction (PCR) that allow students to genotype themselves at four different loci. Here, we present protocols to allow students to a) genotype a non-coding polymorphic Variable Number of Tandem Repeat (VNTR) locus on human chromosome 5 using conventional…

  8. Different differences: The use of ‘genetic ancestry’ versus race in biomedical human genetic research

    Science.gov (United States)

    Fujimura, Joan H.; Rajagopalan, Ramya

    2011-01-01

    This article presents findings from our ethnographic research on biomedical scientists’ studies of human genetic variation and common complex disease. We examine the socio-material work involved in genome-wide association studies (GWAS) and discuss whether, how, and when notions of race and ethnicity are or are not used. We analyze how researchers produce simultaneously different kinds of populations and population differences. Although many geneticists use race in their analyses, we find some who have invented a statistical genetics method and associated software that they use specifically to avoid using categories of race in their genetics analysis. Their method allows them to operationalize their concept of ‘genetic ancestry’ without resorting to notions of race and ethnicity. We focus on the construction and implementation of the software’s algorithms, and discuss the consequences and implications of the software technology for debates and policies around the use of race in genetics research. We also demonstrate that the production and use of their method involves a dynamic and fluid assemblage of actors in various disciplines responding to disciplinary and sociopolitical contexts and concerns. This assemblage also includes particular discourses on human history and geography as they become entangled with research on genetic markers and disease. We introduce the concept of ‘genome geography’, to analyze how some researchers studying human genetic variation ‘locate’ stretches of DNA in different places and times. The concept of genetic ancestry and the practice of genome geography rely on old discourses, but they also incorporate new technologies, infrastructures, and political and scientific commitments. Some of these new technologies provide opportunities to change some of our institutional and cultural forms and frames around notions of difference and similarity. Neverthless, we also highlight the slipperiness of genome geography and the

  9. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    Science.gov (United States)

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  10. Fine-scaled human genetic structure revealed by SNP microarrays.

    Science.gov (United States)

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  11. Assessment of genetic risk for human exposure to radiation

    International Nuclear Information System (INIS)

    Sevcenko, V.A.; Rubanovic, A.V.

    2002-01-01

    Full text: The methodology of assessing the genetic risk of radiation exposure is based on the concept of 'hitting the target' in development of which N.V. Timofeeff-Ressovsky has played and important role. To predict genetic risk posed by irradiation, the U N Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has worked out direct and indirect methods of assessment, extrapolation, integral and palpitation criteria of risk analysis that together permit calculating the risk from human exposure on the basis of data obtained for mice. Based on the reports of UNSCEAR for the period from 1958 to 2001 the paper presents a retrospective analysis of the use of direct methods and the doubling dose method for quantitative determination of the genetic risk of human exposure expressed as different hereditary diseases. As early as 1962 UNSCEAR estimated the doubling dose (a dose causing as many mutations as those occurring spontaneously during one generation) at 1 Gy for cases of exposure to ionizing radiations with low LET at a low dose rate and this value was confirmed in the next UNSCEAR reports up to now. For cases of acute irradiation the doubling dose was estimated at 0,3-0,4 Gy for the period under review. The paper considers the evolution of the concepts of human natural hereditary variability which is a basis for assessing the risk of exposure by the doubling dose method. The level of human natural genetic variability per 1 000 000 newborns is estimated at 738 000 hereditary diseases including mendelian, chromosomal and multifactorial ones. The greatest difficulties in assessing the doubling dose value were found to occur in the case of multifactorial diseases the pheno typical expression of which depends on mutational events in polygenic systems and on numerous environmental factors. The introduction in calculations of the potential recoverability correction factor (RPCF) made it possible to assess the genetic risk taking into account this class of

  12. The mobile genetic element Alu in the human genome

    Energy Technology Data Exchange (ETDEWEB)

    Novick, G.E. [Florida International Univ., Miami, FL (United States); Batzer, M.A.; Deininger, P.L. [Louisiana State Univ. Medical Center, New Orleans, LA (United States)] [and others

    1996-01-01

    Genetic material has been traditionally envisioned as relatively static with the exception of occasional, often deleterious mutations. The sequence DNA-to-RNA-to-protein represented for many years the central dogma relating gene structure and function. Recently, the field of molecular genetics has provided revolutionary information on the dynamic role of repetitive elements in the function of the genetic material and the evolution of humans and other organisms. Alu sequences represent the largest family of short interspersed repetitive elements (SINEs) in humans, being present in an excess of 500,000 copies per haploid genome. Alu elements, as well as the other repetitive elements, were once considered to be useless. Today, the biology of Alu transposable elements is being widely examined in order to determine the molecular basis of a growing number of identified diseases and to provide new directions in genome mapping and biomedical research. 66 refs., 5 figs.

  13. Mapping genetic influences on the corticospinal motor system in humans

    DEFF Research Database (Denmark)

    Cheeran, B J; Ritter, C; Rothwell, J C

    2009-01-01

    of the contribution of single nucleotide polymorphisms (SNP) and variable number tandem repeats. In humans, the corticospinal motor system is essential to the acquisition of fine manual motor skills which require a finely tuned coordination of activity in distal forelimb muscles. Here we review recent brain mapping......It is becoming increasingly clear that genetic variations account for a certain amount of variance in the acquisition and maintenance of different skills. Until now, several levels of genetic influences were examined, ranging from global heritability estimates down to the analysis...... studies that have begun to explore the influence of functional genetic variation as well as mutations on function and structure of the human corticospinal motor system, and also the clinical implications of these studies. Transcranial magnetic stimulation of the primary motor hand area revealed...

  14. Therapeutic Targets of Triglyceride Metabolism as Informed by Human Genetics.

    Science.gov (United States)

    Bauer, Robert C; Khetarpal, Sumeet A; Hand, Nicholas J; Rader, Daniel J

    2016-04-01

    Human genetics has contributed to the development of multiple drugs to treat hyperlipidemia and coronary artery disease (CAD), most recently including antibodies targeting PCSK9 to reduce LDL cholesterol. Despite these successes, a large burden of CAD remains. Genetic and epidemiological studies have suggested that circulating triglyceride (TG)-rich lipoproteins (TRLs) are a causal risk factor for CAD, presenting an opportunity for novel therapeutic strategies. We discuss recent unbiased human genetics testing, including genome-wide association studies (GWAS) and whole-genome or -exome sequencing, that have identified the lipoprotein lipase (LPL) and hepatic lipogenesis pathways as important mechanisms in the regulation of circulating TRLs. Further strengthening the causal relationship between TRLs and CAD, findings such as these may provide novel targets for much-needed potential therapeutic interventions. Copyright © 2016. Published by Elsevier Ltd.

  15. Articulated Human Motion Tracking Using Sequential Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Li

    2013-01-01

    Full Text Available We formulate human motion tracking as a high-dimensional constrained optimization problem. A novel generative method is proposed for human motion tracking in the framework of evolutionary computation. The main contribution is that we introduce immune genetic algorithm (IGA for pose optimization in latent space of human motion. Firstly, we perform human motion analysis in the learnt latent space of human motion. As the latent space is low dimensional and contents the prior knowledge of human motion, it makes pose analysis more efficient and accurate. Then, in the search strategy, we apply IGA for pose optimization. Compared with genetic algorithm and other evolutionary methods, its main advantage is the ability to use the prior knowledge of human motion. We design an IGA-based method to estimate human pose from static images for initialization of motion tracking. And we propose a sequential IGA (S-IGA algorithm for motion tracking by incorporating the temporal continuity information into the traditional IGA. Experimental results on different videos of different motion types show that our IGA-based pose estimation method can be used for initialization of motion tracking. The S-IGA-based motion tracking method can achieve accurate and stable tracking of 3D human motion.

  16. Study of human genetic diversity : inferences on population origin and history

    OpenAIRE

    Haber, Marc, 1980-

    2013-01-01

    Patterns of human genetic diversity suggest that all modern humans originated from a small population in Africa that expanded rapidly 50,000 years ago to occupy the whole world. While moving into new environments, genetic drift and natural selection affected populations differently, creating genetic structure. By understanding the genetic structure of human populations, we can reconstruct human history and understand the genetic basis of diseases. The work presented here contributes to the on...

  17. Improved genetic manipulation of human embryonic stem cells.

    NARCIS (Netherlands)

    Braam, S.R.; Denning, C.; van den Brink, S.; Kats, P.; Hochstenbach, R.; Passier, R.; Mummery, C.L.

    2008-01-01

    Low efficiency of transfection limits the ability to genetically manipulate human embryonic stem cells (hESCs), and differences in cell derivation and culture methods require optimization of transfection protocols. We transiently transferred multiple independent hESC lines with different growth

  18. Inauguration of the Cameroonian Society of Human Genetics ...

    African Journals Online (AJOL)

    CSHG) that was privilege to hold its inaugural meeting in conjunction to the 6th annual meeting of the AfSHG. The theme was "Human Origin, Genetic Diversity and Health”. The AfSHG and CSHG invited leading African and international scientists in ...

  19. Somatic retrotransposition alters the genetic landscape of the human brain

    NARCIS (Netherlands)

    Baillie, J.K.; Barnett, M.W.; Upton, K.R.; Gerhardt, D.J.; Richmond, T.A.; De Sapio, F.; Brennan, P.; Rizzu, P.; Smith, S.; Fell, M.; Talbot, R.T.; Gustincich, S.; Freeman, T.C.; Mattick, J.S.; Hume, D.A.; Heutink, P.; Carninci, P.; Jeddeloh, J.A.; Faulkner, G.J.

    2011-01-01

    Retrotransposons are mobile genetic elements that use a germline 'copy-and-paste' mechanism to spread throughout metazoan genomes1. At least 50 per cent of the human genome is derived from retrotransposons, with three active families (L1, Alu and SVA) associated with insertional mutagenesis and

  20. Public Attitudes toward Human Genetic Manipulation: A Revitalization of Eugenics?

    Science.gov (United States)

    Veglia, Geremia; And Others

    The purpose of this investigation was to measure the attitudes of college students across the United States concerning the possible use of genetic manipulation, especially in terms of enhancing human physical and intellectual characteristics. The instrument used was divided into three general areas of inquiry: the first, designed to measure the…

  1. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias-Vasquez, A.; Desrivières, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Biks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.K.; Cuellar-Partida, G.; den Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santiañez, R.; Rose, E.J.; Salami, A.; Sämann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J.; van Eijk, K.R.; Walters, R.K.; Westlye, L.T.; Welan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.H.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.G.A.M.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.M.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.A.M.; Reese McKay, D.; Needham, M.; Nugent, A.C.; Pütz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; van der Marel, S.S.L.; van Hulzen, K.J.E.; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; de Zubicaray, G.I.; Dillman, A.; Duggirala, R.; Dyer, T.D.; Erk, S.; Fedko, I.O.; Ferrucci, L.; Foroud, T.M.; Fox, P.T.; Fukunaga, M.; Gibbs, J.R.; Göring, H.H.H.; Green, R.C.; Guelfi, S.; Hansell, N.K.; Hartman, C.A.; Hegenscheid, K.; Heinz, A.; Hernandez, D.G.; Heslenfeld, D.J.; Hoekstra, P.J.; Holsboer, F.; Homuth, G.; Hottenga, J.J.; Ikeda, M.; Jack, C.R., Jr.; Jenkinson, M.; Johnson, R.; Kanai, R.; Keil, M.; Kent, J.W. Jr.; Kochunov, P.; Kwok, J.B.; Lawrie, S.M.; Liu, X.; Longo, D.L.; McMahon, K.L.; Meisenzahl, E.; Melle, I.; Mohnke, S.; Montgomery, G.W.; Mostert, J.C.; Mühleisen, T.W.; Nalls, M.A.; Nichols, T.E.; Nilsson, L.G.; Nöthen, M.M.; Ohi, K.; Olvera, R.L.; Perez-Iglesias, R.; Pike, G.B.; Potkin, S.G.; Reinvang, I.; Reppermund, S.; Rietschel, M.; Romanczuk-Seiferth, N.; Rosen, G.D.; Rujescu, D.; Schnell, K.; Schofield, P.R.; Smith, C.; Steen, V.M.; Sussmann, J.E.; Thalamuthu, A.; Toga, A.W.; Traynor, B.J.; Troncoso, J.; Turner, J.A.; Valdés Hernández, M.C.; van t Ent, D.; van der Brug, M.; van der Wee, N.J.A.; van Tol, M.J.; Veltman, D.J.; Wassink, T.H.; Westmann, E.; Zielke, R.H.; Zonderman, A.B.; Ashbrook, D.G.; Hager, R.; Lu, L.; McMahon, F.J.; Morris, D.W.; Williams, R.W.; Brunner, H.G.; Buckner, R.L.; Buitelaar, J.K.; Cahn, W.; Calhoun, V.D.; Cavalleri, G.L.; Crespo-Facorro, B.; Dale, A.M.; Davies, G.E.; Delanty, N.; Depondt, C.; Djurovic, S.; Drevets, W.C.; Espeseth, T.; Gollub, R.L.; Ho, B.C.; Hoffmann, W.; Hosten, N.; Kahn, R.S.; Le Hellard, S.; Meyer-Lindenberg, A.; Müller-Myhsok, B.; Nauck, M.; Nyberg, L.; Pandolfo, M.; Penninx, B.W.J.H.; Roffman, J.L.; Sisodiya, SM; Smoller, J.W.; van Bokhoven, H.; van Haren, N.E.M.; Völzke, H.; Walter, H.; Weiner, M.W.; Wen, W.; White, T.; Agartz, I.; Andreassen, O.A.; Blangero, J.; Boomsma, D.I.; Brouwer, R.M.; Cannon, D.M.; Cookson, M.R.; de Geus, E.J.C.; Deary, I.J.; Donohoe, G.; Fernandez, G.; Fisher, S.E.; Francks, C.; Glahn, D.C.; Grabe, H.J.; Gruber, O.; Hardy, J.; Hashimoto, R.; Hulshoff Pol, H.E.; Jönsson, E.G.; Kloszewska, I.; Lovestone, S.; Mattay, V.S.; Mecocci, P.; McDonald, C.; McIntosh, A.M.; Ophoff, R.A.; Paus, T.; Pausova, Z.; Ryten, M.; Sachdev, P.S.; Saykin, A.J.; Simmons, A.; Singleton, A.; Soininen, H.; Wardlaw, J.M.; Weale, M.E.; Weinberger, D.R.; Adams, H.H.H.; Launer, L.J.; Seiler, S.; Schmidt, R.; Chauhan, G.; Satizabal, C.L.; Becker, J.T.; Yanek, L.; van der Lee, S.J.; Ebling, M.; Fischl, B.; Longstreth, Jr. W.T.; Greve, D.; Schmidt, H.; Nyquist, P.; Vinke, L.N.; van Duijn, C.M.; Xue, L.; Mazoyer, B.; Bis, J.C.; Gudnason, V.; Seshadri, S.; Arfan Ikram, M.; Martin, N.G.; Wright, M.J.; Schumann, G.; Franke, B.; Thompson, P.M.; Medland, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  2. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); L.T. Strike (Lachlan); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  3. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  4. Human immunodeficiency virus type-1 (HIV-1) genetic diversity and ...

    African Journals Online (AJOL)

    The presence of human immunodeficiency virus (HIV) type-1 diversity has an impact on vaccine efficacy and drug resistance. It is important to know the circulating genetic variants and associated drug-resistance mutations in the context of scale up of antiretroviral therapy (ART) in Nigeria. The objective of this study was to ...

  5. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

    Science.gov (United States)

    Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

    2017-12-01

    Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

  6. Physicochemical basis for the origin of the genetic code - Lecture 3

    International Nuclear Information System (INIS)

    Ponnamperuma, C.

    1992-01-01

    A study of the association of homocodonic amino acids and selected heterocodonic amino acids with selected nucleotides in aqueous solution was undertaken to examine a possible physical basis for the origin of codon assignments. These interactions were studied using 1H nuclear magnetic resonance spectroscopy (NMR). Association constants for the various interactions were determined by fitting the changes in the chemical shifts of the anomeric and ring protons of the nucleoside moieties as a function of amino acid concentration to an isotherm which described the binding interaction. The strongest association of all homocodonic amino acids were with their respective anticodonic nucleotide sequences. The strength of association was seen to increase with increase in the chain length of the anticodonic nucleotide. The association of these amino acids with different phosphate esters of nucleotides suggests that a definite isomeric structure is required for association with a specified amino acid; the 5'-mononucleotides and (3'-5')-linked dinucleotides are the favored geometries for strong associations. Use of heterocodonic amino acids and nonprotein amino acids supports these findings. We conclude that there is at least a physicochemical, anticodonic contribution to the origin of the genetic code. (author)

  7. Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Subbaraj, P. [Kalasalingam University, Srivilliputhur, Tamilnadu 626 190 (India); Rengaraj, R. [Electrical and Electronics Engineering, S.S.N. College of Engineering, Old Mahabalipuram Road, Thirupporur (T.K), Kalavakkam, Kancheepuram (Dist.) 603 110, Tamilnadu (India); Salivahanan, S. [S.S.N. College of Engineering, Old Mahabalipuram Road, Thirupporur (T.K), Kalavakkam, Kancheepuram (Dist.) 603 110, Tamilnadu (India)

    2009-06-15

    In this paper, a self adaptive real-coded genetic algorithm (SARGA) is implemented to solve the combined heat and power economic dispatch (CHPED) problem. The self adaptation is achieved by means of tournament selection along with simulated binary crossover (SBX). The selection process has a powerful exploration capability by creating tournaments between two solutions. The better solution is chosen and placed in the mating pool leading to better convergence and reduced computational burden. The SARGA integrates penalty parameterless constraint handling strategy and simultaneously handles equality and inequality constraints. The population diversity is introduced by making use of distribution index in SBX operator to create a better offspring. This leads to a high diversity in population which can increase the probability towards the global optimum and prevent premature convergence. The SARGA is applied to solve CHPED problem with bounded feasible operating region which has large number of local minima. The numerical results demonstrate that the proposed method can find a solution towards the global optimum and compares favourably with other recent methods in terms of solution quality, handling constraints and computation time. (author)

  8. A Stress-Induced Bias in the Reading of the Genetic Code in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Adi Oron-Gottesman

    2016-11-01

    Full Text Available Escherichia coli mazEF is an extensively studied stress-induced toxin-antitoxin (TA system. The toxin MazF is an endoribonuclease that cleaves RNAs at ACA sites. Thereby, under stress, the induced MazF generates a stress-induced translation machinery (STM, composed of MazF-processed mRNAs and selective ribosomes that specifically translate the processed mRNAs. Here, we further characterized the STM system, finding that MazF cleaves only ACA sites located in the open reading frames of processed mRNAs, while out-of-frame ACAs are resistant. This in-frame ACA cleavage of MazF seems to depend on MazF binding to an extracellular-death-factor (EDF-like element in ribosomal protein bS1 (bacterial S1, apparently causing MazF to be part of STM ribosomes. Furthermore, due to the in-frame MazF cleavage of ACAs under stress, a bias occurs in the reading of the genetic code causing the amino acid threonine to be encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA.

  9. Human life: genetic or social construction?

    Science.gov (United States)

    Yudin, Boris

    2005-01-01

    I am going to discuss some present-day tendencies in the development of the very old debate on nature vs nurture. There is a widespread position describing the history of this debate as a pendulum-like process. Some three decades ago there was a time of overwhelming prevalence of the position stressing social factors in determining human character and behavior; now the pendulum has come to the opposite side and those who stress the role of biology, of genes are in favor. Yet in my view rather acute opposition of both positions still exists. Its existence depends not so much on new scientific discoveries as on some social and cultural factors which are more conservative than the development of science. More than that, we can even talk about competition of these two positions.

  10. The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization.

    Science.gov (United States)

    Błażej, Paweł; Wnȩtrzak, Małgorzata; Mackiewicz, Paweł

    2016-12-01

    One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure

  11. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum.

    Directory of Open Access Journals (Sweden)

    Christian Gieger

    2008-11-01

    Full Text Available The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants that associate with changes in the homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations of frequent single nucleotide polymorphisms (SNPs with considerable differences in the metabolic homeostasis of the human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy for enzymatic activity, up to 28% of the variance can be explained (p-values 10(-16 to 10(-21. We identified four genetic variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD where the corresponding metabolic phenotype (metabotype clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.

  12. Quantum Genetics in terms of Quantum Reversible Automata and Quantum Computation of Genetic Codes and Reverse Transcription

    CERN Document Server

    Baianu,I C

    2004-01-01

    The concepts of quantum automata and quantum computation are studied in the context of quantum genetics and genetic networks with nonlinear dynamics. In previous publications (Baianu,1971a, b) the formal concept of quantum automaton and quantum computation, respectively, were introduced and their possible implications for genetic processes and metabolic activities in living cells and organisms were considered. This was followed by a report on quantum and abstract, symbolic computation based on the theory of categories, functors and natural transformations (Baianu,1971b; 1977; 1987; 2004; Baianu et al, 2004). The notions of topological semigroup, quantum automaton, or quantum computer, were then suggested with a view to their potential applications to the analogous simulation of biological systems, and especially genetic activities and nonlinear dynamics in genetic networks. Further, detailed studies of nonlinear dynamics in genetic networks were carried out in categories of n-valued, Lukasiewicz Logic Algebra...

  13. Long non-coding RNA TUG1 promotes cell proliferation and metastasis in human breast cancer.

    Science.gov (United States)

    Li, Teng; Liu, Yun; Xiao, Haifeng; Xu, Guanghui

    2017-07-01

    Long non-coding RNAs (LncRNAs) utilize a wide variety of mechanisms to regulate RNAs or proteins on the transcriptional or post-transcriptional levels. Accumulating studies have identified numerous LncRNAs to exert critical effects on different physiological processes, genetic disorders, and human diseases. Both clinical tissues from breast cancer patients and cultured cells were used for the qRT-PCR analysis. Specific siRNAs were included to assess the roles of TUG1 with cell viability assay, transwell assay, and cell apoptosis assay, respectively. The expression of TUG1 was enhanced in breast cancerous tissues and in highly invasive breast cancer cell lines and was associated with clinical variables, including tumor size, distant metastasis and TNM staging. Knockdown of TUG1 significantly slowed down cell proliferation, cell migration, and invasion in breast cancer cell lines MDA-MB-231 and MDA-MB-436. In addition, cell apoptotic rate was shown to increase upon siTUG1 treatment as evidenced by increases of the activities of caspase-3 and caspase-9. The identification of TUG1 as a critical mediator of breast cancer progression implied that it might serve as a biomarker for the diagnosis and treatment of breast cancer in clinic.

  14. The aminoacyl-tRNA synthetases had only a marginal role in the origin of the organization of the genetic code: Evidence in favor of the coevolution theory.

    Science.gov (United States)

    Di Giulio, Massimo

    2017-11-07

    The coevolution theory of the origin of the genetic code suggests that the organization of the genetic code coevolved with the biosynthetic relationships between amino acids. The mechanism that allowed this coevolution was based on tRNA-like molecules on which-this theory-would postulate the biosynthetic transformations between amino acids to have occurred. This mechanism makes a prediction on how the role conducted by the aminoacyl-tRNA synthetases (ARSs), in the origin of the genetic code, should have been. Indeed, if the biosynthetic transformations between amino acids occurred on tRNA-like molecules, then there was no need to link amino acids to these molecules because amino acids were already charged on tRNA-like molecules, as the coevolution theory suggests. In spite of the fact that ARSs make the genetic code responsible for the first interaction between a component of nucleic acids and that of proteins, for the coevolution theory the role of ARSs should have been entirely marginal in the genetic code origin. Therefore, I have conducted a further analysis of the distribution of the two classes of ARSs and of their subclasses-in the genetic code table-in order to perform a falsification test of the coevolution theory. Indeed, in the case in which the distribution of ARSs within the genetic code would have been highly significant, then the coevolution theory would be falsified since the mechanism on which it is based would not predict a fundamental role of ARSs in the origin of the genetic code. I found that the statistical significance of the distribution of the two classes of ARSs in the table of the genetic code is low or marginal, whereas that of the subclasses of ARSs statistically significant. However, this is in perfect agreement with the postulates of the coevolution theory. Indeed, the only case of statistical significance-regarding the classes of ARSs-is appreciable for the CAG code, whereas for its complement-the UNN/NUN code-only a marginal

  15. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy

    Science.gov (United States)

    Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.

    2015-01-01

    Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID

  16. The comparative radiation genetics of humans and mice

    International Nuclear Information System (INIS)

    Neel, J.V.

    1990-01-01

    The attempt by geneticists to predict the genetic consequences for humans of exposure to ionizing radiation has arguably been one of the most serious social responsibilities they have faced in the past half century. Important for its own sake, this issue also serves as a prototype for the effort to evaluate the ultimate genetic impact on ourselves of other human perturbations of the environment in which our species functions. Recently the authors have been developing the thesis that according to the results of studies on the children of survivors of the atomic bombings, humans may not be as sensitive to the genetic effects of radiation as has been projected by various committees on the basis of data from the most commonly employed paradigm, the laboratory mouse. In this paper, the authors attempt as detailed a comparison as space permits of the findings on humans and mice, presenting the data in a fashion that will enable those who at certain critical points in the argument wish to make other assumptions, to do so. The authors argue that a reconsideration that includes all the data now available on mice brings the estimate of the doubling dose for mice into satisfactory agreement with the higher estimate based on humans

  17. Resources for human genetics on the World Wide Web.

    Science.gov (United States)

    Osborne, L R; Lee, J R; Scherer, S W

    1997-09-01

    A little over a century ago, the HMS Beagle sailed the Pacific Ocean bringing Charles Darwin to the perfect environment in which to piece together his observations forming the theory of evolution. Now, geneticists and laypeople alike surf the equally formidable waters of the internet in search of enlightenment. Here, we attempt to help you navigate towards resources for human genetics by providing maps to three destinations: The Human Genome Project (Box 1), education (Box 2), and human genetic diseases (Box 3). For each, we highlight a few sites that we consider are the most informative and original. A more extensive list containing other useful sites has been compiled and posted on a 'jump site' at: http:/(/)www.cgdn.generes.ca/.

  18. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    International Nuclear Information System (INIS)

    Binh, Do Quang; Huy, Ngo Quang; Hai, Nguyen Hoang

    2014-01-01

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  19. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    Energy Technology Data Exchange (ETDEWEB)

    Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)

    2014-12-15

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  20. Genetical genomic determinants of alcohol consumption in rats and humans

    Directory of Open Access Journals (Sweden)

    Mangion Jonathan

    2009-10-01

    Full Text Available Abstract Background We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs. Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations. Results In the HXB/BXH recombinant inbred (RI rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption. Conclusion Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume

  1. Consensus coding sequence (CCDS) database: a standardized set of human and mouse protein-coding regions supported by expert curation.

    Science.gov (United States)

    Pujar, Shashikant; O'Leary, Nuala A; Farrell, Catherine M; Loveland, Jane E; Mudge, Jonathan M; Wallin, Craig; Girón, Carlos G; Diekhans, Mark; Barnes, If; Bennett, Ruth; Berry, Andrew E; Cox, Eric; Davidson, Claire; Goldfarb, Tamara; Gonzalez, Jose M; Hunt, Toby; Jackson, John; Joardar, Vinita; Kay, Mike P; Kodali, Vamsi K; Martin, Fergal J; McAndrews, Monica; McGarvey, Kelly M; Murphy, Michael; Rajput, Bhanu; Rangwala, Sanjida H; Riddick, Lillian D; Seal, Ruth L; Suner, Marie-Marthe; Webb, David; Zhu, Sophia; Aken, Bronwen L; Bruford, Elspeth A; Bult, Carol J; Frankish, Adam; Murphy, Terence; Pruitt, Kim D

    2018-01-04

    The Consensus Coding Sequence (CCDS) project provides a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assembly in genome annotations produced independently by NCBI and the Ensembl group at EMBL-EBI. This dataset is the product of an international collaboration that includes NCBI, Ensembl, HUGO Gene Nomenclature Committee, Mouse Genome Informatics and University of California, Santa Cruz. Identically annotated coding regions, which are generated using an automated pipeline and pass multiple quality assurance checks, are assigned a stable and tracked identifier (CCDS ID). Additionally, coordinated manual review by expert curators from the CCDS collaboration helps in maintaining the integrity and high quality of the dataset. The CCDS data are available through an interactive web page (https://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi) and an FTP site (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/). In this paper, we outline the ongoing work, growth and stability of the CCDS dataset and provide updates on new collaboration members and new features added to the CCDS user interface. We also present expert curation scenarios, with specific examples highlighting the importance of an accurate reference genome assembly and the crucial role played by input from the research community. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  2. Swiss Federal Law on the Genetic Testing of Humans

    OpenAIRE

    森, 芳周

    2009-01-01

    To add an article against the misuse of a reproductive technology and a genetic engineering, theSwiss Federal Constitution was revised in 1992 through an initiative in 1987. On the basis of thisarticle of the constitution, the Reproductive Medicine Act and the Stem Cell Research Act wereenacted in turns; then, the Federal Law on the Genetic Testing of Humans was enacted in October2004. This paper treats a process of the revision of the constitution in 1992 and the enactment of thelaw in 2004....

  3. Complete cDNA sequence coding for human docking protein

    Energy Technology Data Exchange (ETDEWEB)

    Hortsch, M; Labeit, S; Meyer, D I

    1988-01-11

    Docking protein (DP, or SRP receptor) is a rough endoplasmic reticulum (ER)-associated protein essential for the targeting and translocation of nascent polypeptides across this membrane. It specifically interacts with a cytoplasmic ribonucleoprotein complex, the signal recognition particle (SRP). The nucleotide sequence of cDNA encoding the entire human DP and its deduced amino acid sequence are given.

  4. The humankind genome: from genetic diversity to the origin of human diseases.

    Science.gov (United States)

    Belizário, Jose E

    2013-12-01

    Genome-wide association studies have failed to establish common variant risk for the majority of common human diseases. The underlying reasons for this failure are explained by recent studies of resequencing and comparison of over 1200 human genomes and 10 000 exomes, together with the delineation of DNA methylation patterns (epigenome) and full characterization of coding and noncoding RNAs (transcriptome) being transcribed. These studies have provided the most comprehensive catalogues of functional elements and genetic variants that are now available for global integrative analysis and experimental validation in prospective cohort studies. With these datasets, researchers will have unparalleled opportunities for the alignment, mining, and testing of hypotheses for the roles of specific genetic variants, including copy number variations, single nucleotide polymorphisms, and indels as the cause of specific phenotypes and diseases. Through the use of next-generation sequencing technologies for genotyping and standardized ontological annotation to systematically analyze the effects of genomic variation on humans and model organism phenotypes, we will be able to find candidate genes and new clues for disease's etiology and treatment. This article describes essential concepts in genetics and genomic technologies as well as the emerging computational framework to comprehensively search websites and platforms available for the analysis and interpretation of genomic data.

  5. Linked biogenesis and degradation of human non-coding RNAs

    DEFF Research Database (Denmark)

    Andersen, Peter Refsing

    2012-01-01

    funktionelle roller majoriteten af disse transkripter spiller. De molekylære mekanismer bag dannelsen og nedbrydningen af både de nye klasser af ikke-kodende RNA transkripter og af flere etablerede klasser af ikke-kodende RNA transkripter er relativt ukendte i humane celler. Vi har undersøgt flere aspekter af......-5’ exoribonukleaseaktivitet i organismer så forskel¬lige som gær og mennesker. Gennem dette arbejde har vi vist at de fleste små RNAs molekyler, der oprinder fra humane protein-kodende gener (fraregnet mikroRNAer og introniske snoRNAer) repræsenterer RNA-nedbrydningssignaturer af specifikke molekylære processeringshændelser...... i dannelsen af pre-messenger RNA. Endvidere har vi fundet at 3’-forlængede humane introniske snoRNA-transkripter er substrater for RNA exosomet, men at produktionen af modne introniske snoRNAer ikke er afhængig af RNA exosomet, hvilket er ulig mekanismerne i gær, som man ellers have regnet med ville...

  6. Genetic evidence for a Paleolithic human population expansion in Africa

    Science.gov (United States)

    Reich, David E.; Goldstein, David B.

    1998-01-01

    Human populations have undergone dramatic expansions in size, but other than the growth associated with agriculture, the dates and magnitudes of those expansions have never been resolved. Here, we introduce two new statistical tests for population expansion, which use variation at a number of unlinked genetic markers to study the demographic histories of natural populations. By analyzing genetic variation in various aboriginal populations from throughout the world, we show highly significant evidence for a major human population expansion in Africa, but no evidence of expansion outside of Africa. The inferred African expansion is estimated to have occurred between 49,000 and 640,000 years ago, certainly before the Neolithic expansions, and probably before the splitting of African and non-African populations. In showing a significant difference between African and non-African populations, our analysis supports the unique role of Africa in human evolutionary history, as has been suggested by most other genetic work. In addition, the missing signal in non-African populations may be the result of a population bottleneck associated with the emergence of these populations from Africa, as postulated in the “Out of Africa” model of modern human origins. PMID:9653150

  7. The human pain genetics database: an interview with Luda Diatchenko.

    Science.gov (United States)

    Diatchenko, Luda

    2018-06-05

    Luda Diatchenko, MD, PhD is a Canada Excellence Research Chair in Human Pain Genetics, Professor, Faculty of Medicine, Department of Anesthesia and Faculty of Dentistry at McGill University, Alan Edwards Centre for Research on Pain. She earned her MD and PhD in the field of molecular biology from the Russian State Medical University. She started her career in industry, she was a Leader of the RNA Expression Group at Clontech, Inc., and subsequently, Director of Gene Discovery at Attagene, Inc. During this time, she was actively involved in the development of several widely used and widely cited molecular tools for the analysis of gene expression and regulation. Her academic career started at 2000 in the Center for Neurosensory Disorders at University of North Carolina. Her research since then is focused on determining the cellular and molecular biological mechanisms by which functional genetic variations impact human pain perception and risk of development of chronic pain conditions, enabling new approaches to identify new drug targets, treatment responses to analgesics and diagnostic. Multiple collaborative activities allow the Diatchenko group to take basic genetic findings all the way from human association studies, through molecular and cellular mechanisms to animal models and ultimately to human clinical trials. In total, she has authored or co-authored over 120 peer-reviewed research papers in journals, ten book chapters and edited a book in human pain genetics. She is a member and an active officer of several national and international scientific societies, including the International Association for the Study of Pain and the American Pain Society.

  8. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.

    Science.gov (United States)

    Macdonald, Lynn E; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T; Yasenchak, Jason; Frendewey, David; Valenzuela, David M; Giallourakis, Cosmas C; Alt, Frederick W; Yancopoulos, George D; Murphy, Andrew J

    2014-04-08

    Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.

  9. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  10. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  11. The ethics of human genetic intervention: a postmodern perspective.

    Science.gov (United States)

    Dyer, A R

    1997-03-01

    Gene therapy for a particular disease like Parkinson's involves ethical principles worked out for other diseases. The major ethical issues for gene therapy (and the corresponding ethical principles) are safety (nonmalfeasance), efficacy (beneficence), informed consent (autonomy), and allocation of resources (justice). Yet genetic engineering (germ-line interventions or interventions to enhance human potentialities) raises emotions and fears that might cause resistance to gene therapies. Looking at these technologies in a postmodern perspective helps one to appreciate the issues at stake in social and cultural change with a new technology such as gene therapy. While "modern" technology and ethics have focused on the autonomy of the individual, we are beginning to see a lessening of such emphasis on individualism and autonomy and more emphasis on the health of the population. Such a social change could cause technologies about which society may currently be cautious (such as human genetic interventions) to become more acceptable or even expected.

  12. Genetic engineering in nonhuman primates for human disease modeling.

    Science.gov (United States)

    Sato, Kenya; Sasaki, Erika

    2018-02-01

    Nonhuman primate (NHP) experimental models have contributed greatly to human health research by assessing the safety and efficacy of newly developed drugs, due to their physiological and anatomical similarities to humans. To generate NHP disease models, drug-inducible methods, and surgical treatment methods have been employed. Recent developments in genetic and developmental engineering in NHPs offer new options for producing genetically modified disease models. Moreover, in recent years, genome-editing technology has emerged to further promote this trend and the generation of disease model NHPs has entered a new era. In this review, we summarize the generation of conventional disease model NHPs and discuss new solutions to the problem of mosaicism in genome-editing technology.

  13. Distribution of absorbed dose in human eye simulated by SRNA-2KG computer code

    International Nuclear Information System (INIS)

    Ilic, R.; Pesic, M.; Pavlovic, R.; Mostacci, D.

    2003-01-01

    Rapidly increasing performances of personal computers and development of codes for proton transport based on Monte Carlo methods will allow, very soon, the introduction of the computer planning proton therapy as a normal activity in regular hospital procedures. A description of SRNA code used for such applications and results of calculated distributions of proton-absorbed dose in human eye are given in this paper. (author)

  14. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Directory of Open Access Journals (Sweden)

    Wendy Gibson

    2015-03-01

    Full Text Available Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr responsible for sleeping sickness (Human African Trypanosomiasis, HAT in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  15. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    Science.gov (United States)

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.

  16. Human genetics of infectious diseases: a unified theory

    OpenAIRE

    Casanova, Jean-Laurent; Abel, Laurent

    2007-01-01

    Since the early 1950s, the dominant paradigm in the human genetics of infectious diseases postulates that rare monogenic immunodeficiencies confer vulnerability to multiple infectious diseases (one gene, multiple infections), whereas common infections are associated with the polygenic inheritance of multiple susceptibility genes (one infection, multiple genes). Recent studies, since 1996 in particular, have challenged this view. A newly recognised group of primary immunodeficiencies predispos...

  17. HACking the centromere chromatin code: insights from human artificial chromosomes.

    Science.gov (United States)

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  18. [Leprosy, a pillar of human genetics of infectious diseases].

    Science.gov (United States)

    Gaschignard, J; Scurr, E; Alcaïs, A

    2013-06-01

    Despite a natural reservoir of Mycobacterium leprae limited to humans and free availability of an effective antibiotic treatment, more than 200,000 people develop leprosy each year. This disease remains a major cause of disability and social stigma worldwide. The cause of this constant incidence is currently unknown and indicates that important aspects of the complex relationship between the pathogen and its human host remain to be discovered. An important contribution of host genetics to susceptibility to leprosy has long been suggested to account for the considerable variability between individuals sustainably exposed to M. leprae. Given the inability to cultivate M. leprae in vitro and in the absence of relevant animal model, genetic epidemiology is the main strategy used to identify the genes and, consequently, the immunological pathways involved in protective immunity to M. leprae. Recent genome-wide studies have identified new pathophysiological pathways which importance is only beginning to be understood. In addition, the prism of human genetics placed leprosy at the crossroads of other common diseases such as Crohn's disease, asthma or myocardial infarction. Therefore, novel lights on the pathogenesis of many common diseases could eventually emerge from the detailed understanding of a disease of the shadows. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Video processing for human perceptual visual quality-oriented video coding.

    Science.gov (United States)

    Oh, Hyungsuk; Kim, Wonha

    2013-04-01

    We have developed a video processing method that achieves human perceptual visual quality-oriented video coding. The patterns of moving objects are modeled by considering the limited human capacity for spatial-temporal resolution and the visual sensory memory together, and an online moving pattern classifier is devised by using the Hedge algorithm. The moving pattern classifier is embedded in the existing visual saliency with the purpose of providing a human perceptual video quality saliency model. In order to apply the developed saliency model to video coding, the conventional foveation filtering method is extended. The proposed foveation filter can smooth and enhance the video signals locally, in conformance with the developed saliency model, without causing any artifacts. The performance evaluation results confirm that the proposed video processing method shows reliable improvements in the perceptual quality for various sequences and at various bandwidths, compared to existing saliency-based video coding methods.

  20. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  1. Genetic alterations affecting cholesterol metabolism and human fertility.

    Science.gov (United States)

    DeAngelis, Anthony M; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle

    2014-11-01

    Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. © 2014 by the Society for the Study of Reproduction, Inc.

  2. Scaling up: human genetics as a Cold War network.

    Science.gov (United States)

    Lindee, Susan

    2014-09-01

    In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  4. Human impacts on genetic diversity in forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Ledig, F T [Inst. of Forest Genetics, Southwest Forest and Range Experiment Station, USDA Forest Service, Berkeley (US)

    1992-01-01

    Humans have converted forest to agricultural and urban uses, exploited species, fragmented wildlands, changed the demographic structure of forests, altered habitat, degraded the environment with atmospheric and soil pollutants, introduced exotic pests and competitors, and domesticated favored species. None of these activities is new; perhaps with the exception of atmospheric pollution, they date back to prehistory. All have impacted genetic diversity by their influence on the evolutionary processes of extinction, selection, drift, gene flow, and mutation, sometimes increasing diversity, as int he case of domestication, but often reducing it. Even in the absence of changes in diversity, mating systems were altered, changing the genetic structure of populations. Demographic changes influenced selection by increasing the incidence of disease. Introduction of exotic diseases, insects, mammalian herbivores, and competing vegetation has had the best-documented effects on genetic diversity, reducing both species diversity and intraspecific diversity. Deforestation has operated on a vast scale to reduce diversity by direct elimination of locally-adapted populations. Atmospheric pollution and global warming will be a major threat in the near future, particularly because forests are fragmented and migration is impeded. Past impacts can be estimated with reference to expert knowledge, but hard data are often laching. Baselines are needed to quantify future impacts and provide an early warning of problems. Genetic inventories of indicator species can provide the baselines against which to measure changes in diversity. (author) (44 refs.).

  5. African Americans' opinions about human-genetics research.

    Science.gov (United States)

    Achter, Paul; Parrott, Roxanne; Silk, Kami

    2004-03-01

    Research on attitudes toward genetics and medicine registers skepticism among minority communities, but the reasons for this skepticism are not well known. In the past, studies linked mistrust of the medical system to historical ethics violations involving minority groups and to suspicions about ideological premise and political intent. To assess public knowledge, attitudes, and behavior regarding human-genetics research, we surveyed 858 Americans onsite in four community settings or online in a geographically nonspecific manner. Compared to participants as a whole, African Americans were significantly more likely to believe that clinical trials might be dangerous and that the federal government knowingly conducted unethical research, including studies in which risky vaccines were administered to prison populations. However, African Americans were also significantly more likely to believe that the federal government worked to prevent environmental exposure to toxicants harmful to people with genetic vulnerabilities. Our data suggest that most Americans trust government to act ethically in sponsoring and conducting research, including genetics research, but that African Americans are particularly likely to see government as powerfully protective in some settings yet selectively disingenuous in others.

  6. Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia

    Science.gov (United States)

    Khaw, Yam Sim; Chan, Yoke Fun; Jafar, Faizatul Lela; Othman, Norlijah; Chee, Hui Yee

    2016-01-01

    Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5′ and 3′ non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63–81% among themselves and 63–96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection. PMID:27199901

  7. Genetic Markers of Human Evolution Are Enriched in Schizophrenia

    DEFF Research Database (Denmark)

    Srinivasan, Saurabh; Bettella, Francesco; Mattingsdal, Morten

    2016-01-01

    BACKGROUND: Why schizophrenia has accompanied humans throughout our history despite its negative effect on fitness remains an evolutionary enigma. It is proposed that schizophrenia is a by-product of the complex evolution of the human brain and a compromise for humans' language, creative thinking...... and ancillary information on genetic variants. We used information from the evolutionary proxy measure called the Neanderthal selective sweep (NSS) score. RESULTS: Gene loci associated with schizophrenia are significantly (p = 7.30 × 10(-9)) more prevalent in genomic regions that are likely to have undergone...... phenotypes. The false discovery rate conditional on the evolutionary proxy points to 27 candidate schizophrenia susceptibility loci, 12 of which are associated with schizophrenia and other psychiatric disorders or linked to brain development. CONCLUSIONS: Our results suggest that there is a polygenic overlap...

  8. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  9. The Nuremberg Code subverts human health and safety by requiring animal modeling

    Directory of Open Access Journals (Sweden)

    Greek Ray

    2012-07-01

    Full Text Available Abstract Background The requirement that animals be used in research and testing in order to protect humans was formalized in the Nuremberg Code and subsequent national and international laws, codes, and declarations. Discussion We review the history of these requirements and contrast what was known via science about animal models then with what is known now. We further analyze the predictive value of animal models when used as test subjects for human response to drugs and disease. We explore the use of animals for models in toxicity testing as an example of the problem with using animal models. Summary We conclude that the requirements for animal testing found in the Nuremberg Code were based on scientifically outdated principles, compromised by people with a vested interest in animal experimentation, serve no useful function, increase the cost of drug development, and prevent otherwise safe and efficacious drugs and therapies from being implemented.

  10. LncRNAWiki: harnessing community knowledge in collaborative curation of human long non-coding RNAs

    KAUST Repository

    Ma, L.; Li, A.; Zou, D.; Xu, X.; Xia, L.; Yu, J.; Bajic, Vladimir B.; Zhang, Z.

    2014-01-01

    Long non-coding RNAs (lncRNAs) perform a diversity of functions in numerous important biological processes and are implicated in many human diseases. In this report we present lncRNAWiki (http://lncrna.big.ac.cn), a wiki-based platform that is open

  11. Development of a ECOREA-II code for human exposures from radionuclides through food chain

    International Nuclear Information System (INIS)

    Yoo, D. H.; Choi, Y. H.

    2001-01-01

    The release of radionuclides from nuclear facilities following an accident into air results in human exposures through two pathways. One is direct human exposures by inhalation or dermal absorption of these radionucles. Another is indirect human exposures through food chain which includes intakes of plant products such as rice, vegetables from contaiminated soil and animal products such as meet, milk and eggs feeded by contaminated grasses or plants on the terrestial surface. This study presents efforts of the development of a computer code for the assessment of the indirect human exposure through such food chains. The purpose of ECOREA-II code is to develop appropriate models suitable for a specific soil condition in Korea based on previous experimental efforts and to provide a more user-friendly environment such as GUI for the use of the code. Therefore, the current code, when more fully developed, is expected to increase the understanding of environmental safety assessment of nuclear facilities following an accident and provide a reasonable regulatory guideline with respecte to food safety issues

  12. Genetic regulation of pituitary gland development in human and mouse.

    Science.gov (United States)

    Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C A F; Dattani, Mehul T

    2009-12-01

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.

  13. Integrating common and rare genetic variation in diverse human populations.

    Science.gov (United States)

    Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Altshuler, David M; Gibbs, Richard A; Peltonen, Leena; Dermitzakis, Emmanouil; Schaffner, Stephen F; Yu, Fuli; Peltonen, Leena; Dermitzakis, Emmanouil; Bonnen, Penelope E; Altshuler, David M; Gibbs, Richard A; de Bakker, Paul I W; Deloukas, Panos; Gabriel, Stacey B; Gwilliam, Rhian; Hunt, Sarah; Inouye, Michael; Jia, Xiaoming; Palotie, Aarno; Parkin, Melissa; Whittaker, Pamela; Yu, Fuli; Chang, Kyle; Hawes, Alicia; Lewis, Lora R; Ren, Yanru; Wheeler, David; Gibbs, Richard A; Muzny, Donna Marie; Barnes, Chris; Darvishi, Katayoon; Hurles, Matthew; Korn, Joshua M; Kristiansson, Kati; Lee, Charles; McCarrol, Steven A; Nemesh, James; Dermitzakis, Emmanouil; Keinan, Alon; Montgomery, Stephen B; Pollack, Samuela; Price, Alkes L; Soranzo, Nicole; Bonnen, Penelope E; Gibbs, Richard A; Gonzaga-Jauregui, Claudia; Keinan, Alon; Price, Alkes L; Yu, Fuli; Anttila, Verneri; Brodeur, Wendy; Daly, Mark J; Leslie, Stephen; McVean, Gil; Moutsianas, Loukas; Nguyen, Huy; Schaffner, Stephen F; Zhang, Qingrun; Ghori, Mohammed J R; McGinnis, Ralph; McLaren, William; Pollack, Samuela; Price, Alkes L; Schaffner, Stephen F; Takeuchi, Fumihiko; Grossman, Sharon R; Shlyakhter, Ilya; Hostetter, Elizabeth B; Sabeti, Pardis C; Adebamowo, Clement A; Foster, Morris W; Gordon, Deborah R; Licinio, Julio; Manca, Maria Cristina; Marshall, Patricia A; Matsuda, Ichiro; Ngare, Duncan; Wang, Vivian Ota; Reddy, Deepa; Rotimi, Charles N; Royal, Charmaine D; Sharp, Richard R; Zeng, Changqing; Brooks, Lisa D; McEwen, Jean E

    2010-09-02

    Despite great progress in identifying genetic variants that influence human disease, most inherited risk remains unexplained. A more complete understanding requires genome-wide studies that fully examine less common alleles in populations with a wide range of ancestry. To inform the design and interpretation of such studies, we genotyped 1.6 million common single nucleotide polymorphisms (SNPs) in 1,184 reference individuals from 11 global populations, and sequenced ten 100-kilobase regions in 692 of these individuals. This integrated data set of common and rare alleles, called 'HapMap 3', includes both SNPs and copy number polymorphisms (CNPs). We characterized population-specific differences among low-frequency variants, measured the improvement in imputation accuracy afforded by the larger reference panel, especially in imputing SNPs with a minor allele frequency of human disease, and serves as a step towards a high-resolution map of the landscape of human genetic variation.

  14. A genetic basis for mechanosensory traits in humans.

    Directory of Open Access Journals (Sweden)

    Henning Frenzel

    Full Text Available In all vertebrates hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. There is an extensive literature describing single gene mutations in humans that cause hearing impairment, but there are essentially none for touch. Here we first asked if touch sensitivity is a heritable trait and second whether there are common genes that influence different mechanosensory senses like hearing and touch in humans. Using a classical twin study design we demonstrate that touch sensitivity and touch acuity are highly heritable traits. Quantitative phenotypic measures of different mechanosensory systems revealed significant correlations between touch and hearing acuity in a healthy human population. Thus mutations in genes causing deafness genes could conceivably negatively influence touch sensitivity. In agreement with this hypothesis we found that a proportion of a cohort of congenitally deaf young adults display significantly impaired measures of touch sensitivity compared to controls. In contrast, blind individuals showed enhanced, not diminished touch acuity. Finally, by examining a cohort of patients with Usher syndrome, a genetically well-characterized deaf-blindness syndrome, we could show that recessive pathogenic mutations in the USH2A gene influence touch acuity. Control Usher syndrome cohorts lacking demonstrable pathogenic USH2A mutations showed no impairment in touch acuity. Our study thus provides comprehensive evidence that there are common genetic elements that contribute to touch and hearing and has identified one of these genes as USH2A.

  15. Genetic Differences Between Humans and Great Apes -- Implications for the Evolution of Humans

    Science.gov (United States)

    Varki, Ajit

    2004-06-01

    At the level of individual protein sequences, humans are 97-100% identical to the great apes, our closest evolutionary relatives. The evolution of humans (and of human intelligence) from a common ancestor with the chimpanzee and bonobo involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of any differences found. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly with respect to a family of cell surface molecules called sialic acids, as well as in the metabolism of thyroid hormones. The hormone differences have potential consequences for human brain development. The differences in sialic acid biology have multiple implications for the human condition, ranging from susceptibility or resistance to microbial pathogens, effects on endogenous receptors in the immune system, and potential effects on placental signaling, expression of oncofetal antigens in cancers, consequences of dietary intake of animal foods, and development of the mammalian brain.

  16. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans.

    Science.gov (United States)

    Verloop, Herman; Dekkers, Olaf M; Peeters, Robin P; Schoones, Jan W; Smit, Johannes W A

    2014-09-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple clinical endpoints. Interest in clinical effects of genetic variation in deiodinases has clearly increased. We aimed to provide an overview for the role of deiodinase polymorphisms in human physiology and morbidity. In this systematic review, studies evaluating the relationship between deiodinase polymorphisms and clinical parameters in humans were eligible. No restrictions on publication date were imposed. The following databases were searched up to August 2013: Pubmed, EMBASE (OVID-version), Web of Science, COCHRANE Library, CINAHL (EbscoHOST-version), Academic Search Premier (EbscoHOST-version), and ScienceDirect. Deiodinase physiology at molecular and tissue level is described, and finally the role of these polymorphisms in pathophysiological conditions is reviewed. Deiodinase type 1 (D1) polymorphisms particularly show moderate-to-strong relationships with thyroid hormone parameters, IGF1 production, and risk for depression. D2 variants correlate with thyroid hormone levels, insulin resistance, bipolar mood disorder, psychological well-being, mental retardation, hypertension, and risk for osteoarthritis. D3 polymorphisms showed no relationship with inter-individual variation in serum thyroid hormone parameters. One D3 polymorphism was associated with risk for osteoarthritis. Genetic deiodinase profiles only explain a small proportion of inter-individual variations in serum thyroid hormone levels. Evidence suggests a role of genetic deiodinase variants in certain pathophysiological conditions. The value for determination of deiodinase polymorphism in clinical practice needs further investigation. © 2014 European Society of Endocrinology.

  17. Liberal or Conservative? Genetic Rhetoric, Disability, and Human Species Modification

    Directory of Open Access Journals (Sweden)

    Christopher F. Goodey

    2016-11-01

    Full Text Available A certain political rhetoric is implicit and sometimes explicit in the advocacy of human genetic modification (indicating here both the enhancement and the prevention of disability. The main claim is that it belongs to a liberal tradition. From a perspective supplied by the history and philosophy of science rather than by ethics, the content of that claim is examined to see if such a self-description is justified. The techniques are analyzed by which apparently liberal arguments get to be presented as “reasonable” in a juridical sense that draws on theories of law and rhetoric.

  18. The impact of preimplantation genetic diagnosis on human embryos

    Directory of Open Access Journals (Sweden)

    García-Ferreyra J.

    2016-12-01

    Full Text Available Chromosome abnormalities are extremely common in human oocytes and embryos and are associated with a variety of negative outcomes for both natural cycles and those using assisted reproduction techniques. Aneuploidies embryos may fail to implant in the uterus, miscarry, or lead to children with serious medical problems (e.g., Down syndrome. Preimplantation genetic diagnosis (PGD is a technique that allows the detection of aneuploidy in embryos and seeks to improve the clinical outcomes od assisted reproduction treatments, by ensuring that the embryos chosen for the transfer are chromosomally normal.

  19. Genetics and Human Agency: Comment on Dar-Nimrod and Heine (2011)

    Science.gov (United States)

    Turkheimer, Eric

    2011-01-01

    Dar-Nimrod and Heine (2011) decried genetic essentialism without denying the importance of genetics in the genesis of human behavior, and although I agree on both counts, a deeper issue remains unaddressed: how should we adjust our cognitions about our own behavior in light of genetic influence, or is it perhaps not necessary to take genetics into…

  20. Breaking the code: Statistical methods and methodological issues in psychiatric genetics

    NARCIS (Netherlands)

    Stringer, S.

    2015-01-01

    The genome-wide association (GWA) era has confirmed the heritability of many psychiatric disorders, most notably schizophrenia. Thousands of genetic variants with individually small effect sizes cumulatively constitute a large contribution to the heritability of psychiatric disorders. This thesis

  1. [Assisted reproduction and artificial insemination and genetic manipulation in the Criminal Code of the Federal District, Mexico].

    Science.gov (United States)

    Brena Sesma, Ingrid

    2004-01-01

    The article that one presents has for purpose outline and comment on the recent modifications to the Penal Code for the Federal District of México which establish, for the first time, crimes related to the artificial procreation and to the genetic manipulation. Also one refers to the interaction of the new legal texts with the sanitary legislation of the country. Since it will be stated in some cases they present confrontations between the penal and the sanitary reglamentation and some points related to the legality or unlawfulness of a conduct that stayed without the enough development. These lacks will complicate the application of the new rules of the Penal Code of the Federal District.

  2. Genetic variants in long non-coding RNA MIAT contribute to risk of paranoid schizophrenia in a Chinese Han population.

    Science.gov (United States)

    Rao, Shu-Quan; Hu, Hui-Ling; Ye, Ning; Shen, Yan; Xu, Qi

    2015-08-01

    The heritability of schizophrenia has been reported to be as high as ~80%, but the contribution of genetic variants identified to this heritability remains to be estimated. Long non-coding RNAs (LncRNAs) are involved in multiple processes critical to normal cellular function and dysfunction of lncRNA MIAT may contribute to the pathophysiology of schizophrenia. However, the genetic evidence of lncRNAs involved in schizophrenia has not been documented. Here, we conducted a two-stage association analysis on 8 tag SNPs that cover the whole MIAT locus in two independent Han Chinese schizophrenia case-control cohorts (discovery sample from Shanxi Province: 1093 patients with paranoid schizophrenia and 1180 control subjects; replication cohort from Jilin Province: 1255 cases and 1209 healthy controls). In discovery stage, significant genetic association with paranoid schizophrenia was observed for rs1894720 (χ(2)=74.20, P=7.1E-18), of which minor allele (T) had an OR of 1.70 (95% CI=1.50-1.91). This association was confirmed in the replication cohort (χ(2)=22.66, P=1.9E-06, OR=1.32, 95%CI 1.18-1.49). Besides, a weak genotypic association was detected for rs4274 (χ(2)=4.96, df=2, P=0.03); the AA carriers showed increased disease risk (OR=1.30, 95%CI=1.03-1.64). No significant association was found between any haplotype and paranoid schizophrenia. The present studies showed that lncRNA MIAT was a novel susceptibility gene for paranoid schizophrenia in the Chinese Han population. Considering that most lncRNAs locate in non-coding regions, our result may explain why most susceptibility loci for schizophrenia identified by genome wide association studies were out of coding regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Alu repeats as markers for human population genetics

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, M.A.; Alegria-Hartman, M. [Lawrence Livermore National Lab., CA (United States); Bazan, H. [Louisiana State Univ., New Orleans, LA (United States). Medical Center] [and others

    1993-09-01

    The Human-Specific (HS) subfamily of Alu sequences is comprised of a group of 500 nearly identical members which are almost exclusively restricted to the human genome. Individual subfamily members share an average of 97.9% nucleotide identity with each other and an average of 98.9% nucleotide identity with the HS subfamily consensus sequence. HS Alu family members are thought to be derived from a single source ``master`` gene, and have an average age of 2.8 million years. We have developed a Polymerase Chain Reaction (PCR) based assay using primers complementary to the 5 in. and 3 in. unique flanking DNA sequences from each HS Alu that allows the locus to be assayed for the presence or absence of an Alu repeat. Individual HS Alu sequences were found to be either monomorphic or dimorphic for the presence or absence of each repeat. The monomorphic HS Alu family members inserted in the human genome after the human/great ape divergence (which is thought to have occurred 4--6 million years ago), but before the radiation of modem man. The dimorphic HS Alu sequences inserted in the human genome after the radiation of modem man (within the last 200,000-one million years) and represent a unique source of information for human population genetics and forensic DNA analyses. These sites can be developed into Dimorphic Alu Sequence Tagged Sites (DASTS) for the Human Genome Project as well. HS Alu family member insertion dimorphism differs from other types of polymorphism (e.g. Variable Number of Tandem Repeat [VNTR] or Restriction Fragment Length Polymorphism [RFLP]) because individuals share HS Alu family member insertions based upon identity by descent from a common ancestor as a result of a single event which occurred one time within the human population. The VNTR and RFLP polymorphisms may arise multiple times within a population and are identical by state only.

  4. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes.

    Science.gov (United States)

    Driver, John P; Chen, Yi-Guang; Mathews, Clayton E

    2012-01-01

    Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.

  5. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    the focal GM and WM densities of each twin are correlated with the psychometric intelligence quotient of his/her cotwin. Genes influenced individual differences in left and right superior occipitofrontal fascicle (heritability up to 0.79 and 0.77), corpus callosum (0.82, 0.80), optic radiation (0.69, 0.......79), corticospinal tract (0.78, 0.79), medial frontal cortex (0.78, 0.83), superior frontal cortex (0.76, 0.80), superior temporal cortex (0.80, 0.77), left occipital cortex (0.85), left postcentral cortex (0.83), left posterior cingulate cortex (0.83), right parahippocampal cortex (0.69), and amygdala (0.80, 0......Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...

  6. HSP90 Shapes the Consequences of Human Genetic Variation.

    Science.gov (United States)

    Karras, Georgios I; Yi, Song; Sahni, Nidhi; Fischer, Máté; Xie, Jenny; Vidal, Marc; D'Andrea, Alan D; Whitesell, Luke; Lindquist, Susan

    2017-02-23

    HSP90 acts as a protein-folding buffer that shapes the manifestations of genetic variation in model organisms. Whether HSP90 influences the consequences of mutations in humans, potentially modifying the clinical course of genetic diseases, remains unknown. By mining data for >1,500 disease-causing mutants, we found a strong correlation between reduced phenotypic severity and a dominant (HSP90 ≥ HSP70) increase in mutant engagement by HSP90. Examining the cancer predisposition syndrome Fanconi anemia in depth revealed that mutant FANCA proteins engaged predominantly by HSP70 had severely compromised function. In contrast, the function of less severe mutants was preserved by a dominant increase in HSP90 binding. Reducing HSP90's buffering capacity with inhibitors or febrile temperatures destabilized HSP90-buffered mutants, exacerbating FA-related chemosensitivities. Strikingly, a compensatory FANCA somatic mutation from an "experiment of nature" in monozygotic twins both prevented anemia and reduced HSP90 binding. These findings provide one plausible mechanism for the variable expressivity and environmental sensitivity of genetic diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. An enhancement of selection and crossover operations in real-coded genetic algorithm for large-dimensionality optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Noh Sung; Lee, Jongsoo [Yonsei University, Seoul (Korea, Republic of)

    2016-01-15

    The present study aims to implement a new selection method and a novel crossover operation in a real-coded genetic algorithm. The proposed selection method facilitates the establishment of a successively evolved population by combining several subpopulations: an elitist subpopulation, an off-spring subpopulation and a mutated subpopulation. A probabilistic crossover is performed based on the measure of probabilistic distance between the individuals. The concept of ‘allowance’ is suggested to describe the level of variance in the crossover operation. A number of nonlinear/non-convex functions and engineering optimization problems are explored to verify the capacities of the proposed strategies. The results are compared with those obtained from other genetic and nature-inspired algorithms.

  8. The neural code for face orientation in the human fusiform face area.

    Science.gov (United States)

    Ramírez, Fernando M; Cichy, Radoslaw M; Allefeld, Carsten; Haynes, John-Dylan

    2014-09-03

    Humans recognize faces and objects with high speed and accuracy regardless of their orientation. Recent studies have proposed that orientation invariance in face recognition involves an intermediate representation where neural responses are similar for mirror-symmetric views. Here, we used fMRI, multivariate pattern analysis, and computational modeling to investigate the neural encoding of faces and vehicles at different rotational angles. Corroborating previous studies, we demonstrate a representation of face orientation in the fusiform face-selective area (FFA). We go beyond these studies by showing that this representation is category-selective and tolerant to retinal translation. Critically, by controlling for low-level confounds, we found the representation of orientation in FFA to be compatible with a linear angle code. Aspects of mirror-symmetric coding cannot be ruled out when FFA mean activity levels are considered as a dimension of coding. Finally, we used a parametric family of computational models, involving a biased sampling of view-tuned neuronal clusters, to compare different face angle encoding models. The best fitting model exhibited a predominance of neuronal clusters tuned to frontal views of faces. In sum, our findings suggest a category-selective and monotonic code of face orientation in the human FFA, in line with primate electrophysiology studies that observed mirror-symmetric tuning of neural responses at higher stages of the visual system, beyond the putative homolog of human FFA. Copyright © 2014 the authors 0270-6474/14/3412155-13$15.00/0.

  9. Psychological aspects of human cloning and genetic manipulation: the identity and uniqueness of human beings.

    Science.gov (United States)

    Morales, N M

    2009-01-01

    Human cloning has become one of the most controversial debates about reproduction in Western civilization. Human cloning represents asexual reproduction, but the critics of human cloning argue that the result of cloning is not a new individual who is genetically unique. There is also awareness in the scientific community, including the medical community, that human cloning and the creation of clones are inevitable. Psychology and other social sciences, together with the natural sciences, will need to find ways to help the healthcare system, to be prepared to face the new challenges introduced by the techniques of human cloning. One of those challenges is to help the healthcare system to find specific standards of behaviour that could be used to help potential parents to interact properly with cloned babies or children created through genetic manipulation. In this paper, the concepts of personality, identity and uniqueness are discussed in relationship to the contribution of twin studies in these areas. The author argues that an individual created by human cloning techniques or any other type of genetic manipulation will not show the donor's characteristics to the extent of compromising uniqueness. Therefore, claims to such an effect are needlessly alarmist.

  10. Understanding human genetic variation in the era of high-throughput sequencing

    OpenAIRE

    Knight, Julian C.

    2010-01-01

    The EMBO/EMBL symposium ‘Human Variation: Cause and Consequence' highlighted advances in understanding the molecular basis of human genetic variation and its myriad implications for biology, human origins and disease.

  11. G protein-coupled receptor mutations and human genetic disease.

    Science.gov (United States)

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  12. Genetic Variants Contribute to Gene Expression Variability in Humans

    Science.gov (United States)

    Hulse, Amanda M.; Cai, James J.

    2013-01-01

    Expression quantitative trait loci (eQTL) studies have established convincing relationships between genetic variants and gene expression. Most of these studies focused on the mean of gene expression level, but not the variance of gene expression level (i.e., gene expression variability). In the present study, we systematically explore genome-wide association between genetic variants and gene expression variability in humans. We adapt the double generalized linear model (dglm) to simultaneously fit the means and the variances of gene expression among the three possible genotypes of a biallelic SNP. The genomic loci showing significant association between the variances of gene expression and the genotypes are termed expression variability QTL (evQTL). Using a data set of gene expression in lymphoblastoid cell lines (LCLs) derived from 210 HapMap individuals, we identify cis-acting evQTL involving 218 distinct genes, among which 8 genes, ADCY1, CTNNA2, DAAM2, FERMT2, IL6, PLOD2, SNX7, and TNFRSF11B, are cross-validated using an extra expression data set of the same LCLs. We also identify ∼300 trans-acting evQTL between >13,000 common SNPs and 500 randomly selected representative genes. We employ two distinct scenarios, emphasizing single-SNP and multiple-SNP effects on expression variability, to explain the formation of evQTL. We argue that detecting evQTL may represent a novel method for effectively screening for genetic interactions, especially when the multiple-SNP influence on expression variability is implied. The implication of our results for revealing genetic mechanisms of gene expression variability is discussed. PMID:23150607

  13. Estimating mobility using sparse data: Application to human genetic variation.

    Science.gov (United States)

    Loog, Liisa; Mirazón Lahr, Marta; Kovacevic, Mirna; Manica, Andrea; Eriksson, Anders; Thomas, Mark G

    2017-11-14

    Mobility is one of the most important processes shaping spatiotemporal patterns of variation in genetic, morphological, and cultural traits. However, current approaches for inferring past migration episodes in the fields of archaeology and population genetics lack either temporal resolution or formal quantification of the underlying mobility, are poorly suited to spatially and temporally sparsely sampled data, and permit only limited systematic comparison between different time periods or geographic regions. Here we present an estimator of past mobility that addresses these issues by explicitly linking trait differentiation in space and time. We demonstrate the efficacy of this estimator using spatiotemporally explicit simulations and apply it to a large set of ancient genomic data from Western Eurasia. We identify a sequence of changes in human mobility from the Late Pleistocene to the Iron Age. We find that mobility among European Holocene farmers was significantly higher than among European hunter-gatherers both pre- and postdating the Last Glacial Maximum. We also infer that this Holocene rise in mobility occurred in at least three distinct stages: the first centering on the well-known population expansion at the beginning of the Neolithic, and the second and third centering on the beginning of the Bronze Age and the late Iron Age, respectively. These findings suggest a strong link between technological change and human mobility in Holocene Western Eurasia and demonstrate the utility of this framework for exploring changes in mobility through space and time. Copyright © 2017 the Author(s). Published by PNAS.

  14. Human lipodystrophies: genetic and acquired diseases of adipose tissue

    Science.gov (United States)

    Capeau, Jacqueline; Magré, Jocelyne; Caron-Debarle, Martine; Lagathu, Claire; Antoine, Bénédicte; Béréziat, Véronique; Lascols, Olivier; Bastard, Jean-Philippe; Vigouroux, Corinne

    2010-01-01

    Human lipodystrophies represent a heterogeneous group of diseases characterized by generalized or partial fat loss, with fat hypertrophy in other depots when partial. Insulin resistance, dyslipidemia and diabetes are generally associated, leading to early complications. Genetic forms are uncommon: recessive generalized congenital lipodystrophies result in most cases from mutations in the genes encoding seipin or the 1-acyl-glycerol-3-phosphate-acyltransferase 2 (AGPAT2). Dominant partial familial lipodystrophies result from mutations in genes encoding the nuclear protein lamin A/C or the adipose transcription factor PPARγ. Importantly, lamin A/C mutations are also responsible for metabolic laminopathies, resembling the metabolic syndrome and progeria, a syndrome of premature aging. A number of lipodystrophic patients remain undiagnosed at the genetic level. Acquired lipodystrophy can be generalized, resembling congenital forms, or partial, as the Barraquer-Simons syndrome, with loss of fat in the upper part of the body contrasting with accumulation in the lower part. Although their aetiology is generally unknown, they could be associated with signs of auto-immunity. The most common forms of lipodystrophies are iatrogenic. In human immunodeficiency virus-infected patients, some first generation antiretroviral drugs were strongly related with peripheral lipoatrophy and metabolic alterations. Partial lipodystrophy also characterize patients with endogenous or exogenous long-term corticoid excess. Treatment of fat redistribution can sometimes benefit from plastic surgery. Lipid and glucose alterations are difficult to control leading to early occurrence of diabetic, cardio-vascular and hepatic complications. PMID:20551664

  15. Biomarkers of genetic damage in human populations exposed to pesticides

    International Nuclear Information System (INIS)

    Aiassa, Delia; Manas, Fernando; Bosch, Beatriz; Gentile, Natalia; Bernardi, Natali; Gorla, Nora

    2012-01-01

    The effect of pesticides on human, animal and environmental health has been cause of concern in the scientific community for a long time. Numerous studies have reported that pesticides are not harmless and that their use can lead to harmful biological effects in the medium and long term, in exposed human and animals, and their offspring. The importance of early detection of genetic damage is that it allows us to take the necessary measures to reduce or eliminate the exposure to the deleterious agent when damage is still reversible, and thus to prevent and to diminish the risk of developing tumors or other alterations. In this paper we reviewed the main concepts in the field, the usefulness of genotoxicity studies and we compiled studies performed during the last twenty years on genetic monitoring of people occupationally exposed to pesticides. we think that genotoxicity tests, including that include chromosomal aberrations, micronucleus, sister chromatid exchanges and comet assays, should be considered as essential tools in the implementation of complete medical supervision for people exposed to potential environmental pollutants, particularly for those living in the same place as others who were others have already developed some type of malignancy. This action is particularly important at early stages to prevent the occurrence of tumors, especially from environmental origins.

  16. Egyptian Journal of Medical Human Genetics - Vol 14, No 3 (2013)

    African Journals Online (AJOL)

    Egyptian Journal of Medical Human Genetics - Vol 14, No 3 (2013) ... Comparative study: Parameters of gait in Down syndrome versus matched obese and ... episodes in a Japanese child: Clinical, radiological and molecular genetic analysis ...

  17. Computational Integration of Human Genetic Data to Evaluate AOP-Specific Susceptibility

    Science.gov (United States)

    There is a need for approaches to efficiently evaluate human genetic variability and susceptibility related to environmental chemical exposure. Direct estimation of the genetic contribution to variability in susceptibility to environmental chemicals is only possible in special ca...

  18. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code

    Science.gov (United States)

    Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2016-01-01

    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNALysUUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm5s2U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.

  19. Phenotypic Characterization of Genetically Lowered Human Lipoprotein(a) Levels

    Science.gov (United States)

    Emdin, Connor A.; Khera, Amit V.; Natarajan, Pradeep; Klarin, Derek; Won, Hong-Hee; Peloso, Gina M.; Stitziel, Nathan O.; Nomura, Akihiro; Zekavat, Seyedeh M.; Bick, Alexander G.; Gupta, Namrata; Asselta, Rosanna; Duga, Stefano; Merlini, Piera Angelica; Correa, Adolfo; Kessler, Thorsten; Wilson, James G.; Bown, Matthew J.; Hall, Alistair S.; Braund, Peter S.; Samani, Nilesh J.; Schunkert, Heribert; Marrugat, Jaume; Elosua, Roberto; McPherson, Ruth; Farrall, Martin; Watkins, Hugh; Willer, Cristen; Abecasis, Gonçalo R.; Felix, Janine F.; Vasan, Ramachandran S.; Lander, Eric; Rader, Daniel J.; Danesh, John; Ardissino, Diego; Gabriel, Stacey; Saleheen, Danish; Kathiresan, Sekar

    2017-01-01

    BACKGROUND Genomic analyses have suggested that the LPA gene and its associated plasma biomarker, lipoprotein(a) (Lp[a]), represent a causal risk factor for coronary heart disease (CHD). As such, lowering Lp(a) has emerged as a therapeutic strategy. Beyond target identification, human genetics may contribute to the development of new therapies by defining the full spectrum of beneficial and adverse consequences and by developing a dose-response curve of target perturbation. OBJECTIVES We attempted to establish the full phenotypic impact of LPA gene variation and to estimate a dose-response curve between genetically altered plasma Lp(a) and risk for CHD. METHODS We leveraged genetic variants at the LPA gene from 3 data sources: individual-level data from 112,338 participants in the UK Biobank; summary association results from large-scale genome-wide association studies; and LPA gene sequencing results from cases with and controls free of CHD. RESULTS One standard deviation genetically lowered Lp(a) level was associated with 29% lower risk of CHD (odds ratio [OR]: 0.71; 95% confidence interval [CI]: 0.69 to 0.73), 31% lower risk of peripheral vascular disease (OR: 0.69; 95% CI: 0.59 to 0.80), 13% lower risk of stroke (OR: 0.87; 95% CI: 0.79 to 0.96), 17% lower risk of heart failure (OR: 0.83; 95% CI: 0.73 to 0.94), and 37% lower risk of aortic stenosis (OR: 0.63; 95% CI: 0.47 to 0.83). We observed no association with 31 other disorders including type 2 diabetes and cancer. Variants that led to gain of LPA gene function increased risk for CHD whereas those that led to loss of gene function reduced CHD risk. CONCLUSIONS Beyond CHD, genetically lowered Lp(a) is associated with a lower risk of peripheral vascular disease, stroke, heart failure, and aortic stenosis. As such, pharmacological lowering of plasma Lp(a) may impact a range of atherosclerosis-related diseases. PMID:28007139

  20. The origins and evolutionary history of human non-coding RNA regulatory networks.

    Science.gov (United States)

    Sherafatian, Masih; Mowla, Seyed Javad

    2017-04-01

    The evolutionary history and origin of the regulatory function of animal non-coding RNAs are not well understood. Lack of conservation of long non-coding RNAs and small sizes of microRNAs has been major obstacles in their phylogenetic analysis. In this study, we tried to shed more light on the evolution of ncRNA regulatory networks by changing our phylogenetic strategy to focus on the evolutionary pattern of their protein coding targets. We used available target databases of miRNAs and lncRNAs to find their protein coding targets in human. We were able to recognize evolutionary hallmarks of ncRNA targets by phylostratigraphic analysis. We found the conventional 3'-UTR and lesser known 5'-UTR targets of miRNAs to be enriched at three consecutive phylostrata. Firstly, in eukaryata phylostratum corresponding to the emergence of miRNAs, our study revealed that miRNA targets function primarily in cell cycle processes. Moreover, the same overrepresentation of the targets observed in the next two consecutive phylostrata, opisthokonta and eumetazoa, corresponded to the expansion periods of miRNAs in animals evolution. Coding sequence targets of miRNAs showed a delayed rise at opisthokonta phylostratum, compared to the 3' and 5' UTR targets of miRNAs. LncRNA regulatory network was the latest to evolve at eumetazoa.

  1. Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences.

    LENUS (Irish Health Repository)

    Ivanov, Ivaylo P

    2011-05-01

    In eukaryotes, it is generally assumed that translation initiation occurs at the AUG codon closest to the messenger RNA 5\\' cap. However, in certain cases, initiation can occur at codons differing from AUG by a single nucleotide, especially the codons CUG, UUG, GUG, ACG, AUA and AUU. While non-AUG initiation has been experimentally verified for a handful of human genes, the full extent to which this phenomenon is utilized--both for increased coding capacity and potentially also for novel regulatory mechanisms--remains unclear. To address this issue, and hence to improve the quality of existing coding sequence annotations, we developed a methodology based on phylogenetic analysis of predicted 5\\' untranslated regions from orthologous genes. We use evolutionary signatures of protein-coding sequences as an indicator of translation initiation upstream of annotated coding sequences. Our search identified novel conserved potential non-AUG-initiated N-terminal extensions in 42 human genes including VANGL2, FGFR1, KCNN4, TRPV6, HDGF, CITED2, EIF4G3 and NTF3, and also affirmed the conservation of known non-AUG-initiated extensions in 17 other genes. In several instances, we have been able to obtain independent experimental evidence of the expression of non-AUG-initiated products from the previously published literature and ribosome profiling data.

  2. Remediating Viking Origins: Genetic Code as Archival Memory of the Remote Past.

    Science.gov (United States)

    Scully, Marc; King, Turi; Brown, Steven D

    2013-10-01

    This article introduces some early data from the Leverhulme Trust-funded research programme, 'The Impact of the Diasporas on the Making of Britain: evidence, memories, inventions'. One of the interdisciplinary foci of the programme, which incorporates insights from genetics, history, archaeology, linguistics and social psychology, is to investigate how genetic evidence of ancestry is incorporated into identity narratives. In particular, we investigate how 'applied genetic history' shapes individual and familial narratives, which are then situated within macro-narratives of the nation and collective memories of immigration and indigenism. It is argued that the construction of genetic evidence as a 'gold standard' about 'where you really come from' involves a remediation of cultural and archival memory, in the construction of a 'usable past'. This article is based on initial questionnaire data from a preliminary study of those attending DNA collection sessions in northern England. It presents some early indicators of the perceived importance of being of Viking descent among participants, notes some emerging patterns and considers the implications for contemporary debates on migration, belonging and local and national identity.

  3. Innovation of genetic algorithm code GenA for WWER fuel loading optimization

    International Nuclear Information System (INIS)

    Sustek, J.

    2005-01-01

    One of the stochastic search techniques - genetic algorithms - was recently used for optimization of arrangement of fuel assemblies (FA) in core of reactors WWER-440 and WWER-1000. Basic algorithm was modified by incorporation of SPEA scheme. Both were enhanced and some results are presented (Authors)

  4. Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval

    DEFF Research Database (Denmark)

    Lin, Honghuang; van Setten, Jessica; Smith, Albert V

    2018-01-01

    BACKGROUND: Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequ...

  5. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts.

    Science.gov (United States)

    Gagnon, Kenneth B; Delpire, Eric

    2013-04-15

    Among the over 300 members of the solute carrier (SLC) group of integral plasma membrane transport proteins are the nine electroneutral cation-chloride cotransporters belonging to the SLC12 gene family. Seven of these transporters have been functionally described as coupling the electrically silent movement of chloride with sodium and/or potassium. Although in silico analysis has identified two additional SLC12 family members, no physiological role has been ascribed to the proteins encoded by either the SLC12A8 or the SLC12A9 genes. Evolutionary conservation of this gene family from protists to humans confirms their importance. A wealth of physiological, immunohistochemical, and biochemical studies have revealed a great deal of information regarding the importance of this gene family to human health and disease. The sequencing of the human genome has provided investigators with the capability to link several human diseases with mutations in the genes encoding these plasma membrane proteins. The availability of bacterial artificial chromosomes, recombination engineering techniques, and the mouse genome sequence has simplified the creation of targeting constructs to manipulate the expression/function of these cation-chloride cotransporters in the mouse in an attempt to recapitulate some of these human pathologies. This review will summarize the three human disorders that have been linked to the mutation/dysfunction of the Na-Cl, Na-K-2Cl, and K-Cl cotransporters (i.e., Bartter's, Gitleman's, and Andermann's syndromes), examine some additional pathologies arising from genetically modified mouse models of these cotransporters including deafness, blood pressure, hyperexcitability, and epithelial transport deficit phenotypes.

  6. Genetic Characterization and Classification of Human and Animal Sapoviruses.

    Directory of Open Access Journals (Sweden)

    Tomoichiro Oka

    Full Text Available Sapoviruses (SaVs are enteric caliciviruses that have been detected in multiple mammalian species, including humans, pigs, mink, dogs, sea lions, chimpanzees, and rats. They show a high level of diversity. A SaV genome commonly encodes seven nonstructural proteins (NSs, including the RNA polymerase protein NS7, and two structural proteins (VP1 and VP2. We classified human and animal SaVs into 15 genogroups (G based on available VP1 sequences, including three newly characterized genomes from this study. We sequenced the full length genomes of one new genogroup V (GV, one GVII and one GVIII porcine SaV using long range RT-PCR including newly designed forward primers located in the conserved motifs of the putative NS3, and also 5' RACE methods. We also determined the 5'- and 3'-ends of sea lion GV SaV and canine GXIII SaV. Although the complete genomic sequences of GIX-GXII, and GXV SaVs are unavailable, common features of SaV genomes include: 1 "GTG" at the 5'-end of the genome, and a short (9~14 nt 5'-untranslated region; and 2 the first five amino acids (M [A/V] S [K/R] P of the putative NS1 and the five amino acids (FEMEG surrounding the putative cleavage site between NS7 and VP1 were conserved among the chimpanzee, two of five genogroups of pig (GV and GVIII, sea lion, canine, and human SaVs. In contrast, these two amino acid motifs were clearly different in three genogroups of porcine (GIII, GVI and GVII, and bat SaVs. Our results suggest that several animal SaVs have genetic similarities to human SaVs. However, the ability of SaVs to be transmitted between humans and animals is uncertain.

  7. Derivation of novel genetically diverse human embryonic stem cell lines.

    Science.gov (United States)

    Stefanova, Valentina T; Grifo, James A; Hansis, Christoph

    2012-06-10

    Human embryonic stem cells (hESCs) have the potential to revolutionize many biomedical fields ranging from basic research to disease modeling, regenerative medicine, drug discovery, and toxicity testing. A multitude of hESC lines have been derived worldwide since the first 5 lines by Thomson et al. 13 years ago, but many of these are poorly characterized, unavailable, or do not represent desired traits, thus making them unsuitable for application purposes. In order to provide the scientific community with better options, we have derived 12 new hESC lines at New York University from discarded genetically normal and abnormal embryos using the latest techniques. We examined the genetic status of the NYUES lines in detail as well as their molecular and cellular features and DNA fingerprinting profile. Furthermore, we differentiated our hESCs into the tissues most affected by a specific condition or into clinically desired cell types. To our knowledge, a number of characteristics of our hESCs have not been previously reported, for example, mutation for alpha thalassemia X-linked mental retardation syndrome, linkage to conditions with a genetic component such as asthma or poor sperm morphology, and novel combinations of ethnic backgrounds. Importantly, all of our undifferentiated euploid female lines tested to date did not show X chromosome inactivation, believed to result in superior potency. We continue to derive new hESC lines and add them to the NIH registry and other registries. This should facilitate the use of our hESCs and lead to advancements for patient-benefitting applications.

  8. The human noncoding genome defined by genetic diversity.

    Science.gov (United States)

    di Iulio, Julia; Bartha, Istvan; Wong, Emily H M; Yu, Hung-Chun; Lavrenko, Victor; Yang, Dongchan; Jung, Inkyung; Hicks, Michael A; Shah, Naisha; Kirkness, Ewen F; Fabani, Martin M; Biggs, William H; Ren, Bing; Venter, J Craig; Telenti, Amalio

    2018-03-01

    Understanding the significance of genetic variants in the noncoding genome is emerging as the next challenge in human genomics. We used the power of 11,257 whole-genome sequences and 16,384 heptamers (7-nt motifs) to build a map of sequence constraint for the human species. This build differed substantially from traditional maps of interspecies conservation and identified regulatory elements among the most constrained regions of the genome. Using new Hi-C experimental data, we describe a strong pattern of coordination over 2 Mb where the most constrained regulatory elements associate with the most essential genes. Constrained regions of the noncoding genome are up to 52-fold enriched for known pathogenic variants as compared to unconstrained regions (21-fold when compared to the genome average). This map of sequence constraint across thousands of individuals is an asset to help interpret noncoding elements in the human genome, prioritize variants and reconsider gene units at a larger scale.

  9. Clinical Characteristics and Genetic Variability of Human Rhinovirus in Mexico

    Directory of Open Access Journals (Sweden)

    Hilda Montero

    2012-01-01

    Full Text Available Human rhinovirus (HRV is a leading cause of acute respiratory infection (ARI in young children and infants worldwide and has a high impact on morbidity and mortality in this population. Initially, HRV was classified into two species: HRV-A and HRV-B. Recently, a species called HRV-C and possibly another species, HRV-D, were identified. In Mexico, there is little information about the role of HRV as a cause of ARI, and the presence and importance of species such as HRV-C are not known. The aim of this study was to determine the clinical characteristics and genetic variability of HRV in Mexican children. Genetic characterization was carried out by phylogenetic analysis of the 5′-nontranslated region (5′-NTR of the HRV genome. The results show that the newly identified HRV-C is circulating in Mexican children more frequently than HRV-B but not as frequently as HRV-A, which was the most frequent species. Most of the cases of the three species of HRV were in children under 2 years of age, and all species were associated with very mild and moderate ARI.

  10. The prognostic potential and carcinogenesis of long non-coding RNA TUG1 in human cholangiocarcinoma

    OpenAIRE

    Xu, Yi; Leng, Kaiming; Li, Zhenglong; Zhang, Fumin; Zhong, Xiangyu; Kang, Pengcheng; Jiang, Xingming; Cui, Yunfu

    2017-01-01

    Cholangiocarcinoma (CCA) is a fatal disease with increasing worldwide incidence and is characterized by poor prognosis due to its poor response to conventional chemotherapy or radiotherapy. Long non-coding RNAs (lncRNAs) play key roles in multiple human cancers, including CCA. Cancer progression related lncRNA taurine-up-regulated gene 1 (TUG1) was reported to be involved in human carcinomas. However, the impact of TUG1 in CCA is unclear. The aim of this study was to explore the expression pa...

  11. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach

    Directory of Open Access Journals (Sweden)

    Swati Chaturvedi

    2016-01-01

    Full Text Available One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches.

  12. Human genetics of infectious diseases: Unique insights into immunological redundancy.

    Science.gov (United States)

    Casanova, Jean-Laurent; Abel, Laurent

    2018-04-01

    For almost any given human-tropic virus, bacterium, fungus, or parasite, the clinical outcome of primary infection is enormously variable, ranging from asymptomatic to lethal infection. This variability has long been thought to be largely determined by the germline genetics of the human host, and this is increasingly being demonstrated to be the case. The number and diversity of known inborn errors of immunity is continually increasing, and we focus here on autosomal and X-linked recessive traits underlying complete deficiencies of the encoded protein. Schematically, four types of infectious phenotype have been observed in individuals with such deficiencies, each providing information about the redundancy of the corresponding human gene, in terms of host defense in natural conditions. The lack of a protein can confer vulnerability to a broad range of microbes in most, if not all patients, through the disruption of a key immunological component. In such cases, the gene concerned is of low redundancy. However, the lack of a protein may also confer vulnerability to a narrow range of microbes, sometimes a single pathogen, and not necessarily in all patients. In such cases, the gene concerned is highly redundant. Conversely, the deficiency may be apparently neutral, conferring no detectable predisposition to infection in any individual. In such cases, the gene concerned is completely redundant. Finally, the lack of a protein may, paradoxically, be advantageous to the host, conferring resistance to one or more infections. In such cases, the gene is considered to display beneficial redundancy. These findings reflect the current state of evolution of humans and microbes, and should not be considered predictive of redundancy, or of a lack of redundancy, in the distant future. Nevertheless, these observations are of potential interest to present-day biologists testing immunological hypotheses experimentally and physicians managing patients with immunological or infectious

  13. Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes

    KAUST Repository

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; Brown, James B.; Lipovich, Leonard; Bajic, Vladimir B.

    2014-01-01

    raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted

  14. Dynamics of genetic variation at gliadin-coding loci in bread wheat cultivars developed in small grains research center (Kragujevac during last 35 years

    Directory of Open Access Journals (Sweden)

    Novosljska-Dragovič Aleksandra

    2005-01-01

    Full Text Available Multiple alleles of gliadin-coding loci are well-known genetic markers of common wheat genotypes. Based on analysis of gliadin patterns in common wheat cultivars developed at the Small Grains Research Center in Kragujevac dynamics of genetic variability at gliadin-coding loci has been surveyed for the period of 35 years. It was shown that long-term breeding of the wheat cultivars involved gradual replacement of ancient alleles for those widely spread in some regions in the world, which belong to well-known cultivars-donor of some important traits. Developing cultivars whose pedigree involved much new foreign genetic material has increased genetic diversity as well as has changed frequency of alleles of gliadin-coding loci. So we can conclude that the genetic profile of modern Serbian cultivars has changed considerably. Genetic formula of gliadin was made for each the cultivar studied. The most frequent alleles of gliadin-coding loci among modern cultivars should be of great interest of breeders because these alleles are probably linked with genes that confer advantage to their carriers at present.

  15. Long term human impacts on genetic structure of Italian walnut inferred by SSR markers

    Science.gov (United States)

    Paola Pollegioni; Keith Woeste; Irene Olimpieri; Danilo Marandola; Francesco Cannata; Maria E Malvolti

    2011-01-01

    Life history traits, historic factors, and human activities can all shape the genetic diversity of a species. In Italy, walnut (Juglans regia L.) has a long history of cultivation both for wood and edible nuts. To better understand the genetic variability of current Italian walnut resources, we analyzed the relationships among the genetic structure...

  16. Variation in human recombination rates and its genetic determinants.

    Directory of Open Access Journals (Sweden)

    Adi Fledel-Alon

    Full Text Available Despite the fundamental role of crossing-over in the pairing and segregation of chromosomes during human meiosis, the rates and placements of events vary markedly among individuals. Characterizing this variation and identifying its determinants are essential steps in our understanding of the human recombination process and its evolution.Using three large sets of European-American pedigrees, we examined variation in five recombination phenotypes that capture distinct aspects of crossing-over patterns. We found that the mean recombination rate in males and females and the historical hotspot usage are significantly heritable and are uncorrelated with one another. We then conducted a genome-wide association study in order to identify loci that influence them. We replicated associations of RNF212 with the mean rate in males and in females as well as the association of Inversion 17q21.31 with the female mean rate. We also replicated the association of PRDM9 with historical hotspot usage, finding that it explains most of the genetic variance in this phenotype. In addition, we identified a set of new candidate regions for further validation.These findings suggest that variation at broad and fine scales is largely separable and that, beyond three known loci, there is no evidence for common variation with large effects on recombination phenotypes.

  17. Functional modules, mutational load and human genetic disease.

    Science.gov (United States)

    Zaghloul, Norann A; Katsanis, Nicholas

    2010-04-01

    The ability to generate a massive amount of sequencing and genotyping data is transforming the study of human genetic disorders. Driven by such innovation, it is likely that whole exome and whole-genome resequencing will replace regionally focused approaches for gene discovery and clinical testing in the next few years. However, this opportunity brings a significant interpretative challenge to assigning function and phenotypic variance to common and rare alleles. Understanding the effect of individual mutations in the context of the remaining genomic variation represents a major challenge to our interpretation of disease. Here, we discuss the challenges of assigning mutation functionality and, drawing from the examples of ciliopathies as well as cohesinopathies and channelopathies, discuss possibilities for the functional modularization of the human genome. Functional modularization in addition to the development of physiologically relevant assays to test allele functionality will accelerate our understanding of disease architecture and enable the use of genome-wide sequence data for disease diagnosis and phenotypic prediction in individuals. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Phase-amplitude coupling supports phase coding in human ECoG

    Science.gov (United States)

    Watrous, Andrew J; Deuker, Lorena; Fell, Juergen; Axmacher, Nikolai

    2015-01-01

    Prior studies have shown that high-frequency activity (HFA) is modulated by the phase of low-frequency activity. This phenomenon of phase-amplitude coupling (PAC) is often interpreted as reflecting phase coding of neural representations, although evidence for this link is still lacking in humans. Here, we show that PAC indeed supports phase-dependent stimulus representations for categories. Six patients with medication-resistant epilepsy viewed images of faces, tools, houses, and scenes during simultaneous acquisition of intracranial recordings. Analyzing 167 electrodes, we observed PAC at 43% of electrodes. Further inspection of PAC revealed that category specific HFA modulations occurred at different phases and frequencies of the underlying low-frequency rhythm, permitting decoding of categorical information using the phase at which HFA events occurred. These results provide evidence for categorical phase-coded neural representations and are the first to show that PAC coincides with phase-dependent coding in the human brain. DOI: http://dx.doi.org/10.7554/eLife.07886.001 PMID:26308582

  19. DEEP code to calculate dose equivalents in human phantom for external photon exposure by Monte Carlo method

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuhiro

    1991-01-01

    The present report describes a computer code DEEP which calculates the organ dose equivalents and the effective dose equivalent for external photon exposure by the Monte Carlo method. MORSE-CG, Monte Carlo radiation transport code, is incorporated into the DEEP code to simulate photon transport phenomena in and around a human body. The code treats an anthropomorphic phantom represented by mathematical formulae and user has a choice for the phantom sex: male, female and unisex. The phantom can wear personal dosimeters on it and user can specify their location and dimension. This document includes instruction and sample problem for the code as well as the general description of dose calculation, human phantom and computer code. (author)

  20. Genetic Correction and Hepatic Differentiation of Hemophilia B-specific Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    He, Qiong; Wang, Hui-Hui; Cheng, Tao; Yuan, Wei-Ping; Ma, Yu-Po; Jiang, Yong-Ping; Ren, Zhi-Hua

    2017-09-27

    Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay. Results The cell line bore a missense mutation in the 6 th coding exon (c.676 C>T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.

  1. Discovery of coding genetic variants influencing diabetes-related serum biomarkers and their impact on risk of type 2 diabetes

    DEFF Research Database (Denmark)

    Ahluwalia, Tarun Veer Singh; Allin, Kristine Højgaard; Sandholt, Camilla Helene

    2015-01-01

    CONTEXT: Type 2 diabetes (T2D) prevalence is spiraling globally, and knowledge of its pathophysiological signatures is crucial for a better understanding and treatment of the disease. OBJECTIVE: We aimed to discover underlying coding genetic variants influencing fasting serum levels of nine......-nucleotide polymorphisms and were tested for association with each biomarker. Identified loci were tested for association with T2D through a large-scale meta-analysis involving up to 17 024 T2D cases and up to 64 186 controls. RESULTS: We discovered 11 associations between single-nucleotide polymorphisms and five distinct......, of which the association with the CELSR2 locus has not been shown previously. CONCLUSION: The identified loci influence processes related to insulin signaling, cell communication, immune function, apoptosis, DNA repair, and oxidative stress, all of which could provide a rationale for novel diabetes...

  2. [Constant or break? On the relations between human genetics and eugenics in the Twentieth Century].

    Science.gov (United States)

    Germann, Pascal

    2015-07-01

    The history of human genetics has been a neglected topic in history of science and medicine for a long time. Only recently, have medical historians begun to pay more attention to the history of human heredity. An important research question deals with the interconnections between human genetics and eugenics. This paper addresses this question: By focusing on a Swiss case study, the investigation of the heredity of goiter, I will argue that there existed close but also ambiguous relations between heredity research and eugenics in the twentieth century. Studies on human heredity often produced evidence that challenged eugenic aims and ideas. Concurrently, however, these studies fostered visions of genetic improvement of human populations.

  3. Analysis of the genetic basis of disease in the context of worldwide human relationships and migration.

    Directory of Open Access Journals (Sweden)

    Erik Corona

    2013-05-01

    Full Text Available Genetic diversity across different human populations can enhance understanding of the genetic basis of disease. We calculated the genetic risk of 102 diseases in 1,043 unrelated individuals across 51 populations of the Human Genome Diversity Panel. We found that genetic risk for type 2 diabetes and pancreatic cancer decreased as humans migrated toward East Asia. In addition, biliary liver cirrhosis, alopecia areata, bladder cancer, inflammatory bowel disease, membranous nephropathy, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, and vitiligo have undergone genetic risk differentiation. This analysis represents a large-scale attempt to characterize genetic risk differentiation in the context of migration. We anticipate that our findings will enable detailed analysis pertaining to the driving forces behind genetic risk differentiation.

  4. Numeral series hidden in the distribution of atomic mass of amino acids to codon domains in the genetic code.

    Science.gov (United States)

    Wohlin, Åsa

    2015-03-21

    The distribution of codons in the nearly universal genetic code is a long discussed issue. At the atomic level, the numeral series 2x(2) (x=5-0) lies behind electron shells and orbitals. Numeral series appear in formulas for spectral lines of hydrogen. The question here was if some similar scheme could be found in the genetic code. A table of 24 codons was constructed (synonyms counted as one) for 20 amino acids, four of which have two different codons. An atomic mass analysis was performed, built on common isotopes. It was found that a numeral series 5 to 0 with exponent 2/3 times 10(2) revealed detailed congruency with codon-grouped amino acid side-chains, simultaneously with the division on atom kinds, further with main 3rd base groups, backbone chains and with codon-grouped amino acids in relation to their origin from glycolysis or the citrate cycle. Hence, it is proposed that this series in a dynamic way may have guided the selection of amino acids into codon domains. Series with simpler exponents also showed noteworthy correlations with the atomic mass distribution on main codon domains; especially the 2x(2)-series times a factor 16 appeared as a conceivable underlying level, both for the atomic mass and charge distribution. Furthermore, it was found that atomic mass transformations between numeral systems, possibly interpretable as dimension degree steps, connected the atomic mass of codon bases with codon-grouped amino acids and with the exponent 2/3-series in several astonishing ways. Thus, it is suggested that they may be part of a deeper reference system. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  5. Aminotryptophan-containing barstar: structure--function tradeoff in protein design and engineering with an expanded genetic code.

    Science.gov (United States)

    Rubini, Marina; Lepthien, Sandra; Golbik, Ralph; Budisa, Nediljko

    2006-07-01

    The indole ring of the canonical amino acid tryptophan (Trp) possesses distinguished features, such as sterical bulk, hydrophobicity and the nitrogen atom which is capable of acting as a hydrogen bond donor. The introduction of an amino group into the indole moiety of Trp yields the structural analogs 4-aminotryptophan ((4-NH(2))Trp) and 5-aminotryptophan ((5-NH(2))Trp). Their hydrophobicity and spectral properties are substantially different when compared to those of Trp. They resemble the purine bases of DNA and share their capacity for pH-sensitive intramolecular charge transfer. The Trp --> aminotryptophan substitution in proteins during ribosomal translation is expected to result in related protein variants that acquire these features. These expectations have been fulfilled by incorporating (4-NH(2))Trp and (5-NH(2))Trp into barstar, an intracellular inhibitor of the ribonuclease barnase from Bacillus amyloliquefaciens. The crystal structure of (4-NH(2))Trp-barstar is similar to that of the parent protein, whereas its spectral and thermodynamic behavior is found to be remarkably different. The T(m) value of (4-NH(2))Trp- and (5-NH(2))Trp-barstar is lowered by about 20 degrees Celsius, and they exhibit a strongly reduced unfolding cooperativity and substantial loss of free energy in folding. Furthermore, folding kinetic study of (4-NH(2))Trp-barstar revealed that the denatured state is even preferred over native one. The combination of structural and thermodynamic analyses clearly shows how structures of substituted barstar display a typical structure-function tradeoff: the acquirement of unique pH-sensitive charge transfer as a novel function is achieved at the expense of protein stability. These findings provide a new insight into the evolution of the amino acid repertoire of the universal genetic code and highlight possible problems regarding protein engineering and design by using an expanded genetic code.

  6. An atlas of genetic correlations across human diseases and traits

    DEFF Research Database (Denmark)

    Bulik-Sullivan, Brendan; Finucane, Hilary K; Anttila, Verneri

    2015-01-01

    Identifying genetic correlations between complex traits and diseases can provide useful etiological insights and help prioritize likely causal relationships. The major challenges preventing estimation of genetic correlation from genome-wide association study (GWAS) data with current methods are t...

  7. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont.

    Directory of Open Access Journals (Sweden)

    John P McCutcheon

    2009-07-01

    Full Text Available The genetic code relates nucleotide sequence to amino acid sequence and is shared across all organisms, with the rare exceptions of lineages in which one or a few codons have acquired novel assignments. Recoding of UGA from stop to tryptophan has evolved independently in certain reduced bacterial genomes, including those of the mycoplasmas and some mitochondria. Small genomes typically exhibit low guanine plus cytosine (GC content, and this bias in base composition has been proposed to drive UGA Stop to Tryptophan (Stop-->Trp recoding. Using a combination of genome sequencing and high-throughput proteomics, we show that an alpha-Proteobacterial symbiont of cicadas has the unprecedented combination of an extremely small genome (144 kb, a GC-biased base composition (58.4%, and a coding reassignment of UGA Stop-->Trp. Although it is not clear why this tiny genome lacks the low GC content typical of other small bacterial genomes, these observations support a role of genome reduction rather than base composition as a driver of codon reassignment.

  8. The personification of animals: coding of human and nonhuman body parts based on posture and function.

    Science.gov (United States)

    Welsh, Timothy N; McDougall, Laura; Paulson, Stephanie

    2014-09-01

    The purpose of the present research was to determine how humans represent the bodies and limbs of nonhuman mammals based on anatomical and functional properties. To this end, participants completed a series of body-part compatibility tasks in which they responded with a thumb or foot response to the color of a stimulus (red or blue, respectively) presented on different limbs of several animals. Across the studies, this compatibility task was conducted with images of human and nonhuman animals (bears, cows, and monkeys) in bipedal or quadrupedal postures. The results revealed that the coding of the limbs of nonhuman animals is strongly influenced by the posture of the body, but not the functional capacity of the limb. Specifically, body-part compatibility effects were present for both human and nonhuman animals when the figures were in a bipedal posture, but were not present when the animals were in a quadrupedal stance (Experiments 1a-c). Experiments 2a and 2b revealed that the posture-based body-part compatibility effects were not simply a vertical spatial compatibility effect or due to a mismatch between the posture of the body in the image and the participant. These data indicate that nonhuman animals in a bipedal posture are coded with respect to the "human" body representation, whereas nonhuman animals in a quadrupedal posture are not mapped to the human body representation. Overall, these studies provide new insight into the processes through which humans understand, mimic, and learn from the actions of nonhuman animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The need for interaction between assisted reproduction technology and genetics: recommendations of the European Societies of Human Genetics and Human Reproduction and Embryology.

    Science.gov (United States)

    2006-08-01

    Infertility and reproductive genetic risk are both increasing in our societies because of lifestyle changes and possibly environmental factors. Owing to the magnitude of the problem, they have implications not only at the individual and family levels but also at the community level. This leads to an increasing demand for access to assisted reproduction technology (ART) and genetic services, especially when the cause of infertility may be genetic in origin. The increasing application of genetics in reproductive medicine and vice versa requires closer collaboration between the two disciplines. ART and genetics are rapidly evolving fields where new technologies are currently introduced without sufficient knowledge of their potential long-term effects. As for any medical procedures, there are possible unexpected effects which need to be envisaged to make sure that the balance between benefits and risks is clearly on the benefit side. The development of ART and genetics as scientific activities is creating an opportunity to understand the early stages of human development, which is leading to new and challenging findings/knowledge. However, there are opinions against investigating the early stages of development in humans who deserve respect and attention. For all these reasons, these two societies, European Society of Human Genetics (ESHG) and European Society of Human Reproduction and Embryology (ESHRE), have joined efforts to explore the issues at stake and to set up recommendations to maximize the benefit for the couples in need and for the community.

  10. Genetic Engineering and Human Mental Ecology: Interlocking Effects and Educational Considerations

    OpenAIRE

    Affifi, Ramsey

    2017-01-01

    This paper describes some likely semiotic consequences of genetic engineering on what Gregory Bateson has called ?the mental ecology? (1979) of future humans, consequences that are less often raised in discussions surrounding the safety of GMOs (genetically modified organisms). The effects are as follows: an increased 1) habituation to the presence of GMOs in the environment, 2) normalization of empirically false assumptions grounding genetic reductionism, 3) acceptance that humans are capabl...

  11. Long Non-Coding RNAs Associated with Metabolic Traits in Human White Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2018-04-01

    Full Text Available Long non-coding RNAs (lncRNAs belong to a recently discovered class of molecules proposed to regulate various cellular processes. Here, we systematically analyzed their expression in human subcutaneous white adipose tissue (WAT and found that a limited set was differentially expressed in obesity and/or the insulin resistant state. Two lncRNAs herein termed adipocyte-specific metabolic related lncRNAs, ASMER-1 and ASMER-2 were enriched in adipocytes and regulated by both obesity and insulin resistance. Knockdown of either ASMER-1 or ASMER-2 by antisense oligonucleotides in in vitro differentiated human adipocytes revealed that both genes regulated adipogenesis, lipid mobilization and adiponectin secretion. The observed effects could be attributed to crosstalk between ASMERs and genes within the master regulatory pathways for adipocyte function including PPARG and INSR. Altogether, our data demonstrate that lncRNAs are modulators of the metabolic and secretory functions in human fat cells and provide an emerging link between WAT and common metabolic conditions. Keywords: White adipose tissue, Adipocytes, Long non-coding RNAs, Metabolic traits, Lipolysis, Adiponectin

  12. A code of ethics for evidence-based research with ancient human remains.

    Science.gov (United States)

    Kreissl Lonfat, Bettina M; Kaufmann, Ina Maria; Rühli, Frank

    2015-06-01

    As clinical research constantly advances and the concept of evolution becomes a strong and influential part of basic medical research, the absence of a discourse that deals with the use of ancient human remains in evidence-based research is becoming unbearable. While topics such as exhibition and excavation of human remains are established ethical fields of discourse, when faced with instrumentalization of ancient human remains for research (i.e., ancient DNA extractions for disease marker analyses) the answers from traditional ethics or even more practical fields of bio-ethics or more specific biomedical ethics are rare to non-existent. The Centre for Evolutionary Medicine at the University of Zurich solved their needs for discursive action through the writing of a self-given code of ethics which was written in dialogue with the researchers at the Institute and was published online in Sept. 2011: http://evolutionäremedizin.ch/coe/. The philosophico-ethical basis for this a code of conduct and ethics and the methods are published in this article. © 2015 Wiley Periodicals, Inc.

  13. Glucose modulates food-related salience coding of midbrain neurons in humans.

    Science.gov (United States)

    Ulrich, Martin; Endres, Felix; Kölle, Markus; Adolph, Oliver; Widenhorn-Müller, Katharina; Grön, Georg

    2016-12-01

    Although early rat studies demonstrated that administration of glucose diminishes dopaminergic midbrain activity, evidence in humans has been lacking so far. In the present functional magnetic resonance imaging study, glucose was intravenously infused in healthy human male participants while seeing images depicting low-caloric food (LC), high-caloric food (HC), and non-food (NF) during a food/NF discrimination task. Analysis of brain activation focused on the ventral tegmental area (VTA) as the origin of the mesolimbic system involved in salience coding. Under unmodulated fasting baseline conditions, VTA activation was greater during HC compared with LC food cues. Subsequent to infusion of glucose, this difference in VTA activation as a function of caloric load leveled off and even reversed. In a control group not receiving glucose, VTA activation during HC relative to LC cues remained stable throughout the course of the experiment. Similar treatment-specific patterns of brain activation were observed for the hypothalamus. The present findings show for the first time in humans that glucose infusion modulates salience coding mediated by the VTA. Hum Brain Mapp 37:4376-4384, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. LncRNAWiki: harnessing community knowledge in collaborative curation of human long non-coding RNAs

    KAUST Repository

    Ma, L.

    2014-11-15

    Long non-coding RNAs (lncRNAs) perform a diversity of functions in numerous important biological processes and are implicated in many human diseases. In this report we present lncRNAWiki (http://lncrna.big.ac.cn), a wiki-based platform that is open-content and publicly editable and aimed at community-based curation and collection of information on human lncRNAs. Current related databases are dependent primarily on curation by experts, making it laborious to annotate the exponentially accumulated information on lncRNAs, which inevitably requires collective efforts in community-based curation of lncRNAs. Unlike existing databases, lncRNAWiki features comprehensive integration of information on human lncRNAs obtained from multiple different resources and allows not only existing lncRNAs to be edited, updated and curated by different users but also the addition of newly identified lncRNAs by any user. It harnesses community collective knowledge in collecting, editing and annotating human lncRNAs and rewards community-curated efforts by providing explicit authorship based on quantified contributions. LncRNAWiki relies on the underling knowledge of scientific community for collective and collaborative curation of human lncRNAs and thus has the potential to serve as an up-to-date and comprehensive knowledgebase for human lncRNAs.

  15. The Impact of Evolutionary Driving Forces on Human Complex Diseases: A Population Genetics Approach

    Directory of Open Access Journals (Sweden)

    Amr T. M. Saeb

    2016-01-01

    Full Text Available Investigating the molecular evolution of human genome has paved the way to understand genetic adaptation of humans to the environmental changes and corresponding complex diseases. In this review, we discussed the historical origin of genetic diversity among human populations, the evolutionary driving forces that can affect genetic diversity among populations, and the effects of human movement into new environments and gene flow on population genetic diversity. Furthermore, we presented the role of natural selection on genetic diversity and complex diseases. Then we reviewed the disadvantageous consequences of historical selection events in modern time and their relation to the development of complex diseases. In addition, we discussed the effect of consanguinity on the incidence of complex diseases in human populations. Finally, we presented the latest information about the role of ancient genes acquired from interbreeding with ancient hominids in the development of complex diseases.

  16. Stochastic optimization of GeantV code by use of genetic algorithms

    Science.gov (United States)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Behera, S. P.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Hariri, F.; Jun, S. Y.; Konstantinov, D.; Kumawat, H.; Ivantchenko, V.; Lima, G.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.

    2017-10-01

    GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) and handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. The goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.

  17. Assessment of genetic risk for human exposure to radiation. State of the art

    International Nuclear Information System (INIS)

    Shevchenko, V.A.

    2000-01-01

    Historical aspects of the conception of genetic risk of human irradiation for recent 40 years. Methodology of assessing the genetic risk of radiation exposure is based on the concept of hitting the target. To predict genetic risk of irradiation, the direct and indirect methods of assessment, extrapolation, integral and populational criteria of risk analysis is widely used. Combination of these methods permits to calculate the risk from human exposure on the basis of data obtained for mice. Method of doubling dose based on determination of the dose doubling the level of natural mutational process in humans is the main one used to predict the genetic risk. Till 1972 the main model for assessing the genetic risk was the human/mouse model (the use of data on the spontaneous human variability and data on the frequency of induced mutations in mice). In the period from 1972 till 1994 the mouse/mouse model was intensively elaborated in many laboratories. This model was also used in this period to analyse the genetic risk of human irradiation. Recent achievements associated with the study of molecular nature of many hereditary human diseases as well as the criticism of a fundamental principles of the mouse/mouse model for estimating the genetic risk on a new basis. Estimates of risk for the different classes of genetic diseases have been obtained using the doubling-dose method [ru

  18. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (uv) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either x-ray-like (i.e., they cause damage that XP cells can repair) or uv-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed. (U.S.)

  19. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (UV) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either X-ray-like (i.e., they cause damage that XP cells can repair) or UV-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed

  20. Genetic association between human chitinases and lung function in COPD.

    Science.gov (United States)

    Aminuddin, F; Akhabir, L; Stefanowicz, D; Paré, P D; Connett, J E; Anthonisen, N R; Fahy, J V; Seibold, M A; Burchard, E G; Eng, C; Gulsvik, A; Bakke, P; Cho, M H; Litonjua, A; Lomas, D A; Anderson, W H; Beaty, T H; Crapo, J D; Silverman, E K; Sandford, A J

    2012-07-01

    Two primary chitinases have been identified in humans--acid mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Mammalian chitinases have been observed to affect the host's immune response. The aim of this study was to test for association between genetic variation in the chitinases and phenotypes related to chronic obstructive pulmonary disease (COPD). Polymorphisms in the chitinase genes were selected based on previous associations with respiratory diseases. Polymorphisms that were associated with lung function level or rate of decline in the Lung Health Study (LHS) cohort were analyzed for association with COPD affection status in four other COPD case-control populations. Chitinase activity and protein levels were also related to genotypes. In the caucasian LHS population, the baseline forced expiratory volume in one second (FEV(1)) was significantly different between the AA and GG genotypic groups of the AMCase rs3818822 polymorphism. Subjects with the GG genotype had higher AMCase protein and chitinase activity compared with AA homozygotes. For CHIT1 rs2494303, a significant association was observed between rate of decline in FEV(1) and the different genotypes. In the African American LHS population, CHIT1 rs2494303 and AMCase G339T genotypes were associated with rate of decline in FEV(1). Although a significant effect of chitinase gene alleles was found on lung function level and decline in the LHS, we were unable to replicate the associations with COPD affection status in the other COPD study groups.

  1. Morphological and Genetic Diversity of Trichuris spp. recovered from Humans and Pigs

    DEFF Research Database (Denmark)

    Nissen, Sofie; Nejsum, Peter; Christensen, Henrik

    2009-01-01

    The nematodes, Trichuris suis and Trichuris trichiura are believed to be two separate but closely related species. The aim of our study was to examine the morphological and genetic diversity of Trichuris spp. recovered from pigs and humans. Sympatric worm material isolated from 10 humans and 5 pigs...... found in pig-derived worms (31% of the human-derived worms, consensus sequence 531 nucleotides long). The results indicated that the nematodes found in pigs belong to a genetically distinct species (T. suis) whereas the nematodes in humans showed considerable genetic variability either related...... to ancestral polymorphism or more recent cross-breeding between T. trichiura and T. suis....

  2. Measuring the genetic influence on human life span: gene-environment interaction and sex-specific genetic effects

    DEFF Research Database (Denmark)

    Tan, Qihua; De Benedictis, G; Yashin, Annatoli

    2001-01-01

    New approaches are needed to explore the different ways in which genes affect the human life span. One needs to assess the genetic effects themselves, as well as gene–environment interactions and sex dependency. In this paper, we present a new model that combines both genotypic and demographicinf......New approaches are needed to explore the different ways in which genes affect the human life span. One needs to assess the genetic effects themselves, as well as gene–environment interactions and sex dependency. In this paper, we present a new model that combines both genotypic...

  3. 'Faceness' and affectivity: evidence for genetic contributions to distinct components of electrocortical response to human faces.

    Science.gov (United States)

    Shannon, Robert W; Patrick, Christopher J; Venables, Noah C; He, Sheng

    2013-12-01

    The ability to recognize a variety of different human faces is undoubtedly one of the most important and impressive functions of the human perceptual system. Neuroimaging studies have revealed multiple brain regions (including the FFA, STS, OFA) and electrophysiological studies have identified differing brain event-related potential (ERP) components (e.g., N170, P200) possibly related to distinct types of face information processing. To evaluate the heritability of ERP components associated with face processing, including N170, P200, and LPP, we examined ERP responses to fearful and neutral face stimuli in monozygotic (MZ) and dizygotic (DZ) twins. Concordance levels for early brain response indices of face processing (N170, P200) were found to be stronger for MZ than DZ twins, providing evidence of a heritable basis to each. These findings support the idea that certain key neural mechanisms for face processing are genetically coded. Implications for understanding individual differences in recognition of facial identity and the emotional content of faces are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Accelerating epistasis analysis in human genetics with consumer graphics hardware

    Directory of Open Access Journals (Sweden)

    Cancare Fabio

    2009-07-01

    Full Text Available Abstract Background Human geneticists are now capable of measuring more than one million DNA sequence variations from across the human genome. The new challenge is to develop computationally feasible methods capable of analyzing these data for associations with common human disease, particularly in the context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases. Multifactor Dimensionality Reduction (MDR is an algorithm capable of detecting epistasis. An exhaustive analysis with MDR is often computationally expensive, particularly for high order interactions. This challenge has previously been met with parallel computation and expensive hardware. The option we examine here exploits commodity hardware designed for computer graphics. In modern computers Graphics Processing Units (GPUs have more memory bandwidth and computational capability than Central Processing Units (CPUs and are well suited to this problem. Advances in the video game industry have led to an economy of scale creating a situation where these powerful components are readily available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance ratio of available solutions. Findings We found that using MDR on GPUs consistently increased performance per machine over both a feature rich Java software package and a C++ cluster implementation. The performance of a GPU workstation running a GPU implementation reduces computation time by a factor of 160 compared to an 8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU system provides extremely cost effective

  5. Accelerating epistasis analysis in human genetics with consumer graphics hardware.

    Science.gov (United States)

    Sinnott-Armstrong, Nicholas A; Greene, Casey S; Cancare, Fabio; Moore, Jason H

    2009-07-24

    Human geneticists are now capable of measuring more than one million DNA sequence variations from across the human genome. The new challenge is to develop computationally feasible methods capable of analyzing these data for associations with common human disease, particularly in the context of epistasis. Epistasis describes the situation where multiple genes interact in a complex non-linear manner to determine an individual's disease risk and is thought to be ubiquitous for common diseases. Multifactor Dimensionality Reduction (MDR) is an algorithm capable of detecting epistasis. An exhaustive analysis with MDR is often computationally expensive, particularly for high order interactions. This challenge has previously been met with parallel computation and expensive hardware. The option we examine here exploits commodity hardware designed for computer graphics. In modern computers Graphics Processing Units (GPUs) have more memory bandwidth and computational capability than Central Processing Units (CPUs) and are well suited to this problem. Advances in the video game industry have led to an economy of scale creating a situation where these powerful components are readily available at very low cost. Here we implement and evaluate the performance of the MDR algorithm on GPUs. Of primary interest are the time required for an epistasis analysis and the price to performance ratio of available solutions. We found that using MDR on GPUs consistently increased performance per machine over both a feature rich Java software package and a C++ cluster implementation. The performance of a GPU workstation running a GPU implementation reduces computation time by a factor of 160 compared to an 8-core workstation running the Java implementation on CPUs. This GPU workstation performs similarly to 150 cores running an optimized C++ implementation on a Beowulf cluster. Furthermore this GPU system provides extremely cost effective performance while leaving the CPU available for other

  6. Coding sequence of human rho cDNAs clone 6 and clone 9

    Energy Technology Data Exchange (ETDEWEB)

    Chardin, P; Madaule, P; Tavitian, A

    1988-03-25

    The authors have isolated human cDNAs including the complete coding sequence for two rho proteins corresponding to the incomplete isolates previously described as clone 6 and clone 9. The deduced a.a. sequences, when compared to the a.a. sequence deduced from clone 12 cDNA, show that there are in human at least three highly homologous rho genes. They suggest that clone 12 be named rhoA, clone 6 : rhoB and clone 9 : rhoC. RhoA, B and C proteins display approx. 30% a.a. identity with ras proteins,. mainly clustered in four highly homologous internal regions corresponding to the GTP binding site; however at least one significant difference is found; the 3 rho proteins have an Alanine in position corresponding to ras Glycine 13, suggesting that rho and ras proteins might have slightly different biochemical properties.

  7. Natural selection on protein-coding genes in the human genome

    DEFF Research Database (Denmark)

    Bustamente, Carlos D.; Fledel-Alon, Adi; Williamson, Scott

    2005-01-01

    , showing an excess of deleterious variation within local populations 9, 10 . Here we contrast patterns of coding sequence polymorphism identified by direct sequencing of 39 humans for over 11,000 genes to divergence between humans and chimpanzees, and find strong evidence that natural selection has shaped......Comparisons of DNA polymorphism within species to divergence between species enables the discovery of molecular adaptation in evolutionarily constrained genes as well as the differentiation of weak from strong purifying selection 1, 2, 3, 4 . The extent to which weak negative and positive darwinian...... selection have driven the molecular evolution of different species varies greatly 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 , with some species, such as Drosophila melanogaster, showing strong evidence of pervasive positive selection 6, 7, 8, 9 , and others, such as the selfing weed Arabidopsis thaliana...

  8. Comprehensive Reconstruction and Visualization of Non-Coding Regulatory Networks in Human

    Science.gov (United States)

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape. PMID:25540777

  9. Comprehensive reconstruction and visualization of non-coding regulatory networks in human.

    Science.gov (United States)

    Bonnici, Vincenzo; Russo, Francesco; Bombieri, Nicola; Pulvirenti, Alfredo; Giugno, Rosalba

    2014-01-01

    Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established on-line repositories. The interactions involve RNA, DNA, proteins, and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command-line, and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape.

  10. The history and development of the Human Genetics Society of Australasia.

    Science.gov (United States)

    Sutherland, Grant R

    2008-08-01

    The Human Genetics Society of Australasia is a vibrant professional society with more than 900 members that promotes and regulates the practice of human and medical genetics in Australia and New Zealand. The growth of human genetics was stimulated by the development of diagnostic clinical cytogenetics laboratories in the early to mid 1960s. This coincided with the recognition by medical specialists, mainly pediatricians, that genetic disorders, especially inborn errors of metabolism and birth defects, were of clinical interest and potentially challenging areas for their skills. The organization of professionals in human genetics was slow to evolve. There was an early Western Australian Human Genetics Society, and the cytogenetics community had begun to meet annually from about 1966 but was coordinated by a mailing list rather than as a formal organization. In 1976, as part of the celebrations of the Centenary Year of the Adelaide Children's Hospital, a clinical genetics meeting involving several high profile international speakers and most of the senior medical geneticists in Australia and New Zealand along with the annual meeting of the loose-knit cytogeneticists group agreed that a small working group be charged with setting up a Human Genetics Society. The society was formally incorporated in South Australia in 1977.

  11. Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease

    Science.gov (United States)

    Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.

    2014-01-01

    Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772

  12. An integrative approach to predicting the functional effects of small indels in non-coding regions of the human genome.

    Science.gov (United States)

    Ferlaino, Michael; Rogers, Mark F; Shihab, Hashem A; Mort, Matthew; Cooper, David N; Gaunt, Tom R; Campbell, Colin

    2017-10-06

    Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome.

  13. The concept of human dignity in the ethics of genetic research.

    Science.gov (United States)

    Chan, David K

    2015-05-01

    Despite criticism that dignity is a vague and slippery concept, a number of international guidelines on bioethics have cautioned against research that is contrary to human dignity, with reference specifically to genetic technology. What is the connection between genetic research and human dignity? In this article, I investigate the concept of human dignity in its various historical forms, and examine its status as a moral concept. Unlike Kant's ideal concept of human dignity, the empirical or relational concept takes human dignity as something that is affected by one's circumstances and what others do. I argue that the dignity objection to some forms of genetic research rests on a view of human nature that gives humans a special status in nature - one that is threatened by the potential of genetic research to reduce individuals to their genetic endowment. I distinguish two main philosophical accounts of human nature. One of these, the Aristotelian view, is compatible with the use of genetic technology to help humans realize their inherent potential to a fuller extent. © 2014 John Wiley & Sons Ltd.

  14. human genetic engineering and social justice in south africa

    African Journals Online (AJOL)

    resources, are also acutely visible in the health-care sector. Genetic ... engineering (GE)2 from a South African perspective might not, initially, seem like an obvious ... prevalence of so-called genetic tourism, where couples from developed countries travel to countries in the developing world to undergo in vitro fertilisation ...

  15. Genetic polymorphisms and lipid response to dietary changes in humans

    NARCIS (Netherlands)

    Weggemans, R.M.; Zock, P.L.; Ordovas, J.M.; Ramos-Galluzzi, J.; Katan, M.B.

    2001-01-01

    Previous studies on the effects of genetic polymorphisms on the serum cholesterol response to dietary treatments were often inconsistent and frequently involved small numbers of subjects. We studied the effect of 10 genetic polymorphisms on the responses of serum cholesterol to saturated and trans

  16. Genetic variation and effects on human eating behavior

    NARCIS (Netherlands)

    de Krom, Mariken; Bauer, Florianne; Collier, David; Adan, R. A. H.; la Fleur, Susanne E.

    2009-01-01

    Feeding is a physiological process, influenced by genetic factors and the environment. In recent years, many studies have been performed to unravel the involvement of genetics in both eating behavior and its pathological forms: eating disorders and obesity. In this review, we provide a condensed

  17. Formal genetic maps | Salem | Egyptian Journal of Medical Human ...

    African Journals Online (AJOL)

    Formal genetic maps are databases, represented as text or graphic figures, that can be collected/organized/formulated and constructed for nearly any, and every, structural or functional region of the genetic material. Though these maps are basically descriptive, their analysis can provide relevant crucial data that can be ...

  18. Design of a Handheld Pseudo Random Coded UWB Radar for Human Sensing

    Directory of Open Access Journals (Sweden)

    Xia Zheng-huan

    2015-10-01

    Full Text Available This paper presents the design of a handheld pseudo random coded Ultra-WideBand (UWB radar for human sensing. The main tasks of the radar are to track the moving human object and extract the human respiratory frequency. In order to achieve perfect penetrability and good range resolution, m sequence with a carrier of 800 MHz is chosen as the transmitting signal. The modulated m-sequence can be generated directly by the high-speed DAC and FPGA to reduce the size of the radar system, and the mean power of the transmitting signal is 5 dBm. The receiver has two receiving channels based on hybrid sampling, the first receiving channel is to sample the reference signal and the second receiving channel is to obtain the radar echo. The real-time pulse compression is computed in parallel with a group of on-chip DSP48E slices in FPGA to improve the scanning rate of the radar system. Additionally, the algorithms of moving target tracking and life detection are implemented using Intel’s micro-processor, and the detection results are sent to the micro displayer fixed on the helmet. The experimental results show that the moving target located at less than 16 m far away from the wall can be tracked, and the respiratory frequency of the static human at less than 14 m far away from the wall can be extracted.

  19. Primate-specific spliced PMCHL RNAs are non-protein coding in human and macaque tissues

    Directory of Open Access Journals (Sweden)

    Delerue-Audegond Audrey

    2008-12-01

    Full Text Available Abstract Background Brain-expressed genes that were created in primate lineage represent obvious candidates to investigate molecular mechanisms that contributed to neural reorganization and emergence of new behavioural functions in Homo sapiens. PMCHL1 arose from retroposition of a pro-melanin-concentrating hormone (PMCH antisense mRNA on the ancestral human chromosome 5p14 when platyrrhines and catarrhines diverged. Mutations before divergence of hylobatidae led to creation of new exons and finally PMCHL1 duplicated in an ancestor of hominids to generate PMCHL2 at the human chromosome 5q13. A complex pattern of spliced and unspliced PMCHL RNAs were found in human brain and testis. Results Several novel spliced PMCHL transcripts have been characterized in human testis and fetal brain, identifying an additional exon and novel splice sites. Sequencing of PMCHL genes in several non-human primates allowed to carry out phylogenetic analyses revealing that the initial retroposition event took place within an intron of the brain cadherin (CDH12 gene, soon after platyrrhine/catarrhine divergence, i.e. 30–35 Mya, and was concomitant with the insertion of an AluSg element. Sequence analysis of the spliced PMCHL transcripts identified only short ORFs of less than 300 bp, with low (VMCH-p8 and protein variants or no evolutionary conservation. Western blot analyses of human and macaque tissues expressing PMCHL RNA failed to reveal any protein corresponding to VMCH-p8 and protein variants encoded by spliced transcripts. Conclusion Our present results improve our knowledge of the gene structure and the evolutionary history of the primate-specific chimeric PMCHL genes. These genes produce multiple spliced transcripts, bearing short, non-conserved and apparently non-translated ORFs that may function as mRNA-like non-coding RNAs.

  20. Genetic regulation of immunoglobulin E level in different pathological states: integration of mouse and human genetics

    Czech Academy of Sciences Publication Activity Database

    Gusareva, Elena; Kurey, Irina; Grekov, Igor; Lipoldová, Marie

    2014-01-01

    Roč. 89, č. 2 (2014), s. 375-405 ISSN 1464-7931 R&D Projects: GA ČR GA310/08/1697; GA MŠk LH12049 Institutional support: RVO:68378050 Keywords : Genetic control of complex diseases * Immunoglobulin E * Epistasis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.670, year: 2014

  1. Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code.

    Directory of Open Access Journals (Sweden)

    Sebastian Nehring

    Full Text Available The suppression of amber stop codons with non-canonical amino acids (ncAAs is used for the site-specific introduction of many unusual functions into proteins. Specific orthogonal aminoacyl-tRNA synthetase (o-aaRS/amber suppressor tRNA(CUA pairs (o-pairs for the incorporation of ncAAs in S. cerevisiae were previously selected from an E. coli tyrosyl-tRNA synthetase/tRNA(CUA mutant library. Incorporation fidelity relies on the specificity of the o-aaRSs for their ncAAs and the ability to effectively discriminate against their natural substrate Tyr or any other canonical amino acid.We used o-pairs previously developed for ncAAs carrying reactive alkyne-, azido-, or photocrosslinker side chains to suppress an amber mutant of human superoxide dismutase 1 in S. cerevisiae. We found worse incorporation efficiencies of the alkyne- and the photocrosslinker ncAAs than reported earlier. In our hands, amber suppression with the ncAA containing the azido group did not occur at all. In addition to the incorporation experiments in S. cerevisiae, we analyzed the catalytic properties of the o-aaRSs in vitro. Surprisingly, all o-aaRSs showed much higher preference for their natural substrate Tyr than for any of the tested ncAAs. While it is unclear why efficiently recognized Tyr is not inserted at amber codons, we speculate that metabolically inert ncAAs accumulate in the cell, and for this reason they are incorporated despite being weak substrates for the o-aaRSs.O-pairs have been developed for a whole plethora of ncAAs. However, a systematic and detailed analysis of their catalytic properties is still missing. Our study provides a comprehensive scrutiny of o-pairs developed for the site-specific incorporation of reactive ncAAs in S. cerevisiae. It suggests that future development of o-pairs as efficient biotechnological tools will greatly benefit from sound characterization in vivo and in vitro in parallel to monitoring intracellular ncAA levels.

  2. Inheritance-mode specific pathogenicity prioritization (ISPP) for human protein coding genes.

    Science.gov (United States)

    Hsu, Jacob Shujui; Kwan, Johnny S H; Pan, Zhicheng; Garcia-Barcelo, Maria-Mercè; Sham, Pak Chung; Li, Miaoxin

    2016-10-15

    Exome sequencing studies have facilitated the detection of causal genetic variants in yet-unsolved Mendelian diseases. However, the identification of disease causal genes among a list of candidates in an exome sequencing study is still not fully settled, and it is often difficult to prioritize candidate genes for follow-up studies. The inheritance mode provides crucial information for understanding Mendelian diseases, but none of the existing gene prioritization tools fully utilize this information. We examined the characteristics of Mendelian disease genes under different inheritance modes. The results suggest that Mendelian disease genes with autosomal dominant (AD) inheritance mode are more haploinsufficiency and de novo mutation sensitive, whereas those autosomal recessive (AR) genes have significantly more non-synonymous variants and regulatory transcript isoforms. In addition, the X-linked (XL) Mendelian disease genes have fewer non-synonymous and synonymous variants. As a result, we derived a new scoring system for prioritizing candidate genes for Mendelian diseases according to the inheritance mode. Our scoring system assigned to each annotated protein-coding gene (N = 18 859) three pathogenic scores according to the inheritance mode (AD, AR and XL). This inheritance mode-specific framework achieved higher accuracy (area under curve  = 0.84) in XL mode. The inheritance-mode specific pathogenicity prioritization (ISPP) outperformed other well-known methods including Haploinsufficiency, Recessive, Network centrality, Genic Intolerance, Gene Damage Index and Gene Constraint scores. This systematic study suggests that genes manifesting disease inheritance modes tend to have unique characteristics. ISPP is included in KGGSeq v1.0 (http://grass.cgs.hku.hk/limx/kggseq/), and source code is available from (https://github.com/jacobhsu35/ISPP.git). mxli@hku.hkSupplementary information: Supplementary data are available at Bioinformatics online. © The Author

  3. Complete coding sequence of the human raf oncogene and the corresponding structure of the c-raf-1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, T I; Oppermann, H; Seeburg, P; Kerby, S B; Gunnell, M A; Young, A C; Rapp, U R

    1986-01-24

    The complete 648 amino acid sequence of the human raf oncogene was deduced from the 2977 nucleotide sequence of a fetal liver cDNA. The cDNA has been used to obtain clones which extend the human c-raf-1 locus by an additional 18.9 kb at the 5' end and contain all the remaining coding exons.

  4. Partitioning of genetic variation between regulatory and coding gene segments: the predominance of software variation in genes encoding introvert proteins.

    Science.gov (United States)

    Mitchison, A

    1997-01-01

    In considering genetic variation in eukaryotes, a fundamental distinction can be made between variation in regulatory (software) and coding (hardware) gene segments. For quantitative traits the bulk of variation, particularly that near the population mean, appears to reside in regulatory segments. The main exceptions to this rule concern proteins which handle extrinsic substances, here termed extrovert proteins. The immune system includes an unusually large proportion of this exceptional category, but even so its chief source of variation may well be polymorphism in regulatory gene segments. The main evidence for this view emerges from genome scanning for quantitative trait loci (QTL), which in the case of the immune system points to a major contribution of pro-inflammatory cytokine genes. Further support comes from sequencing of major histocompatibility complex (Mhc) class II promoters, where a high level of polymorphism has been detected. These Mhc promoters appear to act, in part at least, by gating the back-signal from T cells into antigen-presenting cells. Both these forms of polymorphism are likely to be sustained by the need for flexibility in the immune response. Future work on promoter polymorphism is likely to benefit from the input from genome informatics.

  5. Role of horizontal gene transfer as a control on the coevolution of ribosomal proteins and the genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Woese, Carl R.; Goldenfeld, Nigel; Luthey-Schulten, Zaida

    2011-03-31

    Our main goal is to develop the conceptual and computational tools necessary to understand the evolution of the universal processes of translation and replication and to identify events of horizontal gene transfer that occurred within the components. We will attempt to uncover the major evolutionary transitions that accompanied the development of protein synthesis by the ribosome and associated components of the translation apparatus. Our project goes beyond standard genomic approaches to explore homologs that are represented at both the structure and sequence level. Accordingly, use of structural phylogenetic analysis allows us to probe further back into deep evolutionary time than competing approaches, permitting greater resolution of primitive folds and structures. Specifically, our work focuses on the elements of translation, ranging from the emergence of the canonical genetic code to the evolution of specific protein folds, mediated by the predominance of horizontal gene transfer in early life. A unique element of this study is the explicit accounting for the impact of phenotype selection on translation, through a coevolutionary control mechanism. Our work contributes to DOE mission objectives through: (1) sophisticated computer simulation of protein dynamics and evolution, and the further refinement of techniques for structural phylogeny, which complement sequence information, leading to improved annotation of genomic databases; (2) development of evolutionary approaches to exploring cellular function and machinery in an integrated way; and (3) documentation of the phenotype interaction with translation over evolutionary time, reflecting the system response to changing selection pressures through horizontal gene transfer.

  6. The impact of advances in human molecular biology on radiation genetic risk estimation in man

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1996-01-01

    This paper provides an overview of the conceptual framework, the data base, methods and assumptions used thus far to assess the genetic risks of exposure of human populations to ionising radiation. These are then re-examined in the contemporary context of the rapidly expanding knowledge of the molecular biology of human mendelian diseases. This re-examination reveals that (i) many of the assumptions used thus far in radiation genetic risk estimation may not be fully valid and (ii) the current genetic risk estimates are probably conservative, but provide an adequate margin of safety for radiological protection. The view is expressed that further advances in the field of genetic risk estimation will be largely driven by advances in the molecular biology of human genetic diseases. (author). 37 refs., 5 tabs

  7. The rhesus macaque is three times as diverse but more closely equivalent in damaging coding variation as compared to the human

    Directory of Open Access Journals (Sweden)

    Yuan Qiaoping

    2012-06-01

    Full Text Available Abstract Background As a model organism in biomedicine, the rhesus macaque (Macaca mulatta is the most widely used nonhuman primate. Although a draft genome sequence was completed in 2007, there has been no systematic genome-wide comparison of genetic variation of this species to humans. Comparative analysis of functional and nonfunctional diversity in this highly abundant and adaptable non-human primate could inform its use as a model for human biology, and could reveal how variation in population history and size alters patterns and levels of sequence variation in primates. Results We sequenced the mRNA transcriptome and H3K4me3-marked DNA regions in hippocampus from 14 humans and 14 rhesus macaques. Using equivalent methodology and sampling spaces, we identified 462,802 macaque SNPs, most of which were novel and disproportionately located in the functionally important genomic regions we had targeted in the sequencing. At least one SNP was identified in each of 16,797 annotated macaque genes. Accuracy of macaque SNP identification was conservatively estimated to be >90%. Comparative analyses using SNPs equivalently identified in the two species revealed that rhesus macaque has approximately three times higher SNP density and average nucleotide diversity as compared to the human. Based on this level of diversity, the effective population size of the rhesus macaque is approximately 80,000 which contrasts with an effective population size of less than 10,000 for humans. Across five categories of genomic regions, intergenic regions had the highest SNP density and average nucleotide diversity and CDS (coding sequences the lowest, in both humans and macaques. Although there are more coding SNPs (cSNPs per individual in macaques than in humans, the ratio of dN/dS is significantly lower in the macaque. Furthermore, the number of damaging nonsynonymous cSNPs (have damaging effects on protein functions from PolyPhen-2 prediction in the macaque is more

  8. Insights from human genetic studies of lung and organ fibrosis.

    Science.gov (United States)

    Garcia, Christine Kim

    2018-01-02

    Genetic investigations of fibrotic diseases, including those of late onset, often yield unanticipated insights into disease pathogenesis. This Review focuses on pathways underlying lung fibrosis that are generalizable to other organs. Herein, we discuss genetic variants subdivided into those that shorten telomeres, activate the DNA damage response, change resident protein expression or function, or affect organelle activity. Genetic studies provide a window into the downstream cascade of maladaptive responses and pathways that lead to tissue fibrosis. In addition, these studies reveal interactions between genetic variants, environmental factors, and age that influence the phenotypic spectrum of disease. The discovery of forces counterbalancing inherited risk alleles identifies potential therapeutic targets, thus providing hope for future prevention or reversal of fibrosis.

  9. Human immunodeficiency virus type-1 (HIV-1) genetic diversity and ...

    African Journals Online (AJOL)

    PROGMANAGER

    2013-04-24

    Apr 24, 2013 ... objective of this study was to determine the genetic diversity of HIV-1 and the prevalence of antiretroviral (ARV) ... individuals in resource limited settings. Key words: ... management of HIV infection even as antiretroviral (ARV).

  10. Coding of visual object features and feature conjunctions in the human brain.

    Science.gov (United States)

    Martinovic, Jasna; Gruber, Thomas; Müller, Matthias M

    2008-01-01

    Object recognition is achieved through neural mechanisms reliant on the activity of distributed coordinated neural assemblies. In the initial steps of this process, an object's features are thought to be coded very rapidly in distinct neural assemblies. These features play different functional roles in the recognition process--while colour facilitates recognition, additional contours and edges delay it. Here, we selectively varied the amount and role of object features in an entry-level categorization paradigm and related them to the electrical activity of the human brain. We found that early synchronizations (approx. 100 ms) increased quantitatively when more image features had to be coded, without reflecting their qualitative contribution to the recognition process. Later activity (approx. 200-400 ms) was modulated by the representational role of object features. These findings demonstrate that although early synchronizations may be sufficient for relatively crude discrimination of objects in visual scenes, they cannot support entry-level categorization. This was subserved by later processes of object model selection, which utilized the representational value of object features such as colour or edges to select the appropriate model and achieve identification.

  11. Evaluation of the role of genetic factors in human radioresistance

    International Nuclear Information System (INIS)

    Telnov, Vitaliy I.; Sotnik, Natalie V.

    2002-01-01

    This study was focused on evaluation of the role of genetic factors in development of chronic radiation sickness (CRS) due to occupational exposure to external γ -rays. This study was based on results of molecular-genetic studies for 985 nuclear workers of the Mayak Production Association. CRS occurrence was related to the genetic haptoglobin (Hp) system among a number of studied genetic markers. Excess risk of CRS was revealed at similar exposure doses for individuals-carriers of Hp 2-2 (1.96) versus lower risks for carriers of Hp 1-1 and 2-1 (0.64). The contribution of genetic factors to CRS development was implemented in a rather narrow dose range, i.e. it was of a relative nature. A scheme of the relationship of affecting factor and differences in genetic radioresistance was presented in terms of deterministic effects. The obtained data did not confirm the idea that A-bomb survivors were more radioresistant, thus being not representative for radiation risk estimation

  12. Regulating human genetic research in Latin America: a race to the top or a race together?

    Directory of Open Access Journals (Sweden)

    Rosario Isasi

    2016-05-01

    Full Text Available Balancing the therapeutic potential of genetic science with the adoption of policies that reflect social values has proven to be a formidable task for Latin American countries. This essay presents some reflections on human genetics research policy in Latin America and explores a path forward for policy development.

  13. Using human genetics to predict the effects and side-effects of drugs

    DEFF Research Database (Denmark)

    Stender, Stefan; Tybjærg-Hansen, Anne

    2016-01-01

    PURPOSE OF REVIEW: 'Genetic proxies' are increasingly being used to predict the effects of drugs. We present an up-to-date overview of the use of human genetics to predict effects and adverse effects of lipid-targeting drugs. RECENT FINDINGS: LDL cholesterol lowering variants in HMG-Coenzyme A re...

  14. An integrated map of genetic variation from 1.092 human genomes

    DEFF Research Database (Denmark)

    Abecasis, Goncalo R.; Auton, Adam; Brooks, Lisa D.

    2012-01-01

    By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination ...

  15. Genetic and environmental influences on adult human height across birth cohorts from 1886 to 1994

    DEFF Research Database (Denmark)

    Jelenkovic, Aline; Hur, Yoon-Mi; Sund, Reijo

    2016-01-01

    Human height variation is determined by genetic and environmental factors, but it remains unclear whether their influences differ across birth-year cohorts. We conducted an individual-based pooled analysis of 40 twin cohorts including 143,390 complete twin pairs born 1886-1994. Although genetic...

  16. Precision Medicine and Advancing Genetic Technologies—Disability and Human Rights Perspectives

    Directory of Open Access Journals (Sweden)

    Aisling de Paor

    2016-08-01

    Full Text Available Scientific and technological developments are propelling genetics and genetic technologies into the public sphere. Scientific and technological innovation is becoming more refined, resulting in an increase in the availability and use of genetic testing, and other cutting edge genetic technologies, including gene editing. These genetic advances not only signal a growing trend towards precision medicine, but also provoke consideration of the protection of genetic information as an emerging human rights concern. Particular ethical and legal issues arise from a disability perspective, including the potential for discrimination and privacy violations. In consideration of the intersection of genetics and disability, this article highlights the significant concerns raised as genetic science and technology advances, and the consequences for disability rights, particularly the core concepts of non-discrimination, and respect for diversity and difference. On examining international human rights perspectives, it looks particularly at the UN Convention on the Rights of Persons with Disabilities and how it may be used to guide best practice in this area. With an acknowledgement of historical abuses of genetic science, this article highlights the need to maintain caution as to the potential consequences of advancing genetic technologies on persons with disabilities and indeed on society as a whole.

  17. The neural dynamics of reward value and risk coding in the human orbitofrontal cortex.

    Science.gov (United States)

    Li, Yansong; Vanni-Mercier, Giovanna; Isnard, Jean; Mauguière, François; Dreher, Jean-Claude

    2016-04-01

    The orbitofrontal cortex is known to carry information regarding expected reward, risk and experienced outcome. Yet, due to inherent limitations in lesion and neuroimaging methods, the neural dynamics of these computations has remained elusive in humans. Here, taking advantage of the high temporal definition of intracranial recordings, we characterize the neurophysiological signatures of the intact orbitofrontal cortex in processing information relevant for risky decisions. Local field potentials were recorded from the intact orbitofrontal cortex of patients suffering from drug-refractory partial epilepsy with implanted depth electrodes as they performed a probabilistic reward learning task that required them to associate visual cues with distinct reward probabilities. We observed three successive signals: (i) around 400 ms after cue presentation, the amplitudes of the local field potentials increased with reward probability; (ii) a risk signal emerged during the late phase of reward anticipation and during the outcome phase; and (iii) an experienced value signal appeared at the time of reward delivery. Both the medial and lateral orbitofrontal cortex encoded risk and reward probability while the lateral orbitofrontal cortex played a dominant role in coding experienced value. The present study provides the first evidence from intracranial recordings that the human orbitofrontal cortex codes reward risk both during late reward anticipation and during the outcome phase at a time scale of milliseconds. Our findings offer insights into the rapid mechanisms underlying the ability to learn structural relationships from the environment. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Egyptian Journal of Medical Human Genetics - Vol 11, No 1 (2010)

    African Journals Online (AJOL)

    Egyptian Journal of Medical Human Genetics - Vol 11, No 1 (2010) ... Gene polymorphisms of TNF-α and IL-10 related to rheumatic heart disease · EMAIL ... with familial Mediterranean fever · EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  19. Egyptian Journal of Medical Human Genetics - Vol 13, No 2 (2012)

    African Journals Online (AJOL)

    Egyptian Journal of Medical Human Genetics - Vol 13, No 2 (2012) ... as independent indicators for B-CLL: Correlation to response to treatment and disease ... Profile of disorders of sexual differentiation in the Northeast region of Cairo, Egypt ...

  20. Genetics in endocrinology: genetic variation in deiodinases: a systematic review of potential clinical effects in humans

    NARCIS (Netherlands)

    Verloop, H.; Dekkers, O.M.; Peeters, R.P.; Schoones, J.W.; Smit, J.W.

    2014-01-01

    Iodothyronine deiodinases represent a family of selenoproteins involved in peripheral and local homeostasis of thyroid hormone action. Deiodinases are expressed in multiple organs and thyroid hormone affects numerous biological systems, thus genetic variation in deiodinases may affect multiple

  1. Genetic Recombination Between Stromal and Cancer Cells Results in Highly Malignant Cells Identified by Color-Coded Imaging in a Mouse Lymphoma Model.

    Science.gov (United States)

    Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kousuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-12-01

    The tumor microenvironment (TME) promotes tumor growth and metastasis. We previously established the color-coded EL4 lymphoma TME model with red fluorescent protein (RFP) expressing EL4 implanted in transgenic C57BL/6 green fluorescent protein (GFP) mice. Color-coded imaging of the lymphoma TME suggested an important role of stromal cells in lymphoma progression and metastasis. In the present study, we used color-coded imaging of RFP-lymphoma cells and GFP stromal cells to identify yellow-fluorescent genetically recombinant cells appearing only during metastasis. The EL4-RFP lymphoma cells were injected subcutaneously in C57BL/6-GFP transgenic mice and formed subcutaneous tumors 14 days after cell transplantation. The subcutaneous tumors were harvested and transplanted to the abdominal cavity of nude mice. Metastases to the liver, perigastric lymph node, ascites, bone marrow, and primary tumor were imaged. In addition to EL4-RFP cells and GFP-host cells, genetically recombinant yellow-fluorescent cells, were observed only in the ascites and bone marrow. These results indicate genetic exchange between the stromal and cancer cells. Possible mechanisms of genetic exchange are discussed as well as its ramifications for metastasis. J. Cell. Biochem. 118: 4216-4221, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. The ecological imperative and its application to ethical issues in human genetic technology

    OpenAIRE

    W. Malcolm Byrnes

    2003-01-01

    As a species, we are on the cusp of being able to alter that which makes us uniquely human, our genome. Two new genetic technologies, embryo selection and germline engineering, are either in use today or may be developed in the future. Embryo selection acts to alter the human gene pool, reducing genetic diversity, while germline engineering will have the ability to alter directly the genomes of engineered individuals. Our genome has come to be what it is through an evolutionary process extend...

  3. The 5-HT2A receptor binding pattern in the human brain is strongly genetically determined

    DEFF Research Database (Denmark)

    Pinborg, Lars H; Arfan, Haroon; Haugbol, Steven

    2007-01-01

    With the appropriate radiolabeled tracers, positron emission tomography (PET) enables in vivo human brain imaging of markers for neurotransmission, including neurotransmitter synthesis, receptors, and transporters. Whereas structural imaging studies have provided compelling evidence that the human...... brain anatomy is largely genetically determined, it is currently unknown to what degree neuromodulatory markers are subjected to genetic and environmental influence. Changes in serotonin 2A (5-HT(2A)) receptors have been reported to occur in various neuropsychiatric disorders and an association between...

  4. Human genetics as a tool to identify progranulin regulators.

    Science.gov (United States)

    Nicholson, Alexandra M; Finch, NiCole A; Rademakers, Rosa

    2011-11-01

    Frontotemporal lobar degeneration (FTLD) is a common neurodegenerative disorder that predominantly affects individuals under the age of 65. It is known that the most common pathological subtype is FTLD with TAR DNA-binding protein 43 inclusions (FTLD-TDP). FTLD has a strong genetic component with about 50% of cases having a positive family history. Mutations identified in the progranulin gene (GRN) have been shown to cause FTLD-TDP as a result of progranulin haploinsufficiency. These findings suggest a progranulin-dependent mechanism in this pathological FTLD subtype. Thus, identifying regulators of progranulin levels is essential for new therapies and treatments for FTLD and related disorders. In this review, we discuss the role of genetic studies in identifying progranulin regulators, beginning with the discovery of pathogenic GRN mutations and additional GRN risk variants. We also cover more recent genetic advances, including the detection of variants in the transmembrane protein 106 B gene that increase FTLD-TDP risk presumably by modulating progranulin levels and the identification of a potential progranulin receptor, sortilin. This review highlights the importance of genetic studies in the context of FTLD and further emphasizes the need for future genetic and cell biology research to continue the effort in finding a cure for progranulin-related diseases.

  5. A code for simulation of human failure events in nuclear power plants: SIMPROC

    International Nuclear Information System (INIS)

    Gil, Jesus; Fernandez, Ivan; Murcia, Santiago; Gomez, Javier; Marrao, Hugo; Queral, Cesar; Exposito, Antonio; Rodriguez, Gabriel; Ibanez, Luisa; Hortal, Javier; Izquierdo, Jose M.; Sanchez, Miguel; Melendez, Enrique

    2011-01-01

    Over the past years, many Nuclear Power Plant organizations have performed Probabilistic Safety Assessments to identify and understand key plant vulnerabilities. As part of enhancing the PSA quality, the Human Reliability Analysis is essential to make a realistic evaluation of safety and about the potential facility's weaknesses. Moreover, it has to be noted that HRA continues to be a large source of uncertainty in the PSAs. Within their current joint collaborative activities, Indizen, Universidad Politecnica de Madrid and Consejo de Seguridad Nuclear have developed the so-called SIMulator of PROCedures (SIMPROC), a tool aiming at simulate events related with human actions and able to interact with a plant simulation model. The tool helps the analyst to quantify the importance of human actions in the final plant state. Among others, the main goal of SIMPROC is to check the Emergency Operating Procedures being used by operating crew in order to lead the plant to a safe shutdown plant state. Currently SIMPROC is coupled with the SCAIS software package, but the tool is flexible enough to be linked to other plant simulation codes. SIMPROC-SCAIS applications are shown in the present article to illustrate the tool performance. The applications were developed in the framework of the Nuclear Energy Agency project on Safety Margin Assessment and Applications (SM2A). First an introductory example was performed to obtain the damage domain boundary of a selected sequence from a SBLOCA. Secondly, the damage domain area of a selected sequence from a loss of Component Cooling Water with a subsequent seal LOCA was calculated. SIMPROC simulates the corresponding human actions in both cases. The results achieved shown how the system can be adapted to a wide range of purposes such as Dynamic Event Tree delineation, Emergency Operating Procedures and damage domain search.

  6. Unleashing the power of human genetic variation knowledge: New Zealand stakeholder perspectives.

    Science.gov (United States)

    Gu, Yulong; Warren, James Roy; Day, Karen Jean

    2011-01-01

    This study aimed to characterize the challenges in using genetic information in health care and to identify opportunities for improvement. Taking a grounded theory approach, semistructured interviews were conducted with 48 participants to collect multiple stakeholder perspectives on genetic services in New Zealand. Three themes emerged from the data: (1) four service delivery models were identified in operation, including both those expected models involving genetic counselors and variations that do not route through the formal genetic service program; (2) multiple barriers to sharing and using genetic information were perceived, including technological, organizational, institutional, legal, ethical, and social issues; and (3) impediments to wider use of genetic testing technology, including variable understanding of genetic test utilities among clinicians and the limited capacity of clinical genetic services. Targeting these problems, information technologies and knowledge management tools have the potential to support key tasks in genetic services delivery, improve knowledge processes, and enhance knowledge networks. Because of the effect of issues in genetic information and knowledge management, the potential of human genetic variation knowledge to enhance health care delivery has been put on a "leash."

  7. Human Genome Epidemiology : A scientific foundation for using genetic information to improve health and prevent disease

    Directory of Open Access Journals (Sweden)

    Stefania Boccia

    2005-03-01

    Full Text Available

    Human health is determined by the interplay of genetic factors and the environment. In this context the recent advances in human genomics are expected to play a central role in medicine and public health by providing genetic information for disease prediction and prevention.

    After the completion of the human genome sequencing, a fundamental step will be represented by the translation of these discoveries into meaningful actions to improve health and prevent diseases, and the field of epidemiology plays a central role in this effort. These are some of the issues addressed by Human Genome Epidemiology –A scientific foundation for using genetic information to improve health and prevent disease, a volume edited by Prof. M. Khoury, Prof. J. Little, Prof.W. Burke and published by Oxford university Press 2004.

    This book describes the important role that epidemiological methods play in the continuum from gene discovery to the development and application of genetic tests. The Authors calls this continuum human genome epidemiology (HuGE to denote an evolving field of inquiry that uses systematic applications of epidemiological methods to assess the impact of human genetic variation on health and disease.

    The book is divided into four sections and it is structured to allow readers to proceed systematically from the fundamentals of genome technology and discovery, to the epidemiological approaches, to gene characterisation, to the evaluation of genetic tests and their use in health services and public health.

  8. Human Genetic Variation and Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sun Ju Chung

    2010-05-01

    Full Text Available Parkinson’s disease (PD is a chronic neurodegenerative disorder with multifactorial etiology. In the past decade, the genetic causes of monogenic forms of familial PD have been defined. However, the etiology and pathogenesis of the majority of sporadic PD cases that occur in outbred populations have yet to be clarified. The recent development of resources such as the International HapMap Project and technological advances in high-throughput genotyping have provided new basis for genetic association studies of common complex diseases, including PD. A new generation of genome-wide association studies will soon offer a potentially powerful approach for mapping causal genes and will likely change treatment and alter our perception of the genetic determinants of PD. However, the execution and analysis of such studies will require great care.

  9. The prognostic potential and carcinogenesis of long non-coding RNA TUG1 in human cholangiocarcinoma.

    Science.gov (United States)

    Xu, Yi; Leng, Kaiming; Li, Zhenglong; Zhang, Fumin; Zhong, Xiangyu; Kang, Pengcheng; Jiang, Xingming; Cui, Yunfu

    2017-09-12

    Cholangiocarcinoma (CCA) is a fatal disease with increasing worldwide incidence and is characterized by poor prognosis due to its poor response to conventional chemotherapy or radiotherapy. Long non-coding RNAs (lncRNAs) play key roles in multiple human cancers, including CCA. Cancer progression related lncRNA taurine-up-regulated gene 1 (TUG1) was reported to be involved in human carcinomas. However, the impact of TUG1 in CCA is unclear. The aim of this study was to explore the expression pattern of TUG1 and evaluate its clinical significance as well as prognostic potential in CCA. In addition, the functional roles of TUG1 including cell proliferation, apoptosis, migration, invasion and epithelial-mesenchymal transition (EMT), were evaluated after TUG1 silencing. Our data demonstrated up-regulation of TUG1 in both CCA tissues and cell lines. Moreover, overexpression of TUG1 is linked to tumor size ( p =0.005), TNM stage ( p =0.013), postoperative recurrence ( p =0.036) and overall survival ( p =0.010) of CCA patients. Furthermore, down-regulation of TUG1 following RNA silencing reduced cell growth and increased apoptosis in CCA cells. Additionally, TUG1 suppression inhibited metastasis potential in vitro by reversing EMT. Overall, our results suggest that TUG1 may be a rational CCA-related prognostic factor and therapeutic target.

  10. An efficient genetic algorithm for structural RNA pairwise alignment and its application to non-coding RNA discovery in yeast

    Directory of Open Access Journals (Sweden)

    Taneda Akito

    2008-12-01

    Full Text Available Abstract Background Aligning RNA sequences with low sequence identity has been a challenging problem since such a computation essentially needs an algorithm with high complexities for taking structural conservation into account. Although many sophisticated algorithms for the purpose have been proposed to date, further improvement in efficiency is necessary to accelerate its large-scale applications including non-coding RNA (ncRNA discovery. Results We developed a new genetic algorithm, Cofolga2, for simultaneously computing pairwise RNA sequence alignment and consensus folding, and benchmarked it using BRAliBase 2.1. The benchmark results showed that our new algorithm is accurate and efficient in both time and memory usage. Then, combining with the originally trained SVM, we applied the new algorithm to novel ncRNA discovery where we compared S. cerevisiae genome with six related genomes in a pairwise manner. By focusing our search to the relatively short regions (50 bp to 2,000 bp sandwiched by conserved sequences, we successfully predict 714 intergenic and 1,311 sense or antisense ncRNA candidates, which were found in the pairwise alignments with stable consensus secondary structure and low sequence identity (≤ 50%. By comparing with the previous predictions, we found that > 92% of the candidates is novel candidates. The estimated rate of false positives in the predicted candidates is 51%. Twenty-five percent of the intergenic candidates has supports for expression in cell, i.e. their genomic positions overlap those of the experimentally determined transcripts in literature. By manual inspection of the results, moreover, we obtained four multiple alignments with low sequence identity which reveal consensus structures shared by three species/sequences. Conclusion The present method gives an efficient tool complementary to sequence-alignment-based ncRNA finders.

  11. Genetics of Human Sexual Behavior: Where We Are, Where We Are Going.

    Science.gov (United States)

    Jannini, Emmanuele A; Burri, Andrea; Jern, Patrick; Novelli, Giuseppe

    2015-04-01

    One of the never-ending debates in the developing field of sexual medicine is the extent to which genetics and experiences (i.e., "nature and nurture") contribute to sexuality. The debate continues despite the fact that these two sides have different abilities to create a scientific environment to support their cause. Contemporary genetics has produced plenty of recent evidence, however, not always confirmed or sufficiently robust. On the other hand, the more traditional social theorists, frequently without direct evidence confirming their positions, criticize, sometimes with good arguments, the methods and results of the other side. The aim of this article is to critically evaluate existent evidence that used genetic approaches to understand human sexuality. An expert in sexual medicine (E.A.J.), an expert in medical genetics (G.N.), and two experts in genetic epidemiology and quantitative genetics, with particular scientific experience in female sexual dysfunction (A.B.) and in premature ejaculation (P.J.), contributed to this review. Expert opinion supported by critical review of the currently available literature. The existing literature on human sexuality provides evidence that many sexuality-related behaviors previously considered to be the result of cultural influences (such as mating strategies, attractiveness and sex appeal, propensity to fidelity or infidelity, and sexual orientation) or dysfunctions (such as premature ejaculation or female sexual dysfunction) seem to have a genetic component. Current evidence from genetic epidemiologic studies underlines the existence of biological and congenital factors regulating male and female sexuality. However, these relatively recent findings ask for replication in methodologically more elaborated studies. Clearly, increased research efforts are needed to further improve understanding the genetics of human sexuality. Jannini EA, Burri A, Jern P, and Novelli G. Genetics of human sexual behavior: Where we are, where

  12. Triplet repeat DNA structures and human genetic disease

    Indian Academy of Sciences (India)

    Laboratory of DNA Structure and Mutagenesis, Center for Genome Research, Institute of Biosciences and Technology, Texas A&M University System Health Sciences Center, 2121 West Holcombe Blvd., Houston, TX 77030-3303, USA; Hospital for Sick Children, Department of Genetics, 555 University Avenue, Elm Wing, ...

  13. Inauguration of the Cameroonian Society of Human Genetics ...

    African Journals Online (AJOL)

    The conjunction of “hard genetics” research centers, with well established biomedical and bioethics research groups, and the exceptional possibility to hold the 6th annual ... The AfSHG and CSHG invited leading African and international scientists in genomics and population genetics to review recent data and provide an ...

  14. Genetical genomic determinants of alcohol consumption in rats and humans

    Czech Academy of Sciences Publication Activity Database

    Tabakoff, B.; Saba, L.; Printz, M.; Flodman, P.; Hodgkinson, C.; Goldman, D.; Koob, G.; Richardson, H.N.; Kechris, K.; Bell, R.L.; Hübner, N.; Heinig, M.; Pravenec, Michal; Mangion, J.; Legault, L.; Dongier, M.; Conigrave, K.M.; Whitfield, J.B.; Saunders, J.; Grant, B.; Hoffman, P.L.

    2009-01-01

    Roč. 7, - (2009), s. 70-70 ISSN 1741-7007 R&D Projects: GA MŠk(CZ) 1M0520 Grant - others:Howard Hughes Medical Institute(US) 55005624 Institutional research plan: CEZ:AV0Z50110509 Keywords : alcohol consumption * rat * gene expression profiles Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.636, year: 2009

  15. The genetics of human longevity: an intricacy of genes, environment, culture and microbiome.

    Science.gov (United States)

    Dato, Serena; Rose, Giuseppina; Crocco, Paolina; Monti, Daniela; Garagnani, Paolo; Franceschi, Claudio; Passarino, Giuseppe

    2017-07-01

    Approximately one-quarter of the variation in lifespan in developed countries can be attributed to genetic factors. However, even large population based studies investigating genetic influence on human lifespan have been disappointing, identifying only a few genes accounting for genetic susceptibility to longevity. Some environmental and lifestyle determinants associated with longevity have been identified, which interplay with genetic factors in an intricate way. The study of gene-environment and gene-gene interactions can significantly improve our chance to disentangle this complex scenario. In this review, we first describe the most recent approaches for genetic studies of longevity, from those enriched with health parameters and frailty measures to pathway-based and SNP-SNP interaction analyses. Then, we go deeper into the concept of "environmental influences" in human aging and longevity, focusing on the contribution of life style changes, social and cultural influences, as important determinants of survival differences among individuals in a population. Finally, we discuss the contribution of the microbiome in human longevity, as an example of complex interaction between organism and environment. In conclusion, evidences collected from the latest studies on human longevity provide a support for the collection of life-long genetic and environmental/lifestyle variables with beneficial or detrimental effects on health, to improve our understanding of the determinants of human lifespan. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Molecular analysis of human argininosuccinate lyase: Mutant characterization and alternative splicing of the coding region

    International Nuclear Information System (INIS)

    Walker, D.C.; McCloskey, D.A.; Simard, L.R.; McInnes, R.R.

    1990-01-01

    Argininosuccinic acid lyase (ASAL) deficiency is a clinically heterogeneous autosomal recessive urea cycle disorder. The authors previously established by complementation analysis that 29 ASAL-deficient patients have heterogeneous mutations in a single gene. To prove that the ASAL structural gene is the affected locus, they sequenced polymerase chain reaction-amplified ASAL cDNA of a representative mutant from the single complementation group. Fibroblast strain 944 from a late-onset patient who was the product of a consanguineous mating, had only a single base-pair change in the coding region, a C-283→ T transition at a CpG dinucleotide in exon 3. This substitution converts Arg-95 to Cys (R95C), occurs in a stretch of 13 residues that is identical in yeast and human ASAL, and was present in both of the patient's alleles but not in 14 other mutant or 10 normal alleles. They observed that amplified cDNA from mutant 944 and normal cells (liver, keratinocytes, lymphoblasts, and fibroblasts) contained, in addition to the expected 5' 513-base-pair band, a prominent 318-base-pair ASAL band formed by the splicing of exon 2 from the transcript. The short transcript maintains the ASAL reading frame but removes Lys-51, a residue that may be essential for catalysis, since it binds the argininosuccinate substrate. They conclude (i) that the identification of the R95C mutation in strain 944 demonstrates that virtually all ASAL deficiency results from defects in the ASAL structural gene and (ii) that minor alternative splicing of the coding region occurs at the ASAL locus

  17. Systematically profiling and annotating long intergenic non-coding RNAs in human embryonic stem cell.

    Science.gov (United States)

    Tang, Xing; Hou, Mei; Ding, Yang; Li, Zhaohui; Ren, Lichen; Gao, Ge

    2013-01-01

    While more and more long intergenic non-coding RNAs (lincRNAs) were identified to take important roles in both maintaining pluripotency and regulating differentiation, how these lincRNAs may define and drive cell fate decisions on a global scale are still mostly elusive. Systematical profiling and comprehensive annotation of embryonic stem cells lincRNAs may not only bring a clearer big picture of these novel regulators but also shed light on their functionalities. Based on multiple RNA-Seq datasets, we systematically identified 300 human embryonic stem cell lincRNAs (hES lincRNAs). Of which, one forth (78 out of 300) hES lincRNAs were further identified to be biasedly expressed in human ES cells. Functional analysis showed that they were preferentially involved in several early-development related biological processes. Comparative genomics analysis further suggested that around half of the identified hES lincRNAs were conserved in mouse. To facilitate further investigation of these hES lincRNAs, we constructed an online portal for biologists to access all their sequences and annotations interactively. In addition to navigation through a genome browse interface, users can also locate lincRNAs through an advanced query interface based on both keywords and expression profiles, and analyze results through multiple tools. By integrating multiple RNA-Seq datasets, we systematically characterized and annotated 300 hES lincRNAs. A full functional web portal is available freely at http://scbrowse.cbi.pku.edu.cn. As the first global profiling and annotating of human embryonic stem cell lincRNAs, this work aims to provide a valuable resource for both experimental biologists and bioinformaticians.

  18. Human genetic studies in areas of high natural radiation VI. Genetical load and ethnic group

    Energy Technology Data Exchange (ETDEWEB)

    Freire-Maia, A [Faculdade de Ciencias Medicas e Biologicas de Botucatu (Brazil). Departamento de Genetica

    1974-01-01

    The load of mutations disclosed by inbreeding, according to the ethnic group of the parents, has been analyzed in our data. Besides the total of the population, a sample with no alien ancestrals has also been analyzed. Genetic load has been studied for absortions, still births, pos-natal mortality, total mortality, anomalies, total mortality + anomalies, and abnormalities in general.

  19. Human genetic studies in areas of high natural radiation VI. Genetical load and ethnic group

    International Nuclear Information System (INIS)

    Freire-Maia, A.

    1974-01-01

    The load of mutations disclosed by inbreeding, according to the ethnic group of the parents, has been analyzed in our data. Besides the total of the population, a sample with no alien ancestrals has also been analyzed. Genetic load has been studied for absortions, still births, pos-natal mortality, total mortality, anomalies, total mortality + anomalies, and abnormalities in general [pt

  20. Comparison of French and Estonian Students' Conceptions in Genetic Determinism of Human Behaviours

    Science.gov (United States)

    Castera, Jeremy; Sarapuu, Tago; Clement, Pierre

    2013-01-01

    Innatism is the belief that most of the human personality can be determined by genes. This ideology is dangerous, especially when it claims to be scientific. The present study investigates conceptions of 1060 students from Estonia and France related to genetic determinism of some human behaviours. Factors taken into account included students'…

  1. Human genetics studies in areas of high natural radiation, 7

    International Nuclear Information System (INIS)

    Freire-Maia, A.

    1975-01-01

    Two methods to estimate the inbreeding load, employed in our analysis, are reviewed. Besides the total population, a sample constituted of individuals with no alien ancestral is also analysed. The measurements by genetic load models show any clear effect of natural radioactivity (especially for abortions, pre-natal mortality, anomalies, and abnormalities in general). The results on stillbirths and post-natal and total mortalities are discussed and it is concluded that uncontrolled concomitant variables (if not chance alone) cause the differences [pt

  2. Genetic Regulation of Pituitary Gland Development in Human and Mouse

    OpenAIRE

    Kelberman, Daniel; Rizzoti, Karine; Lovell-Badge, Robin; Robinson, Iain C. A. F.; Dattani, Mehul T.

    2009-01-01

    Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke’s pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndr...

  3. Population genetic analysis of Enterocytozoon bieneusi in humans.

    Science.gov (United States)

    Li, Wei; Cama, Vitaliano; Feng, Yaoyu; Gilman, Robert H; Bern, Caryn; Zhang, Xichen; Xiao, Lihua

    2012-01-01

    Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wright's fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi. Published by Elsevier Ltd.

  4. Genetic analysis of variation in human meiotic recombination.

    Directory of Open Access Journals (Sweden)

    Reshmi Chowdhury

    2009-09-01

    Full Text Available The number of recombination events per meiosis varies extensively among individuals. This recombination phenotype differs between female and male, and also among individuals of each gender. In this study, we used high-density SNP genotypes of over 2,300 individuals and their offspring in two datasets to characterize recombination landscape and to map the genetic variants that contribute to variation in recombination phenotypes. We found six genetic loci that are associated with recombination phenotypes. Two of these (RNF212 and an inversion on chromosome 17q21.31 were previously reported in the Icelandic population, and this is the first replication in any other population. Of the four newly identified loci (KIAA1462, PDZK1, UGCG, NUB1, results from expression studies provide support for their roles in meiosis. Each of the variants that we identified explains only a small fraction of the individual variation in recombination. Notably, we found different sequence variants associated with female and male recombination phenotypes, suggesting that they are regulated by different genes. Characterization of genetic variants that influence natural variation in meiotic recombination will lead to a better understanding of normal meiotic events as well as of non-disjunction, the primary cause of pregnancy loss.

  5. Speaking Code

    DEFF Research Database (Denmark)

    Cox, Geoff

    Speaking Code begins by invoking the “Hello World” convention used by programmers when learning a new language, helping to establish the interplay of text and code that runs through the book. Interweaving the voice of critical writing from the humanities with the tradition of computing and software...

  6. Genetic recombination as a major cause of mutagenesis in the human globin gene clusters.

    Science.gov (United States)

    Borg, Joseph; Georgitsi, Marianthi; Aleporou-Marinou, Vassiliki; Kollia, Panagoula; Patrinos, George P

    2009-12-01

    Homologous recombination is a frequent phenomenon in multigene families and as such it occurs several times in both the alpha- and beta-like globin gene families. In numerous occasions, genetic recombination has been previously implicated as a major mechanism that drives mutagenesis in the human globin gene clusters, either in the form of unequal crossover or gene conversion. Unequal crossover results in the increase or decrease of the human globin gene copies, accompanied in the majority of cases with minor phenotypic consequences, while gene conversion contributes either to maintaining sequence homogeneity or generating sequence diversity. The role of genetic recombination, particularly gene conversion in the evolution of the human globin gene families has been discussed elsewhere. Here, we summarize our current knowledge and review existing experimental evidence outlining the role of genetic recombination in the mutagenic process in the human globin gene families.

  7. Genetic consequences of the influence of ionizing radiation on humans

    International Nuclear Information System (INIS)

    Mosse, I.B.

    2011-01-01

    There is no direct evidence that exposure of parents to ionizing radiation leads to excess heritable disease in offspring. What is the difference between human and other species in which radiation induced mutations are easily registered? During evolution germ cell selection ex vivo has been changed to a selection in vivo and we cannot observe such selection of radiation damaged cells in human.

  8. Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Saxena, Maneesha S; Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Tripathi, Shailesh; Upadhyaya, Hari D; Gowda, C L L; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K; Parida, Swarup K

    2015-03-01

    Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5'-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Human genetics studies in areas of high natural radiation. VII. Genetic load

    Energy Technology Data Exchange (ETDEWEB)

    Freire-Maia, A [Faculdade de Ciencias Medicas e Biologicas de Botucatu (Brazil). Departamento de Genetica

    1975-01-01

    Two methods to estimate the inbreeding load, employed in our analysis, are reviewed. Besides the total population, a sample constituted of individuals with no alien ancesters is also analyzed. The measurements by genetic load models show a clear effect of natural radioactivity (especially for abortions, pre-natal mortality, anomalies, and abnormalities in general). The results on stillbirths and post-natal and total mortalities are discussed and it is concluded that uncontrolled concomitant variables (if not chance alone) cause the differences.

  10. TUG1: a pivotal oncogenic long non-coding RNA of human cancers.

    Science.gov (United States)

    Li, Zheng; Shen, Jianxiong; Chan, Matthew T V; Wu, William Ka Kei

    2016-08-01

    Long non-coding RNAs (lncRNAs) are a group greater than 200 nucleotides in length. An increasing number of studies has shown that lncRNAs play important roles in diverse cellular processes, including proliferation, differentiation, apoptosis, invasion and chromatin remodelling. In this regard, deregulation of lncRNAs has been documented in human cancers. TUG1 is a recently identified oncogenic lncRNA whose aberrant upregulation has been detected in different types of cancer, including B-cell malignancies, oesophageal squamous cell carcinoma, bladder cancer, hepatocellular carcinoma and osteosarcoma. In these malignancies, knock-down of TUG1 has been shown to suppress cell proliferation, invasion and/or colony formation. Interestingly, TUG1 has been found to be downregulated in non-small cell lung carcinoma, indicative of its tissue-specific function in tumourigenesis. Pertinent to clinical practice, TUG1 may act as a prognostic biomarker for tumours. In this review, we summarize current knowledge concerning the role of TUG1 in tumour progression and discuss mechanisms associated with it. © 2016 John Wiley & Sons Ltd.

  11. Normalized value coding explains dynamic adaptation in the human valuation process.

    Science.gov (United States)

    Khaw, Mel W; Glimcher, Paul W; Louie, Kenway

    2017-11-28

    The notion of subjective value is central to choice theories in ecology, economics, and psychology, serving as an integrated decision variable by which options are compared. Subjective value is often assumed to be an absolute quantity, determined in a static manner by the properties of an individual option. Recent neurobiological studies, however, have shown that neural value coding dynamically adapts to the statistics of the recent reward environment, introducing an intrinsic temporal context dependence into the neural representation of value. Whether valuation exhibits this kind of dynamic adaptation at the behavioral level is unknown. Here, we show that the valuation process in human subjects adapts to the history of previous values, with current valuations varying inversely with the average value of recently observed items. The dynamics of this adaptive valuation are captured by divisive normalization, linking these temporal context effects to spatial context effects in decision making as well as spatial and temporal context effects in perception. These findings suggest that adaptation is a universal feature of neural information processing and offer a unifying explanation for contextual phenomena in fields ranging from visual psychophysics to economic choice.

  12. Expression of a novel non-coding mitochondrial RNA in human proliferating cells.

    Science.gov (United States)

    Villegas, Jaime; Burzio, Veronica; Villota, Claudio; Landerer, Eduardo; Martinez, Ronny; Santander, Marcela; Martinez, Rodrigo; Pinto, Rodrigo; Vera, María I; Boccardo, Enrique; Villa, Luisa L; Burzio, Luis O

    2007-01-01

    Previously, we reported the presence in mouse cells of a mitochondrial RNA which contains an inverted repeat (IR) of 121 nucleotides (nt) covalently linked to the 5' end of the mitochondrial 16S RNA (16S mtrRNA). Here, we report the structure of an equivalent transcript of 2374 nt which is over-expressed in human proliferating cells but not in resting cells. The transcript contains a hairpin structure comprising an IR of 815 nt linked to the 5' end of the 16S mtrRNA and forming a long double-stranded structure or stem and a loop of 40 nt. The stem is resistant to RNase A and can be detected and isolated after digestion with the enzyme. This novel transcript is a non-coding RNA (ncRNA) and several evidences suggest that the transcript is synthesized in mitochondria. The expression of this transcript can be induced in resting lymphocytes stimulated with phytohaemagglutinin (PHA). Moreover, aphidicolin treatment of DU145 cells reversibly blocks proliferation and expression of the transcript. If the drug is removed, the cells re-assume proliferation and over-express the ncmtRNA. These results suggest that the expression of the ncmtRNA correlates with the replicative state of the cell and it may play a role in cell proliferation.

  13. Strategies to work with HLA data in human populations for histocompatibility, clinical transplantation, epidemiology and population genetics

    DEFF Research Database (Denmark)

    Sanchez-Mazas, A; Vidan-Jeras, B; Nunes, J M

    2012-01-01

    QUESTIONNAIRE' has been finalized and is available for the whole HLA community. WG2 (HLA typing standards for population genetics analyses) recommends retaining maximal information when reporting HLA typing results. Rather than using the National Marrow Donor Program coding system, all ambiguities should...... and fundamental research. Such improvements involve finding consensual strategies to characterize human populations and samples and report HLA molecular typings and ambiguities; proposing user-friendly access to databases and computer tools and defining minimal requirements related to ethical aspects. The overall......-Weinberg equilibrium and selective neutrality on data containing any number and kind of ambiguities. WG4 (Ethical issues) proposes to adopt thorough general principles for any HLA population study to ensure that it conforms to (inter)national legislation or recommendations/guidelines. All HLA-NET guidelines and tools...

  14. Genetic Evidence of Human Adaptation to a Cooked Diet.

    Science.gov (United States)

    Carmody, Rachel N; Dannemann, Michael; Briggs, Adrian W; Nickel, Birgit; Groopman, Emily E; Wrangham, Richard W; Kelso, Janet

    2016-04-13

    Humans have been argued to be biologically adapted to a cooked diet, but this hypothesis has not been tested at the molecular level. Here, we combine controlled feeding experiments in mice with comparative primate genomics to show that consumption of a cooked diet influences gene expression and that affected genes bear signals of positive selection in the human lineage. Liver gene expression profiles in mice fed standardized diets of meat or tuber were affected by food type and cooking, but not by caloric intake or consumer energy balance. Genes affected by cooking were highly correlated with genes known to be differentially expressed in liver between humans and other primates, and more genes in this overlap set show signals of positive selection in humans than would be expected by chance. Sequence changes in the genes under selection appear before the split between modern humans and two archaic human groups, Neandertals and Denisovans, supporting the idea that human adaptation to a cooked diet had begun by at least 275,000 years ago. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Evolutionary anthropology and genes: investigating the genetics of human evolution from excavated skeletal remains.

    Science.gov (United States)

    Anastasiou, Evilena; Mitchell, Piers D

    2013-10-01

    The development of molecular tools for the extraction, analysis and interpretation of DNA from the remains of ancient organisms (paleogenetics) has revolutionised a range of disciplines as diverse as the fields of human evolution, bioarchaeology, epidemiology, microbiology, taxonomy and population genetics. The paper draws attention to some of the challenges associated with the extraction and interpretation of ancient DNA from archaeological material, and then reviews the influence of paleogenetics on the field of human evolution. It discusses the main contributions of molecular studies to reconstructing the evolutionary and phylogenetic relationships between extinct hominins (human ancestors) and anatomically modern humans. It also explores the evidence for evolutionary changes in the genetic structure of anatomically modern humans in recent millennia. This breadth of research has led to discoveries that would never have been possible using traditional approaches to human evolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Instance-based Policy Learning by Real-coded Genetic Algorithms and Its Application to Control of Nonholonomic Systems

    Science.gov (United States)

    Miyamae, Atsushi; Sakuma, Jun; Ono, Isao; Kobayashi, Shigenobu

    The stabilization control of nonholonomic systems have been extensively studied because it is essential for nonholonomic robot control problems. The difficulty in this problem is that the theoretical derivation of control policy is not necessarily guaranteed achievable. In this paper, we present a reinforcement learning (RL) method with instance-based policy (IBP) representation, in which control policies for this class are optimized with respect to user-defined cost functions. Direct policy search (DPS) is an approach for RL; the policy is represented by parametric models and the model parameters are directly searched by optimization techniques including genetic algorithms (GAs). In IBP representation an instance consists of a state and an action pair; a policy consists of a set of instances. Several DPSs with IBP have been previously proposed. In these methods, sometimes fail to obtain optimal control policies when state-action variables are continuous. In this paper, we present a real-coded GA for DPSs with IBP. Our method is specifically designed for continuous domains. Optimization of IBP has three difficulties; high-dimensionality, epistasis, and multi-modality. Our solution is designed for overcoming these difficulties. The policy search with IBP representation appears to be high-dimensional optimization; however, instances which can improve the fitness are often limited to active instances (instances used for the evaluation). In fact, the number of active instances is small. Therefore, we treat the search problem as a low dimensional problem by restricting search variables only to active instances. It has been commonly known that functions with epistasis can be efficiently optimized with crossovers which satisfy the inheritance of statistics. For efficient search of IBP, we propose extended crossover-like mutation (extended XLM) which generates a new instance around an instance with satisfying the inheritance of statistics. For overcoming multi-modality, we

  17. Generation of Genetically Modified Organotypic Skin Cultures Using Devitalized Human Dermis.

    Science.gov (United States)

    Li, Jingting; Sen, George L

    2015-12-14

    Organotypic cultures allow the reconstitution of a 3D environment critical for cell-cell contact and cell-matrix interactions which mimics the function and physiology of their in vivo tissue counterparts. This is exemplified by organotypic skin cultures which faithfully recapitulates the epidermal differentiation and stratification program. Primary human epidermal keratinocytes are genetically manipulable through retroviruses where genes can be easily overexpressed or knocked down. These genetically modified keratinocytes can then be used to regenerate human epidermis in organotypic skin cultures providing a powerful model to study genetic pathways impacting epidermal growth, differentiation, and disease progression. The protocols presented here describe methods to prepare devitalized human dermis as well as to genetically manipulate primary human keratinocytes in order to generate organotypic skin cultures. Regenerated human skin can be used in downstream applications such as gene expression profiling, immunostaining, and chromatin immunoprecipitations followed by high throughput sequencing. Thus, generation of these genetically modified organotypic skin cultures will allow the determination of genes that are critical for maintaining skin homeostasis.

  18. Progress report on research on human genetics in Iceland

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-31

    Records of the Icelandic population are being used to investigate the possible inheritance of disabilities and diseases as well as other characteristics and the effect of environment on man. The progress report of research covers the period from 1977 to 1980. The investigation was begun in 1965 by the Genetical Committee of the University of Iceland and the materials used are demographic records from the year 1840 to present and various medical information. The records are being computerized and linked together to make them effective for use in hereditary studies.

  19. Research on human genetics in Iceland. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-31

    Records of the Icelandic Population are being used to investigate the possible inheritance of disabilities and diseases as well as other characters and the effect of environment on man. The progress report of research covers the period 1977 to 1980. The investigation was begun in 1965 by the Genetical Committee of the University of Iceland and the materials used are demographic records from the year 1840 to present and various medical information. The records are being computerized and linked together to make them effective for use in hereditary studies.

  20. Human genetics: measuring the raw material of evolution.

    Science.gov (United States)

    Armour, John A L

    2009-09-15

    By direct sequencing of two Y chromosomes inherited from the same paternal ancestor, a landmark study has derived a good direct estimate for the rate of base substitution mutations on the human Y chromosome.

  1. Human genetic variation in VAC14 regulates Salmonella invasion and typhoid fever through modulation of cholesterol.

    Science.gov (United States)

    Alvarez, Monica I; Glover, Luke C; Luo, Peter; Wang, Liuyang; Theusch, Elizabeth; Oehlers, Stefan H; Walton, Eric M; Tram, Trinh Thi Bich; Kuang, Yu-Lin; Rotter, Jerome I; McClean, Colleen M; Chinh, Nguyen Tran; Medina, Marisa W; Tobin, David M; Dunstan, Sarah J; Ko, Dennis C

    2017-09-12

    Risk, severity, and outcome of infection depend on the interplay of pathogen virulence and host susceptibility. Systematic identification of genetic susceptibility to infection is being undertaken through genome-wide association studies, but how to expeditiously move from genetic differences to functional mechanisms is unclear. Here, we use genetic association of molecular, cellular, and human disease traits and experimental validation to demonstrate that genetic variation affects expression of VAC14, a phosphoinositide-regulating protein, to influence susceptibility to Salmonella enterica serovar Typhi ( S Typhi) infection. Decreased VAC14 expression increased plasma membrane cholesterol, facilitating Salmonella docking and invasion. This increased susceptibility at the cellular level manifests as increased susceptibility to typhoid fever in a Vietnamese population. Furthermore, treating zebrafish with a cholesterol-lowering agent, ezetimibe, reduced susceptibility to S Typhi. Thus, coupling multiple genetic association studies with mechanistic dissection revealed how VAC14 regulates Salmonella invasion and typhoid fever susceptibility and may open doors to new prophylactic/therapeutic approaches.

  2. Mouse forward genetics in the study of the peripheral nervous system and human peripheral neuropathy

    Science.gov (United States)

    Douglas, Darlene S.; Popko, Brian

    2009-01-01

    Forward genetics, the phenotype-driven approach to investigating gene identity and function, has a long history in mouse genetics. Random mutations in the mouse transcend bias about gene function and provide avenues towards unique discoveries. The study of the peripheral nervous system is no exception; from historical strains such as the trembler mouse, which led to the identification of PMP22 as a human disease gene causing multiple forms of peripheral neuropathy, to the more recent identification of the claw paw and sprawling mutations, forward genetics has long been a tool for probing the physiology, pathogenesis, and genetics of the PNS. Even as spontaneous and mutagenized mice continue to enable the identification of novel genes, provide allelic series for detailed functional studies, and generate models useful for clinical research, new methods, such as the piggyBac transposon, are being developed to further harness the power of forward genetics. PMID:18481175

  3. The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis.

    Science.gov (United States)

    Roederer, Mario; Quaye, Lydia; Mangino, Massimo; Beddall, Margaret H; Mahnke, Yolanda; Chattopadhyay, Pratip; Tosi, Isabella; Napolitano, Luca; Terranova Barberio, Manuela; Menni, Cristina; Villanova, Federica; Di Meglio, Paola; Spector, Tim D; Nestle, Frank O

    2015-04-09

    Despite recent discoveries of genetic variants associated with autoimmunity and infection, genetic control of the human immune system during homeostasis is poorly understood. We undertook a comprehensive immunophenotyping approach, analyzing 78,000 immune traits in 669 female twins. From the top 151 heritable traits (up to 96% heritable), we used replicated GWAS to obtain 297 SNP associations at 11 genetic loci, explaining up to 36% of the variation of 19 traits. We found multiple associations with canonical traits of all major immune cell subsets and uncovered insights into genetic control for regulatory T cells. This data set also revealed traits associated with loci known to confer autoimmune susceptibility, providing mechanistic hypotheses linking immune traits with the etiology of disease. Our data establish a bioresource that links genetic control elements associated with normal immune traits to common autoimmune and infectious diseases, providing a shortcut to identifying potential mechanisms of immune-related diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The New World of Human Genetics: A dialogue between Practitioners & the General Public on Ethical, Legal & Social Implications of the Human Genome Project

    Energy Technology Data Exchange (ETDEWEB)

    Schofield, Amy

    2014-12-08

    The history and reasons for launching the Human Genome project and the current uses of genetic human material; Identifying and discussing the major issues stemming directly from genetic research and therapy-including genetic discrimination, medical/ person privacy, allocation of government resources and individual finances, and the effect on the way in which we perceive the value of human life; Discussing the sometimes hidden ethical, social and legislative implications of genetic research and therapy such as informed consent, screening and preservation of genetic materials, efficacy of medical procedures, the role of the government, and equal access to medical coverage.

  5. Genetics and human rights: Two histories: restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil

    OpenAIRE

    Penchaszadeh, Victor B.; Schuler-Faccini, Lavinia

    2014-01-01

    Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to i...

  6. The commercialization of human genetic information and related circumstances within Turkish law.

    Science.gov (United States)

    Memiş, Tekin

    2011-01-01

    Today, human genetic information is used for commercial purposes as well. This means, based on the case, the direct or indirect commercialization of genetic information. In this study, this specific issue is analyzed in light of the new legal regulations as to the subject in the Turkish Law. Specifically, this study focuses on the issue of whether the commercialization of genetic information is allowed under the Turkish Law. This study also attempts to clarify the issue of whether there is any limitations for the commercialization of genetic information in the Turkish Law provided that the commercialization of genetic information is permitted. Prior to this legal analysis, the problems of the legal ownership for genetic information and of whether genetic information should be considered as an organ of human body is discussed. Accordingly, relevant Turkish laws and regulations are individually analyzed within this context. In the mean time legal regulations of some countries in this respect are taken into account with a comparative approach. In the end a general evaluation and suggestions are provided to the reader.

  7. Coping with genetic diversity: the contribution of pathogen and human genomics to modern vaccinology

    International Nuclear Information System (INIS)

    Lemaire, D.; Barbosa, T.; Rihet, P.

    2011-01-01

    Vaccine development faces major difficulties partly because of genetic variation in both infectious organisms and humans. This causes antigenic variation in infectious agents and a high interindividual variability in the human response to the vaccine. The exponential growth of genome sequence information has induced a shift from conventional culture-based to genome-based vaccinology, and allows the tackling of challenges in vaccine development due to pathogen genetic variability. Additionally, recent advances in immunogenetics and genomics should help in the understanding of the influence of genetic factors on the interindividual and interpopulation variations in immune responses to vaccines, and could be useful for developing new vaccine strategies. Accumulating results provide evidence for the existence of a number of genes involved in protective immune responses that are induced either by natural infections or vaccines. Variation in immune responses could be viewed as the result of a perturbation of gene networks; this should help in understanding how a particular polymorphism or a combination thereof could affect protective immune responses. Here we will present: i) the first genome-based vaccines that served as proof of concept, and that provided new critical insights into vaccine development strategies; ii) an overview of genetic predisposition in infectious diseases and genetic control in responses to vaccines; iii) population genetic differences that are a rationale behind group-targeted vaccines; iv) an outlook for genetic control in infectious diseases, with special emphasis on the concept of molecular networks that will provide a structure to the huge amount of genomic data

  8. Human genetics for non-scientists: Practical workshops for policy makers and opinion leaders

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    These workshops form part of a series of workshops that the Banbury and the DNA Learning Centers of Cold Spring Harbor Laboratory have held for a number of years, introducing genetics, and the ways in which scientific research is done, to non-scientists. The purpose of the workshops as stated in the grant application was: {open_quotes}Our objective is to foster a better understanding of the societal impact of human genome research by providing basic information on genetics to non-scientists whose professions or special interests interface with genetic technology.... Participants will be chosen for their interest in human genetics and for their roles as opinion leaders in their own communities. Primary care physicians are of particular interest to us for this series of workshops.{close_quotes} Two workshops were held under this grant. The first was held in 21-24 April, 1994 and attended by 20 participants, and the second was held 16-19 November, 1995, and attended by 16 participants. In each case, there was a combination of concept lectures on the foundations of human molecular genetics; lectures by invited specialists; and laboratory experiments to introduce non-scientists to the techniques used in molecular genetics.

  9. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.

    Science.gov (United States)

    Hamosh, Ada; Scott, Alan F; Amberger, Joanna S; Bocchini, Carol A; McKusick, Victor A

    2005-01-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.

  10. Systematic documentation and analysis of human genetic variation using the microattribution approach

    Science.gov (United States)

    Giardine, Belinda; Borg, Joseph; Higgs, Douglas R.; Peterson, Kenneth R.; Maglott, Donna; Basak, A. Nazli; Clark, Barnaby; Faustino, Paula; Felice, Alex E.; Francina, Alain; Gallivan, Monica V. E.; Georgitsi, Marianthi; Gibbons, Richard J.; Giordano, Piero C.; Harteveld, Cornelis L.; Joly, Philippe; Kanavakis, Emmanuel; Kollia, Panagoula; Menzel, Stephan; Miller, Webb; Moradkhani, Kamran; Old, John; Papachatzopoulou, Adamantia; Papadakis, Manoussos N.; Papadopoulos, Petros; Pavlovic, Sonja; Philipsen, Sjaak; Radmilovic, Milena; Riemer, Cathy; Schrijver, Iris; Stojiljkovic, Maja; Thein, Swee Lay; Traeger-Synodinos, Jan; Tully, Ray; Wada, Takahito; Waye, John; Wiemann, Claudia; Zukic, Branka; Chui, David H. K.; Wajcman, Henri; Hardison, Ross C.; Patrinos, George P.

    2013-01-01

    We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to these disorders, and then implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories 1. A total of 1,941 unique genetic variants in 37 genes, encoding globins (HBA2, HBA1, HBG2, HBG1, HBD, HBB) and other erythroid proteins (ALOX5AP, AQP9, ARG2, ASS1, ATRX, BCL11A, CNTNAP2, CSNK2A1, EPAS1, ERCC2, FLT1, GATA1, GPM6B, HAO2, HBS1L, KDR, KL, KLF1, MAP2K1, MAP3K5, MAP3K7, MYB, NOS1, NOS2, NOS3, NOX3, NUP133, PDE7B, SMAD3, SMAD6, and TOX) are currently documented in these databases with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants and now provides a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The large repository of previously reported data, together with more recent data, acquired by microattribution, demonstrates how the comprehensive documentation of human variation will provide key insights into normal biological processes and how these are perturbed in human genetic disease. Using the microattribution process set out here, datasets which took decades to accumulate for the globin genes could be assembled rapidly for other genes and disease systems. The principles established here for the globin gene system will serve as a model for other systems and the analysis of other common and/or complex human genetic diseases. PMID:21423179

  11. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography.

    Directory of Open Access Journals (Sweden)

    Ruth Hershberg

    2008-12-01

    Full Text Available Mycobacterium tuberculosis infects one third of the human world population and kills someone every 15 seconds. For more than a century, scientists and clinicians have been distinguishing between the human- and animal-adapted members of the M. tuberculosis complex (MTBC. However, all human-adapted strains of MTBC have traditionally been considered to be essentially identical. We surveyed sequence diversity within a global collection of strains belonging to MTBC using seven megabase pairs of DNA sequence data. We show that the members of MTBC affecting humans are more genetically diverse than generally assumed, and that this diversity can be linked to human demographic and migratory events. We further demonstrate that these organisms are under extremely reduced purifying selection and that, as a result of increased genetic drift, much of this genetic diversity is likely to have functional consequences. Our findings suggest that the current increases in human population, urbanization, and global travel, combined with the population genetic characteristics of M. tuberculosis described here, could contribute to the emergence and spread of drug-resistant tuberculosis.

  12. Natural selection affects multiple aspects of genetic variation at putatively peutral sites across the human genome

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui

    2011-01-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries...... these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination...... and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations...

  13. Comparative review of human and canine osteosarcoma: morphology, epidemiology, prognosis, treatment and genetics.

    Science.gov (United States)

    Simpson, Siobhan; Dunning, Mark David; de Brot, Simone; Grau-Roma, Llorenç; Mongan, Nigel Patrick; Rutland, Catrin Sian

    2017-10-24

    Osteosarcoma (OSA) is a rare cancer in people. However OSA incidence rates in dogs are 27 times higher than in people. Prognosis in both species is relatively poor, with 5 year OSA survival rates in people not having improved in decades. For dogs, 1 year survival rates are only around ~ 45%. Improved and novel treatment regimens are urgently required to improve survival in both humans and dogs with OSA. Utilising information from genetic studies could assist in this in both species, with the higher incidence rates in dogs contributing to the dog population being a good model of human disease. This review compares the clinical characteristics, gross morphology and histopathology, aetiology, epidemiology, and genetics of canine and human OSA. Finally, the current position of canine OSA genetic research is discussed and areas for additional work within the canine population are identified.

  14. Human genetics of infectious diseases: between proof of principle and paradigm.

    Science.gov (United States)

    Alcaïs, Alexandre; Abel, Laurent; Casanova, Jean-Laurent

    2009-09-01

    The observation that only a fraction of individuals infected by infectious agents develop clinical disease raises fundamental questions about the actual pathogenesis of infectious diseases. Epidemiological and experimental evidence is accumulating to suggest that human genetics plays a major role in this process. As we discuss here, human predisposition to infectious diseases seems to cover a continuous spectrum from monogenic to polygenic inheritance. Although many studies have provided proof of principle that infectious diseases may result from various types of inborn errors of immunity, the genetic determinism of most infectious diseases in most patients remains unclear. However, in the future, studies in human genetics are likely to establish a new paradigm for infectious diseases.

  15. [The development of molecular human genetics and its significance for perspectives of modern medicine].

    Science.gov (United States)

    Coutelle, C; Speer, A; Grade, K; Rosenthal, A; Hunger, H D

    1989-01-01

    The introduction of molecular human genetics has become a paradigma for the application of genetic engineering in medicine. The main principles of this technology are the isolation of molecular probes, their application in hybridization reactions, specific gene-amplification by the polymerase chain reaction, and DNA sequencing reactions. These methods are used for the analysis of monogenic diseases by linkage studies and the elucidation of the molecular defect causing these conditions, respectively. They are also the basis for genomic diagnosis of monogenic diseases, introduced into the health care system of the GDR by a national project on Duchenne/Becker muscular dystrophy, Cystic Fibrosis and Phenylketonuria. The rapid development of basic research on the molecular analysis of the human genome and genomic diagnosis indicates, that human molecular genetics is becoming a decisive basic discipline of modern medicine.

  16. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine.

    Science.gov (United States)

    Burridge, Paul W; Sharma, Arun; Wu, Joseph C

    2015-01-01

    Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine.

  17. Human Genetic Marker for Resistance to Radiation and Chemicals

    International Nuclear Information System (INIS)

    Lieberman, Howard B.

    2001-01-01

    TO characterize the human HRDAD9 gene and evaluate its potential as a biomarker to predict susceptibility to the deleterious health effects potentially caused by exposure to radiations or chemicals present at DOE hazardous waste cleanup sites. HRAD9 is a human gene that is highly conserved throughout evolution. Related genes have been isolated from yeasts and mice, underscoring its biological significance. Most of our previous work involved characterization of the yeast gene cognate, wherein it was determined that the corresponding protein plays a significant role in promoting resistance of cells to radiations and chemicals, and in particular, controlling cell growth in response to DNA damage

  18. The Future of Genetics in Psychology and Psychiatry: Microarrays, Genome-Wide Association, and Non-Coding RNA

    Science.gov (United States)

    Plomin, Robert; Davis, Oliver S. P.

    2009-01-01

    Background: Much of what we thought we knew about genetics needs to be modified in light of recent discoveries. What are the implications of these advances for identifying genes responsible for the high heritability of many behavioural disorders and dimensions in childhood? Methods: Although quantitative genetics such as twin studies will continue…

  19. Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents.

    Science.gov (United States)

    Mayer, René E; Reischer, Georg H; Ixenmaier, Simone K; Derx, Julia; Blaschke, Alfred Paul; Ebdon, James E; Linke, Rita; Egle, Lukas; Ahmed, Warish; Blanch, Anicet R; Byamukama, Denis; Savill, Marion; Mushi, Douglas; Cristóbal, Héctor A; Edge, Thomas A; Schade, Margit A; Aslan, Asli; Brooks, Yolanda M; Sommer, Regina; Masago, Yoshifumi; Sato, Maria I; Taylor, Huw D; Rose, Joan B; Wuertz, Stefan; Shanks, Orin C; Piringer, Harald; Mach, Robert L; Savio, Domenico; Zessner, Matthias; Farnleitner, Andreas H

    2018-05-01

    Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4 400 000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log 10 7.2-8.0 marker equivalents (ME) 100 mL -1 ) and biologically treated wastewater samples (median log 10 4.6-6.0 ME 100 mL -1 ) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe.

  20. Human genetics after the bomb: Archives, clinics, proving grounds and board rooms.

    Science.gov (United States)

    Lindee, Susan

    2016-02-01

    In this paper I track the history of post-1945 human genetics and genomics emphasizing the importance of ideas about risk to the scientific study and medical management of human heredity. Drawing on my own scholarship as it is refracted through important new work by other scholars both junior and senior, I explore how radiation risk and then later disease risk mattered to the development of genetics and genomics, particularly in the United States. In this context I excavate one of the central ironies of post-war human genetics: while studies of DNA as the origin and cause of diseases have been lavishly supported by public institutions and private investment around the world, the day-to-day labor of intensive clinical innovation has played a far more important role in the actual human experience of genetic disease and genetic risk for affected families. This has implications for the archival record, where clinical interactions are less readily accessible to historians. This paper then suggests that modern genomics grew out of radiation risk; that it was and remains a risk assessment science; that it is temporally embedded as a form of both prediction and historical reconstruction; and that it has become a big business focused more on risk and prediction (which can be readily marketed) than on effective clinical intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ethical Concerns About Human Genetic Enhancement in the Malay Science Fiction Novels.

    Science.gov (United States)

    Isa, Noor Munirah; Hj Safian Shuri, Muhammad Fakhruddin

    2018-02-01

    Advancements in science and technology have not only brought hope to humankind to produce disease-free offspring, but also offer possibilities to genetically enhance the next generation's traits and capacities. Human genetic enhancement, however, raises complex ethical questions, such as to what extent should it be allowed? It has been a great challenge for humankind to develop robust ethical guidelines for human genetic enhancement that address both public concerns and needs. We believe that research about public concerns is necessary prior to developing such guidelines, yet the issues have not been thoroughly investigated in many countries, including Malaysia. Since the novel often functions as a medium for the public to express their concerns, this paper explores ethical concerns about human genetic enhancement expressed in four Malay science fiction novels namely Klon, Leksikon Ledang, Transgenesis Bisikan Rimba and Transgenik Sifar. Religion has a strong influence on the worldview of the Malays therefore some concerns such as playing God are obviously religious. Association of the negative image of scientists as well as the private research companies with the research on human genetic enhancement reflects the authors' concerns about the main motivations for conducting such research and the extent to which such research will benefit society.

  2. Characterization of Large Structural Genetic Mosaicism in Human Autosomes

    Science.gov (United States)

    Machiela, Mitchell J.; Zhou, Weiyin; Sampson, Joshua N.; Dean, Michael C.; Jacobs, Kevin B.; Black, Amanda; Brinton, Louise A.; Chang, I-Shou; Chen, Chu; Chen, Constance; Chen, Kexin; Cook, Linda S.; Crous Bou, Marta; De Vivo, Immaculata; Doherty, Jennifer; Friedenreich, Christine M.; Gaudet, Mia M.; Haiman, Christopher A.; Hankinson, Susan E.; Hartge, Patricia; Henderson, Brian E.; Hong, Yun-Chul; Hosgood, H. Dean; Hsiung, Chao A.; Hu, Wei; Hunter, David J.; Jessop, Lea; Kim, Hee Nam; Kim, Yeul Hong; Kim, Young Tae; Klein, Robert; Kraft, Peter; Lan, Qing; Lin, Dongxin; Liu, Jianjun; Le Marchand, Loic; Liang, Xiaolin; Lissowska, Jolanta; Lu, Lingeng; Magliocco, Anthony M.; Matsuo, Keitaro; Olson, Sara H.; Orlow, Irene; Park, Jae Yong; Pooler, Loreall; Prescott, Jennifer; Rastogi, Radhai; Risch, Harvey A.; Schumacher, Fredrick; Seow, Adeline; Setiawan, Veronica Wendy; Shen, Hongbing; Sheng, Xin; Shin, Min-Ho; Shu, Xiao-Ou; VanDen Berg, David; Wang, Jiu-Cun; Wentzensen, Nicolas; Wong, Maria Pik; Wu, Chen; Wu, Tangchun; Wu, Yi-Long; Xia, Lucy; Yang, Hannah P.; Yang, Pan-Chyr; Zheng, Wei; Zhou, Baosen; Abnet, Christian C.; Albanes, Demetrius; Aldrich, Melinda C.; Amos, Christopher; Amundadottir, Laufey T.; Berndt, Sonja I.; Blot, William J.; Bock, Cathryn H.; Bracci, Paige M.; Burdett, Laurie; Buring, Julie E.; Butler, Mary A.; Carreón, Tania; Chatterjee, Nilanjan; Chung, Charles C.; Cook, Michael B.; Cullen, Michael; Davis, Faith G.; Ding, Ti; Duell, Eric J.; Epstein, Caroline G.; Fan, Jin-Hu; Figueroa, Jonine D.; Fraumeni, Joseph F.; Freedman, Neal D.; Fuchs, Charles S.; Gao, Yu-Tang; Gapstur, Susan M.; Patiño-Garcia, Ana; Garcia-Closas, Montserrat; Gaziano, J. Michael; Giles, Graham G.; Gillanders, Elizabeth M.; Giovannucci, Edward L.; Goldin, Lynn; Goldstein, Alisa M.; Greene, Mark H.; Hallmans, Goran; Harris, Curtis C.; Henriksson, Roger; Holly, Elizabeth A.; Hoover, Robert N.; Hu, Nan; Hutchinson, Amy; Jenab, Mazda; Johansen, Christoffer; Khaw, Kay-Tee; Koh, Woon-Puay; Kolonel, Laurence N.; Kooperberg, Charles; Krogh, Vittorio; Kurtz, Robert C.; LaCroix, Andrea; Landgren, Annelie; Landi, Maria Teresa; Li, Donghui; Liao, Linda M.; Malats, Nuria; McGlynn, Katherine A.; McNeill, Lorna H.; McWilliams, Robert R.; Melin, Beatrice S.; Mirabello, Lisa; Peplonska, Beata; Peters, Ulrike; Petersen, Gloria M.; Prokunina-Olsson, Ludmila; Purdue, Mark; Qiao, You-Lin; Rabe, Kari G.; Rajaraman, Preetha; Real, Francisco X.; Riboli, Elio; Rodríguez-Santiago, Benjamín; Rothman, Nathaniel; Ruder, Avima M.; Savage, Sharon A.; Schwartz, Ann G.; Schwartz, Kendra L.; Sesso, Howard D.; Severi, Gianluca; Silverman, Debra T.; Spitz, Margaret R.; Stevens, Victoria L.; Stolzenberg-Solomon, Rachael; Stram, Daniel; Tang, Ze-Zhong; Taylor, Philip R.; Teras, Lauren R.; Tobias, Geoffrey S.; Viswanathan, Kala; Wacholder, Sholom; Wang, Zhaoming; Weinstein, Stephanie J.; Wheeler, William; White, Emily; Wiencke, John K.; Wolpin, Brian M.; Wu, Xifeng; Wunder, Jay S.; Yu, Kai; Zanetti, Krista A.; Zeleniuch-Jacquotte, Anne; Ziegler, Regina G.; de Andrade, Mariza; Barnes, Kathleen C.; Beaty, Terri H.; Bierut, Laura J.; Desch, Karl C.; Doheny, Kimberly F.; Feenstra, Bjarke; Ginsburg, David; Heit, John A.; Kang, Jae H.; Laurie, Cecilia A.; Li, Jun Z.; Lowe, William L.; Marazita, Mary L.; Melbye, Mads; Mirel, Daniel B.; Murray, Jeffrey C.; Nelson, Sarah C.; Pasquale, Louis R.; Rice, Kenneth; Wiggs, Janey L.; Wise, Anastasia; Tucker, Margaret; Pérez-Jurado, Luis A.; Laurie, Cathy C.; Caporaso, Neil E.; Yeager, Meredith; Chanock, Stephen J.

    2015-01-01

    Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10−31) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population. PMID:25748358

  3. Human impacts on genetic diversity in forest ecosystems

    Science.gov (United States)

    F. Thomas Ledig

    1992-01-01

    Humans have converted forest to agricultural and urban uses, exploited species, fragmented wildlands. changed the demographic structure of forests, altered habitat, degraded the environment with atmospheric and soil pollutants, introduced exotic pests and competitors, and domesticated favored species. None of they activities is new; perhaps with the exception of...

  4. Mapping genetic variants for cranial vault shape in humans

    DEFF Research Database (Denmark)

    Roosenboom, Jasmien; Lee, Myoung Keun; Hecht, Jacqueline T

    2018-01-01

    The shape of the cranial vault, a region comprising interlocking flat bones surrounding the cerebral cortex, varies considerably in humans. Strongly influenced by brain size and shape, cranial vault morphology has both clinical and evolutionary relevance. However, little is known about the geneti...

  5. MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.

    Science.gov (United States)

    Wang, Julia; Al-Ouran, Rami; Hu, Yanhui; Kim, Seon-Young; Wan, Ying-Wooi; Wangler, Michael F; Yamamoto, Shinya; Chao, Hsiao-Tuan; Comjean, Aram; Mohr, Stephanie E; Perrimon, Norbert; Liu, Zhandong; Bellen, Hugo J

    2017-06-01

    One major challenge encountered with interpreting human genetic variants is the limited understanding of the functional impact of genetic alterations on biological processes. Furthermore, there remains an unmet demand for an efficient survey of the wealth of information on human homologs in model organisms across numerous databases. To efficiently assess the large volume of publically available information, it is important to provide a concise summary of the most relevant information in a rapid user-friendly format. To this end, we created MARRVEL (model organism aggregated resources for rare variant exploration). MARRVEL is a publicly available website that integrates information from six human genetic databases and seven model organism databases. For any given variant or gene, MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER. Importantly, it curates model organism-specific databases to concurrently display a concise summary regarding the human gene homologs in budding and fission yeast, worm, fly, fish, mouse, and rat on a single webpage. Experiment-based information on tissue expression, protein subcellular localization, biological process, and molecular function for the human gene and homologs in the seven model organisms are arranged into a concise output. Hence, rather than visiting multiple separate databases for variant and gene analysis, users can obtain important information by searching once through MARRVEL. Altogether, MARRVEL dramatically improves efficiency and accessibility to data collection and facilitates analysis of human genes and variants by cross-disciplinary integration of 18 million records available in public databases to facilitate clinical diagnosis and basic research. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Amino acid substitutions in genetic variants of human serum albumin and in sequences inferred from molecular cloning

    International Nuclear Information System (INIS)

    Takahashi, N.; Takahashi, Y.; Blumberg, B.S.; Putnam, F.W.

    1987-01-01

    The structural changes in four genetic variants of human serum albumin were analyzed by tandem high-pressure liquid chromatography (HPLC) of the tryptic peptides, HPLC mapping and isoelectric focusing of the CNBr fragments, and amino acid sequence analysis of the purified peptides. Lysine-372 of normal (common) albumin A was changed to glutamic acid both in albumin Naskapi, a widespread polymorphic variant of North American Indians, and in albumin Mersin found in Eti Turks. The two variants also exhibited anomalous migration in NaDodSO 4 /PAGE, which is attributed to a conformational change. The identity of albumins Naskapi and Mersin may have originated through descent from a common mid-Asiatic founder of the two migrating ethnic groups, or it may represent identical but independent mutations of the albumin gene. In albumin Adana, from Eti Turks, the substitution site was not identified but was localized to the region from positions 447 through 548. The substitution of aspartic acid-550 by glycine was found in albumin Mexico-2 from four individuals of the Pima tribe. Although only single-point substitutions have been found in these and in certain other genetic variants of human albumin, five differences exist in the amino acid sequences inferred from cDNA sequences by workers in three other laboratories. However, our results on albumin A and on 14 different genetic variants accord with the amino acid sequence of albumin deduced from the genomic sequence. The apparent amino acid substitutions inferred from comparison of individual cDNA sequences probably reflect artifacts in cloning or in cDNA sequence analysis rather than polymorphism of the coding sections of the albumin gene

  7. Evolving hard problems: Generating human genetics datasets with a complex etiology

    Directory of Open Access Journals (Sweden)

    Himmelstein Daniel S

    2011-07-01

    Full Text Available Abstract Background A goal of human genetics is to discover genetic factors that influence individuals' susceptibility to common diseases. Most common diseases are thought to result from the joint failure of two or more interacting components instead of single component failures. This greatly complicates both the task of selecting informative genetic variants and the task of modeling interactions between them. We and others have previously developed algorithms to detect and model the relationships between these genetic factors and disease. Previously these methods have been evaluated with datasets simulated according to pre-defined genetic models. Results Here we develop and evaluate a model free evolution strategy to generate datasets which display a complex relationship between individual genotype and disease susceptibility. We show that this model free approach is capable of generating a diverse array of datasets with distinct gene-disease relationships for an arbitrary interaction order and sample size. We specifically generate eight-hundred Pareto fronts; one for each independent run of our algorithm. In each run the predictiveness of single genetic variation and pairs of genetic variants have been minimized, while the predictiveness of third, fourth, or fifth-order combinations is maximized. Two hundred runs of the algorithm are further dedicated to creating datasets with predictive four or five order interactions and minimized lower-level effects. Conclusions This method and the resulting datasets will allow the capabilities of novel methods to be tested without pre-specified genetic models. This allows researchers to evaluate which methods will succeed on human genetics problems where the model is not known in advance. We further make freely available to the community the entire Pareto-optimal front of datasets from each run so that novel methods may be rigorously evaluated. These 76,600 datasets are available from http://discovery.dartmouth.edu/model_free_data/.

  8. Human genetics and genomics a decade after the release of the draft sequence of the human genome

    Science.gov (United States)

    2011-01-01

    Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605

  9. Genetics of the pig tapeworm in madagascar reveal a history of human dispersal and colonization.

    Science.gov (United States)

    Yanagida, Tetsuya; Carod, Jean-François; Sako, Yasuhito; Nakao, Minoru; Hoberg, Eric P; Ito, Akira

    2014-01-01

    An intricate history of human dispersal and geographic colonization has strongly affected the distribution of human pathogens. The pig tapeworm Taenia solium occurs throughout the world as the causative agent of cysticercosis, one of the most serious neglected tropical diseases. Discrete genetic lineages of T. solium in Asia and Africa/Latin America are geographically disjunct; only in Madagascar are they sympatric. Linguistic, archaeological and genetic evidence has indicated that the people in Madagascar have mixed ancestry from Island Southeast Asia and East Africa. Hence, anthropogenic introduction of the tapeworm from Southeast Asia and Africa had been postulated. This study shows that the major mitochondrial haplotype of T. solium in Madagascar is closely related to those from the Indian Subcontinent. Parasitological evidence presented here, and human genetics previously reported, support the hypothesis of an Indian influence on Malagasy culture coinciding with periods of early human migration onto the island. We also found evidence of nuclear-mitochondrial discordance in single tapeworms, indicating unexpected cross-fertilization between the two lineages of T. solium. Analyses of genetic and geographic populations of T. solium in Madagascar will shed light on apparently rapid evolution of this organism driven by recent (<2,000 yr) human migrations, following tens of thousands of years of geographic isolation.

  10. Proliferation of Genetically Modified Human Cells on Electrospun Nanofiber Scaffolds

    Directory of Open Access Journals (Sweden)

    Mandula Borjigin

    2012-01-01

    Full Text Available Gene editing is a process by which single base mutations can be corrected, in the context of the chromosome, using single-stranded oligodeoxynucleotides (ssODNs. The survival and proliferation of the corrected cells bearing modified genes, however, are impeded by a phenomenon known as reduced proliferation phenotype (RPP; this is a barrier to practical implementation. To overcome the RPP problem, we utilized nanofiber scaffolds as templates on which modified cells were allowed to recover, grow, and expand after gene editing. Here, we present evidence that some HCT116-19, bearing an integrated, mutated enhanced green fluorescent protein (eGFP gene and corrected by gene editing, proliferate on polylysine or fibronectin-coated polycaprolactone (PCL nanofiber scaffolds. In contrast, no cells from the same reaction protocol plated on both regular dish surfaces and polylysine (or fibronectin-coated dish surfaces proliferate. Therefore, growing genetically modified (edited cells on electrospun nanofiber scaffolds promotes the reversal of the RPP and increases the potential of gene editing as an ex vivo gene therapy application.

  11. Human genetic studies in areas of high natural radiation

    International Nuclear Information System (INIS)

    Freire-Maia, A.; Krieger, H.

    1978-01-01

    Data have been obtained by a genetic-epidemiological survey of a population living in the State of Espirito Santo (Brazil), and subjected to mean levels of natural radiation, per locality, ranging from 7 to 133 μrad/hr. Multiple regression models have been applied to the data, and the results showed no detectable effect of natural radiation on the sex ratio at birth, on the occurrence of congenital anomalies, and on the numbers of pregnancy terminations, stillbirths, livebirths, and post-infant mortality in the children, as well as fecundity and fertility of the couples (these observations contradict some data from the literature, based on official records and without analyses of the concomitant effects of other variables). However, nonsignificant results cannot be considered as disproving harmful effects of natural radiation on mortality and morbidity. These results may simply mean that other causes of mortality and morbidity are so important, under the conditions of the study, that the contribution of low-level, chronic natural radiation is made negligible. (author)

  12. Molecular genetics of human primary microcephaly: an overview

    Science.gov (United States)

    2015-01-01

    Autosomal recessive primary microcephaly (MCPH) is a neurodevelopmental disorder that is characterised by microcephaly present at birth and non-progressive mental retardation. Microcephaly is the outcome of a smaller but architecturally normal brain; the cerebral cortex exhibits a significant decrease in size. MCPH is a neurogenic mitotic disorder, though affected patients demonstrate normal neuronal migration, neuronal apoptosis and neural function. Twelve MCPH loci (MCPH1-MCPH12) have been mapped to date from various populations around the world and contain the following genes: Microcephalin, WDR62, CDK5RAP2, CASC5, ASPM, CENPJ, STIL, CEP135, CEP152, ZNF335, PHC1 and CDK6. It is predicted that MCPH gene mutations may lead to the disease phenotype due to a disturbed mitotic spindle orientation, premature chromosomal condensation, signalling response as a result of damaged DNA, microtubule dynamics, transcriptional control or a few other hidden centrosomal mechanisms that can regulate the number of neurons produced by neuronal precursor cells. Additional findings have further elucidated the microcephaly aetiology and pathophysiology, which has informed the clinical management of families suffering from MCPH. The provision of molecular diagnosis and genetic counselling may help to decrease the frequency of this disorder. PMID:25951892

  13. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes

    DEFF Research Database (Denmark)

    Pantano, Lorena; Jodar, Meritxell; Bak, Mads

    2015-01-01

    -specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed...... into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource...... for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline....

  14. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    Directory of Open Access Journals (Sweden)

    Jin Qi

    Full Text Available Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications.

  15. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    Science.gov (United States)

    Qi, Jin; Yang, Zhiyong

    2014-01-01

    Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications.

  16. A CRISPR New World: Attitudes in the Public toward Innovations in Human Genetic Modification.

    Science.gov (United States)

    Weisberg, Steven M; Badgio, Daniel; Chatterjee, Anjan

    2017-01-01

    The potential to genetically modify human germlines has reached a critical tipping point with recent applications of CRISPR-Cas9. Even as researchers, clinicians, and ethicists weigh the scientific and ethical repercussions of these advances, we know virtually nothing about public attitudes on the topic. Understanding such attitudes will be critical to determining the degree of broad support there might be for any public policy or regulation developed for genetic modification research. To fill this gap, we gave an online survey to a large (2,493 subjects) and diverse sample of Americans. Respondents supported genetic modification research, although demographic variables influenced these attitudes-conservatives, women, African-Americans, and older respondents, while supportive, were more cautious than liberals, men, other ethnicities, and younger respondents. Support was also was slightly muted when the risks (unanticipated mutations and possibility of eugenics) were made explicit. The information about genetic modification was also presented as contrasting vignettes, using one of five frames: genetic editing, engineering, hacking, modification, or surgery. Despite the fact that the media and academic use of frames describing the technology varies, these frames did not influence people's attitudes. These data contribute a current snapshot of public attitudes to inform policy with regard to human genetic modification.

  17. A CRISPR New World: Attitudes in the Public toward Innovations in Human Genetic Modification

    Directory of Open Access Journals (Sweden)

    Steven M. Weisberg

    2017-05-01

    Full Text Available The potential to genetically modify human germlines has reached a critical tipping point with recent applications of CRISPR-Cas9. Even as researchers, clinicians, and ethicists weigh the scientific and ethical repercussions of these advances, we know virtually nothing about public attitudes on the topic. Understanding such attitudes will be critical to determining the degree of broad support there might be for any public policy or regulation developed for genetic modification research. To fill this gap, we gave an online survey to a large (2,493 subjects and diverse sample of Americans. Respondents supported genetic modification research, although demographic variables influenced these attitudes—conservatives, women, African-Americans, and older respondents, while supportive, were more cautious than liberals, men, other ethnicities, and younger respondents. Support was also was slightly muted when the risks (unanticipated mutations and possibility of eugenics were made explicit. The information about genetic modification was also presented as contrasting vignettes, using one of five frames: genetic editing, engineering, hacking, modification, or surgery. Despite the fact that the media and academic use of frames describing the technology varies, these frames did not influence people’s attitudes. These data contribute a current snapshot of public attitudes to inform policy with regard to human genetic modification.

  18. Genetic population structure accounts for contemporary ecogeographic patterns in tropic and subtropic-dwelling humans.

    Science.gov (United States)

    Hruschka, Daniel J; Hadley, Craig; Brewis, Alexandra A; Stojanowski, Christopher M

    2015-01-01

    Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

  19. Genetic population structure accounts for contemporary ecogeographic patterns in tropic and subtropic-dwelling humans.

    Directory of Open Access Journals (Sweden)

    Daniel J Hruschka

    Full Text Available Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28. However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74. Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

  20. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene.

    Science.gov (United States)

    Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua

    2006-02-01

    To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  1. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  2. Two human cDNA molecules coding for the Duchenne muscular dystrophy (DMD) locus are highly homologous

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, A.; Speer, A.; Billwitz, H. (Zentralinstitut fuer Molekularbiologie, Berlin-Buch (Germany Democratic Republic)); Cross, G.S.; Forrest, S.M.; Davies, K.E. (Univ. of Oxford (England))

    1989-07-11

    Recently the complete sequence of the human fetal cDNA coding for the Duchenne muscular dystrophy (DMD) locus was reported and a 3,685 amino acid long, rod-shaped cytoskeletal protein (dystrophin) was predicted as the protein product. Independently, the authors have isolated and sequenced different DMD cDNA molecules from human adult and fetal muscle. The complete 12.5 kb long sequence of all their cDNA clones has now been determined and they report here the nucleotide (nt) and amino acid (aa) differences between the sequences of both groups. The cDNA sequence comprises the whole coding region but lacks the first 110 nt from the 5{prime}-untranslated region and the last 1,417 nt of the 3{prime}-untranslated region. They have found 11 nt differences (approximately 99.9% homology) from which 7 occurred at the aa level.

  3. Genetic adaptation of the antibacterial human innate immunity network

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  4. Genetic adaptation of the antibacterial human innate immunity network.

    Science.gov (United States)

    Casals, Ferran; Sikora, Martin; Laayouni, Hafid; Montanucci, Ludovica; Muntasell, Aura; Lazarus, Ross; Calafell, Francesc; Awadalla, Philip; Netea, Mihai G; Bertranpetit, Jaume

    2011-07-11

    Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  5. Human genetics of infectious diseases: between proof of principle and paradigm

    OpenAIRE

    Alcaïs, Alexandre; Abel, Laurent; Casanova, Jean-Laurent

    2009-01-01

    The observation that only a fraction of individuals infected by infectious agents develop clinical disease raises fundamental questions about the actual pathogenesis of infectious diseases. Epidemiological and experimental evidence is accumulating to suggest that human genetics plays a major role in this process. As we discuss here, human predisposition to infectious diseases seems to cover a continuous spectrum from monogenic to polygenic inheritance. Although many studies have provided proo...

  6. Comparing ESC and iPSC?Based Models for Human Genetic Disorders

    OpenAIRE

    Halevy, Tomer; Urbach, Achia

    2014-01-01

    Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients’ somatic cells, and the ne...

  7. Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups

    Directory of Open Access Journals (Sweden)

    Singh Nagendra

    2009-03-01

    Full Text Available Abstract Background Completely sequenced plant genomes provide scope for designing a large number of microsatellite markers, which are useful in various aspects of crop breeding and genetic analysis. With the objective of developing genic but non-coding microsatellite (GNMS markers for the rice (Oryza sativa L. genome, we characterized the frequency and relative distribution of microsatellite repeat-motifs in 18,935 predicted protein coding genes including 14,308 putative promoter sequences. Results We identified 19,555 perfect GNMS repeats with densities ranging from 306.7/Mb in chromosome 1 to 450/Mb in chromosome 12 with an average of 357.5 GNMS per Mb. The average microsatellite density was maximum in the 5' untranslated regions (UTRs followed by those in introns, promoters, 3'UTRs and minimum in the coding sequences (CDS. Primers were designed for 17,966 (92% GNMS repeats, including 4,288 (94% hypervariable class I types, which were bin-mapped on the rice genome. The GNMS markers were most polymorphic in the intronic region (73.3% followed by markers in the promoter region (53.3% and least in the CDS (26.6%. The robust polymerase chain reaction (PCR amplification efficiency and high polymorphic potential of GNMS markers over genic coding and random genomic microsatellite markers suggest their immediate use in efficient genotyping applications in rice. A set of these markers could assess genetic diversity and establish phylogenetic relationships among domesticated rice cultivar groups. We also demonstrated the usefulness of orthologous and paralogous conserved non-coding microsatellite (CNMS markers, identified in the putative rice promoter sequences, for comparative physical mapping and understanding of evolutionary and gene regulatory complexities among rice and other members of the grass family. The divergence between long-grained aromatics and subspecies japonica was estimated to be more recent (0.004 Mya compared to short

  8. Egyptian Journal of Medical Human Genetics - Vol 12, No 2 (2011)

    African Journals Online (AJOL)

    Egyptian Journal of Medical Human Genetics - Vol 12, No 2 (2011) ... Serum interferon-alpha level in first degree relatives of systemic lupus erythematosus patients: Correlation with autoantibodies titers · EMAIL FREE FULL TEXT EMAIL FREE FULL ... LB Salah, CB Salem, F B'Chir, K Bouraoui, F Broly, S Saguem, 183-186.

  9. Teachers' Conceptions About the Genetic Determinism of Human Behaviour: A Survey in 23 Countries

    Science.gov (United States)

    Castéra, Jérémy; Clément, Pierre

    2014-02-01

    This work analyses the answers to a questionnaire from 8,285 in-service and pre-service teachers from 23 countries, elaborated by the Biohead-Citizen research project, to investigate teachers' conceptions related to the genetic determinism of human behaviour. A principal components analysis is used to assess the main trends in all the interviewed teachers' conceptions. This illustrates that innatism is present in two distinct ways: in relation to individuals (e.g. genetic determinism to justify intellectual likeness between individuals such as twins) or in relation to groups of humans (e.g. genetic determinism to justify gender differences or the superiority of some human ethnic groups). A between-factor analysis discriminates between countries, showing very significant differences. There is more innatism among teachers' conceptions in African countries and Lebanon than in European countries, Brazil and Australia. Among the other controlled parameters, only two are significantly independent of the country: the level of training and the level of knowledge of biology. A co-inertia analysis shows a strong correlation between non-citizen attitudes towards and innatist conceptions of genetic determinism regarding human groups. We discuss these findings and their implications for education.

  10. Teachers' Conceptions about the Genetic Determinism of Human Behaviour: A Survey in 23 Countries

    Science.gov (United States)

    Castéra, Jérémy; Clément, Pierre

    2014-01-01

    This work analyses the answers to a questionnaire from 8,285 in-service and pre-service teachers from 23 countries, elaborated by the Biohead-Citizen research project, to investigate teachers' conceptions related to the genetic determinism of human behaviour. A principal components analysis is used to assess the main trends in all the interviewed…

  11. The genetic influences on oxycodone response characteristics in human experimental pain

    DEFF Research Database (Denmark)

    Olesen, Anne Estrup; Sato, Hiroe; Nielsen, Lecia M

    2015-01-01

    Human experimental pain studies are of value to study basic pain mechanisms under controlled conditions. The aim of this study was to investigate whether genetic variation across selected mu-, kappa- and delta-opioid receptor genes (OPRM1, OPRK1and OPRD1, respectively) influenced analgesic respon......; therefore, variation in opioid receptor genes may partly explain responder characteristics to oxycodone....

  12. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets

    DEFF Research Database (Denmark)

    Taneera, Jalal; Lang, Stefan; Sharma, Amitabh

    2012-01-01

    Close to 50 genetic loci have been associated with type 2 diabetes (T2D), but they explain only 15% of the heritability. In an attempt to identify additional T2D genes, we analyzed global gene expression in human islets from 63 donors. Using 48 genes located near T2D risk variants, we identified ...

  13. Tracking Dengue Virus Intra-host Genetic Diversity during Human-to-Mosquito Transmission.

    Directory of Open Access Journals (Sweden)

    Shuzhen Sim

    Full Text Available Dengue virus (DENV infection of an individual human or mosquito host produces a dynamic population of closely-related sequences. This intra-host genetic diversity is thought to offer an advantage for arboviruses to adapt as they cycle between two very different host species, but it remains poorly characterized. To track changes in viral intra-host genetic diversity during horizontal transmission, we infected Aedes aegypti mosquitoes by allowing them to feed on DENV2-infected patients. We then performed whole-genome deep-sequencing of human- and matched mosquito-derived DENV samples on the Illumina platform and used a sensitive variant-caller to detect single nucleotide variants (SNVs within each sample. >90% of SNVs were lost upon transition from human to mosquito, as well as from mosquito abdomen to salivary glands. Levels of viral diversity were maintained, however, by the regeneration of new SNVs at each stage of transmission. We further show that SNVs maintained across transmission stages were transmitted as a unit of two at maximum, suggesting the presence of numerous variant genomes carrying only one or two SNVs each. We also present evidence for differences in selection pressures between human and mosquito hosts, particularly on the structural and NS1 genes. This analysis provides insights into how population drops during transmission shape RNA virus genetic diversity, has direct implications for virus evolution, and illustrates the value of high-coverage, whole-genome next-generation sequencing for understanding viral intra-host genetic diversity.

  14. PGG.Population: a database for understanding the genomic diversity and genetic ancestry of human populations.

    Science.gov (United States)

    Zhang, Chao; Gao, Yang; Liu, Jiaojiao; Xue, Zhe; Lu, Yan; Deng, Lian; Tian, Lei; Feng, Qidi; Xu, Shuhua

    2018-01-04

    There are a growing number of studies focusing on delineating genetic variations that are associated with complex human traits and diseases due to recent advances in next-generation sequencing technologies. However, identifying and prioritizing disease-associated causal variants relies on understanding the distribution of genetic variations within and among populations. The PGG.Population database documents 7122 genomes representing 356 global populations from 107 countries and provides essential information for researchers to understand human genomic diversity and genetic ancestry. These data and information can facilitate the design of research studies and the interpretation of results of both evolutionary and medical studies involving human populations. The database is carefully maintained and constantly updated when new data are available. We included miscellaneous functions and a user-friendly graphical interface for visualization of genomic diversity, population relationships (genetic affinity), ancestral makeup, footprints of natural selection, and population history etc. Moreover, PGG.Population provides a useful feature for users to analyze data and visualize results in a dynamic style via online illustration. The long-term ambition of the PGG.Population, together with the joint efforts from other researchers who contribute their data to our database, is to create a comprehensive depository of geographic and ethnic variation of human genome, as well as a platform bringing influence on future practitioners of medicine and clinical investigators. PGG.Population is available at https://www.pggpopulation.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Genetics and human rights. Two histories: Restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil.

    Science.gov (United States)

    Penchaszadeh, Victor B; Schuler-Faccini, Lavinia

    2014-03-01

    Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to identity. In this article, we report the use of genetics to support the right to identity in two historical circumstances. First, we report the search, localization, DNA testing and genetic identification of 110 individuals who were appropriated as babies by the Argentine military dictatorship of 1976-1983 in the context of savage repression and egregious violations of human rights, including forced disappearance and suppression of identity. Second, we report on the repair of right-to-identity violations of hundreds of individuals that occurred during the process of compulsory isolation of patients with leprosy in Brazil through the Program "Reencontro", which has led to the genetic identification of 158 pairs of individuals who previously did not have proof that they were siblings. The high value placed on genetic identification by victims of identity suppression did not counter the prevailing view that genetic factors were not more important than other factors (social, emotional, educational, cultural, spiritual) in determining the complex phenomenon of personal identity. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics for the benefit of mankind.

  16. Genetics and human rights. Two histories: Restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil

    Science.gov (United States)

    Penchaszadeh, Victor B.; Schuler-Faccini, Lavinia

    2014-01-01

    Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to identity. In this article, we report the use of genetics to support the right to identity in two historical circumstances. First, we report the search, localization, DNA testing and genetic identification of 110 individuals who were appropriated as babies by the Argentine military dictatorship of 1976–1983 in the context of savage repression and egregious violations of human rights, including forced disappearance and suppression of identity. Second, we report on the repair of right-to-identity violations of hundreds of individuals that occurred during the process of compulsory isolation of patients with leprosy in Brazil through the Program “Reencontro”, which has led to the genetic identification of 158 pairs of individuals who previously did not have proof that they were siblings. The high value placed on genetic identification by victims of identity suppression did not counter the prevailing view that genetic factors were not more important than other factors (social, emotional, educational, cultural, spiritual) in determining the complex phenomenon of personal identity. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics for the benefit of mankind. PMID:24764764

  17. Genetics and human rights: Two histories: restoring genetic identity after forced disappearance and identity suppression in Argentina and after compulsory isolation for leprosy in Brazil

    Directory of Open Access Journals (Sweden)

    Victor B. Penchaszadeh

    2014-01-01

    Full Text Available Over the past three decades, there has been an accelerated development of genetic technology, leading to its use in human genetic identification for many purposes. Additionally, it has been made explicit that identity is a fundamental human right. A number of historical circumstances have connected these developments. Personal identity is increasingly associated with the preservation and defense of human rights and is a tool to repair the violation of these rights, particularly the right to identity. In this article, we report the use of genetics to support the right to identity in two historical circumstances. First, we report the search, localization, DNA testing and genetic identification of 110 individuals who were appropriated as babies by the Argentine military dictatorship of 1976-1983 in the context of savage repression and egregious violations of human rights, including forced disappearance and suppression of identity. Second, we report on the repair of right-to-identity violations of hundreds of individuals that occurred during the process of compulsory isolation of patients with leprosy in Brazil through the Program "Reencontro", which has led to the genetic identification of 158 pairs of individuals who previously did not have proof that they were siblings. The high value placed on genetic identification by victims of identity suppression did not counter the prevailing view that genetic factors were not more important than other factors (social, emotional, educational, cultural, spiritual in determining the complex phenomenon of personal identity. The use of genetic identification as a tool to redress and repair human rights violations is a novel application of human genetics for the benefit of mankind.

  18. Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Hongbo Wang

    2017-09-01

    Full Text Available Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs and circular RNAs (circRNAs may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16 mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN tissues from three patients with high-throughput RNA sequencing (RNA-seq. In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer.

  19. Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer

    Science.gov (United States)

    Wang, Hongbo; Zhao, Yingchao; Chen, Mingyue; Cui, Jie

    2017-01-01

    Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16) mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN) tissues from three patients with high-throughput RNA sequencing (RNA-seq). In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE) in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO) terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA) network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer. PMID:28970820

  20. Global Intersection of Long Non-Coding RNAs with Processed and Unprocessed Pseudogenes in the Human Genome

    Directory of Open Access Journals (Sweden)

    Michael John Milligan

    2016-03-01

    Full Text Available Pseudogenes are abundant in the human genome and had long been thought of purely as nonfunctional gene fossils. Recent observations point to a role for pseudogenes in regulating genes transcriptionally and post-transcriptionally in human cells. To computationally interrogate the network space of integrated pseudogene and long non-coding RNA regulation in the human transcriptome, we developed and implemented an algorithm to identify all long non-coding RNA (lncRNA transcripts that overlap the genomic spans, and specifically the exons, of any human pseudogenes in either sense or antisense orientation. As inputs to our algorithm, we imported three public repositories of pseudogenes: GENCODE v17 (processed and unprocessed, Ensembl 72; Retroposed Pseudogenes V5 (processed only and Yale Pseudo60 (processed and unprocessed, Ensembl 60; two public lncRNA catalogs: Broad Institute, GENCODE v17; NCBI annotated piRNAs; and NHGRI clinical variants. The data sets were retrieved from the UCSC Genome Database using the UCSC Table Browser. We identified 2277 loci containing exon-to-exon overlaps between pseudogenes, both processed and unprocessed, and long non-coding RNA genes. Of these loci we identified 1167 with Genbank EST and full-length cDNA support providing direct evidence of transcription on one or both strands with exon-to-exon overlaps. The analysis converged on 313 pseudogene-lncRNA exon-to-exon overlaps that were bidirectionally supported by both full-length cDNAs and ESTs. In the process of identifying transcribed pseudogenes, we generated a comprehensive, positionally non-redundant encyclopedia of human pseudogenes, drawing upon multiple, and formerly disparate public pseudogene repositories. Collectively, these observations suggest that pseudogenes are pervasively transcribed on both strands and are common drivers of gene regulation.

  1. Seventy-five genetic loci influencing the human red blood cell.

    Science.gov (United States)

    van der Harst, Pim; Zhang, Weihua; Mateo Leach, Irene; Rendon, Augusto; Verweij, Niek; Sehmi, Joban; Paul, Dirk S; Elling, Ulrich; Allayee, Hooman; Li, Xinzhong; Radhakrishnan, Aparna; Tan, Sian-Tsung; Voss, Katrin; Weichenberger, Christian X; Albers, Cornelis A; Al-Hussani, Abtehale; Asselbergs, Folkert W; Ciullo, Marina; Danjou, Fabrice; Dina, Christian; Esko, Tõnu; Evans, David M; Franke, Lude; Gögele, Martin; Hartiala, Jaana; Hersch, Micha; Holm, Hilma; Hottenga, Jouke-Jan; Kanoni, Stavroula; Kleber, Marcus E; Lagou, Vasiliki; Langenberg, Claudia; Lopez, Lorna M; Lyytikäinen, Leo-Pekka; Melander, Olle; Murgia, Federico; Nolte, Ilja M; O'Reilly, Paul F; Padmanabhan, Sandosh; Parsa, Afshin; Pirastu, Nicola; Porcu, Eleonora; Portas, Laura; Prokopenko, Inga; Ried, Janina S; Shin, So-Youn; Tang, Clara S; Teumer, Alexander; Traglia, Michela; Ulivi, Sheila; Westra, Harm-Jan; Yang, Jian; Zhao, Jing Hua; Anni, Franco; Abdellaoui, Abdel; Attwood, Antony; Balkau, Beverley; Bandinelli, Stefania; Bastardot, François; Benyamin, Beben; Boehm, Bernhard O; Cookson, William O; Das, Debashish; de Bakker, Paul I W; de Boer, Rudolf A; de Geus, Eco J C; de Moor, Marleen H; Dimitriou, Maria; Domingues, Francisco S; Döring, Angela; Engström, Gunnar; Eyjolfsson, Gudmundur Ingi; Ferrucci, Luigi; Fischer, Krista; Galanello, Renzo; Garner, Stephen F; Genser, Bernd; Gibson, Quince D; Girotto, Giorgia; Gudbjartsson, Daniel Fannar; Harris, Sarah E; Hartikainen, Anna-Liisa; Hastie, Claire E; Hedblad, Bo; Illig, Thomas; Jolley, Jennifer; Kähönen, Mika; Kema, Ido P; Kemp, John P; Liang, Liming; Lloyd-Jones, Heather; Loos, Ruth J F; Meacham, Stuart; Medland, Sarah E; Meisinger, Christa; Memari, Yasin; Mihailov, Evelin; Miller, Kathy; Moffatt, Miriam F; Nauck, Matthias; Novatchkova, Maria; Nutile, Teresa; Olafsson, Isleifur; Onundarson, Pall T; Parracciani, Debora; Penninx, Brenda W; Perseu, Lucia; Piga, Antonio; Pistis, Giorgio; Pouta, Anneli; Puc, Ursula; Raitakari, Olli; Ring, Susan M; Robino, Antonietta; Ruggiero, Daniela; Ruokonen, Aimo; Saint-Pierre, Aude; Sala, Cinzia; Salumets, Andres; Sambrook, Jennifer; Schepers, Hein; Schmidt, Carsten Oliver; Silljé, Herman H W; Sladek, Rob; Smit, Johannes H; Starr, John M; Stephens, Jonathan; Sulem, Patrick; Tanaka, Toshiko; Thorsteinsdottir, Unnur; Tragante, Vinicius; van Gilst, Wiek H; van Pelt, L Joost; van Veldhuisen, Dirk J; Völker, Uwe; Whitfield, John B; Willemsen, Gonneke; Winkelmann, Bernhard R; Wirnsberger, Gerald; Algra, Ale; Cucca, Francesco; d'Adamo, Adamo Pio; Danesh, John; Deary, Ian J; Dominiczak, Anna F; Elliott, Paul; Fortina, Paolo; Froguel, Philippe; Gasparini, Paolo; Greinacher, Andreas; Hazen, Stanley L; Jarvelin, Marjo-Riitta; Khaw, Kay Tee; Lehtimäki, Terho; Maerz, Winfried; Martin, Nicholas G; Metspalu, Andres; Mitchell, Braxton D; Montgomery, Grant W; Moore, Carmel; Navis, Gerjan; Pirastu, Mario; Pramstaller, Peter P; Ramirez-Solis, Ramiro; Schadt, Eric; Scott, James; Shuldiner, Alan R; Smith, George Davey; Smith, J Gustav; Snieder, Harold; Sorice, Rossella; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tang, W H Wilson; Toniolo, Daniela; Tönjes, Anke; Visscher, Peter M; Vollenweider, Peter; Wareham, Nicholas J; Wolffenbuttel, Bruce H R; Boomsma, Dorret I; Beckmann, Jacques S; Dedoussis, George V; Deloukas, Panos; Ferreira, Manuel A; Sanna, Serena; Uda, Manuela; Hicks, Andrew A; Penninger, Josef Martin; Gieger, Christian; Kooner, Jaspal S; Ouwehand, Willem H; Soranzo, Nicole; Chambers, John C

    2012-12-20

    Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.

  2. Minimizing human error in radiopharmaceutical preparation and administration via a bar code-enhanced nuclear pharmacy management system.

    Science.gov (United States)

    Hakala, John L; Hung, Joseph C; Mosman, Elton A

    2012-09-01

    The objective of this project was to ensure correct radiopharmaceutical administration through the use of a bar code system that links patient and drug profiles with on-site information management systems. This new combined system would minimize the amount of manual human manipulation, which has proven to be a primary source of error. The most common reason for dosing errors is improper patient identification when a dose is obtained from the nuclear pharmacy or when a dose is administered. A standardized electronic transfer of information from radiopharmaceutical preparation to injection will further reduce the risk of misadministration. Value stream maps showing the flow of the patient dose information, as well as potential points of human error, were developed. Next, a future-state map was created that included proposed corrections for the most common critical sites of error. Transitioning the current process to the future state will require solutions that address these sites. To optimize the future-state process, a bar code system that links the on-site radiology management system with the nuclear pharmacy management system was proposed. A bar-coded wristband connects the patient directly to the electronic information systems. The bar code-enhanced process linking the patient dose with the electronic information reduces the number of crucial points for human error and provides a framework to ensure that the prepared dose reaches the correct patient. Although the proposed flowchart is designed for a site with an in-house central nuclear pharmacy, much of the framework could be applied by nuclear medicine facilities using unit doses. An electronic connection between information management systems to allow the tracking of a radiopharmaceutical from preparation to administration can be a useful tool in preventing the mistakes that are an unfortunate reality for any facility.

  3. The ecological imperative and its application to ethical issues in human genetic technology

    Directory of Open Access Journals (Sweden)

    W. Malcolm Byrnes

    2003-08-01

    Full Text Available As a species, we are on the cusp of being able to alter that which makes us uniquely human, our genome. Two new genetic technologies, embryo selection and germline engineering, are either in use today or may be developed in the future. Embryo selection acts to alter the human gene pool, reducing genetic diversity, while germline engineering will have the ability to alter directly the genomes of engineered individuals. Our genome has come to be what it is through an evolutionary process extending over millions of years, a process that has involved exceedingly complex and unpredictable interactions between ourselves or our ancestors and myriad other life forms within Earth's biosphere. In this paper, the ecological imperativ e, which states that we must not alter the human genome or the collective human genetic inheritance, will be introduced. It will be argued based on ecological principles that embryo selection and germline engineering are unethical and unwise because they will diminish our survivability as a species, will disrupt our relationship with the natural world, and will destroy the very basis of that which makes us human.

  4. Monkey-based research on human disease: the implications of genetic differences.

    Science.gov (United States)

    Bailey, Jarrod

    2014-11-01

    Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90-93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer's disease, Parkinson's disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists. 2014 FRAME.

  5. Insects feeding on cadavers as an alternative source of human genetic material

    Directory of Open Access Journals (Sweden)

    Rafał Skowronek

    2015-03-01

    Full Text Available In some criminal cases, the use of classical sources of human genetic material is difficult or even impossible. One solution may be the use of insects, especially blowfly larvae which feed on corpses. A recent review of case reports and experimental studies available in biomedical databases has shown that insects can be a valuable source of human mitochondrial and genomic deoxyribonucleic acid (DNA, allowing for an effective analysis of hypervariable region (HVR sequences and short tandem repeat (STR profiles, respectively. The optimal source of human DNA is the crop (a part of the gut of active third-instar blowfly larvae. Pupae and insect faeces can be also used in forensic genetic practice instead of the contents of the alimentary tract.

  6. Use of Traditional and Genetically Modified Probiotics in Human Health: What Does the Future Hold?

    Science.gov (United States)

    Bermúdez-Humarán, Luis G; Langella, Philippe

    2017-09-01

    Probiotics are live, nonpathogenic microorganisms that confer benefits to human health when administered in adequate amounts. Among the frequent proposed health benefits attributed to probiotics, their ability to interact with the host immune system is now well demonstrated. Although history has revealed that probiotics were part of fermented foods in the past, clinicians have started to use them therapeutically in regular diets. Moreover, the use of genetically modified probiotics to deliver molecules of therapeutic interest is gaining importance as an extension of the probiotic concept. This chapter summarizes some of the recent findings and perspectives on the use of both traditional and genetically modified probiotics to treat human diseases as well as what the future may hold concerning the use of these probiotics in humans.

  7. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  8. Blood groups and human groups: collecting and calibrating genetic data after World War Two.

    Science.gov (United States)

    Bangham, Jenny

    2014-09-01

    Arthur Mourant's The Distribution of the Human Blood Groups (1954) was an "indispensable" reference book on the "anthropology of blood groups" containing a vast collection of human genetic data. It was based on the results of blood-grouping tests carried out on half-a-million people and drew together studies on diverse populations around the world: from rural communities, to religious exiles, to volunteer transfusion donors. This paper pieces together sequential stages in the production of a small fraction of the blood-group data in Mourant's book, to examine how he and his colleagues made genetic data from people. Using sources from several collecting projects, I follow how blood was encountered, how it was inscribed, and how it was turned into a laboratory resource. I trace Mourant's analytical and representational strategies to make blood groups both credibly 'genetic' and understood as relevant to human ancestry, race and history. In this story, 'populations' were not simply given, but were produced through public health, colonial and post-colonial institutions, and by the labour and expertise of subjects, assistants and mediators. Genetic data were not self-evidently 'biological', but were shaped by existing historical and geographical identities, by political relationships, and by notions of kinship and belonging. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  9. Genetic variation in lipid desaturases and its impact on the development of human disease.

    Science.gov (United States)

    Merino, Diana M; Ma, David W L; Mutch, David M

    2010-06-18

    Perturbations in lipid metabolism characterize many of the chronic diseases currently plaguing our society, such as obesity, diabetes, and cardiovascular disease. Thus interventions that target plasma lipid levels remain a primary goal to manage these diseases. The determinants of plasma lipid levels are multi-factorial, consisting of both genetic and lifestyle components. Recent evidence indicates that fatty acid desaturases have an important role in defining plasma and tissue lipid profiles. This review will highlight the current state-of-knowledge regarding three desaturases (Scd-1, Fads1 and Fads2) and their potential roles in disease onset and development. Although research in rodent models has provided invaluable insight into the regulation and functions of these desaturases, the extent to which murine research can be translated to humans remains unclear. Evidence emerging from human-based research demonstrates that genetic variation in human desaturase genes affects enzyme activity and, consequently, disease risk factors. Moreover, this genetic variation may have a trans-generational effect via breastfeeding. Therefore inter-individual variation in desaturase function is attributed to both genetic and lifestyle components. As such, population-based research regarding the role of desaturases on disease risk is challenged by this complex gene-lifestyle paradigm. Unravelling the contribution of each component is paramount for understanding the inter-individual variation that exists in plasma lipid profiles, and will provide crucial information to develop personalized strategies to improve health management.

  10. Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Ivana Antonucci

    2016-04-01

    Full Text Available In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers “in vitro”. In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.

  11. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data.

    Science.gov (United States)

    Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu

    2015-05-27

    Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu.

  12. The population genomic landscape of human genetic structure, admixture history and local adaptation in Peninsular Malaysia.

    Science.gov (United States)

    Deng, Lian; Hoh, Boon Peng; Lu, Dongsheng; Fu, Ruiqing; Phipps, Maude E; Li, Shilin; Nur-Shafawati, Ab Rajab; Hatin, Wan Isa; Ismail, Endom; Mokhtar, Siti Shuhada; Jin, Li; Zilfalil, Bin Alwi; Marshall, Christian R; Scherer, Stephen W; Al-Mulla, Fahd; Xu, Shuhua

    2014-09-01

    Peninsular Malaysia is a strategic region which might have played an important role in the initial peopling and subsequent human migrations in Asia. However, the genetic diversity and history of human populations--especially indigenous populations--inhabiting this area remain poorly understood. Here, we conducted a genome-wide study using over 900,000 single nucleotide polymorphisms (SNPs) in four major Malaysian ethnic groups (MEGs; Malay, Proto-Malay, Senoi and Negrito), and made comparisons of 17 world-wide populations. Our data revealed that Peninsular Malaysia has greater genetic diversity corresponding to its role as a contact zone of both early and recent human migrations in Asia. However, each single Orang Asli (indigenous) group was less diverse with a smaller effective population size (N(e)) than a European or an East Asian population, indicating a substantial isolation of some duration for these groups. All four MEGs were genetically more similar to Asian populations than to other continental groups, and the divergence time between MEGs and East Asian populations (12,000--6,000 years ago) was also much shorter than that between East Asians and Europeans. Thus, Malaysian Orang Asli groups, despite their significantly different features, may share a common origin with the other Asian groups. Nevertheless, we identified traces of recent gene flow from non-Asians to MEGs. Finally, natural selection signatures were detected in a batch of genes associated with immune response, human height, skin pigmentation, hair and facial morphology and blood pressure in MEGs. Notable examples include SYN3 which is associated with human height in all Orang Asli groups, a height-related gene (PNPT1) and two blood pressure-related genes (CDH13 and PAX5) in Negritos. We conclude that a long isolation period, subsequent gene flow and local adaptations have jointly shaped the genetic architectures of MEGs, and this study provides insight into the peopling and human migration

  13. Molecular biology of breast cancer metastasis: Genetic regulation of human breast carcinoma metastasis

    International Nuclear Information System (INIS)

    Welch, Danny R; Steeg, Patricia S; Rinker-Schaeffer, Carrie W

    2000-01-01

    The present is an overview of recent data that describes the genetic underpinnings of the suppression of cancer metastasis. Despite the explosion of new information about the genetics of cancer, only six human genes have thus far been shown to suppress metastasis functionally. Not all have been shown to be functional in breast carcinoma. Several additional genes inhibit various steps of the metastatic cascade, but do not necessarily block metastasis when tested using in vivo assays. The implications of this are discussed. Two recently discovered metastasis suppressor genes block proliferation of tumor cells at a secondary site, offering a new target for therapeutic intervention

  14. Complete genome sequence analysis of novel human bocavirus reveals genetic recombination between human bocavirus 2 and human bocavirus 4.

    Science.gov (United States)

    Khamrin, Pattara; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2013-07-01

    Epidemiological surveillance of human bocavirus (HBoV) was conducted on fecal specimens collected from hospitalized children with diarrhea in Chiang Mai, Thailand in 2011. By partial sequence analysis of VP1 gene, an unusual strain of HBoV (CMH-S011-11), was initially identified as HBoV4. The complete genome sequence of CMH-S011-11 was performed and analyzed further to clarify whether it was a recombinant strain or a new HBoV variant. Analysis of complete genome sequence revealed that the coding sequence starting from NS1, NP1 to VP1/VP2 was 4795 nucleotides long. Interestingly, the nucleotide sequence of NS1 gene of CMH-S011-11 was most closely related to the HBoV2 reference strains detected in Pakistan, which contradicted to the initial genotyping result of the partial VP1 region in the previous study. In addition, comparison of NP1 nucleotide sequence of CMH-S011-11 with those of other HBoV1-4 reference strains also revealed a high level of sequence identity with HBoV2. On the other hand, nucleotide sequence of VP1/VP2 gene of CMH-S011-11 was most closely related to those of HBoV4 reference strains detected in Nigeria. The overall full-length sequence analysis revealed that this CMH-S011-11 was grouped within HBoV4 species, but located in a separate branch from other HBoV4 prototype strains. Recombination analysis revealed that CMH-S011-11 was the result of recombination between HBoV2 and HBoV4 strains with the break point located near the start codon of VP2. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Imaging of human tooth using ultrasound based chirp-coded nonlinear time reversal acoustics

    Czech Academy of Sciences Publication Activity Database

    Dos Santos, S.; Převorovský, Zdeněk

    2011-01-01

    Roč. 51, č. 6 (2011), s. 667-674 ISSN 0041-624X Institutional research plan: CEZ:AV0Z20760514 Keywords : TR-NEWS * chirp-coded excitation * echodentography * ultrasonic imaging Subject RIV: BI - Acoustics Impact factor: 1.838, year: 2011 http://www.sciencedirect.com/science/article/pii/S0041624X11000229

  16. Rare and low-frequency coding variants alter human adult height

    NARCIS (Netherlands)

    Marouli, Eirini; Graff, Mariaelisa; Medina-Gomez, Carolina; Lo, Ken Sin; Wood, Andrew R.; Kjaer, Troels R.; Fine, Rebecca S.; Lu, Yingchang; Schurmann, Claudia; Highland, Heather M.; Rüeger, Sina; Thorleifsson, Gudmar; Justice, Anne E.; Lamparter, David; Stirrups, Kathleen E.; Turcot, Valérie; Young, Kristin L.; Winkler, Thomas W.; Esko, Tõnu; Karaderi, Tugce; Locke, Adam E.; Masca, Nicholas G. D.; Ng, Maggie C. Y.; Mudgal, Poorva; Rivas, Manuel A.; Vedantam, Sailaja; Mahajan, Anubha; Guo, Xiuqing; Abecasis, Goncalo; Aben, Katja K.; Adair, Linda S.; Alam, Dewan S.; Albrecht, Eva; Allin, Kristine H.; Allison, Matthew; Amouyel, Philippe; Appel, Emil V.; Arveiler, Dominique; Asselbergs, Folkert W.; Auer, Paul L.; Balkau, Beverley; Banas, Bernhard; Bang, Lia E.; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F.; Blüher, Matthias; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A.; Bonnycastle, Lori L.; Bork-Jensen, Jette; Bots, Michiel L.; Bottinger, Erwin P.; Bowden, Donald W.; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H.; Broer, Linda; Burt, Amber A.; Butterworth, Adam S.; Carey, David J.; Caulfield, Mark J.; Chambers, John C.; Chasman, Daniel I.; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y.; Cocca, Massimiliano; Collins, Francis S.; Cook, James P.; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J.; Cuellar-Partida, Gabriel; Danesh, John; Davies, Gail; de Bakker, Paul I. W.; de Borst, Gert J.; de Denus, Simon; de Groot, Mark C. H.; de Mutsert, Renée; Deary, Ian J.; Dedoussis, George; Demerath, Ellen W.; den Hollander, Anneke I.; Dennis, Joe G.; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dunning, Alison M.; Easton, Douglas F.; Ebeling, Tapani; Edwards, Todd L.; Ellinor, Patrick T.; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Faul, Jessica D.; Feitosa, Mary F.; Feng, Shuang; Ferrannini, Ele; Ferrario, Marco M.; Ferrieres, Jean; Florez, Jose C.; Ford, Ian; Fornage, Myriam; Franks, Paul W.; Frikke-Schmidt, Ruth; Galesloot, Tessel E.; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Giedraitis, Vilmantas; Giri, Ayush; Girotto, Giorgia; Gordon, Scott D.; Gordon-Larsen, Penny; Gorski, Mathias; Grarup, Niels; Grove, Megan L.; Gudnason, Vilmundur; Gustafsson, Stefan; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B.; Hattersley, Andrew T.; Hayward, Caroline; He, Liang; Heid, Iris M.; Heikkilä, Kauko; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W.; Hocking, Lynne J.; Hollensted, Mette; Holmen, Oddgeir L.; Hovingh, G. Kees; Howson, Joanna M. M.; Hoyng, Carel B.; Huang, Paul L.; Hveem, Kristian; Ikram, M. Arfan; Ingelsson, Erik; Jackson, Anne U.; Jansson, Jan-Håkan; Jarvik, Gail P.; Jensen, Gorm B.; Jhun, Min A.; Jia, Yucheng; Jiang, Xuejuan; Johansson, Stefan; Jørgensen, Marit E.; Jørgensen, Torben; Jousilahti, Pekka; Jukema, J. Wouter; Kahali, Bratati; Kahn, René S.; Kähönen, Mika; Kamstrup, Pia R.; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon L. R.; Karpe, Fredrik; Kee, Frank; Keeman, Renske; Kiemeney, Lambertus A.; Kitajima, Hidetoshi; Kluivers, Kirsten B.; Kocher, Thomas; Komulainen, Pirjo; Kontto, Jukka; Kooner, Jaspal S.; Kooperberg, Charles; Kovacs, Peter; Kriebel, Jennifer; Kuivaniemi, Helena; Küry, Sébastien; Kuusisto, Johanna; La Bianca, Martina; Laakso, Markku; Lakka, Timo A.; Lange, Ethan M.; Lange, Leslie A.; Langefeld, Carl D.; Langenberg, Claudia; Larson, Eric B.; Lee, I.-Te; Lehtimäki, Terho; Lewis, Cora E.; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Yeheng; Liu, Yongmei; Lophatananon, Artitaya; Luan, Jian'an; Lubitz, Steven A.; Lyytikäinen, Leo-Pekka; Mackey, David A.; Madden, Pamela A. F.; Manning, Alisa K.; Männistö, Satu; Marenne, Gaëlle; Marten, Jonathan; Martin, Nicholas G.; Mazul, Angela L.; Meidtner, Karina; Metspalu, Andres; Mitchell, Paul; Mohlke, Karen L.; Mook-Kanamori, Dennis O.; Morgan, Anna; Morris, Andrew D.; Morris, Andrew P.; Müller-Nurasyid, Martina; Munroe, Patricia B.; Nalls, Mike A.; Nauck, Matthias; Nelson, Christopher P.; Neville, Matt; Nielsen, Sune F.; Nikus, Kjell; Njølstad, Pål R.; Nordestgaard, Børge G.; Ntalla, Ioanna; O'Connel, Jeffrey R.; Oksa, Heikki; Loohuis, Loes M. Olde; Ophoff, Roel A.; Owen, Katharine R.; Packard, Chris J.; Padmanabhan, Sandosh; Palmer, Colin N. A.; Pasterkamp, Gerard; Patel, Aniruddh P.; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L.; Peloso, Gina M.; Pennell, Craig E.; Perola, Markus; Perry, James A.; Perry, John R. B.; Person, Thomas N.; Pirie, Ailith; Polasek, Ozren; Posthuma, Danielle; Raitakari, Olli T.; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F.; Reiner, Alex P.; Renström, Frida; Ridker, Paul M.; Rioux, John D.; Robertson, Neil; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S.; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J.; Sandow, Kevin; Sapkota, Yadav; Sattar, Naveed; Schmidt, Marjanka K.; Schreiner, Pamela J.; Schulze, Matthias B.; Scott, Robert A.; Segura-Lepe, Marcelo P.; Shah, Svati; Sim, Xueling; Sivapalaratnam, Suthesh; Small, Kerrin S.; Smith, Albert Vernon; Smith, Jennifer A.; Southam, Lorraine; Spector, Timothy D.; Speliotes, Elizabeth K.; Starr, John M.; Steinthorsdottir, Valgerdur; Stringham, Heather M.; Stumvoll, Michael; Surendran, Praveen; 't Hart, Leen M.; Tansey, Katherine E.; Tardif, Jean-Claude; Taylor, Kent D.; Teumer, Alexander; Thompson, Deborah J.; Thorsteinsdottir, Unnur; Thuesen, Betina H.; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P.; Uher, Rudolf; Uitterlinden, André G.; Ulivi, Sheila; van der Laan, Sander W.; van der Leij, Andries R.; van Duijn, Cornelia M.; van Schoor, Natasja M.; van Setten, Jessica; Varbo, Anette; Varga, Tibor V.; Varma, Rohit; Edwards, Digna R. Velez; Vermeulen, Sita H.; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F.; Vozzi, Diego; Walker, Mark; Wang, Feijie; Wang, Carol A.; Wang, Shuai; Wang, Yiqin; Wareham, Nicholas J.; Warren, Helen R.; Wessel, Jennifer; Willems, Sara M.; Wilson, James G.; Witte, Daniel R.; Woods, Michael O.; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M.; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zheng, He; Zhou, Wei; Rotter, Jerome I.; Boehnke, Michael; Kathiresan, Sekar; McCarthy, Mark I.; Willer, Cristen J.; Stefansson, Kari; Borecki, Ingrid B.; Liu, Dajiang J.; North, Kari E.; Heard-Costa, Nancy L.; Pers, Tune H.; Lindgren, Cecilia M.; Oxvig, Claus; Kutalik, Zoltán; Rivadeneira, Fernando; Loos, Ruth J. F.; Frayling, Timothy M.; Hirschhorn, Joel N.; Deloukas, Panos; Lettre, Guillaume

    2017-01-01

    Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to

  17. Natural selection affects multiple aspects of genetic variation at putatively neutral sites across the human genome.

    Science.gov (United States)

    Lohmueller, Kirk E; Albrechtsen, Anders; Li, Yingrui; Kim, Su Yeon; Korneliussen, Thorfinn; Vinckenbosch, Nicolas; Tian, Geng; Huerta-Sanchez, Emilia; Feder, Alison F; Grarup, Niels; Jørgensen, Torben; Jiang, Tao; Witte, Daniel R; Sandbæk, Annelli; Hellmann, Ines; Lauritzen, Torsten; Hansen, Torben; Pedersen, Oluf; Wang, Jun; Nielsen, Rasmus

    2011-10-01

    A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations.

  18. Building capacity for human genetics and genomics research in Trinidad and Tobago

    Directory of Open Access Journals (Sweden)

    Allana Roach

    Full Text Available Advances in human genetics and genomic sciences and the corresponding explosion of biomedical technologies have deepened current understanding of human health and revolutionized medicine. In developed nations, this has led to marked improvements in disease risk stratification and diagnosis. These advances have also led to targeted intervention strategies aimed at promoting disease prevention, prolonging disease onset, and mitigating symptoms, as in the well-known case of breast cancer and the BRCA1 gene. In contrast, in the developing nation of Trinidad and Tobago, this scientific revolution has not translated into the development and application of effective genomics-based interventions for improving public health. While the reasons for this are multifactorial, the underlying basis may be rooted in the lack of pertinence of internationally driven genomics research to the local public health needs in the country, as well as a lack of relevance of internationally conducted genetics research to the genetic and environmental contexts of the population. Indeed, if Trinidad and Tobago is able to harness substantial public health benefit from genetics/genomics research, then there is a dire need, in the near future, to build local capacity for the conduct and translation of such research. Specifically, it is essential to establish a national human genetics/genomics research agenda in order to build sustainable human capacity through education and knowledge transfer and to generate public policies that will provide the basis for the creation of a mutually beneficial framework (including partnerships with more developed nations that is informed by public health needs and contextual realities of the nation.

  19. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues

    International Nuclear Information System (INIS)

    Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.; Goldberg, O.; Soreq, H.

    1987-01-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from λgt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A) + RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species

  20. A population genetic interpretation of GWAS findings for human quantitative traits

    Science.gov (United States)

    Bullaughey, Kevin; Hudson, Richard R.; Sella, Guy

    2018-01-01

    Human genome-wide association studies (GWASs) are revealing the genetic architecture of anthropomorphic and biomedical traits, i.e., the frequencies and effect sizes of variants that contribute to heritable variation in a trait. To interpret these findings, we need to understand how genetic architecture is shaped by basic population genetics processes—notably, by mutation, natural selection, and genetic drift. Because many quantitative traits are subject to stabilizing selection and because genetic variation that affects one trait often affects many others, we model the genetic architecture of a focal trait that arises under stabilizing selection in a multidimensional trait space. We solve the model for the phenotypic distribution and allelic dynamics at steady state and derive robust, closed-form solutions for summary statistics of the genetic architecture. Our results provide a simple interpretation for missing heritability and why it varies among traits. They predict that the distribution of variances contributed by loci identified in GWASs is well approximated by a simple functional form that depends on a single parameter: the expected contribution to genetic variance of a strongly selected site affecting the trait. We test this prediction against the results of GWASs for height and body mass index (BMI) and find that it fits the data well, allowing us to make inferences about the degree of pleiotropy and mutational target size for these traits. Our findings help to explain why the GWAS for height explains more of the heritable variance than the similarly sized GWAS for BMI and to predict the increase in explained heritability with study sample size. Considering the demographic history of European populations, in which these GWASs were performed, we further find that most of the associations they identified likely involve mutations that arose shortly before or during the Out-of-Africa bottleneck at sites with selection coefficients around s = 10−3. PMID

  1. Sex-specific genetic diversity is shaped by cultural factors in Inner Asian human populations.

    Science.gov (United States)

    Marchi, Nina; Hegay, Tatyana; Mennecier, Philippe; Georges, Myriam; Laurent, Romain; Whitten, Mark; Endicott, Philipp; Aldashev, Almaz; Dorzhu, Choduraa; Nasyrova, Firuza; Chichlo, Boris; Ségurel, Laure; Heyer, Evelyne

    2017-04-01

    Sex-specific genetic structures have been previously documented worldwide in humans, even though causal factors have not always clearly been identified. In this study, we investigated the impact of ethnicity, geography and social organization on the sex-specific genetic structure in Inner Asia. Furthermore, we explored the process of ethnogenesis in multiple ethnic groups. We sampled DNA in Central and Northern Asia from 39 populations of Indo-Iranian and Turkic-Mongolic native speakers. We focused on genetic data of the Y chromosome and mitochondrial DNA. First, we compared the frequencies of haplogroups to South European and East Asian populations. Then, we investigated the genetic differentiation for eight Y-STRs and the HVS1 region, and tested for the effect of geography and ethnicity on such patterns. Finally, we reconstructed the male demographic history, inferred split times and effective population sizes of different ethnic groups. Based on the haplogroup data, we observed that the Indo-Iranian- and Turkic-Mongolic-speaking populations have distinct genetic backgrounds. However, each population showed consistent mtDNA and Y chromosome haplogroups patterns. As expected in patrilocal populations, we found that the Y-STRs were more structured than the HVS1. While ethnicity strongly influenced the genetic diversity on the Y chromosome, geography better explained that of the mtDNA. Furthermore, when looking at various ethnic groups, we systematically found a genetic split time older than historical records, suggesting a cultural rather than biological process of ethnogenesis. This study highlights that, in Inner Asia, specific cultural behaviors, especially patrilineality and patrilocality, leave a detectable signature on the sex-specific genetic structure. © 2017 Wiley Periodicals, Inc.

  2. Assessment of genetic mutations in the XRCC2 coding region by high resolution melting curve analysis and the risk of differentiated thyroid carcinoma in Iran

    Directory of Open Access Journals (Sweden)

    Shima Fayaz

    2012-01-01

    Full Text Available Homologous recombination (HR is the major pathway for repairing double strand breaks (DSBs in eukaryotes and XRCC2 is an essential component of the HR repair machinery. To evaluate the potential role of mutations in gene repair by HR in individuals susceptible to differentiated thyroid carcinoma (DTC we used high resolution melting (HRM analysis, a recently introduced method for detecting mutations, to examine the entire XRCC2 coding region in an Iranian population. HRM analysis was used to screen for mutations in three XRCC2 coding regions in 50 patients and 50 controls. There was no variation in the HRM curves obtained from the analysis of exons 1 and 2 in the case and control groups. In exon 3, an Arg188His polymorphism (rs3218536 was detected as a new melting curve group (OR: 1.46; 95%CI: 0.432-4.969; p = 0.38 compared with the normal melting curve. We also found a new Ser150Arg polymorphism in exon 3 of the control group. These findings suggest that genetic variations in the XRCC2 coding region have no potential effects on susceptibility to DTC. However, further studies with larger populations are required to confirm this conclusion.

  3. Vocable Code

    DEFF Research Database (Denmark)

    Soon, Winnie; Cox, Geoff

    2018-01-01

    a computational and poetic composition for two screens: on one of these, texts and voices are repeated and disrupted by mathematical chaos, together exploring the performativity of code and language; on the other, is a mix of a computer programming syntax and human language. In this sense queer code can...... be understood as both an object and subject of study that intervenes in the world’s ‘becoming' and how material bodies are produced via human and nonhuman practices. Through mixing the natural and computer language, this article presents a script in six parts from a performative lecture for two persons...

  4. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  5. Use of PRIM code to analyze potential radiation-induced genetic and somatic effects to man from Jackpile-Paguate mines

    International Nuclear Information System (INIS)

    Momeni, M.H.

    1983-01-01

    Potential radiation-induced effects from inhalation and ingestion of land external exposure to radioactive materials at the Jackpile-Paguate uranium mine complex near Paguate, New Mexico, were analyzed. The Uranium Dispersion and Dosimetry (UDAD) computer code developed at Argonne National Laboratory was used to calculate the dose rates and the time-integrated doses to tissues at risk as a function of age and time for the population within 80 km of the mines. The ANL computer code Potential Radiation-Induced Biological Effects on Man (PRIM) then was used to calculate the potential radiation-induced somatic and genetic effects among the same population on the basis of absolute and relative risk models as a function of duration of exposure and age at time of exposure. The analyses were based on the recommendations in BEIR II and WASH-1400 and the lifetable method. The death rates were calculated for radiation exposure from the mines and for naturally induced effects for 19 age cohorts, 20 time intervals, and for each sex. The results indicated that under present conditions of the radiation environment at the mines, the number of potential fatal radiation-induced neoplasms that could occur among the regional population over the next 85 years would be 95 using the absolute risk model, and 243 using the relative risk model. Over the same period, there would be less than two radiation-induced genetic effects (dominant and multifactorials). After decommissioning f the mine site, these risks would decrease to less than 1 and less than 3 potential radiation-induced deaths under the relative and absolute risk models, respectively, and 0.001 genetic disorders. Because of various sources of error, the uncertainty in these predicted risks could be a factor of five

  6. Screening Out Controversy: Human Genetics, Emerging Techniques of Diagnosis, and the Origins of the Social Issues Committee of the American Society of Human Genetics, 1964-1973.

    Science.gov (United States)

    Mitchell, M X

    2017-05-01

    In the years following World War II, and increasingly during the 1960s and 1970s, professional scientific societies developed internal sub-committees to address the social implications of their scientific expertise (Moore, Disrupting Science: Social Movements, American Scientists, and the Politics of the Military, 1945-1975. Princeton: Princeton University Press, 2008). This article explores the early years of one such committee, the American Society of Human Genetics' "Social Issues Committee," founded in 1967. Although the committee's name might suggest it was founded to increase the ASHG's public and policy engagement, exploration of the committee's early years reveals a more complicated reality. Affronted by legislators' recent unwillingness to seek the expert advice of human geneticists before adopting widespread neonatal screening programs for phenylketonuria (PKU), and feeling pressed to establish their relevance in an increasingly resource-scarce funding environment, committee members sought to increase the discipline's expert authority. Painfully aware of controversy over abortion rights and haunted by the taint of the discipline's eugenic past, however, the committee proceeded with great caution. Seeking to harness interest in and assert professional control over emerging techniques of genetic diagnosis, the committee strove to protect the society's image by relegating ethical and policy questions about their use to the individual consciences of member scientists. It was not until 1973, after the committee's modest success in organizing support for a retrospective public health study of PKU screening and following the legalization of abortion on demand, that the committee decided to take a more publicly engaged stance.

  7. The Poitiers School of Mathematical and Theoretical Biology: Besson-Gavaudan-Schützenberger's Conjectures on Genetic Code and RNA Structures.

    Science.gov (United States)

    Demongeot, J; Hazgui, H

    2016-12-01

    The French school of theoretical biology has been mainly initiated in Poitiers during the sixties by scientists like J. Besson, G. Bouligand, P. Gavaudan, M. P. Schützenberger and R. Thom, launching many new research domains on the fractal dimension, the combinatorial properties of the genetic code and related amino-acids as well as on the genetic regulation of the biological processes. Presently, the biological science knows that RNA molecules are often involved in the regulation of complex genetic networks as effectors, e.g., activators (small RNAs as transcription factors), inhibitors (micro-RNAs) or hybrids (circular RNAs). Examples of such networks will be given showing that (1) there exist RNA "relics" that have played an important role during evolution and have survived in many genomes, whose probability distribution of their sub-sequences is quantified by the Shannon entropy, and (2) the robustness of the dynamics of the networks they regulate can be characterized by the Kolmogorov-Sinaï dynamic entropy and attractor entropy.

  8. In Silico survey of functional coding variants in human AEG-1 gene ...

    African Journals Online (AJOL)

    Background and aims: Non-synonymous (ns)SNPs represent typical genetic variations that may potentially affect the structure or function of expressed proteins and therefore could have an impact on complex disorders. A computational-based (In Silico) analysis has been done to evaluate the phenotypic effect of nsSNPs in ...

  9. Non-human Primate Models for Brain Disorders - Towards Genetic Manipulations via Innovative Technology.

    Science.gov (United States)

    Qiu, Zilong; Li, Xiao

    2017-04-01

    Modeling brain disorders has always been one of the key tasks in neurobiological studies. A wide range of organisms including worms, fruit flies, zebrafish, and rodents have been used for modeling brain disorders. However, whether complicated neurological and psychiatric symptoms can be faithfully mimicked in animals is still debatable. In this review, we discuss key findings using non-human primates to address the neural mechanisms underlying stress and anxiety behaviors, as well as technical advances for establishing genetically-engineered non-human primate models of autism spectrum disorders and other disorders. Considering the close evolutionary connections and similarity of brain structures between non-human primates and humans, together with the rapid progress in genome-editing technology, non-human primates will be indispensable for pathophysiological studies and exploring potential therapeutic methods for treating brain disorders.

  10. Anthropogenics: human influence on global and genetic homogenization of parasite populations.

    Science.gov (United States)

    Zarlenga, Dante S; Hoberg, Eric; Rosenthal, Benjamin; Mattiucci, Simonetta; Nascetti, Giuseppe

    2014-12-01

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This includes the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been challenging. In-depth comparisons among parasite populations extending to landscape-level processes affecting disease emergence have remained elusive. New research methods have enhanced our capacity to discern human impact, where the tools of population genetics and molecular epidemiology have begun to shed light on our historical and ongoing influence. Only since the 1990s have parasitologists coupled morphological diagnosis, long considered the basis of surveillance and biodiversity studies, with state-of-the-art tools enabling variation to be examined among, and within, parasite populations. Prior to this time, populations were characterized only by phenotypic attributes such as virulence, infectivity, host range, and geographical location. The advent of genetic/molecular methodologies (multilocus allozyme electrophoresis, polymerase chain reaction-DNA [PCR-DNA] fragments analysis, DNA sequencing, DNA microsatellites, single nucleotide polymorphisms, etc.) have transformed our abilities to reveal variation among, and within, populations at local, regional, landscape, and global scales, and thereby enhanced our understanding of the biosphere. Numerous factors can affect population structure among parasites, e.g., evolutionary and ecological history, mode of reproduction and transmission, host dispersal, and life-cycle complexity. Although such influences can vary considerably among parasite taxa, anthropogenic factors are demonstrably perturbing parasite fauna. Minimal genetic structure among many geographically distinct (isolated) populations is a hallmark of human activity, hastened by geographic introductions, environmental perturbation, and global warming. Accelerating

  11. Effect of genetic variation in a Drosophila model of diabetes-associated misfolded human proinsulin.

    Science.gov (United States)

    He, Bin Z; Ludwig, Michael Z; Dickerson, Desiree A; Barse, Levi; Arun, Bharath; Vilhjálmsson, Bjarni J; Jiang, Pengyao; Park, Soo-Young; Tamarina, Natalia A; Selleck, Scott B; Wittkopp, Patricia J; Bell, Graeme I; Kreitman, Martin

    2014-02-01

    The identification and validation of gene-gene interactions is a major challenge in human studies. Here, we explore an approach for studying epistasis in humans using a Drosophila melanogaster model of neonatal diabetes mellitus. Expression of the mutant preproinsulin (hINS(C96Y)) in the eye imaginal disc mimics the human disease: it activates conserved stress