WorldWideScience

Sample records for human gene replacement

  1. VH Replacement Footprint Analyzer-I, a Java-Based Computer Program for Analyses of Immunoglobulin Heavy Chain Genes and Potential VH Replacement Products in Human and Mouse.

    Science.gov (United States)

    Huang, Lin; Lange, Miles D; Zhang, Zhixin

    2014-01-01

    VH replacement occurs through RAG-mediated secondary recombination between a rearranged VH gene and an upstream unrearranged VH gene. Due to the location of the cryptic recombination signal sequence (cRSS, TACTGTG) at the 3' end of VH gene coding region, a short stretch of nucleotides from the previous rearranged VH gene can be retained in the newly formed VH-DH junction as a "footprint" of VH replacement. Such footprints can be used as markers to identify Ig heavy chain (IgH) genes potentially generated through VH replacement. To explore the contribution of VH replacement products to the antibody repertoire, we developed a Java-based computer program, VH replacement footprint analyzer-I (VHRFA-I), to analyze published or newly obtained IgH genes from human or mouse. The VHRFA-1 program has multiple functional modules: it first uses service provided by the IMGT/V-QUEST program to assign potential VH, DH, and JH germline genes; then, it searches for VH replacement footprint motifs within the VH-DH junction (N1) regions of IgH gene sequences to identify potential VH replacement products; it can also analyze the frequencies of VH replacement products in correlation with publications, keywords, or VH, DH, and JH gene usages, and mutation status; it can further analyze the amino acid usages encoded by the identified VH replacement footprints. In summary, this program provides a useful computation tool for exploring the biological significance of VH replacement products in human and mouse.

  2. Replacement gene therapy with a human RPGRIP1 sequence slows photoreceptor degeneration in a murine model of Leber congenital amaurosis.

    Science.gov (United States)

    Pawlyk, Basil S; Bulgakov, Oleg V; Liu, Xiaoqing; Xu, Xiaoyun; Adamian, Michael; Sun, Xun; Khani, Shahrokh C; Berson, Eliot L; Sandberg, Michael A; Li, Tiansen

    2010-08-01

    RPGR-interacting protein-1 (RPGRIP1) is localized in the photoreceptor-connecting cilium, where it anchors the RPGR (retinitis pigmentosa GTPase regulator) protein, and its function is essential for photoreceptor maintenance. Genetic defect in RPGRIP1 is a known cause of Leber congenital amaurosis (LCA), a severe, early-onset form of retinal degeneration. We evaluated the efficacy of replacement gene therapy in a murine model of LCA carrying a targeted disruption of RPGRIP1. The replacement construct, packaged in an adeno-associated virus serotype 8 (AAV8) vector, used a rhodopsin kinase gene promoter to drive RPGRIP1 expression. Both promoter and transgene were of human origin. After subretinal delivery of the replacement gene in the mutant mice, human RPGRIP1 was expressed specifically in photoreceptors, localized correctly in the connecting cilia, and restored the normal localization of RPGR. Electroretinogram and histological examinations showed better preservation of rod and cone photoreceptor function and improved photoreceptor survival in the treated eyes. This study demonstrates the efficacy of human gene replacement therapy and validates a gene therapy design for future clinical trials in patients afflicted with this condition. Our results also have therapeutic implications for other forms of retinal degenerations attributable to a ciliary defect.

  3. Accumulation of VH Replacement Products in IgH Genes Derived from Autoimmune Diseases and Anti-Viral Responses in Human.

    Science.gov (United States)

    Lange, Miles D; Huang, Lin; Yu, Yangsheng; Li, Song; Liao, Hongyan; Zemlin, Michael; Su, Kaihong; Zhang, Zhixin

    2014-01-01

    VH replacement refers to RAG-mediated secondary recombination of the IgH genes, which renews almost the entire VH gene coding region but retains a short stretch of nucleotides as a VH replacement footprint at the newly generated VH-DH junction. To explore the biological significance of VH replacement to the antibody repertoire, we developed a Java-based VH replacement footprint analyzer program and analyzed the distribution of VH replacement products in 61,851 human IgH gene sequences downloaded from the NCBI database. The initial assignment of the VH, DH, and JH gene segments provided a comprehensive view of the human IgH repertoire. To our interest, the overall frequency of VH replacement products is 12.1%; the frequencies of VH replacement products in IgH genes using different VH germline genes vary significantly. Importantly, the frequencies of VH replacement products are significantly elevated in IgH genes derived from different autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and allergic rhinitis, and in IgH genes encoding various autoantibodies or anti-viral antibodies. The identified VH replacement footprints preferentially encoded charged amino acids to elongate IgH CDR3 regions, which may contribute to their autoreactivities or anti-viral functions. Analyses of the mutation status of the identified VH replacement products suggested that they had been actively involved in immune responses. These results provide a global view of the distribution of VH replacement products in human IgH genes, especially in IgH genes derived from autoimmune diseases and anti-viral immune responses.

  4. Homologous gene replacement in Physarum

    Energy Technology Data Exchange (ETDEWEB)

    Burland, T.G. [Univ. of Wisconsin, Madison, WI (United States); Pallotta, D. [Laval Univ., Quebec (Canada)

    1995-01-01

    The protist Physarum polycephalum is useful for analysis of several aspects of cellular and developmental biology. To expand the opportunities for experimental analysis of this organism, we have developed a method for gene replacement. We transformed Physarum amoebae with plasmid DNA carrying a mutant allele, ardD{Delta}1, of the ardD actin gene; ardD{Delta}1 mutates the critical carboxy-terminal region of the gene product. Because ardD is not expressed in the amoeba, replacement of ardD{sup +} with ardD{Delta}1 should not be lethal for this cell type. Transformants were obtained only when linear plasmid DNA was used. Most transformants carried one copy of ardD{Delta}1 in addition to ardD{sup +}, but in two (5%), ardD{sup +} was replaced by a single copy of ardD{Delta}1. This is the first example of homologous gene replacement in Physarum. ardD{Delta}1 was stably maintained in the genome through growth, development and meiosis. We found no effect of ardD{Delta}l on viability, growth, or development of any of the various cell types of Physarum. Thus, the carboxy-terminal region of the ardD product appears not to perform a unique essential role in growth or development. Nevertheless, this method for homologous gene replacement can be applied to analyze the function of any cloned gene. 38 refs., 6 figs., 1 tab.

  5. BRaf signaling principles unveiled by large-scale human mutation analysis with a rapid lentivirus-based gene replacement method.

    Science.gov (United States)

    Lim, Chae-Seok; Kang, Xi; Mirabella, Vincent; Zhang, Huaye; Bu, Qian; Araki, Yoichi; Hoang, Elizabeth T; Wang, Shiqiang; Shen, Ying; Choi, Sukwoo; Kaang, Bong-Kiun; Chang, Qiang; Pang, Zhiping P; Huganir, Richard L; Zhu, J Julius

    2017-03-15

    Rapid advances in genetics are linking mutations on genes to diseases at an exponential rate, yet characterizing the gene mutation-cell behavior relationships essential for precision medicine remains a daunting task. More than 350 mutations on small GTPase BRaf are associated with various tumors, and ∼40 mutations are associated with the neurodevelopmental disorder cardio-facio-cutaneous syndrome (CFC). We developed a fast cost-effective lentivirus-based rapid gene replacement method to interrogate the physiopathology of BRaf and ∼50 disease-linked BRaf mutants, including all CFC-linked mutants. Analysis of simultaneous multiple patch-clamp recordings from 6068 pairs of rat neurons with validation in additional mouse and human neurons and multiple learning tests from 1486 rats identified BRaf as the key missing signaling effector in the common synaptic NMDA-R-CaMKII-SynGap-Ras-BRaf-MEK-ERK transduction cascade. Moreover, the analysis creates the original big data unveiling three general features of BRaf signaling. This study establishes the first efficient procedure that permits large-scale functional analysis of human disease-linked mutations essential for precision medicine. © 2017 Lim et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Gene replacement in Penicillium roqueforti.

    Science.gov (United States)

    Goarin, Anne; Silar, Philippe; Malagnac, Fabienne

    2015-05-01

    Most cheese-making filamentous fungi lack suitable molecular tools to improve their biotechnology potential. Penicillium roqueforti, a species of high industrial importance, would benefit from functional data yielded by molecular genetic approaches. This work provides the first example of gene replacement by homologous recombination in P. roqueforti, demonstrating that knockout experiments can be performed in this fungus. To do so, we improved the existing transformation method to integrate transgenes into P. roqueforti genome. In the meantime, we cloned the PrNiaD gene, which encodes a NADPH-dependent nitrate reductase that reduces nitrate to nitrite. Then, we performed a deletion of the PrNiaD gene from P. roqueforti strain AGO. The ΔPrNiaD mutant strain is more resistant to chlorate-containing medium than the wild-type strain, but did not grow on nitrate-containing medium. Because genomic data are now available, we believe that generating selective deletions of candidate genes will be a key step to open the way for a comprehensive exploration of gene function in P. roqueforti.

  7. Replacing the Promoter of the Murine Gene Encoding P-selectin with the Human Promoter Confers Human-like Basal and Inducible Expression in Mice.

    Science.gov (United States)

    Liu, Zhenghui; Zhang, Nan; Shao, Bojing; Panicker, Sumith R; Fu, Jianxin; McEver, Rodger P

    2016-01-15

    In humans and mice, megakaryocytes/platelets and endothelial cells constitutively synthesize P-selectin and mobilize it to the plasma membrane to mediate leukocyte rolling during inflammation. TNF-α, interleukin 1β, and LPS markedly increase P-selectin mRNA in mice but decrease P-selectin mRNA in humans. Transgenic mice bearing the entire human SELP gene recapitulate basal and inducible expression of human P-selectin and reveal human-specific differences in P-selectin function. Differences in the human SELP and murine Selp promoters account for divergent expression in vitro, but their significance in vivo is not known. Here we generated knockin mice that replace the 1.4-kb proximal Selp promoter with the corresponding SELP sequence (Selp(KI)). Selp(KI) (/) (KI) mice constitutively expressed more P-selectin on platelets and more P-selectin mRNA in tissues but only slightly increased P-selectin mRNA after injection of TNF-α or LPS. Consistent with higher basal expression, leukocytes rolled more slowly on P-selectin in trauma-stimulated venules of Selp(KI) (/) (KI) mice. However, TNF-α did not further reduce P-selectin-dependent rolling velocities. Blunted up-regulation of P-selectin mRNA during contact hypersensitivity reduced P-selectin-dependent inflammation in Selp(KI) (/-) mice. Higher basal P-selectin in Selp(KI) (/) (KI) mice compensated for this defect. Therefore, divergent sequences in a short promoter mediate most of the functionally significant differences in expression of human and murine P-selectin in vivo.

  8. Bone Marrow Transplantation (BMT) and Gene Replacement ...

    African Journals Online (AJOL)

    Bone Marrow Transplantation (BMT) and Gene Replacement Therapy (GRT) In Sickle Cell Anemia. ... manifesting clinical disease, while the heterozygoste(AS) are clinically ... medicine, we argue here the case for Bone marrow transplantation

  9. Positive selection results in frequent reversible amino acid replacements in the G protein gene of human respiratory syncytial virus.

    Directory of Open Access Journals (Sweden)

    Viviane F Botosso

    2009-01-01

    Full Text Available Human respiratory syncytial virus (HRSV is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a "flip-flop" phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.

  10. Gene replacement therapy for retinal CNG channelopathies.

    Science.gov (United States)

    Schön, Christian; Biel, Martin; Michalakis, Stylianos

    2013-10-01

    Visual phototransduction relies on the function of cyclic nucleotide-gated channels in the rod and cone photoreceptor outer segment plasma membranes. The role of these ion channels is to translate light-triggered changes in the second messenger cyclic guanosine 3'-5'-monophosphate levels into an electrical signal that is further processed within the retinal network and then sent to higher visual centers. Rod and cone photoreceptors express distinct CNG channels. The rod photoreceptor CNG channel is composed of one CNGB1 and three CNGA1 subunits, whereas the cone channel is formed by one CNGB3 and three CNGA3 subunits. Mutations in any of these channel subunits result in severe and currently untreatable retinal degenerative diseases like retinitis pigmentosa or achromatopsia. In this review, we provide an overview of the human diseases and relevant animal models of CNG channelopathies. Furthermore, we summarize recent results from preclinical gene therapy studies using adeno-associated viral vectors and discuss the efficacy and translational potential of these gene therapeutic approaches.

  11. [Gene replacement therapy in achromatopsia type 2].

    Science.gov (United States)

    Mühlfriedel, R; Tanimoto, N; Seeliger, M W

    2014-03-01

    Achromatopsia is an autosomal recessive inherited retinal disease caused by a complete loss of cone photoreceptor function. About 80 % of achromatopsia patients show mutations in the alpha or beta subunit (A3 and B3) of the cGMP controlled cation channel CNG (cyclic nucleotide-gated channel) of cone photoreceptors. Homologous to the human disease, CNGA3 deficient mice reveal a loss of cone specific functionality leading to degeneration of affected cone photoreceptors. The Institute for Ophthalmic Research in Tübingen has now succeeded in curing achromatopsia ACHM2 in an animal model. In this article, we explain the recombinant adeno-associated virus-based approach in detail. Furthermore, applied non-invasive diagnostic techniques for quality and success control, ERG, SLO and OCT, are described. The success of the therapy is indicated by a restored cone photoreceptor function as well as the neuronal processing of retinal signals resulting in a specific, cone-mediated behaviour. The outstanding results derived from the animal model are the starting point for the first human translation of a gene therapy for achromatopsia in Germany. Georg Thieme Verlag KG Stuttgart · New York.

  12. Replacement of the human cytomegalovirus promoter with fish enhancer and core elements to control the expression of the G gene of viral haemorrhagic septicemia virus (VHSV).

    Science.gov (United States)

    Martinez-Lopez, A; Chinchilla, B; Encinas, P; Gomez-Casado, E; Estepa, A; Coll, J M

    2012-12-15

    This work explores some of the possibilities to replace human cytomegalovirus (CMV) core and/or enhancer promoter control elements to create new expression vectors for use with fish. The work is relevant to fish vaccination, since DNA vaccines use eukaryotic expression plasmids controlled by the human cytomegalovirus (CMV) promoter to be effective against novirhabdoviruses, such as viral haemorrhagic septicemia virus (VHSV), one of the most devastating fish viral European diseases. To reduce possible homologous recombination with fish genome, core and enhancer sequences from fish origin, such as trout interferon-inducible myxovirus protein (Mx), zebrafish retrovirus long terminal repeat (LTR) and carp β-actin (AE6), were combined with those of CMV to design alternative hybrid promoters. The substitution of CMV core and/or enhancer with the corresponding elements of Mx or the LTR core maintained a similar in vitro protein G expression level than that obtained by using the CMV promoter. Vectors using the dsRNA-inducible Mx enhancer followed either by the LTR or the AE6 cores showed the highest in vitro protein G expression levels. Furthermore, synthetic constructs using the Mx enhancer maintained their polyI:C induction capabilities despite the core used. Some of these hybrid promoters might contribute to the development of all-fish-vectors for DNA vaccines while others might be useful for more basic studies.

  13. Prospects for retinal gene replacement therapy.

    Science.gov (United States)

    Smith, Alexander J; Bainbridge, James W; Ali, Robin R

    2009-04-01

    Inherited retinal degeneration, which includes conditions such as retinitis pigmentosa and Leber congenital amaurosis (LCA), affects approximately 1/3000 of the population in the Western world. It is characterized by loss of vision and results from mutations in any one of >100 different genes. There are currently no effective treatments, but many of the genes have now been identified and their functions elucidated, providing a major impetus to develop gene-based treatments. Preliminary results from three clinical trials indicate that the treatment of a form of LCA by gene therapy can be safe and effective. Here, we discuss the potential for treating other forms of retinal degeneration by gene therapy, focusing on the gene defects that are likely to be the most amenable to treatment.

  14. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome.

    Science.gov (United States)

    Chang, Qing; Wang, Jianjun; Li, Qi; Kim, Yeunjung; Zhou, Binfei; Wang, Yunfeng; Li, Huawei; Lin, Xi

    2015-06-17

    Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1(-/-) mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0-P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner's membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1(-/-) mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss.

  15. Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome

    Science.gov (United States)

    Chang, Qing; Wang, Jianjun; Li, Qi; Kim, Yeunjung; Zhou, Binfei; Wang, Yunfeng; Li, Huawei; Lin, Xi

    2015-01-01

    Mutations in the potassium channel subunit KCNQ1 cause the human severe congenital deafness Jervell and Lange-Nielsen (JLN) syndrome. We applied a gene therapy approach in a mouse model of JLN syndrome (Kcnq1−/− mice) to prevent the development of deafness in the adult stage. A modified adeno-associated virus construct carrying a Kcnq1 expression cassette was injected postnatally (P0–P2) into the endolymph, which resulted in Kcnq1 expression in most cochlear marginal cells where native Kcnq1 is exclusively expressed. We also found that extensive ectopic virally mediated Kcnq1 transgene expression did not affect normal cochlear functions. Examination of cochlear morphology showed that the collapse of the Reissner’s membrane and degeneration of hair cells (HCs) and cells in the spiral ganglia were corrected in Kcnq1−/− mice. Electrophysiological tests showed normal endocochlear potential in treated ears. In addition, auditory brainstem responses showed significant hearing preservation in the injected ears, ranging from 20 dB improvement to complete correction of the deafness phenotype. Our results demonstrate the first successful gene therapy treatment for gene defects specifically affecting the function of the stria vascularis, which is a major site affected by genetic mutations in inherited hearing loss. PMID:26084842

  16. Gene conversion in human rearranged immunoglobulin genes.

    Science.gov (United States)

    Darlow, John M; Stott, David I

    2006-07-01

    Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V(H) segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V(H) replacements with no addition of untemplated nucleotides at the V(H)-V(H) joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V(H) replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion.

  17. Regulation of VH replacement by B cell receptor-mediated signaling in human immature B cells.

    Science.gov (United States)

    Liu, Jing; Lange, Miles D; Hong, Sang Yong; Xie, Wanqin; Xu, Kerui; Huang, Lin; Yu, Yangsheng; Ehrhardt, Götz R A; Zemlin, Michael; Burrows, Peter D; Su, Kaihong; Carter, Robert H; Zhang, Zhixin

    2013-06-01

    VH replacement provides a unique RAG-mediated recombination mechanism to edit nonfunctional IgH genes or IgH genes encoding self-reactive BCRs and contributes to the diversification of Ab repertoire in the mouse and human. Currently, it is not clear how VH replacement is regulated during early B lineage cell development. In this article, we show that cross-linking BCRs induces VH replacement in human EU12 μHC(+) cells and in the newly emigrated immature B cells purified from peripheral blood of healthy donors or tonsillar samples. BCR signaling-induced VH replacement is dependent on the activation of Syk and Src kinases but is inhibited by CD19 costimulation, presumably through activation of the PI3K pathway. These results show that VH replacement is regulated by BCR-mediated signaling in human immature B cells, which can be modulated by physiological and pharmacological treatments.

  18. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes.

    Science.gov (United States)

    Li, Ting; Huang, Sheng; Zhao, Xuefeng; Wright, David A; Carpenter, Susan; Spalding, Martin H; Weeks, Donald P; Yang, Bing

    2011-08-01

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs to target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.

  19. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Li, T; Huang, S; Zhao, XF; Wright, DA; Carpenter, S; Spalding, MH; Weeks, DP; Yang, B

    2011-08-08

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs to target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.

  20. An improved cloning vector for construction of gene replacements in Listeria monocytogenes.

    Science.gov (United States)

    Li, Guojie; Kathariou, S

    2003-05-01

    Listeria monocytogenes is a gram-positive, facultative intracellular bacterium implicated in severe food-borne illness (listeriosis) in humans. The construction of well-defined gene replacements in the genome of L. monocytogenes has been instrumental to several genetic studies of the virulence and other attributes of the organism. Construction of such mutations by currently available procedures, however, tends to be labor intensive, and gene replacement mutants are sometimes difficult to recover due to lack of direct selection for the construct. In this study we describe the construction and use of plasmid vector pGF-EM, which can be conjugatively transferred from Escherichia coli S17-1 to L. monocytogenes and which provides the genetic means for direct selection of gene replacements.

  1. Mitochondrial gene replacement in primate offspring and embryonic stem cells.

    Science.gov (United States)

    Tachibana, Masahito; Sparman, Michelle; Sritanaudomchai, Hathaitip; Ma, Hong; Clepper, Lisa; Woodward, Joy; Li, Ying; Ramsey, Cathy; Kolotushkina, Olena; Mitalipov, Shoukhrat

    2009-09-17

    Mitochondria are found in all eukaryotic cells and contain their own genome (mitochondrial DNA or mtDNA). Unlike the nuclear genome, which is derived from both the egg and sperm at fertilization, the mtDNA in the embryo is derived almost exclusively from the egg; that is, it is of maternal origin. Mutations in mtDNA contribute to a diverse range of currently incurable human diseases and disorders. To establish preclinical models for new therapeutic approaches, we demonstrate here that the mitochondrial genome can be efficiently replaced in mature non-human primate oocytes (Macaca mulatta) by spindle-chromosomal complex transfer from one egg to an enucleated, mitochondrial-replete egg. The reconstructed oocytes with the mitochondrial replacement were capable of supporting normal fertilization, embryo development and produced healthy offspring. Genetic analysis confirmed that nuclear DNA in the three infants born so far originated from the spindle donors whereas mtDNA came from the cytoplast donors. No contribution of spindle donor mtDNA was detected in offspring. Spindle replacement is shown here as an efficient protocol replacing the full complement of mitochondria in newly generated embryonic stem cell lines. This approach may offer a reproductive option to prevent mtDNA disease transmission in affected families.

  2. Drosophila lines with mutant and wild type human TDP-43 replacing the endogenous gene reveals phosphorylation and ubiquitination in mutant lines in the absence of viability or lifespan defects.

    Science.gov (United States)

    Chang, Jer-Cherng; Morton, David B

    2017-01-01

    Mutations in TDP-43 are associated with proteinaceous inclusions in neurons and are believed to be causative in neurodegenerative diseases such as frontotemporal dementia or amyotrophic lateral sclerosis. Here we describe a Drosophila system where we have engineered the genome to replace the endogenous TDP-43 orthologue with wild type or mutant human TDP-43(hTDP-43). In contrast to other models, these flies express both mutant and wild type hTDP-43 at similar levels to those of the endogenous gene and importantly, no age-related TDP-43 accumulation observed among all the transgenic fly lines. Immunoprecipitation of TDP-43 showed that flies with hTDP-43 mutations had increased levels of ubiquitination and phosphorylation of the hTDP-43 protein. Furthermore, histologically, flies expressing hTDP-43 M337V showed global, robust neuronal staining for phospho-TDP. All three lines: wild type hTDP-43, -G294A and -M337V were homozygous viable, with no defects in development, life span or behaviors observed. The primary behavioral defect was that flies expressing either hTDP-43 G294A or M337V showed a faster decline with age in negative geotaxis. Together, these observations implied that neurons could handle these TDP-43 mutations by phosphorylation- and ubiquitin-dependent proteasome systems, even in a background without the wild type TDP-43. Our findings suggest that these two specific TDP-43 mutations are not inherently toxic, but may require additional environmental or genetic factors to affect longevity or survival.

  3. Replacement

    Directory of Open Access Journals (Sweden)

    S. Radhakrishnan

    2014-03-01

    Full Text Available The fishmeal replaced with Spirulina platensis, Chlorella vulgaris and Azolla pinnata and the formulated diet fed to Macrobrachium rosenbergii postlarvae to assess the enhancement ability of non-enzymatic antioxidants (vitamin C and E, enzymatic antioxidants (superoxide dismutase (SOD and catalase (CAT and lipid peroxidation (LPx were analysed. In the present study, the S. platensis, C. vulgaris and A. pinnata inclusion diet fed groups had significant (P < 0.05 improvement in the levels of vitamins C and E in the hepatopancreas and muscle tissue. Among all the diets, the replacement materials in 50% incorporated feed fed groups showed better performance when compared with the control group in non-enzymatic antioxidant activity. The 50% fishmeal replacement (best performance diet fed groups taken for enzymatic antioxidant study, in SOD, CAT and LPx showed no significant increases when compared with the control group. Hence, the present results revealed that the formulated feed enhanced the vitamins C and E, the result of decreased level of enzymatic antioxidants (SOD, CAT and LPx revealed that these feeds are non-toxic and do not produce any stress to postlarvae. These ingredients can be used as an alternative protein source for sustainable Macrobrachium culture.

  4. Recurrent adenylation domain replacement in the microcystin synthetase gene cluster

    Directory of Open Access Journals (Sweden)

    Laakso Kati

    2007-10-01

    Full Text Available Abstract Background Microcystins are small cyclic heptapeptide toxins produced by a range of distantly related cyanobacteria. Microcystins are synthesized on large NRPS-PKS enzyme complexes. Many structural variants of microcystins are produced simulatenously. A recombination event between the first module of mcyB (mcyB1 and mcyC in the microcystin synthetase gene cluster is linked to the simultaneous production of microcystin variants in strains of the genus Microcystis. Results Here we undertook a phylogenetic study to investigate the order and timing of recombination between the mcyB1 and mcyC genes in a diverse selection of microcystin producing cyanobacteria. Our results provide support for complex evolutionary processes taking place at the mcyB1 and mcyC adenylation domains which recognize and activate the amino acids found at X and Z positions. We find evidence for recent recombination between mcyB1 and mcyC in strains of the genera Anabaena, Microcystis, and Hapalosiphon. We also find clear evidence for independent adenylation domain conversion of mcyB1 by unrelated peptide synthetase modules in strains of the genera Nostoc and Microcystis. The recombination events replace only the adenylation domain in each case and the condensation domains of mcyB1 and mcyC are not transferred together with the adenylation domain. Our findings demonstrate that the mcyB1 and mcyC adenylation domains are recombination hotspots in the microcystin synthetase gene cluster. Conclusion Recombination is thought to be one of the main mechanisms driving the diversification of NRPSs. However, there is very little information on how recombination takes place in nature. This study demonstrates that functional peptide synthetases are created in nature through transfer of adenylation domains without the concomitant transfer of condensation domains.

  5. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases.

    Directory of Open Access Journals (Sweden)

    Tatiana Flisikowska

    Full Text Available Rabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We demonstrate that zinc finger nucleases (ZFNs introduced into fertilized oocytes can inactivate a chosen gene by mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first gene knockout and targeted sequence replacement in rabbits. Two ZFN pairs were designed that target the rabbit immunoglobulin M (IgM locus within exons 1 and 2. ZFN mRNAs were microinjected into pronuclear stage fertilized oocytes. Founder animals carrying distinct mutated IgM alleles were identified and bred to produce offspring. Functional knockout of the immunoglobulin heavy chain locus was confirmed by serum IgM and IgG deficiency and lack of IgM(+ and IgG(+ B lymphocytes. We then tested whether ZFN expression would enable efficient targeted sequence replacement in rabbit oocytes. ZFN mRNA was co-injected with a linear DNA vector designed to replace exon 1 of the IgM locus with ∼1.9 kb of novel sequence. Double strand break induced targeted replacement occurred in up to 17% of embryos and in 18% of fetuses analyzed. Two major goals have been achieved. First, inactivation of the endogenous IgM locus, which is an essential step for the production of therapeutic human polyclonal antibodies in the rabbit. Second, establishing efficient targeted gene manipulation and homologous recombination in a refractory animal species. ZFN mediated genetic engineering in the rabbit and other mammals opens new avenues of experimentation in immunology and many other research fields.

  6. Myelin restoration: progress and prospects for human cell replacement therapies.

    Science.gov (United States)

    Potter, Gregory B; Rowitch, David H; Petryniak, Magdalena A

    2011-06-01

    Oligodendrocytes are the primary source of myelin in the adult central nervous system (CNS), and their dysfunction or loss underlies several diseases of both children and adults. Dysmyelinating and demyelinating diseases are thus attractive targets for cell-based strategies since replacement of a single presumably homogeneous cell type has the potential to restore functional levels of myelin. To understand the obstacles that cell-replacement therapy might face, we review oligodendrocyte biology and emphasize aspects of oligodendrocyte development that will need to be recapitulated by exogenously transplanted cells, including migration from the site of transplantation, axon recognition, terminal differentiation, axon wrapping, and myelin production and maintenance. We summarize studies in which different types of myelin-forming cells have been transplanted into the CNS and highlight the continuing challenges regarding the use of cell-based therapies for human white matter disorders.

  7. Analysis of human protein replacement stable cell lines established using snoMEN-PR vector.

    Directory of Open Access Journals (Sweden)

    Motoharu Ono

    Full Text Available The study of the function of many human proteins is often hampered by technical limitations, such as cytotoxicity and phenotypes that result from overexpression of the protein of interest together with the endogenous version. Here we present the snoMEN (snoRNA Modulator of gene ExpressioN vector technology for generating stable cell lines where expression of the endogenous protein can be reduced and replaced by an exogenous protein, such as a fluorescent protein (FP-tagged version. SnoMEN are snoRNAs engineered to contain complementary sequences that can promote knock-down of targeted RNAs. We have established and characterised two such partial protein replacement human cell lines (snoMEN-PR. Quantitative mass spectrometry was used to analyse the specificity of knock-down and replacement at the protein level and also showed an increased pull-down efficiency of protein complexes containing exogenous, tagged proteins in the protein replacement cell lines, as compared with conventional co-expression strategies. The snoMEN approach facilitates the study of mammalian proteins, particularly those that have so far been difficult to investigate by exogenous expression and has wide applications in basic and applied gene-expression research.

  8. Efficient gene replacements in ku70 disruption strain of Aspergillus chevalieri var. intermedius

    Directory of Open Access Journals (Sweden)

    Qingqing Huang

    2017-01-01

    Full Text Available Aspergillus chevalieri var. intermedius is a dominant filamentous fungal species in Fuzhuan tea and is associated with the quality and health benefits of this tea. The sexual or asexual reproduction of this fungus depends on the osmotic pressure of the tea. Efforts to enhance the beneficial effects of A. chevalieri var. intermedius are hampered by difficulties in disrupting its genes. To address this issue, we identified the A. chevalieri var. intermedius homolog (Acku70 of human Ku70 and generated an Acku70 disruption strain (ΔAcku70, aiming to improve the gene replacement efficiency. ΔAcku70 grew at a slightly lower rate in vitro than the wild-type strain; however, the two strains exhibited similar sensitivity to temperature, osmotic pressure and the effects of ethyl methane sulphonate and H2O2. The replacement efficiency of veA and flbA dramatically increased in ΔAcku70 compared to that in the wild type. The efficiency of flbA replacement increased from 2.6% to 80%, whereas the frequency of veA disruption increased from 15.2% to 83.9% and from 30.8% to 86.8%. Thus, ΔAcku70 is suitable for use as a type strain for large-scale functional genomic analysis of A. chevalieri var. intermedius.

  9. STATE-OF-THE-ART HUMAN GENE THERAPY: PART II. GENE THERAPY STRATEGIES AND APPLICATIONS

    OpenAIRE

    2014-01-01

    In Part I of this Review, we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene...

  10. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  11. The dam replacing gene product enhances Neisseria gonorrhoeae FA1090 viability and biofilm formation.

    Science.gov (United States)

    Kwiatek, Agnieszka; Bacal, Pawel; Wasiluk, Adrian; Trybunko, Anastasiya; Adamczyk-Poplawska, Monika

    2014-01-01

    Many Neisseriaceae do not exhibit Dam methyltransferase activity and, instead of the dam gene, possess drg (dam replacing gene) inserted in the leuS/dam locus. The drg locus in Neisseria gonorrhoeae FA1090 has a lower GC-pairs content (40.5%) compared to the whole genome of N. gonorrhoeae FA1090 (52%). The gonococcal drg gene encodes a DNA endonuclease Drg, with GmeATC specificity. Disruption of drg or insertion of the dam gene in gonococcal genome changes the level of expression of genes as shown by transcriptome analysis. For the drg-deficient N. gonorrhoeae mutant, a total of 195 (8.94% of the total gene pool) genes exhibited an altered expression compared to the wt strain by at least 1.5 fold. In dam-expressing N. gonorrhoeae mutant, the expression of 240 genes (11% of total genes) was deregulated. Most of these deregulated genes were involved in translation, DNA repair, membrane biogenesis and energy production as shown by cluster of orthologous group analysis. In vivo, the inactivation of drg gene causes the decrease of the number of live neisserial cells and long lag phase of growth. The insertion of dam gene instead of drg locus restores cell viability. We have also shown that presence of the drg gene product is important for N. gonorrhoeae FA1090 in adhesion, including human epithelial cells, and biofilm formation. Biofilm produced by drg-deficient strain is formed by more dispersed cells, compared to this one formed by parental strain as shown by scanning electron and confocal microscopy. Also adherence assays show a significantly smaller biomass of formed biofilm (OD570 = 0.242 ± 0.038) for drg-deficient strain, compared to wild-type strain (OD570 = 0.378 ± 0.057). Dam-expressing gonococcal cells produce slightly weaker biofilm with cells embedded in an extracellular matrix. This strain has also a five times reduced ability for adhesion to human epithelial cells. In this context, the presence of Drg is more advantageous for N. gonorrhoeae biology than

  12. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori.

    Science.gov (United States)

    Michielse, C B; Arentshorst, M; Ram, A F J; van den Hondel, C A M J J

    2005-01-01

    In this study, the efficiency of gene replacement in Aspergillus awamori between Agrobacterium-mediated transformation and CaCl(2)/PEG-mediated transformation was compared. For the genes, pyrG and gfaA, it was found that the homologous recombination frequencies obtained by Agrobacterium-mediated transformation were 3- to 6-fold higher than the frequencies obtained with CaCl(2)/PEG protoplast transformation. For the pyrG gene, it was found that Agrobacterium-mediated transformation allowed an efficient homologous recombination with shorter DNA flanks than CaCl(2)/PEG protoplast transformation. Finally, the addition of the dominant amdS marker as a second selection marker to the gene replacement cassette led to a further 2-fold enrichment in transformants with gene replacement events, resulting in a gene replacement frequency of 55%. Based on the data it can be concluded that Agrobacterium-mediated transformation is an efficient tool for gene replacement and that the amdS gene can be successfully used as a second selection marker to select transformants with putative gene replacement.

  13. Human capital management in government: replacing government retirees.

    Science.gov (United States)

    Kochanowski, Yvonne J

    2011-01-01

    Faced with high levels of senior civil servant retirement in the coming years and limited by civil service requirements, government organizations often struggle to maintain the knowledge base of previous processes and results while promoting people who are truly interested in being leaders in an agency. Upcoming generations of public sector workers do not share the same motivation and workplace characteristics of current exiting civil servants, further complicating smooth transitions of leadership. Government personnel systems for the most part are inflexible and slow to hire, and retention methods for workers do not encourage succession planning. Against this backdrop, a five-phased human capital management system, using some of the best practices found in both public and private sector organizations, is proposed as a solution for replacing government retirees with workers who are prepared for their leadership and management roles.

  14. Principles of Human Joint Replacement Design and Clinical Application

    CERN Document Server

    Buechel, Frederick F

    2012-01-01

    Drs. Buechel, an orthopaedic surgeon, and Pappas, a professor of Mechanical Engineering, are the designers of several successful joint replacement systems. The most well-known of these is the pioneering LCS knee replacement. They have written this book for the users and designers of joint replacements. It is an attempt to convey to the reader the knowledge accumulated by the authors during their thirty five year effort on the development of replacement devices for the lower limb for the purpose of aiding the reader in their design and evaluation of joint replacement devices. The early chapters describe the engineering, scientific and medical principles needed for replacement joint evaluation. One must understand the nature and performance of the materials involved and their characteristics in vivo, i.e. the response of the body to implant materials. It is also essential to understand the response of the implants to applied loading and motion, particularly in the hostile physiological environment. A chapter de...

  15. Principles of human joint replacement design and clinical application

    CERN Document Server

    Buechel, Frederick F

    2015-01-01

    This book is written for the users and designers of joint replacements. In its second extended edition it conveys to the reader the knowledge accumulated by the authors during their forty year effort on the development of replacement devices for the lower limb for the purpose of aiding the reader in their design and evaluation of joint replacement devices. The early chapters describe the engineering, scientific and medical principles needed for replacement joint evaluation. One must understand the nature and performance of the materials involved and their characteristics in vivo, i.e. the response of the body to implant materials. It is also essential to understand the response of the implants to applied loading and motion, particularly in the hostile physiological environment. A chapter describes the design methodology now required for joint replacement in the USA and EU countries. The remaining chapters provide a history of joint replacement, an evaluation of earlier and current devices and sample case hist...

  16. Gene replacement in Mycobacterium chelonae: application to the construction of porin knock-out mutants.

    Directory of Open Access Journals (Sweden)

    Vinicius Calado Nogueira de Moura

    Full Text Available Mycobacterium chelonae is a rapidly growing mycobacterial opportunistic pathogen closely related to Mycobacterium abscessus that causes cornea, skin and soft tissue infections in humans. Although M. chelonae and the emerging mycobacterial pathogen M. abscessus have long been considered to belong to the same species, these two microorganisms considerably differ in terms of optimum growth temperature, drug susceptibility, pathogenicity and the types of infection they cause. The whole genome sequencing of clinical isolates of M. chelonae and M. abscessus is opening the way to comparative studies aimed at understanding the biology of these pathogens and elucidating the molecular bases of their pathogenicity and biocide resistance. Key to the validation of the numerous hypotheses that this approach will raise, however, is the availability of genetic tools allowing for the expression and targeted mutagenesis of genes in these species. While homologous recombination systems have recently been described for M. abscessus, genetic tools are lacking for M. chelonae. We here show that two different allelic replacement methods, one based on mycobacteriophage-encoded recombinases and the other on a temperature-sensitive plasmid harboring the counterselectable marker sacB, can be used to efficiently disrupt genes in this species. Knock-out mutants for each of the three porin genes of M. chelonae ATCC 35752 were constructed using both methodologies, one of which displays a significantly reduced glucose uptake rate consistent with decreased porin expression.

  17. Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori.

    NARCIS (Netherlands)

    Michielse, C.B.; Arentshorst, M.; Ram, A.F.; Hondel, C.A. van den

    2005-01-01

    In this study, the efficiency of gene replacement in Aspergillus awamori between Agrobacterium-mediated transformation and CaCl(2)/PEG-mediated transformation was compared. For the genes, pyrG and gfaA, it was found that the homologous recombination frequencies obtained by Agrobacterium-mediated tra

  18. Implications of human evolution and admixture for mitochondrial replacement therapy

    National Research Council Canada - National Science Library

    Rishishwar, Lavanya; Jordan, I. King

    2017-01-01

    Mitochondrial replacement (MR) therapy is a new assisted reproductive technology that allows women with mitochondrial disorders to give birth to healthy children by combining their nuclei with mitochondria from unaffected egg donors...

  19. Three-Parent IVF: Gene Replacement for the Prevention of Inherited Mitochondrial Diseases

    Science.gov (United States)

    Amato, Paula; Tachibana, Masahito; Sparman, Michelle; Mitalipov, Shoukhrat

    2014-01-01

    Mitochondrial dysfunction has been recognized as a significant cause of a number of serious multi-organ diseases. Tissues with a high metabolic demand such as brain, heart, muscle, CNS are often affected. Mitochondrial disease can be due to mutations in mitochondrial DNA (mtDNA) or in nuclear genes involved in mitochondrial function. There is no curative treatment for patients with mitochondrial disease. Given the lack of treatments and the limitations of prenatal and preimplantation diagnosis, attention has focused on prevention of transmission of mitochondrial disease through germline gene replacement therapy. Since mtDNA is strictly maternally inherited, two approaches have been proposed. In the first, the nuclear genome from the pronuclear stage zygote of an affected woman is transferred to an enucleated donor zygote. A second technique involves transfer of the metaphase II spindle from the unfertilized oocyte of an affected woman to an enucleated donor oocyte. Our group recently reported successful spindle transfer between human oocytes resulting in blastocyst development and embryonic stem cell derivation, with very low levels of heteroplasmy. In this review, we summarize these novel assisted reproductive techniques and their use to prevent transmission of mitochondrial disorders. The promises and challenges are discussed, focusing on their potential clinical application. PMID:24382342

  20. mNos2 deletion and human NOS2 replacement in Alzheimer disease models.

    Science.gov (United States)

    Colton, Carol A; Wilson, Joan G; Everhart, Angela; Wilcock, Donna M; Puoliväli, Jukka; Heikkinen, Taneli; Oksman, Juho; Jääskeläinen, Olli; Lehtimäki, Kimmo; Laitinen, Teemu; Vartiainen, Nina; Vitek, Michael P

    2014-08-01

    Understanding the pathophysiologic mechanisms underlying Alzheimer disease relies on knowledge of disease onset and the sequence of development of brain pathologies. We present a comprehensive analysis of early and progressive changes in a mouse model that demonstrates a full spectrum of characteristic Alzheimer disease-like pathologies. This model demonstrates an altered immune redox state reminiscent of the human disease and capitalizes on data indicating critical differences between human and mouse immune responses, particularly in nitric oxide levels produced by immune activation of the NOS2 gene. Using the APPSwDI(+)/(+)mNos2(-/-) (CVN-AD) mouse strain, we show a sequence of pathologic events leading to neurodegeneration,which include pathologically hyperphosphorylated tau in the perforant pathway at 6 weeks of age progressing to insoluble tau, early appearance of β-amyloid peptides in perivascular deposits around blood vessels in brain regions known to be vulnerable to Alzheimer disease, and progression to damage and overt loss in select vulnerable neuronal populations in these regions. The role of species differences between hNOS2 and mNos2 was supported by generating mice in which the human NOS2 gene replaced mNos2. When crossed with CVN-AD mice, pathologic characteristics of this new strain (APPSwDI(+)/(-)/HuNOS2(tg+)/(+)/mNos2(-/-)) mimicked the pathologic phenotypes found in the CVN-AD strain.

  1. Stable gene replacement in barley by targeted double-strand break induction.

    Science.gov (United States)

    Watanabe, Koichi; Breier, Ulrike; Hensel, Götz; Kumlehn, Jochen; Schubert, Ingo; Reiss, Bernd

    2016-03-01

    Gene targeting is becoming an important tool for precision genome engineering in plants. During gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. We have analysed gene targeting in barley (Hordeum vulgare) using a model system based on double-strand break (DSB) induction by the meganuclease I-SceI and a transgenic, artificial target locus. In the plants we obtained, the donor construct was inserted at the target locus by homology-directed DNA integration in at least two transformants obtained in a single experiment and was stably inherited as a single Mendelian trait. Both events were produced by one-sided integration. Our data suggest that gene replacement can be achieved in barley with a frequency suitable for routine application. The use of a codon-optimized nuclease and co-transfer of the nuclease gene together with the donor construct are probably the components important for efficient gene targeting. Such an approach, employing the recently developed synthetic nucleases/nickases that allow DSB induction at almost any sequence of a genome of interest, sets the stage for precision genome engineering as a routine tool even for important crops such as barley.

  2. Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Andersson, Jens A.; Kristensen, Matilde Bylov;

    2008-01-01

    technique that allows single step cloning of the two required homologous recombination sequences into different sites of a recipient vector. The advantages are: A simple experimental design, free choice of target sequence, few procedures and user convenience. The vectors are intented for Agrobacterium...... with an average efficiency of 84% for gene replacement and 80% for targeted overexpression. Conclusion: The new vectors designed for USER Friendly cloning provided a fast reliable method to construct vectors for targeted gene manipulations in fungi....

  3. State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications.

    Science.gov (United States)

    Wang, Dan; Gao, Guangping

    2014-09-01

    In Part I of this Review (Wang and Gao, 2014), we introduced recent advances in gene delivery technologies and explained how they have powered some of the current human gene therapy applications. In Part II, we expand the discussion on gene therapy applications, focusing on some of the most exciting clinical uses. To help readers to grasp the essence and to better organize the diverse applications, we categorize them under four gene therapy strategies: (1) gene replacement therapy for monogenic diseases, (2) gene addition for complex disorders and infectious diseases, (3) gene expression alteration targeting RNA, and (4) gene editing to introduce targeted changes in host genome. Human gene therapy started with the simple idea that replacing a faulty gene with a functional copy can cure a disease. It has been a long and bumpy road to finally translate this seemingly straightforward concept into reality. As many disease mechanisms unraveled, gene therapists have employed a gene addition strategy backed by a deep knowledge of what goes wrong in diseases and how to harness host cellular machinery to battle against diseases. Breakthroughs in other biotechnologies, such as RNA interference and genome editing by chimeric nucleases, have the potential to be integrated into gene therapy. Although clinical trials utilizing these new technologies are currently sparse, these innovations are expected to greatly broaden the scope of gene therapy in the near future.

  4. Human Lacrimal Gland Gene Expression

    Science.gov (United States)

    Aakalu, Vinay Kumar; Parameswaran, Sowmya; Maienschein-Cline, Mark; Bahroos, Neil; Shah, Dhara; Ali, Marwan; Krishnakumar, Subramanian

    2017-01-01

    Background The study of human lacrimal gland biology and development is limited. Lacrimal gland tissue is damaged or poorly functional in a number of disease states including dry eye disease. Development of cell based therapies for lacrimal gland diseases requires a better understanding of the gene expression and signaling pathways in lacrimal gland. Differential gene expression analysis between lacrimal gland and other embryologically similar tissues may be helpful in furthering our understanding of lacrimal gland development. Methods We performed global gene expression analysis of human lacrimal gland tissue using Affymetrix ® gene expression arrays. Primary data from our laboratory was compared with datasets available in the NLM GEO database for other surface ectodermal tissues including salivary gland, skin, conjunctiva and corneal epithelium. Results The analysis revealed statistically significant difference in the gene expression of lacrimal gland tissue compared to other ectodermal tissues. The lacrimal gland specific, cell surface secretory protein encoding genes and critical signaling pathways which distinguish lacrimal gland from other ectodermal tissues are described. Conclusions Differential gene expression in human lacrimal gland compared with other ectodermal tissue types revealed interesting patterns which may serve as the basis for future studies in directed differentiation among other areas. PMID:28081151

  5. Hormone-replacement therapy influences gene expression profiles and is associated with breast-cancer prognosis: a cohort study

    Directory of Open Access Journals (Sweden)

    Skoog Lambert

    2006-06-01

    Full Text Available Abstract Background Postmenopausal hormone-replacement therapy (HRT increases breast-cancer risk. The influence of HRT on the biology of the primary tumor, however, is not well understood. Methods We obtained breast-cancer gene expression profiles using Affymetrix human genome U133A arrays. We examined the relationship between HRT-regulated gene profiles, tumor characteristics, and recurrence-free survival in 72 postmenopausal women. Results HRT use in patients with estrogen receptor (ER protein positive tumors (n = 72 was associated with an altered regulation of 276 genes. Expression profiles based on these genes clustered ER-positive tumors into two molecular subclasses, one of which was associated with HRT use and had significantly better recurrence free survival despite lower ER levels. A comparison with external data suggested that gene regulation in tumors associated with HRT was negatively correlated with gene regulation induced by short-term estrogen exposure, but positively correlated with the effect of tamoxifen. Conclusion Our findings suggest that post-menopausal HRT use is associated with a distinct gene expression profile related to better recurrence-free survival and lower ER protein levels. Tentatively, HRT-associated gene expression in tumors resembles the effect of tamoxifen exposure on MCF-7 cells.

  6. The treatment of hemophilia A: from protein replacement to AAV-mediated gene therapy.

    Science.gov (United States)

    Youjin, Shen; Jun, Yin

    2009-03-01

    Factor VIII (FVIII) is an essential component in blood coagulation, a deficiency of which causes the serious bleeding disorder hemophilia A. Recently, with the development of purification level and recombinant techniques, protein replacement treatment to hemophiliacs is relatively safe and can prolong their life expectancy. However, because of the possibility of unknown contaminants in plasma-derived FVIII and recombinant FVIII, and high cost for hemophiliacs to use these products, gene therapy for hemophilia A is an attractive alternative to protein replacement therapy. Thus far, the adeno-associated virus (AAV) is a promising vector for gene therapy. Further improvement of the virus for clinical application depends on better understanding of the molecular structure and fate of the vector genome. It is likely that hemophilia will be the first genetic disease to be cured by somatic cell gene therapy.

  7. Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Andersson, Jens A.; Kristensen, Matilde Bylov

    2008-01-01

    Background: The rapid increase in whole genome fungal sequence information allows large scale functional analyses of target genes. Efficient transformation methods to obtain site-directed gene replacement, targeted over-expression by promoter replacement, in-frame epitope tagging or fusion...... of coding sequences with fluorescent markers such as GFP are essential for this process. Construction of vectors for these experiments depends on the directional cloning of two homologous recombination sequences on each side of a selection marker gene. Results: Here, we present a USER Friendly cloning based...... technique that allows single step cloning of the two required homologous recombination sequences into different sites of a recipient vector. The advantages are: A simple experimental design, free choice of target sequence, few procedures and user convenience. The vectors are intented for Agrobacterium...

  8. The human crystallin gene families

    Directory of Open Access Journals (Sweden)

    Wistow Graeme

    2012-12-01

    Full Text Available Abstract Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.

  9. Conditional gene expression and promoter replacement in Zymoseptoria tritici using fungal nitrate reductase promoters.

    Science.gov (United States)

    Marchegiani, Elisabetta; Sidhu, Yaadwinder; Haynes, Ken; Lebrun, Marc-Henri

    2015-06-01

    Studying essential genes in haploid fungi requires specific tools. Conditional promoter replacement (CPR) is an efficient method for testing gene essentiality. However, this tool requires promoters that can be strongly down-regulated. To this end, we tested the nitrate reductase promoters of Magnaporthe oryzae (pMoNIA1) and Zymoseptoria tritici (pZtNIA1) for their conditional expression in Z. tritici. Expression of EGFP driven by pMoNIA1 or pZtNIA1 was induced on nitrate and down-regulated on glutamate (10-fold less than nitrate). Levels of differential expression were similar for both promoters, demonstrating that the Z. tritici nitrogen regulatory network functions with a heterologous promoter similarly to a native promoter. To establish CPR, the promoter of Z. tritici BGS1, encoding a β-1,3-glucan synthase, was replaced by pZtNIA1 using targeted sequence replacement. Growth of pZtNIA1::BGS1 CPR transformants was strongly reduced in conditions repressing pZtNIA1, while their growth was similar to wild type in conditions inducing pZtNIA1. This differential phenotype demonstrates that BGS1 is important for growth in Z. tritici. In addition, in inducing conditions, pZtNIA1::BGS1 CPR transformants were hyper-sensitive to Calcofluor white, a cell wall disorganizing agent. Nitrate reductase promoters are therefore suitable for conditional promoter replacement in Z. tritici. This tool is a major step toward identifying novel fungicide targets.

  10. Human gene therapy: a brief overview of the genetic revolution.

    Science.gov (United States)

    Misra, Sanjukta

    2013-02-01

    Advances in biotechnology have brought gene therapy to the forefront of medical research. The prelude to successful gene therapy i.e. the efficient transfer and expression of a variety of human gene into target cells has already been accomplished in several systems. Safe methods have been devised to do this, using several viral and no-viral vectors. Two main approaches emerged: in vivo modification and ex vivo modification. Retrovirus, adenovirus, adeno-associated virus are suitable for gene therapeutic approaches which are based on permanent expression of the therapeutic gene. Non-viral vectors are far less efficient than viral vectors, but they have advantages due to their low immunogenicity and their large capacity for therapeutic DNA. To improve the function of non-viral vectors, the addition of viral functions such as receptor mediated uptake and nuclear translocation of DNA may finally lead to the development of an artificial virus. Gene transfer protocols have been approved for human use in inherited diseases, cancers and acquired disorders. In 1990, the first successful clinical trial of gene therapy was initiated for adenosine deaminase deficiency. Since then, the number of clinical protocols initiated worldwide has increased exponentially. Although preliminary results of these trials are somewhat disappointing, but human gene therapy dreams of treating diseases by replacing or supplementing the product of defective or introducing novel therapeutic genes. So definitely human gene therapy is an effective addition to the arsenal of approaches to many human therapies in the 21st century.

  11. Analysis of the Influence of Hormone Replacement Therapy on Osteocalcin Gene Expression in Postmenopausal Women.

    Science.gov (United States)

    Rahnama, Mansur; Jastrzębska-Jamrogiewicz, Izabela; Jamrogiewicz, Rafał; Trybek, Grzegorz

    2015-01-01

    Osteocalcin (OC) contributes to the process of bone mineralization. Present study was designed to investigate the changes in OC gene expression of postmenopausal women treated with hormone replacement therapy (HRT). Study was also designed to evaluate OC gene expression in cells which are not part of connective tissue. Research was carried out on 30 postmenopausal women not treated and 30 treated with HRT. Examination of OC gene expression was conducted on peripheral blood lymphocytes (PBL) and buccal epithelial lining (BEL). Densitometry was conducted on femur and mandible. Tests revealed OC gene expression in BEL and PBL. BMD was higher in groups treated with HRT. Assessment of correlation between the OC gene expression in BEL and BMD of mandible revealed significant positive relation. OC gene expression can be stated BEL and PBL. Analysis of correlation between OC gene expression in oral cavity and mandible BMD showed significant correlation between local OC expression and local bone metabolism. The relation between OC gene expression and bone metabolism is complex and further research is needed to clear all of the uncertainties.

  12. Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP.

    Science.gov (United States)

    Pawlyk, Basil S; Smith, Alexander J; Buch, Prateek K; Adamian, Michael; Hong, Dong-Hyun; Sandberg, Michael A; Ali, Robin R; Li, Tiansen

    2005-09-01

    Retinitis pigmentosa GTPase regulator (RPGR) is a photoreceptor protein anchored in the connecting cilia by an RPGR-interacting protein (RPGRIP). Loss of RPGRIP causes Leber congenital amaurosis (LCA), a severe form of photoreceptor degeneration. The current study was an investigation of whether somatic gene replacement could rescue degenerating photoreceptors in a murine model of LCA due to a defect in RPGRIP. An RPGRIP expression cassette, driven by a mouse opsin promoter, was packaged into recombinant adeno-associated virus (AAV). The AAV vector was delivered into the right eyes of RPGRIP(-/-) mice by a single subretinal injection into the superior hemisphere. The left eyes received a saline injection as a control. Full-field electroretinograms (ERGs) were recorded from both eyes at 2, 3, 4, and 5 months after injection. After the final follow-up, retinas were analyzed by immunostaining or by light and electron microscopy. Delivery of the AAV vector led to RPGRIP expression and restoration of normal RPGR localization at the connecting cilia. Photoreceptor preservation was evident by a thicker cell layer and well-developed outer segments in the treated eyes. Rescue was more pronounced in the superior hemisphere coincident with the site of delivery. Functional preservation was demonstrated by ERG. AAV-mediated RPGRIP gene replacement preserves photoreceptor structure and function in a mouse model of LCA, despite ongoing cell loss at the time of intervention. These results indicate that gene replacement therapy may be effective in patients with LCA due to a defect in RPGRIP and suggest that further preclinical development of gene therapy for this disorder is warranted.

  13. Concomitant intramuscular human chorionic gonadotropin preserves spermatogenesis in men undergoing testosterone replacement therapy.

    Science.gov (United States)

    Hsieh, Tung-Chin; Pastuszak, Alexander W; Hwang, Kathleen; Lipshultz, Larry I

    2013-02-01

    Testosterone replacement therapy results in decreased serum gonadotropins and intratesticular testosterone, and impairs spermatogenesis, leading to azoospermia in 40% of patients. However, intratesticular testosterone can be maintained during testosterone replacement therapy with co-administration of low dose human chorionic gonadotropin, which may support continued spermatogenesis in patients on testosterone replacement therapy. We retrospectively reviewed the records of hypogonadal men treated with testosterone replacement therapy and concomitant low dose human chorionic gonadotropin. Testosterone replacement consisted of daily topical gel or weekly intramuscular injection with intramuscular human chorionic gonadotropin (500 IU) every other day. Serum and free testosterone, estradiol, semen parameters and pregnancy rates were evaluated before and during therapy. A total of 26 men with a mean age of 35.9 years were included in the study. Mean followup was 6.2 months. Of the men 19 were treated with injectable testosterone and 7 were treated with transdermal gel. Mean serum hormone levels before vs during treatment were testosterone 207.2 vs 1,055.5 ng/dl (p testosterone 8.1 vs 20.4 pg/ml (p = 0.02) and estradiol 2.2 vs 3.7 pg/ml (p = 0.11). Pretreatment semen parameters were volume 2.9 ml, density 35.2 million per ml, motility 49.0% and forward progression 2.3. No differences in semen parameters were observed during greater than 1 year of followup. No impact on semen parameters was observed as a function of testosterone formulation. No patient became azoospermic during concomitant testosterone replacement and human chorionic gonadotropin therapy. Nine of 26 men contributed to pregnancy with the partner during followup. Low dose human chorionic gonadotropin appears to maintain semen parameters in hypogonadal men on testosterone replacement therapy. Concurrent testosterone replacement and human chorionic gonadotropin use may preserve fertility in hypogonadal males

  14. Natural replacement of vertically inherited lux-rib genes of Photobacterium aquimaris by horizontally acquired homologues.

    Science.gov (United States)

    Urbanczyk, Henryk; Furukawa, Takashi; Yamamoto, Yuki; Dunlap, Paul V

    2012-08-01

    We report here the first instance of a complete replacement of vertically inherited luminescence genes by horizontally acquired homologues. Different strains of Photobacterium aquimaris contain homologues of the lux-rib genes that have a different evolutionary history. Strain BS1 from the Black Sea contains a vertically inherited lux-rib operon, which presumably arose in the ancestor of this species, whereas the type strain NBRC 104633(T) , from Sagami Bay, lacks the vertically inherited lux-rib operon and instead carries a complete and functional lux-rib operon acquired horizontally from a bacterium related to Photobacterium mandapamensis. The results indicate that the horizontal acquisition of the lux genes expanded the pan-genome of P. aquimaris, but it did not influence the phylogenetic divergence of this species.

  15. SYBR safe(TM) efficiently replaces ethidium bromide in Aspergillus fumigatus gene disruption.

    Science.gov (United States)

    Canela, H M S; Takami, L A; Ferreira, M E S

    2017-02-08

    Invasive aspergillosis is a disease responsible for high mortality rates, caused mainly by Aspergillus fumigatus. The available drugs are limited and this disease continues to occur at an unacceptable frequency. Gene disruption is essential in the search for new drug targets. An efficient protocol for A. fumigatus gene disruption was described but it requires ethidium bromide, a genotoxic agent, for DNA staining. Therefore, the present study tested SYBR safe(TM), a non-genotoxic DNA stain, in A. fumigatus gene disruption protocol. The chosen gene was cipC, which has already been disrupted successfully in our laboratory. A deletion cassette was constructed in Saccharomyces cerevisiae and used in A. fumigatus transformation. There was no statistical difference between the tested DNA stains. The success rate of S. cerevisiae transformation was 63.3% for ethidium bromide and 70% for SYBR safe(TM). For A. fumigatus gene disruption, the success rate for ethidium bromide was 100 and 97% for SYBR safe(TM). In conclusion, SYBR safe(TM) efficiently replaced ethidium bromide, making this dye a safe and efficient alternative for DNA staining in A. fumigatus gene disruption.

  16. Inverse Medea as a novel gene drive system for local population replacement: a theoretical analysis.

    Science.gov (United States)

    Marshall, John M; Hay, Bruce A

    2011-01-01

    One strategy to control mosquito-borne diseases, such as malaria and dengue fever, on a regional scale is to use gene drive systems to spread disease-refractory genes into wild mosquito populations. The development of a synthetic Medea element that has been shown to drive population replacement in laboratory Drosophila populations has provided encouragement for this strategy but has also been greeted with caution over the concern that transgenes may spread into countries without their consent. Here, we propose a novel gene drive system, inverse Medea, which is strong enough to bring about local population replacement but is unable to establish itself beyond an isolated release site. The system consists of 2 genetic components--a zygotic toxin and maternal antidote--which render heterozygous offspring of wild-type mothers unviable. Through population genetic analysis, we show that inverse Medea will only spread when it represents a majority of the alleles in a population. The element is best located on an autosome and will spread to fixation provided any associated fitness costs are dominant and to very high frequency otherwise. We suggest molecular tools that could be used to build the inverse Medea system and discuss its utility for a confined release of transgenic mosquitoes.

  17. Platelet-rich plasma can replace fetal bovine serum in human meniscus cell cultures

    NARCIS (Netherlands)

    Gonzales, V.K.; Mulder, E.L.W. de; Boer, T. den; Hannink, G.; Tienen, T.G. van; Heerde, W.L. van; Buma, P.

    2013-01-01

    Concerns over fetal bovine serum (FBS) limit the clinical application of cultured tissue-engineered constructs. Therefore, we investigated if platelet-rich plasma (PRP) can fully replace FBS for meniscus tissue engineering purposes. Human PRP and platelet-poor plasma (PPP) were isolated from three h

  18. Complementation of Yeast Genes with Human Genes as an Experimental Platform for Functional Testing of Human Genetic Variants.

    Science.gov (United States)

    Hamza, Akil; Tammpere, Erik; Kofoed, Megan; Keong, Christelle; Chiang, Jennifer; Giaever, Guri; Nislow, Corey; Hieter, Philip

    2015-11-01

    While the pace of discovery of human genetic variants in tumors, patients, and diverse populations has rapidly accelerated, deciphering their functional consequence has become rate-limiting. Using cross-species complementation, model organisms like the budding yeast, Saccharomyces cerevisiae, can be utilized to fill this gap and serve as a platform for testing human genetic variants. To this end, we performed two parallel screens, a one-to-one complementation screen for essential yeast genes implicated in chromosome instability and a pool-to-pool screen that queried all possible essential yeast genes for rescue of lethality by all possible human homologs. Our work identified 65 human cDNAs that can replace the null allele of essential yeast genes, including the nonorthologous pair yRFT1/hSEC61A1. We chose four human cDNAs (hLIG1, hSSRP1, hPPP1CA, and hPPP1CC) for which their yeast gene counterparts function in chromosome stability and assayed in yeast 35 tumor-specific missense mutations for growth defects and sensitivity to DNA-damaging agents. This resulted in a set of human-yeast gene complementation pairs that allow human genetic variants to be readily characterized in yeast, and a prioritized list of somatic mutations that could contribute to chromosome instability in human tumors. These data establish the utility of this cross-species experimental approach. Copyright © 2015 by the Genetics Society of America.

  19. Activities of Human Gene Nomenclature Committee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-16

    The objective of this project, shared between NIH and DOE, has been and remains to enable the medical genetics communities to use common names for genes that are discovered by different gene hunting groups, in different species. This effort provides consistent gene nomenclature and approved gene symbols to the community at large. This contributes to a uniform and consistent understanding of genomes, particularly the human as well as functional genomics based on comparisons between homologous genes in related species (human and mice).

  20. Tailor-made TALEN system for highly efficient targeted gene replacement in the rice blast fungus.

    Science.gov (United States)

    Arazoe, Takayuki; Ogawa, Tetsuo; Miyoshi, Kennosuke; Yamato, Tohru; Ohsato, Shuichi; Sakuma, Tetsushi; Yamamoto, Takashi; Arie, Tsutomu; Kuwata, Shigeru

    2015-07-01

    Genetic manipulation is key to unraveling gene functions and creating genetically modified strains of microbial organisms. Recently, engineered nucleases that can generate DNA double-strand breaks (DSBs) at a specific site in the desired locus within genome are utilized in a rapidly developing genome editing technology via DSBs repair. However, the use of engineered nucleases in filamentous fungi has not been validated. In this study, we demonstrated that tailor-made transcriptional activator-like effector nucleases (TALENs) system, Platinum-Fungal TALENs (PtFg TALENs), could improve the efficiency of homologous recombination-mediated targeted gene replacement by up to 100% in the rice blast fungus Pyricularia oryzae. This high-efficiency PtFg TALEN has great potential for basic and applied biological applications in filamentous fungi.

  1. Targeted Gene Replacement in Fungal Pathogens via Agrobacterium tumefaciens- Mediated Transformation

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Frandsen, Mette; Giese, Nanna Henriette

    2012-01-01

    Genome sequence data on fungal pathogens provide the opportunity to carry out a reverse genetics approach to uncover gene function. Efficient methods for targeted genome modifications such as knockout and in locus over-expression are in high demand. Here we describe two efficient single...... on specific structures in the binary vector. The available fungal binary vectors adapted for the USER system are described and protocols are provided for vector design and construction. A general protocol for verification of the resulting gene replacement events in the recipient fungal cells is also given....... The cloning systems described above are relevant for all transformation vector constructs, but here we describe their application for ATMT compatible binary vectors. Protocols are provided for ATMT exemplified by Fusarium graminearum. For large-scale reverse genetic projects, the USER technology...

  2. Human protein C: new preparations. Effective replacement therapy for some clotting disorders.

    Science.gov (United States)

    2003-02-01

    (1) Depending on its severity, congenital protein C deficiency can cause a variety of problems, such as increasing the frequency of venous thrombosis in high risk situations; recurrent venous thrombosis; skin necrosis at the start of treatment with a vitamin K antagonist; and severe thrombotic events in neonates. For many years the only available replacement treatment consisted of fresh frozen plasma which, among other adverse effects, carries a risk of hypervolemia. (2) Two human protein C concentrates prepared from donated blood have been given marketing authorisation in Europe for intravenous replacement therapy (Ceprotin from Baxter, and Protexel from LFB). (3) Their clinical files contain only retrospective case series (22 children with severe deficiency treated with Ceprotin; and 10 patients of various ages and with different degrees of severity treated with Protexel). The two preparations have not been compared with each other. (4) In patients with severe protein C deficiency, including neonates, replacement therapy with human protein C is effective, especially for treating cutaneous thrombosis and preventing thrombosis in high risk situations. (5) In patients with moderate deficiency, a short-course of human protein C prophylaxis reduces the frequency of thrombosis in high risk situations. (6) In long-term prophylaxis, human protein C replacement therapy, added to ongoing (but inadequately effective) vitamin K antagonist therapy, seems to reduce the risk of recurrent venous thrombosis even though it has some constraints. (7) The adverse effects of the two preparations are poorly documented. Allergic reactions and bleeding have been reported. Human protein C is a blood product, and therefore carries a risk of infection. (8) Ceprotin offers a small advantage, being available in two dose strengths: for a given dose the volume injected is halved. (9) In practice, Ceprotin and Protexel are the reference drugs for replacement therapy of constitutional protein C

  3. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design.

    Science.gov (United States)

    Zhao, Yongping; Zhang, Congsheng; Liu, Wenwen; Gao, Wei; Liu, Changlin; Song, Gaoyuan; Li, Wen-Xue; Mao, Long; Chen, Beijiu; Xu, Yunbi; Li, Xinhai; Xie, Chuanxiao

    2016-04-01

    Precision DNA/gene replacement is a promising genome-editing tool that is highly desirable for molecular engineering and breeding by design. Although the CRISPR/Cas9 system works well as a tool for gene knockout in plants, gene replacement has rarely been reported. Towards this end, we first designed a combinatory dual-sgRNA/Cas9 vector (construct #1) that successfully deleted miRNA gene regions (MIR169a and MIR827a). The deletions were confirmed by PCR and subsequent sequencing, yielding deletion efficiencies of 20% and 24% on MIR169a and MIR827a loci, respectively. We designed a second structure (construct #2) that contains sites homologous to Arabidopsis TERMINAL FLOWER 1 (TFL1) for homology-directed repair (HDR) with regions corresponding to the two sgRNAs on the modified construct #1. The two constructs were co-transformed into Arabidopsis plants to provide both targeted deletion and donor repair for targeted gene replacement by HDR. Four of 500 stably transformed T0 transgenic plants (0.8%) contained replaced fragments. The presence of the expected recombination sites was further confirmed by sequencing. Therefore, we successfully established a gene deletion/replacement system in stably transformed plants that can potentially be utilized to introduce genes of interest for targeted crop improvement.

  4. Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.

    Science.gov (United States)

    Macdonald, Lynn E; Karow, Margaret; Stevens, Sean; Auerbach, Wojtek; Poueymirou, William T; Yasenchak, Jason; Frendewey, David; Valenzuela, David M; Giallourakis, Cosmas C; Alt, Frederick W; Yancopoulos, George D; Murphy, Andrew J

    2014-04-01

    Genetic humanization, which involves replacing mouse genes with their human counterparts, can create powerful animal models for the study of human genes and diseases. One important example of genetic humanization involves mice humanized for their Ig genes, allowing for human antibody responses within a mouse background (HumAb mice) and also providing a valuable platform for the generation of fully human antibodies as therapeutics. However, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which they were genetically humanized. Heretofore, most genetic humanizations have involved disruption of the endogenous mouse gene with simultaneous introduction of a human transgene at a new and random location (so-called KO-plus-transgenic humanization). More recent efforts have attempted to replace mouse genes with their human counterparts at the same genetic location (in situ humanization), but such efforts involved laborious procedures and were limited in size and precision. We describe a general and efficient method for very large, in situ, and precise genetic humanization using large compound bacterial artificial chromosome-based targeting vectors introduced into mouse ES cells. We applied this method to genetically humanize 3-Mb segments of both the mouse heavy and κ light chain Ig loci, by far the largest genetic humanizations ever described. This paper provides a detailed description of our genetic humanization approach, and the companion paper reports that the humoral immune systems of mice bearing these genetically humanized loci function as efficiently as those of WT mice.

  5. Novel Cellulase Profile of Trichoderma reesei Strains Constructed by cbh1 Gene Replacement with eg3 Gene Expression Cassette

    Institute of Scientific and Technical Information of China (English)

    Tian-Hong WANG; Ti LIU; Zhi-Hong WU; Shi-Li LIU; Yi LU; Yin-Bo QU

    2004-01-01

    To construct strains of the filamentous fungus Trichoderma reesei with low cellobiohydrolases while high endoglucanase activity, the Pcbh1-eg3-Tcbh1 cassette was constructed and the coding sequence of the cellobiohydrolase I (CBHI) gene was replaced with the coding sequence of the eg3 gene by homologous recombination. Disruption of the cbh1 gene was confirmed by PCR, Southern dot blot and Western hybridization analysis in two transforments denoted as L 13 and L29. The filter paper-hydrolyzing activity of strain L29 was 60% of the parent strain Rut C30, and the CMCase activity was increased by 33%. This relatively modest increase suggested that the eg3 cDNA under the control of the cbh1 promoter was not efficiently transcribed as the wild type cbhl gene. However our results confirmed that homologous recombination could be used to construct strains of the filamentous fungus Trichoderma reesei with novel cellulase profile. Such strains are of interest from the basic science perspective and also have potential industrial applications.

  6. Ultrasound-targeted transfection of tissue-type plasminogen activator gene carried by albumin nanoparticles to dog myocardium to prevent thrombosis after heart mechanical valve replacement

    Directory of Open Access Journals (Sweden)

    Ji J

    2012-06-01

    . Venous blood t-PA and D-dimer contents were tested before and 1, 2, 4, and 8 weeks after the operation.Results: The high expression of t-PA could be seen in myocardium with increases in blood t-PA and D-dimer contents and thrombosis was prevented 8 weeks after operation.Conclusion: We successfully fabricated an albumin nano-t-PA gene ultrasound-targeted agent that could prevent dog thrombosis after mechanical heart valve replacement. Our study provides an experimental basis for prevention of human thrombosis-related diseases.Keywords: albumin nanoparticles, ultrasonic microbubbles, valve replacement

  7. Homologous recombination and gene replacement at the dihydrofolate reductase-thymidylate synthase locus in Toxoplasma gondii.

    Science.gov (United States)

    Donald, R G; Roos, D S

    1994-02-01

    To investigate the feasibility of genomic transgene expression and gene targeting in Toxoplasma gondii, parasites have been transfected with constructs differing in the length of contiguous genomic sequence spanning the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene. We have previously reported that vectors derived from a DHFR-TS cDNA 'minigene' containing mutations in the DHFR coding sequence confer pyrimethamine resistance to transfected parasites (Donald and Roos, 1993). Stably resistant parasite clones arise at high frequency, generally by virtue of transgene integration into parasite chromosomes at locations scattered throughout the genome. In contrast, using a vector which contains 8 kb of contiguous genomic sequence (vs. homologous recombination. Homologous recombination appears to occur at even higher frequency when a 16 kb genomic clone is used. Circular plasmids were more efficient than linearized molecules at producing homologous recombination in this system, integrating by reciprocal crossing-over to produce a duplication of the DHFR-TS locus. Double crossing-over (or gene conversion) was also observed at low frequency, resulting in complete allelic replacement in this haploid stage of the parasite. The ability to produce either homologous or non-homologous recombinants, by the selection of appropriate transformation constructs, has considerable genetic potential.

  8. Inhibition of RecBCD in Klebsiella pneumoniae by Gam and its effect on the efficiency of gene replacement.

    Science.gov (United States)

    Chen, Chuan; Wei, Dong; Liu, Pengfu; Wang, Min; Shi, Jiping; Jiang, Biao; Hao, Jian

    2016-02-01

    Gam protein is an inhibitor of the host RecBCD exonuclease, and this inhibition is essential to the proficiency of Red recombinase-mediated gene replacement. In Klebsiella pneumoniae, the efficiency of this gene replacement was lower than that in Escherichia coli, and the minimum length of homologous extensions required was longer. Thus, it was supposed that the inhibitory effect of Gam against RecBCD was weak in K. pneumoniae. To test this hypothesis, a Gam-deficient Red recombinase expression plasmid and a ΔrecB K. pneumoniae mutant were constructed. The Gam-deficient Red recombinase showed a reduced capacity for gene replacement compared with that of the complete Red recombinase. The efficiency of gene replacement in the ΔrecB mutant was 6-8 times higher than the wild-type strain, and the minimum length for the homologous extensions was reduced to 100 bp. These results indicate that Gam does inhibit the RecBCD exonuclease in K. pneumoniae, but that this inhibition is not stringent. Furthermore, mutation of recB presents a convenient and efficient method to enhance the Red recombinase assisted gene replacement in K. pneumoniae.

  9. Excretion of antibiotic resistance genes by dairy calves fed milk replacers with varying doses of antibiotics

    Directory of Open Access Journals (Sweden)

    Callie H. Thames

    2012-04-01

    Full Text Available Elevated levels of antibiotic resistance genes (ARGs in soil and water have been linked to livestock farms and in some cases feed antibiotics may select for antibiotic resistant gut microbiota. The purpose of this study was to examine the establishment of ARGs in the feces of calves receiving milk replacer containing no antibiotics versus subtherapeutic or therapeutic doses of tetracycline and neomycin. The effect of antibiotics on calf health was also of interest. Twenty-eight male and female dairy calves were assigned to one of the three antibiotic treatment groups at birth and fecal samples were collected at weeks 6, 7 (prior to weaning, and 12 (5 weeks after weaning. ARGs corresponding to the tetracycline (tetC, tetG, tetO, tetW, and tetX, macrolide (ermB, ermF, and sulfonamide (sul1, sul2 classes of antibiotics along with the class I integron gene, intI1, were monitored by quantitative polymerase chain reaction as potential indicators of direct selection, co-selection, or horizontal gene transfer of ARGs. Surprisingly, there was no significant effect of antibiotic treatment on the absolute abundance (gene copies/ g wet manure of any of the ARGs except ermF, which was lower in the antibiotic-treated calf manure, presumably because a significant portion of host bacterial cells carrying ermF were not resistant to tetracycline or neomycin. However, relative abundance (gene copies normalized to 16S rRNA genes of tetO was higher in calves fed the highest dose of antibiotic than in the other treatments. All genes, except tetC and intI1, were detectable in feces from 6 weeks onwards, and tetW and tetG significantly increased (P<0.10, even in control calves. Overall, the results provide new insight into the colonization of calf gut flora with ARGs in the early weeks. Although feed antibiotics exerted little effect on the ARGs monitored in this study, the fact that they also provided no health benefit suggests that the greater than conventional

  10. Three-parent in vitro fertilization: gene replacement for the prevention of inherited mitochondrial diseases.

    Science.gov (United States)

    Amato, Paula; Tachibana, Masahito; Sparman, Michelle; Mitalipov, Shoukhrat

    2014-01-01

    The exchange of nuclear genetic material between oocytes and embryos offers a novel reproductive option for the prevention of inherited mitochondrial diseases. Mitochondrial dysfunction has been recognized as a significant cause of a number of serious multiorgan diseases. Tissues with a high metabolic demand, such as brain, heart, muscle, and central nervous system, are often affected. Mitochondrial disease can be due to mutations in mitochondrial DNA or in nuclear genes involved in mitochondrial function. There is no curative treatment for patients with mitochondrial disease. Given the lack of treatments and the limitations of prenatal and preimplantation diagnosis, attention has focused on prevention of transmission of mitochondrial disease through germline gene replacement therapy. Because mitochondrial DNA is strictly maternally inherited, two approaches have been proposed. In the first, the nuclear genome from the pronuclear stage zygote of an affected woman is transferred to an enucleated donor zygote. A second technique involves transfer of the metaphase II spindle from the unfertilized oocyte of an affected woman to an enucleated donor oocyte. Our group recently reported successful spindle transfer between human oocytes, resulting in blastocyst development and embryonic stem cell derivation, with very low levels of heteroplasmy. In this review we summarize these novel assisted reproductive techniques and their use to prevent transmission of mitochondrial disorders. The promises and challenges are discussed, focusing on their potential clinical application.

  11. Animal-free toxicology: the use of human tissue to replace the use of animals - examples from human biomonitoring and human placental transport studies.

    Science.gov (United States)

    Knudsen, Lisbeth E

    2013-12-01

    Human data on exposure and adverse effects are the most appropriate for human risk assessment, and modern toxicology focuses on human pathway analysis and the development of human biomarkers. Human biomonitoring and human placental transport studies provide necessary information for human risk assessment, in accordance with the legislation on chemical, medicine and food safety. Toxicology studies based on human mechanistic and exposure information can replace animal studies. These animal-free approaches can be further supplemented by new in silico methods and chemical structure-activity relationships. The inclusion of replacement expertise in the international Three Rs centres, the ongoing exploration of alternatives to animal research, and the improvement of conditions for research animals, all imply the beginning of a paradigm shift in toxicology research toward the use of human data.

  12. Genes Causing Male Infertility in Humans

    Institute of Scientific and Technical Information of China (English)

    Lawrence C. Layman

    2002-01-01

    There are an accumulating number of identified gene mutations that cause infertility in humans. Most of the known gene mutations impair normal puberty and subsequently cause infertility by either hypothalamic /pituitary deficiency of important tropic factors to the gonad or by gonadal genes.

  13. Editing Transgenic DNA Components by Inducible Gene Replacement in Drosophila melanogaster.

    Science.gov (United States)

    Lin, Chun-Chieh; Potter, Christopher J

    2016-08-01

    Gene conversions occur when genomic double-strand DNA breaks (DSBs) trigger unidirectional transfer of genetic material from a homologous template sequence. Exogenous or mutated sequence can be introduced through this homology-directed repair (HDR). We leveraged gene conversion to develop a method for genomic editing of existing transgenic insertions in Drosophila melanogaster The clustered regularly-interspaced palindromic repeats (CRISPR)/Cas9 system is used in the H: omology A: ssisted C: RISPR K: nock-in (HACK) method to induce DSBs in a GAL4 transgene, which is repaired by a single-genomic transgenic construct containing GAL4 homologous sequences flanking a T2A-QF2 cassette. With two crosses, this technique converts existing GAL4 lines, including enhancer traps, into functional QF2 expressing lines. We used HACK to convert the most commonly-used GAL4 lines (labeling tissues such as neurons, fat, glia, muscle, and hemocytes) to QF2 lines. We also identified regions of the genome that exhibited differential efficiencies of HDR. The HACK technique is robust and readily adaptable for targeting and replacement of other genomic sequences, and could be a useful approach to repurpose existing transgenes as new genetic reagents become available.

  14. Laboratory Investigation Of Partial Replacement Of Coarse Aggregate By Plastic Chips And Cement By Human Hair

    Directory of Open Access Journals (Sweden)

    A.S.Balaji

    2014-04-01

    Full Text Available The use of plastic is increasing day by day, although steps were taken to reduce its consumption. The suitability of recycled plastics as coarse aggregate in concrete and its advantage are discussed here. Experimental investigation was done using M20 mix and tests were carried out as per recommended procedures by relevant codes. As 100% replacement of natural coarse aggregate (NCA with plastic coarse aggregate (PCA is not feasible, partial replacement were examined. And also Hair is used as a fibred reinforcing material in concrete as partial replacement of cement. It has a high tensile strength which is equal to that of a copper wire with similar diameter. It is also available in abundance and at a very low cost. Tests were conducted to determine the properties of plastic aggregate and human hair such as density, specific gravity and crushing value. Experiments were conducted on concrete cubes with various percentages of human hair i.e. 0%, 0.5%, 1%, 1.5%, 2%, and 3% by weight of cement and with constant percentage of plastic aggregate as 20%.

  15. Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum.

    Science.gov (United States)

    Gilles, Anna F; Schinko, Johannes B; Averof, Michalis

    2015-08-15

    Gene-editing techniques are revolutionizing the way we conduct genetics in many organisms. The CRISPR/Cas nuclease has emerged as a highly versatile, efficient and affordable tool for targeting chosen sites in the genome. Beyond its applications in established model organisms, CRISPR technology provides a platform for genetic intervention in a wide range of species, limited only by our ability to deliver it to cells and to select mutations efficiently. Here, we test the CRISPR technology in an emerging insect model and pest, the beetle Tribolium castaneum. We use simple assays to test CRISPR/Cas activity, we demonstrate efficient expression of guide RNAs and Cas9 from Tribolium U6 and hsp68 promoters and we test the efficiency of knockout and knock-in approaches in Tribolium. We find that 55-80% of injected individuals carry mutations (indels) generated by non-homologous end joining, including mosaic bi-allelic knockouts; 71-100% carry such mutations in their germ line and transmit them to the next generation. We show that CRISPR-mediated gene knockout of the Tribolium E-cadherin gene causes defects in dorsal closure, which is consistent with RNAi-induced phenotypes. Homology-directed knock-in of marker transgenes was observed in 14% of injected individuals and transmitted to the next generation by 6% of injected individuals. Previous work in Tribolium mapped a large number of transgene insertions associated with developmental phenotypes and enhancer traps. We present an efficient method for re-purposing these insertions, via CRISPR-mediated replacement of these transgenes by new constructs.

  16. Replacement of murine fibroblasts by human fibroblasts irradiated in obtaining feeder layer for the culture of human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshito, Daniele; Sufi, Bianca S.; Santin, Stefany P.; Mathor, Monica B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Altran, Silvana C.; Isaac, Cesar [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Lab. de Microcirurgia Plastica; Esteves-Pedro, Natalia M. [Universidade Sao Paulo (USP), Sao Paulo, SP (Brazil). Fac. de Ciencias Farmaceuticas. Lab. de Controle Biologico; Herson, Marisa R. [DonorTissue Bank of Victoria (Australia)

    2011-07-01

    Human autologous epithelia cultivated in vitro, have been used successfully in treating damage to skin integrity. The methodology allowed the cultivation of these epithelia was described by Rheinwald and Green in 1975, this methodology consisted in seeding keratinocytes onto a feeder layer composed of lineage 3T3 murine fibroblasts, the proliferation rate is controlled through the action of ionizing radiation. However, currently there is a growing concern about the possibility of transmitting prions and murine viruses to transplanted patients. Taking into account this concern, in this present work, we replaced the feeder layer originally composed of murine fibroblasts by human fibroblasts. To obtain this new feeder layer was necessary to standardize the enough irradiation dose to inhibit the replication of human fibroblasts and the verification of effectiveness of the development of keratinocytes culture on a feeder layer thus obtained. According to the obtained results we can verify that the human fibroblasts irradiated at various tested doses (60, 70, 100, 200, 250 and 300 Gy) had their mitotic activity inactivated by irradiation, allowing the use of any of these doses to confection of the feeder layer, since these fibroblasts irradiated still showed viable until fourteen days of cultivation. In the test of colony formation efficiency was observed that keratinocytes seeded on irradiated human fibroblasts were able to develop satisfactorily, preserving their clonogenic potential. Therefore it was possible the replacement of murine fibroblasts by human fibroblasts in confection of the feeder layer, in order to eliminate this xenobiotic component of the keratinocytes culture. (author)

  17. Enriching Glucoraphanin in Brassica rapa Through Replacement of BrAOP2.2/BrAOP2.3 with Non-functional Genes

    Directory of Open Access Journals (Sweden)

    Zhiyuan Liu

    2017-08-01

    Full Text Available Sulforaphane, the hydrolytic product of glucoraphanin glucosinolate, is a potent anticarcinogen that reduces the risk of several human cancers. However, in most B. rapa vegetables, glucoraphanin is undetectable or only present in trace amounts, since the glucoraphanin that is present is converted to gluconapin by three functional BrAOP2 genes. In this study, to enrich beneficial glucoraphanin content in B. rapa, the functional BrAOP2 alleles were replaced by non-functional counterparts through marker-assisted backcrossing (MAB. We identified non-functional mutations of two BrAOP2 genes from B. rapa. The backcross progenies with introgression of both non-functional braop2.2 and braop2.3 alleles significantly increased the glucoraphanin content by 18 times relative to the recurrent parent. In contrast, replacement or introgression of single non-functional braop2.2 or braop2.3 locus did not change glucoraphanin content. Our results suggest that replacement of these two functional BrAOP2 genes with non-functional alleles has the potential for producing improved Brassica crops with enriched beneficial glucoraphanin content.

  18. Advanced studies on human gene ZNF322

    Institute of Scientific and Technical Information of China (English)

    LI Yongqing; WANG Yuequn; YUAN Wuzhou; DENG Yun; ZHU Chuanbing; WU Xiushan

    2007-01-01

    The human novel gene of ZNF322 is cloned from human fetal eDNA library using the primers on the basis of the ZNF322 sequence analyzed with computer.The gene is located on Chromosome 6p22.1,and encodes a protein consisting of 402 amino acid residues and containing nine tandem C2H2-type zinc-finger motifs.Northern blot result shows that the gene is expressed in all examined adult tissues.Subcellular location study indicates that ZNF322-EGFP fusion protein is distributed in the nucleus and cytoplasm.Reporter gene assays show that ZNF322 is a potential transcriptional activator.

  19. Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9.

    Science.gov (United States)

    Fang, Yufeng; Tyler, Brett M

    2016-01-01

    Phytophthora sojae is an oomycete pathogen of soybean. As a result of its economic importance, P. sojae has become a model for the study of oomycete genetics, physiology and pathology. The lack of efficient techniques for targeted mutagenesis and gene replacement have long hampered genetic studies of pathogenicity in Phytophthora species. Here, we describe a CRISPR/Cas9 system enabling rapid and efficient genome editing in P. sojae. Using the RXLR effector gene Avr4/6 as a target, we observed that, in the absence of a homologous template, the repair of Cas9-induced DNA double-strand breaks (DSBs) in P. sojae was mediated by non-homologous end-joining (NHEJ), primarily resulting in short indels. Most mutants were homozygous, presumably as a result of gene conversion triggered by Cas9-mediated cleavage of non-mutant alleles. When donor DNA was present, homology-directed repair (HDR) was observed, which resulted in the replacement of Avr4/6 with the NPT II gene. By testing the specific virulence of several NHEJ mutants and HDR-mediated gene replacements in soybean, we have validated the contribution of Avr4/6 to recognition by soybean R gene loci, Rps4 and Rps6, but also uncovered additional contributions to resistance by these two loci. Our results establish a powerful tool for the study of functional genomics in Phytophthora, which provides new avenues for better control of this pathogen.

  20. Crystallization and molecular-replacement solution of a truncated form of human recombinant tetranectin

    DEFF Research Database (Denmark)

    Nielsen, Betina Bryde; Kastrup, Jette Sandholm Jensen; Rasmussen, Hanne B.;

    2000-01-01

    The two C-terminal domains, TN23 (residues 17-181), of human recombinant tetranectin, a plasminogen kringle 4 binding C-type lectin, have been crystallized in two different space groups. Using PEG 8000 as precipitant and at a pH of 8.5, crystals belonging to the monoclinic space group C2 are obta.......5 A has been collected from the monoclinic crystals. Using the structure of full-length tetranectin, a molecular-replacement solution has been obtained. The crystal packing shows that TN23 crystallizes as a trimer, with one trimer in the asymmetric unit....

  1. Optimal Fluxes, Reaction Replaceability, and Response to Enzymopathies in the Human Red Blood Cell

    Directory of Open Access Journals (Sweden)

    A. De Martino

    2010-01-01

    most harmful reaction knockouts. The integration of combinatorial methods with sampling techniques to explore the space of viable flux states may provide crucial insights on this issue. We assess the replaceability of every metabolic conversion in the human red blood cell by enumerating the alternative paths from substrate to product, obtaining a complete map of he potential damage of single enzymopathies. Sampling the space of optimal steady state fluxes in the healthy and in the mutated cell reveals both correlations and complementarity between topologic and dynamical aspects.

  2. Two Y genes can replace the entire Y chromosome for assisted reproduction in the mouse.

    Science.gov (United States)

    Yamauchi, Yasuhiro; Riel, Jonathan M; Stoytcheva, Zoia; Ward, Monika A

    2014-01-03

    The Y chromosome is thought to be important for male reproduction. We have previously shown that, with the use of assisted reproduction, live offspring can be obtained from mice lacking the entire Y chromosome long arm. Here, we demonstrate that live mouse progeny can also be generated by using germ cells from males with the Y chromosome contribution limited to only two genes, the testis determinant factor Sry and the spermatogonial proliferation factor Eif2s3y. Sry is believed to function primarily in sex determination during fetal life. Eif2s3y may be the only Y chromosome gene required to drive mouse spermatogenesis, allowing formation of haploid germ cells that are functional in assisted reproduction. Our findings are relevant, but not directly translatable, to human male infertility cases.

  3. Genome editing for human gene therapy.

    Science.gov (United States)

    Meissner, Torsten B; Mandal, Pankaj K; Ferreira, Leonardo M R; Rossi, Derrick J; Cowan, Chad A

    2014-01-01

    The rapid advancement of genome-editing techniques holds much promise for the field of human gene therapy. From bacteria to model organisms and human cells, genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9 have been successfully used to manipulate the respective genomes with unprecedented precision. With regard to human gene therapy, it is of great interest to test the feasibility of genome editing in primary human hematopoietic cells that could potentially be used to treat a variety of human genetic disorders such as hemoglobinopathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant primary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor cells. By using two guide RNAs directed at a single locus, we achieve highly efficient and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion protein allows FACS-based enrichment of the transfected cells. The ease of designing, constructing, and testing guide RNAs makes this dual guide strategy an attractive approach for the efficient deletion of clinically relevant genes in primary human hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene therapy.

  4. Alterations of FHIT Gene and P16 Gene in Nickel Transformed Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    WEI-DONG JI; JIA-KUN CHEN; JIA-CHUN LU; ZHONG-LIANG WU; FEI YI; SU-MEI FENG

    2006-01-01

    To study the alterations of FHIT gene and P16 gene in malignant transformed human bronchial epithelial cells induced by crystalline nickel sulfide using an immoral human bronchial epithelial cell line, and to explore the molecular mechanism of nickel carcinogenesis. Methods 16HBE cells were treated 6 times with different concentrations of NiS in vitro, and the degree of malignant transformation was determined by assaying the anchorage-independent growth and tumorigenicity. Malignant transformed cells and tumorigenic cells were examined for alterations of FHIT gene and P16 gene using RT-PCR, DNA sequencing, silver staining PCR-SSCP and Western blotting. Results NiS-treated cells exhibited overlapping growth. Compared with that of negative control cells, soft agar colony formation efficiency of NiS-treated cells showed significant increases (P<0.01) and dose-dependent effects. NiS-treated cells could form tumors in nude mice, and a squamous cell carcinoma was confirmed by histopathological examination. No mutation of exon 2 and exons 2-3, no abnormal expression in p16 gene and mutation of FHIT exons 5-8 and exons 1-4 or exons 5-9 were observed in transformed cells and tumorigenic cells. However, aberrant transcripts or loss of expression of the FHIT gene and Fhit protein was observed in transformed cells and tumorigenic cells. One of the aberrant transcripts in the FHIT gene was confirmed to have a deletion of exon 6, exon 7, exon 8, and an insertion of a 36 bp sequence replacing exon 6-8. Conclusions The FHIT gene rather than the P16 gene, plays a definite role in nickel carcinogenesis. Alterations of the FHIT gene induced by crystalline NiS may be a molecular event associated with carcinogen, chromosome fragile site instability and cell malignant transformation. FHIT may be an important target gene activated by nickel and other exotic carcinogens.

  5. Antibody repertoire diversification through VH gene replacement in mice cloned from an IgA plasma cell.

    Science.gov (United States)

    Kumar, Rashmi; Bach, Martina P; Mainoldi, Federica; Maruya, Mikako; Kishigami, Satoshi; Jumaa, Hassan; Wakayama, Teruhiko; Kanagawa, Osami; Fagarasan, Sidonia; Casola, Stefano

    2015-02-01

    In mammals, VDJ recombination is responsible for the establishment of a highly diversified preimmune antibody repertoire. Acquisition of a functional Ig heavy (H) chain variable (V) gene rearrangement is thought to prevent further recombination at the IgH locus. Here, we describe VHQ52(NT); Vκgr32(NT) Ig monoclonal mice reprogrammed from the nucleus of an intestinal IgA(+) plasma cell. In VHQ52(NT) mice, IgA replaced IgM to drive early B-cell development and peripheral B-cell maturation. In VHQ52(NT) animals, over 20% of mature B cells disrupted the single productive, nonautoimmune IgH rearrangement through VH replacement and exchanged it with a highly diversified pool of IgH specificities. VH replacement occurred in early pro-B cells, was independent of pre-B-cell receptor signaling, and involved predominantly one adjacent VH germ-line gene. VH replacement was also identified in 5% of peripheral B cells of mice inheriting a different productive VH rearrangement expressed in the form of an IgM H chain. In summary, editing of a productive IgH rearrangement through VH replacement can account for up to 20% of the IgH repertoire expressed by mature B cells.

  6. Human proton/oligopeptide transporter (POT) genes

    DEFF Research Database (Denmark)

    Botka, C. W.; Wittig, T. W.; Graul, R. C.

    2000-01-01

    The proton-dependent oligopeptide transporters (POT) gene family currently consists of approximately 70 cloned cDNAs derived from diverse organisms. In mammals, two genes encoding peptide transporters, PepT1 and PepT2 have been cloned in several species including humans, in addition to a rat...... histidine/peptide transporter (rPHT1). Because the Candida elegans genome contains five putative POT genes, we searched the available protein and nucleic acid databases for additional mammalian/human POT genes, using iterative BLAST runs and the human expressed sequence tags (EST) database. The apparent...... human orthologue of rPHT1 (expression largely confined to rat brain and retina) was represented by numerous ESTs originating from many tissues. Assembly of these ESTs resulted in a contiguous sequence covering approximately 95% of the suspected coding region. The contig sequences and analyses revealed...

  7. Gene Expression in the Human Endolymphatic Sac

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2015-01-01

    OBJECTIVES/HYPOTHESIS: The purpose of the present study is to explore, demonstrate, and describe the expression of genes related to the solute carrier (SLC) molecules of ion transporters in the human endolymphatic sac. STUDY DESIGN: cDNA microarrays and immunohistochemistry were used for analyses...... of fresh human endolymphatic sac tissue samples. METHODS: Twelve tissue samples of the human endolymphatic sac were obtained during translabyrinthine surgery for vestibular schwannoma. Microarray technology was used to investigate tissue sample expression of solute carrier family genes, using adjacent dura...... mater as control. Immunohistochemistry was used for verification of translation of selected genes, as well as localization of the specific protein within the sac. RESULTS: An extensive representation of the SLC family genes were upregulated in the human endolymphatic sac, including SLC26a4 Pendrin, SLC4...

  8. The structure-specific endonuclease Ercc1–Xpf is required for targeted gene replacement in embryonic stem cells

    Science.gov (United States)

    Niedernhofer, Laura J.; Essers, Jeroen; Weeda, Geert; Beverloo, Berna; de Wit, Jan; Muijtjens, Manja; Odijk, Hanny; Hoeijmakers, Jan H.J.; Kanaar, Roland

    2001-01-01

    The Ercc1–Xpf heterodimer, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair and homologous recombination. Ercc1–Xpf incises double-stranded DNA at double-strand/single-strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here we demonstrate that although Ercc1 is dispensable for recombination between sister chromatids, it is essential for targeted gene replacement in mouse embryonic stem cells. Surprisingly, the role of Ercc1–Xpf in gene targeting is distinct from its previously identified role in removing nonhomologous termini from recombination intermediates because it was required irrespective of whether the ends of the DNA targeting constructs were heterologous or homologous to the genomic locus. Our observations have implications for the mechanism of gene targeting in mammalian cells and define a new role for Ercc1–Xpf in mammalian homologous recombination. We propose a model for the mechanism of targeted gene replacement that invokes a role for Ercc1–Xpf in making the recipient genomic locus receptive for gene replacement. PMID:11707424

  9. Expression and purification of a human, soluble Arylsulfatase A for Metachromatic Leukodystrophy enzyme replacement therapy.

    Science.gov (United States)

    Martino, Sabata; Consiglio, Antonella; Cavalieri, Cristina; Tiribuzi, Roberto; Costanzi, Egidia; Severini, Giovanni Maria; Emiliani, Carla; Bordignon, Claudio; Orlacchio, Aldo

    2005-05-25

    The production of active Arylsulfatase A is a key step in the development of enzyme replacement therapy for Metachromatic Leukodystrophy. To obtain large amounts of purified Arylsulfatase A for therapeutic use, we combined a retroviral expression system with a versatile and rapid purification protocol that can easily and reliably be adapted to high-throughput applications. The purification method consists of an initial ion-exchange DEAE-cellulose chromatography step followed by immuno-affinity purification using a polyclonal antibody against a 29-mer peptide of the Arylsulfatase A sequence. Immuno-adsorbed protein was eluted with a combination of acidic pH and an optimal concentration of the 29-mer peptide. This protocol reproducibly yielded approximately 100 microg of >99% pure human Arylsulfatase A, corresponding to 152 mU of enzyme activity, per liter of culture medium with properties similar to those of human non-recombinant protein.

  10. Protein replacement therapy and gene transfer in canine models of hemophilia A, hemophilia B, von willebrand disease, and factor VII deficiency.

    Science.gov (United States)

    Nichols, Timothy C; Dillow, Aaron M; Franck, Helen W G; Merricks, Elizabeth P; Raymer, Robin A; Bellinger, Dwight A; Arruda, Valder R; High, Katherine A

    2009-01-01

    Dogs with hemophilia A, hemophilia B, von Willebrand disease (VWD), and factor VII deficiency faithfully recapitulate the severe bleeding phenotype that occurs in humans with these disorders. The first rational approach to diagnosing these bleeding disorders became possible with the development of reliable assays in the 1940s through research that used these dogs. For the next 60 years, treatment consisted of replacement of the associated missing or dysfunctional protein, first with plasma-derived products and subsequently with recombinant products. Research has consistently shown that replacement products that are safe and efficacious in these dogs prove to be safe and efficacious in humans. But these highly effective products require repeated administration and are limited in supply and expensive; in addition, plasma-derived products have transmitted bloodborne pathogens. Recombinant proteins have all but eliminated inadvertent transmission of bloodborne pathogens, but the other limitations persist. Thus, gene therapy is an attractive alternative strategy in these monogenic disorders and has been actively pursued since the early 1990s. To date, several modalities of gene transfer in canine hemophilia have proven to be safe, produced easily detectable levels of transgene products in plasma that have persisted for years in association with reduced bleeding, and correctly predicted the vector dose required in a human hemophilia B liver-based trial. Very recently, however, researchers have identified an immune response to adeno-associated viral gene transfer vector capsid proteins in a human liver-based trial that was not present in preclinical testing in rodents, dogs, or nonhuman primates. This article provides a review of the strengths and limitations of canine hemophilia, VWD, and factor VII deficiency models and of their historical and current role in the development of improved therapy for humans with these inherited bleeding disorders.

  11. Direct evidence for redundant segmental replacement between multiple 18S rRNA genes in a single Prototheca strain.

    Science.gov (United States)

    Ueno, Ryohei; Huss, Volker A R; Urano, Naoto; Watabe, Shugo

    2007-11-01

    Informational genes such as those encoding rRNAs are related to transcription and translation, and are thus considered to be rarely subject to lateral gene transfer (LGT) between different organisms, compared to operational genes having metabolic functions. However, several lines of evidence have suggested or confirmed the occurrence of LGT of DNA segments encoding evolutionarily variable regions of rRNA genes between different organisms. In the present paper, we show, for the first time to our knowledge, that variable regions of the 18S rRNA gene are segmentally replaced by multiple copies of different sequences in a single strain of the green microalga Prototheca wickerhamii, resulting in at least 17 genotypes, nine of which were actually transcribed. Recombination between different 18S rRNA genes occurred in seven out of eight variable regions (V1-V5 and V7-V9) of eukaryotic small subunit (SSU) rRNAs. While no recombination was observed in V1, one to three different recombination loci were demonstrated for the other regions. Such segmental replacement was also implicated for helix H37, which is defined as V6 of prokaryotic SSU rRNAs. Our observations provide direct evidence for redundant recombination of an informational gene, which encodes a component of mature ribosomes, in a single strain of one organism.

  12. [Immune response genes products in human physiology].

    Science.gov (United States)

    Khaitov, R M; Alekseev, L P

    2012-09-01

    Current data on physiological role of human immune response genes' proteomic products (antigens) are discussed. The antigens are specified by a very high level of diversity that mediates a wide specter ofphysiological functions. They actually provide integrity and biological stability of human as species. These data reveal new ideas on many pathological processes as well as drafts new approaches for prophylaxis and treatment.

  13. Expression of polarity genes in human cancer.

    Science.gov (United States)

    Lin, Wan-Hsin; Asmann, Yan W; Anastasiadis, Panos Z

    2015-01-01

    Polarity protein complexes are crucial for epithelial apical-basal polarity and directed cell migration. Since alterations of these processes are common in cancer, polarity proteins have been proposed to function as tumor suppressors or oncogenic promoters. Here, we review the current understanding of polarity protein functions in epithelial homeostasis, as well as tumor formation and progression. As most previous studies focused on the function of single polarity proteins in simplified model systems, we used a genomics approach to systematically examine and identify the expression profiles of polarity genes in human cancer. The expression profiles of polarity genes were distinct in different human tissues and classified cancer types. Additionally, polarity expression profiles correlated with disease progression and aggressiveness, as well as with identified cancer types, where specific polarity genes were commonly altered. In the case of Scribble, gene expression analysis indicated its common amplification and upregulation in human cancer, suggesting a tumor promoting function.

  14. MOLECULAR CLONING OF HUMAN NEUROTROPHIN-4 GENE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Cloning and sequencing of the human neurotrophin-4(hNT-4) gene.Methods With the chromosomal DNA of human blood lymphocytes as template,hNT-4 coding genes were amplified by polymerase chain reaction(PCR) and recombinated into phage vector pGEM-T Easy,which were sequenced by using Sanger's single stranded DNA terminal termination method.Results The sequence of the cloned gene is completely the same as that reported in the literature(GenBank data base,M86528).Conclusion This study successfully cloning and sequenced the gene of mhNT-4,and it would be convenient for us to study the expression of mhNT-4 in eukaryote,and to continue the research on the gene therapy of Alzheimer's disease intensively.This study indicate that the hNT-4 is conservative in different races and individuals.

  15. A low percentage of autologous serum can replace bovine serum to engineer human nasal cartilage

    Directory of Open Access Journals (Sweden)

    F Wolf

    2008-02-01

    Full Text Available For the generation of cell-based therapeutic products, it would be preferable to avoid the use of animal-derived components. Our study thus aimed at investigating the possibility to replace foetal bovine serum (FBS with autologous serum (AS for the engineering of cartilage grafts using expanded human nasal chondrocytes (HNC. HNC isolated from 7 donors were expanded in medium containing 10% FBS or AS at different concentrations (2%, 5% and 10% and cultured in pellets using serum-free medium or in Hyaff®-11 meshes using medium containing FBS or AS. Tissue forming capacity was assessed histologically (Safranin O, immunohistochemically (type II collagen and biochemically (glycosaminoglycans -GAG- and DNA. Differences among experimental groups were assessed by Mann Whitney tests. HNC expanded under the different serum conditions proliferated at comparable rates and generated cartilaginous pellets with similar histological appearance and amounts of GAG. Tissues generated by HNC from different donors cultured in Hyaff®-11 had variable quality, but the accumulated GAG amounts were comparable among the different serum conditions. Staining intensity for collagen type II was consistent with GAG deposition. Among the different serum conditions tested, the use of 2% AS resulted in the lowest variability in the GAG contents of generated tissues. In conclusion, a low percentage of AS can replace FBS both during the expansion and differentiation of HNC and reduce the variability in the quality of the resulting engineered cartilage tissues.

  16. How does domain replacement affect fibril formation of the rabbit/human prion proteins.

    Directory of Open Access Journals (Sweden)

    Xu Yan

    Full Text Available It is known that in vivo human prion protein (PrP have the tendency to form fibril deposits and are associated with infectious fatal prion diseases, while the rabbit PrP does not readily form fibrils and is unlikely to cause prion diseases. Although we have previously demonstrated that amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary structures and macromolecular crowding has different effects on fibril formation of the rabbit/human PrPs, we do not know which domains of PrPs cause such differences. In this study, we have constructed two PrP chimeras, rabbit chimera and human chimera, and investigated how domain replacement affects fibril formation of the rabbit/human PrPs.As revealed by thioflavin T binding assays and Sarkosyl-soluble SDS-PAGE, the presence of a strong crowding agent dramatically promotes fibril formation of both chimeras. As evidenced by circular dichroism, Fourier transform infrared spectroscopy, and proteinase K digestion assays, amyloid fibrils formed by human chimera have secondary structures and proteinase K-resistant features similar to those formed by the human PrP. However, amyloid fibrils formed by rabbit chimera have proteinase K-resistant features and secondary structures in crowded physiological environments different from those formed by the rabbit PrP, and secondary structures in dilute solutions similar to the rabbit PrP. The results from transmission electron microscopy show that macromolecular crowding caused human chimera but not rabbit chimera to form short fibrils and non-fibrillar particles.We demonstrate for the first time that the domains beyond PrP-H2H3 (β-strand 1, α-helix 1, and β-strand 2 have a remarkable effect on fibrillization of the rabbit PrP but almost no effect on the human PrP. Our findings can help to explain why amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary structures and why macromolecular crowding has different

  17. Guided Tissue Regeneration in Heart Valve Replacement: From Preclinical Research to First-in-Human Trials

    Directory of Open Access Journals (Sweden)

    L. Iop

    2015-01-01

    Full Text Available Heart valve tissue-guided regeneration aims to offer a functional and viable alternative to current prosthetic replacements. Not requiring previous cell seeding and conditioning in bioreactors, such exceptional tissue engineering approach is a very fascinating translational regenerative strategy. After in vivo implantation, decellularized heart valve scaffolds drive their same repopulation by recipient’s cells for a prospective autologous-like tissue reconstruction, remodeling, and adaptation to the somatic growth of the patient. With such a viability, tissue-guided regenerated conduits can be delivered as off-the-shelf biodevices and possess all the potentialities for a long-lasting resolution of the dramatic inconvenience of heart valve diseases, both in children and in the elderly. A review on preclinical and clinical investigations of this therapeutic concept is provided with evaluation of the issues still to be well deliberated for an effective and safe in-human application.

  18. Guided tissue regeneration in heart valve replacement: from preclinical research to first-in-human trials.

    Science.gov (United States)

    Iop, L; Gerosa, G

    2015-01-01

    Heart valve tissue-guided regeneration aims to offer a functional and viable alternative to current prosthetic replacements. Not requiring previous cell seeding and conditioning in bioreactors, such exceptional tissue engineering approach is a very fascinating translational regenerative strategy. After in vivo implantation, decellularized heart valve scaffolds drive their same repopulation by recipient's cells for a prospective autologous-like tissue reconstruction, remodeling, and adaptation to the somatic growth of the patient. With such a viability, tissue-guided regenerated conduits can be delivered as off-the-shelf biodevices and possess all the potentialities for a long-lasting resolution of the dramatic inconvenience of heart valve diseases, both in children and in the elderly. A review on preclinical and clinical investigations of this therapeutic concept is provided with evaluation of the issues still to be well deliberated for an effective and safe in-human application.

  19. Duplicability of self-interacting human genes.

    LENUS (Irish Health Repository)

    Pérez-Bercoff, Asa

    2010-01-01

    BACKGROUND: There is increasing interest in the evolution of protein-protein interactions because this should ultimately be informative of the patterns of evolution of new protein functions within the cell. One model proposes that the evolution of new protein-protein interactions and protein complexes proceeds through the duplication of self-interacting genes. This model is supported by data from yeast. We examined the relationship between gene duplication and self-interaction in the human genome. RESULTS: We investigated the patterns of self-interaction and duplication among 34808 interactions encoded by 8881 human genes, and show that self-interacting proteins are encoded by genes with higher duplicability than genes whose proteins lack this type of interaction. We show that this result is robust against the system used to define duplicate genes. Finally we compared the presence of self-interactions amongst proteins whose genes have duplicated either through whole-genome duplication (WGD) or small-scale duplication (SSD), and show that the former tend to have more interactions in general. After controlling for age differences between the two sets of duplicates this result can be explained by the time since the gene duplication. CONCLUSIONS: Genes encoding self-interacting proteins tend to have higher duplicability than proteins lacking self-interactions. Moreover these duplicate genes have more often arisen through whole-genome rather than small-scale duplication. Finally, self-interacting WGD genes tend to have more interaction partners in general in the PIN, which can be explained by their overall greater age. This work adds to our growing knowledge of the importance of contextual factors in gene duplicability.

  20. Human gene therapy and imaging: cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Joseph C. [Stanford University School of Medicine, Department of Medicine, Stanford, CA (United States); Yla-Herttuala, Seppo [University of Kuopio, A.I.Virtanen Institute, Kuopio (Finland)

    2005-12-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  1. Advances in gene technology: Human genetic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Scott, W.A.; Ahmad, F.; Black, S.; Schultz, J.; Whelan, W.J.

    1984-01-01

    This book discusses the papers presented at the conference on the subject of ''advances in Gene technology: Human genetic disorders''. Molecular biology of various carcinomas and inheritance of metabolic diseases is discussed and technology advancement in diagnosis of hereditary diseases is described. Some of the titles discussed are-Immunoglobulin genes translocation and diagnosis; hemophilia; oncogenes; oncogenic transformations; experimental data on mice, hamsters, birds carcinomas and sarcomas.

  2. An Experimental Study on the Flexibility of Prevention against Thrombosis Following Mechanical Valve Replacement by tPA Gene Transduction

    Institute of Scientific and Technical Information of China (English)

    Shangyi Ji; Jun Ji; Xiaohan Yang; Jiangan Yang; Xiaolei Wang; Wenping Ling; Yuping Zhang

    2008-01-01

    Objectives Use a gene suture immersed recombinant tissue-type plasminogen activator (r-tPA)expression plasmid to transduce myocardia to prevent the thrombosis after mechanical tricuspid valve replacement in pigs. Methods A r-tPA gene plasmid was constructed and conjugated to a novel cationic phosphonolipid and a r-tPA gene suture was made. Eighteen pigs were selected and divided into two groups at randomization. There were 9 pigs in the experimental group and 9 in the control group, all the 18 pigs' tricuspids were replaced with mechanical valves. The gene threads were sutured into the right ventficular walls near mechanical valves and an ultrasound was used on the surfaces of the right ventricular walls for the gene transfer in the experimental group. Coagulative function, D-dimer level of the blood and the thrombosis on the surfaces of the valves were observed. Results r-tPA gene plasmid was successfully con-strutted and r-tPA protein was expressed in the ventricular cells around the gene sutures. D-dimer reached its peak level the experiment in experimental group. The thromboses around the valves were found in all the control group (100%)but only 1 (11.11%) case in experimental group. There were no changes in prothrombin time pre and post operation in two groups. Conclusions Using gene suture immersed r-tPA expression plasmid to transduce myocardia might be a best substitution for life long anti-coagulation therapy for the patients, who underwent operation.

  3. Genes of periodontopathogens expressed during human disease.

    Science.gov (United States)

    Song, Yo-Han; Kozarov, Emil V; Walters, Sheila M; Cao, Sam Linsen; Handfield, Martin; Hillman, Jeffrey D; Progulske-Fox, Ann

    2002-12-01

    Since many bacterial genes are environmentally regulated, the screening for virulence-associated factors using classical genetic and molecular biology approaches can be biased under laboratory growth conditions of a given pathogen, because the required conditions for expression of many virulence factors may not occur during in vitro growth. Thus, technologies have been developed during the past several years to identify genes that are expressed during disease using animal models of human disease. However, animal models are not always truly representative of human disease, and with many pathogens, there is no appropriate animal model. A new technology, in vivo-induced antigen technology (IVIAT) was thus engineered and tested in our laboratory to screen for genes of pathogenic organisms induced specifically in humans, without the use of animal or artificial models of infection. This technology uses pooled sera from patients to probe for genes expressed exclusively in vivo (or ivi, in vivo-induced genes). IVIAT was originally designed for the study of Actinobacillus actinomycetemcomitans pathogenesis, but we have now extended it to other oral pathogens including Porphyromonas gingivalis. One hundred seventy-one thousand (171,000) clones from P. gingivalis strain W83 were screened and 144 were confirmed positive. Over 300,000 A. actinomycetemcomitans clones were probed, and 116 were confirmed positive using a quantitative blot assay. MAT has proven useful in identifying previously unknown in vivo-induced genes that are likely involved in virulence and are thus excellent candidates for use in diagnostic : and therapeutic strategies, including vaccine design.

  4. Human proton/oligopeptide transporter (POT) genes

    DEFF Research Database (Denmark)

    Botka, C. W.; Wittig, T. W.; Graul, R. C.

    2000-01-01

    The proton-dependent oligopeptide transporters (POT) gene family currently consists of approximately 70 cloned cDNAs derived from diverse organisms. In mammals, two genes encoding peptide transporters, PepT1 and PepT2 have been cloned in several species including humans, in addition to a rat...... the presence of several possible splice variants of hPHT1. A second closely related human EST-contig displayed high identity to a recently cloned mouse cDNA encoding cyclic adenosine monophosphate (cAMP)-inducible 1 protein (gi:4580995). This contig served to identify a PAC clone containing deduced exons...

  5. Enzyme replacement in a human model of mucopolysaccharidosis IVA in vitro and its biodistribution in the cartilage of wild type mice.

    Directory of Open Access Journals (Sweden)

    Melita Dvorak-Ewell

    Full Text Available Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome is a lysosomal storage disorder caused by deficiency of N-acetylgalactosamine-6-sulfatase (GALNS, an enzyme that degrades keratan sulfate (KS. Currently no therapy for MPS IVA is available. We produced recombinant human (rhGALNS as a potential enzyme replacement therapy for MPS IVA. Chinese hamster ovary cells stably overexpressing GALNS and sulfatase modifying factor-1 were used to produce active ( approximately 2 U/mg and pure (>or=97% rhGALNS. The recombinant enzyme was phosphorylated and was dose-dependently taken up by mannose-6-phosphate receptor (K(uptake = 2.5 nM, thereby restoring enzyme activity in MPS IVA fibroblasts. In the absence of an animal model with a skeletal phenotype, we established chondrocytes isolated from two MPS IVA patients as a disease model in vitro. MPS IVA chondrocyte GALNS activity was not detectable and the cells exhibited KS storage up to 11-fold higher than unaffected chondrocytes. MPS IVA chondrocytes internalized rhGALNS into lysosomes, resulting in normalization of enzyme activity and decrease in KS storage. rhGALNS treatment also modulated gene expression, increasing expression of chondrogenic genes Collagen II, Collagen X, Aggrecan and Sox9 and decreasing abnormal expression of Collagen I. Intravenous administration of rhGALNS resulted in biodistribution throughout all layers of the heart valve and the entire thickness of the growth plate in wild-type mice. We show that enzyme replacement therapy with recombinant human GALNS results in clearance of keratan sulfate accumulation, and that such treatment ameliorates aberrant gene expression in human chondrocytes in vitro. Penetration of the therapeutic enzyme throughout poorly vascularized, but clinically relevant tissues, including growth plate cartilage and heart valve, as well as macrophages and hepatocytes in wild-type mouse, further supports development of rhGALNS as enzyme replacement therapy for

  6. Enzyme replacement in a human model of mucopolysaccharidosis IVA in vitro and its biodistribution in the cartilage of wild type mice.

    Science.gov (United States)

    Dvorak-Ewell, Melita; Wendt, Dan; Hague, Chuck; Christianson, Terri; Koppaka, Vish; Crippen, Danielle; Kakkis, Emil; Vellard, Michel

    2010-08-16

    Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is a lysosomal storage disorder caused by deficiency of N-acetylgalactosamine-6-sulfatase (GALNS), an enzyme that degrades keratan sulfate (KS). Currently no therapy for MPS IVA is available. We produced recombinant human (rh)GALNS as a potential enzyme replacement therapy for MPS IVA. Chinese hamster ovary cells stably overexpressing GALNS and sulfatase modifying factor-1 were used to produce active ( approximately 2 U/mg) and pure (>or=97%) rhGALNS. The recombinant enzyme was phosphorylated and was dose-dependently taken up by mannose-6-phosphate receptor (K(uptake) = 2.5 nM), thereby restoring enzyme activity in MPS IVA fibroblasts. In the absence of an animal model with a skeletal phenotype, we established chondrocytes isolated from two MPS IVA patients as a disease model in vitro. MPS IVA chondrocyte GALNS activity was not detectable and the cells exhibited KS storage up to 11-fold higher than unaffected chondrocytes. MPS IVA chondrocytes internalized rhGALNS into lysosomes, resulting in normalization of enzyme activity and decrease in KS storage. rhGALNS treatment also modulated gene expression, increasing expression of chondrogenic genes Collagen II, Collagen X, Aggrecan and Sox9 and decreasing abnormal expression of Collagen I. Intravenous administration of rhGALNS resulted in biodistribution throughout all layers of the heart valve and the entire thickness of the growth plate in wild-type mice. We show that enzyme replacement therapy with recombinant human GALNS results in clearance of keratan sulfate accumulation, and that such treatment ameliorates aberrant gene expression in human chondrocytes in vitro. Penetration of the therapeutic enzyme throughout poorly vascularized, but clinically relevant tissues, including growth plate cartilage and heart valve, as well as macrophages and hepatocytes in wild-type mouse, further supports development of rhGALNS as enzyme replacement therapy for MPS IVA.

  7. Silencing of potato virus X coat protein gene in transgenic tobaccos by codon replacement that confers resistance to PVX infection

    Institute of Scientific and Technical Information of China (English)

    FENG Dejiang; LIU Xiang; MENG Kun; LIAO Lili; WEI Xiaoli; XU Honglin; ZHU Zhen

    2003-01-01

    To understand the effect of rare codon on the silencing ratio of foreign gene, some preferred codon in potato virus X (PVX) coat protein gene (cp) were substituted with synonymous rare codons. The modified PVX coat protein gene (cpm) and wild-type cp gene (cpw) were inserted into binary vector under the control of CaMV35S promoter, and these two plant expression constructs were transferred into tobacco (Nicotiana tabacum cv. Xanthi) genomes via Agrobacterium mediated method and transgenic plants were generated. Northern blot analysis of RNA isolated from these plants showed that the silencing ratio of cpm gene in transgenic tobaccos was higher than that of cpw (35% and 6.25% respectively). Run on results indicate that the silencing of cp gene happened at post-transcriptional level. The resistance of transgenic tobaccos carrying cpm genes to PVX is increased compared with that of transformants carrying cpw genes. These results suggest that the resistance of transgenic tobacco to PVX can be enhanced by codon replacement.

  8. Altered neurotransmission in the lateral amygdala in aged human apoE4 targeted replacement mice.

    Science.gov (United States)

    Klein, Rebecca C; Acheson, Shawn K; Mace, Brian E; Sullivan, Patrick M; Moore, Scott D

    2014-09-01

    The human APOE4 allele is associated with an early age of onset and increased risk of Alzheimer's disease (AD). Apolipoprotein E is secreted as part of a high-density lipoprotein-like particle by glial cells in the brain for the primary purpose of transport of lipophilic compounds involved in the maintenance of synapses. Previous studies examining synaptic integrity in the amygdala of human apoE targeted replacement (TR) mice showed a decrease in spontaneous excitatory synaptic activity, dendritic arbor, and spine density associated with apoE4 compared with apoE3 and apoE2 in adult male mice. In the present study, we assessed how APOE genotype affects synaptic integrity of amygdala neurons by comparing electrophysiological and morphometric properties in human apoE3, E4, and E2/4 TR mice at the age of 18-20 months. In contrast to adult mice, we found that aged apoE4 TR mice exhibited the highest level of excitatory synaptic activity compared with other cohorts. Additionally, apoE4 mice had significantly greater spontaneous inhibitory activity than all other cohorts. Taken together, there was a significant interaction between genotypes when comparing inhibition relative to excitation; there was a simple main effect of frequency type with an imbalance toward inhibition in apoE4 mice but not in apoE3 or apoE2/4 mice. These results suggest that apoE isoforms differentially influence synaptic transmission throughout the life span, where aging coupled with apoE4 expression, results in an imbalance in maintaining integrity of synaptic transmission.

  9. Genomics of the human carnitine acyltransferase genes

    NARCIS (Netherlands)

    van der Leij, FR; Huijkman, NCA; Boomsma, C; Kuipers, JRG; Bartelds, B

    2000-01-01

    Five genes in the human genome are known to encode different active forms of related carnitine acyltransferases: CPT1A for liver-type carnitine palmitoyltransferase I, CPT1B for muscle-type carnitine palmitoyltransferase I, CPT2 for carnitine palmitoyltransferase II, CROT for carnitine octanoyltrans

  10. Insulin fails to enhance mTOR phosphorylation, mitochondrial protein synthesis, and ATP production in human skeletal muscle without amino acid replacement.

    Science.gov (United States)

    Barazzoni, Rocco; Short, Kevin R; Asmann, Yan; Coenen-Schimke, Jill M; Robinson, Matthew M; Nair, K Sreekumaran

    2012-11-01

    Systemic insulin administration causes hypoaminoacidemia by inhibiting protein degradation, which may in turn inhibit muscle protein synthesis (PS). Insulin enhances muscle mitochondrial PS and ATP production when hypoaminoacidemia is prevented by exogenous amino acid (AA) replacement. We determined whether insulin would stimulate mitochondrial PS and ATP production in the absence of AA replacement. Using l-[1,2-¹³C]leucine as a tracer, we measured the fractional synthetic rate of mitochondrial as well as sarcoplasmic and mixed muscle proteins in 18 participants during sustained (7-h) insulin or saline infusion (n = 9 each). We also measured muscle ATP production, mitochondrial enzyme activities, mRNA levels of mitochondrial genes, and phosphorylation of signaling proteins regulating protein synthesis. The concentration of circulating essential AA decreased during insulin infusion. Mitochondrial, sarcoplasmic, and mixed muscle PS rates were also lower during insulin (2-7 h) than during saline infusions despite increased mRNA levels of selected mitochondrial genes. Under these conditions, insulin did not alter mitochondrial enzyme activities and ATP production. These effects were associated with enhanced phosphorylation of Akt but not of protein synthesis activators mTOR, p70(S6K), and 4EBP1. In conclusion, sustained physiological hyperinsulinemia without AA replacement did not stimulate PS of mixed muscle or protein subfractions and did not alter muscle mitochondrial ATP production in healthy humans. These results support that insulin and AA act in conjunction to stimulate muscle mitochondrial function and mitochondrial protein synthesis.

  11. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    OpenAIRE

    He Cui; Xi Lan; Shemin Lu; Fujun Zhang; Wanggang Zhang

    2017-01-01

    Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA) gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system in U937 cells...

  12. Deep divergences of human gene trees and models of human origins.

    Science.gov (United States)

    Blum, Michael G B; Jakobsson, Mattias

    2011-02-01

    Two competing hypotheses are at the forefront of the debate on modern human origins. In the first scenario, known as the recent Out-of-Africa hypothesis, modern humans arose in Africa about 100,000-200,000 years ago and spread throughout the world by replacing the local archaic human populations. By contrast, the second hypothesis posits substantial gene flow between archaic and emerging modern humans. In the last two decades, the young time estimates--between 100,000 and 200,000 years--of the most recent common ancestors for the mitochondrion and the Y chromosome provided evidence in favor of a recent African origin of modern humans. However, the presence of very old lineages for autosomal and X-linked genes has often been claimed to be incompatible with a simple, single origin of modern humans. Through the analysis of a public DNA sequence database, we find, similar to previous estimates, that the common ancestors of autosomal and X-linked genes are indeed very old, living, on average, respectively, 1,500,000 and 1,000,000 years ago. However, contrary to previous conclusions, we find that these deep gene genealogies are consistent with the Out-of-Africa scenario provided that the ancestral effective population size was approximately 14,000 individuals. We show that an ancient bottleneck in the Middle Pleistocene, possibly arising from an ancestral structured population, can reconcile the contradictory findings from the mitochondrion on the one hand, with the autosomes and the X chromosome on the other hand.

  13. Engineering of Promoter Replacement Cassettes for Fine-Tuning of Gene Expression in Saccharomyces cerevisiae

    OpenAIRE

    2006-01-01

    The strong overexpression or complete deletion of a gene gives only limited information about its control over a certain phenotype or pathway. Gene function studies based on these methods are therefore incomplete. To effect facile manipulation of gene expression across a full continuum of possible expression levels, we recently created a library of mutant promoters. Here, we provide the detailed characterization of our yeast promoter collection comprising 11 mutants of the strong constitutive...

  14. Respiratory mechanics in an infant with perinatal lethal hypophosphatasia treated with human recombinant enzyme replacement therapy.

    Science.gov (United States)

    Rodriguez, Elena; Bober, Michael B; Davey, Lauren; Zamora, Arlene; Li Puma, Annelise B; Chidekel, Aaron; Shaffer, Thomas H

    2012-09-01

    Hypophosphatasia is a rare autosomal recessive disorder caused by deficient activity of tissue nonspecific alkaline phosphatase (TNSALP) and characterized by defective bone mineralization. In the perinatal lethal form, respiratory complications due to rachitic deformities of the thoracic cage and associated hypoplastic lungs are present. ENB-0040 is a bone-targeted human recombinant TNSALP fusion protein that aims to restore skeletal mineralization. The goal of this study was to characterize pulmonary and thoracic cage mechanics in an infant with the perinatal lethal form of hypophosphatasia under enzyme replacement therapy. Pulmonary function testing was performed on a preterm, 8-week-old patient with hypophosphatasia who was mechanically ventilated since birth because of severe chest wall insufficiency. The measurements consisted of respiratory impulse oscillation measurements (resistance and reactance), ventilatory mechanics (compliance and resistance), and thoracoabdominal motion (TAM) analysis. At baseline, chest wall compliance was 50% of normal, and the TAM indicated predominantly abdominal displacement. After 12 weeks of treatment, a consistent decrease in ventilator requirements and improvement in lung function and chest wall mechanics were observed and correlated with thoracic cage radiologic findings. Measurable changes in chest wall dynamics and respiratory mechanics using noninvasive technology were useful for respiratory management and therapeutic guidance of ENB-0040 treatment in this patient.

  15. Novel ceramic bone replacement material CeraBall seeded with human mesenchymal stem cells.

    NARCIS (Netherlands)

    Douglas, T.E.L.; Liu, Q.; Humpe, A.; Wiltfang, J.; Sivananthan, S.; Warnke, P.H.

    2010-01-01

    OBJECTIVES: Hydroxyapatite (HA) and tricalcium phosphate (TCP) are two very common ceramic materials for bone replacement. A recently developed material for bone replacement is CeraBall, which is a mixed HA-TCP scaffold available as porous spherical scaffolds of diameter 4 and 6 mm. Before their use

  16. Detection of essential genes in Streptococcus pneumoniae using bioinformatics and allelic replacement mutagenesis.

    Science.gov (United States)

    Song, Jae-Hoon; Ko, Kwan Soo

    2008-01-01

    Although the emergence and spread of antimicrobial resistance in major bacterial pathogens for the past decades poses a growing challenge to public health, discovery of novel antimicrobial agents from natural products or modification of existing antibiotics cannot circumvent the problem of antimicrobial resistance. The recent development of bacterial genomics and the availability of genome sequences allow the identification of potentially novel antimicrobial agents. The cellular targets of new antimicrobial agents must be essential for the growth, replication, or survival of the bacterium. Conserved genes among different bacterial genomes often turn out to be essential (1, 2). Thus, the combination of comparative genomics and the gene knock-out procedure can provide effective ways to identify the essential genes of bacterial pathogens (3). Identification of essential genes in bacteria may be utilized for the development of new antimicrobial agents because common essential genes in diverse pathogens could constitute novel targets for broad-spectrum antimicrobial agents.

  17. Influenza A H5N1 clade 2.3.4 virus with a different antiviral susceptibility profile replaced clade 1 virus in humans in northern Vietnam.

    Directory of Open Access Journals (Sweden)

    Mai T Q Le

    Full Text Available BACKGROUND: Prior to 2007, highly pathogenic avian influenza (HPAI H5N1 viruses isolated from poultry and humans in Vietnam were consistently reported to be clade 1 viruses, susceptible to oseltamivir but resistant to amantadine. Here we describe the re-emergence of human HPAI H5N1 virus infections in Vietnam in 2007 and the characteristics of the isolated viruses. METHODS AND FINDINGS: Respiratory specimens from patients suspected to be infected with avian influenza in 2007 were screened by influenza and H5 subtype specific polymerase chain reaction. Isolated H5N1 strains were further characterized by genome sequencing and drug susceptibility testing. Eleven poultry outbreak isolates from 2007 were included in the sequence analysis. Eight patients, all of them from northern Vietnam, were diagnosed with H5N1 in 2007 and five of them died. Phylogenetic analysis of H5N1 viruses isolated from humans and poultry in 2007 showed that clade 2.3.4 H5N1 viruses replaced clade 1 viruses in northern Vietnam. Four human H5N1 strains had eight-fold reduced in-vitro susceptibility to oseltamivir as compared to clade 1 viruses. In two poultry isolates the I117V mutation was found in the neuraminidase gene, which is associated with reduced susceptibility to oseltamivir. No mutations in the M2 gene conferring amantadine resistance were found. CONCLUSION: In 2007, H5N1 clade 2.3.4 viruses replaced clade 1 viruses in northern Vietnam and were susceptible to amantadine but showed reduced susceptibility to oseltamivir. Combination antiviral therapy with oseltamivir and amantadine for human cases in Vietnam is recommended.

  18. Regulation of gene expression in human tendinopathy

    Science.gov (United States)

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  19. Genes for 7S RNAs can replace the gene for 4.5S RNA in growth of Escherichia coli

    DEFF Research Database (Denmark)

    Brown, S

    1991-01-01

    4.5S RNAs of eubacteria and 7S RNAs of archaebacteria and eukaryotes exist in a hairpin conformation. The apex of this hairpin displays structural and sequence similarities among both 4.5S and 7S RNAs. Furthermore, a hyphenated sequence of 16 nucleotides is conserved in all eubacterial 4.5S RNAs...... examined. In this article I report that 7S RNAs that contain this 16-nucleotide sequence are able to replace 4.5S RNAs and permit growth of Escherichia coli....

  20. Immunity and AAV-mediated gene therapy for muscular dystrophies in large animal models and human trials

    OpenAIRE

    2011-01-01

    Adeno-associated viral (AAV) vector-mediated gene replacement for the treatment of muscular dystrophy represents a promising therapeutic strategy in modern medicine. One major obstacle in using AAV vectors for in vivo gene delivery is the development of host immune responses to the viral capsid protein and transgene products as evidenced in animal models and human trials for a range of genetic diseases. Here, we review immunity against AAV vector and transgene in the context of gene delivery ...

  1. Nuclear transfer of goat somatic cells transgenic for human lactoferrin gene

    Institute of Scientific and Technical Information of China (English)

    Lan LI; Wei SHEN; Lingjiang MIN; Qingyu PAN; Yujiang SUN; Jixian DENG; Qingjie PAN

    2008-01-01

    Transgenic animal mammary gland bioreactors are used to produce recombinant proteins with appropri-ate post-translational modifications.The nuclear transfer of transgenic somatic cells is a powerful method to pro-duce mammary gland bioreactors.We established an effi-cient gene transfer and nuclear transfer approach in goat somatic cells.Gene targeting vector pGBC2LF was con-structed by cloning human lactoferrin (LF) gene cDNA into exon 2 of the milk goat beta-casein gene and the endogenous start codon was replaced by that of human LF gene.Goat fetal fibroblasts were transfected with lin-earized pGBC2LF and 14 cell lines were positive accord-ing to PCR and Southern blot.The transgenic cells were used as donor cells of nuclear transfer and some of recon-structed embryos could develop into blastocyst in vitro.

  2. Mapping genes on human chromosome 20

    Energy Technology Data Exchange (ETDEWEB)

    Keith, T.; Phipps, P.; Serino, K. [Collaborative Research, Inc., Waltham, MA (United States)] [and others

    1994-09-01

    While a substantial number of genes have been physically localized to human chromosome 20, few have been genetically mapped. In the process of developing a genetic linkage map of chromosome 20, we have mapped microsatellite polymorphisms associated with six genes. Three of these had highly informative polymorphisms (greater than 0.70) that were originally identified by other investigators. These include avian sarcoma oncogene homolog (SRC), ribophorin II (RPN2), and phosphoenolpyruvate carboxykinase (PCK1). Polymorphisms associated with two genes were determined following a screen of their DNA sequences in GenBank. These include dinucleotide polymorphisms in introl II of cystatin c (CST3) and in the promoter region of neuroendocrine convertase 2 (NEC2) with heterozygosities of 0.52 and 0.54, respectively. A sixth gene, prodynorphin (PDYN) was mapped following the identification of a dinucleotide repeat polymorphism (heterozygosity of 0.35) in a cosmid subclone from a YAC homologous to the original phage clone. CA-positive cosmid subclones from a YAC for an additional gene, guanine nucleotide binding protein, alpha (GNAS10), have been identified and sequencing is in progress. Similar efforts were utilized to identify a microsatellite polymorphism from a half-YAC cloned by W. Brown and localized by FISH to 20pter. This polymorphism is highly informative, with a heterozygosity of 0.83, and serves to delimit the genetic map of the short arm of this chromosome.

  3. Enhanced gene replacements in Ku80 disruption mutants of the dermatophyte, Trichophyton mentagrophytes.

    Science.gov (United States)

    Yamada, Tsuyoshi; Makimura, Koichi; Hisajima, Tatsuya; Ishihara, Yumiko; Umeda, Yoshiko; Abe, Shigeru

    2009-09-01

    The frequency of targeted gene disruption via homologous recombination is low in the clinically important dermatophyte, Trichophyton mentagrophytes. The Ku genes, Ku70 and Ku80, encode key components of the nonhomologous end-joining pathway involved in DNA double-strand break repair. Their deletion increases the homologous recombination frequency, facilitating targeted gene disruption. To improve the homologous recombination frequency in T. mentagrophytes, the Ku80 ortholog was inactivated. The nucleotide sequence of the Ku80 locus containing a 2788-bp ORF encoding a predicted product of 728 amino acids was identified, and designated as TmKu80. The predicted TmKu80 product showed a high degree of amino acid sequence similarity to known fungal Ku80 proteins. Ku80 disruption mutant strains of T. mentagrophytes were constructed by Agrobacterium tumefaciens-mediated genetic transformation. The average homologous recombination frequency was 73.3 +/- 25.2% for the areA/nit-2-like nitrogen regulatory gene (tnr) in Ku80(-) mutants, about 33-fold higher than that in wild-type controls. A high frequency (c. 67%) was also obtained for the Tri m4 gene encoding a putative serine protease. Ku80(-) mutant strains will be useful for large-scale reverse genetics studies of dermatophytes, including T. mentagrophytes, providing valuable information on the basic mechanisms of host invasion.

  4. Precise gene modification mediated by TALEN and single-stranded oligodeoxynucleotides in human cells.

    Directory of Open Access Journals (Sweden)

    Xiaoling Wang

    Full Text Available The development of human embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs facilitates in vitro studies of human disease mechanisms, speeds up the process of drug screening, and raises the feasibility of using cell replacement therapy in clinics. However, the study of genotype-phenotype relationships in ESCs or iPSCs is hampered by the low efficiency of site-specific gene editing. Transcription activator-like effector nucleases (TALENs spurred interest due to the ease of assembly, high efficiency and faithful gene targeting. In this study, we optimized the TALEN design to maximize its genomic cutting efficiency. We showed that using optimized TALENs in conjunction with single-strand oligodeoxynucleotide (ssODN allowed efficient gene editing in human cells. Gene mutations and gene deletions for up to 7.8 kb can be accomplished at high efficiencies. We established human tumor cell lines and H9 ESC lines with homozygous deletion of the microRNA-21 (miR-21 gene and miR-9-2 gene. These cell lines provide a robust platform to dissect the roles these genes play during cell differentiation and tumorigenesis. We also observed that the endogenous homologous chromosome can serve as a donor template for gene editing. Overall, our studies demonstrate the versatility of using ssODN and TALEN to establish genetically modified cells for research and therapeutic application.

  5. The Gene Targeting Approach of Small Fragment Homologous Replacement (SFHR Alters the Expression Patterns of DNA Repair and Cell Cycle Control Genes

    Directory of Open Access Journals (Sweden)

    Silvia Pierandrei

    2016-01-01

    Full Text Available Cellular responses and molecular mechanisms activated by exogenous DNA that invades cells are only partially understood. This limits the practical use of gene targeting strategies. Small fragment homologous replacement (SFHR uses a small exogenous wild-type DNA fragment to restore the endogenous wild-type sequence; unfortunately, this mechanism has a low frequency of correction. In this study, we used a mouse embryonic fibroblast cell line with a stably integrated mutated gene for enhanced green fluorescence protein. The restoration of a wild-type sequence can be detected by flow cytometry analysis. We quantitatively analyzed the expression of 84 DNA repair genes and 84 cell cycle control genes. Peculiar temporal gene expression patterns were observed for both pathways. Different DNA repair pathways, not only homologous recombination, as well as the three main cell cycle checkpoints appeared to mediate the cellular response. Eighteen genes were selected as highly significant target/effectors of SFHR. We identified a wide interconnection between SFHR, DNA repair, and cell cycle control. Our results increase the knowledge of the molecular mechanisms involved in cell invasion by exogenous DNA and SFHR. Specific molecular targets of both the cell cycle and DNA repair machineries were selected for manipulation to enhance the practical application of SFHR.

  6. The prevalence of genome replacement in unisexual salamanders of the genus Ambystoma (Amphibia, Caudata revealed by nuclear gene genealogy

    Directory of Open Access Journals (Sweden)

    Bogart James P

    2008-05-01

    Full Text Available Abstract Background Unisexual salamanders of the genus Ambystoma exemplify the most ancient lineage of unisexual vertebrates and demonstrate an extremely flexible reproductive system. Unisexual Ambystoma interact with and incorporate genomes from two to four sexual species (A. laterale, A. jeffersonianum,A. texanum, and A. tigrinum, to generate more than 20 genome compositions or biotypes. Unisexual ploidy levels range from diploid to pentaploid, but all contain at least one A. laterale (L genome. Replacement of nuclear genomes might be responsible for the evolutionary longevity of unisexual Ambystoma but direct evidence for the prevalence of genome replacement in natural populations is absent. Two major puzzling questions have remained unanswered over the last few decades: 1 is genome replacement a common reproductive method in various unisexual populations and, 2 is there an ancient "L" genome that persists in various unisexual genome compositions. Results We examined 194 unisexual and 89 A. laterale specimens from 97 localities throughout their range and constructed a genealogy of the "L" genomes using a nuclear DNA marker (L-G1C12 to answer the above questions. Six L-G1C12 haplotypes (A-F were shared by individuals in various A. laterale and unisexual populations. The general geographical distribution of the haplotypes in unisexual populations conformed to those found in A. laterale, indicating that "L" genomes in unisexuals are obtained from sympatric or nearby populations of A. laterale. Conclusion Our data demonstrate that genome replacement frequently occurs in unisexual Ambystoma across their range, and support previous speculations that genome replacement is an important reproductive mechanism that can enhance their evolutionary longevity. Our results show that there is no ancient "L" genome in the unisexual lineages, and no particular "L" genome is favored in any unisexual individual. The presence of an "L" genome in all unisexuals

  7. Reg gene family and human diseases

    Institute of Scientific and Technical Information of China (English)

    Yu-Wei Zhang; Liu-Song Ding; Mao-De Lai

    2003-01-01

    Regenerating gene (Reg or REG) family, within the superfamily of C-type lectin, is mainly involved in the liver,pancreatic, gastric and intestinal cell proliferation or differentiation. Considerable attention has focused on Reg family and its structurally related molecules. Over the last 15 years, 17 members of the Reg family have been cloned and sequenced. They have been considered as members of a conserved protein family sharing structural and some functional properties being involved in injury, inflammation,diabetes and carcinogenesis. We previously identified Reg Ⅳ as a strong candidate for a gene that was highly expressed in colorectal adenoma when compared to normal mucosa based on suppression subtractive hybridization (SSH),reverse Northern blot, semi-quantitative reverse transcriptase PCR (RT-PCR)and Northern blot. In situ hybridization results further support that overexpression of Reg Ⅳ may be an early event in colorectal carcinogenesis. We suggest that detection of Reg Ⅳ overexpression might be useful in the early diagnosis of carcinomatous transformation of adenoma.This review summarizes the roles of Reg family in diseases in the literature as well as our recent results of Reg Ⅳ in colorectal cancer. The biological properties of Reg family and its possible roles in human diseases are discussed. We particularly focus on the roles of Reg family as sensitive reactants of tissue injury, prognostic indicators of tumor survival and early biomarkers of carcinogenesis. In addition to our current understanding of Reg gene functions, we postulate that there might be relationships between Reg family and microsatellite instability, apoptosis and cancer with a poor prognosis. Investigation of the correlation between tumor Reg expression and survival rate, and analysis of the Reg gene status in human maliganancies, are required to elucidate the biologic consequences of Reg gene expression, the implications for Reg gene regulation of cell growth, tumorigenesis

  8. The human T cell receptor alpha variable (TRAV) genes.

    Science.gov (United States)

    Scaviner, D; Lefranc, M P

    2000-01-01

    'Human T Cell Receptor Alpha Variable (TRAV) Genes', the eighth report of the 'IMGT Locus in Focus' section, comprises four tables: (1) 'Number of human germline TRAV genes at 14q11 and potential repertoire'; (2) 'Human germline TRAV genes at 14q11'; (3) 'Human TRAV allele table', and (4) 'Correspondence between the different human TRAV gene nomenclatures'. These tables are available at the IMGT Marie-Paule page of IMGT, the international ImMunoGeneTics database (http://imgt.cines.fr:8104) created by Marie-Paule Lefranc, Université Montpellier II, CNRS, France. Copyright 2000 S. Karger AG, Basel

  9. Targeted Gene Replacement in Fungal Pathogens via Agrobacterium tumefaciens- Mediated Transformation

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Frandsen, Mette; Giese, Nanna Henriette

    2012-01-01

    Genome sequence data on fungal pathogens provide the opportunity to carry out a reverse genetics approach to uncover gene function. Efficient methods for targeted genome modifications such as knockout and in locus over-expression are in high demand. Here we describe two efficient single-step clon......Genome sequence data on fungal pathogens provide the opportunity to carry out a reverse genetics approach to uncover gene function. Efficient methods for targeted genome modifications such as knockout and in locus over-expression are in high demand. Here we describe two efficient single......-step cloning strategies for construction of vectors for Agrobacterium tumefaciens-mediated transformation (ATMT). Targeted genome modifications require integration by a homologous double crossover event, which is achieved by placing target sequences on either side of a selection marker gene in the vector....... Protocols are given for two single-step vector construction techniques. The In-Fusion cloning technique is independent of compatible restriction enzyme sites in the vector and the fragment to be cloned. The method can be directly applied to any vector of choice and it is possible to carry out four fragment...

  10. Dehydroepiandrosterone (DHEA) replacement decreases insulin resistance and lowers inflammatory cytokines in aging humans.

    Science.gov (United States)

    Weiss, Edward P; Villareal, Dennis T; Fontana, Luigi; Han, Dong-Ho; Holloszy, John O

    2011-05-01

    Plasma dehydroepiandrosterone (DHEA) decreases ~80% between ages 25 and 75 yr. In a preliminary study, we found that 6 mo of DHEA replacement improved insulin action in elderly individuals. The purpose of the present larger, randomized double-blind study was to determine whether a longer period of DHEA replacement improves glucose tolerance. Fifty-seven men and 68 women aged 65 to 75 yr were randomly assigned to 50 mg DHEA or placebo once daily. Year one was a randomized, double blind trial. Year 2 was an open label continuation. DHEA replacement improved glucose tolerance in participants who had abnormal GT initially, reduced plasma triglycerides, and the inflammatory cytokines IL6 and TNFα.

  11. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  12. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  13. Injury, inflammation and the emergence of human specific genes

    Science.gov (United States)

    2016-07-12

    indistinguishable.6 Interestingly, just as we noted the expression of human -specific genes in human immune cells (Table 1), Long and colleagues noted the wide...nervous system, it presumably alters a7AChR activities on human cognition and memory . In other examples, the human antimicrobial defensins are highly...genes in circulating and resident human immune cells can be studied in mice after the transplantation and engraft- ment of human hemato-lymphoid immune

  14. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice.

    Science.gov (United States)

    Murphy, Andrew J; Macdonald, Lynn E; Stevens, Sean; Karow, Margaret; Dore, Anthony T; Pobursky, Kevin; Huang, Tammy T; Poueymirou, William T; Esau, Lakeisha; Meola, Melissa; Mikulka, Warren; Krueger, Pamela; Fairhurst, Jeanette; Valenzuela, David M; Papadopoulos, Nicholas; Yancopoulos, George D

    2014-04-01

    Mice genetically engineered to be humanized for their Ig genes allow for human antibody responses within a mouse background (HumAb mice), providing a valuable platform for the generation of fully human therapeutic antibodies. Unfortunately, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which their genetic humanization was carried out. Heretofore, HumAb mice have been generated by disrupting the endogenous mouse Ig genes and simultaneously introducing human Ig transgenes at a different and random location; KO-plus-transgenic humanization. As we describe in the companion paper, we attempted to make mice that more efficiently use human variable region segments in their humoral responses by precisely replacing 6 Mb of mouse Ig heavy and kappa light variable region germ-line gene segments with their human counterparts while leaving the mouse constant regions intact, using a unique in situ humanization approach. We reasoned the introduced human variable region gene segments would function indistinguishably in their new genetic location, whereas the retained mouse constant regions would allow for optimal interactions and selection of the resulting antibodies within the mouse environment. We show that these mice, termed VelocImmune mice because they were generated using VelociGene technology, efficiently produce human:mouse hybrid antibodies (that are rapidly convertible to fully human antibodies) and have fully functional humoral immune systems indistinguishable from those of WT mice. The efficiency of the VelocImmune approach is confirmed by the rapid progression of 10 different fully human antibodies into human clinical trials.

  15. Monoallelic expression of the human FOXP2 speech gene.

    Science.gov (United States)

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-02

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.

  16. Guided Tissue Regeneration in Heart Valve Replacement: From Preclinical Research to First-in-Human Trials

    OpenAIRE

    Iop, L.; Gerosa, G.

    2015-01-01

    Heart valve tissue-guided regeneration aims to offer a functional and viable alternative to current prosthetic replacements. Not requiring previous cell seeding and conditioning in bioreactors, such exceptional tissue engineering approach is a very fascinating translational regenerative strategy. After in vivo implantation, decellularized heart valve scaffolds drive their same repopulation by recipient’s cells for a prospective autologous-like tissue reconstruction, remodeling, and adaptation...

  17. Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus.

    Science.gov (United States)

    Arazoe, Takayuki; Miyoshi, Kennosuke; Yamato, Tohru; Ogawa, Tetsuo; Ohsato, Shuichi; Arie, Tsutomu; Kuwata, Shigeru

    2015-12-01

    CRISPR/Cas-derived RNA-guided nucleases (RGNs) that can generate DNA double-strand breaks (DSBs) at a specific sequence are widely used for targeted genome editing by induction of DSB repair in many organisms. The CRISPR/Cas system consists of two components: a single Cas9 nuclease and a single-guide RNA (sgRNA). Therefore, the system for constructing RGNs is simple and efficient, but the utilization of RGNs in filamentous fungi has not been validated. In this study, we established the CRISPR/Cas system in the model filamentous fungus, Pyricularia oryzae, using Cas9 that was codon-optimized for filamentous fungi, and the endogenous RNA polymerase (RNAP) III U6 promoter and a RNAP II fungal promoter for the expression of the sgRNA. We further demonstrated that RGNs could recognize the desired sequences and edit endogenous genes through homologous recombination-mediated targeted gene replacement with high efficiency. Our system will open the way for the development of various CRISPR/Cas-based applications in filamentous fungi.

  18. State-of-the-art human gene therapy: part I. Gene delivery technologies.

    Science.gov (United States)

    Wang, Dan; Gao, Guangping

    2014-01-01

    Safe and effective gene delivery is a prerequisite for successful gene therapy. In the early age of human gene therapy, setbacks due to problematic gene delivery vehicles plagued the exciting therapeutic outcome. However, gene delivery technologies rapidly evolved ever since. With the advancement of gene delivery techniques, gene therapy clinical trials surged during the past decade. As the first gene therapy product (Glybera) has obtained regulatory approval and reached clinic, human gene therapy finally realized the promise that genes can be medicines. The diverse gene delivery techniques available today have laid the foundation for gene therapy applications in treating a wide range of human diseases. Some of the most urgent unmet medical needs, such as cancer and pandemic infectious diseases, have been tackled by gene therapy strategies with promising results. Furthermore, combining gene transfer with other breakthroughs in biomedical research and novel biotechnologies opened new avenues for gene therapy. Such innovative therapeutic strategies are unthinkable until now, and are expected to be revolutionary. In part I of this review, we introduced recent development of non-viral and viral gene delivery technology platforms. As cell-based gene therapy blossomed, we also summarized the diverse types of cells and vectors employed in ex vivo gene transfer. Finally, challenges in current gene delivery technologies for human use were discussed.

  19. THE CLONING OF HUMAN NEUROTROPHIN-3 GENE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    In the present study, we have cloned the gene of human neurotrophin-3 (hNT-3) from the genomic DNA of white blood cells (WBC) by polymerase chain reaction (PCR). The amplification products were cloned into pUC19 and sequenced. Genomic sequence comparison of the cloned fragment and the reported hNT-3 (GenBank M61180) reveals 7 base differences: 1 in the signal peptide, 3 in the prepro peptide, and 3 in the mature hNT-3. Except the 2 varied bases (16th, T to G; 285th, A to C) in the signal peptide and pro-sequence resulted in the change of their encoded amino-acids (Tyr→Asp; Gln→His), the other varied bases have no influence on their respective encoded amino-acids, and all the changes have no influence on the open reading frame (ORF) of the hNT-3.

  20. Ex vivo expansion of human T cells for adoptive immunotherapy using the novel Xeno-free CTS Immune Cell Serum Replacement.

    Science.gov (United States)

    Smith, Corey; Økern, Grethe; Rehan, Sweera; Beagley, Leone; Lee, Sau K; Aarvak, Tanja; Schjetne, Karoline W; Khanna, Rajiv

    2015-01-01

    The manufacture of clinical grade cellular products for adoptive immunotherapy requires ex vivo culture and expansion of human T cells. One of the key components in manufacturing of T cell therapies is human serum (HS) or fetal bovine serum (FBS), which can potentially expose immunotherapy recipient to adventitious infectious pathogens and are thus considered as non-cGMP compliant for adoptive therapy. Here we describe a novel xeno-free serum replacement (SR) with defined components that can be reproducibly used for the production of clinical grade T-cell therapies in combination with several different cell culture media. Dynabeads CD3/CD28 Cell Therapy System (CTS)-activated or antigen-specific T cells expanded using the xeno-free SR, CTS Immune Cell SR, showed comparable growth kinetics observed with cell culture media supplemented with HS or FBS. Importantly the xeno-free SR supplemented medium supported the optimal expansion of T cells specific for subdominant tumour-associated antigens and promoted expansion of T cells with central memory T-cell phenotype, which is favourable for in vivo survival and persistence following adoptive transfer. Furthermore, T cells expanded using xeno-free SR medium were highly amenable to lentivirus-mediated gene transduction for potential application for gene-modified T cells. Taken together, the CTS Immune Cell SR provides a novel platform strategy for the manufacture of clinical grade adoptive cellular therapies.

  1. A fragile lattice: replacing bacteriophage lambda's head stability gene D with the shp gene of phage 21 generates the Mg2+-dependent virus, lambda shp.

    Science.gov (United States)

    Wendt, Jennifer L; Feiss, Michael

    2004-08-15

    Phage lambda DNA packaging is accompanied by prohead expansion, due to structural changes in gpE, the major capsid protein. Rearrangement of the gpE lattice creates binding sites for trimers of gpD, the head stabilization protein. lambda-Like phage 21's shp gene is homologous to lambda's D gene. gpD and gpShp share 49% amino acid identity. To ask whether gpShp could stabilize the lambda head shell, we replaced lambda's D gene with shp, creating lambda shp. Unlike lambda or 21, lambda shp was strictly dependent on the presence of 10(-2) M Mg2+, and lambda shp virions were very sensitive to chelating agents. Density gradient studies indicated that the lambda gpE lattice was underpopulated with gpShp. gpD's N-terminus has been proposed to contact gpE, and we found that lambda D/shp, which produces a chimeric protein with the N-terminus of gpD and the C-terminus of gpShp, was Mg2+-independent and more stable than lambda shp.

  2. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn

    2010-01-01

    , from faecal samples of 124 European individuals. The gene set, ,150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes......To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence...

  3. Mutation analysis of the MCHR1 gene in human obesity

    DEFF Research Database (Denmark)

    Wermter, Anne-Kathrin; Reichwald, Kathrin; Büch, Thomas

    2005-01-01

    The importance of the melanin-concentrating hormone (MCH) system for regulation of energy homeostasis and body weight has been demonstrated in rodents. We analysed the human MCH receptor 1 gene (MCHR1) with respect to human obesity....

  4. Karyotypic analysis of gene transformed human keratinocyte line

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ INTRODUCTION In order to solve the difficult problem of long term in vitro culture of human keratinocytes, the technique of gene transfer was utilized to transform human keratinocytes with simian virus 40 (SV40).

  5. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    Directory of Open Access Journals (Sweden)

    He Cui

    2017-02-01

    Full Text Available Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas 9 system in U937 cells. Cell proliferation and apoptosis were next evaluated in KIAA0100-knockdown U937 cells. The bioinformatic prediction showed that human KIAA0100 gene was located on 17q11.2, and human KIAA0100 protein was located in the secretory pathway. Besides, human KIAA0100 protein contained a signalpeptide, a transmembrane region, three types of secondary structures (alpha helix, extended strand, and random coil , and four domains from mitochondrial protein 27 (FMP27. The observation on functional characterization of human KIAA0100 gene revealed that its downregulation inhibited cell proliferation, and promoted cell apoptosis in U937 cells. To summarize, these results suggest human KIAA0100 gene possibly comes within mitochondrial genome; moreover, it is a novel anti-apoptotic factor related to carcinogenesis or progression in acute monocytic leukemia, and may be a potential target for immunotherapy against acute monocytic leukemia.

  6. Replacement of the human topoisomerase linker domain with the plasmodial counterpart renders the enzyme camptothecin resistant

    DEFF Research Database (Denmark)

    Arnò, Barbara; D'Annessa, Ilda; Tesauro, Cinzia;

    2013-01-01

    , but it is characterized by a much faster religation rate. The hybrid enzyme is also camptothecin resistant. A 3D structure of the hybrid enzyme has been built and its structural-dynamical properties have been analyzed by molecular dynamics simulation. The analysis indicates that the swapped plasmodial linker samples......A human/plasmodial hybrid enzyme, generated by swapping the human topoisomerase IB linker domain with the corresponding domain of the Plasmodium falciparum enzyme, has been produced and characterized. The hybrid enzyme displays a relaxation activity comparable to the human enzyme...... in the modulation of the topoisomerase IB activity....

  7. Liposome encapsulated soy lecithin and cholesterol can efficiently replace chicken egg yolk in human semen cryopreservation medium.

    Science.gov (United States)

    Mutalik, Srinivas; Salian, Sujith Raj; Avadhani, Kiran; Menon, Jyothsna; Joshi, Haritima; Hegde, Aswathi Raju; Kumar, Pratap; Kalthur, Guruprasad; Adiga, Satish Kumar

    2014-06-01

    Cryopreservation of spermatozoa plays a significant role in reproductive medicine and fertility preservation. Chicken egg yolk is used as an extender in cryopreservation of human spermatozoa using glycerol egg yolk citrate (GEYC) buffered medium. Even though 50% survival of spermatozoa is generally achieved with this method, the risk of high levels of endotoxins and transmission pathogens from chicken egg yolk is a matter of concern. In the present study we attempted to establish a chemically defined cryopreservation medium which can replace the chicken egg yolk without affecting sperm survival. Ejaculates from 28 men were cryopreserved with GEYC based freezing medium or liposome encapsulated soy lecithin-cholesterol based freezing medium (LFM). The semen samples were subjected to rapid thawing after 14 days of storage in liquid nitrogen. Post-thaw analysis indicated significantly higher post-thaw motility and sperm survival in spermatozoa cryopreserved with LFM compared to conventional GEYC freezing medium. The soy lecithin and cholesterol at the ratio of 80:20 with sucrose showed the highest percentage of post-thaw motility and survival compared to the other compositions. In conclusion, chemically defined cryopreservation medium with liposome encapsulated soy lecithin and cholesterol can effectively replace the chicken egg yolk from human semen cryopreservation medium without compromising post-thaw outcome.

  8. Bioinformatics Assisted Gene Discovery and Annotation of Human Genome

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the sequencing stage of human genome project is near the end, the work has begun for discovering novel genes from genome sequences and annotating their biological functions. Here are reviewed current major bioinformatics tools and technologies available for large scale gene discovery and annotation from human genome sequences. Some ideas about possible future development are also provided.

  9. AN ULTRASTRUTURAL STUDY OF HUMAN LUMINAL ENDOMETRIAL CELLS FOLLOWING DIFFERENT DOSES OF OESTROGEN REPLACEMENT THERAPY

    Directory of Open Access Journals (Sweden)

    SARANI SH.A

    2001-01-01

    Full Text Available Introduction: The effects of different doses of oestrogen on the endometrium of women with premature ovarian failure have been examined in this study. Materials and Methods: Four groups of women of reproductive age were studied; 1 normal fertile controls 2. patients given a standard, variable hormone replacement therapy (HRT 3. a group given a fixed daily dose of 1 mg of oestrogen and 4. a group given a fixed daily dose of 4 mg of oestrogen. Endrometrial diposises were taken at a bout 5-6 days after ovulation and tissue was prepared for light and electron microscopy. Morphometry was used to evaluate quantitatively various features of endometrial luminal epithelial cells. The volume fraction (Vv of nucleus to cell in the standard group was significantly larger than the 4 mg group. Results: The Vv of euchromatin to nucleus was larger in the controls and 4 mg group than the 1 mg subjects. The Vv of mitochondria to cell was largest in the control group. The ratio of desmosomes to surface membrane was increased (P<0.05 in the 1 mg subjects. Conclusion: These results suggest that, while standard HRT is generally a good mimic of controls, the 1 mg fixed dose delayed some membrane features and the fixed 4 mg group showed advancement in some organelle growth.

  10. Human xylosyltransferases – mediators of arthrofibrosis? New pathomechanistic insights into arthrofibrotic remodeling after knee replacement therapy

    Science.gov (United States)

    Faust, Isabel; Traut, Philipp; Nolting, Frank; Petschallies, Jan; Neumann, Elena; Kunisch, Elke; Kuhn, Joachim; Knabbe, Cornelius; Hendig, Doris

    2015-01-01

    Total knee replacement (TKR) is a common therapeutic option to restore joint functionality in chronic inflammatory joint diseases. Subsequent arthrofibrotic remodeling occurs in 10%, but the underlying pathomechanisms remain unclear. We evaluated the association of xylosyltransferases (XT), fibrotic mediators catalyzing glycosaminoglycan biosynthesis, leading to arthrofibrosis as well as the feasibility of using serum XT activity as a diagnostic marker. For this purpose, synovial fibroblasts (SF) were isolated from arthrofibrotic and control synovial biopsies. Basal α-smooth muscle actin expression revealed a high fibroblast-myofibroblast transition rate in arthrofibrotic fibroblasts. Fibrotic remodeling marked by enhanced XT activity, α-SMA protein expression as well as xylosyltransferase-I, collagen type III-alpha-1 and ACTA2 mRNA expression was stronger in arthrofibrotic than in control fibroblasts treated with transforming growth factor-β1 (TGF-β1). Otherwise, no differences between serum levels of XT-I activity or common fibrosis markers (galectin-3 and growth differentiation factor-15 levels (GDF-15)) were found between 95 patients with arthrofibrosis and 132 controls after TKR. In summary, XT-I was initially investigated as a key cellular mediator of arthrofibrosis and a target for therapeutic intervention. However, the blood-synovial-barrier makes arthrofibrotic molecular changes undetectable in serum. Future studies on monitoring or preventing arthrofibrotic remodeling should therefore rely on local instead of systemic parameters. PMID:26219087

  11. Human xylosyltransferases--mediators of arthrofibrosis? New pathomechanistic insights into arthrofibrotic remodeling after knee replacement therapy.

    Science.gov (United States)

    Faust, Isabel; Traut, Philipp; Nolting, Frank; Petschallies, Jan; Neumann, Elena; Kunisch, Elke; Kuhn, Joachim; Knabbe, Cornelius; Hendig, Doris

    2015-07-28

    Total knee replacement (TKR) is a common therapeutic option to restore joint functionality in chronic inflammatory joint diseases. Subsequent arthrofibrotic remodeling occurs in 10%, but the underlying pathomechanisms remain unclear. We evaluated the association of xylosyltransferases (XT), fibrotic mediators catalyzing glycosaminoglycan biosynthesis, leading to arthrofibrosis as well as the feasibility of using serum XT activity as a diagnostic marker. For this purpose, synovial fibroblasts (SF) were isolated from arthrofibrotic and control synovial biopsies. Basal α-smooth muscle actin expression revealed a high fibroblast-myofibroblast transition rate in arthrofibrotic fibroblasts. Fibrotic remodeling marked by enhanced XT activity, α-SMA protein expression as well as xylosyltransferase-I, collagen type III-alpha-1 and ACTA2 mRNA expression was stronger in arthrofibrotic than in control fibroblasts treated with transforming growth factor-β1 (TGF-β1). Otherwise, no differences between serum levels of XT-I activity or common fibrosis markers (galectin-3 and growth differentiation factor-15 levels (GDF-15)) were found between 95 patients with arthrofibrosis and 132 controls after TKR. In summary, XT-I was initially investigated as a key cellular mediator of arthrofibrosis and a target for therapeutic intervention. However, the blood-synovial-barrier makes arthrofibrotic molecular changes undetectable in serum. Future studies on monitoring or preventing arthrofibrotic remodeling should therefore rely on local instead of systemic parameters.

  12. In-silico human genomics with GeneCards

    Directory of Open Access Journals (Sweden)

    Stelzer Gil

    2011-10-01

    Full Text Available Abstract Since 1998, the bioinformatics, systems biology, genomics and medical communities have enjoyed a synergistic relationship with the GeneCards database of human genes (http://www.genecards.org. This human gene compendium was created to help to introduce order into the increasing chaos of information flow. As a consequence of viewing details and deep links related to specific genes, users have often requested enhanced capabilities, such that, over time, GeneCards has blossomed into a suite of tools (including GeneDecks, GeneALaCart, GeneLoc, GeneNote and GeneAnnot for a variety of analyses of both single human genes and sets thereof. In this paper, we focus on inhouse and external research activities which have been enabled, enhanced, complemented and, in some cases, motivated by GeneCards. In turn, such interactions have often inspired and propelled improvements in GeneCards. We describe here the evolution and architecture of this project, including examples of synergistic applications in diverse areas such as synthetic lethality in cancer, the annotation of genetic variations in disease, omics integration in a systems biology approach to kidney disease, and bioinformatics tools.

  13. Human reporter genes: potential use in clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Serganova, Inna [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Ponomarev, Vladimir [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Blasberg, Ronald [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States)], E-mail: blasberg@neuro1.mskcc.org

    2007-10-15

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  14. Is the crowd better as an assistant or a replacement in ontology engineering? An exploration through the lens of the Gene Ontology.

    Science.gov (United States)

    Mortensen, Jonathan M; Telis, Natalie; Hughey, Jacob J; Fan-Minogue, Hua; Van Auken, Kimberly; Dumontier, Michel; Musen, Mark A

    2016-04-01

    Biomedical ontologies contain errors. Crowdsourcing, defined as taking a job traditionally performed by a designated agent and outsourcing it to an undefined large group of people, provides scalable access to humans. Therefore, the crowd has the potential to overcome the limited accuracy and scalability found in current ontology quality assurance approaches. Crowd-based methods have identified errors in SNOMED CT, a large, clinical ontology, with an accuracy similar to that of experts, suggesting that crowdsourcing is indeed a feasible approach for identifying ontology errors. This work uses that same crowd-based methodology, as well as a panel of experts, to verify a subset of the Gene Ontology (200 relationships). Experts identified 16 errors, generally in relationships referencing acids and metals. The crowd performed poorly in identifying those errors, with an area under the receiver operating characteristic curve ranging from 0.44 to 0.73, depending on the methods configuration. However, when the crowd verified what experts considered to be easy relationships with useful definitions, they performed reasonably well. Notably, there are significantly fewer Google search results for Gene Ontology concepts than SNOMED CT concepts. This disparity may account for the difference in performance - fewer search results indicate a more difficult task for the worker. The number of Internet search results could serve as a method to assess which tasks are appropriate for the crowd. These results suggest that the crowd fits better as an expert assistant, helping experts with their verification by completing the easy tasks and allowing experts to focus on the difficult tasks, rather than an expert replacement.

  15. The structure and expression of the human neuroligin-3 gene.

    Science.gov (United States)

    Philibert, R A; Winfield, S L; Sandhu, H K; Martin, B M; Ginns, E I

    2000-04-04

    The neuroligins are a family of proteins that are thought to mediate cell to cell interactions between neurons. During the sequencing at an Xq13 locus associated with a mental retardation syndrome in some studies, we discovered a portion of the human orthologue of the rat neuroligin-3 gene. We now report the structure and the expression of that gene. The gene spans approximately 30kb and contains eight exons. Unlike the rat gene, it codes for at least two mRNAs and at least one of which is expressed outside the CNS. Interestingly, the putative promoter for the gene overlaps the last exon of the neighboring HOPA gene and is located less than 1kb from an OPA element in which a polymorphism associated with mental retardation is found. These findings suggest a possible role for the neuroligin gene in mental retardation and that the role of the gene in humans may differ from its role in rats.

  16. Evaluation of reference genes for gene expression studies in human brown adipose tissue.

    Science.gov (United States)

    Taube, Magdalena; Andersson-Assarsson, Johanna C; Lindberg, Kristin; Pereira, Maria J; Gäbel, Markus; Svensson, Maria K; Eriksson, Jan W; Svensson, Per-Arne

    2015-01-01

    Human brown adipose tissue (BAT) has during the last 5 year been subjected to an increasing research interest, due to its putative function as a target for future obesity treatments. The most commonly used method for molecular studies of human BAT is the quantitative polymerase chain reaction (qPCR). This method requires normalization to a reference gene (genes with uniform expression under different experimental conditions, e.g. similar expression levels between human BAT and WAT), but so far no evaluation of reference genes for human BAT has been performed. Two different microarray datasets with samples containing human BAT were used to search for genes with low variability in expression levels. Seven genes (FAM96B, GNB1, GNB2, HUWE1, PSMB2, RING1 and TPT1) identified by microarray analysis, and 8 commonly used reference genes (18S, B2M, GAPDH, LRP10, PPIA, RPLP0, UBC, and YWHAZ) were selected and further analyzed by quantitative PCR in both BAT containing perirenal adipose tissue and subcutaneous adipose tissue. Results were analyzed using 2 different algorithms (Normfinder and geNorm). Most of the commonly used reference genes displayed acceptably low variability (geNorm M-values genes identified by microarray displayed an even lower variability (M-values genes for qPCR analysis of human BAT and we recommend that they are included in future gene expression studies of human BAT.

  17. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products.

    Science.gov (United States)

    El Ghalbzouri, Abdoelwaheb; Commandeur, Suzan; Rietveld, Marion H; Mulder, Aat A; Willemze, Rein

    2009-01-01

    Reconstructed human skin equivalents (HSEs) are representative models of human skin and widely used for research purposes and clinical applications. Traditional methods to generate HSEs are based on the seeding of human keratinocytes onto three-dimensional human fibroblast-populated non-human collagen matrices. Current HSEs have a limited lifespan of approximately 8 weeks, rendering them unsuitable for long-term studies. Here we present a new generation of HSEs being fully composed of human components and which can be cultured up to 20 weeks. This model is generated on a primary human fibroblast-derived dermal matrix. Pro-collagen type I secretion by human fibroblasts stabilized during long-term culture, providing a continuous and functional human dermal matrix. In contrast to rat-tail collagen-based HSEs, the present fibroblast-derived matrix-based HSEs contain more continuity in the number of viable cell layers in long-term cultures. In addition, these new skin models exhibit normal differentiation and proliferation, based on expression of K10/K15, and K16/K17, respectively. Detection of collagen types IV and VII and laminin 332 was confined to the epidermal-dermal junction, as in native skin. The presence of hemidesmosomes and anchoring fibrils was demonstrated by electron microscopy. Finally, we show that the presented HSE contained a higher concentration of the normal moisturizing factor compared to rat-tail collagen-based skin models, providing a further representation of functional normal human skin in vitro. This study, therefore, demonstrates the role of the dermal microenvironment on epidermal regeneration and lifespan in vitro.

  18. Load and failure behavior of human muscle samples in the context of proximal femur replacement

    OpenAIRE

    Schleifenbaum, Stefan; Schmidt, Michael; Möbius, Robert; Wolfskämpf, Thomas; Schröder, Christian; Grunert, Ronny; Hammer, Niels; Prietzel, Torsten

    2016-01-01

    Background: To ensure adequate function after orthopedic tumor reconstruction, it is important to reattach the remaining soft tissue to the implant. This study aimed at obtaining mechanical properties of textile muscle-implant and muscle-bone connections in a preliminary test. Methods: Two groups of soft-tissue attachment were mechanically tested and compared: Native bone-muscle samples obtained from human femora and muscles attached to a prosthetic implant by means of Trevira® attachment tu...

  19. Humanlike Articulate Robotic Headform to Replace Human Volunteers in Respirator Fit Testing

    Science.gov (United States)

    2012-12-01

    reservoir or scrubbed CO2 in a rebreather.[8] The 1848 US patent[9] for Haslett’s Lung Protector describes the first air purifying respirator...N95 filtering facepiece particulate respirator and a surgical mask during human breathing: two pathways for particle penetration. J. Occup. Environ...Assoc. J, 1983. 44: 720–726. 39. Tuomi, T., Face seal leakage of half-masks and surgical masks. Am. Ind. Hyg. Assoc. J., 1985. 46(6): 308–312. 40

  20. Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand.

    Science.gov (United States)

    Jiang, Yongying; Trnka, Michael J; Medzihradszky, Katalin F; Ouellet, Hugues; Wang, Yongqiang; Ortiz de Montellano, Paul R

    2009-03-01

    To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron [Y. Jiang, P.R. Ortiz de Montellano, Inorg. Chem. 47 (2008) 3480-3482 ], indicate that a selenyl radical is formed in the hHO-1 His25SeCys mutant that adds to a heme vinyl group.

  1. Ankle replacement

    Science.gov (United States)

    Ankle arthroplasty - total; Total ankle arthroplasty; Endoprosthetic ankle replacement; Ankle surgery ... You may not be able to have a total ankle replacement if you have had ankle joint infections in ...

  2. Knee Replacement

    Science.gov (United States)

    Knee replacement is surgery for people with severe knee damage. Knee replacement can relieve pain and allow you to ... Your doctor may recommend it if you have knee pain and medicine and other treatments are not ...

  3. Different level of population differentiation among human genes

    Directory of Open Access Journals (Sweden)

    Zhang Ya-Ping

    2011-01-01

    Full Text Available Abstract Background During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations. Results Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher FST SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection. Conclusion Our analysis demonstrates different level of population differentiation among human populations for different gene groups.

  4. In vivo functional analysis of the human NF2 tumor suppressor gene in Drosophila.

    Directory of Open Access Journals (Sweden)

    Heather S Gavilan

    Full Text Available The proper control of tissue growth is essential during normal development and an important problem in human disease. Merlin, the product of the Neurofibromatosis 2 tumor suppressor gene, has been extensively studied to understand its functions in growth control. Here we describe experiments in which we used Drosophila as an in vivo system to test the functions of the normal human NF2 gene products and patient-derived mutant alleles. Although the predominant NF2 gene isoform, isoform 1, could functionally replace the Drosophila Merlin gene, a second isoform with a distinct C-terminal tail could not. Immunofluorescence studies show that the two isoforms have distinct subcellular localizations when expressed in the polarized imaginal epithelium, and function in genetic rescue assays correlates with apical localization of the NF2 protein. Interestingly, we found that a patient-derived missense allele, NF2L64P, appears to be temperature sensitive. These studies highlight the utility of Drosophila for in vivo functional analysis of highly conserved human disease genes.

  5. Chromosomal localization of the human and mouse hyaluronan synthase genes

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, A.P.; McDonald, J.A. [Mayo Clinic Scottsdale, AZ (United States); Seldin, M.F. [Univ. of California Davis, CA (United States)] [and others

    1997-05-01

    We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designated HAS1, HAS2, and HAS3 in humans and Has1, Has2, and Has3 in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to the Streptococcus pyogenes HA synthase, HasA. Furthermore, expression of any one HAS gene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the three HAS genes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes. HAS1 was localized to the human chromosome 19q13.3-q13.4 boundary and Has1 to mouse Chr 17. HAS2 was localized to human chromosome 8q24.12 and Has2 to mouse Chr 15. HAS3 was localized to human chromosome 16q22.1 and Has3 to mouse Chr 8. The map position for HAS1 reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17. HAS2 mapped outside the predicted critical region delineated for the Langer-Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome. 33 refs., 2 figs.

  6. Identification of a human monoclonal antibody to replace equine diphtheria antitoxin for treatment of diphtheria intoxication.

    Science.gov (United States)

    Sevigny, Leila M; Booth, Brian J; Rowley, Kirk J; Leav, Brett A; Cheslock, Peter S; Garrity, Kerry A; Sloan, Susan E; Thomas, William; Babcock, Gregory J; Wang, Yang

    2013-11-01

    Diphtheria antitoxin (DAT) has been the cornerstone of the treatment of Corynebacterium diphtheriae infection for more than 100 years. Although the global incidence of diphtheria has declined steadily over the last quarter of the 20th century, the disease remains endemic in many parts of the world, and significant outbreaks still occur. DAT is an equine polyclonal antibody that is not commercially available in the United States and is in short supply globally. A safer, more readily available alternative to DAT would be desirable. In the current study, we obtained human monoclonal antibodies (hMAbs) directly from antibody-secreting cells in the circulation of immunized human volunteers. We isolated a panel of diverse hMAbs that recognized diphtheria toxoid, as well as a variety of recombinant protein fragments of diphtheria toxin. Forty-five unique hMAbs were tested for neutralization of diphtheria toxin in in vitro cytotoxicity assays with a 50% effective concentration of 0.65 ng/ml for the lead candidate hMAb, 315C4. In addition, 25 μg of 315C4 completely protected guinea pigs from intoxication in an in vivo lethality model, yielding an estimated relative potency of 64 IU/mg. In comparison, 1.6 IU of DAT was necessary for full protection from morbidity and mortality in this model. We further established that our lead candidate hMAb binds to the receptor-binding domain of diphtheria toxin and physically blocks the toxin from binding to the putative receptor, heparin-binding epidermal growth factor-like growth factor. The discovery of a specific and potent human neutralizing antibody against diphtheria toxin holds promise as a potential therapeutic.

  7. De Novo Origin of Human Protein-Coding Genes

    Science.gov (United States)

    Wu, Dong-Dong; Irwin, David M.; Zhang, Ya-Ping

    2011-01-01

    The de novo origin of a new protein-coding gene from non-coding DNA is considered to be a very rare occurrence in genomes. Here we identify 60 new protein-coding genes that originated de novo on the human lineage since divergence from the chimpanzee. The functionality of these genes is supported by both transcriptional and proteomic evidence. RNA–seq data indicate that these genes have their highest expression levels in the cerebral cortex and testes, which might suggest that these genes contribute to phenotypic traits that are unique to humans, such as improved cognitive ability. Our results are inconsistent with the traditional view that the de novo origin of new genes is very rare, thus there should be greater appreciation of the importance of the de novo origination of genes. PMID:22102831

  8. THE GENE EXPRESSION PROFILE OF HIGHLY METASTATIC HUMAN OVARIAN CANCER CELL LINE BY GENE CHIP

    Institute of Scientific and Technical Information of China (English)

    吕桂泉; 许沈华; 牟瀚舟; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 杨文; 程勇

    2001-01-01

    To study the gene expression of high metastatic human ovarian carcinoma cell line (HO-8910PM) and to screen for novel metastasis- associated genes by cDNA microarray. Methods: The cDNA was retro-transcribed from equal quantity mRNA derived from tissues of highly metastatic ovarian carcinoma cell line and normal ovarian, and was labeled with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BioDoor 4096 double dot human whole gene chip. The chip was scanned by scanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results: By applying the cDNA microarray we found: A total of 323 genes whose expression level were 3 times higher or lower in HO-8910PM cell than normal ovarian epithelium cell were screened out, with 71 higher and 252 lower respectively. Among these 10 were new genes. 67 genes showed expression difference bigger than 6 times between HO-8910PM cell and normal ovarian epithelium cell, among these genes 12 were higher, 55 lower, and two new genes were found. Conclusion: cDNA microarray technique is effective in screening the differentially expressed genes between human ovarian cancer cell line (HO-8910PM) and normal ovarian epithelium cell. Using the cDNA microarray to analyze of human ovarian cancer cell line gene expression profile difference will help the gene diagnosis, treatment and protection.

  9. Crystallization and molecular-replacement solution of a truncated form of human recombinant tetranectin

    DEFF Research Database (Denmark)

    Nielsen, B B; Kastrup, J S; Rasmussen, H;

    2000-01-01

    The two C-terminal domains, TN23 (residues 17-181), of human recombinant tetranectin, a plasminogen kringle 4 binding C-type lectin, have been crystallized in two different space groups. Using PEG 8000 as precipitant and at a pH of 8.5, crystals belonging to the monoclinic space group C2 are obta......The two C-terminal domains, TN23 (residues 17-181), of human recombinant tetranectin, a plasminogen kringle 4 binding C-type lectin, have been crystallized in two different space groups. Using PEG 8000 as precipitant and at a pH of 8.5, crystals belonging to the monoclinic space group C2...... are obtained, with unit-cell parameters a = 160.4, b = 44.7, c = 107.5 A, beta = 127.6 degrees. Using sodium formate as precipitant and at a pH of 5.0, TN23 crystallizes in a rhombohedral space group, with unit-cell parameters a = b = c = 107.4 A, alpha = beta = gamma = 78.3 degrees. A full data set to 4...

  10. Immunity and AAV-Mediated Gene Therapy for Muscular Dystrophies in Large Animal Models and Human Trials.

    Science.gov (United States)

    Wang, Zejing; Tapscott, Stephen J; Chamberlain, Jeffrey S; Storb, Rainer

    2011-01-01

    Adeno-associated viral (AAV) vector-mediated gene replacement for the treatment of muscular dystrophy represents a promising therapeutic strategy in modern medicine. One major obstacle in using AAV vectors for in vivo gene delivery is the development of host immune responses to the viral capsid protein and transgene products as evidenced in animal models and human trials for a range of genetic diseases. Here, we review immunity against AAV vector and transgene in the context of gene delivery specific to muscles for treating muscular dystrophies and non-muscle diseases in large animal models and human trials, factors that influence the intensity of the immune responses, and immune modulatory strategies to prevent unwanted immune responses and induce tolerance to the vector and therapeutic gene for a successful gene therapy.

  11. Mutations in the human TWIST gene.

    Science.gov (United States)

    Gripp, K W; Zackai, E H; Stolle, C A

    2000-01-01

    Saethre-Chotzen syndrome is a relatively common craniosynostosis disorder with autosomal dominant inheritance. Mutations in the TWIST gene have been identified in patients with Saethre-Chotzen syndrome. The TWIST gene product is a transcription factor with DNA binding and helix-loop-helix domains. Numerous missense and nonsense mutations cluster in the functional domains, without any apparent mutational hot spot. Two novel point mutations and one novel polymorphism are included in this review. Large deletions including the TWIST gene have been identified in some patients with learning disabilities or mental retardation, which are not typically part of the Saethre-Chotzen syndrome. Comprehensive studies in patients with the clinical diagnosis of Saethre-Chotzen syndrome have demonstrated a TWIST gene abnormality in about 80%, up to 37% of which may be large deletions [Johnson et al., 1998]. The gene deletions and numerous nonsense mutations are suggestive of haploinsufficiency as the disease-causing mechanism. No genotype phenotype correlation was apparent.

  12. Tissue-specific and neural activity-regulated expression of human BDNF gene in BAC transgenic mice

    Directory of Open Access Journals (Sweden)

    Palm Kaia

    2009-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF is a small secreted protein that has important roles in the developing and adult nervous system. Altered expression or changes in the regulation of the BDNF gene have been implicated in a variety of human nervous system disorders. Although regulation of the rodent BDNF gene has been extensively investigated, in vivo studies regarding the human BDNF gene are largely limited to postmortem analysis. Bacterial artificial chromosome (BAC transgenic mice harboring the human BDNF gene and its regulatory flanking sequences constitute a useful tool for studying human BDNF gene regulation and for identification of therapeutic compounds modulating BDNF expression. Results In this study we have generated and analyzed BAC transgenic mice carrying 168 kb of the human BDNF locus modified such that BDNF coding sequence was replaced with the sequence of a fusion protein consisting of N-terminal BDNF and the enhanced green fluorescent protein (EGFP. The human BDNF-BAC construct containing all BDNF 5' exons preceded by different promoters recapitulated the expression of endogenous BDNF mRNA in the brain and several non-neural tissues of transgenic mice. All different 5' exon-specific BDNF-EGFP alternative transcripts were expressed from the transgenic human BDNF-BAC construct, resembling the expression of endogenous BDNF. Furthermore, BDNF-EGFP mRNA was induced upon treatment with kainic acid in a promotor-specific manner, similarly to that of the endogenous mouse BDNF mRNA. Conclusion Genomic region covering 67 kb of human BDNF gene, 84 kb of upstream and 17 kb of downstream sequences is sufficient to drive tissue-specific and kainic acid-induced expression of the reporter gene in transgenic mice. The pattern of expression of the transgene is highly similar to BDNF gene expression in mouse and human. This is the first study to show that human BDNF gene is regulated by neural activity.

  13. Human brain evolution: from gene discovery to phenotype discovery.

    Science.gov (United States)

    Preuss, Todd M

    2012-06-26

    The rise of comparative genomics and related technologies has added important new dimensions to the study of human evolution. Our knowledge of the genes that underwent expression changes or were targets of positive selection in human evolution is rapidly increasing, as is our knowledge of gene duplications, translocations, and deletions. It is now clear that the genetic differences between humans and chimpanzees are far more extensive than previously thought; their genomes are not 98% or 99% identical. Despite the rapid growth in our understanding of the evolution of the human genome, our understanding of the relationship between genetic changes and phenotypic changes is tenuous. This is true even for the most intensively studied gene, FOXP2, which underwent positive selection in the human terminal lineage and is thought to have played an important role in the evolution of human speech and language. In part, the difficulty of connecting genes to phenotypes reflects our generally poor knowledge of human phenotypic specializations, as well as the difficulty of interpreting the consequences of genetic changes in species that are not amenable to invasive research. On the positive side, investigations of FOXP2, along with genomewide surveys of gene-expression changes and selection-driven sequence changes, offer the opportunity for "phenotype discovery," providing clues to human phenotypic specializations that were previously unsuspected. What is more, at least some of the specializations that have been proposed are amenable to testing with noninvasive experimental techniques appropriate for the study of humans and apes.

  14. Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus.

    Science.gov (United States)

    Salame, Tomer M; Knop, Doriv; Tal, Dana; Levinson, Dana; Yarden, Oded; Hadar, Yitzhak

    2012-08-01

    Pleurotus ostreatus (the oyster mushroom) and other white rot filamentous basidiomycetes are key players in the global carbon cycle. P. ostreatus is also a commercially important edible fungus with medicinal properties and is important for biotechnological and environmental applications. Efficient gene targeting via homologous recombination (HR) is a fundamental tool for facilitating comprehensive gene function studies. Since the natural HR frequency in Pleurotus transformations is low (2.3%), transformed DNA is predominantly integrated ectopically. To overcome this limitation, a general gene targeting system was developed by producing a P. ostreatus PC9 homokaryon Δku80 strain, using carboxin resistance complemented by the development of a protocol for hygromycin B resistance protoplast-based DNA transformation and homokaryon isolation. The Δku80 strain exhibited exclusive (100%) HR in the integration of transforming DNA, providing a high efficiency of gene targeting. Furthermore, the Δku80 strains produced showed a phenotype similar to that of the wild-type PC9 strain, with similar growth fitness, ligninolytic functionality, and capability of mating with the incompatible strain PC15 to produce a dikaryon which retained its resistance to the corresponding selection and was capable of producing typical fruiting bodies. The applicability of this system is demonstrated by inactivation of the versatile peroxidase (VP) encoded by mnp4. This enzyme is part of the ligninolytic system of P. ostreatus, being one of the nine members of the manganese-peroxidase (MnP) gene family, and is the predominantly expressed VP in Mn(2+)-deficient media. mnp4 inactivation provided a direct proof that mnp4 encodes a key VP responsible for the Mn(2+)-dependent and Mn(2+)-independent peroxidase activity under Mn(2+)-deficient culture conditions.

  15. [Structural organization of the human p53 gene. I. Molecular cloning of the human p53 gene].

    Science.gov (United States)

    Bukhman, V L; Ninkina, N N; Chumakov, P M; Khilenkova, M A; Samarina, O P

    1987-09-01

    Human p53 gene was cloned from the normal human placenta DNA and DNA from the strain of human kidney carcinoma transplanted into nude mice. Representative gene library from tumor strain of human kidney carcinoma and library of 15 kb EcoRI fragments of DNA from normal human placenta were constructed. Maniatis gene library was also used. Five clones were isolated from kidney carcinoma library; they covered 27 kb and included full-length p53 gene of 19.5 kb and flanking sequences. From normal placenta libraries three overlapped clones were obtained. Restriction map of cloned sequences was constructed and polarity of the p53 gene determined. The first intron of the gene is large (10.4 kb); polymorphic BglII site was observed in this intron, which allows to discriminate between allelic genes. One of these (BglII-) is ten times more abundant that the other (BglII+). Both allelic genes are able to synthesize the 2.8 kb p53 gene.

  16. Mucin gene expression in human middle ear epithelium.

    Science.gov (United States)

    Kerschner, Joseph Edward

    2007-09-01

    To investigate the expression of recently identified human mucin genes in human middle ear epithelial (MEE) specimens from in vivo middle ear (ME) tissue and to compare this mucin gene expression with mucin gene expression in an immortalized cell culture in vitro source of human MEE. Human MEE was harvested as in vivo specimens, and human MEE cell cultures were established for in vitro experimentation. RNA was extracted from MEE and primers designed for reverse-transcription polymerase chain reaction to assess for mucin gene MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, MUC6, MUC7, MUC8, MUC9, MUC11, MUC12, MUC13, MUC15, MUC16, MUC18, MUC19, and MUC20 expression. Mucin gene expression in the in vivo and in vitro ME tissue was compared against tissues with known expression of the mucin genes in question. Mucin genes MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, MUC7, MUC8, MUC9, MUC11, MUC13, MUC15, MUC16, MUC18, MUC19, and MUC20 were identified and expressed in both the in vivo and in vitro samples of MEE. Mucin genes MUC6, MUC12, and MUC17 were not identified in either tissue samples. Many of the mucin genes that have been recently identified are expressed in human MEE. These genes are expressed in a similar manner in both in vivo and in vitro models. Understanding the mechanisms in which these genes regulate the physiology and pathophysiology of MEE will provide a more thorough understanding of the molecular mechanics of the MEE and disease conditions such as otitis media.

  17. Identification and validation of suitable endogenous reference genes for gene expression studies in human peripheral blood

    Directory of Open Access Journals (Sweden)

    Turner Renee J

    2009-08-01

    Full Text Available Abstract Background Gene expression studies require appropriate normalization methods. One such method uses stably expressed reference genes. Since suitable reference genes appear to be unique for each tissue, we have identified an optimal set of the most stably expressed genes in human blood that can be used for normalization. Methods Whole-genome Affymetrix Human 2.0 Plus arrays were examined from 526 samples of males and females ages 2 to 78, including control subjects and patients with Tourette syndrome, stroke, migraine, muscular dystrophy, and autism. The top 100 most stably expressed genes with a broad range of expression levels were identified. To validate the best candidate genes, we performed quantitative RT-PCR on a subset of 10 genes (TRAP1, DECR1, FPGS, FARP1, MAPRE2, PEX16, GINS2, CRY2, CSNK1G2 and A4GALT, 4 commonly employed reference genes (GAPDH, ACTB, B2M and HMBS and PPIB, previously reported to be stably expressed in blood. Expression stability and ranking analysis were performed using GeNorm and NormFinder algorithms. Results Reference genes were ranked based on their expression stability and the minimum number of genes needed for nomalization as calculated using GeNorm showed that the fewest, most stably expressed genes needed for acurate normalization in RNA expression studies of human whole blood is a combination of TRAP1, FPGS, DECR1 and PPIB. We confirmed the ranking of the best candidate control genes by using an alternative algorithm (NormFinder. Conclusion The reference genes identified in this study are stably expressed in whole blood of humans of both genders with multiple disease conditions and ages 2 to 78. Importantly, they also have different functions within cells and thus should be expressed independently of each other. These genes should be useful as normalization genes for microarray and RT-PCR whole blood studies of human physiology, metabolism and disease.

  18. The mechanism of gene targeting in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Yinan Kan

    2014-04-01

    Full Text Available Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB repair known as homologous recombination (HR. The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  19. The mechanism of gene targeting in human somatic cells.

    Science.gov (United States)

    Kan, Yinan; Ruis, Brian; Lin, Sherry; Hendrickson, Eric A

    2014-04-01

    Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  20. Structure and in vitro transcription of human globin genes.

    Science.gov (United States)

    Proudfoot, N J; Shander, M H; Manley, J L; Gefter, M L; Maniatis, T

    1980-09-19

    The alpha-like and beta-like subunits of human hemoglobin are encoded by a small family of genes that are differentially expressed during development. Through the use of molecular cloning procedures, each member of this gene family has been isolated and extensively characterized. Although the alpha-like and beta-like globin genes are located on different chromosomes, both sets of genes are arranged in closely linked clusters. In both clusters, each of the genes is transcribed from the same DNA strand, and the genes are arranged in the order of their expressions during development. Structural comparisons of immediately adjacent genes within each cluster have provided evidence for the occurrence of gene duplication and correction during evolution and have led to the discovery of pseudogenes, genes that have acquired numerous mutations that prevent their normal expression. Recently, in vivo and in vitro systems for studying the expression of cloned eukaryotic genes have been developed as a means of identifying DNA sequences that are necessary for normal gene function. This article describes the application of an in vitro transcription procedure to the study of human globin gene expression.

  1. Genic insights from integrated human proteomics in GeneCards.

    Science.gov (United States)

    Fishilevich, Simon; Zimmerman, Shahar; Kohn, Asher; Iny Stein, Tsippi; Olender, Tsviya; Kolker, Eugene; Safran, Marilyn; Lancet, Doron

    2016-01-01

    GeneCards is a one-stop shop for searchable human gene annotations (http://www.genecards.org/). Data are automatically mined from ∼120 sources and presented in an integrated web card for every human gene. We report the application of recent advances in proteomics to enhance gene annotation and classification in GeneCards. First, we constructed the Human Integrated Protein Expression Database (HIPED), a unified database of protein abundance in human tissues, based on the publically available mass spectrometry (MS)-based proteomics sources ProteomicsDB, Multi-Omics Profiling Expression Database, Protein Abundance Across Organisms and The MaxQuant DataBase. The integrated database, residing within GeneCards, compares favourably with its individual sources, covering nearly 90% of human protein-coding genes. For gene annotation and comparisons, we first defined a protein expression vector for each gene, based on normalized abundances in 69 normal human tissues. This vector is portrayed in the GeneCards expression section as a bar graph, allowing visual inspection and comparison. These data are juxtaposed with transcriptome bar graphs. Using the protein expression vectors, we further defined a pairwise metric that helps assess expression-based pairwise proximity. This new metric for finding functional partners complements eight others, including sharing of pathways, gene ontology (GO) terms and domains, implemented in the GeneCards Suite. In parallel, we calculated proteome-based differential expression, highlighting a subset of tissues that overexpress a gene and subserving gene classification. This textual annotation allows users of VarElect, the suite's next-generation phenotyper, to more effectively discover causative disease variants. Finally, we define the protein-RNA expression ratio and correlation as yet another attribute of every gene in each tissue, adding further annotative information. The results constitute a significant enhancement of several Gene

  2. Cellular functions of genetically imprinted genes in human and mouse as annotated in the gene ontology.

    Science.gov (United States)

    Hamed, Mohamed; Ismael, Siba; Paulsen, Martina; Helms, Volkhard

    2012-01-01

    By analyzing the cellular functions of genetically imprinted genes as annotated in the Gene Ontology for human and mouse, we found that imprinted genes are often involved in developmental, transport and regulatory processes. In the human, paternally expressed genes are enriched in GO terms related to the development of organs and of anatomical structures. In the mouse, maternally expressed genes regulate cation transport as well as G-protein signaling processes. Furthermore, we investigated if imprinted genes are regulated by common transcription factors. We identified 25 TF families that showed an enrichment of binding sites in the set of imprinted genes in human and 40 TF families in mouse. In general, maternally and paternally expressed genes are not regulated by different transcription factors. The genes Nnat, Klf14, Blcap, Gnas and Ube3a contribute most to the enrichment of TF families. In the mouse, genes that are maternally expressed in placenta are enriched for AP1 binding sites. In the human, we found that these genes possessed binding sites for both, AP1 and SP1.

  3. Regional-specific effects of ovarian hormone loss on synaptic plasticity in adult human APOE targeted replacement mice.

    Directory of Open Access Journals (Sweden)

    Rebecca C Klein

    Full Text Available The human apolipoprotein ε4 allele (APOE4 has been implicated as one of the strongest genetic risk factors associated with Alzheimer's disease (AD and in influencing normal cognitive functioning. Previous studies have demonstrated that mice expressing human apoE4 display deficits in behavioral and neurophysiological outcomes compared to those with apoE3. Ovarian hormones have also been shown to be important in modulating synaptic processes underlying cognitive function, yet little is known about how their effects are influenced by apoE. In the current study, female adult human APOE targeted replacement (TR mice were utilized to examine the effects of human APOE genotype and long-term ovarian hormone loss on synaptic plasticity in limbic regions by measuring dendritic spine density and electrophysiological function. No significant genotype differences were observed on any outcomes within intact mice. However, there was a significant main effect of genotype on total spine density in apical dendrites in the hippocampus, with post-hoc t-tests revealing a significant reduction in spine density in apoE3 ovariectomized (OVX mice compared to sham operated mice. There was also a significant main effect of OVX on the magnitude of LTP, with post-hoc t-tests revealing a decrease in apoE3 OVX mice relative to sham. In contrast, apoE4 OVX mice showed increased synaptic activity relative to sham. In the lateral amygdala, there was a significant increase in total spine density in apoE4 OVX mice relative to sham. This increase in spine density was consistent with a significant increase in spontaneous excitatory activity in apoE4 OVX mice. These findings suggest that ovarian hormones differentially modulate synaptic integrity in an apoE-dependent manner within brain regions that are susceptible to neurophysiological dysfunction associated with AD.

  4. Gene Therapy of Human Breast Cancer

    Science.gov (United States)

    1996-10-01

    1987. Partial characterization of chicken spleen cell culture supernatants stimulated with Staphylococcus aureus. Developmental & Comparative...Immunology 1 1: 191. 8. Schoof, D. D., and C. H. Tempelis. 1 986. The role of soluble protein A in chicken spleen cell activation. Developmental...promoter upstream of the neomycin phosphotransferase gene. No other eukarjotic genes are expressed. Other sequences include an intron and poly(A) site

  5. The family myth: its deconstruction and replacement with a balanced humanized narrative.

    Science.gov (United States)

    Kradin, Richard

    2009-04-01

    According to Carl Jung the mythopoeic activities of the collective unconscious contribute to the trajectory of personal individuation (Segal 1998). The 'family myth' represents an imaginal narrative that emphasizes the importance of the family's founders, its collective values, and its position with respect to 'outsiders'. Sigmund Freud identified the importance of the Oedipal myth as the basis of nuclear family dynamics (Rudnytsky 1992); however, the 'myth of the family' represents in reality a 'family of myths', each emphasizing different elements of potential interpersonal dynamics. But whereas some myths foster the child's optimal separation from parental influence and promote the process of individuation, others tend to hinder development. One potentially deleterious form of the family myth tends to serve the narcissistic wishes of parents in their bid to maintain influence over the child by fostering the archetypal features of their role. The children who are the targets of the myth are thwarted in their psychological development by virtue of the fact that they are denied the opportunity to humanize their archetypal projections onto their parent(s). The result is a persistence of childlike attitude with respect to people and situations that they encounter outside the nuclear family. The persistent constellation of the child archetype is evidenced by features of the puer aeternus, with deficits in the ability to work, form stable adult relationships, and create a separate nuclear family. The significance of this type of family myth in the inappropriate preservation of puerile attitudes is examined and the desire of the offending parent(s) to promote their own immortality is explored. The contribution of the myth to the transference and transference resistance is explicated and suggestions are offered with respect to how to approach this critical issue in analysis.

  6. A physical map of 30,000 human genes.

    Science.gov (United States)

    Deloukas, P; Schuler, G D; Gyapay, G; Beasley, E M; Soderlund, C; Rodriguez-Tomé, P; Hui, L; Matise, T C; McKusick, K B; Beckmann, J S; Bentolila, S; Bihoreau, M; Birren, B B; Browne, J; Butler, A; Castle, A B; Chiannilkulchai, N; Clee, C; Day, P J; Dehejia, A; Dibling, T; Drouot, N; Duprat, S; Fizames, C; Fox, S; Gelling, S; Green, L; Harrison, P; Hocking, R; Holloway, E; Hunt, S; Keil, S; Lijnzaad, P; Louis-Dit-Sully, C; Ma, J; Mendis, A; Miller, J; Morissette, J; Muselet, D; Nusbaum, H C; Peck, A; Rozen, S; Simon, D; Slonim, D K; Staples, R; Stein, L D; Stewart, E A; Suchard, M A; Thangarajah, T; Vega-Czarny, N; Webber, C; Wu, X; Hudson, J; Auffray, C; Nomura, N; Sikela, J M; Polymeropoulos, M H; James, M R; Lander, E S; Hudson, T J; Myers, R M; Cox, D R; Weissenbach, J; Boguski, M S; Bentley, D R

    1998-10-23

    A map of 30,181 human gene-based markers was assembled and integrated with the current genetic map by radiation hybrid mapping. The new gene map contains nearly twice as many genes as the previous release, includes most genes that encode proteins of known function, and is twofold to threefold more accurate than the previous version. A redesigned, more informative and functional World Wide Web site (www.ncbi.nlm.nih.gov/genemap) provides the mapping information and associated data and annotations. This resource constitutes an important infrastructure and tool for the study of complex genetic traits, the positional cloning of disease genes, the cross-referencing of mammalian genomes, and validated human transcribed sequences for large-scale studies of gene expression.

  7. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  8. Human DJ-1-specific Transcriptional Activation of Tyrosine Hydroxylase Gene*

    Science.gov (United States)

    Ishikawa, Shizuma; Taira, Takahiro; Takahashi-Niki, Kazuko; Niki, Takeshi; Ariga, Hiroyoshi; Iguchi-Ariga, Sanae M. M.

    2010-01-01

    Loss-of-function mutation in the DJ-1 gene causes a subset of familial Parkinson disease. The mechanism underlying DJ-1-related selective vulnerability in the dopaminergic pathway is, however, not known. DJ-1 has multiple functions, including transcriptional regulation, and one of transcriptional target genes for DJ-1 is the tyrosine hydroxylase (TH) gene, the product of which is a key enzyme for dopamine biosynthesis. It has been reported that DJ-1 is a neuroprotective transcriptional co-activator that sequesters a transcriptional co-repressor polypyrimidine tract-binding protein-associated splicing factor (PSF) from the TH gene promoter. In this study, we found that knockdown of human DJ-1 by small interference RNA in human dopaminergic cell lines attenuated TH gene expression and 4-dihydroxy-l-phenylalanine production but that knockdown or knock-out of mouse DJ-1 in mouse cell lines or in mice did not affect such expression and TH activity. In reporter assays using the human TH gene promoter linked to the luciferase gene, stimulation of TH promoter activity was observed in human cells, but not mouse cells, that had been transfected with DJ-1. Although human DJ-1 and mouse DJ-1 were associated either with human or with mouse PSF, TH promoter activity inhibited by PSF was restored by human DJ-1 but not by mouse DJ-1. Chromatin immunoprecipitation assays revealed that the complex of PSF with DJ-1 bound to the human but not the mouse TH gene promoter. These results suggest a novel species-specific transcriptional regulation of the TH promoter by DJ-1 and one of the mechanisms for no reduction of TH in DJ-1-knock-out mice. PMID:20938049

  9. Comparison of the canine and human olfactory receptor gene repertoires

    NARCIS (Netherlands)

    Quignon, P; Kirkness, E; Cadieu, E; Touleimat, N; Guyon, R; Renier, C; Hitte, C; Andre, C; Fraser, C; Galibert, F

    2003-01-01

    Background: Olfactory receptors (ORs), the first dedicated molecules with which odorants physically interact to arouse an olfactory sensation, constitute the largest gene family in vertebrates, including around 900 genes in human and 1,500 in the mouse. Whereas dogs, like many other mammals, have a

  10. Polymorphic GGC repeat differentially regulates human reelin gene expression levels.

    Science.gov (United States)

    Persico, A M; Levitt, P; Pimenta, A F

    2006-10-01

    The human gene encoding Reelin (RELN), a pivotal protein in neurodevelopment, includes a polymorphic GGC repeat in its 5' untranslated region (UTR). CHO cells transfected with constructs encompassing the RELN 5'UTR with 4-to-13 GGC repeats upstream of the luciferase reporter gene show declining luciferase activity with increasing GGC repeat number (P autism.

  11. Gene expression profiles of the developing human retina

    Institute of Scientific and Technical Information of China (English)

    WANG Feng; LI Huiming; LIU Wenwen; XU Ping; HU Gengxi; CHENG Yidong; JIA Libin; HUANG Qian

    2004-01-01

    Retina is a multilayer and highly specialized tissue important in converting light into neural signals. In humans, the critical period for the formation of complex multiplayer structure takes place during embryogenesis between 12 and 28 weeks. The morphologic changes during retinal development in humans have been studied but little is known about the molecular events essential for the formation of the retina. To gain further insights into this process, cDNA microarrays containing 16361 human gene probes were used to measure the gene expression levels in retinas. Of the 16361 genes, 68.7%, 71.4% and 69.7% showed positive hybridization with cDNAs made from 12-16 week fetal, 22-26 week fetal and adult retinas. A total of 814 genes showed a minimum of 3-fold changes between the lowest and highest expression levels among three time points and among them, 106 genes had expression levels with the hybridization intensity above 100 at one or more time points. The clustering analysis suggested that the majority of differentially expressed genes were down-regulated during the retinal development. The differentially expressed genes were further classified according to functions of known genes, and were ranked in decreasing order according to frequency: development, differentiation, signal transduction, protein synthesis and translation, metabolism, DNA binding and transcription, DNA synthesis-repair-recombination, immuno-response, ion channel- transport, cell receptor, cytoskeleton, cell cycle, pro-oncogene, stress and apoptosis related genes. Among these 106 differentially expressed genes, 60 are already present in NEI retina cDNA or EST Databank but the remaining 46 genes are absent and thus identified as "function unknown". To validate gene expression data from the microarray, real-time RT-PCR was performed for 46 "function unknown" genes and 6 known retina specific expression genes, and β-actin was used as internal control. Twenty-seven of these genes showed very similar

  12. An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440.

    Science.gov (United States)

    Wang, Yuanyuan; Zhang, Chi; Gong, Ting; Zuo, Zhenqiang; Zhao, Fengjie; Fan, Xu; Yang, Chao; Song, Cunjiang

    2015-06-01

    A markerless gene replacement method was adapted by combining a suicide plasmid, pEX18Tc, with a counterselectable marker, the upp gene encoding uracil phosphoribosyltransferase (UPRTase), for the medium-chain length polyhydroxyalkanoates (PHA(MCL))-producing strain Pseudomonas mendocina NK-01. An NK-01 5-fluorouracil (5-FU) resistant background strain was first constructed by deleting the chromosomal upp gene. The suicide plasmid pEX18Tc, carrying a functional allele of the upp gene of P. mendocina NK-01, was used to construct the vectors to delete the algA (encoding mannose-1-phosphate guanylyltransferase) and phaZ (encoding PHA(MCL) depolymerase) genes, and a 30 kb chromosomal fragment in the 5-FU resistant background host. The genes were removed efficiently from the genome of P. mendocina NK-01 and left a markerless chromosomal mutant. In addition, two exogenous genes were inserted into the phaC1 (PHA(MCL) polymerase) loci of Pseudomonas putida KT-∆UPP simultaneously. Thus, we constructed a genetically stable and marker-free P. putida KT2440 mutant with integrated mpd (encoding methyl parathion hydrolase (MPH)) and pytH (encoding a pyrethroid-hydrolyzing carboxylesterase (PytH)) gene on the chromosome. The upp-based counterselection system could be further adapted for P. mendocina NK-01 and P. putida KT2440 and used for genome reduction and metabolic pathway engineering.

  13. Gene replacement analysis of the Streptomyces virginiae barA gene encoding the butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis.

    Science.gov (United States)

    Nakano, H; Takehara, E; Nihira, T; Yamada, Y

    1998-07-01

    Virginiae butanolides (VBs), which are among the butyrolactone autoregulators of Streptomyces species, act as a primary signal in Streptomyces virginiae to trigger virginiamycin biosynthesis and possess a specific binding protein, BarA. To clarify the in vivo function of BarA in the VB-mediated signal pathway that leads to virginiamycin biosynthesis, two barA mutant strains (strains NH1 and NH2) were created by homologous recombination. In strain NH1, an internal 99-bp EcoT14I fragment of barA was deleted, resulting in an in-frame deletion of 33 amino acid residues, including the second helix of the probable helix-turn-helix DNA-binding motif. With the same growth rate as wild-type S. virginiae on both solid and liquid media, strain NH1 showed no apparent changes in its morphological behavior, indicating that the VB-BarA pathway does not participate in morphological control in S. virginiae. In contrast, virginiamycin production started 6 h earlier in strain NH1 than in the wild-type strain, demonstrating for the first time that BarA is actively engaged in the control of virginiamycin production and implying that BarA acts as a repressor in virginiamycin biosynthesis. In strain NH2, an internal EcoNI-SmaI fragment of barA was replaced with a divergently oriented neomycin resistance gene cassette, resulting in the C-terminally truncated BarA retaining the intact helix-turn-helix motif. In strain NH2 and in a plasmid-integrated strain containing both intact and mutated barA genes, virginiamycin production was abolished irrespective of the presence of VB, suggesting that the mutated BarA retaining the intact DNA-binding motif was dominant over the wild-type BarA. These results further support the hypothesis that BarA works as a repressor in virginiamycin production and suggests that the helix-turn-helix motif is essential to its function. In strain NH1, VB production was also abolished, thus indicating that BarA is a pleiotropic regulatory protein controlling not only

  14. Mapping gene associations in human mitochondria using clinical disease phenotypes.

    Directory of Open Access Journals (Sweden)

    Curt Scharfe

    2009-04-01

    Full Text Available Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects

  15. Chronic exposure to chlorpyrifos triggered body weight increase and memory impairment depending on human apoE polymorphisms in a targeted replacement mouse model.

    Science.gov (United States)

    Peris-Sampedro, Fiona; Basaure, Pia; Reverte, Ingrid; Cabré, Maria; Domingo, José L; Colomina, Maria Teresa

    2015-05-15

    Despite restrictions on their use, humans are still constantly exposed to organophosphates (OPs). A huge number of studies have ratified the neurotoxic effects of chlorpyrifos (CPF) and suggested its association with neurodegenerative diseases, but data are still scarce. Human apolipoprotein E (apoE) plays an important role in lipid transport and distribution. In humans, the apoE4 isoform has been linked to an increased risk of Alzheimer's disease (AD). ApoE3 is the most prevalent isoform worldwide, and has been often established as the healthful one. The current study, performed in targeted replacement (TR) adult male mice, aimed to inquire whether genetic variations of the human apoE respond differently to a chronic dietary challenge with CPF. At four/five months of age, mice carrying apoE2, apoE3 or apoE4 were pair-fed a diet supplemented with CPF at 0 or 2mg/kg body weight/day for 13weeks. Cholinergic signs were monitored daily and body weight changes weekly. In the last week of treatment, learning and memory were assessed in a Barnes maze task. Dietary CPF challenge increased body weight only in apoE3 mice. Differences in the acquisition and retention of the Barnes maze were attributed to apoE genetic differences. Our results showed that apoE4 mice performed worse than apoE2 and apoE3 carriers in the acquisition period of the spatial task, and that apoE2 mice had poorer retention than the other two genotypes. On the other hand, CPF increased the search velocity of apoE2 subjects during the acquisition period. Retention was impaired only in CPF-exposed apoE3 mice. These results underline that gene×environment interactions need to be taken into account in epidemiological studies. Given that apoE3, the most common polymorphism in humans, has proved to be the most sensitive to CPF, the potential implications for human health merit serious thought.

  16. Novel definition files for human GeneChips based on GeneAnnot

    Directory of Open Access Journals (Sweden)

    Ferrari Sergio

    2007-11-01

    Full Text Available Abstract Background Improvements in genome sequence annotation revealed discrepancies in the original probeset/gene assignment in Affymetrix microarray and the existence of differences between annotations and effective alignments of probes and transcription products. In the current generation of Affymetrix human GeneChips, most probesets include probes matching transcripts from more than one gene and probes which do not match any transcribed sequence. Results We developed a novel set of custom Chip Definition Files (CDF and the corresponding Bioconductor libraries for Affymetrix human GeneChips, based on the information contained in the GeneAnnot database. GeneAnnot-based CDFs are composed of unique custom-probesets, including only probes matching a single gene. Conclusion GeneAnnot-based custom CDFs solve the problem of a reliable reconstruction of expression levels and eliminate the existence of more than one probeset per gene, which often leads to discordant expression signals for the same transcript when gene differential expression is the focus of the analysis. GeneAnnot CDFs are freely distributed and fully compliant with Affymetrix standards and all available software for gene expression analysis. The CDF libraries are available from http://www.xlab.unimo.it/GA_CDF, along with supplementary information (CDF libraries, installation guidelines and R code, CDF statistics, and analysis results.

  17. Structure of the human 4-hydroxyphenylpyruvic acid dioxygenase gene (HPD)

    Energy Technology Data Exchange (ETDEWEB)

    Awata, H.; Endo, F.; Matsuda, I. [Kumamoto Univ. (Japan)

    1994-10-01

    4-Hydroxyphenylpyruvic acid dioxygenase (HPD) is an important enzyme in tyrosine catabolism in most organisms. The activity of this enzyme is expressed mainly in the liver and developmentally regulated in mammals, and a genetic deficiency in this enzyme in humans and mice leads to hereditary tyrosinemia type 3. Using human HPD cDNA as a probe, a chromosomal gene related to HPD was isolated from human gene libraries. The human HPD gene is over 30 kb long and is split into 14 exons. The extract sizes and boundaries of exon blocks were determined, and all of the splice donor and acceptor sites conformed to the GT/AG rule. Analysis of the 5{prime} flanking sequence of the gene suggests that expression of the gene is regulated by hepatocyte-specific and liver-enriched transcription factors, as well as by hormones. These features of the 5{prime} flanking region of the gene are similar to those of other genes that are specifically expressed in hepatocytes and that are developmentally regulated. 41 refs., 2 figs., 1 tab.

  18. Translational selection in human: More pronounced in housekeeping genes

    KAUST Repository

    Ma, Lina

    2014-07-10

    Background: Translational selection is a ubiquitous and significant mechanism to regulate protein expression in prokaryotes and unicellular eukaryotes. Recent evidence has shown that translational selection is weakly operative in highly expressed genes in human and other vertebrates. However, it remains unclear whether translational selection acts differentially on human genes depending on their expression patterns.Results: Here we report that human housekeeping (HK) genes that are strictly defined as genes that are expressed ubiquitously and consistently in most or all tissues, are under stronger translational selection.Conclusions: These observations clearly show that translational selection is also closely associated with expression pattern. Our results suggest that human HK genes are more efficiently and/or accurately translated into proteins, which will inevitably open up a new understanding of HK genes and the regulation of gene expression.Reviewers: This article was reviewed by Yuan Yuan, Baylor College of Medicine; Han Liang, University of Texas MD Anderson Cancer Center (nominated by Dr Laura Landweber) Eugene Koonin, NCBI, NLM, NIH, United States of America Sandor Pongor, International Centre for Genetic Engineering and biotechnology (ICGEB), Italy. © 2014 Ma et al.; licensee BioMed Central Ltd.

  19. Are mice pigmentary genes throwing light on humans?

    Directory of Open Access Journals (Sweden)

    Bose S

    1993-01-01

    Full Text Available In this article the rapid advances made in the molecular genetics of inherited disorders of hypo and hyperpigmentation during the past three years are reviewed. The main focus is on studies in mice as compared to homologues in humans. The main hypomelanotic diseases included are, piebaldism (white spotting due to mutations of c-KIT, PDGF and MGF genes; vitiligo (microphathalmia mice mutations of c-Kit and c-fms genes; Waardenburg syndrome (splotch locus mutations of mice PAX-3 or human Hup-2 genes; albinism (mutations of tyrosinase genes, Menkes disease (Mottled mouse, premature graying (mutations in light/brown locus/gp75/ TRP-1; Griscelli disease (mutations in TRP-1 and steel; Prader-willi and Angelman syndromes, tyrosinase-positive oculocutaneous albinism and hypomelanosis of lto (mutations of pink-eyed dilution gene/mapping to human chromosomes 15 q 11.2 - q12; and human platelet storage pool deficiency diseases due to defects in pallidin, an erythrocyte membrane protein (pallid mouse / mapping to 4.2 pallidin gene. The genetic characterization of hypermelanosis includes, neurofibromatosis 1 (Café-au-lait spots and McCune-Albright Syndrome. Rapid evolving knowledge about pigmentary genes will increase further the knowledge about these hypo and hyperpigmentary disorders.

  20. Identification of Haemophilus ducreyi genes expressed during human infection.

    Science.gov (United States)

    Bauer, Margaret E; Fortney, Kate R; Harrison, Alistair; Janowicz, Diane M; Munson, Robert S; Spinola, Stanley M

    2008-04-01

    To identify Haemophilus ducreyi transcripts that are expressed during human infection, we used selective capture of transcribed sequences (SCOTS) with RNA isolated from pustules obtained from three volunteers infected with H. ducreyi, and with RNA isolated from broth-grown bacteria used to infect volunteers. With SCOTS, competitive hybridization of tissue-derived and broth-derived sequences identifies genes that may be preferentially expressed in vivo. Among the three tissue specimens, we identified 531 genes expressed in vivo. Southern blot analysis of 60 genes from each tissue showed that 87 % of the identified genes hybridized better with cDNA derived from tissue specimens than with cDNA derived from broth-grown bacteria. RT-PCR on nine additional pustules confirmed in vivo expression of 10 of 11 selected genes in other volunteers. Of the 531 genes, 139 were identified in at least two volunteers. These 139 genes fell into several functional categories, including biosynthesis and metabolism, regulation, and cellular processes, such as transcription, translation, cell division, DNA replication and repair, and transport. Detection of genes involved in anaerobic and aerobic respiration indicated that H. ducreyi likely encounters both microenvironments within the pustule. Other genes detected suggest an increase in DNA damage and stress in vivo. Genes involved in virulence in other bacterial pathogens and 32 genes encoding hypothetical proteins were identified, and may represent novel virulence factors. We identified three genes, lspA1, lspA2 and tadA, known to be required for virulence in humans. This is the first study to broadly define transcripts expressed by H. ducreyi in humans.

  1. Localization of b-defensin genes in non human primates

    Directory of Open Access Journals (Sweden)

    M Ventura

    2009-06-01

    Full Text Available Defensins are a family of host defence peptides that play an important role in the innate immunity of mammalian and avian species. In humans, four b-defensins have been isolated so far, corresponding to the products of the genes DEFB1 (h-BD1, GenBank accession number NM_005218; DEFB4 (h-Bd2, NM_004942.2, DEFB103 (h-BD3, NM_018661; and DEFB104 (hBD4, NM_080389 mapping on chromosome 8p23.22. We have localized b- defensin genes on metaphasic chromosomes of great apes and several non-human primate species to determine their physical mapping. Using fluorescent in situ hybridization and BAC probes containing the four b-defensin genes, we have mapped the homologous regions to the b-defensin genes on chromosome 8p23-p.22 in non-human primates, while no signals were detected on prosimians chromosomes.

  2. Functional Insight From Fruit Flies on Human ADHD Candidate Genes

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Demontis, Ditte; Arvidson, Sandra Marie Neumann

    2015-01-01

    , and increased risk of mental comorbidities, makes ADHD a disorder with high individual and societal costs. We use Drosophila melanogaster as a model to investigate the phenotypic consequences of gene disruption of 14 genes with human orthologs, selected by their proposed contribution to increased risk...... for other mutants. Decreased activity level, when treated with dexamphetamine, is seen when using other ADHD animal models. Our findings suggest involvement of the proposed candidate genes Genes, Brain, and Behavior 2015 36 Talk Abstracts in hyperactivity in D. melanogaster, providing functional evidence...

  3. Androgen receptor gene CAG repeat polymorphism independently influences recovery of male sexual function after testosterone replacement therapy in postsurgical hypogonadotropic hypogonadism.

    Science.gov (United States)

    Tirabassi, Giacomo; Delli Muti, Nicola; Corona, Giovanni; Maggi, Mario; Balercia, Giancarlo

    2014-05-01

    Few and contradictory studies have evaluated the possible influence of androgen receptor (AR) gene CAG repeat polymorphism on male sexual function. In this study we evaluated the role of AR gene CAG repeat polymorphism in the recovery of sexual function after testosterone replacement therapy (TRT) in men affected by postsurgical hypogonadotropic hypogonadism, a condition which is often associated with hypopituitarism and in which the sexual benefits of TRT must be distinguished from those of pituitary-function replacement therapies. Fifteen men affected by postsurgical hypogonadotropic hypogonadism were retrospectively assessed before and after TRT. Main outcome measures included sexual parameters as assessed by the International Index of Erectile Function questionnaire, levels of pituitary dependent hormones (total testosterone, free T3, free T4, cortisol, insulin-like growth factor-1 [IGF-1], prolactin), and results of genetic analysis (AR gene CAG repeat number). Plasma concentrations of free T3, free T4, cortisol, and prolactin did not vary significantly between the two phases, while testosterone and IGF-1 increased significantly after TRT. A significant improvement in all sexual parameters studied was found. The number of CAG triplets was negatively and significantly correlated with changes in all the sexual parameters, while opposite correlations were found between changes in sexual parameters and changes in testosterone levels; no correlation of change in IGF1 with change in sexual parameters was reported. On multiple linear regression analysis, after correction for changes in testosterone, nearly all the associations between the number of CAG triplets and changes in sexual parameters were confirmed. Shorter length AR gene CAG repeat number is associated with the recovery of sexual function after TRT in postsurgical male hypogonadotropic hypogonadism, independently of the effects of concomitant pituitary-replacement therapies. © 2014 International Society

  4. Evolutionary conservation in genes underlying human psychiatric disorders

    OpenAIRE

    Lisa Michelle Ogawa; Eric Joseph Vallender

    2014-01-01

    Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of the protein-coding regions of genes associated...

  5. Directed Replacement

    CERN Document Server

    Karttunen, L

    1996-01-01

    This paper introduces to the finite-state calculus a family of directed replace operators. In contrast to the simple replace expression, UPPER -> LOWER, defined in Karttunen (ACL-95), the new directed version, UPPER @-> LOWER, yields an unambiguous transducer if the lower language consists of a single string. It transduces the input string from left to right, making only the longest possible replacement at each point. A new type of replacement expression, UPPER @-> PREFIX ... SUFFIX, yields a transducer that inserts text around strings that are instances of UPPER. The symbol ... denotes the matching part of the input which itself remains unchanged. PREFIX and SUFFIX are regular expressions describing the insertions. Expressions of the type UPPER @-> PREFIX ... SUFFIX may be used to compose a deterministic parser for a ``local grammar'' in the sense of Gross (1989). Other useful applications of directed replacement include tokenization and filtering of text streams.

  6. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  7. Genes Expressed in Human Tumor Endothelium

    Science.gov (United States)

    St. Croix, Brad; Rago, Carlo; Velculescu, Victor; Traverso, Giovanni; Romans, Katharine E.; Montgomery, Elizabeth; Lal, Anita; Riggins, Gregory J.; Lengauer, Christoph; Vogelstein, Bert; Kinzler, Kenneth W.

    2000-08-01

    To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.

  8. LINE FUSION GENES: a database of LINE expression in human genes

    Directory of Open Access Journals (Sweden)

    Park Hong-Seog

    2006-06-01

    Full Text Available Abstract Background Long Interspersed Nuclear Elements (LINEs are the most abundant retrotransposons in humans. About 79% of human genes are estimated to contain at least one segment of LINE per transcription unit. Recent studies have shown that LINE elements can affect protein sequences, splicing patterns and expression of human genes. Description We have developed a database, LINE FUSION GENES, for elucidating LINE expression throughout the human gene database. We searched the 28,171 genes listed in the NCBI database for LINE elements and analyzed their structures and expression patterns. The results show that the mRNA sequences of 1,329 genes were affected by LINE expression. The LINE expression types were classified on the basis of LINEs in the 5' UTR, exon or 3' UTR sequences of the mRNAs. Our database provides further information, such as the tissue distribution and chromosomal location of the genes, and the domain structure that is changed by LINE integration. We have linked all the accession numbers to the NCBI data bank to provide mRNA sequences for subsequent users. Conclusion We believe that our work will interest genome scientists and might help them to gain insight into the implications of LINE expression for human evolution and disease. Availability http://www.primate.or.kr/line

  9. Human gene correlation analysis (HGCA): a tool for the identification of transcriptionally co-expressed genes.

    Science.gov (United States)

    Michalopoulos, Ioannis; Pavlopoulos, Georgios A; Malatras, Apostolos; Karelas, Alexandros; Kostadima, Myrto-Areti; Schneider, Reinhard; Kossida, Sophia

    2012-06-06

    Bioinformatics and high-throughput technologies such as microarray studies allow the measure of the expression levels of large numbers of genes simultaneously, thus helping us to understand the molecular mechanisms of various biological processes in a cell. We calculate the Pearson Correlation Coefficient (r-value) between probe set signal values from Affymetrix Human Genome Microarray samples and cluster the human genes according to the r-value correlation matrix using the Neighbour Joining (NJ) clustering method. A hyper-geometric distribution is applied on the text annotations of the probe sets to quantify the term overrepresentations. The aim of the tool is the identification of closely correlated genes for a given gene of interest and/or the prediction of its biological function, which is based on the annotations of the respective gene cluster. Human Gene Correlation Analysis (HGCA) is a tool to classify human genes according to their coexpression levels and to identify overrepresented annotation terms in correlated gene groups. It is available at: http://biobank-informatics.bioacademy.gr/coexpression/.

  10. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    Science.gov (United States)

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  11. Study of the Gene Expression Profile of Human Ovarian Carcinoma by a Gene Chip

    Institute of Scientific and Technical Information of China (English)

    Shenhua Xu; Hanzhou Mou; Chihong Zhu; Lijuan Qian; Zhengyan Yang; Ye Ying; Xianglin Liu

    2005-01-01

    OBJECTIVE To study the difference in gene expression between human ovarian carcinoma and normal ovarian tissues, and screen the novel associated genes by cDNA microarrays.METHODS Total RNA from 10 cases of ovarian cancer and from normal ovarian tissues were extracted by a single step method. The cDNA was retro-transcribed from an equal quantity of mRNA derived from the 10 cases of ovarian carcinoma and normal ovarian tissues, followed by labeling the cDNA strands with Cy5 and Cy3 fluorescence as probes. The mixed probes were hybridized with BiostarH 8464 dot human somatic cell genes.Fluorescence signals were assessed by a ScanArray 4000 laser scanner and the images analyzed by Gene Pix Pro 3.0 software with a digital computer.RESULTS By applying the cDNA microarray we found a total of 185 genes for which expression levels differed more than 5 times comparing human ovarian carcinoma with normal ovarian epithelium. Among these genes 86 were up-regulated >5 times and 99 were down regulated <0.2.CONCLUSION The cDNA microarray technique is effective in screening the differential gene expression between human ovarian cancers and normal ovarian epithelium. It is suggested that these genes identified are related to the genesis and development of ovarian carcinoma.

  12. Gene × Smoking Interactions on Human Brain Gene Expression: Finding Common Mechanisms in Adolescents and Adults

    Science.gov (United States)

    Wolock, Samuel L.; Yates, Andrew; Petrill, Stephen A.; Bohland, Jason W.; Blair, Clancy; Li, Ning; Machiraju, Raghu; Huang, Kun; Bartlett, Christopher W.

    2013-01-01

    Background: Numerous studies have examined gene × environment interactions (G × E) in cognitive and behavioral domains. However, these studies have been limited in that they have not been able to directly assess differential patterns of gene expression in the human brain. Here, we assessed G × E interactions using two publically available datasets…

  13. Hidden Markov Models for Human Genes

    DEFF Research Database (Denmark)

    Baldi, Pierre; Brunak, Søren; Chauvin, Yves

    1997-01-01

    We analyse the sequential structure of human genomic DNA by hidden Markov models. We apply models of widely different design: conventional left-right constructs and models with a built-in periodic architecture. The models are trained on segments of DNA sequences extracted such that they cover...

  14. Update of human and mouse forkhead box (FOX gene families

    Directory of Open Access Journals (Sweden)

    Jackson Brian C

    2010-06-01

    Full Text Available Abstract The forkhead box (FOX proteins are transcription factors that play complex and important roles in processes from development and organogenesis to regulation of metabolism and the immune system. There are 50 FOX genes in the human genome and 44 in the mouse, divided into 19 subfamilies. All human FOX genes have close mouse orthologues, with one exception: the mouse has a single Foxd4, whereas the human gene has undergone a recent duplication to a total of seven (FOXD4 and FOXD4L1 → FOXD4L6. Evolutionarily ancient family members can be found as far back as the fungi and metazoans. The DNA-binding domain, the forkhead domain, is an example of the winged-helix domain, and is very well conserved across the FOX family and across species, with a few notable exceptions in which divergence has created new functionality. Mutations in FOX genes have been implicated in at least four familial human diseases, and differential expression may play a role in a number of other pathologies -- ranging from metabolic disorders to autoimmunity. Furthermore, FOX genes are differentially expressed in a large number of cancers; their role can be either as an oncogene or tumour suppressor, depending on the family member and cell type. Although some drugs that target FOX gene expression or activity, notably proteasome inhibitors, appear to work well, much more basic research is needed to unlock the complex interplay of upstream and downstream interactions with FOX family transcription factors.

  15. Natural selection on genes that underlie human disease susceptibility

    Science.gov (United States)

    Blekhman, Ran; Man, Orna; Herrmann, Leslie; Boyko, Adam R.; Indap, Amit; Kosiol, Carolin; Bustamante, Carlos D.; Teshima, Kosuke M.; Przeworski, Molly

    2008-01-01

    What evolutionary forces shape genes that contribute to the risk of human disease? Do similar selective pressures act on alleles that underlie simple vs. complex disorders? [1-3]. Answers to these questions will shed light on the origin of human disorders (e.g., [4]), and help to predict the population frequencies of alleles that contribute to disease risk, with important implications for the efficient design of mapping studies [5-7]. As a first step towards addressing them, we created a hand-curated version of the Mendelian Inheritance in Man database (OMIM). We then examined selective pressures on Mendelian disease genes, genes that contribute to complex disease risk and genes known to be essential in mouse, by analyzing patterns of human polymorphism and of divergence between human and rhesus macaque. We find that Mendelian disease genes appear to be under widespread purifying selection, especially when the disease mutations are dominant (rather than recessive). In contrast, the class of genes that influence complex disease risk shows little signs of evolutionary conservation, possibly because this category includes both targets of purifying and positive selection. PMID:18571414

  16. Crowdsourcing the Moral Limits of Human Gene Editing?

    Science.gov (United States)

    Juengst, Eric T

    2017-05-01

    In 2015, a flourish of "alarums and excursions" by the scientific community propelled CRISPR/Cas9 and other new gene-editing techniques into public attention. At issue were two kinds of potential gene-editing experiments in humans: those making inheritable germ-line modifications and those designed to enhance human traits beyond what is necessary for health and healing. The scientific consensus seemed to be that while research to develop safe and effective human gene editing should continue, society's moral uncertainties about these two kinds of experiments needed to be better resolved before clinical trials of either type should be attempted. In the United States, the National Academies of Science, Engineering and Medicine (NASEM) convened the Committee on Human Gene Editing: Scientific, Medical and Ethical Considerations to pursue that resolution. The committee's 2017 consensus report has been widely interpreted as "opening the door" to inheritable human genetic modification and holding a line against enhancement interventions. But on a close reading it does neither. There are two reasons for this eccentric conclusion, both of which depend upon the strength of the committee's commitment to engaging diverse public voices in the gene-editing policy-making process. © 2017 The Hastings Center.

  17. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation

    Directory of Open Access Journals (Sweden)

    Diego Balboa

    2015-09-01

    Full Text Available CRISPR/Cas9 protein fused to transactivation domains can be used to control gene expression in human cells. In this study, we demonstrate that a dCas9 fusion with repeats of VP16 activator domains can efficiently activate human genes involved in pluripotency in various cell types. This activator in combination with guide RNAs targeted to the OCT4 promoter can be used to completely replace transgenic OCT4 in human cell reprogramming. Furthermore, we generated a chemically controllable dCas9 activator version by fusion with the dihydrofolate reductase (DHFR destabilization domain. Finally, we show that the destabilized dCas9 activator can be used to control human pluripotent stem cell differentiation into endodermal lineages.

  18. Human Cytolytic Fusion Proteins: Modified Versions of Human Granzyme B and Angiogenin Have the Potential to Replace Bacterial Toxins in Targeted Therapies against CD64+ Diseases

    Directory of Open Access Journals (Sweden)

    Nina Berges

    2014-02-01

    Full Text Available Targeted therapies for the treatment of cancer, but also inflammation and autoimmune diseases will reduce major side effects accompanied with conventional treatment modalities. The immunotoxin concept uses bacterial or plant toxins, coupled to antibodies or natural ligands targeting cancer cells. Initially, immunotoxins suffered from drawbacks like nonspecific cytotoxicity. Even the third generation of immunotoxins comprised of truncated antibodies and modified effector molecules experienced clinical set-backs due to immune responses. Long-term treatment of cancer and non-life-threatening chronic inflammatory diseases requires their complete ‘humanization’. This lead to evaluating human cytolytic fusion proteins (hCFPs, based on human apoptosis-inducing proteins. Lacking an endogenous translocation domain dramatically reduces the cell-death inducing capacity of such proteins. Here, we report on optimizing hCFPs, based on the anti-CD64 single chain variable fragment H22(scFv, specifically eliminating CD64+ macrophages and malignant progenitor cells. We replaced the bacterial toxin in H22(scFv-ETA' with the pro-apoptotic human granzyme B or angiogenin. Translocation was promoted by a sophisticated adapter containing a membrane transfer peptide (MTD flanked by endosomal and cytosolic cleavable peptides, thus achieving in vitro cytotoxic activity comparable to bacterial immunotoxins. We demonstrate for the first time that optimized hCFPs, based on granzyme B or angiogenin, can compete with classical ETA-based immunotoxins.

  19. Gene Transfer and Molecular Cloning of the Human NGF Receptor

    Science.gov (United States)

    Chao, Moses V.; Bothwell, Mark A.; Ross, Alonzo H.; Koprowski, Hilary; Lanahan, Anthony A.; Buck, C. Randall; Sehgal, Amita

    1986-04-01

    Nerve growth factor (NGF) and its receptor are important in the development of cells derived from the neural crest. Mouse L cell transformants have been generated that stably express the human NGF receptor gene transfer with total human DNA. Affinity cross-linking, metabolic labeling and immunoprecipitation, and equilibrium binding with 125I-labeled NGF revealed that this NGF receptor had the same size and binding characteristics as the receptor from human melanoma cells and rat PC12 cells. The sequences encoding the NGF receptor were molecularly cloned using the human Alu repetitive sequence as a probe. A cosmid clone that contained the human NGF receptor gene allowed efficient transfection and expression of the receptor.

  20. Relation between HLA genes, human skin volatiles and attractiveness of humans to malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Beijleveld, H.; Qiu, Y.T.; Maliepaard, C.A.; Verduyn, W.; Haasnoot, G.W.; Claas, F.H.J.; Mumm, R.; Bouwmeester, H.J.; Takken, W.; Loon, van J.J.A.; Smallegange, R.C.

    2013-01-01

    Chemical cues are considered to be the most important cues for mosquitoes to find their hosts and humans can be ranked for attractiveness to mosquitoes based on the chemical cues they emit. Human leukocyte antigen (HLA) genes are considered to be involved in the regulation of human body odor and may

  1. Effects of insulin replacements, inhibitors of angiotensin, and PKCbeta's actions to normalize cardiac gene expression and fuel metabolism in diabetic rats.

    Science.gov (United States)

    Arikawa, Emi; Ma, Ronald C W; Isshiki, Keiji; Luptak, Ivan; He, Zhiheng; Yasuda, Yutaka; Maeno, Yasuhiro; Patti, Mary Elizabeth; Weir, Gordon C; Harris, Robert A; Zammit, Victor A; Tian, Rong; King, George L

    2007-05-01

    High-density oligonucleotide arrays were used to compare gene expression of rat hearts from control, untreated diabetic, and diabetic groups treated with islet cell transplantation (ICT), protein kinase C (PKC)beta inhibitor ruboxistaurin, or ACE inhibitor captopril. Among the 376 genes that were differentially expressed between untreated diabetic and control hearts included key metabolic enzymes that account for the decreased glucose and increased free fatty acid utilization in the diabetic heart. ICT or insulin replacements reversed these gene changes with normalization of hyperglycemia, dyslipidemia, and cardiac PKC activation in diabetic rats. Surprisingly, both ruboxistaurin and ACE inhibitors improved the metabolic gene profile (confirmed by real-time RT-PCR and protein analysis) and ameliorated PKC activity in diabetic hearts without altering circulating metabolites. Functional assessments using Langendorff preparations and (13)C nuclear magnetic resonance spectroscopy showed a 36% decrease in glucose utilization and an impairment in diastolic function in diabetic rat hearts, which were normalized by all three treatments. In cardiomyocytes, PKC inhibition attenuated fatty acid-induced increases in the metabolic genes PDK4 and UCP3 and also prevented fatty acid-mediated inhibition of basal and insulin-stimulated glucose oxidation. Thus, PKCbeta or ACE inhibitors may ameliorate cardiac metabolism and function in diabetes partly by normalization of fuel metabolic gene expression directly in the myocardium.

  2. Changes of multiple genes in human gastric carcinomas

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the mutual relation of the changesamong multiple genes in human gastric carcinomas (GC). Methods: By means of software package about social science (SPSS) and statistics analysis system (SAS), the mutual relation of the expression of oncogenes (p21, p185) and tumor suppressor genes (RB, p53, p16, nm23) in 78 GC is discussed. Results: There existed correlations among some genes, i.e., p21 and p185, RB and p16, p16 and p53 as well as p16 and nm23; It is relatively uncommon that the carcinogenesis of GC simultaneously related to more changes of multiple genes; The inactivation of p16 gene was independent factor to predict the metastasis of lymphaden, the mutation of p53 gene and the inactivation of p16 gene were independent factors to predict the invasive depth. Conclusion: There are not only the changes of multiple genes including oncogenes activation and tumor suppressor genes inactivation, but also they may play an important role in carcinogenesis of GC through mutual cooperation. The inactivation of p16 gene is one of the most useful index to predict the prognosis of patient with GC.

  3. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  4. Evolutionary conservation in genes underlying human psychiatric disorders.

    Science.gov (United States)

    Ogawa, Lisa M; Vallender, Eric J

    2014-01-01

    Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of the protein-coding regions of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago) and 34 non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals, and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant) compared to their small-brained sister species. Evidence of differential selection in humans to the exclusion of non-human primates was absent, however elevated dN/dS was detected in catarrhines as a whole, as well as in cetaceans, possibly as part of a more general trend. Although this may suggest that protein changes associated with schizophrenia and autism are not a cost of the higher brain function found in humans, it may also point to insufficiencies in the study of these diseases including incomplete or inaccurate gene association lists and/or a greater role of regulatory changes or copy number variation. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.

  5. Origins of De Novo Genes in Human and Chimpanzee.

    Directory of Open Access Journals (Sweden)

    Jorge Ruiz-Orera

    2015-12-01

    Full Text Available The birth of new genes is an important motor of evolutionary innovation. Whereas many new genes arise by gene duplication, others originate at genomic regions that did not contain any genes or gene copies. Some of these newly expressed genes may acquire coding or non-coding functions and be preserved by natural selection. However, it is yet unclear which is the prevalence and underlying mechanisms of de novo gene emergence. In order to obtain a comprehensive view of this process, we have performed in-depth sequencing of the transcriptomes of four mammalian species--human, chimpanzee, macaque, and mouse--and subsequently compared the assembled transcripts and the corresponding syntenic genomic regions. This has resulted in the identification of over five thousand new multiexonic transcriptional events in human and/or chimpanzee that are not observed in the rest of species. Using comparative genomics, we show that the expression of these transcripts is associated with the gain of regulatory motifs upstream of the transcription start site (TSS and of U1 snRNP sites downstream of the TSS. In general, these transcripts show little evidence of purifying selection, suggesting that many of them are not functional. However, we find signatures of selection in a subset of de novo genes which have evidence of protein translation. Taken together, the data support a model in which frequently-occurring new transcriptional events in the genome provide the raw material for the evolution of new proteins.

  6. Origins of De Novo Genes in Human and Chimpanzee.

    Science.gov (United States)

    Ruiz-Orera, Jorge; Hernandez-Rodriguez, Jessica; Chiva, Cristina; Sabidó, Eduard; Kondova, Ivanela; Bontrop, Ronald; Marqués-Bonet, Tomàs; Albà, M Mar

    2015-12-01

    The birth of new genes is an important motor of evolutionary innovation. Whereas many new genes arise by gene duplication, others originate at genomic regions that did not contain any genes or gene copies. Some of these newly expressed genes may acquire coding or non-coding functions and be preserved by natural selection. However, it is yet unclear which is the prevalence and underlying mechanisms of de novo gene emergence. In order to obtain a comprehensive view of this process, we have performed in-depth sequencing of the transcriptomes of four mammalian species--human, chimpanzee, macaque, and mouse--and subsequently compared the assembled transcripts and the corresponding syntenic genomic regions. This has resulted in the identification of over five thousand new multiexonic transcriptional events in human and/or chimpanzee that are not observed in the rest of species. Using comparative genomics, we show that the expression of these transcripts is associated with the gain of regulatory motifs upstream of the transcription start site (TSS) and of U1 snRNP sites downstream of the TSS. In general, these transcripts show little evidence of purifying selection, suggesting that many of them are not functional. However, we find signatures of selection in a subset of de novo genes which have evidence of protein translation. Taken together, the data support a model in which frequently-occurring new transcriptional events in the genome provide the raw material for the evolution of new proteins.

  7. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  8. Mapping the genetic architecture of gene expression in human liver.

    Directory of Open Access Journals (Sweden)

    Eric E Schadt

    2008-05-01

    Full Text Available Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large

  9. Human estrogen sulfotransferase gene (STE): Cloning, structure, and chromosomal localization

    Energy Technology Data Exchange (ETDEWEB)

    Her, Chengtao; Aksoy, I.A.; Weinshilboum, M. [Mayo Foundation, Rochester, MI (United States)] [and others

    1995-09-01

    Sulfation is an important pathway in the metabolism of estrogens. We recently cloned a human liver estrogen sulfotransferase (EST) cDNA. We have now determined the structure and chromosomal localization of the EST gene, STE, as a step toward molecular genetic studies of the regulation of EST in humans. STE spans approximately 20 kb and consists of 8 exons, ranging in length from 95 to 181 bp. The locations of most exon-intron splice junctions within STE are identical to those found in a human phenol ST (PST) gene, STM, and in a rat PST gene. In addition, the locations of five STE introns are also conserved in the human dehydroepiandrosterone (DBEA) ST gene, STD. The 5{prime} flanking region of STE contains one CCAAT and two TATA sequences. The location of one of the TATA box elements is in excellent agreement with the site of transcription initiation as determined by 5{prime}-rapid amplification of cDNA ends. STE was mapped to human chromosome 4q13.1 by fluorescence in situ hybridization. Cloning and structural characterization of STE will now make it possible to study potential molecular genetic mechanisms involved in the regulation of EST in human tissues. 50 refs., 6 figs., 1 tab.

  10. Cancer genes hypermethylated in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Vincenzo Calvanese

    Full Text Available Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.

  11. Knee Replacement

    Science.gov (United States)

    ... need knee replacement surgery usually have problems walking, climbing stairs, and getting in and out of chairs. Some ... a total living space on one floor since climbing stairs can be difficult. Install safety bars or a ...

  12. Replacing penalties

    Directory of Open Access Journals (Sweden)

    Vitaly Stepashin

    2017-01-01

    Full Text Available УДК 343.24The subject. The article deals with the problem of the use of "substitute" penalties.The purpose of the article is to identify criminal and legal criteria for: selecting the replacement punishment; proportionality replacement leave punishment to others (the formalization of replacement; actually increasing the punishment (worsening of legal situation of the convicted.Methodology.The author uses the method of analysis and synthesis, formal legal method.Results. Replacing the punishment more severe as a result of malicious evasion from serving accused designated penalty requires the optimization of the following areas: 1 the selection of a substitute punishment; 2 replacement of proportionality is serving a sentence other (formalization of replacement; 3 ensuring the actual toughening penalties (deterioration of the legal status of the convict. It is important that the first two requirements pro-vide savings of repression in the implementation of the replacement of one form of punishment to others.Replacement of punishment on their own do not have any specifics. However, it is necessary to compare them with the contents of the punishment, which the convict from serving maliciously evaded. First, substitute the punishment should assume a more significant range of restrictions and deprivation of certain rights of the convict. Second, the perfor-mance characteristics of order substitute the punishment should assume guarantee imple-mentation of the new measures.With regard to replacing all forms of punishment are set significant limitations in the application that, in some cases, eliminates the possibility of replacement of the sentence, from serving where there has been willful evasion, a stricter measure of state coercion. It is important in the context of the topic and the possibility of a sentence of imprisonment as a substitute punishment in cases where the original purpose of the strict measures excluded. It is noteworthy that the

  13. Epigenetic regulation of transposable element derived human gene promoters.

    Science.gov (United States)

    Huda, Ahsan; Bowen, Nathan J; Conley, Andrew B; Jordan, I King

    2011-04-01

    It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.

  14. The Signature of Selection Mediated by Expression on Human Genes

    OpenAIRE

    Urrutia, Araxi O.; Hurst, Laurence D

    2003-01-01

    As the efficacy of natural selection is expected to be a function of population size, in humans it is usually presumed that selection is a weak force and hence that gene characteristics are mostly determined by stochastic forces. In contrast, in species with large population sizes, selection is expected to be a much more effective force. Evidence for this has come from examining how genic parameters vary with expression level, which appears to determine many of a gene's features, such as codo...

  15. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  16. Evolutionary Conservation in Genes Underlying Human Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Lisa Michelle Ogawa

    2014-05-01

    Full Text Available Many psychiatric diseases observed in humans have tenuous or absent analogs in other species. Most notable among these are schizophrenia and autism. One hypothesis has posited that these diseases have arisen as a consequence of human brain evolution, for example, that the same processes that led to advances in cognition, language, and executive function also resulted in novel diseases in humans when dysfunctional. Here, the molecular evolution of genes associated with these and other psychiatric disorders are compared among species. Genes associated with psychiatric disorders are drawn from the literature and orthologous sequences are collected from eleven primate species (human, chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, baboon, marmoset, squirrel monkey, and galago and thirty one non-primate mammalian species. Evolutionary parameters, including dN/dS, are calculated for each gene and compared between disease classes and among species, focusing on humans and primates compared to other mammals and on large-brained taxa (cetaceans, rhinoceros, walrus, bear, and elephant compared to their small-brained sister species. Evidence of differential selection in primates supports the hypothesis that schizophrenia and autism are a cost of higher brain function. Through this work a better understanding of the molecular evolution of the human brain, the pathophysiology of disease, and the genetic basis of human psychiatric disease is gained.

  17. Gene expression in the aging human brain: an overview.

    Science.gov (United States)

    Mohan, Adith; Mather, Karen A; Thalamuthu, Anbupalam; Baune, Bernhard T; Sachdev, Perminder S

    2016-03-01

    The review aims to provide a summary of recent developments in the study of gene expression in the aging human brain. Profiling differentially expressed genes or 'transcripts' in the human brain over the course of normal aging has provided valuable insights into the biological pathways that appear activated or suppressed in late life. Genes mediating neuroinflammation and immune system activation in particular, show significant age-related upregulation creating a state of vulnerability to neurodegenerative and neuropsychiatric disease in the aging brain. Cellular ionic dyshomeostasis and age-related decline in a host of molecular influences on synaptic efficacy may underlie neurocognitive decline in later life. Critically, these investigations have also shed light on the mobilization of protective genetic responses within the aging human brain that help determine health and disease trajectories in older age. There is growing interest in the study of pre and posttranscriptional regulators of gene expression, and the role of noncoding RNAs in particular, as mediators of the phenotypic diversity that characterizes human brain aging. Gene expression studies in healthy brain aging offer an opportunity to unravel the intricately regulated cellular underpinnings of neurocognitive aging as well as disease risk and resiliency in late life. In doing so, new avenues for early intervention in age-related neurodegenerative disease could be investigated with potentially significant implications for the development of disease-modifying therapies.

  18. Polymorphic cis- and trans-regulation of human gene expression.

    Directory of Open Access Journals (Sweden)

    Vivian G Cheung

    Full Text Available Expression levels of human genes vary extensively among individuals. This variation facilitates analyses of expression levels as quantitative phenotypes in genetic studies where the entire genome can be scanned for regulators without prior knowledge of the regulatory mechanisms, thus enabling the identification of unknown regulatory relationships. Here, we carried out such genetic analyses with a large sample size and identified cis- and trans-acting polymorphic regulators for about 1,000 human genes. We validated the cis-acting regulators by demonstrating differential allelic expression with sequencing of transcriptomes (RNA-Seq and the trans-regulators by gene knockdown, metabolic assays, and chromosome conformation capture analysis. The majority of the regulators act in trans to the target (regulated genes. Most of these trans-regulators were not known to play a role in gene expression regulation. The identification of these regulators enabled the characterization of polymorphic regulation of human gene expression at a resolution that was unattainable in the past.

  19. The gene for human glutaredoxin (GLRX) is localized to human chromosome 5q14

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, C.A.; Holmgren, A. [Karolinska Inst., Stockholm (Sweden); Bajalica, S.; Lagercrantz, J. [Karolinska Hospital, Stockholm (Sweden)

    1996-03-05

    Glutaredoxin is a small protein (12 kDa) catalyzing glutathione-dependent disulfide oxidoreduction reactions in a coupled system with NADPH, GSH, and glutathione reductase. A cDNA encoding the human glutaredoxin gene (HGMW-approved symbol GLRX) has recently been isolated and cloned from a human fetal spleen cDNA library. The screening of a human fetal spleen cDNA library. The screening of a human genomic library in Charon 4A led to the identification of three genomic clones. Using fluorescence in situ hybridization to metaphase chromosomes with one genomic clone as a probe, the human glutaredoxin gene was localized to chromosomal region 5q14. This localization at chromosome 5 was in agreement with the somatic cell hybrid analysis, using DNA from a human-hamster and a human-mouse hybrid panel and using a human glutaredoxin cDNA as a probe. 13 refs., 2 figs.

  20. Global properties and functional complexity of human gene regulatory variation.

    Directory of Open Access Journals (Sweden)

    Daniel J Gaffney

    2013-05-01

    Full Text Available Identification and functional interpretation of gene regulatory variants is a major focus of modern genomics. The application of genetic mapping to molecular and cellular traits has enabled the detection of regulatory variation on genome-wide scales and revealed an enormous diversity of regulatory architecture in humans and other species. In this review I summarise the insights gained and questions raised by a decade of genetic mapping of gene expression variation. I discuss recent extensions of this approach using alternative molecular phenotypes that have revealed some of the biological mechanisms that drive gene expression variation between individuals. Finally, I highlight outstanding problems and future directions for development.

  1. Mechanosensitive promoter region in the human HB-GAM gene

    DEFF Research Database (Denmark)

    Liedert, Astrid; Kassem, Moustapha; Claes, Lutz;

    2009-01-01

    expression through specific transcription factor binding sites in the promoter region of mechanosensitive genes. In the present study, we demonstrate that the expression of HB-GAM, which is known to have stimulating effects on osteogenic differentiation, is rapidly induced by mechanical loading in hMSC-TERT4...... cells. Analysis of the human HB-GAM gene upstream regulatory region with luciferase reporter gene assays revealed that the upregulation of HB-GAM expression occurred at the transcriptional level and was mainly dependent on the HB-GAM promoter region most upstream containing three potential AP-1 binding...

  2. Recent advances in human gene-longevity association studies

    DEFF Research Database (Denmark)

    De Benedictis, G; Tan, Q; Jeune, B;

    2001-01-01

    % of the variation in life span is genetically determined. Taking advantage of recent developments in molecular biology, researchers are now searching for candidate genes that might have an influence on life span. The data on unrelated individuals emerging from an ever-increasing number of centenarian studies makes......This paper reviews the recent literature on genes and longevity. The influence of genes on human life span has been confirmed in studies of life span correlation between related individuals based on family and twin data. Results from major twin studies indicate that approximately 25...

  3. Is there a place for human fetal-derived stem cells for cell replacement therapy in Huntington's disease?

    Science.gov (United States)

    Precious, Sophie V; Zietlow, Rike; Dunnett, Stephen B; Kelly, Claire M; Rosser, Anne E

    2017-06-01

    Huntington's disease (HD) is a neurodegenerative disease that offers an excellent paradigm for cell replacement therapy because of the associated relatively focal cell loss in the striatum. The predominant cells lost in this condition are striatal medium spiny neurons (MSNs). Transplantation of developing MSNs taken from the fetal brain has provided proof of concept that donor MSNs can survive, integrate and bring about a degree of functional recovery in both pre-clinical studies and in a limited number of clinical trials. The scarcity of human fetal tissue, and the logistics of coordinating collection and dissection of tissue with neurosurgical procedures makes the use of fetal tissue for this purpose both complex and limiting. Alternative donor cell sources which are expandable in culture prior to transplantation are currently being sought. Two potential donor cell sources which have received most attention recently are embryonic stem (ES) cells and adult induced pluripotent stem (iPS) cells, both of which can be directed to MSN-like fates, although achieving a genuine MSN fate has proven to be difficult. All potential donor sources have challenges in terms of their clinical application for regenerative medicine, and thus it is important to continue exploring a wide variety of expandable cells. In this review we discuss two less well-reported potential donor cell sources; embryonic germ (EG) cells and fetal neural precursors (FNPs), both are which are fetal-derived and have some properties that could make them useful for regenerative medicine applications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Cloning of Integral Mature Peptide Gene of Human GDF-5

    Institute of Scientific and Technical Information of China (English)

    王万山; 顾为望; 王启伟; 朴仲贤; 朴英杰

    2004-01-01

    Summary: The integral mature peptide gene of human growth differentiation factor-5 (GDF-5) was cloned to provide the essential foundation for study on the biological characteristics of GDF-5 at gene and protein levels. Two primers were chemosynthesized according to the hGDF-5 sequence reported in Genbank. The hGDF-5 gene was gained by RT-PCR methods from the total RNA extracted from human fetus cartilage tissue, and was cloned into vector pMD18-T. The sequence of recombinant plasmid pMD18-T-hGDF-5 was analyzed by sequence analysis. DNA agarose gel electrophoresis showed that the product of RT-PCR was about 380bp, and double enzyme digestion of the recombinant plasmid corresponded with it. The result of sequence assay was in agreement with the reported hGDF-5 sequence in Genbank. Our results showed that the integral mature peptide gene of human GDF-5 was cloned successfully from human fetal cartilage tissue, and totally identified with the sequence of human GDF-5 in Genbank.

  5. Roles of the Y chromosome genes in human cancers

    Directory of Open Access Journals (Sweden)

    Tatsuo Kido

    2015-06-01

    Full Text Available Male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT, such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

  6. DRUMS: a human disease related unique gene mutation search engine.

    Science.gov (United States)

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html.

  7. Expression Divergence of Tandemly Arrayed Genes in Human and Mouse

    Directory of Open Access Journals (Sweden)

    Valia Shoja

    2007-01-01

    Full Text Available Tandemly arrayed genes (TAGs account for about one third of the duplicated genes in eukaryotic genomes, yet there has not been any systematic study of their gene expression patterns. Taking advantage of recently published large-scale microarray data sets, we studied the expression divergence of 361 two-member TAGs in human and 212 two-member TAGs in mouse and examined the effect of sequence divergence, gene orientation, and chromosomal proximity on the divergence of TAG expression patterns. Our results show that there is a weak negative correlation between sequence divergence of TAG members and their expression similarity. There is also a weak negative correlation between chromosomal proximity of TAG members and their expression similarity. We did not detect any significant relationship between gene orientation and expression similarity. We also found that downstream TAG members do not show significantly narrower expression breadth than upstream members, contrary to what we predict based on TAG expression divergence hypothesis that we propose. Finally, we show that both chromosomal proximity and expression correlation in TAGs do not differ significantly from their neighboring non-TAG gene pairs, suggesting that tandem duplication is unlikely to be the cause for the higher-than-random expression association between neighboring genes on a chromosome in human and mouse.

  8. The human L-threonine 3-dehydrogenase gene is an expressed pseudogene

    Directory of Open Access Journals (Sweden)

    Edgar Alasdair J

    2002-10-01

    Full Text Available Abstract Background L-threonine is an indispensable amino acid. One of the major L-threonine degradation pathways is the conversion of L-threonine via 2-amino-3-ketobutyrate to glycine. L-threonine dehydrogenase (EC 1.1.1.103 is the first enzyme in the pathway and catalyses the reaction: L-threonine + NAD+ = 2-amino-3-ketobutyrate + NADH. The murine and porcine L-threonine dehydrogenase genes (TDH have been identified previously, but the human gene has not been identified. Results The human TDH gene is located at 8p23-22 and has 8 exons spanning 10 kb that would have been expected to encode a 369 residue ORF. However, 2 cDNA TDH transcripts encode truncated proteins of 157 and 230 residues. These truncated proteins are the result of 3 mutations within the gene. There is a SNP, A to G, present in the genomic DNA sequence of some individuals which results in the loss of the acceptor splice site preceding exon 4. The acceptor splice site preceding exon 6 was lost in all 23 individuals genotyped and there is an in-frame stop codon in exon 6 (CGA to TGA resulting in arginine-214 being replaced by a stop codon. These truncated proteins would be non-functional since they have lost part of the NAD+ binding motif and the COOH terminal domain that is thought to be involved in binding L-threonine. TDH mRNA was present in all tissues examined. Conclusions The human L-threonine 3-dehydrogenase gene is an expressed pseudogene having lost the splice acceptor site preceding exon 6 and codon arginine-214 (CGA is mutated to a stop codon (TGA.

  9. First human treatment with investigational rhGUS enzyme replacement therapy in an advanced stage MPS VII patient.

    Science.gov (United States)

    Fox, Joyce E; Volpe, Linda; Bullaro, Josephine; Kakkis, Emil D; Sly, William S

    2015-02-01

    Mucopolysaccharidosis type VII (MPS VII, Sly syndrome) is a very rare lysosomal storage disease caused by a deficiency of the enzyme β-glucuronidase (GUS), which is required for the degradation of three glycosaminoglycans (GAGs): dermatan sulfate, heparan sulfate, and chondroitin sulfate. Progressive accumulation of these GAGs in lysosomes leads to increasing dysfunction in numerous tissues and organs. Enzyme replacement therapy (ERT) has been used successfully for other MPS disorders, but there is no approved treatment for MPS VII. Here we describe the first human treatment with recombinant human GUS (rhGUS), an investigational therapy for MPS VII, in a 12-year old boy with advanced stage MPS VII. Despite a tracheostomy, nocturnal continuous positive airway pressure, and oxygen therapy, significant pulmonary restriction and obstruction led to oxygen dependence and end-tidal carbon dioxide (ETCO2) levels in the 60-80mmHg range, eventually approaching respiratory failure (ETCO2 of 100mmHg) and the need for full-time ventilation. Since no additional medical measures could improve his function, we implemented experimental ERT by infusing rhGUS at 2mg/kg over 4h every 2 weeks for 24 weeks. Safety was evaluated by standard assessments and observance for any infusion associated reactions (IARs). Urinary GAG (uGAG) levels, pulmonary function, oxygen dependence, CO2 levels, cardiac valve function, liver and spleen size, and growth velocity were assessed to evaluate response to therapy. rhGUS infusions were well tolerated. No serious adverse events (SAEs) or IARs were observed. After initiation of rhGUS infusions, the patient's uGAG excretion decreased by more than 50%. Liver and spleen size were reduced within 2 weeks of the first infusion and reached normal size by 24 weeks. Pulmonary function appeared to improve during the course of treatment based on reduced changes in ETCO2 after off-ventilator challenges and a reduced oxygen requirement. The patient regained the

  10. Mutagenesis in sequence encoding of human factor VII for gene therapy of hemophilia

    Directory of Open Access Journals (Sweden)

    B Kazemi

    2009-12-01

    Full Text Available "nBackground: Current treatment of hemophilia which is one of the most common bleeding disorders, involves replacement therapy using concentrates of FVIII and FIX .However, these concentrates have been associated with viral infections and thromboembolic complications and development of antibodies. "nThe use of recombinant human factor VII (rhFVII is effective  for the treatment of patients with  hemophilia A or B, who develop antibodies ( referred as inhibitors against  replacement therapy , because it induces coagulation independent of FVIII and FIX. However, its short half-life and high cost have limited its use. One potential solution to this problem may be the use of FVIIa gene transfer, which would attain continuing therapeutic levels of expression from a single injection. The aim of this study was to engineer a novel hFVII (human FVII gene containing a cleavage site for the intracellular protease and furin, by PCR mutagenesis "nMethods: The sequence encoding light and heavy chains of hFVII, were amplified by using hFVII/pTZ57R and specific primers, separately. The PCR products were cloned in pTZ57R vector. "nResults and discussion: Cloning was confirmed by restriction analysis or PCR amplification using specific primers and plasmid universal primers. Mutagenesis of sequence encoding light and heavy chain was confirmed by restriction enzyme. "nConclusion: In the present study, it was provided recombinant plasmids based on mutant form of DNA encoding light and heavy chains.  Joining mutant form of DNA encoding light chain with mutant heavy chain led to a new variant of hFVII. This variant can be activated by furin and an increase in the proportion of activated form of FVII. This mutant form of hFVII may be used for gene therapy of hemophilia.

  11. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  12. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  13. Transcriptional regulation of human thromboxane synthase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.D.; Baek, S.J.; Fleischer, T [Univ. of Maryland Medical School, Baltimore, MD (United States)] [and others

    1994-09-01

    The human thromboxane synthase (TS) gene encodes a microsomal enzyme catalyzing the conversion of prostaglandin endoperoxide into thromboxane A{sub 2}(TxA{sub 2}), a potent inducer of vasoconstriction and platelet aggregation. A deficiency in platelet TS activity results in bleeding disorders, but the underlying molecular mechanism remains to be elucidated. Increased TxA{sub 2} has been associated with many pathophysiological conditions such as cardiovascular disease, pulmonary hypertension, pre-eclampsia, and thrombosis in sickle cell patients. Since the formation of TxA{sub 2} is dependent upon TS, the regulation of TS gene expression may presumably play a crucial role in vivo. Abrogation of the regulatory mechanism in TS gene expression might contribute, in part, to the above clinical manifestations. To gain insight into TS gene regulation, a 1.7 kb promoter of the human TS gene was cloned and sequenced. RNase protection assay and 5{prime} RACE protocols were used to map the transcription initiation site to nucleotide A, 30 bp downstream from a canonical TATA box. Several transcription factor binding sites, including AP-1, PU.1, and PEA3, were identified within this sequence. Transient expression studies in HL-60 cells transfected with constructs containing various lengths (0.2 to 5.5 kb) of the TS promoter/luciferase fusion gene indicated the presence of multiple repressor elements within the 5.5 kb TS promoter. However, a lineage-specific up-regulation of TS gene expression was observed in HL-60 cells induced by TPA to differentiate along the macrophage lineage. The increase in TS transcription was not detectable until 36 hr after addition of the inducer. These results suggest that expression of the human TS gene may be regulated by a mechanism involving repression and derepression of the TS promoter.

  14. The human insulin gene is part of a large open chromatin domain specific for human islets

    OpenAIRE

    Mutskov, Vesco; Felsenfeld, Gary

    2009-01-01

    Knowledge of how insulin (INS) gene expression is regulated will lead to better understanding of normal and abnormal pancreatic β cell function. We have mapped histone modifications over the INS region, coupled with an expression profile, in freshly isolated islets from multiple human donors. Unlike many other human genes, in which active modifications tend to be concentrated within 1 kb around the transcription start site, these marks are distributed over the entire coding region of INS as w...

  15. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Jennifer S Myers

    Full Text Available Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The "transforming growth factor-beta signaling" and "Ran regulation of mitotic spindle formation" pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran for investigation in prostate cancer pathogenesis.

  16. Isolation of a rice gene homologous to the human putative tumor suppressor gene QM

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    QM gene was originally isolated from human by Dowdy et al during a search for a wilms′ tumor suppressor gene. Researches of QM gene focused mainly on animals and yeasts, little was known about plant QM gene. For better understanding of QM gene in rice, a QM homologous fragment was used as a probe to screen rice (Oryza sativa subsp. indica c.v. Guanglu′ ai 4) genomic DNA library,and two clones were obtained. One of them, OSQM2, encoded a highly basic protein of 184 amino acids, the sequence was about 3.1 kb long with a very special promoter region compared with other known QM genes. Seven potential G boxes could be found between -690 and -230. G box, which contains a ACGT core motif, had been reported in many plants to act as a cis acting DNA element in the regulation of genes in a variety of environmental conditions, such as ABA regulated gene expression, red light, UV light, anaerobiosis, and wounding etc. Two closely linked DRE related motifs (dehydration responsive element) could also be found between -182 and 173, which had a CCGAC conserved sequence and had been identified in many cold and drought responsive genes in Arabidopsis. Six MYC recognition sequences with the conserved motif NCANNTGN were also presented, which might be essential for ABA and drought responsive expression of the plant genes.

  17. Esophageal replacement.

    Science.gov (United States)

    Kunisaki, Shaun M; Coran, Arnold G

    2017-04-01

    This article focuses on esophageal replacement as a surgical option for pediatric patients with end-stage esophageal disease. While it is obvious that the patient׳s own esophagus is the best esophagus, persisting with attempts to retain a native esophagus with no function and at all costs are futile and usually detrimental to the overall well-being of the child. In such cases, the esophagus should be abandoned, and the appropriate esophageal replacement is chosen for definitive reconstruction. We review the various types of conduits used for esophageal replacement and discuss the unique advantages and disadvantages that are relevant for clinical decision-making. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Chromosomal mapping of the human M6 genes

    Energy Technology Data Exchange (ETDEWEB)

    Olinsky, S.; Loop, B.T.; DeKosky, A. [Univ. of Pittsburgh, PA (United States)] [and others

    1996-05-01

    M6 is a neuronal membrane glycoprotein that may have an important role in neural development. This molecule was initially defined by a monoclonal antibody that affected the survival of cultured cerebellar neurons and the outgrowth of neurites. The nature of the antigen was discovered by expression cDNA cloning using this monoclonal antibody. Two distinct murine M6 cDNAs (designated M6a and M6b) whose deduced amino acid sequences were remarkably similar to that of the myelin proteolipid protein human cDNA and genomic clones encoding M6a and M6b and have characterized them by restriction mapping, Southern hybridization with cDNA probes, and sequence analysis. We have localized these genes within the human genome by FISH (fluorescence in situ hybridization). The human M6a gene is located at 4q34, and the M6b gene is located at Xp22.2 A number of human neurological disorders have been mapped to the Xp22 region, including Aicardi syndrome (MIM 304050), Rett syndrome (MIM 312750), X-linked Charcot-Marie-Tooth neuropathy (MIM 302801), and X-linked mental retardation syndromes (MRX1, MIM 309530). This raises the possibility that a defect in the M6b gene is responsible for one of these neurological disorders. 8 refs., 3 figs.

  19. Designer Babies? Teacher Views on Gene Technology and Human Medicine.

    Science.gov (United States)

    Schibeci, Renato

    1999-01-01

    Summarizes the views of a sample of primary and high school teachers on the application of gene technology to human medicine. In general, high school teachers are more positive about these developments than primary teachers, and both groups of teachers are more positive than interested lay publics. Highlights ways in which this topic can be…

  20. Molecular cloning of the human excision repair gene ERCC-6.

    NARCIS (Netherlands)

    C. Troelstra (Christine); H. Odijk (Hanny); J. de Wit (Jan); A. Westerveld (Andries); L.H. Thompson; D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1990-01-01

    textabstractThe UV-sensitive, nucleotide excision repair-deficient Chinese hamster mutant cell line UV61 was used to identify and clone a correcting human gene, ERCC-6. UV61, belonging to rodent complementation group 6, is only moderately UV sensitive in comparison with mutant lines in groups 1 to 5

  1. The Human Lexinome: Genes of Language and Reading

    Science.gov (United States)

    Gibson, Christopher J.; Gruen, Jeffrey R.

    2008-01-01

    Within the human genome, genetic mapping studies have identified 10 regions of different chromosomes, known as DYX loci, in genetic linkage with dyslexia, and two, known as SLI loci, in genetic linkage with Specific Language Impairment (SLI). Further genetic studies have identified four dyslexia genes within the DYX loci: "DYX1C1" on 15q,…

  2. Global patterns of diversity and selection in human tyrosinase gene.

    Directory of Open Access Journals (Sweden)

    Georgi Hudjashov

    Full Text Available Global variation in skin pigmentation is one of the most striking examples of environmental adaptation in humans. More than two hundred loci have been identified as candidate genes in model organisms and a few tens of these have been found to be significantly associated with human skin pigmentation in genome-wide association studies. However, the evolutionary history of different pigmentation genes is rather complex: some loci have been subjected to strong positive selection, while others evolved under the relaxation of functional constraints in low UV environment. Here we report the results of a global study of the human tyrosinase gene, which is one of the key enzymes in melanin production, to assess the role of its variation in the evolution of skin pigmentation differences among human populations. We observe a higher rate of non-synonymous polymorphisms in the European sample consistent with the relaxation of selective constraints. A similar pattern was previously observed in the MC1R gene and concurs with UV radiation-driven model of skin color evolution by which mutations leading to lower melanin levels and decreased photoprotection are subject to purifying selection at low latitudes while being tolerated or even favored at higher latitudes because they facilitate UV-dependent vitamin D production. Our coalescent date estimates suggest that the non-synonymous variants, which are frequent in Europe and North Africa, are recent and have emerged after the separation of East and West Eurasian populations.

  3. The diverse origins of the human gene pool.

    Science.gov (United States)

    Pääbo, Svante

    2015-06-01

    Analyses of the genomes of Neanderthals and Denisovans, the closest evolutionary relatives of present-day humans, suggest that our ancestors were part of a web of now-extinct populations linked by limited, but intermittent or sometimes perhaps even persistent, gene flow.

  4. Identification of differently expressed genes in human colorectal adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Yao Chen; Yi-Zeng Zhang; Zong-Guang Zhou; Gang Wang; Zeng-Ni Yi

    2006-01-01

    AIM: To investigate the differently expressed genes in human colorectal adenocarcinoma.METHODS: The integrated approach for gene expression profiling that couples suppression subtractive hybridization, high-throughput cDNA array, sequencing,bioinformatics analysis, and reverse transcriptase realtime quantitative polymerase chain reaction (PCR)was carried out. A set of cDNA clones including 1260SSH inserts amplified by PCR was arrayed using robotic printing. The cDNA arrays were hybridized with florescent-labeled probes prepared from RNA of human colorectal adenocarcinoma (HCRAC) and normal colorectal tissues.RESULTS: A total of 86 genes were identified, 16 unknown genes and 70 known genes. The transcription factor Sox9 influencing cell differentiation was downregulated. At the same time, Heat shock protein 10 KDis downregulated and Calmoulin is up-regulated.CONCLUSION: Downregulation of heat shock protein 10 KD lost its inhibition of Ras, and then attenuated the Ras GTPase signaling pathway, increased cell proliferation and inhibited cell apoptosis. Down-regulated transcription factor Sox9 influences cell differentiation and cell-specific gene expression. Down-regulated Sox9 also decreases its binding to calmodulin, accumulates calmodulin as receptor-activated kinase and phosphorylase kinase due to the activation of PhK.

  5. Gene transcriptional networks integrate microenvironmental signals in human breast cancer.

    Science.gov (United States)

    Xu, Ren; Mao, Jian-Hua

    2011-04-01

    A significant amount of evidence shows that microenvironmental signals generated from extracellular matrix (ECM) molecules, soluble factors, and cell-cell adhesion complexes cooperate at the extra- and intracellular level. This synergetic action of microenvironmental cues is crucial for normal mammary gland development and breast malignancy. To explore how the microenvironmental genes coordinate in human breast cancer at the genome level, we have performed gene co-expression network analysis in three independent microarray datasets and identified two microenvironment networks in human breast cancer tissues. Network I represents crosstalk and cooperation of ECM microenvironment and soluble factors during breast malignancy. The correlated expression of cytokines, chemokines, and cell adhesion proteins in Network II implicates the coordinated action of these molecules in modulating the immune response in breast cancer tissues. These results suggest that microenvironmental cues are integrated with gene transcriptional networks to promote breast cancer development.

  6. Gene expression profiling of human erythroid progenitors by micro-serial analysis of gene expression.

    Science.gov (United States)

    Fujishima, Naohito; Hirokawa, Makoto; Aiba, Namiko; Ichikawa, Yoshikazu; Fujishima, Masumi; Komatsuda, Atsushi; Suzuki, Yoshiko; Kawabata, Yoshinari; Miura, Ikuo; Sawada, Ken-ichi

    2004-10-01

    We compared the expression profiles of highly purified human CD34+ cells and erythroid progenitor cells by micro-serial analysis of gene expression (microSAGE). Human CD34+ cells were purified from granulocyte colony-stimulating factor-mobilized blood stem cells, and erythroid progenitors were obtained by cultivating these cells in the presence of stem cell factor, interleukin 3, and erythropoietin. Our 10,202 SAGE tags allowed us to identify 1354 different transcripts appearing more than once. Erythroid progenitor cells showed increased expression of LRBA, EEF1A1, HSPCA, PILRB, RANBP1, NACA, and SMURF. Overexpression of HSPCA was confirmed by real-time polymerase chain reaction analysis. MicroSAGE revealed an unexpected preferential expression of several genes in erythroid progenitor cells in addition to the known functional genes, including hemoglobins. Our results provide reference data for future studies of gene expression in various hematopoietic disorders, including myelodysplastic syndrome and leukemia.

  7. Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage phiC31 site-specific recombination system.

    Science.gov (United States)

    Thomason, L C; Calendar, R; Ow, D W

    2001-08-01

    The site-specific recombination system used by the Streptomyces bacteriophage phiC31 was tested in the fission yeast Schizosaccharomyces pombe. A target strain with the phage attachment site attP inserted at the leu1 locus was co-transformed with one plasmid containing the bacterial attachment site attB linked to a ura4+ marker, and a second plasmid expressing the phiC31 integrase gene. High-efficiency transformation to the Ura+ phenotype occurred when the integrase gene was expressed. Southern analysis revealed that the attB-ura4+ plasmid integrated into the chromosomal attP site. Sequence analysis showed that the attBxattP recombination was precise. In another approach, DNA with a ura4+ marker flanked by two attB sites in direct orientation was used to transform S. pombe cells bearing an attP duplication. The phiC31 integrase catalyzed two reciprocal cross-overs, resulting in a precise gene replacement. The site-specific insertions are stable, as no excision (the reverse reaction) was observed on maintenance of the integrase gene in the integrant lines. The irreversibility of the phiC31 site-specific recombination system sets it apart from other systems currently used in eukaryotic cells, which reverse readily. Deployment of the phiC31 recombination provides new opportunities for directing transgene and chromosome rearrangements in eukaryotic systems.

  8. Human myometrial gene expression before and during parturition.

    Science.gov (United States)

    Havelock, Jon C; Keller, Patrick; Muleba, Ndaya; Mayhew, Bobbie A; Casey, Brian M; Rainey, William E; Word, R Ann

    2005-03-01

    Identification of temporal and spatial changes in myometrial gene expression during parturition may further the understanding of the coordinated regulation of myometrial contractions during parturition. The objective of this study was to compare the gene expression profiles of human fundal myometrium from pregnant women before and after the onset of labor using a functional genomics approach, and to further characterize the spatial and temporal expression patterns of three genes believed to be important in parturition. Fundal myometrial mRNA was isolated from five women in labor and five women not in labor, and analyzed using human UniGEM-V microarrays with 9182 cDNA elements. Real-time polymerase chain reaction using myometrial RNA from pregnant women in labor or not in labor was used to examine mRNA levels for three of the genes; namely, prostaglandin-endoperoxide synthase 2 (PTGS2), calgranulin B (S100A9), and oxytocin receptor (OXTR). The spatial expression pattern of these genes throughout the pregnant uterus before and after labor was also determined. Immunolocalization of cyclooxygenase-2 (also known as PTGS2) and S100A9 within the uterine cervix and myometrium were analyzed by immunohistochemistry. Few genes were differentially expressed in fundal myometrial tissues at term with the onset of labor. However, there appears to be a subset of genes important in the parturition cascade. The cellular properties of S100A9, its spatial localization, and dramatic increase in cervix and myometrium of women in labor suggest that this protein may be very important in the initiation or propagation of human labor.

  9. Human gene therapy and imaging in neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Andreas H.; Winkler, Alexandra [Max Planck-Institute for Neurological Research, Center of Molecular Medicine (CMMC) and Department of Neurology, Cologne (Germany); MPI for Neurological Research, Laboratory for Gene Therapy and Molecular Imaging, Cologne (Germany); Castro, Maria G.; Lowenstein, Pedro [University of California Los Angeles (United States). Department of Medicine

    2005-12-01

    Molecular imaging aims to assess non-invasively disease-specific biological and molecular processes in animal models and humans in vivo. Apart from precise anatomical localisation and quantification, the most intriguing advantage of such imaging is the opportunity it provides to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Further, molecular imaging can be used to address basic scientific questions, e.g. transcriptional regulation, signal transduction or protein/protein interaction, and will be essential in developing treatment strategies based on gene therapy. Most importantly, molecular imaging is a key technology in translational research, helping to develop experimental protocols which may later be applied to human patients. Over the past 20 years, imaging based on positron emission tomography (PET) and magnetic resonance imaging (MRI) has been employed for the assessment and ''phenotyping'' of various neurological diseases, including cerebral ischaemia, neurodegeneration and brain gliomas. While in the past neuro-anatomical studies had to be performed post mortem, molecular imaging has ushered in the era of in vivo functional neuro-anatomy by allowing neuroscience to image structure, function, metabolism and molecular processes of the central nervous system in vivo in both health and disease. Recently, PET and MRI have been successfully utilised together in the non-invasive assessment of gene transfer and gene therapy in humans. To assess the efficiency of gene transfer, the same markers are being used in animals and humans, and have been applied for phenotyping human disease. Here, we review the imaging hallmarks of focal and disseminated neurological diseases, such as cerebral ischaemia, neurodegeneration and glioblastoma multiforme, as well as the attempts to translate gene therapy's experimental knowledge into clinical applications and the way in which this process is being

  10. Syndrome to gene (S2G): in-silico identification of candidate genes for human diseases.

    Science.gov (United States)

    Gefen, Avitan; Cohen, Raphael; Birk, Ohad S

    2010-03-01

    The identification of genomic loci associated with human genetic syndromes has been significantly facilitated through the generation of high density SNP arrays. However, optimal selection of candidate genes from within such loci is still a tedious labor-intensive bottleneck. Syndrome to Gene (S2G) is based on novel algorithms which allow an efficient search for candidate genes in a genomic locus, using known genes whose defects cause phenotypically similar syndromes. S2G (http://fohs.bgu.ac.il/s2g/index.html) includes two components: a phenotype Online Mendelian Inheritance in Man (OMIM)-based search engine that alleviates many of the problems in the existing OMIM search engine (negation phrases, overlapping terms, etc.). The second component is a gene prioritizing engine that uses a novel algorithm to integrate information from 18 databases. When the detailed phenotype of a syndrome is inserted to the web-based software, S2G offers a complete improved search of the OMIM database for similar syndromes. The software then prioritizes a list of genes from within a genomic locus, based on their association with genes whose defects are known to underlie similar clinical syndromes. We demonstrate that in all 30 cases of novel disease genes identified in the past year, the disease gene was within the top 20% of candidate genes predicted by S2G, and in most cases--within the top 10%. Thus, S2G provides clinicians with an efficient tool for diagnosis and researchers with a candidate gene prediction tool based on phenotypic data and a wide range of gene data resources. S2G can also serve in studies of polygenic diseases, and in finding interacting molecules for any gene of choice.

  11. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field.

    Science.gov (United States)

    Schaeffer, Scott M; Nakata, Paul A

    2015-11-01

    The CRISPR/Cas9 genome engineering system has ignited and swept through the scientific community like wildfire. Owing largely to its efficiency, specificity, and flexibility, the CRISPR/Cas9 system has quickly become the preferred genome-editing tool of plant scientists. In plants, much of the early CRISPR/Cas9 work has been limited to proof of concept and functional studies in model systems. These studies, along with those in other fields of biology, have led to the development of several utilities of CRISPR/Cas9 beyond single gene editing. Such utilities include multiplexing for inducing multiple cleavage events, controlling gene expression, and site specific transgene insertion. With much of the conceptual CRISPR/Cas9 work nearly complete, plant researchers are beginning to apply this gene editing technology for crop trait improvement. Before rational strategies can be designed to implement this technology to engineer a wide array of crops there is a need to expand the availability of crop-specific vectors, genome resources, and transformation protocols. We anticipate that these challenges will be met along with the continued evolution of the CRISPR/Cas9 system particularly in the areas of manipulation of large genomic regions, transgene-free genetic modification, development of breeding resources, discovery of gene function, and improvements upon CRISPR/Cas9 components. The CRISPR/Cas9 editing system appears poised to transform crop trait improvement.

  12. Replacement of Imu-Cmu intron by NeoR gene alters Imu germ-line expression but has no effect on V(D)J recombination.

    Science.gov (United States)

    Haddad, Dania; Dougier, Hei-Lanne; Laviolette, Nathalie; Puget, Nadine; Khamlichi, Ahmed Amine

    2010-02-01

    The NeoR gene has often been used to unravel the mechanisms underlying long-range interactions between promoters and enhancers during V(D)J assembly and class switch recombination (CSR) in the immunoglobulin heavy chain (IgH) locus. This approach led to the notion that CSR is regulated through competition of germ-line (GL) promoters for activities displayed by the 3' regulatory region (3'RR). This polarized long-range effect of the 3'RR is disturbed upon insertion of NeoR gene in the IgH constant (C(H)) region, where only GL transcription derived from upstream GL promoters is impaired. In the context of V(D)J recombination, replacement of Emu enhancer or Emu core enhancer (cEmu) by NeoR gene fully blocked V(D)J recombination and mu0 GL transcription which originates 5' of DQ52 and severely diminished Imu GL transcription derived from Emu/Imu promoter, suggesting a critical role for cEmu in the regulation of V(D)J recombination and of mu0 and Imu expression. Here we focus on the effect of NeoR gene on mu0 and Imu GL transcription in a mouse line in which the Imu-Cmu intron was replaced by a NeoR gene in the sense-orientation. B cell development was characterized by a marked but incomplete block at the pro-B cell stage. However, V(D)J recombination was unaffected in sorted pro-B and pre-B cells excluding an interference with the accessibility control function of Emu. mu0 GL transcription initiation was relatively normal but the maturation step seemed to be affected most likely through premature termination at NeoR polyadenylation sites. In contrast, Imu transcription initiation was impaired suggesting an interference of NeoR gene with the IgH enhancers that control Imu expression. Surprisingly, in stark contrast with the NeoR effect in the C(H) region, LPS-induced NeoR expression restored Imu transcript levels to normal. The data suggest that Emu enhancer may be the master control element that counteracts the down-regulatory "Neo effect" on Imu expression upon LPS

  13. Molecular Cloning of Human Gene(s) Directing the Synthesis of Nervous System Cholinesterases

    Science.gov (United States)

    1987-09-01

    Report No. 4 If MOLECULAR CLONING OF O HUMAN GENE(S) DIRECTING qTHE SYNTHESIS OF NERVOUS SYSTEM CHOLINESTERASES cc Annual/Final Report 0 N November...62734A I734A875 IAl 451 MOLECULAR CLONING OF HUMAN GEME(S) DIRECTING THE SYNTHESIS OF NERVOUS SYSTEM CHOLINESTERASE 12. PERSONAL AUTHOR(S) Hermona Soreq...important roles in regulating the pace and mode of function of particular types of synapses. For example, molecular cloning of the nicotinic (44-46) and the

  14. Loss of Bloom syndrome protein destabilizes human gene cluster architecture.

    Science.gov (United States)

    Killen, Michael W; Stults, Dawn M; Adachi, Noritaka; Hanakahi, Les; Pierce, Andrew J

    2009-09-15

    Bloom syndrome confers strong predisposition to malignancy in multiple tissue types. The Bloom syndrome patient (BLM) protein defective in the disease biochemically functions as a Holliday junction dissolvase and human cells lacking functional BLM show 10-fold elevated rates of sister chromatid exchange. Collectively, these phenomena suggest that dysregulated mitotic recombination drives the genomic instability underpinning the development of cancer in these individuals. Here we use physical analysis of the highly repeated, highly self-similar human ribosomal RNA gene clusters as sentinel biomarkers for dysregulated homologous recombination to demonstrate that loss of BLM protein function causes a striking increase in spontaneous molecular level genomic restructuring. Analysis of single-cell derived sub-clonal populations from wild-type human cell lines shows that gene cluster architecture is ordinarily very faithfully preserved under mitosis, but is so unstable in cell lines derived from BLMs as to make gene cluster architecture in different sub-clonal populations essentially unrecognizable one from another. Human cells defective in a different RecQ helicase, the WRN protein involved in the premature aging Werner syndrome, do not exhibit the gene cluster instability (GCI) phenotype, indicating that the BLM protein specifically, rather than RecQ helicases generally, holds back this recombination-mediated genomic instability. An ataxia-telangiectasia defective cell line also shows elevated rDNA GCI, although not to the extent of BLM defective cells. Genomic restructuring mediated by dysregulated recombination between the abundant low-copy repeats in the human genome may prove to be an important additional mechanism of genomic instability driving the initiation and progression of human cancer.

  15. YB-1 gene expression is kept constant during myocyte differentiation through replacement of different transcription factors and then falls gradually under the control of neural activity.

    Science.gov (United States)

    Kobayashi, Shunsuke; Tanaka, Toru; Moue, Masamitsu; Ohashi, Sachiyo; Nishikawa, Taishi

    2015-11-01

    We have previously reported that translation of acetylcholine receptor α-subunit (AChR α) mRNA in skeletal muscle cells is regulated by Y-box binding protein 1 (YB-1) in response to neural activity, and that in the postnatal mouse developmental changes in the amount of YB-1 mRNA are similar to those of AChR α mRNA, which is known to be regulated by myogenic transcription factors. Here, we examined transcriptional regulation of the YB-1 gene in mouse skeletal muscle and differentiating C2C12 myocytes. Although neither YB-1 nor AChR α was detected at either the mRNA or protein level in adult hind limb muscle, YB-1 expression was transiently activated in response to denervation of the sciatic nerve and completely paralleled that of AChR α, suggesting that these genes are regulated by the same transcription factors. However, during differentiation of C2C12 cells to myotubes, the level of YB-1 remained constant even though the level of AChR α increased markedly. Reporter gene, gel mobility shift and ChIP assays revealed that in the initial stage of myocyte differentiation, transcription of the YB-1 gene was regulated by E2F1 and Sp1, and was then gradually replaced under the control of both MyoD and myogenin through an E-box sequence in the proximal region of the YB-1 gene promoter. These results suggest that transcription factors for the YB-1 gene are exchanged during skeletal muscle cell differentiation, perhaps playing a role in translational control of mRNAs by YB-1 in both myotube formation and the response of skeletal muscle tissues to neural stimulation.

  16. Polymorphisms of the GR and HSD11B1 genes influence body mass index and weight gain during hormone replacement treatment in patients with Addison's disease.

    Science.gov (United States)

    Molnár, Ágnes; Kövesdi, Annamária; Szücs, Nikolette; Tóth, Miklós; Igaz, Péter; Rácz, Károly; Patócs, Attila

    2016-08-01

    Glucocorticoid substitution is essential in patients with chronic primary adrenocortical insufficiency (Addison's disease) and both over-treatment and inadequate dosage have deleterious effects. Individual sensitivity to glucocorticoids is partly genetically determined. To test the hypothesis whether the well-characterized SNPs of the GR and HSD11B1 genes may modulate the individual sensitivity to exogenous glucocorticoids and may influence clinical and/or laboratory parameters and the glucocorticoid substitution dosage in patients with Addison's disease. 68 patients with primary adrenocortical insufficiency were involved. Clinical and laboratory data, as well as the dosage of the hormone replacement therapy were collected. Peripheral blood DNA was isolated, and the GR and HSD11B1 SNPs were examined using allele-specific PCR or Taqman assay on Real Time PCR. The allele frequency of the GR N363S polymorphism was higher in patients compared to the control group and the disease appeared significantly earlier in patients harbouring the GR A3669G compared to noncarriers. These patients had higher ACTH level measured at the time of diagnosis. Homozygous BclI carriers had higher body mass index (BMI) and lower total hydrocortisone equivalent supplementation dose needed than heterozygous or noncarriers. The BMI and weight gain during hormone replacement therapy were also higher in carriers of the HSD11B1 rs4844880 treated with glucocorticoids other than dexamethasone. The BclI polymorphism of the GR gene and the rs4844880 of the HSD11B1 gene may contribute to weight gain and may affect the individual need of glucocorticoid substitution dose in these patients. © 2016 John Wiley & Sons Ltd.

  17. Reference genes for normalization of gene expression studies in human osteoarthritic articular cartilage

    Directory of Open Access Journals (Sweden)

    Gomez-Reino Juan J

    2008-01-01

    Full Text Available Abstract Background Assessment of gene expression is an important component of osteoarthritis (OA research, greatly improved by the development of quantitative real-time PCR (qPCR. This technique requires normalization for precise results, yet no suitable reference genes have been identified in human articular cartilage. We have examined ten well-known reference genes to determine the most adequate for this application. Results Analyses of expression stability in cartilage from 10 patients with hip OA, 8 patients with knee OA and 10 controls without OA were done with classical statistical tests and the software programs geNorm and NormFinder. Results from the three methods of analysis were broadly concordant. Some of the commonly used reference genes, GAPDH, ACTB and 18S RNA, performed poorly in our analysis. In contrast, the rarely used TBP, RPL13A and B2M genes were the best. It was necessary to use together several of these three genes to obtain the best results. The specific combination depended, to some extent, on the type of samples being compared. Conclusion Our results provide a satisfactory set of previously unused reference genes for qPCR in hip and knee OA This confirms the need to evaluate the suitability of reference genes in every tissue and experimental situation before starting the quantitative assessment of gene expression by qPCR.

  18. Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes

    Directory of Open Access Journals (Sweden)

    Huddleston JR

    2014-06-01

    Full Text Available Jennifer R HuddlestonBiology Department, Abilene Christian University, Abilene, TX, USAAbstract: Bacterial infections are becoming increasingly difficult to treat due to widespread antibiotic resistance among pathogens. This review aims to give an overview of the major horizontal transfer mechanisms and their evolution and then demonstrate the human lower gastrointestinal tract as an environment in which horizontal gene transfer of resistance determinants occurs. Finally, implications for antibiotic usage and the development of resistant infections and persistence of antibiotic resistance genes in populations as a result of horizontal gene transfer in the large intestine will be discussed.Keywords: gut microbiome, conjugation, natural transformation, transduction

  19. Reconstructability analysis as a tool for identifying gene-gene interactions in studies of human diseases.

    Science.gov (United States)

    Shervais, Stephen; Kramer, Patricia L; Westaway, Shawn K; Cox, Nancy J; Zwick, Martin

    2010-01-01

    There are a number of common human diseases for which the genetic component may include an epistatic interaction of multiple genes. Detecting these interactions with standard statistical tools is difficult because there may be an interaction effect, but minimal or no main effect. Reconstructability analysis (RA) uses Shannon's information theory to detect relationships between variables in categorical datasets. We applied RA to simulated data for five different models of gene-gene interaction, and find that even with heritability levels as low as 0.008, and with the inclusion of 50 non-associated genes in the dataset, we can identify the interacting gene pairs with an accuracy of > or =80%. We applied RA to a real dataset of type 2 non-insulin-dependent diabetes (NIDDM) cases and controls, and closely approximated the results of more conventional single SNP disease association studies. In addition, we replicated prior evidence for epistatic interactions between SNPs on chromosomes 2 and 15.

  20. Rescue and expression of human immunoglobulin genes to generate functional human monoclonal antibodies.

    Science.gov (United States)

    Lewis, A P; Parry, N; Peakman, T C; Crowe, J S

    1992-07-01

    Human monoclonal antibody production has been hampered for many years by the instability of cell lines and low levels of expression of the antibodies. We describe here the rescue of human immunoglobulin genes utilizing micro-mRNA preparation from a small number of human hybridoma cells and conventional cDNA cloning. This allows cloning and immediate high-level expression from full-length human heavy and light chain cDNA molecules and provides a mechanism to rescue whole human monoclonal antibodies of proven efficacy.

  1. Aberrant rel/nfkb genes and activity in human cancer.

    Science.gov (United States)

    Rayet, B; Gélinas, C

    1999-11-22

    Rel/NF-kappaB transcription factors are key regulators of immune, inflammatory and acute phase responses and are also implicated in the control of cell proliferation and apoptosis. Remarkable progress has been made in understanding the signal transduction pathways that lead to the activation of Rel/NF-kappaB factors and the consequent induction of gene expression. Evidence linking deregulated Rel/NF-kappaB activity to oncogenesis in mammalian systems has emerged in recent years, consistent with the acute oncogenicity of the viral oncoprotein v-Rel in animal models. Chromosomal amplification, overexpression and rearrangement of genes coding for Rel/NF-kappaB factors have been noted in many human hematopoietic and solid tumors. Persistent nuclear NF-kappaB activity was also described in several human cancer cell types, as a result of constitutive activation of upstream signaling kinases or mutations inactivating inhibitory IkappaB subunits. Studies point to a correlation between the activation of cellular gene expression by Rel/NF-kappaB factors and their participation in the malignant process. Experiments implicating NF-kappaB in the control of the apoptotic response also support a role in oncogenesis and in the resistance of tumor cells to chemotherapy. This review focuses on the status of the rel, nfkb and ikb genes and their activity in human tumors and their association with the onset or progression of malignancies.

  2. Large-Scale Hematopoietic Differentiation of Human Induced Pluripotent Stem Cells Provides Granulocytes or Macrophages for Cell Replacement Therapies

    Directory of Open Access Journals (Sweden)

    Nico Lachmann

    2015-02-01

    Full Text Available Interleukin-3 (IL-3 is capable of supporting the proliferation of a broad range of hematopoietic cell types, whereas granulocyte colony-stimulating factor (G-CSF and macrophage CSF (M-CSF represent critical cytokines in myeloid differentiation. When this was investigated in a pluripotent-stem-cell-based hematopoietic differentiation model, IL-3/G-CSF or IL-3/M-CSF exposure resulted in the continuous generation of myeloid cells from an intermediate myeloid-cell-forming complex containing CD34+ clonogenic progenitor cells for more than 2 months. Whereas IL-3/G-CSF directed differentiation toward CD45+CD11b+CD15+CD16+CD66b+ granulocytic cells of various differentiation stages up to a segmented morphology displaying the capacity of cytokine-directed migration, respiratory burst response, and neutrophil-extracellular-trap formation, exposure to IL-3/M-CSF resulted in CD45+CD11b+CD14+CD163+CD68+ monocyte/macrophage-type cells capable of phagocytosis and cytokine secretion. Hence, we show here that myeloid specification of human pluripotent stem cells by IL-3/G-CSF or IL-3/M-CSF allows for prolonged and large-scale production of myeloid cells, and thus is suited for cell-fate and disease-modeling studies as well as gene- and cell-therapy applications.

  3. Effects of human visitation on calf growth and performance of calves fed different milk replacer feeding levels.

    Science.gov (United States)

    Guindon, N E; Antaya, N T; Cabral, R G; Whitehouse, N L; Earleywine, T J; Erickson, P S

    2015-12-01

    Twenty-eight newborn Holstein heifer calves from the university herd and 8 newborn Holstein heifer calves from a commercial herd were blocked by birth and herd into 1 of 4 treatments: conventional [20% crude protein (CP), 20% fat] milk replacer (MR; treatment C) with (1) or without (0) human visitation, or a higher plane of MR nutrition (28% CP, 20% fat) regimen (treatment A) with (1) or (0) without human visitation. Calves on C MR treatments received 454g of MR from d 2 to 41. Calves on A MR received 916g of MR from d 2 to 8 and 1134g of MR from d 9 to 41. Visitation with calves occurred at 1030 and 1430h daily from d 1 to 56 and comprised verbal stimulation and stirring of starter grain. An opaque curtain divided the calf nursery, with calves in the front half assigned to visitation treatments and those in the rear half not assigned to visitation treatments. Calves were fed their MR treatment until d 43 (preweaning), after which all calves received half of their allotment of MR until d 49 (weaning). Calves were tracked for the next week until d 56 (postweaning). Starter grain and MR intakes were measured daily along with weekly body weight and skeletal measurements. One half of the calves on each treatment had blood samples taken via jugular venipuncture on d 41 (preweaning), 43, 45, 47, 49, and 51 (postweaning) to evaluate blood glucose, urea, nonesterified fatty acids, and cortisol concentrations. During the preweaning and weaning phases, calves on A0 and A1 treatments consumed more MR, less starter, and weighed more than the C0 and C1 calves. Calves on A0 and A1 had greater average daily gain (ADG), hip and withers gain, were taller at the hip, and had larger girths during the preweaning phase. Overall, body weight, withers and hip heights, and heart girths were greater in A0 andA1 calves during the weaning week. Efficiency of utilization of estimated metabolizable energy (ME) intake (ADG/ME) were similar. Glucose and nonesterified fatty acids concentrations

  4. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections.

    Directory of Open Access Journals (Sweden)

    Ettie M Lipner

    Full Text Available Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.

  5. Identification of susceptibility genes and genetic modifiers of human diseases

    Science.gov (United States)

    Abel, Kenneth; Kammerer, Stefan; Hoyal, Carolyn; Reneland, Rikard; Marnellos, George; Nelson, Matthew R.; Braun, Andreas

    2005-03-01

    The completion of the human genome sequence enables the discovery of genes involved in common human disorders. The successful identification of these genes is dependent on the availability of informative sample sets, validated marker panels, a high-throughput scoring technology, and a strategy for combining these resources. We have developed a universal platform technology based on mass spectrometry (MassARRAY) for analyzing nucleic acids with high precision and accuracy. To fuel this technology, we generated more than 100,000 validated assays for single nucleotide polymorphisms (SNPs) covering virtually all known and predicted human genes. We also established a large DNA sample bank comprised of more than 50,000 consented healthy and diseased individuals. This combination of reagents and technology allows the execution of large-scale genome-wide association studies. Taking advantage of MassARRAY"s capability for quantitative analysis of nucleic acids, allele frequencies are estimated in sample pools containing large numbers of individual DNAs. To compare pools as a first-pass "filtering" step is a tremendous advantage in throughput and cost over individual genotyping. We employed this approach in numerous genome-wide, hypothesis-free searches to identify genes associated with common complex diseases, such as breast cancer, osteoporosis, and osteoarthritis, and genes involved in quantitative traits like high density lipoproteins cholesterol (HDL-c) levels and central fat. Access to additional well-characterized patient samples through collaborations allows us to conduct replication studies that validate true disease genes. These discoveries will expand our understanding of genetic disease predisposition, and our ability for early diagnosis and determination of specific disease subtype or progression stage.

  6. Exploring the potential relevance of human-specific genes to complex disease

    Directory of Open Access Journals (Sweden)

    Cooper David N

    2011-01-01

    Full Text Available Abstract Although human disease genes generally tend to be evolutionarily more ancient than non-disease genes, complex disease genes appear to be represented more frequently than Mendelian disease genes among genes of more recent evolutionary origin. It is therefore proposed that the analysis of human-specific genes might provide new insights into the genetics of complex disease. Cross-comparison with the Human Gene Mutation Database (http://www.hgmd.org revealed a number of examples of disease-causing and disease-associated mutations in putatively human-specific genes. A sizeable proportion of these were missense polymorphisms associated with complex disease. Since both human-specific genes and genes associated with complex disease have often experienced particularly rapid rates of evolutionary change, either due to weaker purifying selection or positive selection, it is proposed that a significant number of human-specific genes may play a role in complex disease.

  7. Cloning the human gene for macrophage migration inhibitory factor (MIF)

    Energy Technology Data Exchange (ETDEWEB)

    Paralkar, V.; Wistow, G. (National Institutes of Health, Bethesda, MD (United States))

    1994-01-01

    Macrophage migration inhibitory factor (MIF) was originally identified as a lymphokine. However, recent work strongly suggests a wider role for MIF beyond the immune system. It is expressed specifically in the differentiating cells of the immunologically privileged eye lens and brain, is a delayed early response gene in fibroblasts, and is expressed in many tissues. Here, the authors report the structure of the remarkably small gene for human MIF that has three exons separated by introns of only 189 and 95 bp and covers less than 1 kb. The cloned sequence also includes 1 kb of 5[prime] flanking region. Primer extension and 5[prime] rapid amplification of cDNA ends (RACE) of human brain RNA both indicate the presence of a single transcription start site in a TATA-less promoter. Northern blot analysis shows a single size of MIF mRNA (about 800 nt) in all human tissues examined. In contrast to previous reports, they find no evidence for multiple genes for MIF in the human genome. 20 refs., 3 figs.

  8. Soluble mediators can replace helper T cells in the activation of resting B lymphocytes: evidence for a human B cell activating factor.

    Science.gov (United States)

    Diu, A; Février, M; Moreau, J L; Gougeon, M L; Abadie, A; Thèze, J

    1988-01-01

    We were interested in studying the participation of T cell-derived soluble factors in the early steps of B cell activation. Thus supernatants containing such factors were obtained following activation of human T cell clones and their effects on isolated B cells investigated. These supernatants induced activation, blastogenesis and proliferation of purified resting human B cells. Our results strongly suggest the existence of a B cell Activating Factor (BCAF) of apparent molecular weight (m.w.) of 12,000-15,000 daltons which acts directly on resting B cells and replaces helper T cells in B cell activation.

  9. Translational regulation of human p53 gene expression.

    OpenAIRE

    Fu, L.; Minden, M D; Benchimol, S

    1996-01-01

    In blast cells obtained from patients with acute myelogenous leukemia, p53 mRNA was present in all the samples examined while the expression of p53 protein was variable from patient to patient. Mutations in the p53 gene are infrequent in this disease and, hence, variable protein expression in the majority of the samples cannot be accounted for by mutation. In this study, we examined the regulation of p53 gene expression in human leukemic blasts and characterized the p53 transcripts in these c...

  10. Effect of estrogen receptor-alpha (ESR1 gene polymorphism on high density lipoprotein levels in response to hormone replacement therapy

    Directory of Open Access Journals (Sweden)

    N.C. Nogueira-de-Souza

    2009-12-01

    Full Text Available Studies have shown that estrogen replacement therapy and estrogen plus progestin replacement therapy alter serum levels of total, LDL and HDL cholesterol levels. However, HDL cholesterol levels in women vary considerably in response to hormone replacement therapy (HRT. A significant portion of the variability of these levels has been attributed to genetic factors. Therefore, we investigated the influence of estrogen receptor-alpha (ESR1 gene polymorphisms on HDL levels in response to postmenopausal HRT. We performed a prospective cohort study on 54 postmenopausal women who had not used HRT before the study and had no significant general medical illness. HRT consisted of conjugated equine estrogen and medroxyprogesterone acetate continuously for 1 year. The lipoprotein levels were measured from blood samples taken before the start of therapy and after 1 year of HRT. ESR1 polymorphism (MspI C>T, HaeIII C>T, PvuII C>T, and XbaI A>G frequencies were assayed by restriction fragment length polymorphism. A general linear model was used to describe the relationships between HDL levels and genotypes after adjusting for age. A significant increase in HDL levels was observed after HRT (P = 0.029. Women with the ESR1 PvuII TT genotype showed a statistically significant increase in HDL levels after HRT (P = 0.032. No association was found between other ESR1 polymorphisms and HDL levels. According to our results, the ESR1 PvuII TT genotype was associated with increased levels of HDL after 1 year of HRT.

  11. Suitability of endogenous reference genes for gene expression studies with human intraocular endothelial cells

    Directory of Open Access Journals (Sweden)

    Wei Ruoxin

    2013-02-01

    Full Text Available Abstract Background The use of quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR has become widely applied as a method to measure transcript abundance. In order to be reflective of biological processes during health and disease this method is dependent on normalisation of data against stable endogenous controls. However, these genes can vary in their stability in different cell types. The importance of reference gene validation for a particular cell type is now well recognised and is an important step in any gene expression study. Results Cultured primary human choroidal and retinal endothelial cells were treated with the immunostimulant polyinosinic: polycytidylic acid or untreated. qRT-PCR was used to quantify the expression levels of 10 commonly used endogenous control genes, TBP, HPRT1, GAPDH, GUSB, PPIA, RPLP0, B2M, 18S rRNA, PGK1 and ACTB. Three different mathematical algorithms, GeNorm, NormFinder, and BestKeeper were used to analyse gene stability to give the most representative validation. In choroidal endothelial cells the most stable genes were ranked as HPRT1 and GUSB by GeNorm and NormFinder and HPRT1 and PPIA by BestKeeper. In retinal endothelial cells the most stable genes ranked were TBP and PGK1 by GeNorm and NormFinder and HPRT1 by BestKeeper. The least stable gene for both cell types was 18S with all 3 algorithms. Conclusions We have identified the most stable endogenous control genes in intraocular endothelial cells. It is suggested future qRT-PCR studies using these cells would benefit from adopting the genes identified in this study as the most appropriate endogenous control genes.

  12. Changes in adipocyte cell size, gene expression of lipid metabolism markers, and lipolytic responses induced by dietary fish oil replacement in gilthead sea bream (Sparus aurata L.).

    Science.gov (United States)

    Cruz-Garcia, Lourdes; Sánchez-Gurmaches, Joan; Bouraoui, Lamia; Saera-Vila, Alfonso; Pérez-Sánchez, Jaume; Gutiérrez, Joaquim; Navarro, Isabel

    2011-04-01

    The effects of fish oil (FO) substitution by 66% vegetable oils in a diet with already 75% vegetable protein (66VO) on adipose tissue lipid metabolism of gilthead sea bream were analysed after a 14-month feeding trial. In the last 3 months of the experiment, a FO diet was administrated to a 66VO group (group 66VO/FO) as a finishing diet. Hormone-sensitive lipase (HSL) activity was measured in adipose tissue and adipocyte size, and HSL, lipoprotein lipase and liver X receptor gene expression in isolated adipocytes, on which lipolysis and glucose uptake experiments were also performed. Lipolysis was measured after incubation with tumour necrosis factor-α (TNFα), linoleic acid, and two conjugated linoleic acid isomers. Glucose uptake was analysed after TNFα or insulin administration. Our results show that FO replacement increased lipolytic activity and adipocyte cell size. The higher proportion of large cells observed in the 66VO group could be involved in their observed lower response to fatty acid treatments and lower insulin sensitivity. The 66VO/FO group showed a moderate return to the FO conditions. Therefore, FO replacement can affect the morphology and metabolism of gilthead sea bream adipocytes which could potentially affect other organs such as the liver.

  13. Impact of Statins on Gene Expression in Human Lung Tissues.

    Directory of Open Access Journals (Sweden)

    Jérôme Lane

    Full Text Available Statins are 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors that alter the synthesis of cholesterol. Some studies have shown a significant association of statins with improved respiratory health outcomes of patients with asthma, chronic obstructive pulmonary disease and lung cancer. Here we hypothesize that statins impact gene expression in human lungs and may reveal the pleiotropic effects of statins that are taking place directly in lung tissues. Human lung tissues were obtained from patients who underwent lung resection or transplantation. Gene expression was measured on a custom Affymetrix array in a discovery cohort (n = 408 and two replication sets (n = 341 and 282. Gene expression was evaluated by linear regression between statin users and non-users, adjusting for age, gender, smoking status, and other covariables. The results of each cohort were combined in a meta-analysis and biological pathways were studied using Gene Set Enrichment Analysis. The discovery set included 141 statin users. The lung mRNA expression levels of eighteen and three genes were up-regulated and down-regulated in statin users (FDR < 0.05, respectively. Twelve of the up-regulated genes were replicated in the first replication set, but none in the second (p-value < 0.05. Combining the discovery and replication sets into a meta-analysis improved the significance of the 12 up-regulated genes, which includes genes encoding enzymes and membrane proteins involved in cholesterol biosynthesis. Canonical biological pathways altered by statins in the lung include cholesterol, steroid, and terpenoid backbone biosynthesis. No genes encoding inflammatory, proteases, pro-fibrotic or growth factors were altered by statins, suggesting that the direct effect of statin in the lung do not go beyond its antilipidemic action. Although more studies are needed with specific lung cell types and different classes and doses of statins, the improved health outcomes and survival

  14. A DNA fragment from Xq21 replaces a deleted region containing the entire FVIII gene in a severe hemophilia A patient

    Energy Technology Data Exchange (ETDEWEB)

    Murru, S.; Casula, L.; Moi, P. [Insituto di Clinica e Biologia dell` Eta Evolutiva, Cagliari (Italy)] [and others

    1994-09-15

    In this paper the authors report the molecular characterization of a large deletion that removes the entire Factor VIII gene in a severe hemophilia A patient. Accurate DNA analysis of the breakpoint region revealed that a large DNA fragment replaced the 300-kb one, which was removed by the deletion. Pulsed-field gel electrophoresis analysis revealed that the size of the inserted fragment is about 550 kb. In situ hybridization demonstrated that part of the inserted region normally maps to Xq21 and to the tip of the short arm of the Y chromosome (Yp). In this patient this locus is present both in Xq21 and in Xq28, in addition to the Yp, being thus duplicated in the X chromosome. Sequence analysis of the 3` breakpoint suggested that an illegitimate recombination is probably the cause of this complex rearrangement. 52 refs., 7 figs.

  15. Genomic discovery of potent chromatin insulators for human gene therapy.

    Science.gov (United States)

    Liu, Mingdong; Maurano, Matthew T; Wang, Hao; Qi, Heyuan; Song, Chao-Zhong; Navas, Patrick A; Emery, David W; Stamatoyannopoulos, John A; Stamatoyannopoulos, George

    2015-02-01

    Insertional mutagenesis and genotoxicity, which usually manifest as hematopoietic malignancy, represent major barriers to realizing the promise of gene therapy. Although insulator sequences that block transcriptional enhancers could mitigate or eliminate these risks, so far no human insulators with high functional potency have been identified. Here we describe a genomic approach for the identification of compact sequence elements that function as insulators. These elements are highly occupied by the insulator protein CTCF, are DNase I hypersensitive and represent only a small minority of the CTCF recognition sequences in the human genome. We show that the elements identified acted as potent enhancer blockers and substantially decreased the risk of tumor formation in a cancer-prone animal model. The elements are small, can be efficiently accommodated by viral vectors and have no detrimental effects on viral titers. The insulators we describe here are expected to increase the safety of gene therapy for genetic diseases.

  16. The ING tumor suppressor genes: status in human tumors.

    Science.gov (United States)

    Guérillon, Claire; Bigot, Nicolas; Pedeux, Rémy

    2014-04-01

    ING genes (ING1-5) were identified has tumor suppressor genes. ING proteins are characterized as Type II TSGs since they are involved in the control of cell proliferation, apoptosis and senescence. They may also function as Type I TSGs since they are also involved in DNA replication and repair. Most studies have reported that they are frequently lost in human tumors and epigenetic mechanisms or misregulation of their transcription may be involved. Recently, studies have described that this loss may be caused by microRNA inhibition. Here, we summarize the current knowledge on ING functions, their involvement in tumor suppression and, in order to give a full assessment of the current knowledge, we review all the studies that have examined ING status in human cancers.

  17. Developmental gene expression profiles of the human pathogen Schistosoma japonicum

    Science.gov (United States)

    Gobert, Geoffrey N; Moertel, Luke; Brindley, Paul J; McManus, Donald P

    2009-01-01

    Background The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle – aquatic/snail (eggs, miracidia, sporocysts, cercariae), juvenile (lung schistosomula and paired but pre-egg laying adults) and adult (paired, mature males and egg-producing females, both examined separately). Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite. Results Gene expression profiles were linked to the major environmental settings through which the developmental stages of the fluke have to adapt during the course of its life cycle. Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, stage-specific, differentially expressed genes were identified that were involved in numerous biological pathways and functions including calcium signalling, sphingolipid metabolism and parasite defence. Conclusion The findings provide a comprehensive database of gene expression in an important human pathogen, including transcriptional changes in genes involved in evasion of the host immune response, nutrient acquisition, energy production, calcium signalling, sphingolipid metabolism, egg production and tegumental function during development. This resource should help facilitate the identification and prioritization of new anti-schistosome drug and vaccine targets for the control of schistosomiasis. PMID:19320991

  18. Developmental gene expression profiles of the human pathogen Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    McManus Donald P

    2009-03-01

    Full Text Available Abstract Background The schistosome blood flukes are complex trematodes and cause a chronic parasitic disease of significant public health importance worldwide, schistosomiasis. Their life cycle is characterised by distinct parasitic and free-living phases involving mammalian and snail hosts and freshwater. Microarray analysis was used to profile developmental gene expression in the Asian species, Schistosoma japonicum. Total RNAs were isolated from the three distinct environmental phases of the lifecycle – aquatic/snail (eggs, miracidia, sporocysts, cercariae, juvenile (lung schistosomula and paired but pre-egg laying adults and adult (paired, mature males and egg-producing females, both examined separately. Advanced analyses including ANOVA, principal component analysis, and hierarchal clustering provided a global synopsis of gene expression relationships among the different developmental stages of the schistosome parasite. Results Gene expression profiles were linked to the major environmental settings through which the developmental stages of the fluke have to adapt during the course of its life cycle. Gene ontologies of the differentially expressed genes revealed a wide range of functions and processes. In addition, stage-specific, differentially expressed genes were identified that were involved in numerous biological pathways and functions including calcium signalling, sphingolipid metabolism and parasite defence. Conclusion The findings provide a comprehensive database of gene expression in an important human pathogen, including transcriptional changes in genes involved in evasion of the host immune response, nutrient acquisition, energy production, calcium signalling, sphingolipid metabolism, egg production and tegumental function during development. This resource should help facilitate the identification and prioritization of new anti-schistosome drug and vaccine targets for the control of schistosomiasis.

  19. Study of human dopamine sulfotransferases based on gene expression programming.

    Science.gov (United States)

    Si, Hongzong; Zhao, Jiangang; Cui, Lianhua; Lian, Ning; Feng, Hanlin; Duan, Yun-Bo; Hu, Zhide

    2011-09-01

    A quantitative model is developed to predict the Km of 47 human dopamine sulfotransferases by gene expression programming. Each kind of compound is represented by several calculated structural descriptors of moment of inertia A, average electrophilic reactivity index for a C atom, relative number of triple bonds, RNCG relative negative charge, HA-dependent HDSA-1, and HBCA H-bonding charged surface area. Eight fitness functions of the gene expression programming method are used to find the best nonlinear model. The best quantitative model with squared standard error and square of correlation coefficient are 0.096 and 0.91 for training data set, and 0.102 and 0.88 for test set, respectively. It is shown that the gene expression programming-predicted results with fitness function are in good agreement with experimental ones.

  20. The distribution of SNPs in human gene regulatory regions

    Directory of Open Access Journals (Sweden)

    Guo Yongjian

    2005-10-01

    Full Text Available Abstract Background As a result of high-throughput genotyping methods, millions of human genetic variants have been reported in recent years. To efficiently identify those with significant biological functions, a practical strategy is to concentrate on variants located in important sequence regions such as gene regulatory regions. Results Analysis of the most common type of variant, single nucleotide polymorphisms (SNPs, shows that in gene promoter regions more SNPs occur in close proximity to transcriptional start sites than in regions further upstream, and a disproportionate number of those SNPs represent nucleotide transversions. Additionally, the number of SNPs found in the predicted transcription factor binding sites is higher than in non-binding site sequences. Conclusion Current information about transcription factor binding site sequence patterns may not be exhaustive, and SNPs may be actively involved in influencing gene expression by affecting the transcription factor binding sites.

  1. Identifying human disease genes: advances in molecular genetics and computational approaches.

    Science.gov (United States)

    Bakhtiar, S M; Ali, A; Baig, S M; Barh, D; Miyoshi, A; Azevedo, V

    2014-07-04

    The human genome project is one of the significant achievements that have provided detailed insight into our genetic legacy. During the last two decades, biomedical investigations have gathered a considerable body of evidence by detecting more than 2000 disease genes. Despite the imperative advances in the genetic understanding of various diseases, the pathogenesis of many others remains obscure. With recent advances, the laborious methodologies used to identify DNA variations are replaced by direct sequencing of genomic DNA to detect genetic changes. The ability to perform such studies depends equally on the development of high-throughput and economical genotyping methods. Currently, basically for every disease whose origen is still unknown, genetic approaches are available which could be pedigree-dependent or -independent with the capacity to elucidate fundamental disease mechanisms. Computer algorithms and programs for linkage analysis have formed the foundation for many disease gene detection projects, similarly databases of clinical findings have been widely used to support diagnostic decisions in dysmorphology and general human disease. For every disease type, genome sequence variations, particularly single nucleotide polymorphisms are mapped by comparing the genetic makeup of case and control groups. Methods that predict the effects of polymorphisms on protein stability are useful for the identification of possible disease associations, whereas structural effects can be assessed using methods to predict stability changes in proteins using sequence and/or structural information.

  2. Expression of Odontogenic Genes in Human Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Seyedeh Sara Bagheri

    2013-01-01

    Full Text Available Objective: Tooth loss is a common problem and since current tooth replacement methods cannot counter balance with biological tooth structures, regenerating natural tooth structures has become an ideal goal. A challenging problem in tooth regeneration is to find a proper clinically feasible cell to seed.This study was designed to investigate the odontogenic potential of human bone marrow mesenchymal stem cells (HBMSCs for seeding in tooth regeneration.Materials and Methods: In this experimental study, three pregnant Sprague Dawley (SD rats were used at the eleventh embryonic day and rat fetuses were removed surgically using semilunar flap under general anesthesia. The primary mandible was cut using a stereomicroscope. The epithelial and mesenchymal components were separated and the dissected oral epithelium was cultured for 3 days. We used flow cytometry analysis to confirm presence of mesenchymal stem cells and not hematopoietic cells and to demonstrate the presence of oral epithelium. Bone marrow mesenchymal stem cells (BMSCs and cultured oral epithelium were then co-cultured for 14 days. BMSCs cultured alone were used as controls. Expression of two odontogenic genes Pax9 and DMP1 was assessed using quantitative reverse transcription- polymerase chain reaction (RT-PCR.Results: Expression of two odontogenic genes, Pax9 and DMP1, were detected in BMSCs co-cultured with oral epithelium but not in the control group.Conclusion: Expression of Pax9 and DMP1 by human BMSCs in the proximity of odontogenic epithelium indicates odontogenic potential of these cells.

  3. A human gut microbial gene catalogue established by metagenomic sequencing

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha; Sicheritz-Pontén, Thomas; Nielsen, Henrik Bjørn;

    2010-01-01

    To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence...... gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively....

  4. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  5. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  6. Robust, synergistic regulation of human gene expression using TALE activators.

    Science.gov (United States)

    Maeder, Morgan L; Linder, Samantha J; Reyon, Deepak; Angstman, James F; Fu, Yanfang; Sander, Jeffry D; Joung, J Keith

    2013-03-01

    Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.

  7. A Gene Regulatory Program in Human Breast Cancer.

    Science.gov (United States)

    Li, Renhua; Campos, John; Iida, Joji

    2015-12-01

    Molecular heterogeneity in human breast cancer has challenged diagnosis, prognosis, and clinical treatment. It is well known that molecular subtypes of breast tumors are associated with significant differences in prognosis and survival. Assuming that the differences are attributed to subtype-specific pathways, we then suspect that there might be gene regulatory mechanisms that modulate the behavior of the pathways and their interactions. In this study, we proposed an integrated methodology, including machine learning and information theory, to explore the mechanisms. Using existing data from three large cohorts of human breast cancer populations, we have identified an ensemble of 16 master regulator genes (or MR16) that can discriminate breast tumor samples into four major subtypes. Evidence from gene expression across the three cohorts has consistently indicated that the MR16 can be divided into two groups that demonstrate subtype-specific gene expression patterns. For example, group 1 MRs, including ESR1, FOXA1, and GATA3, are overexpressed in luminal A and luminal B subtypes, but lowly expressed in HER2-enriched and basal-like subtypes. In contrast, group 2 MRs, including FOXM1, EZH2, MYBL2, and ZNF695, display an opposite pattern. Furthermore, evidence from mutual information modeling has congruently indicated that the two groups of MRs either up- or down-regulate cancer driver-related genes in opposite directions. Furthermore, integration of somatic mutations with pathway changes leads to identification of canonical genomic alternations in a subtype-specific fashion. Taken together, these studies have implicated a gene regulatory program for breast tumor progression.

  8. Gene expression of manganese superoxide dismutase in human glioma cells

    Directory of Open Access Journals (Sweden)

    Novi S. Hardiany

    2010-02-01

    Full Text Available Aim This study analyze the MnSOD gene expression as endogenous antioxidant in human glioma cells compared with leucocyte cells as control.Methods MnSOD gene expression of 20 glioma patients was analyzed by measuring the relative expression of mRNA and enzyme activity of MnSOD in brain and leucocyte cells. The relative expression of mRNA MnSOD was determined by using quantitative Real Time RT-PCR and the enzyme activity of MnSOD using biochemical kit assay (xantine oxidase inhibition. Statistic analysis for mRNA and enzyme activity of MnSOD was performed using Kruskal Wallis test.Results mRNA of MnSOD in glioma cells of 70% sample was 0.015–0.627 lower, 10% was 1.002-1.059 and 20% was 1.409-6.915 higher than in leucocyte cells. Also the specific activity of MnSOD enzyme in glioma cells of 80% sample showed 0,064-0,506 lower and 20% sample was 1.249-2.718 higher than in leucocyte cells.Conclusion MnSOD gene expression in human glioma cells are significantly lower than its expression in leucocytes cells. (Med J Indones 2010; 19:21-5Keywords : MnSOD, glioma, gene expression

  9. Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies

    Directory of Open Access Journals (Sweden)

    Levy Finn Olav

    2010-03-01

    Full Text Available Abstract Background Quantitative real-time RT-PCR (RT-qPCR is a highly sensitive method for mRNA quantification, but requires invariant expression of the chosen reference gene(s. In pathological myocardium, there is limited information on suitable reference genes other than the commonly used Gapdh mRNA and 18S ribosomal RNA. Our aim was to evaluate and identify suitable reference genes in human failing myocardium, in rat and mouse post-myocardial infarction (post-MI heart failure and across developmental stages in fetal and neonatal rat myocardium. Results The abundance of Arbp, Rpl32, Rpl4, Tbp, Polr2a, Hprt1, Pgk1, Ppia and Gapdh mRNA and 18S ribosomal RNA in myocardial samples was quantified by RT-qPCR. The expression variability of these transcripts was evaluated by the geNorm and Normfinder algorithms and by a variance component analysis method. Biological variability was a greater contributor to sample variability than either repeated reverse transcription or PCR reactions. Conclusions The most stable reference genes were Rpl32, Gapdh and Polr2a in mouse post-infarction heart failure, Polr2a, Rpl32 and Tbp in rat post-infarction heart failure and Rpl32 and Pgk1 in human heart failure (ischemic disease and cardiomyopathy. The overall most stable reference genes across all three species was Rpl32 and Polr2a. In rat myocardium, all reference genes tested showed substantial variation with developmental stage, with Rpl4 as was most stable among the tested genes.

  10. FGFR-TACC gene fusions in human glioma.

    Science.gov (United States)

    Lasorella, Anna; Sanson, Marc; Iavarone, Antonio

    2016-11-16

    Chromosomal translocations joining in-frame members of the fibroblast growth factor receptor-transforming acidic coiled-coil gene families (the FGFR-TACC gene fusions) were first discovered in human glioblastoma multiforme (GBM) and later in many other cancer types. Here, we review this rapidly expanding field of research and discuss the unique biological and clinical features conferred to isocitrate dehydrogenase wild-type glioma cells by FGFR-TACC fusions. FGFR-TACC fusions generate powerful oncogenes that combine growth-promoting effects with aneuploidy through the activation of as yet unclear intracellular signaling mechanisms. FGFR-TACC fusions appear to be clonal tumor-initiating events that confer strong sensitivity to FGFR tyrosine kinase inhibitors. Screening assays have recently been reported for the accurate identification of FGFR-TACC fusion variants in human cancer, and early clinical data have shown promising effects in cancer patients harboring FGFR-TACC fusions and treated with FGFR inhibitors. Thus, FGFR-TACC gene fusions provide a "low-hanging fruit" model for the validation of precision medicine paradigms in human GBM.

  11. Spina Bifida: Pathogenesis, Mechanisms, and Genes in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Siti W. Mohd-Zin

    2017-01-01

    Full Text Available Spina bifida is among the phenotypes of the larger condition known as neural tube defects (NTDs. It is the most common central nervous system malformation compatible with life and the second leading cause of birth defects after congenital heart defects. In this review paper, we define spina bifida and discuss the phenotypes seen in humans as described by both surgeons and embryologists in order to compare and ultimately contrast it to the leading animal model, the mouse. Our understanding of spina bifida is currently limited to the observations we make in mouse models, which reflect complete or targeted knockouts of genes, which perturb the whole gene(s without taking into account the issue of haploinsufficiency, which is most prominent in the human spina bifida condition. We thus conclude that the need to study spina bifida in all its forms, both aperta and occulta, is more indicative of the spina bifida in surviving humans and that the measure of deterioration arising from caudal neural tube defects, more commonly known as spina bifida, must be determined by the level of the lesion both in mouse and in man.

  12. Spina Bifida: Pathogenesis, Mechanisms, and Genes in Mice and Humans.

    Science.gov (United States)

    Mohd-Zin, Siti W; Marwan, Ahmed I; Abou Chaar, Mohamad K; Ahmad-Annuar, Azlina; Abdul-Aziz, Noraishah M

    2017-01-01

    Spina bifida is among the phenotypes of the larger condition known as neural tube defects (NTDs). It is the most common central nervous system malformation compatible with life and the second leading cause of birth defects after congenital heart defects. In this review paper, we define spina bifida and discuss the phenotypes seen in humans as described by both surgeons and embryologists in order to compare and ultimately contrast it to the leading animal model, the mouse. Our understanding of spina bifida is currently limited to the observations we make in mouse models, which reflect complete or targeted knockouts of genes, which perturb the whole gene(s) without taking into account the issue of haploinsufficiency, which is most prominent in the human spina bifida condition. We thus conclude that the need to study spina bifida in all its forms, both aperta and occulta, is more indicative of the spina bifida in surviving humans and that the measure of deterioration arising from caudal neural tube defects, more commonly known as spina bifida, must be determined by the level of the lesion both in mouse and in man.

  13. Promoter methylation analysis of IDH genes in human gliomas

    Directory of Open Access Journals (Sweden)

    Simon eFlanagan

    2012-12-01

    Full Text Available Mutations in isocitrate dehydrogenase (IDH -1 or -2 are found in the majority of WHO grade II and III astrocytomas and oligodendrogliomas, and secondary glioblastomas. Almost all described mutations are heterozygous missense mutations affecting a conserved arginine residue in the substrate binding site of IDH1 (R132 or IDH2 (R172. But the exact mechanism of IDH mutations in neoplasia is not understood. It has been proposed that IDH mutations impart a ‘toxic gain of function’ to the mutant protein, however a dominant-negative effect of mutant IDH has also been described, implying that IDH may function as a tumour suppressor gene. As most, if not all, tumour suppressor genes are inactivated by epigenetic silencing, in a wide variety of tumours, we asked if IDH1 or IDH2 carry the epigenetic signature of a tumour suppressor by assessing cytosine methylation at their promoters. Methylation was quantified in 68 human brain tumours, including both IDH-mutant and IDH wildtype, by bisulfite pyrosequencing. In all tumours examined, CpG methylation levels were less than 8%. Our data demonstrate that inactivation of IDH function through promoter hypermethylation is not common in human gliomas and other brain tumours. These findings do not support a tumour suppressor role for IDH genes in human gliomas.

  14. Spina Bifida: Pathogenesis, Mechanisms, and Genes in Mice and Humans

    Science.gov (United States)

    Abou Chaar, Mohamad K.; Ahmad-Annuar, Azlina

    2017-01-01

    Spina bifida is among the phenotypes of the larger condition known as neural tube defects (NTDs). It is the most common central nervous system malformation compatible with life and the second leading cause of birth defects after congenital heart defects. In this review paper, we define spina bifida and discuss the phenotypes seen in humans as described by both surgeons and embryologists in order to compare and ultimately contrast it to the leading animal model, the mouse. Our understanding of spina bifida is currently limited to the observations we make in mouse models, which reflect complete or targeted knockouts of genes, which perturb the whole gene(s) without taking into account the issue of haploinsufficiency, which is most prominent in the human spina bifida condition. We thus conclude that the need to study spina bifida in all its forms, both aperta and occulta, is more indicative of the spina bifida in surviving humans and that the measure of deterioration arising from caudal neural tube defects, more commonly known as spina bifida, must be determined by the level of the lesion both in mouse and in man. PMID:28286691

  15. Muscle Gene Expression Patterns in Human Rotator Cuff Pathology

    Science.gov (United States)

    Choo, Alexander; McCarthy, Meagan; Pichika, Rajeswari; Sato, Eugene J.; Lieber, Richard L.; Schenk, Simon; Lane, John G.; Ward, Samuel R.

    2014-01-01

    Background: Rotator cuff pathology is a common source of shoulder pain with variable etiology and pathoanatomical characteristics. Pathological processes of fatty infiltration, muscle atrophy, and fibrosis have all been invoked as causes for poor outcomes after rotator cuff tear repair. The aims of this study were to measure the expression of key genes associated with adipogenesis, myogenesis, and fibrosis in human rotator cuff muscle after injury and to compare the expression among groups of patients with varied severities of rotator cuff pathology. Methods: Biopsies of the supraspinatus muscle were obtained arthroscopically from twenty-seven patients in the following operative groups: bursitis (n = 10), tendinopathy (n = 7), full-thickness rotator cuff tear (n = 8), and massive rotator cuff tear (n = 2). Quantitative polymerase chain reaction (qPCR) was performed to characterize gene expression pathways involved in myogenesis, adipogenesis, and fibrosis. Results: Patients with a massive tear demonstrated downregulation of the fibrogenic, adipogenic, and myogenic genes, indicating that the muscle was not in a state of active change and may have difficulty responding to stimuli. Patients with a full-thickness tear showed upregulation of fibrotic and adipogenic genes; at the tissue level, these correspond to the pathologies most detrimental to outcomes of surgical repair. Patients with bursitis or tendinopathy still expressed myogenic genes, indicating that the muscle may be attempting to accommodate the mechanical deficiencies induced by the tendon tear. Conclusions: Gene expression in human rotator cuff muscles varied according to tendon injury severity. Patients with bursitis and tendinopathy appeared to be expressing pro-myogenic genes, whereas patients with a full-thickness tear were expressing genes associated with fatty atrophy and fibrosis. In contrast, patients with a massive tear appeared to have downregulation of all gene programs except inhibition of

  16. Human bones obtained from routine joint replacement surgery as a tool for studies of plutonium, americium and {sup 90}Sr body-burden in general public

    Energy Technology Data Exchange (ETDEWEB)

    Mietelski, Jerzy W., E-mail: jerzy.mietelski@ifj.edu.pl [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow (Poland); Golec, Edward B. [Traumatology and Orthopaedic Clinic, 5th Military Clinical Hospital and Polyclinic, Independent Public Healthcare Facility, Wroclawska 1-3, 30-901 Cracow (Poland); Orthopaedic Rehabilitation Department, Chair of Clinical Rehabilitation, Faculty of Motor of the Bronislaw Czech' s Academy of Physical Education, Cracow (Poland); Department of Physical Therapy Basics, Faculty of Physical Therapy, Administration College, Bielsko-Biala (Poland); Tomankiewicz, Ewa [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow (Poland); Golec, Joanna [Orthopaedic Rehabilitation Department, Chair of Clinical Rehabilitation, Faculty of Motor of the Bronislaw Czech' s Academy of Physical Education, Cracow (Poland); Physical Therapy Department, Institute of Physical Therapy, Faculty of Heath Science, Jagiellonian University, Medical College, Cracow (Poland); Nowak, Sebastian [Traumatology and Orthopaedic Clinic, 5th Military Clinical Hospital and Polyclinic, Independent Public Healthcare Facility, Wroclawska 1-3, 30-901 Cracow (Poland); Orthopaedic Rehabilitation Department, Chair of Clinical Rehabilitation, Faculty of Motor of the Bronislaw Czech' s Academy of Physical Education, Cracow (Poland); Szczygiel, Elzbieta [Physical Therapy Department, Institute of Physical Therapy, Faculty of Heath Science, Jagiellonian University, Medical College, Cracow (Poland); Brudecki, Kamil [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Cracow (Poland)

    2011-06-15

    The paper presents a new sampling method for studying in-body radioactive contamination by bone-seeking radionuclides such as {sup 90}Sr, {sup 239+240}Pu, {sup 238}Pu, {sup 241}Am and selected gamma-emitters, in human bones. The presented results were obtained for samples retrieved from routine surgeries, namely knee or hip joints replacements with implants, performed on individuals from Southern Poland. This allowed to collect representative sets of general public samples. The applied analytical radiochemical procedure for bone matrix is described in details. Due to low concentrations of {sup 238}Pu the ratio of Pu isotopes which might be used for Pu source identification is obtained only as upper limits other then global fallout (for example Chernobyl) origin of Pu. Calculated concentrations of radioisotopes are comparable to the existing data from post-mortem studies on human bones retrieved from autopsy or exhumations. Human bones removed during knee or hip joint surgery provide a simple and ethical way for obtaining samples for plutonium, americium and {sup 90}Sr in-body contamination studies in general public. - Highlights: > Surgery for joint replacement as novel sampling method for studying in-body radioactive contamination. > Proposed way of sampling is not causing ethic doubts. > It is a convenient way of collecting human bone samples from global population. > The applied analytical radiochemical procedure for bone matrix is described in details. > The opposite patient age correlations trends were found for 90Sr (negative) and Pu, Am (positive).

  17. Identification of differentially regulated genes in human patent ductus arteriosus.

    Science.gov (United States)

    Parikh, Pratik; Bai, Haiqing; Swartz, Michael F; Alfieris, George M; Dean, David A

    2016-07-27

    In order to identify differentially expressed genes that are specific to the ductus arteriosus, 18 candidate genes were evaluated in matched ductus arteriosus and aortic samples from infants with coarctation of the aorta. The cell specificity of the gene's promoters was assessed by performing transient transfection studies in primary cells derived from several patients. Segments of ductus arteriosus and aorta were isolated from infants requiring repair for coarctation of the aorta and used for mRNA quantitation and culturing of cells. Differences in expression were determined by quantitative PCR using the ΔΔCt method. Promoter regions of six of these genes were cloned into luciferase reporter plasmids for transient transfection studies in matched human ductus arteriosus and aorta cells. Transcription factor AP-2b and phospholipase A2 were significantly up-regulated in ductus arteriosus compared to aorta in whole tissues and cultured cells, respectively. In transient transfection experiments, Angiotensin II type 1 receptor and Prostaglandin E receptor 4 promoters consistently gave higher expression in matched ductus arteriosus versus aorta cells from multiple patients. Taken together, these results demonstrate that several genes are differentially expressed in ductus arteriosus and that their promoters may be used to drive ductus arteriosus-enriched transgene expression.

  18. Copper induces the expression of cholesterogenic genes in human macrophages.

    Science.gov (United States)

    Svensson, Per Arne; Englund, Mikael C O; Markström, Emilia; Ohlsson, Bertil G; Jernås, Margareta; Billig, Håkan; Torgerson, Jarl S; Wiklund, Olov; Carlsson, Lena M S; Carlsson, Björn

    2003-07-01

    Accumulation of lipids and cholesterol by macrophages and subsequent transformation into foam cells are key features in development of atherosclerosis. Serum copper concentrations have been shown to be associated with cardiovascular disease. However, the mechanism behind the proatherogenic effect of copper is not clear. We used DNA microarrays to define the changes in gene expression profile in response to copper exposure of human macrophages. Expression monitoring by DNA microarray revealed 91 genes that were regulated. Copper increased the expression of seven cholesterogenic genes (3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase, IPP isomerase, squalene synthase, squalene epoxidase, methyl sterol oxidase, H105e3 mRNA and sterol-C5-desaturase) and low-density lipoprotein receptor (LDL-R), and decreased the expression of CD36 and lipid binding proteins. The expression of LDL-R and HMG CoA reductase was also investigated using real time PCR. The expression of both of these genes was increased after copper treatment of macrophages (Pmechanism for the association between copper and atherosclerosis. The effect of copper on cholesterogenic genes may also have implications for liver steatosis in early stages of Wilson's disease.

  19. Gene expression, nucleotide composition and codon usage bias of genes associated with human Y chromosome.

    Science.gov (United States)

    Choudhury, Monisha Nath; Uddin, Arif; Chakraborty, Supriyo

    2017-06-01

    Analysis of codon usage pattern is important to understand the genetic and evolutionary characteristics of genomes. We have used bioinformatic approaches to analyze the codon usage bias (CUB) of the genes located in human Y chromosome. Codon bias index (CBI) indicated that the overall extent of codon usage bias was low. The relative synonymous codon usage (RSCU) analysis suggested that approximately half of the codons out of 59 synonymous codons were most frequently used, and possessed a T or G at the third codon position. The codon usage pattern was different in different genes as revealed from correspondence analysis (COA). A significant correlation between effective number of codons (ENC) and various GC contents suggests that both mutation pressure and natural selection affect the codon usage pattern of genes located in human Y chromosome. In addition, Y-linked genes have significant difference in GC contents at the second and third codon positions, expression level, and codon usage pattern of some codons like the SPANX genes in X chromosome.

  20. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells.

    Science.gov (United States)

    Holkers, Maarten; Maggio, Ignazio; Liu, Jin; Janssen, Josephine M; Miselli, Francesca; Mussolino, Claudio; Recchia, Alessandra; Cathomen, Toni; Gonçalves, Manuel A F V

    2013-03-01

    The array of genome editing strategies based on targeted double-stranded DNA break formation have recently been enriched through the introduction of transcription activator-like type III effector (TALE) nucleases (TALENs). To advance the testing of TALE-based approaches, it will be crucial to deliver these custom-designed proteins not only into transformed cell types but also into more relevant, chromosomally stable, primary cells. Viral vectors are among the most effective gene transfer vehicles. Here, we investigated the capacity of human immunodeficiency virus type 1- and adenovirus-based vectors to package and deliver functional TALEN genes into various human cell types. To this end, we attempted to assemble particles of these two vector classes, each encoding a monomer of a TALEN pair targeted to a bipartite sequence within the AAVS1 'safe harbor' locus. Vector DNA analyses revealed that adenoviral vectors transferred intact TALEN genes, whereas lentiviral vectors failed to do so, as shown by their heterogeneously sized proviruses in target cells. Importantly, adenoviral vector-mediated TALEN gene delivery resulted in site-specific double-stranded DNA break formation at the intended AAVS1 target site at similarly high levels in both transformed and non-transformed cells. In conclusion, we demonstrate that adenoviral, but not lentiviral, vectors constitute a valuable TALEN gene delivery platform.

  1. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  2. DMPD: LPS induction of gene expression in human monocytes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11257452 LPS induction of gene expression in human monocytes. Guha M, Mackman N. Ce...ll Signal. 2001 Feb;13(2):85-94. (.png) (.svg) (.html) (.csml) Show LPS induction of gene expression in human... monocytes. PubmedID 11257452 Title LPS induction of gene expression in human monocytes. Authors Guha M, Ma

  3. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  4. The Clinical Phenotype of CNGA3-Related Achromatopsia: Pretreatment Characterization in Preparation of a Gene Replacement Therapy Trial.

    Science.gov (United States)

    Zobor, Ditta; Werner, Annette; Stanzial, Franco; Benedicenti, Francesco; Rudolph, Günther; Kellner, Ulrich; Hamel, Christian; Andréasson, Sten; Zobor, Gergely; Strasser, Torsten; Wissinger, Bernd; Kohl, Susanne; Zrenner, Eberhart

    2017-02-01

    The purpose of this study was to clinically characterize patients with CNGA3-linked achromatopsia (CNGA3-ACHM) in preparation of a gene therapy trial. Thirty-six patients (age 7-56 years) with complete (cACHM) or incomplete (iACHM) CNGA3-ACHM were examined, including detailed psychophysical tests, extended electrophysiology, and assessment of morphology by fundus autofluorescence and spectral-domain optical coherence tomography (SD-OCT). Mean best-corrected visual acuity was 0.78 ± 0.14 logMAR. Color vision tests were consistent with a rod-dominated function in every cACHM patient. Microperimetry indicated an overall lowered retinal sensitivity within 20° of visual field. In electroretinography (ERG), photopic responses were nondetectable in cACHM patients, but residual cone responses were observed in the iACHM patients. Scotopic responses were altered referring to anomalies of photoreceptor and postreceptor signaling, whereas in voltage versus intensity functions, Vmax was significantly below normal values (P < 0.05). In contrast, slope (n) and semisaturation intensity (K) were found to be within normal limits. Spectral-domain OCT examination showed no specific changes in 14.7%, disruption of the ellipsoid zone (EZ) at the fovea in 38.2%, absent EZ in 17.7%, a hyporeflective zone in 20.5%, and outer retinal atrophy in 8.9% of all cases and foveal hypoplasia in 29 patients (85%). No correlation of retinal morphology with visual function or with a specific genotype was found. The severity of morphologic and functional changes lacked a robust association with age. Our extended investigations prove that even among such a genetically homogenous group of patients, no specific correlations regarding function and morphology severity and age can be observed. Therefore, the therapeutic window seems to be wider than previously indicated.

  5. Signals of historical interlocus gene conversion in human segmental duplications.

    Directory of Open Access Journals (Sweden)

    Beth L Dumont

    Full Text Available Standard methods of DNA sequence analysis assume that sequences evolve independently, yet this assumption may not be appropriate for segmental duplications that exchange variants via interlocus gene conversion (IGC. Here, we use high quality multiple sequence alignments from well-annotated segmental duplications to systematically identify IGC signals in the human reference genome. Our analysis combines two complementary methods: (i a paralog quartet method that uses DNA sequence simulations to identify a statistical excess of sites consistent with inter-paralog exchange, and (ii the alignment-based method implemented in the GENECONV program. One-quarter (25.4% of the paralog families in our analysis harbor clear IGC signals by the quartet approach. Using GENECONV, we identify 1477 gene conversion tracks that cumulatively span 1.54 Mb of the genome. Our analyses confirm the previously reported high rates of IGC in subtelomeric regions and Y-chromosome palindromes, and identify multiple novel IGC hotspots, including the pregnancy specific glycoproteins and the neuroblastoma breakpoint gene families. Although the duplication history of a paralog family is described by a single tree, we show that IGC has introduced incredible site-to-site variation in the evolutionary relationships among paralogs in the human genome. Our findings indicate that IGC has left significant footprints in patterns of sequence diversity across segmental duplications in the human genome, out-pacing the contributions of single base mutation by orders of magnitude. Collectively, the IGC signals we report comprise a catalog that will provide a critical reference for interpreting observed patterns of DNA sequence variation across duplicated genomic regions, including targets of recent adaptive evolution in humans.

  6. The human thyrotropin beta-subunit gene differs in 5' structure from murine TSH-beta genes.

    Science.gov (United States)

    Guidon, P T; Whitfield, G K; Porti, D; Kourides, I A

    1988-12-01

    The gene encoding the beta-subunit of human thyrotropin (hTSH-beta) was isolated, and its nucleotide sequence was determined. The gene is 4.3 kb in length, consists of three exons and two introns, and is present as a single copy as determined by Southern blot analysis of total genomic DNA. The protein coding portion of the gene, which includes exons 2 and 3, was isolated from a human genomic phage library, while exon 1, which encodes only 5' untranslated mRNA sequence, was isolated from a plasmid library of size-selected genomic DNA fragments. Here we describe the isolation of the 5' untranslated exon of the hTSH-beta subunit and 5'-flanking region. The structure of the hTSH-beta gene is very similar to the previously characterized TSH-beta genes from mouse and rat. The genes from all three species have two distinct promoter regions, but while both promoters are utilized by the murine TSH-beta genes, the human TSH-beta gene apparently utilizes only the proximal promoter for transcription initiation. A striking difference in hTSH-beta gene structure compared to the murine genes is that exon 1 of the human gene is 36 nucleotides. An analysis of the mouse, rat, and human exon 1 and 5'-flanking region shows a high percentage of sequence homology, with the exception of a 9-nucleotide insertion 13 bases 3' from the proximal TATA box found in the human gene but not found in the other two species. We propose that this insertion results in the additional length of human exon 1 compared to the mouse and rat genes. By isolating the promoter region of the hTSH-beta gene, we can begin to identify specific sequences involved in the regulation of hTSH gene expression.

  7. MORPHIN: a web tool for human disease research by projecting model organism biology onto a human integrated gene network.

    Science.gov (United States)

    Hwang, Sohyun; Kim, Eiru; Yang, Sunmo; Marcotte, Edward M; Lee, Insuk

    2014-07-01

    Despite recent advances in human genetics, model organisms are indispensable for human disease research. Most human disease pathways are evolutionally conserved among other species, where they may phenocopy the human condition or be associated with seemingly unrelated phenotypes. Much of the known gene-to-phenotype association information is distributed across diverse databases, growing rapidly due to new experimental techniques. Accessible bioinformatics tools will therefore facilitate translation of discoveries from model organisms into human disease biology. Here, we present a web-based discovery tool for human disease studies, MORPHIN (model organisms projected on a human integrated gene network), which prioritizes the most relevant human diseases for a given set of model organism genes, potentially highlighting new model systems for human diseases and providing context to model organism studies. Conceptually, MORPHIN investigates human diseases by an orthology-based projection of a set of model organism genes onto a genome-scale human gene network. MORPHIN then prioritizes human diseases by relevance to the projected model organism genes using two distinct methods: a conventional overlap-based gene set enrichment analysis and a network-based measure of closeness between the query and disease gene sets capable of detecting associations undetectable by the conventional overlap-based methods. MORPHIN is freely accessible at http://www.inetbio.org/morphin.

  8. Genomic disorders: A window into human gene and genome evolution

    Science.gov (United States)

    Carvalho, Claudia M. B.; Zhang, Feng; Lupski, James R.

    2010-01-01

    Gene duplications alter the genetic constitution of organisms and can be a driving force of molecular evolution in humans and the great apes. In this context, the study of genomic disorders has uncovered the essential role played by the genomic architecture, especially low copy repeats (LCRs) or segmental duplications (SDs). In fact, regardless of the mechanism, LCRs can mediate or stimulate rearrangements, inciting genomic instability and generating dynamic and unstable regions prone to rapid molecular evolution. In humans, copy-number variation (CNV) has been implicated in common traits such as neuropathy, hypertension, color blindness, infertility, and behavioral traits including autism and schizophrenia, as well as disease susceptibility to HIV, lupus nephritis, and psoriasis among many other clinical phenotypes. The same mechanisms implicated in the origin of genomic disorders may also play a role in the emergence of segmental duplications and the evolution of new genes by means of genomic and gene duplication and triplication, exon shuffling, exon accretion, and fusion/fission events. PMID:20080665

  9. Preferential gene expression in quiescent human lung fibroblasts.

    Science.gov (United States)

    Coppock, D L; Kopman, C; Scandalis, S; Gilleran, S

    1993-06-01

    The exit from the proliferative cell cycle into a reversible quiescence (G0) is an active process that is not yet well understood at the molecular level. Investigation of G0-specific gene expression is an important step in studying the mechanism regulating the entrance to quiescence. Using the human embryo lung fibroblast (WI38) as a model system, we have isolated complementary DNA clones that are expressed at a higher level in quiescent cells than in logarithmically growing cells. We have identified complementary DNAs from eight genes including collagen alpha 1(VI), collagen alpha 1(III), decorin, complement C1r, collagen alpha 1(I), collagen alpha 2(I), and two novel genes, Q6 and Q10. We have named this class of quiescence-inducible genes quiescins. Expression of these genes was induced just as proliferation slowed, as indicated by the level of histone H2B mRNA, [3H]-thymidine incorporation, and cell number. The level of expression of the novel genes, Q6 and Q10, increased at the same time as the other genes. Q6 has two mRNAs of 3 and 4 kb, whereas Q10 mRNA is about 1.0 kb. The expression of the quiescins was not induced by blocking the cell cycle in S phase with aphidicolin or in G1 with lovastatin. However, the genes were highly induced by trypsinization or scraping of the cells during logarithmic growth. This induction was not blocked by inhibitors of RNA synthesis. The expression of decorin and Q6 was very low in SV40-transformed cells (VA13) either in logarithmic growth or at high density, whereas the gene Q10 was expressed more highly in VA13 than in WI38 cells. The finding that expression of some components of the extracellular matrix is induced as cells enter G0 suggests that they may have a role in both the induction and the maintenance of the quiescent state. The quiescins will serve as molecular markers for the investigation of mechanisms that regulate the onset of quiescence.

  10. Microbiota diversity and gene expression dynamics in human oral biofilms.

    Science.gov (United States)

    Benítez-Páez, Alfonso; Belda-Ferre, Pedro; Simón-Soro, Aurea; Mira, Alex

    2014-04-27

    Micro-organisms inhabiting teeth surfaces grow on biofilms where a specific and complex succession of bacteria has been described by co-aggregation tests and DNA-based studies. Although the composition of oral biofilms is well established, the active portion of the bacterial community and the patterns of gene expression in vivo have not been studied. Using RNA-sequencing technologies, we present the first metatranscriptomic study of human dental plaque, performed by two different approaches: (1) A short-reads, high-coverage approach by Illumina sequencing to characterize the gene activity repertoire of the microbial community during biofilm development; (2) A long-reads, lower-coverage approach by pyrosequencing to determine the taxonomic identity of the active microbiome before and after a meal ingestion. The high-coverage approach allowed us to analyze over 398 million reads, revealing that microbial communities are individual-specific and no bacterial species was detected as key player at any time during biofilm formation. We could identify some gene expression patterns characteristic for early and mature oral biofilms. The transcriptomic profile of several adhesion genes was confirmed through qPCR by measuring expression of fimbriae-associated genes. In addition to the specific set of gene functions overexpressed in early and mature oral biofilms, as detected through the short-reads dataset, the long-reads approach detected specific changes when comparing the metatranscriptome of the same individual before and after a meal, which can narrow down the list of organisms responsible for acid production and therefore potentially involved in dental caries. The bacteria changing activity during biofilm formation and after meal ingestion were person-specific. Interestingly, some individuals showed extreme homeostasis with virtually no changes in the active bacterial population after food ingestion, suggesting the presence of a microbial community which could be

  11. Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes.

    Directory of Open Access Journals (Sweden)

    Adam Y Ye

    Full Text Available Transporters are essential in homeostatic exchange of endogenous and exogenous substances at the systematic, organic, cellular, and subcellular levels. Gene mutations of transporters are often related to pharmacogenetics traits. Recent developments in high throughput technologies on genomics, transcriptomics and proteomics allow in depth studies of transporter genes in normal cellular processes and diverse disease conditions. The flood of high throughput data have resulted in urgent need for an updated knowledgebase with curated, organized, and annotated human transporters in an easily accessible way. Using a pipeline with the combination of automated keywords query, sequence similarity search and manual curation on transporters, we collected 1,555 human non-redundant transporter genes to develop the Human Transporter Database (HTD (http://htd.cbi.pku.edu.cn. Based on the extensive annotations, global properties of the transporter genes were illustrated, such as expression patterns and polymorphisms in relationships with their ligands. We noted that the human transporters were enriched in many fundamental biological processes such as oxidative phosphorylation and cardiac muscle contraction, and significantly associated with Mendelian and complex diseases such as epilepsy and sudden infant death syndrome. Overall, HTD provides a well-organized interface to facilitate research communities to search detailed molecular and genetic information of transporters for development of personalized medicine.

  12. Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes.

    Science.gov (United States)

    Ye, Adam Y; Liu, Qing-Rong; Li, Chuan-Yun; Zhao, Min; Qu, Hong

    2014-01-01

    Transporters are essential in homeostatic exchange of endogenous and exogenous substances at the systematic, organic, cellular, and subcellular levels. Gene mutations of transporters are often related to pharmacogenetics traits. Recent developments in high throughput technologies on genomics, transcriptomics and proteomics allow in depth studies of transporter genes in normal cellular processes and diverse disease conditions. The flood of high throughput data have resulted in urgent need for an updated knowledgebase with curated, organized, and annotated human transporters in an easily accessible way. Using a pipeline with the combination of automated keywords query, sequence similarity search and manual curation on transporters, we collected 1,555 human non-redundant transporter genes to develop the Human Transporter Database (HTD) (http://htd.cbi.pku.edu.cn). Based on the extensive annotations, global properties of the transporter genes were illustrated, such as expression patterns and polymorphisms in relationships with their ligands. We noted that the human transporters were enriched in many fundamental biological processes such as oxidative phosphorylation and cardiac muscle contraction, and significantly associated with Mendelian and complex diseases such as epilepsy and sudden infant death syndrome. Overall, HTD provides a well-organized interface to facilitate research communities to search detailed molecular and genetic information of transporters for development of personalized medicine.

  13. Expression Patterns of Glucose Transporter-1 Gene and Thyroid Specific Genes in Human Papillary Thyroid Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungeun; Chung, Junekey; Min Haesook and others

    2014-06-15

    The expression of glucose transporter-1 (Glut-1) gene and those of major thyroid-specific genes were examined in papillary carcinoma tissues, and the expressions of these genes were compared with cancer differentiation grades. Twenty-four human papillary carcinoma tissues were included in this study. The expressions of Glut-1- and thyroid-specific genes [sodium/iodide symporter (NIS), thyroid peroxidase, thyroglobulin, TSH receptor and pendrin] were analyzed by RT-PCR. Expression levels were expressed as ratios versus the expression of beta-actin. Pathologic differentiation of papillary carcinoma was classified into a relatively well-differentiated group (n=13) and relatively less differentiated group (n=11). Glut-1 gene expression was significantly higher in the less differentiated group (0.66±0.04) than in the well-differentiated group (0.59±0.07). The expression levels of the NIS, PD and TG genes were significantly higher in the well-differentiated group (NIS: 0.67±0.20, PD: 0.65±0.21, TG: 0.74±0.16) than in the less differentiated group (NIS: 0.36±0.05, PD: 0.49±0.08, TG: 0.60±0.11), respectively. A significant negative correlation was found between Glut-1 and NIS expression, and positive correlations were found between NIS and TG, and between NIS and PD. The NIS, PD and TG genes were highly expressed in well-differentiated thyroid carcinomas, whereas the Glut-1 gene was highly expressed in less differentiated thyroid carcinomas. These findings provide a molecular rationale for the management of papillary carcinoma, especially in the selection of FDG PET or radioiodine whole-body scan and I-131-based therapy.

  14. The human insulin gene is part of a large open chromatin domain specific for human islets.

    Science.gov (United States)

    Mutskov, Vesco; Felsenfeld, Gary

    2009-10-13

    Knowledge of how insulin (INS) gene expression is regulated will lead to better understanding of normal and abnormal pancreatic beta cell function. We have mapped histone modifications over the INS region, coupled with an expression profile, in freshly isolated islets from multiple human donors. Unlike many other human genes, in which active modifications tend to be concentrated within 1 kb around the transcription start site, these marks are distributed over the entire coding region of INS as well. Moreover, a region of approximately 80 kb around the INS gene, which contains the {tyrosine hydroxylase (TH)-(INS)-insulin-like growth factor 2 antisense (IGF2AS)-insulin-like growth factor 2 (IGF2)} gene cluster, unusually is marked by almost uniformly elevated levels of histone acetylation and H3K4 dimethylation, extending both downstream into IGF2 and upstream beyond the TH gene. This is accompanied by islet specific coordinate expression with INS of the neighboring TH and IGF2 genes. The presence of islet specific intergenic transcripts suggests their possible function in the maintenance of this unusual large open chromatin domain.

  15. Gene expression profiling gut microbiota in different races of humans

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-03-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.

  16. Progesterone Upregulates Gene Expression in Normal Human Thyroid Follicular Cells

    Directory of Open Access Journals (Sweden)

    Ana Paula Santin Bertoni

    2015-01-01

    Full Text Available Thyroid cancer and thyroid nodules are more prevalent in women than men, so female sex hormones may have an etiological role in these conditions. There are no data about direct effects of progesterone on thyroid cells, so the aim of the present study was to evaluate progesterone effects in the sodium-iodide symporter NIS, thyroglobulin TG, thyroperoxidase TPO, and KI-67 genes expression, in normal thyroid follicular cells, derived from human tissue. NIS, TG, TPO, and KI-67 mRNA expression increased significantly after TSH 20 μUI/mL, respectively: 2.08 times, P<0.0001; 2.39 times, P=0.01; 1.58 times, P=0.0003; and 1.87 times, P<0.0001. In thyroid cells treated with 20 μUI/mL TSH plus 10 nM progesterone, RNA expression of NIS, TG, and KI-67 genes increased, respectively: 1.78 times, P<0.0001; 1.75 times, P=0.037; and 1.95 times, P<0.0001, and TPO mRNA expression also increased, though not significantly (1.77 times, P=0.069. These effects were abolished by mifepristone, an antagonist of progesterone receptor, suggesting that genes involved in thyroid cell function and proliferation are upregulated by progesterone. This work provides evidence that progesterone has a direct effect on thyroid cells, upregulating genes involved in thyroid function and growth.

  17. Human SLC26A1 Gene Variants: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Paul A. Dawson

    2013-01-01

    Full Text Available Kidney stones are a global health problem, incurring massive health costs annually. Why stones recur in many patients remains unknown but likely involves environmental, physiological, and genetic factors. The solute linked carrier (SLC 26A1 gene has previously been linked to kidney stones in mice. SLC26A1 encodes the sulfate anion transporter 1 (SAT1 protein, and its loss in mice leads to hyperoxaluria and calcium oxalate renal stones. To investigate the possible involvement of SAT1 in human urolithiasis, we screened the SLC26A1 gene in a cohort of 13 individuals with recurrent calcium oxalate urolithiasis, which is the commonest type. DNA sequence analyses showed missense mutations in seven patients: one individual was heterozygous R372H; 4 individuals were heterozygous Q556R; one patient was homozygous Q556R; and one patient with severe nephrocalcinosis (requiring nephrectomy was homozygous Q556R and heterozygous M132T. The M132 amino acid in human SAT1 is conserved with 15 other species and is located within the third transmembrane domain of the predicted SAT1 protein structure, suggesting that this amino acid may be important for SAT1 function. These initial findings demonstrate genetic variants in SLC26A1 of recurrent stone formers and warrant wider independent studies of SLC26A1 in humans with recurrent calcium oxalate stones.

  18. Gene structure, DNA methylation, and imprinted expression of the human SNRPN gene

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, C.C.; Jong, T.C.; Filbrandt, M.M. [Univ. of Florida College of Medicine, Gainesville, FL (United States)] [and others

    1996-02-01

    The human SNRPN (small nuclear ribonucleoprotein polypeptide N) gene is one of a gene family that encode proteins involved in pre-mRNA splicing and maps to the smallest deletion region involved in the Prader-Willi syndrome (PWS) within chromosome 15q11-q13. Paternal only expression of SNRPN has previously been demonstrated by use of cell lines from PWS patients (maternal allele only) and Angelman syndrome (AS) patients (paternal allele only). We have characterized two previously unidentified 5{prime} exons of the SNRPN gene and demonstrate that exons -1 and 0 are included in the full-length transcript. This gene is expressed in a wide range of somatic tissues and at high, approximately equal levels in all regions of the brain. Both the first exon of SNRPN (exon -1) and the putative transcription start site are embedded within a CpG island. This CpG island is extensively methylated on the repressed maternal allele and is unmethylated on the expressed paternal allele, in a wide range of fetal and adult somatic cells. This provides a quick and highly reliable diagnostic assay for PWS and AS, which is based on DNA-methylation analysis that has been tested on >100 patients in a variety of tissues. Conversely, several CpG sites {approximately}22 kb downstream of the transcription start site in intron 5 are preferentially methylated on the expressed paternal allele in somatic tissues and male germ cells, whereas these same sites are unmethylated in fetal oocytes. These findings are consistent with a key role for DNA methylation in the imprinted inheritance and subsequent gene expression of the human SNRPN gene. 59 refs., 9 figs., 1 tab.

  19. Gene structural analysis and expression of human renal dipeptidase

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Susumu; Ohtsuka, Kazuyuki; Keida, Yuriko; Kusunoki, Chihiro; Niwa, Mineo; Kohsaka, Masanobu (Fujisawa Pharmaceutical Company, Ltd., Osaka (Japan)); Konta, Yoshiyuki (Hirosaki Univ. (Japan))

    Human renal dipeptidase cDNA and genomic DNA were isolated from human kidney cDNA and genomic libraries, respectively. The human renal dipeptidase gene has a total length of approximately 6 kb and consists of ten exons and nine introns. The exons and cDNA each encode the 411 amino acid residues of the precursor protein, including 16 amino acid residues of signal sequence and a hydrophobic carboxyl terminal sequence for the attachment of a phosphatidylinositol glycan. Although the cDNA was slightly different from the cDNA reported by Adachi et al. (1990), the differences observed suggest, by comparison with human genomic DNA, that it may not represent an allelic variant but a cloning artifact. The recombinant human renal dipeptidase was produced on the surface of transfected L929 cells and had the same character as native renal dipeptidase. Northern blotting hybridization analysis showed that renal dipeptidase mRNA is only transcribed in kidney. 21 refs., 5 figs., 2 tabs.

  20. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders

    Science.gov (United States)

    Cattaneo, A; Cattane, N; Begni, V; Pariante, C M; Riva, M A

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. The human BDNF gene consists of 11 exons, and distinct BDNF transcripts are produced through the use of alternative promoters and splicing events. The majority of the BDNF transcripts can be detected not only in the brain but also in the blood cells, although no study has yet investigated the differential expression of BDNF transcripts at the peripheral level. This review provides a description of the human BDNF gene structure as well as a summary of clinical and preclinical evidence supporting the role of BDNF in the pathogenesis of psychiatric disorders. We will discuss several mechanisms as possibly underlying BDNF modulation, including epigenetic mechanisms. We will also discuss the potential use of peripheral BDNF as a biomarker for psychiatric disorders, focusing on the factors that can influence BDNF gene expression and protein levels. Within this context, we have also characterized, for we believe the first time, the expression of BDNF transcripts in the blood, with the aim to provide novel insights into the molecular mechanisms and signaling that may regulate peripheral BDNF gene expression levels. PMID:27874848

  1. Gene expression profiles of single human mature oocytes in relation to age

    DEFF Research Database (Denmark)

    Grøndahl, M L; Andersen, Claus Yding; Bogstad, J

    2010-01-01

    The development competence of human oocytes declines with increasing age. The objective of this study was to investigate the effect of age on gene expression profile in mature human oocytes.......The development competence of human oocytes declines with increasing age. The objective of this study was to investigate the effect of age on gene expression profile in mature human oocytes....

  2. Primary function analysis of human mental retardation related gene CRBN.

    Science.gov (United States)

    Xin, Wang; Xiaohua, Ni; Peilin, Chen; Xin, Chen; Yaqiong, Sun; Qihan, Wu

    2008-06-01

    The mutation of human cereblon gene (CRBN) is revealed to be related with mild mental retardation. Since the molecular characteristics of CRBN have not been well presented, we investigated the general properties of CRBN. We analyzed its gene structure and protein homologues. The CRBN protein might belong to a family of adenosine triphosphate (ATP)-dependent Lon protease. We also found that CRBN was widely expressed in different tissues, and the expression level in testis is significantly higher than other tissues. This may suggested it could play some important roles in several other tissues besides brain. Transient transfection experiment in AD 293 cell lines suggested that both CRBN and CRBN mutant (nucleotide position 1,274(C > T)) are located in the whole cells. This may suggest new functions of CRBN in cell nucleolus besides its mitochondria protease activity in cytoplasm.

  3. Current Aspect and Future Prospect of Human Gene Therapy in Childhood (Gene Therapy : Advances in Research and Treatment)

    OpenAIRE

    1996-01-01

    Almost four years have passed since the first human gene therapy for adenosine deaminase (ADA) deficiency had been performed. Gene therapy protocols for cystic fibrosis, familial hypercholesterolaemia and hemophilia B were also started during this period. In this review, we reported and discussed the current aspect and the future prospect of gene therapy for inherited disease in childhood.

  4. Double suicide genes selectively kill human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Liu Lunxu

    2011-02-01

    Full Text Available Abstract Background To construct a recombinant adenovirus containing CDglyTK double suicide genes and evaluate the killing effect of the double suicide genes driven by kinase domain insert containing receptor (KDR promoter on human umbilical vein endothelial cells. Methods Human KDR promoter, Escherichia coli (E. coli cytosine deaminase (CD gene and the herpes simplex virus-thymidine kinase (TK gene were cloned using polymerase chain reaction (PCR. Plasmid pKDR-CDglyTK was constructed with the KDR promoter and CDglyTK genes. A recombinant adenoviral plasmid AdKDR-CDglyTK was then constructed and transfected into 293 packaging cells to grow and harvest adenoviruses. KDR-expressing human umbilical vein endothelial cells (ECV304 and KDR-negative liver cancer cell line (HepG2 were infected with the recombinant adenoviruses at different multiplicity of infection (MOI. The infection rate was measured by green fluorescent protein (GFP expression. The infected cells were cultured in culture media containing different concentrations of prodrugs ganciclovir (GCV and/or 5-fluorocytosine (5-FC. The killing effects were measured using two different methods, i.e. annexin V-FITC staining and terminal transferase-mediated dUTP nick end-labeling (TUNEL staining. Results Recombinant adenoviruses AdKDR-CDglyTK were successfully constructed and they infected ECV304 and HepG2 cells efficiently. The infection rate was dependent on MOI of recombinant adenoviruses. ECV304 cells infected with AdKDR-CDglyTK were highly sensitive to GCV and 5-FC. The cell survival rate was dependent on both the concentration of the prodrugs and the MOI of recombinant adenoviruses. In contrast, there were no killing effects in the HepG2 cells. The combination of two prodrugs was much more effective in killing ECV304 cells than GCV or 5-FC alone. The growth of transgenic ECV304 cells was suppressed in the presence of prodrugs. Conclusion AdKDR-CDglyTK/double prodrog system may be a useful

  5. Human Multidrug Resistance 1 gene polymorphisms and Idiopathic Pulmonary Fibrosis

    Science.gov (United States)

    Martinelli, Marcella; Scapoli, Luca; Pacilli, Angela Maria Grazia; Carbonara, Paolo; Girardi, Ambra; Mattei, Gabriella; Rodia, Maria Teresa; Solmi, Rossella

    2015-01-01

    Background: For the first time we tested an association between the human multidrug resistance gene 1 (MDR1) polymorphisms (SNPs) and idiopathic pulmonary fibrosis (IPF). Several MDR1 polymorphisms are associated with pathologies in which they modify the drug susceptibility and pharmacokinetics. Materials and Methods: We genotyped three MDR1 polymorphisms of 48 IPF patients and 100 control subjects with Italian origins. Results: No evidence of association was detected. Conclusion: There are 50 known MDR1 SNPs, and their role is explored in terms of the effectiveness of drug therapy. We consider our small-scale preliminary study as a starting point for further research. PMID:25767528

  6. Polymorphisms in the Human SNAIL (SNAI1) gene.

    Science.gov (United States)

    Okajima, K; Paznekas, W A; Burstyn, T; Jabs, E W

    2001-02-01

    The human SNAIL is an important developmental protein involved in the formation of mesoderm and neural crest. The protein contains three classic and one atypical zinc-finger motif. The SNAI1 gene is composed of three exons. We have identified three SNPs in non-coding regions, two in the 5'UTR and one in intron 1, which can be detected by PCR followed by restriction enzyme digestion. We also identified a GGG/GGGG polymorphism in intron 1. We screened CEPH DNAs for these polymorphisms. Copyright 2001 Academic Press.

  7. Synthetic genes for human muscle-type adenylate kinase in Escherichia coli.

    Science.gov (United States)

    Kim, H J; Nishikawa, S; Tanaka, T; Uesugi, S; Takenaka, H; Hamada, M; Kuby, S A

    1989-01-01

    An artificial gene coding for the human muscle-type cytosolic adenylate kinase (hAK1) was chemically synthesized and directly expressed in Escherichia coli under the control of trp promoter. The DNA duplex of 596 bp was designed and constructed from 40 oligonucleotide fragments of typically 30 nucleotides in length. Twelve unique restriction sites were fairly evenly spaced in the synthetic gene to facilitate site-specific mutagenesis at any part of this recombinant protein. The genes for mutant hAK1 (Tyr 95----Phe 95, Y95F hAK1; Arg 97----Ala 97, R97A hAK1) were constructed by cassette mutagenesis and utilized restriction sites incorporated in the hAK1 gene. The recombinant hAK1 was purified to homogeneity by a two-step chromatographic procedure with a good yield, and showed the same adenylate kinase activity as that of authentic hAK1. Preliminary kinetic studies show that the enzymatic activity (Vmax app,cor/Et) of Y95F hAK1 was slightly greater than that of recombinant hAK1, whereas R97A hAK1 still possessed approximately 4% of recombinant hAK1 activity. These results suggest that the Arg-97 residue is important but not essential for catalytic activity, and that Tyr-95 can be replaced by phenylalanine without substantial effects on the enzymatic activity. Moreover, preliminary estimates of the apparent kinetic parameters suggest that these residues are not required for MgATP binding, and therefore they do not appear to be part of the MgATP binding site.

  8. Human chondrocytes respond discordantly to the protein encoded by the osteoarthritis susceptibility gene GDF5.

    Directory of Open Access Journals (Sweden)

    Madhushika Ratnayake

    Full Text Available A genetic deficit mediated by SNP rs143383 that leads to reduced expression of GDF5 is strongly associated with large-joint osteoarthritis. We speculated that this deficit could be attenuated by the application of exogenous GDF5 protein and as a first step we have assessed what effect such application has on primary osteoarthritis chondrocyte gene expression. Chondrocytes harvested from cartilage of osteoarthritic patients who had undergone joint replacement were cultured with wildtype recombinant mouse and human GDF5 protein. We also studied variants of GDF5, one that has a higher affinity for the receptor BMPR-IA and one that is insensitive to the GDF5 antagonist noggin. As a positive control, chondrocytes were treated with TGF-β1. Chondrocytes were cultured in monolayer and micromass and the expression of genes coding for catabolic and anabolic proteins of cartilage were measured by quantitative PCR. The expression of the GDF5 receptor genes and the presence of their protein products was confirmed and the ability of GDF5 signal to translocate to the nucleus was demonstrated by the activation of a luciferase reporter construct. The capacity of GDF5 to elicit an intracellular signal in chondrocytes was demonstrated by the phosphorylation of intracellular Smads. Chondrocytes cultured with TGF-β1 demonstrated a consistent down regulation of MMP1, MMP13 and a consistent upregulation of TIMP1 and COL2A1 with both culture techniques. In contrast, chondrocytes cultured with wildtype GDF5, or its variants, did not show any consistent response, irrespective of the culture technique used. Our results show that osteoarthritis chondrocytes do not respond in a predictable manner to culture with exogenous GDF5. This may be a cause or a consequence of the osteoarthritis disease process and will need to be surmounted if treatment with exogenous GDF5 is to be advanced as a potential means to overcome the genetic deficit conferring osteoarthritis

  9. Molecular basis of hereditary fructose intolerance: mutations and polymorphisms in the human aldolase B gene.

    Science.gov (United States)

    Tolan, D R

    1995-01-01

    Mutations in the human aldolase B gene that result in hereditary fructose intolerance have been characterized extensively. Although the majority of subjects have been from northern Europe, subjects from other geographical regions and ethnic groups have been identified. At present 21 mutations have been reported; 15 of these are single base substitutions, resulting in nine amino acid replacements, four nonsense codons, and two putative splicing defects. Two large deletions, two four-base deletions, a single-base deletion, and a seven-base deletion/one-base insertion have been found. This last mutation leads to a defect in splicing and it is likely that one of the small deletions does as well. Regions of the enzyme where mutations have been observed recurrently are encoded by exons 5 and 9. Indeed, the three most common mutations are found in these exons. Two of these prevalent HFI mutations arose from a common ancestor and spread throughout the population by genetic drift. This finding was based on linkage to two sequence polymorphisms, which are among very few informative polymorphic markers that have been identified within the aldolase B gene. Because of the prevalence of a few HFI alleles, and the recent advances in molecular methods for identifying and screening for mutation, the diagnosis of HFI by molecular screening methods should become routine. These molecular diagnostic methods will be extremely beneficial for this often difficult to diagnose and sometimes fatal disease.

  10. Evaluation of the GeneXpert for Human Monkeypox Diagnosis

    Science.gov (United States)

    Li, Daniel; Wilkins, Kimberly; McCollum, Andrea M.; Osadebe, Lynda; Kabamba, Joelle; Nguete, Beatrice; Likafi, Toutou; Balilo, Marcel Pie; Lushima, Robert Shongo; Malekani, Jean; Damon, Inger K.; Vickery, Michael C. L.; Pukuta, Elisabeth; Nkawa, Frida; Karhemere, Stomy; Tamfum, Jean-Jacques Muyembe; Okitolonda, Emile Wemakoy; Li, Yu; Reynolds, Mary G.

    2017-01-01

    Monkeypox virus (MPXV), a zoonotic orthopoxvirus (OPX), is endemic in the Democratic Republic of Congo (DRC). Currently, diagnostic assays for human monkeypox (MPX) focus on real-time quantitative polymerase chain reaction (PCR) assays, which are typically performed in sophisticated laboratory settings. Herein, we evaluated the accuracy and utility of a multiplex MPX assay using the GeneXpert platform, a portable rapid diagnostic device that may serve as a point-of-care test to diagnose infections in endemic areas. The multiplex MPX/OPX assay includes a MPX-specific PCR test, OPX-generic PCR test, and an internal control PCR test. In total, 164 diagnostic specimens (50 crusts and 114 vesicular swabs) were collected from suspected MPX cases in Tshuapa Province, DRC, under national surveillance guidelines. The specimens were tested with the GeneXpert MPX/OPX assay and an OPX PCR assay at the Institut National de Recherche Biomedicale (INRB) in Kinshasa. Aliquots of each specimen were tested in parallel with a MPX-specific PCR assay at the Centers for Disease Control and Prevention. The results of the MPX PCR were used as the gold standard for all analyses. The GeneXpert MPX/OPX assay performed at INRB had a sensitivity of 98.8% and specificity of 100%. The GeneXpert assay performed well with both crust and vesicle samples. The GeneXpert MPX/OPX test incorporates a simple methodology that performs well in both laboratory and field conditions, suggesting its viability as a diagnostic platform that may expand and expedite current MPX detection capabilities. PMID:27994107

  11. [Estrogen replacement].

    Science.gov (United States)

    Søgaard, A J; Berntsen, G K; Magnus, J H; Tollan, A

    1998-02-10

    Recent research on long-term postmenopausal hormone replacement therapy (HRT) indicates a positive effect on both total mortality and morbidity. This has raised the question of widespread preventive long-term use of HRT. Possible side-effects and ideological issues related to preventive HRT have led to debate and uncertainty among health professionals, in the media, and in the population at large. In order to evaluate the level of knowledge about and attitudes towards HRT, a randomly selected group of 737 Norwegian women aged 16-79 was interviewed by the Central Bureau of Statistics. One in three women had received information about HRT in the last two years, mainly through weekly magazines and physicians. The proportion who answered the questions on knowledge correctly varied from 36% to 47%. Those who had been given information by a physician possessed accurate knowledge, had more positive attitudes towards HRT and were more willing to use HRT than women who had reviewed information through other channels. Women with a higher level of education were better informed and more knowledgeable than others, but were nevertheless more reluctant to use HRT than those who were less educated. The limited number of women who actually receive information on HRT, the low level of knowledge and the ambivalent attitudes toward HRT are a major challenge to the public health service.

  12. Expression of NEP1 by Fusarium oxysporum f. sp. erythroxyli After Gene Replacement and Overexpression Using Polyethylene Glycol-Mediated Transformation.

    Science.gov (United States)

    Bailey, B A; Apel-Birkhold, Patricia C; Luster, Douglas G

    2002-08-01

    ABSTRACT The necrosis inducing extracellular protein Nep1 is produced by Fusarium oxysporum f. sp. erythroxyli in liquid culture. NEP1, the Nep1 protein structural gene, was disrupted in F. oxysporum f. sp. erythroxyli isolate EN-4 by gene replacement using polyethylene glycol (PEG)-mediated transformation. NEP1 disruption was verified by polymerase chain reaction (PCR), Southern blot, and northern blot analysis. NEP1-disrupted transformants failed to produce Nep1 in liquid culture. NEP1 disruption did not affect the pathogenicity of isolate EN-4 toward Erythroxylum coca. Transformation of isolate EN-4 with construct pPB-FO11-45 carrying NEP1 between the trpC promoter and terminator resulted in increased production of Nep1 in potato dextrose broth plus 1% casamino acids or Czapek-Dox broth plus 1% casamino acids but not in potato dextrose broth alone. Transformation of EN-4 with construct pPB-FO11-45 was verified by PCR and Southern blot analysis. Overexpression of NEP1 was confirmed by northern blot and Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. NEP1-overexpressing transformant 15 produced 64 to 128 times as much Nep1 as EN-4 wild type when grown in shake cultures. Transformants overexpressing Nep1 in liquid culture were no more or less pathogenic toward E. coca than wild-type isolates. Nep1 was not detected in E. coca seedlings infected with NEP1-overexpressing transformants or with EN-4 wild type. In large-scale fermentations of NEP1-overexpressing transformant 15, the amount of secreted protein including Nep1 was 15.1 times that of the wild-type EN-4, providing a ready source of Nep1 for future study.

  13. Bordetella pertussis modulates human macrophage defense gene expression.

    Science.gov (United States)

    Valdez, Hugo Alberto; Oviedo, Juan Marcos; Gorgojo, Juan Pablo; Lamberti, Yanina; Rodriguez, Maria Eugenia

    2016-08-01

    Bordetella pertussis, the etiological agent of whooping cough, still causes outbreaks. We recently found evidence that B. pertussis can survive and even replicate inside human macrophages, indicating that this host cell might serve as a niche for persistence. In this work, we examined the interaction of B. pertussis with a human monocyte cell line (THP-1) that differentiates into macrophages in culture in order to investigate the host cell response to the infection and the mechanisms that promote that intracellular survival. To that end, we investigated the expression profile of a selected number of genes involved in cellular bactericidal activity and the inflammatory response during the early and late phases of infection. The bactericidal and inflammatory response of infected macrophages was progressively downregulated, while the number of THP-1 cells heavily loaded with live bacteria increased over time postinfection. Two of the main toxins of B. pertussis, pertussis toxin (Ptx) and adenylate cyclase (CyaA), were found to be involved in manipulating the host cell response. Therefore, failure to express either toxin proved detrimental to the development of intracellular infections by those bacteria. Taken together, these results support the relevance of host defense gene manipulation to the outcome of the interaction between B. pertussis and macrophages.

  14. Vitamin D and gene networks in human osteoblasts

    Directory of Open Access Journals (Sweden)

    Jeroen evan de Peppel

    2014-04-01

    Full Text Available Bone formation is indirectly influenced by 1,25-dihydroxyvitamin D3 (1,25D3 through the stimulation of calcium uptake in the intestine and re-absorption in the kidneys. Direct effects on osteoblasts and bone formation have also been established. The vitamin D receptor (VDR is expressed in osteoblasts and 1,25D3 modifies gene expression of various osteoblast differentiation and mineralization-related genes, such as alkaline phosphatase (ALPL, osteocalcin (BGLAP and osteopontin (SPP1. 1,25D3 is known to stimulate mineralization of human osteoblasts in vitro, and recently it was shown that 1,25D3 induces mineralization via effects in the period preceding mineralization during the pre-mineralization period. For a full understanding of the action of 1,25D3 in osteoblasts it is important to get an integrated network view of the 1,25D3-regulated genes during osteoblast differentiation and mineralization. The current data will be presented and discussed alluding to future studies to fully delineate the 1,25D3 action in osteoblast. Describing and understanding the vitamin D regulatory networks and identifying the dominant players in these networks may help develop novel (personalized vitamin D-based treatments. The following topics will be discussed in this overview: 1 Bone metabolism and osteoblasts, 2 Vitamin D, bone metabolism and osteoblast function, 3 Vitamin D induced transcriptional networks in the context of osteoblast differentiation and bone formation.

  15. Measuring Escherichia coli Gene Expression during Human Urinary Tract Infections

    Science.gov (United States)

    Mobley, Harry L. T.

    2016-01-01

    Extraintestinal Escherichia coli (E. coli) evolved by acquisition of pathogenicity islands, phage, plasmids, and DNA segments by horizontal gene transfer. Strains are heterogeneous but virulent uropathogenic isolates more often have specific fimbriae, toxins, and iron receptors than commensal strains. One may ask whether it is the virulence factors alone that are required to establish infection. While these virulence factors clearly contribute strongly to pathogenesis, bacteria must survive by metabolizing nutrients available to them. By constructing mutants in all major metabolic pathways and co-challenging mice transurethrally with each mutant and the wild type strain, we identified which major metabolic pathways are required to infect the urinary tract. We must also ask what else is E. coli doing in vivo? To answer this question, we examined the transcriptome of E. coli CFT073 in the murine model of urinary tract infection (UTI) as well as for E. coli strains collected and analyzed directly from the urine of patients attending either a urology clinic or a university health clinic for symptoms of UTI. Using microarrays and RNA-seq, we measured in vivo gene expression for these uropathogenic E. coli strains, identifying genes upregulated during murine and human UTI. Our findings allow us to propose a new definition of bacterial virulence. PMID:26784237

  16. C/EBPδ gene targets in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Serena Borrelli

    Full Text Available C/EBPs are a family of B-Zip transcription factors--TFs--involved in the regulation of differentiation in several tissues. The two most studied members--C/EBPα and C/EBPβ--play important roles in skin homeostasis and their ablation reveals cells with stem cells signatures. Much less is known about C/EBPδ which is highly expressed in the granular layer of interfollicular epidermis and is a direct target of p63, the master regular of multilayered epithelia. We identified C/EBPδ target genes in human primary keratinocytes by ChIP on chip and profiling of cells functionally inactivated with siRNA. Categorization suggests a role in differentiation and control of cell-cycle, particularly of G2/M genes. Among positively controlled targets are numerous genes involved in barrier function. Functional inactivation of C/EBPδ as well as overexpressions of two TF targets--MafB and SOX2--affect expression of markers of keratinocyte differentiation. We performed IHC on skin tumor tissue arrays: expression of C/EBPδ is lost in Basal Cell Carcinomas, but a majority of Squamous Cell Carcinomas showed elevated levels of the protein. Our data indicate that C/EBPδ plays a role in late stages of keratinocyte differentiation.

  17. Somatic hypermutation of immunoglobulin genes in human neonates.

    Science.gov (United States)

    Ridings, J; Nicholson, I C; Goldsworthy, W; Haslam, R; Roberton, D M; Zola, H

    1997-05-01

    The antibody response in the young infant is limited in several ways; in particular, responses generally are of low affinity and restricted to IgM. This raises the question whether the affinity maturation process, consisting of somatic mutation of immunoglobulin genes coupled with selection of high-affinity variants, is operative in the neonate. Re-arranged V(H)6 genes were amplified by polymerase chain reaction (PCR) from cord blood and from peripheral blood of infants. Heteroduplex analysis detected mutation in only 2/18 cord blood samples, while mutations were seen from about 10 days of age onwards. Cloning and sequencing of mutated neonatal V(H)6 genes showed that mutated sequences contained relatively few mutations (one to three mutations per sequence) compared with published values of about 10 in adult IgM sequences. Selection was not evident in the majority of neonatal samples. Thus mutation can occur in the human neonate, but is minimal and generally not accompanied by selection. The age at which affinity maturation develops effectively is yet to be defined.

  18. Cloning and sequencing of human lambda immunoglobulin genes by the polymerase chain reaction.

    Science.gov (United States)

    Songsivilai, S; Bye, J M; Marks, J D; Hughes-Jones, N C

    1990-12-01

    Universal oligonucleotide primers, designed for amplifying and sequencing genes encoding the rearranged human lambda immunoglobulin variable region, were validated by amplification of the lambda light chain genes from four human heterohybridoma cell lines and in the generation of a cDNA library of human V lambda sequences from Epstein-Barr virus-transformed human peripheral blood lymphocytes. This technique allows rapid cloning and sequencing of human immunoglobulin genes, and has potential applications in the rescue of unstable human antibody-producing cell lines and in the production of human monoclonal antibodies.

  19. cDNA cloning and expression of an apoptosis-related gene, human TFAR15 gene

    Institute of Scientific and Technical Information of China (English)

    王玉刚; 刘洪涛; 张颖妹; 马大龙

    1999-01-01

    By means of cDNA-RDA method. some cDNA fragments were found to have high levels of expression during deprivation of GM-CSF (granulocyte macrophage-colony stimulating factor) in a human myeloid cell line, TF-1 cells. One of these tragments was identified as a novel gene. To get the full length of cDNA, rapid amplification of cDNA ends (RACE) and expressed sequence tags (EST) overlapping fragments assembling strategies were used. The novel gene was named TRAF15 (TF-1 cell apoptosis related gene-15), which consists of 1218 nueleotides and encodes 212 amino acids. The putative protein protein product of TFAR15 is partially homologous to C. elegans protein C14A4. 11. TFAR15 mRNA is expressed in fetal liver, kidney, spleen and lung. and also in some human myeloid cell lines. Both of the TFAR15 mRNA and protein were highly expressed in TF-(?) cells after GM-CSF withdrawal. In vitro analysis showed that the recombinant TFAR15 protein co(?)ld inhibit the natural cell death of 293 cells, an embryonic kidney cell

  20. A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation.

    Science.gov (United States)

    Ackland, David C; Robinson, Dale; Redhead, Michael; Lee, Peter Vee Sin; Moskaljuk, Adrian; Dimitroulis, George

    2017-05-01

    Personalized prosthetic joint replacements have important applications in cases of complex bone and joint conditions where the shape and size of off-the-shelf components may not be adequate. The objective of this study was to design, test and fabricate a personalized 3D-printed prosthesis for a patient requiring total joint replacement surgery of the temporomandibular joint (TMJ). The new 'Melbourne' prosthetic TMJ design featured a condylar component sized specifically to the patient and fixation screw positions that avoid potential intra-operative damage to the mandibular nerve. The Melbourne prosthetic TMJ was developed for a 58-year-old female recipient with end-stage osteoarthritis of the TMJ. The load response of the prosthesis during chewing and a maximum-force bite was quantified using a personalized musculoskeletal model of the patient's masticatory system developed using medical images. The simulations were then repeated after implantation of the Biomet Microfixation prosthetic TMJ, an established stock device. The maximum condylar stresses, screw stress and mandibular stress at the screw-bone interface were lower in the Melbourne prosthetic TMJ (259.6MPa, 312.9MPa and 198.4MPa, respectively) than those in the Biomet Microfixation device (284.0MPa, 416.0MPa and 262.2MPa, respectively) during the maximum-force bite, with similar trends also observed during the chewing bite. After trialing surgical placement and evaluating prosthetic TMJ stability using cadaveric specimens, the prosthesis was fabricated using 3D printing, sterilized, and implanted into the female recipient. Six months post-operatively, the prosthesis recipient had a normal jaw opening distance (40.0 mm), with no complications identified. The new design features and immediate load response of the Melbourne prosthetic TMJ suggests that it may provide improved clinical and biomechanical joint function compared to a commonly used stock device, and reduce risk of intra-operative nerve damage

  1. Large Scale Gene Expression Meta-Analysis Reveals Tissue-Specific, Sex-Biased Gene Expression in Humans

    Science.gov (United States)

    Mayne, Benjamin T.; Bianco-Miotto, Tina; Buckberry, Sam; Breen, James; Clifton, Vicki; Shoubridge, Cheryl; Roberts, Claire T.

    2016-01-01

    The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  2. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  3. Gene expression analysis of primary normal human hepatocytes infected with human hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Hyun Mi Ryu; Sung Gyoo Park; Sung Su Yea; Won Hee Jang; Young-Il Yang; Guhung Jung

    2006-01-01

    AIM: To find the relationship between hepatitis B virus (HBV) and hepatocytes during the initial state of infection by cDNA microarray.METHODS: Primary normal human hepatocytes (PNHHs)were isolated and infected with HBV. From the PNHHs,RNA was isolated and inverted into complement DNA (cDNA) with Cy3- or Cy5- labeled dUTP for microarray analysis. The labeled cDNA was hybridized with microarray chip, including 4224 cDNAs. From the image of the microarray, expression profiles were produced and some of them were confirmed by RT-PCR, immunoblot analysis, and NF-κB luciferase reporter assay.RESULTS: From the cDNA microarray, we obtained 98differentially regulated genes. Of the 98 genes, 53 were up regulated and 45 down regulated. Interestingly, in the up regulated genes, we found the TNF signaling pathway-related genes: LT-α, TRAF2, and NIK. By using RT-PCR, we confirmed the up-regulation of these genes in HepG2, Huh7, and Chang liver cells, which were transfected with pHBV1.2x, a plasmid encoding all HBV messages. Moreover, these three genes participated in HBVmediated NF-κB activation.CONCLUSION: During the initial state of HBV infection,hepatocytes facilitate the activation of NF-κB through up regulation of LT-α, TRAF2, and NIK.

  4. Chromosomal localization of the gene for the human Theta class glutathione transferase (GSTT1)

    Energy Technology Data Exchange (ETDEWEB)

    Webb, G.; Vaska, V. [Queen Elizabeth Hospital, Adelaide (Australia); Goggan, M.; Board, P. [Australian National Univ., Canberra (Australia)

    1996-04-01

    Two loci encoding Theta class glutathione transferases (GSTs) have been identified in humans. In situ hybridization studies have localized the GSTT1 gene to 22q11.2. This is the same band to which we previously localized the GSTT2 gene. This finding confirms the trend for human GST genes to be found in class-specific clusters. 20 refs., 1 fig.

  5. Dissecting cis regulation of gene expression in human metabolic tissues.

    Directory of Open Access Journals (Sweden)

    Radu Dobrin

    Full Text Available Complex diseases such as obesity and type II diabetes can result from a failure in multiple organ systems including the central nervous system and tissues involved in partitioning and disposal of nutrients. Studying the genetics of gene expression in tissues that are involved in the development of these diseases can provide insights into how these tissues interact within the context of disease. Expression quantitative trait locus (eQTL studies identify mRNA expression changes linked to proximal genetic signals (cis eQTLs that have been shown to affect disease. Given the high impact of recent eQTL studies, it is important to understand what role sample size and environment plays in identification of cis eQTLs. Here we show in a genotyped obese human population that the number of cis eQTLs obey precise scaling laws as a function of sample size in three profiled tissues, i.e. omental adipose, subcutaneous adipose and liver. Also, we show that genes (or transcripts with cis eQTL associations detected in a small population are detected at approximately 90% rate in the largest population available for our study, indicating that genes with strong cis acting regulatory elements can be identified with relatively high confidence in smaller populations. However, by increasing the sample size we allow for better detection of weaker and more distantly located cis-regulatory elements. Yet, we determined that the number of tissue specific cis eQTLs saturates in a modestly sized cohort while the number of cis eQTLs common to all tissues fails to reach a maximum value. Understanding the power laws that govern the number and specificity of eQTLs detected in different tissues, will allow a better utilization of genetics of gene expression to inform the molecular mechanism underlying complex disease traits.

  6. Does the human X contain a third evolutionary block? Origin of genes on human Xp11 and Xq28.

    Science.gov (United States)

    Delbridge, Margaret L; Patel, Hardip R; Waters, Paul D; McMillan, Daniel A; Marshall Graves, Jennifer A

    2009-08-01

    Comparative gene mapping of human X-borne genes in marsupials defined an ancient conserved region and a recently added region of the eutherian X, and the separate evolutionary origins of these regions was confirmed by their locations on chicken chromosomes 4p and 1q, respectively. However, two groups of genes, from the pericentric region of the short arm of the human X (at Xp11) and a large group of genes from human Xq28, were thought to be part of a third evolutionary block, being located in a single region in fish, but mapping to chicken chromosomes other than 4p and 1q. We tested this hypothesis by comparative mapping of genes in these regions. Our gene mapping results show that human Xp11 genes are located on the marsupial X chromosome and platypus chromosome 6, indicating that the Xp11 region was part of original therian X chromosome. We investigated the evolutionary origin of genes from human Xp11 and Xq28, finding that chicken paralogs of human Xp11 and Xq28 genes had been misidentified as orthologs, and their true orthologs are represented in the chicken EST database, but not in the current chicken genome assembly. This completely undermines the evidence supporting a separate evolutionary origin for this region of the human X chromosome, and we conclude, instead, that it was part of the ancient autosome, which became the conserved region of the therian X chromosome 166 million years ago.

  7. Age distribution patterns of human gene families: divergent for Gene Ontology categories and concordant between different subcellular localizations.

    Science.gov (United States)

    Liu, Gangbiao; Zou, Yangyun; Cheng, Qiqun; Zeng, Yanwu; Gu, Xun; Su, Zhixi

    2014-04-01

    The age distribution of gene duplication events within the human genome exhibits two waves of duplications along with an ancient component. However, because of functional constraint differences, genes in different functional categories might show dissimilar retention patterns after duplication. It is known that genes in some functional categories are highly duplicated in the early stage of vertebrate evolution. However, the correlations of the age distribution pattern of gene duplication between the different functional categories are still unknown. To investigate this issue, we developed a robust pipeline to date the gene duplication events in the human genome. We successfully estimated about three-quarters of the duplication events within the human genome, along with the age distribution pattern in each Gene Ontology (GO) slim category. We found that some GO slim categories show different distribution patterns when compared to the whole genome. Further hierarchical clustering of the GO slim functional categories enabled grouping into two main clusters. We found that human genes located in the duplicated copy number variant regions, whose duplicate genes have not been fixed in the human population, were mainly enriched in the groups with a high proportion of recently duplicated genes. Moreover, we used a phylogenetic tree-based method to date the age of duplications in three signaling-related gene superfamilies: transcription factors, protein kinases and G-protein coupled receptors. These superfamilies were expressed in different subcellular localizations. They showed a similar age distribution as the signaling-related GO slim categories. We also compared the differences between the age distributions of gene duplications in multiple subcellular localizations. We found that the distribution patterns of the major subcellular localizations were similar to that of the whole genome. This study revealed the whole picture of the evolution patterns of gene functional

  8. Mechanisms and genes in human strial presbycusis from animal models.

    Science.gov (United States)

    Ohlemiller, Kevin K

    2009-06-24

    Schuknecht proposed a discrete form of presbycusis in which hearing loss results principally from degeneration of cochlear stria vascularis and decline of the endocochlear potential (EP). This form was asserted to be genetically linked, and to arise independently from age-related pathology of either the organ of Corti or cochlear neurons. Although extensive strial degeneration in humans coincides with hearing loss, EPs have never been measured in humans, and age-related EP reduction has never been verified. No human genes that promote strial presbycusis have been identified, nor is its pathophysiology well understood. Effective application of animal models to this issue requires models demonstrating EP decline, and preferably, genetically distinct strains that vary in patterns of EP decline and its cellular correlates. Until recently, only two models, Mongolian gerbils and Tyrp1(B-lt) mice, were known to undergo age-associated EP reduction. Detailed studies of seven inbred mouse strains have now revealed three strains (C57BL/6J, B6.CAST-Cdh23(CAST), CBA/J) showing essentially no EP decline with age, and four strains ranging from modest to severe EP reduction (C57BL/6-Tyr(c-2J), BALB/cJ, CBA/CaJ, NOD.NON-H2(nbl)/LtJ). Collectively, animal models support five basic principles regarding a strial form of presbycusis: 1) Progressive EP decline from initially normal levels as a defining characteristic; 2) Non-universality, not all age-associated hearing loss involves EP decline; 3) A clear genetic basis; 4) Modulation by environment or stochastic events; and 5) Independent strial, organ of Corti, and neural pathology. Shared features between human strial presbycusis, gerbils, and BALB/cJ and C57BL/6-Tyr(c-2J) mice further suggest this condition frequently begins with strial marginal cell dysfunction and loss. By contrast, NOD.NON-H2(nbl) mice may model a sequence more closely associated with strial microvascular disease. Additional studies of these and other inbred mouse

  9. Relation of androgen receptor gene polymorphism to bone mineral density and fracture risk in early postmenopausal women during a 5-year randomized hormone replacement therapy trial.

    Science.gov (United States)

    Salmén, Timo; Heikkinen, Anna-Mari; Mahonen, Anitta; Kröger, Heikki; Komulainen, Marja; Pallonen, Heli; Saarikoski, Seppo; Honkanen, Risto; Mäenpää, Pekka H

    2003-02-01

    In women, the influence of androgens on bone health is not clear. It has been suggested that the androgen receptor (AR) genotype is associated with bone mineral density and serum androgen levels in pre- and perimenopausal women, but the association between AR genotype, bone mineral density, and fracture risk has not been studied in postmenopausal women. Therefore, we studied whether AR polymorphism affects bone mineral density, bone mineral density change, or fracture risk in a 5-year randomized hormone replacement therapy (HRT) trial on 331 early postmenopausal women (mean baseline age, 52.7 +/- 2.3 years). The participants consisted of two treatment groups: the HRT group (n = 151) received a sequential combination of 2 mg estradiol valerate and 1 mg cyproterone acetate with or without vitamin D3, 100-300 IU + 93 mg calcium as lactate/day, and the non-HRT group (n = 180) received 93 mg calcium alone or in combination with vitamin D3, 100-300 IU/day for 5 years. Bone mineral density was measured from lumbar spine and proximal femur (DXA) before and after the 5-year trial. All new symptomatic, radiographically defined fractures were recorded during the follow-up. The length of CAG repeat in exon 1 of AR gene was evaluated after polymerase chain reaction (PCR) amplification. The subjects were divided into three repeat groups according to AR alleles. None of the baseline characteristics were associated with AR gene polymorphism and HRT treatment. The polymorphism did not influence the calculated annual changes of lumbar or femoral neck bone mineral density during the 5-year follow-up in the HRT (p = 0.926 and 0.146, respectively) or non-HRT (p = 0.818 and 0.917, respectively) groups. In all, 28 women sustained 33 fractures during the follow-up. Thus, the numbers of fractures were limited. The AR repeat length variation was not significantly associated with fracture risk in the HRT or non-HRT groups (p = 0.632 and 0.459, respectively; Cox proportional hazards model

  10. A novel full-length gene of human ribosomal protein L14.22 related to human glioma

    Institute of Scientific and Technical Information of China (English)

    QI Zhen-yu; HUI Guo-zhen; LI Yao; ZHOU Zong-xiang; GU Shao-hua; XIE Yi

    2006-01-01

    Background This study was undertaken to obtain differentially expressed genes related to human glioma by cDNA microarray and the characterization of a novel full-length gene. Methods Total RNA was extracted from human glioma and normal brain tissues, and mRNA was used as a probe. The results of hybridization procedure were scanned with the computer system. The gene named 507E08clone was subsequently analyzed by northern blot, bioinformatic approach, and protein expression.Results Fifteen differentially expressed genes were obtained from human glioma by hybridization and scanning for four times. Northern blot analysis confirmed that the 507E08 clone was low expressed in human brain tissue and over expressed in human glioma tissues. The analysis of BLASTn and BLASTx showed that the 507E08clone was a novel full-length gene, which codes 203 amino acid of protein and is called human ribosomal protein 14.22 gene. The nucleotide sequence had been submitted to the GenBankTM with the accession number of AF329277. After expression in E. Coli., protein yielded a major band of apparent molecular mass 22 kDa on an SDS-PAGE gel.Conclusions cDNA microarray technology can be successfully used to identify differentially expressed genes.The novel full-length gene of human ribosomal protein 14.22 may be correlated with the development of human glioma.

  11. Mutations in inhibin and activin genes associated with human disease.

    Science.gov (United States)

    Shelling, Andrew N

    2012-08-15

    Inhibins and activins are members of the transforming growth factor (TGFβ) superfamily, that includes the TGFβs, inhibins and activins, bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs). The family members are expressed throughout the human body, and are involved in the regulation of a range of important functions. The precise regulation of the TGFβ pathways is critical, and mutations of individual molecules or even minor alterations of signalling will have a significant affect on function, that may lead to development of disease or predisposition to the development of disease. The inhibins and activins regulate aspects of the male and female reproductive system, therefore, it is not surprising that most of the diseases associated with abnormalities of the inhibin and activin genes are focused on reproductive disorders and reproductive cancers. In this review, I highlight the role of genetic variants in the development of conditions such as premature ovarian failure, pre-eclampsia, and various reproductive cancers. Given the recent advances in human genetic research, such as genome wide association studies and next generation sequencing, it is likely that inhibins and activins will be shown to play more important roles in a range of human genetic diseases in the future.

  12. Chromosomal mapping, gene structure and characterization of the human and murine RAB27B gene

    Directory of Open Access Journals (Sweden)

    Huxley Clare

    2001-02-01

    Full Text Available Abstract Background Rab GTPases are regulators of intracellular membrane traffic. The Rab27 subfamily consists of Rab27a and Rab27b. Rab27a has been recently implicated in Griscelli Disease, a disease combining partial albinism with severe immunodeficiency. Rab27a plays a key role in the function of lysosomal-like organelles such as melanosomes in melanocytes and lytic granules in cytotoxic T lymphocytes. Little is known about Rab27b. Results The human RAB27B gene is organised in six exons, spanning about 69 kb in the chromosome 18q21.1 region. Exon 1 is non-coding and is separated from the others by 49 kb of DNA and exon 6 contains a long 3' untranslated sequence (6.4 kb. The mouse Rab27b cDNA shows 95% identity with the human cDNA at the protein level and maps to mouse chromosome 18. The mouse mRNA was detected in stomach, large intestine, spleen and eye by RT-PCR, and in heart, brain, spleen and kidney by Northern blot. Transient over-expression of EGF-Rab27b fusion protein in cultured melanocytes revealed that Rab27b is associated with melanosomes, as observed for EGF-Rab27a. Conclusions Our results indicate that the Rab27 subfamily of Ras-like GTPases is highly conserved in mammals. There is high degree of conservation in sequence and gene structure between RAB27A and RAB27B genes. Exogenous expression of Rab27b in melanocytes results in melanosomal association as observed for Rab27a, suggesting the two Rab27 proteins are functional homologues. As with RAB27A in Griscelli Disease, RAB27B may be also associated with human disease mapping to chromosome 18.

  13. High-throughput analysis of candidate imprinted genes and allele-specific gene expression in the human term placenta

    Directory of Open Access Journals (Sweden)

    Clark Taane G

    2010-04-01

    Full Text Available Abstract Background Imprinted genes show expression from one parental allele only and are important for development and behaviour. This extreme mode of allelic imbalance has been described for approximately 56 human genes. Imprinting status is often disrupted in cancer and dysmorphic syndromes. More subtle variation of gene expression, that is not parent-of-origin specific, termed 'allele-specific gene expression' (ASE is more common and may give rise to milder phenotypic differences. Using two allele-specific high-throughput technologies alongside bioinformatics predictions, normal term human placenta was screened to find new imprinted genes and to ascertain the extent of ASE in this tissue. Results Twenty-three family trios of placental cDNA, placental genomic DNA (gDNA and gDNA from both parents were tested for 130 candidate genes with the Sequenom MassArray system. Six genes were found differentially expressed but none imprinted. The Illumina ASE BeadArray platform was then used to test 1536 SNPs in 932 genes. The array was enriched for the human orthologues of 124 mouse candidate genes from bioinformatics predictions and 10 human candidate imprinted genes from EST database mining. After quality control pruning, a total of 261 informative SNPs (214 genes remained for analysis. Imprinting with maternal expression was demonstrated for the lymphocyte imprinted gene ZNF331 in human placenta. Two potential differentially methylated regions (DMRs were found in the vicinity of ZNF331. None of the bioinformatically predicted candidates tested showed imprinting except for a skewed allelic expression in a parent-specific manner observed for PHACTR2, a neighbour of the imprinted PLAGL1 gene. ASE was detected for two or more individuals in 39 candidate genes (18%. Conclusions Both Sequenom and Illumina assays were sensitive enough to study imprinting and strong allelic bias. Previous bioinformatics approaches were not predictive of new imprinted genes

  14. GeneBase 1.1: a tool to summarize data from NCBI gene datasets and its application to an update of human gene statistics

    Science.gov (United States)

    Piovesan, Allison; Caracausi, Maria; Antonaros, Francesca; Pelleri, Maria Chiara; Vitale, Lorenza

    2016-01-01

    We release GeneBase 1.1, a local tool with a graphical interface useful for parsing, structuring and indexing data from the National Center for Biotechnology Information (NCBI) Gene data bank. Compared to its predecessor GeneBase (1.0), GeneBase 1.1 now allows dynamic calculation and summarization in terms of median, mean, standard deviation and total for many quantitative parameters associated with genes, gene transcripts and gene features (exons, introns, coding sequences, untranslated regions). GeneBase 1.1 thus offers the opportunity to perform analyses of the main gene structure parameters also following the search for any set of genes with the desired characteristics, allowing unique functionalities not provided by the NCBI Gene itself. In order to show the potential of our tool for local parsing, structuring and dynamic summarizing of publicly available databases for data retrieval, analysis and testing of biological hypotheses, we provide as a sample application a revised set of statistics for human nuclear genes, gene transcripts and gene features. In contrast with previous estimations strongly underestimating the length of human genes, a ‘mean’ human protein-coding gene is 67 kbp long, has eleven 309 bp long exons and ten 6355 bp long introns. Median, mean and extreme values are provided for many other features offering an updated reference source for human genome studies, data useful to set parameters for bioinformatic tools and interesting clues to the biomedical meaning of the gene features themselves. Database URL: http://apollo11.isto.unibo.it/software/ PMID:28025344

  15. GeneBase 1.1: a tool to summarize data from NCBI gene datasets and its application to an update of human gene statistics.

    Science.gov (United States)

    Piovesan, Allison; Caracausi, Maria; Antonaros, Francesca; Pelleri, Maria Chiara; Vitale, Lorenza

    2016-01-01

    We release GeneBase 1.1, a local tool with a graphical interface useful for parsing, structuring and indexing data from the National Center for Biotechnology Information (NCBI) Gene data bank. Compared to its predecessor GeneBase (1.0), GeneBase 1.1 now allows dynamic calculation and summarization in terms of median, mean, standard deviation and total for many quantitative parameters associated with genes, gene transcripts and gene features (exons, introns, coding sequences, untranslated regions). GeneBase 1.1 thus offers the opportunity to perform analyses of the main gene structure parameters also following the search for any set of genes with the desired characteristics, allowing unique functionalities not provided by the NCBI Gene itself. In order to show the potential of our tool for local parsing, structuring and dynamic summarizing of publicly available databases for data retrieval, analysis and testing of biological hypotheses, we provide as a sample application a revised set of statistics for human nuclear genes, gene transcripts and gene features. In contrast with previous estimations strongly underestimating the length of human genes, a 'mean' human protein-coding gene is 67 kbp long, has eleven 309 bp long exons and ten 6355 bp long introns. Median, mean and extreme values are provided for many other features offering an updated reference source for human genome studies, data useful to set parameters for bioinformatic tools and interesting clues to the biomedical meaning of the gene features themselves.Database URL: http://apollo11.isto.unibo.it/software/.

  16. Gene expression analysis in human breast cancer associated blood vessels.

    Directory of Open Access Journals (Sweden)

    Dylan T Jones

    Full Text Available Angiogenesis is essential for solid tumour growth, whilst the molecular profiles of tumour blood vessels have been reported to be different between cancer types. Although presently available anti-angiogenic strategies are providing some promise for the treatment of some cancers it is perhaps not surprisingly that, none of the anti-angiogenic agents available work on all tumours. Thus, the discovery of novel anti-angiogenic targets, relevant to individual cancer types, is required. Using Affymetrix microarray analysis of laser-captured, CD31-positive blood vessels we have identified 63 genes that are upregulated significantly (5-72 fold in angiogenic blood vessels associated with human invasive ductal carcinoma (IDC of the breast as compared with blood vessels in normal human breast. We tested the angiogenic capacity of a subset of these genes. Genes were selected based on either their known cellular functions, their enriched expression in endothelial cells and/or their sensitivity to anti-VEGF treatment; all features implicating their involvement in angiogenesis. For example, RRM2, a ribonucleotide reductase involved in DNA synthesis, was upregulated 32-fold in IDC-associated blood vessels; ATF1, a nuclear activating transcription factor involved in cellular growth and survival was upregulated 23-fold in IDC-associated blood vessels and HEX-B, a hexosaminidase involved in the breakdown of GM2 gangliosides, was upregulated 8-fold in IDC-associated blood vessels. Furthermore, in silico analysis confirmed that AFT1 and HEX-B also were enriched in endothelial cells when compared with non-endothelial cells. None of these genes have been reported previously to be involved in neovascularisation. However, our data establish that siRNA depletion of Rrm2, Atf1 or Hex-B had significant anti-angiogenic effects in VEGF-stimulated ex vivo mouse aortic ring assays. Overall, our results provide proof-of-principle that our approach can identify a cohort of

  17. Evaluation of high-throughput functional categorization of human disease genes

    Directory of Open Access Journals (Sweden)

    Li Jianrong

    2007-05-01

    Full Text Available Abstract Background Biological data that are well-organized by an ontology, such as Gene Ontology, enables high-throughput availability of the semantic web. It can also be used to facilitate high throughput classification of biomedical information. However, to our knowledge, no evaluation has been published on automating classifications of human diseases genes using Gene Ontology. In this study, we evaluate automated classifications of well-defined human disease genes using their Gene Ontology annotations and compared them to a gold standard. This gold standard was independently conceived by Valle's research group, and contains 923 human disease genes organized in 14 categories of protein function. Results Two automated methods were applied to investigate the classification of human disease genes into independently pre-defined categories of protein function. One method used the structure of Gene Ontology by pre-selecting 74 Gene Ontology terms assigned to 11 protein function categories. The second method was based on the similarity of human disease genes clustered according to the information-theoretic distance of their Gene Ontology annotations. Compared to the categorization of human disease genes found in the gold standard, our automated methods can achieve an overall 56% and 47% precision with 62% and 71% recall respectively. However, approximately 15% of the studied human disease genes remain without GO annotations. Conclusion Automated methods can recapitulate a significant portion of classification of the human disease genes. The method using information-theoretic distance performs slightly better on the precision with some loss in recall. For some protein function categories, such as 'hormone' and 'transcription factor', the automated methods perform particularly well, achieving precision and recall levels above 75%. In summary, this study demonstrates that for semantic webs, methods to automatically classify or analyze a majority of

  18. Pressure-natriuresis and -diuresis in transgenic rats harboring both human renin and human angiotensinogen genes.

    Science.gov (United States)

    Dehmel, B; Mervaala, E; Lippoldt, A; Gross, V; Bohlender, J; Ganten, D; Luft, F C

    1998-12-01

    The hypertensive double transgenic rat harboring both the human renin and human angiotensinogen genes (dTGR) offers a unique opportunity to study the human renin-angiotensin system in an experimental animal model. Since nothing is known about the control of sodium and water excretion in these rats, this study was performed to compare pressure-natriuresis relationships in hypertensive dTGR and normotensive control rats harboring only the human renin gene (hREN), in order to determine how the pressure-natriuresis relationship is reset in hypertensive dTGR. To differentiate between extrinsic and intrinsic renal mechanisms, experiments were performed with and without renal denervation, and with and without infusions of vasopressin, norepinephrine, 17-OH-corticosterone, and aldosterone. Human and rat angiotensinogen and renin mRNA expression were also determined. In hREN without controlled renal function, urine flow and sodium excretion increased from 13 to 169 microl/min per g kidney wet weight (kwt) and from 1 to 30 micromol/min per g kwt, respectively, as renal perfusion pressure was increased from 67 to 135 mmHg. Renal blood flow (RBF) and GFR ranged between 3 to 7 and 0.9 to 1.5 ml/min per g kwt. In dTGR, pressure-natriuresis-diuresis relationships were shifted approximately 40 mmHg rightward. RBF was lower in dTGR than in hREN; GFR was not different. In dTGR with neurohormonal factors controlled, RBF was decreased and pressure-natriuresis-diuresis curves were not different compared to dTGR curves without these interventions. By light microscopy, the kidneys of these 6-wk-old dTGR and hREN rats were normal and indistinguishable. Both human and rat renin and angiotensinogen mRNA were expressed in the kidneys of dTGR. The two renin mRNA were decreased in dTGR, indicating a physiologic downregulation of renin gene expression by high BP. It is concluded that the renal pressure-natriuresis mechanism is reset toward higher pressure levels in dTGR and participates in the

  19. Accurate Gene Expression-Based Biodosimetry Using a Minimal Set of Human Gene Transcripts

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, James D., E-mail: jtucker@biology.biosci.wayne.edu [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Joiner, Michael C. [Department of Radiation Oncology, Wayne State University, Detroit, Michigan (United States); Thomas, Robert A.; Grever, William E.; Bakhmutsky, Marina V. [Department of Biological Sciences, Wayne State University, Detroit, Michigan (United States); Chinkhota, Chantelle N.; Smolinski, Joseph M. [Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan (United States); Divine, George W. [Department of Public Health Sciences, Henry Ford Hospital, Detroit, Michigan (United States); Auner, Gregory W. [Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan (United States)

    2014-03-15

    Purpose: Rapid and reliable methods for conducting biological dosimetry are a necessity in the event of a large-scale nuclear event. Conventional biodosimetry methods lack the speed, portability, ease of use, and low cost required for triaging numerous victims. Here we address this need by showing that polymerase chain reaction (PCR) on a small number of gene transcripts can provide accurate and rapid dosimetry. The low cost and relative ease of PCR compared with existing dosimetry methods suggest that this approach may be useful in mass-casualty triage situations. Methods and Materials: Human peripheral blood from 60 adult donors was acutely exposed to cobalt-60 gamma rays at doses of 0 (control) to 10 Gy. mRNA expression levels of 121 selected genes were obtained 0.5, 1, and 2 days after exposure by reverse-transcriptase real-time PCR. Optimal dosimetry at each time point was obtained by stepwise regression of dose received against individual gene transcript expression levels. Results: Only 3 to 4 different gene transcripts, ASTN2, CDKN1A, GDF15, and ATM, are needed to explain ≥0.87 of the variance (R{sup 2}). Receiver-operator characteristics, a measure of sensitivity and specificity, of 0.98 for these statistical models were achieved at each time point. Conclusions: The actual and predicted radiation doses agree very closely up to 6 Gy. Dosimetry at 8 and 10 Gy shows some effect of saturation, thereby slightly diminishing the ability to quantify higher exposures. Analyses of these gene transcripts may be advantageous for use in a field-portable device designed to assess exposures in mass casualty situations or in clinical radiation emergencies.

  20. Gene duplication of the human peptide YY gene (PYY) generated the pancreatic polypeptide gene (PPY) on chromosome 17q21.1

    Energy Technology Data Exchange (ETDEWEB)

    Hort, Y.; Shine, J.; Herzog, H. [Garvan Inst. of Medical Research, Sydney (Australia)

    1995-03-01

    Neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) are structurally related but functionally diverse peptides, encoded by separate genes and expressed in different tissues. Although the human NPY gene has been mapped to chromosome 7, the authors demonstrate here that the genes for human PYY and PP (PPY) are localized only 10 kb apart from each another on chromosome 17q21.1. The high degree of homology between the members of this gene family, both in primary sequence and exon/intron structure, suggests that the NYP and the PYY genes arose from an initial gene duplication event, with a subsequent tandem duplication of the PYY gene being responsible for the creation of the PPY gene. A second weaker hybridization signal also found on chromosome 17q11 and results obtained by Southern blot analysis suggest that the entire PYY-PPY region has undergone a further duplication event. 27 refs., 5 figs.

  1. Gene Transfection of Human Turbinate Mesenchymal Stromal Cells Derived from Human Inferior Turbinate Tissues

    Directory of Open Access Journals (Sweden)

    Jin Seon Kwon

    2016-01-01

    Full Text Available Human turbinate mesenchymal stromal cells (hTMSCs are novel stem cells derived from nasal inferior turbinate tissues. They are easy to isolate from the donated tissue after turbinectomy or conchotomy. In this study, we applied hTMSCs to a nonviral gene delivery system using polyethyleneimine (PEI as a gene carrier; furthermore, the cytotoxicity and transfection efficiency of hTMSCs were evaluated to confirm their potential as resources in gene therapy. DNA-PEI nanoparticles (NPs were generated by adding the PEI solution to DNA and were characterized by a gel electrophoresis and by measuring particle size and surface charge of NPs. The hTMSCs were treated with DNA-PEI NPs for 4 h, and toxicity of NPs to hTMSCs and gene transfection efficiency were monitored using MTT assay, fluorescence images, and flow cytometry after 24 h and 48 h. At a high negative-to-positive charge ratio, DNA-PEI NPs treatment led to cytotoxicity of hTMSCs, but the transfection efficiency of DNA was increased due to the electrostatic effect between the NPs and the membranes of hTMSCs. Importantly, the results of this research verified that PEI could deliver DNA into hTMSCs with high efficiency, suggesting that hTMSCs could be considered as untapped resources for applications in gene therapy.

  2. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  3. FOXO3 – A Major Gene for Human Longevity

    Science.gov (United States)

    Morris, Brian J.; Willcox, D. Craig; Donlon, Timothy A.; Willcox, Bradley J.

    2015-01-01

    Background The gene FOXO3, encoding the transcription factor forkhead box O-3 (FoxO3), is one of only two for which genetic polymorphisms have exhibited consistent associations with longevity in diverse human populations. Objective Here we review the multitude of actions of FoxO3 that are relevant to health, and thus healthy ageing and longevity. Methods Literature search for articles retrieved from PubMed using FoxO3 as keyword. Results We review the molecular genetics of FOXO3 in longevity, then current knowledge of FoxO3 function relevant to ageing and lifespan. We describe how FoxOs are involved in energy metabolism, oxidative stress, proteostasis, apoptosis, cell cycle regulation, metabolic processes, immunity, inflammation and stem cell maintenance. The single FoxO in Hydra confers immortality to this fresh water polyp, but as more complex organisms evolved this role has been usurped by the need for FoxO to control a broader range of specialized pathways across a wide spectrum of tissues assisted by the advent of as many as 4 FoxO subtypes in mammals. The major themes of FoxO3 are similar, but not identical, to other FoxOs and include regulation of cellular homeostasis, particularly of stem cells, and of inflammation, which is a common theme of age-related diseases. Other functions concern metabolism, cell cycle arrest, apoptosis, destruction of potentially damaging reactive oxygen species, and proteostasis. Conclusions The mechanism by which longevity-associated alleles of FOXO3 reduce age-related mortality is currently of great clinical interest. The prospect of optimizing FoxO3 activity in humans to increase lifespan and reduce age-related diseases represents an exciting avenue of clinical investigation. Research strategies directed at developing therapeutic agents that target FoxO3, its gene and proteins in the pathway(s) FoxO3 regulates should be encouraged and supported. PMID:25832544

  4. Epigenetic signature and enhancer activity of the human APOE gene

    Science.gov (United States)

    Yu, Chang-En; Cudaback, Eiron; Foraker, Jessica; Thomson, Zachary; Leong, Lesley; Lutz, Franziska; Gill, James Anthony; Saxton, Aleen; Kraemer, Brian; Navas, Patrick; Keene, C. Dirk; Montine, Thomas; Bekris, Lynn M.

    2013-01-01

    The human apolipoprotein E (APOE) gene plays an important role in lipid metabolism. It has three common genetic variants, alleles ɛ2/ɛ3/ɛ4, which translate into three protein isoforms of apoE2, E3 and E4. These isoforms can differentially influence total serum cholesterol levels; therefore, APOE has been linked with cardiovascular disease. Additionally, its ɛ4 allele is strongly associated with the risk of Alzheimer's disease (AD), whereas the ɛ2 allele appears to have a modest protective effect for AD. Despite decades of research having illuminated multiple functional differences among the three apoE isoforms, the precise mechanisms through which different APOE alleles modify diseases risk remain incompletely understood. In this study, we examined the genomic structure of APOE in search for properties that may contribute novel biological consequences to the risk of disease. We identify one such element in the ɛ2/ɛ3/ɛ4 allele-carrying 3′-exon of APOE. We show that this exon is imbedded in a well-defined CpG island (CGI) that is highly methylated in the human postmortem brain. We demonstrate that this APOE CGI exhibits transcriptional enhancer/silencer activity. We provide evidence that this APOE CGI differentially modulates expression of genes at the APOE locus in a cell type-, DNA methylation- and ɛ2/ɛ3/ɛ4 allele-specific manner. These findings implicate a novel functional role for a 3′-exon CGI and support a modified mechanism of action for APOE in disease risk, involving not only the protein isoforms but also an epigenetically regulated transcriptional program at the APOE locus driven by the APOE CGI. PMID:23892237

  5. Human leucocyte antigens and cytokine gene polymorphisms and tuberculosis

    Directory of Open Access Journals (Sweden)

    A Akgunes

    2011-01-01

    Full Text Available Purpose: Several genes encoding different cytokines and human leucocyte antigens (HLA may play crucial roles in host susceptibility to tuberculosis (TB. Our objective was to investigate whether these genes might be associated with protection from or susceptibility to TB. Materials and Methods: Genomic DNA from patients with TB (n = 30 and ethnically matched controls (n = 30 was genotyped by using sequence-specific primers-polymerase chain reaction and sequence-specific oligonucletid methods. Results: Our results demonstrated that HLA-CwFNx0101 [P = 0.05, odds ration (OR (95% confidence interval = 2.269 (1.702-3.027] allele frequency was significantly more common in TB patients than in healthy controls, and HLA-CwFNx0101 may be associated with susceptibility to TB. Analysis of cytokine allele frequencies showed that interleukin (IL-10, -819 C and -592 C alleles was significantly more common in TB patients than in controls (pc: 0.038 and 0.017, respectively. From the IL-10 cluster, a positive significant difference was found at positions -1082 and -592 C/C (pc: 0.027 and 0.054, respectively genotypes. Although these differences could be explained by the highest frequency of C/C and G/G homozygous patients with TB, in contrast to the control group, statistically significant differences for the C/C genotype however were lost after Bonferroni correction of the P-values. Conclusion: Altogether, our results suggest that the polymorphisms in HLA (class I and cytokine (IL-10 genes may affect the susceptibility to TB and increase the risk of developing the disease.

  6. Polymorphism of the human vitronectin gene causes vitronectin blood type.

    Science.gov (United States)

    Kubota, K; Hayashi, M; Oishi, N; Sakaki, Y

    1990-03-30

    Human blood plasma/sera are classified into three distinct vitronectin types based on the relative amount of the 75 kDa polypeptide to its cleavage product of 65 kDa. We asked whether the vitronectin blood types correlated with the polymorphism of the vitronectin gene. A portion of the vitronectin gene was amplified by using polymerase chain reaction and digested with a restriction enzyme PmaC I which may distinguish the base sequence causing the polymorphic change at the amino acid position 381. Amplified DNAs of the blood type I (75 kDa-rich), II (75/65 kDa-even), and III (65 kDa-rich) were shown to be resistant, moderately sensitive and completely sensitive to PmaC I, respectively. These results suggest that Thr at position 381 is essential for the cleavage of the vitronectin 75 kDa polypeptide and that three possible combinations of two codominant alleles of vitronectin determine three vitronectin blood types.

  7. Correlation between Gene Expression and Osteoarthritis Progression in Human

    Directory of Open Access Journals (Sweden)

    Leilei Zhong

    2016-07-01

    Full Text Available Osteoarthritis (OA is a multifactorial disease characterized by gradual degradation of joint cartilage. This study aimed to quantify major pathogenetic factors during OA progression in human cartilage. Cartilage specimens were isolated from OA patients and scored 0–5 according to the Osteoarthritis Research Society International (OARSI guidelines. Protein and gene expressions were measured by immunohistochemistry and qPCR, respectively. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assays were used to detect apoptotic cells. Cartilage degeneration in OA is a gradual progress accompanied with gradual loss of collagen type II and a gradual decrease in mRNA expression of SOX9, ACAN and COL2A1. Expression of WNT antagonists DKK1 and FRZB was lost, while hypertrophic markers (RUNX2, COL10A1 and IHH increased during OA progression. Moreover, DKK1 and FRZB negatively correlated with OA grading, while RUNX2 and IHH showed a significantly positive correlation with OA grading. The number of apoptotic cells was increased with the severity of OA. Taken together, our results suggested that genetic profiling of the gene expression could be used as markers for staging OA at the molecular level. This helps to understand the molecular pathology of OA and may lead to the development of therapies based on OA stage.

  8. Activation of the human beta interferon gene by the adenovirus type 12 E1B gene

    Energy Technology Data Exchange (ETDEWEB)

    Shiroki, K.; Toth, M.

    1988-01-01

    The transcription of endogenous beta interferon mRNA was activated in human embryo kidney (HEK) cells infected with adenovirus 12 (Ad12) but was activated only inefficiently or not at all in HEK cells infected with Ad5 and rc-1 (Ad5 dl312 containing the Ad12 E1A region). The analysis with Ad12 mutants showed that Ad12 E1B products, especially the 19K protein, were important for the expression of the endogenous beta interferon gene and Ad12 E1A products were not involved in the expression. The expression of exogeneously transfected pIFN-CAT (a hybrid plasmid having the human beta interferon promoter fused with the CAT gene) was activated in HEK and chicken embryo fibroblast (CEF) cells infected with either Ad12 or Ad5. The analysis of cotransfection of CEF cells with pIFN-CAT and plasmids containing fragments of Ad12 or Ad5 DNA showed that Ad12 or Ad5 E1B (possibly the 19K protein) was and E1A was not involved in the expression of the exogenous pIFN-CAT.

  9. Human identification from forensic materials by amplification of a human-specific sequence in the myoglobin gene.

    OpenAIRE

    Ono T; Miyaishi S; Yamamoto Y; Yoshitome K; Ishikawa T.; Ishizu H

    2001-01-01

    We developed a method for human identification of forensic biological materials by PCR-based detection of a human-specific sequence in exon 3 of the myoglobin gene. This human-specific DNA sequence was deduced from differences in the amino acid sequences of myoglobins between humans and other animal species. The new method enabled amplification of the target DNA fragment from 30 samples of human DNA, and the amplified sequences were identical with that already reported. Using this method, we ...

  10. Properties of human disease genes and the role of genes linked to Mendelian disorders in complex disease aetiology

    Science.gov (United States)

    Spataro, Nino; Rodríguez, Juan Antonio; Navarro, Arcadi

    2017-01-01

    Abstract Do genes presenting variation that has been linked to human disease have different biological properties than genes that have never been related to disease? What is the relationship between disease and fitness? Are the evolutionary pressures that affect genes linked to Mendelian diseases the same to those acting on genes whose variation contributes to complex disorders? The answers to these questions could shed light on the architecture of human genetic disorders and may have relevant implications when designing mapping strategies in future genetic studies. Here we show that, relative to non-disease genes, human disease (HD) genes have specific evolutionary profiles and protein network properties. Additionally, our results indicate that the mutation-selection balance renders an insufficient account of the evolutionary history of some HD genes and that adaptive selection could also contribute to shape their genetic architecture. Notably, several biological features of HD genes depend on the type of pathology (complex or Mendelian) with which they are related. For example, genes harbouring both causal variants for Mendelian disorders and risk factors for complex disease traits (Complex-Mendelian genes), tend to present higher functional relevance in the protein network and higher expression levels than genes associated only with complex disorders. Moreover, risk variants in Complex-Mendelian genes tend to present higher odds ratios than those on genes associated with the same complex disorders but with no link to Mendelian diseases. Taken together, our results suggest that genetic variation at genes linked to Mendelian disorders plays an important role in driving susceptibility to complex disease. PMID:28053046

  11. Tracking of iron-labeled human neural stem cells by magnetic resonance imaging in cell replacement therapy for Parkinson's disease.

    Science.gov (United States)

    Ramos-Gómez, Milagros; Martínez-Serrano, Alberto

    2016-01-01

    Human neural stem cells (hNSCs) derived from the ventral mesencephalon are powerful research tools and candidates for cell therapies in Parkinson's disease. However, their clinical translation has not been fully realized due, in part, to the limited ability to track stem cell regional localization and survival over long periods of time after in vivo transplantation. Magnetic resonance imaging provides an excellent non-invasive method to study the fate of transplanted cells in vivo. For magnetic resonance imaging cell tracking, cells need to be labeled with a contrast agent, such as magnetic nanoparticles, at a concentration high enough to be easily detected by magnetic resonance imaging. Grafting of human neural stem cells labeled with magnetic nanoparticles allows cell tracking by magnetic resonance imaging without impairment of cell survival, proliferation, self-renewal, and multipotency. However, the results reviewed here suggest that in long term grafting, activated microglia and macrophages could contribute to magnetic resonance imaging signal by engulfing dead labeled cells or iron nanoparticles dispersed freely in the brain parenchyma over time.

  12. High-Performance and Distributed Computing in a Probabilistic Finite Element Comparison Study of the Human Lower Leg Model with Total Knee Replacement

    CERN Document Server

    Arsene, Corneliu

    2016-01-01

    Reliability theory is used to assess the sensitivity of a passive flexion and active flexion of the human lower leg Finite Element (FE) models with Total Knee Replacement (TKR) to the variability in the input parameters of the respective FE models. The sensitivity of the active flexion simulating the stair ascent of the human lower leg FE model with TKR was presented before in [1,2] whereas now in this paper a comparison is made with the passive flexion of the human lower leg FE model with TKR. First, with the Monte Carlo Simulation Technique (MCST), a number of randomly generated input data of the FE model(s) are obtained based on the normal standard deviations of the respective input parameters. Then a series of FE simulations are done and the output kinematics and peak contact pressures are obtained for the respective FE models (passive flexion and/or active flexion models). Seven output performance measures are reported for the passive flexion model and one more parameter was reported for the active flexi...

  13. Characterization of 12 silent alleles of the human butyrylcholinesterase (BCHE) gene

    Energy Technology Data Exchange (ETDEWEB)

    Primo-Parmo, S.L.; Wiersema, B.; Spek, A.F.L. van der [Univ. of Michigan Medical School, Ann Arbor, MI (United States)] [and others

    1996-01-01

    The silent phenotype of human butyrylcholinesterase (BChE), present in most human populations in frequencies of {approximately}1/100,000, is characterized by the complete absence of BChE activity or by activity < 10 % of the average levels of the usual phenotype. Heterogeneity in this phenotype has been well established at the phenotypic level, but only a few silent BCHE alleles have been characterized at the DNA level. Twelve silent alleles of the human butyrylcholinesterase gene (BCHE) have been identified in 17 apparently unrelated patients who were selected by their increased sensitivity to the muscle relaxant succinylcholine. All of these alleles are characterized by single nucleotide substitutions or deletions leading to distinct changes in the structure of the BChE enzyme molecule. Nine of the nucleotide substitutions result in the replacement of single amino acid residues. Three of these variants, BCHE*33C, BCHE*198G, and BCHE*201T, produce normal amounts of immunoreactive but enzymatically inactive BChE protein in the plasma. The other six amino acid substitutions, encoded by BCHE*37S, BCHE*125F, BCHE*170E, BCHE-471R, and BCHE*518L, seem to cause reduced expression of BChE protein, and their role in determining the silent phenotype was confirmed by expression in cell culture. The other four silent alleles, BCHE*271STOP, BCHE*500STOP, BCHE*FS6, and BCHE*I2E3-8G, encode BChEs truncated at their C-terminus because of premature stop codons caused by nucleotide substitutions, a frame shift, or altered splicing. The large number of different silent BCHE alleles found within a relatively small number of patients shows that the heterogeneity of the silent BChE phenotype is high. The characterization of silent BChE variants will be useful in the study of the structure/function relationship for this and other closely related enzymes. 83 refs., 3 figs., 4 tabs.

  14. Human genes with a greater number of transcript variants tend to show biological features of housekeeping and essential genes

    DEFF Research Database (Denmark)

    Ryu, Jae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2015-01-01

    64 vertebrate species as orthologs, subjected to regulations by transcription factors and microRNAs, and showed hub node-like properties in the human protein-protein interaction network. These findings were also confirmed by metabolic simulations of 60 cancer metabolic models. All these results......Alternative splicing is a process observed in gene expression that results in a multi-exon gene to produce multiple mRNA variants which might have different functions and activities. Although physiologically important, many aspects of genes with different number of transcript variants (or splice...... variants) still remain to be characterized. In this study, we provide bioinformatic evidence that genes with a greater number of transcript variants are more likely to play functionally important roles in cells, compared with those having fewer transcript variants. Among 21 983 human genes, 3728 genes were...

  15. Evolutionary hallmarks of the human proteome: chasing the age and coregulation of protein-coding genes.

    Science.gov (United States)

    Lopes, Katia de Paiva; Campos-Laborie, Francisco José; Vialle, Ricardo Assunção; Ortega, José Miguel; De Las Rivas, Javier

    2016-10-25

    The development of large-scale technologies for quantitative transcriptomics has enabled comprehensive analysis of the gene expression profiles in complete genomes. RNA-Seq allows the measurement of gene expression levels in a manner far more precise and global than previous methods. Studies using this technology are altering our view about the extent and complexity of the eukaryotic transcriptomes. In this respect, multiple efforts have been done to determine and analyse the gene expression patterns of human cell types in different conditions, either in normal or pathological states. However, until recently, little has been reported about the evolutionary marks present in human protein-coding genes, particularly from the combined perspective of gene expression and protein evolution. We present a combined analysis of human protein-coding gene expression profiling and time-scale ancestry mapping, that places the genes in taxonomy clades and reveals eight evolutionary major steps ("hallmarks"), that include clusters of functionally coherent proteins. The human expressed genes are analysed using a RNA-Seq dataset of 116 samples from 32 tissues. The evolutionary analysis of the human proteins is performed combining the information from: (i) a database of orthologous proteins (OMA), (ii) the taxonomy mapping of genes to lineage clades (from NCBI Taxonomy) and (iii) the evolution time-scale mapping provided by TimeTree (Timescale of Life). The human protein-coding genes are also placed in a relational context based in the construction of a robust gene coexpression network, that reveals tighter links between age-related protein-coding genes and finds functionally coherent gene modules. Understanding the relational landscape of the human protein-coding genes is essential for interpreting the functional elements and modules of our active genome. Moreover, decoding the evolutionary history of the human genes can provide very valuable information to reveal or uncover their

  16. Evolutionary hallmarks of the human proteome: chasing the age and coregulation of protein-coding genes

    Directory of Open Access Journals (Sweden)

    Katia de Paiva Lopes

    2016-10-01

    Full Text Available Abstract Background The development of large-scale technologies for quantitative transcriptomics has enabled comprehensive analysis of the gene expression profiles in complete genomes. RNA-Seq allows the measurement of gene expression levels in a manner far more precise and global than previous methods. Studies using this technology are altering our view about the extent and complexity of the eukaryotic transcriptomes. In this respect, multiple efforts have been done to determine and analyse the gene expression patterns of human cell types in different conditions, either in normal or pathological states. However, until recently, little has been reported about the evolutionary marks present in human protein-coding genes, particularly from the combined perspective of gene expression and protein evolution. Results We present a combined analysis of human protein-coding gene expression profiling and time-scale ancestry mapping, that places the genes in taxonomy clades and reveals eight evolutionary major steps (“hallmarks”, that include clusters of functionally coherent proteins. The human expressed genes are analysed using a RNA-Seq dataset of 116 samples from 32 tissues. The evolutionary analysis of the human proteins is performed combining the information from: (i a database of orthologous proteins (OMA, (ii the taxonomy mapping of genes to lineage clades (from NCBI Taxonomy and (iii the evolution time-scale mapping provided by TimeTree (Timescale of Life. The human protein-coding genes are also placed in a relational context based in the construction of a robust gene coexpression network, that reveals tighter links between age-related protein-coding genes and finds functionally coherent gene modules. Conclusions Understanding the relational landscape of the human protein-coding genes is essential for interpreting the functional elements and modules of our active genome. Moreover, decoding the evolutionary history of the human genes can

  17. The human cytomegalovirus UL76 gene regulates the level of expression of the UL77 gene.

    Directory of Open Access Journals (Sweden)

    Hiroki Isomura

    Full Text Available BACKGROUND: Human cytomegalovirus (HCMV can be reactivated under immunosuppressive conditions causing several fatal pneumonitis, hepatitis, retinitis, and gastrointestinal diseases. HCMV also causes deafness and mental retardation in neonates when primary infection has occurred during pregnancy. In the genome of HCMV at least 194 known open reading frames (ORFs have been predicted, and approximately one-quarter, or 41 ORFs, are required for viral replication in cell culture. In contrast, the majority of the predicted ORFs are nonessential for viral replication in cell culture. However, it is also possible that these ORFs are required for the efficient viral replication in the host. The UL77 gene of HCMV is essential for viral replication and has a role in viral DNA packaging. The function of the upstream UL76 gene in the HCMV-infected cells is not understood. UL76 and UL77 are cistons on the same viral mRNA and a conventional 5' mRNA for UL77 has not been detected. The vast majority of eukaryotic mRNAs are monocistronic, i.e., they encode only a single protein. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether the UL76 ORF affects UL77 gene expression, we mutated UL76 by ORF frame-shifts, stop codons or deletion of the viral gene. The effect on UL77 protein expression was determined by either transfection of expression plasmids or infection with recombinant viruses. Mutation of UL76 ORF significantly increased the level of UL77 protein expression. However, deletion of UL76 upstream of the UL77 ORF had only marginal effects on viral growth. CONCLUSIONS/SIGNIFICANCE: While UL76 is not essential for viral replication, the UL76 ORF is involved in regulation of the level of UL77 protein expression in a manner dependent on the translation re-initiation. UL76 may fine-tune the UL77 expression for the efficient viral replication in the HCMV- infected cells.

  18. Diversity of human and mouse homeobox gene expression in development and adult tissues.

    Science.gov (United States)

    Dunwell, Thomas L; Holland, Peter W H

    2016-11-03

    Homeobox genes encode a diverse set of transcription factors implicated in a vast range of biological processes including, but not limited to, embryonic cell fate specification and patterning. Although numerous studies report expression of particular sets of homeobox genes, a systematic analysis of the tissue specificity of homeobox genes is lacking. Here we analyse publicly-available transcriptome data from human and mouse developmental stages, and adult human tissues, to identify groups of homeobox genes with similar expression patterns. We calculate expression profiles for 242 human and 278 mouse homeobox loci across a combination of 59 human and 12 mouse adult tissues, early and late developmental stages. This revealed 20 human homeobox genes with widespread expression, primarily from the TALE, CERS and ZF classes. Most homeobox genes, however, have greater tissue-specificity, allowing us to compile homeobox gene expression lists for neural tissues, immune tissues, reproductive and developmental samples, and for numerous organ systems. In mouse development, we propose four distinct phases of homeobox gene expression: oocyte to zygote; 2-cell; 4-cell to blastocyst; early to mid post-implantation. The final phase change is marked by expression of ANTP class genes. We also use these data to compare expression specificity between evolutionarily-based gene classes, revealing that ANTP, PRD, LIM and POU homeobox gene classes have highest tissue specificity while HNF, TALE, CUT and CERS are most widely expressed. The homeobox genes comprise a large superclass and their expression patterns are correspondingly diverse, although in a broad sense related to an evolutionarily-based classification. The ubiquitous expression of some genes suggests roles in general cellular processes; in contrast, most human homeobox genes have greater tissue specificity and we compile useful homeobox datasets for particular tissues, organs and developmental stages. The identification of a

  19. Gene expression profile differences in high and low metastatic human ovarian cancer cell lines by gene chip

    Institute of Scientific and Technical Information of China (English)

    许沈华; 牟瀚舟; 吕桂泉; 朱赤红; 羊正炎; 高永良; 楼洪坤; 刘祥麟; 程勇; 杨文

    2002-01-01

    Objectives To study the difference between gene expressions of high (H0-8910PM) and low (HO-8910) metastatic human ovarian carcinoma cell lines and screen novel associated genes by cDNA microarray. Methods cDNA retro-transcribed from equal quantities of mRNA derived from high and low metastatic tumor cells or normal ovarian tissues were labeled with Cy5 and Cy3 fluorescein as probes. The mixed probe was hybridized with two pieces of BioDoor 4096 double dot human whole gene chip and scanned with a ScanArray 3000 laser scanner. The acquired image was analyzed by ImaGene 3.0 software. Results A total of 355 genes with expression levels more than 3 times larger were found by comparing the HO-8910 cell with normal ovarian epithelial cells. A total of 323 genes with expression levels more than 3 times larger in HO-8910PM cells compared to normal ovarian epithelium cells were also detected. A total of 165 genes whose expression levels were more than two times those of HO-8910PM cells compared to their mother cell line (HO-8910) were detected. Twenty-one genes with expression levels >3 times were found from comparison of these two tumor cell lines.Conclusions cDNA microarray techniques are effective in screening differential gene expression between two human ovarian cancer cell lines (H0-8910PM; HO-8910) and normal ovarian epithelial cells. These genes may be related to the genesis and development of ovarian carcinoma. Analysis of the human ovarian cancer gene expression profile with cDNA microarray may help in gene diagnosis, treatment and prevention.

  20. Validation of endogenous control genes for gene expression studies on human ocular surface epithelium.

    Directory of Open Access Journals (Sweden)

    Bina Kulkarni

    Full Text Available PURPOSE: To evaluate a panel of ten known endogenous control genes (ECG with quantitative reverse transcription PCR (qPCR, for identification of stably expressed endogenous control genes in the ocular surface (OS epithelial regions including cornea, limbus, limbal epithelial crypt and conjunctiva to normalise the quantitative reverse transcription PCR data of genes of interest expressed in above-mentioned regions. METHOD: The lasermicrodissected (LMD OS epithelial regions of cryosectioned corneoscleral buttons from the cadaver eyes were processed for RNA extraction and cDNA synthesis to detect genes of interest with qPCR. Gene expression of 10 known ECG--glyceraldehyde-3-phosphate dehydrogenase (GAPDH, beta actin (ACTB, peptidylprolyl isomerase (PPIA, TATA-box binding protein (TBP1, hypoxanthine guanine phosphoribosyl transferase (HPRT1, beta glucuronidase (GUSB, Eucaryotic 18S ribosomal RNA (18S, phosphoglycerate kinase (PGK1, beta-2-microglobulin (B2M, ribosomal protein, large, P0 (RPLP0--was measured in the OS epithelial regions by qPCR method and the data collected was further analysed using geNorm software. RESULTS: The expression stability of ecgs in the os epithelial regions in increasing order as determined with genorm software is as follows: ACTB<18Sgenes of interest. The results from this study are broadly applicable to quantitative reverse transcription PCR studies on human OS epithelium and provide evidence for the use

  1. Methods for the identification of mutations in the human phenylalanine hydroxylase gene using DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Woo, S.L.C.; Dilella, A.G.

    1990-10-23

    This patent describes a method of detecting a mutation in a phenylalanine hydroxylase gene of human genomic DNA. Also described is an automated method of detecting PKU affected, PKU helerozgotes and normals in fetal to adult human samples.

  2. Factors affecting the gene expression of in vitro cultured human preimplantation embryos

    NARCIS (Netherlands)

    Mantikou, E.; Jonker, M.J.; Wong, K.M.; van Montfoort, A.P.A.; de Jong, M.; Breit, T.M.; Repping, S.; Mastenbroek, S.

    2016-01-01

    STUDY QUESTION: What is the relative effect of common environmental and biological factors on transcriptome changes during human preimplantation development? SUMMARY ANSWER: Developmental stage and maternal age had a larger effect on the global gene expression profile of human preimplantation

  3. A Human "eFP" Browser for Generating Gene Expression Anatograms.

    Science.gov (United States)

    Patel, Rohan V; Hamanishi, Erin T; Provart, Nicholas J

    2016-01-01

    Transcriptomic studies help to further our understanding of gene function. Human transcriptomic studies tend to focus on a particular subset of tissue types or a particular disease state; however, it is possible to collate into a compendium multiple studies that have been profiled using the same expression analysis platform to provide an overview of gene expression levels in many different tissues or under different conditions. In order to increase the knowledge and understanding we gain from such studies, intuitive visualization of gene expression data in such a compendium can be useful. The Human eFP ("electronic Fluorescent Pictograph") Browser presented here is a tool for intuitive visualization of large human gene expression data sets on pictographic representations of the human body as gene expression "anatograms". Pictographic representations for new data sets may be generated easily. The Human eFP Browser can also serve as a portal to other gene-specific information through link-outs to various online resources.

  4. Gene expression analysis uncovers novel hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells.

    Science.gov (United States)

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J Fah; Cho, Michael H; Mancini, John D; Lao, Taotao; Thibault, Derek M; Litonjua, Augusto A; Bakke, Per S; Gulsvik, Amund; Lomas, David A; Beaty, Terri H; Hersh, Craig P; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A; Rennard, Stephen I; Perrella, Mark A; Choi, Augustine M K; Quackenbush, John; Silverman, Edwin K

    2013-05-01

    Hedgehog interacting protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis.

  5. Network properties of complex human disease genes identified through genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Fredrik Barrenas

    Full Text Available BACKGROUND: Previous studies of network properties of human disease genes have mainly focused on monogenic diseases or cancers and have suffered from discovery bias. Here we investigated the network properties of complex disease genes identified by genome-wide association studies (GWAs, thereby eliminating discovery bias. PRINCIPAL FINDINGS: We derived a network of complex diseases (n = 54 and complex disease genes (n = 349 to explore the shared genetic architecture of complex diseases. We evaluated the centrality measures of complex disease genes in comparison with essential and monogenic disease genes in the human interactome. The complex disease network showed that diseases belonging to the same disease class do not always share common disease genes. A possible explanation could be that the variants with higher minor allele frequency and larger effect size identified using GWAs constitute disjoint parts of the allelic spectra of similar complex diseases. The complex disease gene network showed high modularity with the size of the largest component being smaller than expected from a randomized null-model. This is consistent with limited sharing of genes between diseases. Complex disease genes are less central than the essential and monogenic disease genes in the human interactome. Genes associated with the same disease, compared to genes associated with different diseases, more often tend to share a protein-protein interaction and a Gene Ontology Biological Process. CONCLUSIONS: This indicates that network neighbors of known disease genes form an important class of candidates for identifying novel genes for the same disease.

  6. Network properties of complex human disease genes identified through genome-wide association studies.

    Science.gov (United States)

    Barrenas, Fredrik; Chavali, Sreenivas; Holme, Petter; Mobini, Reza; Benson, Mikael

    2009-11-30

    Previous studies of network properties of human disease genes have mainly focused on monogenic diseases or cancers and have suffered from discovery bias. Here we investigated the network properties of complex disease genes identified by genome-wide association studies (GWAs), thereby eliminating discovery bias. We derived a network of complex diseases (n = 54) and complex disease genes (n = 349) to explore the shared genetic architecture of complex diseases. We evaluated the centrality measures of complex disease genes in comparison with essential and monogenic disease genes in the human interactome. The complex disease network showed that diseases belonging to the same disease class do not always share common disease genes. A possible explanation could be that the variants with higher minor allele frequency and larger effect size identified using GWAs constitute disjoint parts of the allelic spectra of similar complex diseases. The complex disease gene network showed high modularity with the size of the largest component being smaller than expected from a randomized null-model. This is consistent with limited sharing of genes between diseases. Complex disease genes are less central than the essential and monogenic disease genes in the human interactome. Genes associated with the same disease, compared to genes associated with different diseases, more often tend to share a protein-protein interaction and a Gene Ontology Biological Process. This indicates that network neighbors of known disease genes form an important class of candidates for identifying novel genes for the same disease.

  7. The role of EKLF in human beta-globin gene competition.

    Science.gov (United States)

    Wijgerde, M; Gribnau, J; Trimborn, T; Nuez, B; Philipsen, S; Grosveld, F; Fraser, P

    1996-11-15

    We have investigated the role of erythroid Kruppel-like factor (EKLF) in expression of the human beta-globin genes in compound EKLF knockout/human beta-locus transgenic mice. EKLF affects only the adult mouse beta-globin genes in homozygous knockout mice; heterozygous mice are unaffected. Here we show that EKLF knockout mice express the human epsilon and gamma-globin genes normally in embryonic red cells. However, fetal liver erythropoiesis, which is marked by a period of gamma- and beta-gene competition in which the genes are alternately transcribed, exhibits an altered ratio of gamma- to beta-gene transcription. EKLF heterozygous fetal livers display a decrease in the number of transcriptionally active beta genes with a reciprocal increase in the number of transcriptionally active gamma genes. beta-Gene transcription is absent in homozygous knockout fetuses with coincident changes in chromatin structure at the beta promoter. There is a further increase in the number of transcriptionally active gamma genes and accompanying gamma gene promoter chromatin alterations. These results indicate that EKLF plays a major role in gamma- and beta-gene competition and suggest that EKLF is important in stabilizing the interaction between the Locus Control Region and the beta-globin gene. In addition, these findings provide further evidence that developmental modulation of globin gene expression within individual cells is accomplished by altering the frequency and/or duration of transcriptional periods of a gene rather than changing the rate of transcription.

  8. Islet neogenesis potential of human adult stem cells and its applications in cell replacement therapy for diabetes

    Directory of Open Access Journals (Sweden)

    Bhonde RR

    2008-11-01

    Full Text Available In recent years regenerative biology has reached to greater heights due to its therapeutic potential in treating degenerative diseases; as they are not curable by modern medicine. With the advent of research in stem cells and developmental biology the regenerative potential of adult resident stem cells is becoming clearer. The long term objective of regenerative medicine or cell therapy is to treat patients with their own stem cells. These stem cells could be derived from the diseased organs such as skin, liver, pancreas etc. or from reservoirs of multipotent stem cells such as bone marrow or cord blood.Manipulating the ability of tissue resident stem cells as well as from multipotent reservoirs such as bone marrow, umbilical cord and cord blood to give rise to endocrine cells may open new avenues in the treatment of diabetes. A better understanding of stem cell biology would almost certainly allow for the establishment of efficient and reliable cell transplantation experimental programs in the clinic. We show here that multipotent mesenchymal stem cells can be isolated from various sources such as the bone marrow, placenta, umbilical cord. Upon stimulation with specific growth factors they differentiate into islet like clusters (ILCs. When ILCs obtained from the above mentioned sources were transplanted in experimental diabetic mice, restoration of normoglycemia was observed within three weeks of transplantation with concomitant increase in the body weight. These euglycemic mice exhibited normal glucose tolerance test indicating normal utilization of glucose. Allthough the MSCs isolated from all the sources had the same characteristics; they showed significant differences in their islet differentiation potential. ILCs isolated for the human bone marrow did not show any pancreatic hormones in vitro, but upon transplantation they matured into insulin and somatostatin producing hormones. Placental MSCs as well as ILCs showed insulin trascripts

  9. Accelerated Recruitment of New Brain Development Genes into the Human Genome

    Science.gov (United States)

    Zhang, Yong E.; Landback, Patrick; Vibranovski, Maria D.; Long, Manyuan

    2011-01-01

    How the human brain evolved has attracted tremendous interests for decades. Motivated by case studies of primate-specific genes implicated in brain function, we examined whether or not the young genes, those emerging genome-wide in the lineages specific to the primates or rodents, showed distinct spatial and temporal patterns of transcription compared to old genes, which had existed before primate and rodent split. We found consistent patterns across different sources of expression data: there is a significantly larger proportion of young genes expressed in the fetal or infant brain of humans than in mouse, and more young genes in humans have expression biased toward early developing brains than old genes. Most of these young genes are expressed in the evolutionarily newest part of human brain, the neocortex. Remarkably, we also identified a number of human-specific genes which are expressed in the prefrontal cortex, which is implicated in complex cognitive behaviors. The young genes upregulated in the early developing human brain play diverse functional roles, with a significant enrichment of transcription factors. Genes originating from different mechanisms show a similar expression bias in the developing brain. Moreover, we found that the young genes upregulated in early brain development showed rapid protein evolution compared to old genes also expressed in the fetal brain. Strikingly, genes expressed in the neocortex arose soon after its morphological origin. These four lines of evidence suggest that positive selection for brain function may have contributed to the origination of young genes expressed in the developing brain. These data demonstrate a striking recruitment of new genes into the early development of the human brain. PMID:22028629

  10. The effect of perfusion culture on proliferation and differentiation of human mesenchymal stem cells on biocorrodible bone replacement material

    Energy Technology Data Exchange (ETDEWEB)

    Farack, J., E-mail: jana.farack@tu-dresden.de [Technische Universitaet Dresden, Max Bergmann Center of Biomaterials, Budapester Str. 27, D-01069 Dresden (Germany); Wolf-Brandstetter, C. [Technische Universitaet Dresden, Max Bergmann Center of Biomaterials, Budapester Str. 27, D-01069 Dresden (Germany); Glorius, S.; Nies, B. [InnoTERE GmbH, Tatzberg 47-49, D-01307 Dresden (Germany); Standke, G. [Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Winterbergstr. 28, D-01277 Dresden (Germany); Quadbeck, P. [Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM), Winterbergstr. 28, D-01277 Dresden (Germany); Worch, H.; Scharnweber, D. [Technische Universitaet Dresden, Max Bergmann Center of Biomaterials, Budapester Str. 27, D-01069 Dresden (Germany)

    2011-12-15

    Biocorrodible iron foams were coated with different calcium phosphate phases (CPP) to obtain a bioactive surface and controlled degradation. Further adhesion, proliferation and differentiation of SaOs-2 and human mesenchymal stem cells were investigated under both static and dynamic culture conditions. Hydroxyapatite (HA; [Ca{sub 10}(PO{sub 4}){sub 6}OH{sub 2}]) coated foams released 500 {mu}g/g iron per day for Dulbecco's modified eagle medium (DMEM) and 250 {mu}g/g iron per day for McCoys, the unmodified reference 1000 {mu}g/g iron per day for DMEM and 500 {mu}g/g iron per day for McCoys, while no corrosion could be detected on brushite (CaHPO{sub 4}) coated foams. Using a perfusion culture system with conditions closer to the in vivo situation, cells proliferated and differentiated on iron foams coated with either brushite or HA while in static cell culture cells could proliferate only on Fe-brushite. We conclude that the degradation behaviour of biocorrodible iron foams can be varied by different calcium phosphate coatings, offering opportunities for design of novel bone implants. Further studies will focus on the influence of different modifications of iron foams on the expression of oxidative stress enzymes. Additional information about in vivo reactions and remodelling behaviour are expected from testing in implantation studies.

  11. (TG/CAn repeats in human gene families: abundance and selective patterns of distribution according to function and gene length

    Directory of Open Access Journals (Sweden)

    Ramachandran Srinivasan

    2005-06-01

    Full Text Available Abstract Background Creation of human gene families was facilitated significantly by gene duplication and diversification. The (TG/CAn repeats exhibit length variability, display genome-wide distribution, and are abundant in the human genome. Accumulation of evidences for their multiple functional roles including regulation of transcription and stimulation of recombination and splicing elect them as functional elements. Here, we report analysis of the distribution of (TG/CAn repeats in human gene families. Results The 1,317 human gene families were classified into six functional classes. Distribution of (TG/CAn repeats were analyzed both from a global perspective and from a stratified perspective based on their biological properties. The number of genes with repeats decreased with increasing repeat length and several genes (53% had repeats of multiple types in various combinations. Repeats were positively associated with the class of Signaling and communication whereas, they were negatively associated with the classes of Immune and related functions and of Information. The proportion of genes with (TG/CAn repeats in each class was proportional to the corresponding average gene length. The repeat distribution pattern in large gene families generally mirrored the global distribution pattern but differed particularly for Collagen gene family, which was rich in repeats. The position and flanking sequences of the repeats of Collagen genes showed high conservation in the Chimpanzee genome. However the majority of these repeats displayed length polymorphism. Conclusion Positive association of repeats with genes of Signaling and communication points to their role in modulation of transcription. Negative association of repeats in genes of Information relates to the smaller gene length, higher expression and fundamental role in cellular physiology. In genes of Immune and related functions negative association of repeats perhaps relates to the smaller gene

  12. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    Science.gov (United States)

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  13. Gene Prospector: An evidence gateway for evaluating potential susceptibility genes and interacting risk factors for human diseases

    Directory of Open Access Journals (Sweden)

    Khoury Muin J

    2008-12-01

    Full Text Available Abstract Background Millions of single nucleotide polymorphisms have been identified as a result of the human genome project and the rapid advance of high throughput genotyping technology. Genetic association studies, such as recent genome-wide association studies (GWAS, have provided a springboard for exploring the contribution of inherited genetic variation and gene/environment interactions in relation to disease. Given the capacity of such studies to produce a plethora of information that may then be described in a number of publications, selecting possible disease susceptibility genes and identifying related modifiable risk factors is a major challenge. A Web-based application for finding evidence of such relationships is key to the development of follow-up studies and evidence for translational research. We developed a Web-based application that selects and prioritizes potential disease-related genes by using a highly curated and updated literature database of genetic association studies. The application, called Gene Prospector, also provides a comprehensive set of links to additional data sources. Results We compared Gene Prospector results for the query "Parkinson" with a list of 13 leading candidate genes (Top Results from a curated, specialty database for genetic associations with Parkinson disease (PDGene. Nine of the thirteen leading candidate genes from PDGene were in the top 10th percentile of the ranked list from Gene Prospector. In fact, Gene Prospector included more published genetic association studies for the 13 leading candidate genes than PDGene did. Conclusion Gene Prospector provides an online gateway for searching for evidence about human genes in relation to diseases, other phenotypes, and risk factors, and provides links to published literature and other online data sources. Gene Prospector can be accessed via http://www.hugenavigator.net/HuGENavigator/geneProspectorStartPage.do.

  14. Differential gene expression during atrial structural remodeling in human left and right atrial appendages in atrial fibrillation

    Institute of Scientific and Technical Information of China (English)

    Hui Zhu; Wei Zhang; Ming Zhong; Gong Zhang; Yun Zhang

    2011-01-01

    Extracellular matrix (ECM) remodeling increases the vulnerability to atrial fibrillation (AF). Some gene expressions are crucial for the metabolism of ECM. The left atrium plays an important role in maintaining AF.However, most studies investigated only the right atrial tissue. We therefore chose human tissue samples from both the left and right atrial to detect the different gene expressions during structural remodeling in AF. The atrial appendages tissue samples from 24 patients with chronic AF and 12 patients with sinus rhythm were obtained when they were undergoing mitral/aortic valve replacement operation. The mRNA levels of matrix metalloproteinases-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), disintegrin, metalloproteases-15, and integrins β1 were determined by reverse transcriptionpolymerase chain reaction (RT-PCR). in AF group, the level of MMP-9 in left atrial appendage (LAA) was increased (P<0.001), while integrin β1 level was decreased (P< 0.05) compared with those expressed in right atrial appendage (RAA) tissue. The levels of disintegrin, metalloproteinases-15, and TIMP-1 genes in the LAA and RAA had no significant differences. The results demonstrated that the gene expressions in the LAA and RAA are different during AF, which implied that the mechanism of atrial structural remodeling in AF is due to multiple sources and is complicated.

  15. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics.

    Science.gov (United States)

    Cideciyan, Artur V; Aleman, Tomas S; Boye, Sanford L; Schwartz, Sharon B; Kaushal, Shalesh; Roman, Alejandro J; Pang, Ji-Jing; Sumaroka, Alexander; Windsor, Elizabeth A M; Wilson, James M; Flotte, Terence R; Fishman, Gerald A; Heon, Elise; Stone, Edwin M; Byrne, Barry J; Jacobson, Samuel G; Hauswirth, William W

    2008-09-30

    The RPE65 gene encodes the isomerase of the retinoid cycle, the enzymatic pathway that underlies mammalian vision. Mutations in RPE65 disrupt the retinoid cycle and cause a congenital human blindness known as Leber congenital amaurosis (LCA). We used adeno-associated virus-2-based RPE65 gene replacement therapy to treat three young adults with RPE65-LCA and measured their vision before and up to 90 days after the intervention. All three patients showed a statistically significant increase in visual sensitivity at 30 days after treatment localized to retinal areas that had received the vector. There were no changes in the effect between 30 and 90 days. Both cone- and rod-photoreceptor-based vision could be demonstrated in treated areas. For cones, there were increases of up to 1.7 log units (i.e., 50 fold); and for rods, there were gains of up to 4.8 log units (i.e., 63,000 fold). To assess what fraction of full vision potential was restored by gene therapy, we related the degree of light sensitivity to the level of remaining photoreceptors within the treatment area. We found that the intervention could overcome nearly all of the loss of light sensitivity resulting from the biochemical blockade. However, this reconstituted retinoid cycle was not completely normal. Resensitization kinetics of the newly treated rods were remarkably slow and required 8 h or more for the attainment of full sensitivity, compared with gene therapy.

  16. Leptin replacement improves cognitive development.

    Directory of Open Access Journals (Sweden)

    Gilberto J Paz-Filho

    Full Text Available BACKGROUND: Leptin changes brain structure, neuron excitability and synaptic plasticity. It also regulates the development and function of feeding circuits. However, the effects of leptin on neurocognitive development are unknown. OBJECTIVE: To evaluate the effect of leptin on neurocognitive development. METHODOLOGY: A 5-year-old boy with a nonconservative missense leptin gene mutation (Cys-to-Thr in codon 105 was treated with recombinant methionyl human leptin (r-metHuLeptin at physiologic replacement doses of 0.03 mg/kg/day. Cognitive development was assessed using the Differential Ability Scales (DAS, a measure of general verbal and nonverbal functioning; and selected subtests from the NEPSY, a measure of neuropsychological functioning in children. PRINCIPAL FINDINGS: Prior to treatment, the patient was morbidly obese, hypertensive, dyslipidemic, and hyperinsulinemic. Baseline neurocognitive tests revealed slower than expected rates of development (developmental age lower than chronological age in a majority of the areas assessed. After two years, substantial increases in the rates of development in most neurocognitive domains were apparent, with some skills at or exceeding expectations based on chronological age. We also observed marked weight loss and resolution of hypertension, dyslipidemia and hyperinsulinemia. CONCLUSIONS: We concluded that replacement with r-metHuLeptin is associated with weight loss and changes in rates of development in many neurocognitive domains, which lends support to the hypothesis that, in addition to its role in metabolism, leptin may have a cognitive enhancing role in the developing central nervous system. TRIAL REGISTRATION: ClinicalTrials.gov NCT00659828.

  17. Adenoviral transfer of human interleukin-10 gene in lethal pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Zi-Qian Chen; Yao-Qing Tang; Yi Zhang; Zhi-Hong Jiang; En-Qiang Mao; Wei-Guo Zou; Ruo-Qing Lei; Tian-Quan Han; Sheng-Dao Zhang

    2004-01-01

    AIM: To evaluate the therapeutic effect of adenoviral-vectordelivered human interleukin-10 (hIL-10) gene on severe acute pancreatitis (SAP) rats.METHODS: Healthy Sprague-Dawley (SD) rats were intraperitoneally injected with adenoviral IL-10 gene (AdvhIL-10), empty vector (Adv0) or PBS solution. Blood,liver, pancreas and lung were harvested on the second day to examine hIL-10 level by ELISA and serum amylase by enzymatic assay. A SAP model was induced by retrograde injection of sodium taurocholate through pancreatic duct.SAP rats were then administered with AdvhIL-10, Adv0 and PBS solution by a single intraperitoneal injection 20 min after SAP induction. In addition to serum amylase assay,levels of hIL-10 and tumor necrosis factor-α (TNF-α) were detected by RT-PCR, ELISA and histological study. The mortality rate was studied and analyzed by Kaplan-Meier and log rank analysis.RESULTS: The levels of hIL-10 in the pancreas, liver and lung of healthy rats increased significantly after AdvhIL-10injection (1.42 ng/g in liver, 0.91 ng/g in pancreas); while there was no significant change of hIL-10 in the other two control groups. The concentration of hIL-10 was increased significantly in the SAP rats after AdvhIL-10 injection (1.68 ng/g in liver, 1.12 ng/g in pancreas) compared to the other two SAP groups with blank vector or PBS treatment (P<0.05). The serum amylase levels remained normal in the AdvhIL-10 transfected healthy rats. However,the serum amylase level was significantly elevated in the other two control SAP rats. In contrast, serum amylase was down-regulated in the AdvhIL-10 treated SAP groups.The TNF-α expression in the AdvhIL-10 treated SAP rats was significantly lower compared to the other two control SAP groups. The pathohistological changes in the AdvhIL-10 treated group were better than those in the other two control groups. Furthermore, the mortality of the AdvhIL-10 treated group was significantly reduced compared to the other two control groups (P

  18. Highly expressed genes in human high grade gliomas: immunohistochemical analysis of data from the Human Protein Atlas

    Directory of Open Access Journals (Sweden)

    Michael A. Meyer

    2014-06-01

    Full Text Available Gene expression within human glioblastomas were analyzed from data on 20,083 genes entered into the on-line Human Protein Atlas. In selecting genes that are strongly expressed within normal human brain tissue, 58 genes were identified from a search of the 20,083 entries that were rated as showing 90% or greater intensity of expression within normal brain tissues. Of these 58, a subset of 48 genes was identified that not only had expression data for human glioblastomas but also for the human glioblastoma cell line U-251. Four of these 48 selected genes were found to be strongly expressed within the cytoplasm when assessed by both histologic sampling of high grade glioma patient cases as well as U-251 glioblastoma cell line immunofluoresence analysis. These four human genes are: AGBL2 (ATP/GTP binding protein-like 2, BLOC1S6 (biogenesis of lysosomal organelles complex-1, subunit 6, MAP1A (microtubule-associated protein 1A and ZSWIM5 (zinc finger, SWIM-type containing 5, also known as KIAA1511. Further research is advocated to investigate the role of ZSWIM5 and AGBL2 in glioma cell biology.

  19. A Scan for Positively Selected Genes in the Genomes of Humans and Chimpanzees

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Bustamente, Carlos; Clark, Andrew G.

    2005-01-01

    of these genes may be driven by genomic conflict due to apoptosis during spermatogenesis. Genes with maximal expression in the brain show little or no evidence for positive selection, while genes with maximal expression in the testis tend to be enriched with positively selected genes. Genes on the X chromosome...... such evolutionary changes to leave a noticeable signature throughout the genome. We here compare 13,731 annotated genes from humans to their chimpanzee orthologs to identify genes that show evidence of positive selection. Many of the genes that present a signature of positive selection tend to be involved...... in sensory perception or immune defenses. However, the group of genes that show the strongest evidence for positive selection also includes a surprising number of genes involved in tumor suppression and apoptosis, and of genes involved in spermatogenesis. We hypothesize that positive selection in some...

  20. Molecular cloning and long terminal repeat sequences of human endogenous retrovirus genes related to types A and B retrovirus genes

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M.

    1986-06-01

    By using a DNA fragment primarily encoding the reverse transcriptase (pol) region of the Syrian hamster intracisternal A particle (IAP; type A retrovirus) gene as a probe, human endogenous retrovirus genes, tentatively termed HERV-K genes, were cloned from a fetal human liver gene library. Typical HERV-K genes were 9.1 or 9.4 kilobases in length, having long terminal repeats (LTRs) of ca. 970 base pairs. Many structural features commonly observed on the retrovirus LTRs, such as the TATAA box, polyadenylation signal, and terminal inverted repeats, were present on each LTR, and a lysine (K) tRNA having a CUU anticodon was identified as a presumed primer tRNA. The HERV-K LTR, however, had little sequence homology to either the IAP LTR or other typical oncovirus LTRs. By filter hybridization, the number of HERV-K genes was estimated to be ca. 50 copies per haploid human genome. The cloned mouse mammary tumor virus (type B) gene was found to hybridize with both the HERV-K and IAP genes to essentially the same extent.

  1. Chromosomal localization of three repair genes: The xeroderma pigmentosum group C gene and two human homologs of yeast RAD23

    Energy Technology Data Exchange (ETDEWEB)

    Spek, P.J. van der; Smit, E.M.E.; Beverloo, H.B. [Erasmus Univ., Rotterdam (Netherlands)] [and others

    1994-10-01

    The nucleotide excision repair (NER) disorder xeroderma pigmentosum (XP) is characterized by sun (UV) sensitivity, predisposition to skin cancer, and extensive genetic heterogeneity. Recently, we reported the cloning and analysis of three human NER genes, XPC, HHR23A, and HHR23B. The previously cloned XPC gene is involved in the common XP complementation group C, which is defective in excision repair of nontranscribed sequences in the genome. The XPC protein was found to be complexed with the product of HHR23B, one of the two human homologs of the Saccharomyes cerevisiae NER gene RAD23. Here we present the chromosomal localization by in situ hybridization using haptenized probes of all three genes. The HHR23A gene was assigned to chromosome 19p13.2. Interestingly, the HHR23B and XPC genes, the product of which forms a tight complex, were found to colocalize on band 3p25.1. Pulsed-field gel electrophoresis revealed that the HHR23B and XPC genes possibly share a MluI restriction fragment of about 625 kb. Potential involvement of the HHR23 genes in human genetic disorders is discussed. 53 refs., 4 figs., 2 tabs.

  2. A group of type I keratin genes on human chromosome 17: Characterization and expression

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M.; Chaudhury, A.R.; Shows, T.B.; LeBeau, M.M.; Fuchs, E.

    1988-02-01

    The human type I keratins K16 and K14 are coexpressed in a number of epithelial tissues, including esophagus, tongue, and hair follicles. The authors determined that two genes encoding K16 and three genes encoding K14 were clustered in two distinct segments of chromosome 17. The genes within each cluster were tightly linked, and large parts of the genome containing these genes have been recently duplicated. The sequences of the two K16 genes showed striking homology not only within the coding sequences, but also within the intron positions and sequences and extending at least 400 base pairs 5' upstream and 850 base pairs 3' downstream from these genes. Despite the strong homologies between these two genes, only one of the genes encoded a protein which assembled into keratin filaments when introduced into simple epithelial cells. While there were no obvious abnormalities in the sequence of the other gene, its promoter seemed to be significantly weaker, and even a hybrid gene with the other gene's promoter gave rise to a much reduced mRNA level after gene transfection. To demonstrate that the functional K16 gene that they identified was in fact responsible for the K16 expressed in human tissues, we made a polyclonal antiserum which recognized our functional K16 gene product in both denatured and filamentous form and which was specific for bona fide human K16.

  3. Detecting positive darwinian selection in brain-expressed genes during human evolution

    Institute of Scientific and Technical Information of China (English)

    QI XueBin; Alice A. LIN; Luca L. CAVALLI-SFORZA; WANG Jun; SU Bing; YANG Su; ZHENG HongKun; WANG YinQiu; LIAO ChengHong; LIU Ying; CHEN XiaoHua; SHI Hong; YU XiaoJing

    2007-01-01

    To understand the genetic basis that underlies the phenotypic divergence between human and nonhuman primates, we screened a total of 7176 protein-coding genes expressed in the human brain and compared them with the chimpanzee orthologs to identify genes that show evidence of rapid evolution in the human lineage. Our results showed that the nonsynonymous/synonymous substitution (Ka/Ks) ratio for genes expressed in the brain of human and chimpanzee is 0.3854, suggesting that the brain-expressed genes are under functional constraint. The X-linked human brain-expressed genes evolved more rapidly than autosomal ones. We further dissected the molecular evolutionary patterns of 34 candidate genes by sequencing representative primate species to identify lineage-specific adaptive evolution. Fifteen out of the 34 candidate genes showed evidence of positive Darwinian selection in human and/or chimpanzee lineages. These genes are predicted to play diverse functional roles in embryonic development, spermatogenesis and male fertility, signal transduction, sensory nociception, and neural function. This study together with others demonstrated the usefulness and power of phylogenetic comparison of multiple closely related species in detecting lineage-specific adaptive evolution, and the identification of the positively selected brain-expressed genes may add new knowledge to the understanding of molecular mechanism of human origin.

  4. The mapping of novel genes to human chromosome 19

    Energy Technology Data Exchange (ETDEWEB)

    Buenaventura, J.M. [Sarah Lawrence College, Bronxville, NY (United States)

    1994-12-01

    The principle goal of our laboratory is the discovery of new genes on human chromosome 19. One of the strategies to achieve this goal is through the use of cDNA clones known as {open_quotes}expressed sequence tags{close_quotes} (ESTs). ESTs, short segments of sequence from a cDNA clone that correspond to the mRNA, occur as unique regions in the genome and, therefore, can be used as markers for specific positions. In collaboration with researchers from Genethon in France, fifteen cDNA clones from a normalized human infant brain cDNA library were tested and determined to map to chromosome 19. A verification procedure is then followed to confirm assignment to chromosome 19. First, primers for each cDNA clone are developed and then amplified by polymerase chain reaction from genomic DNA. Next, a {sup 32}P-radiolabeled probe is made by polymerase chain reaction for each clone and then hybridized against filters containing an LLNL chromosome 19-specific cosmid library to find putative locations on the chromosome. The location is then verified by running a polymerase chain reactions from the positive cosmids. With the Browser database at LLNL, additional information about the positive cosmids can be found. Through use of the BLAST database at the National Library of Medicine, homologous sequences to the clones can be found. Among the fifteen cDNA clones received from Genethon, all have been amplified by polymerase chain reaction. Three have turned out as repetitive elements in the genome. Ten have been mapped to specific locations on chromosome 19. Putative locations have been found for the remaining two clones and thus verification testing will proceed.

  5. Gene therapy for type 1 diabetes mellitus in rats by gastrointestinal administration of chitosan nanoparticles containing human insulin gene

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To study the expression of human insulin gene in gastrointestinal tracts of diabetic rats. METHODS: pCHV.Ins, an expression plasmid of the human insulin gene, wrapped with chitosan nanoparticles, was transfected to the diabetic rats through lavage and coloclysis, respectively. Fasting blood glucose and plasma insulin levels were measured for 7 d. Reverse transcription polymerase chain reaction (RT-PCR) analysis and Western blot analysis were performed to confirm the expression of human insulin gene. RESULTS: Compared with the control group, the fasting blood glucose levels in the lavage and coloclysis groups were decreased significantly in 4 d (5.63 ± 0.48 mmol/L and 5.07 ± 0.37 mmol/L vs 22.12± 1.31 mmol/L, respectively, P < 0.01), while the plasma insulin levels were much higher (32.26±1.81 μIU/mL and 32.79 ± 1.84 μIU/mL vs 14.23 ± 1.38 μIU/mL, respectively, P<0.01). The human insulin gene mRNA and human insulin were only detected in the lavage and coloclysis groups. CONCLUSION: Human insulin gene wrapped with chitosan nanoparticles can be successfully transfected to rats through gastrointestinal tract, indicating that chitosan is a promising non-viral vector.

  6. Differences in gene expression profiles between human preimplantation embryos cultured in two different IVF culture media

    NARCIS (Netherlands)

    Kleijkers, S.H.M.; Eijssen, L.M.T.; Coonen, E.; Derhaag, J.G.; Mantikou, E.; Jonker, M.J.; Mastenbroek, S.; Repping, S.; Evers, J.L.H.; Dumoulin, J.C.M.; van Montfoort, A.P.A.

    2015-01-01

    STUDY QUESTION: Is gene expression in human preimplantation embryos affected by the medium used for embryo culture in vitro during an IVF treatment? SUMMARY ANSWER: Six days of in vitro culture of human preimplantation embryos resulted in medium-dependent differences in expression level of genes inv

  7. Impact of cigarette smoke on the human and mouse lungs: a gene-expression comparison study.

    Directory of Open Access Journals (Sweden)

    Mathieu C Morissette

    Full Text Available Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains difficult. In the present study, we aimed at comparing the gene expression signature between the lungs of human smokers and mice exposed to cigarette smoke to identify the similarities and differences. Using human and mouse whole-genome gene expression arrays, changes in gene expression, signaling pathways and biological functions were assessed. We found that genes significantly modulated by cigarette smoke in humans were enriched for genes modulated by cigarette smoke in mice, suggesting a similar response of both species. Sixteen smoking-induced genes were in common between humans and mice including six newly reported to be modulated by cigarette smoke. In addition, we identified a new conserved pulmonary response to cigarette smoke in the induction of phospholipid metabolism/degradation pathways. Finally, the majority of biological functions modulated by cigarette smoke in humans were also affected in mice. Altogether, the present study provides information on similarities and differences in lung gene expression response to cigarette smoke that exist between human and mouse. Our results foster the idea that animal models should be used to study the involvement of pathways rather than single genes in human diseases.

  8. Partial Cloning and Nucleotide Sequencing of Glutamate Decarboxylase Gene Isoform 65 from Human Brain

    Directory of Open Access Journals (Sweden)

    Abolghasem Esmaeili

    2015-04-01

    Conclusion: Because obtaining fresh human brain is difficult and amount of mRNA is low, it may not be easy to clone full length of human gad gene. The approach described in this paper may be useful in cloning of other genes for which the corresponding mRNA is present at low levels.

  9. The role of EKLF in human β-globin gene competition.

    NARCIS (Netherlands)

    M.G.J.M. Wijgerde (Mark); J.H. Gribnau (Joost); T. Trimborn (Tolleiv); B. Nuez (Beatriz); J.N.J. Philipsen (Sjaak); F.G. Grosveld (Frank); P.J. Fraser (Peter)

    1996-01-01

    textabstractWe have investigated the role of erythroid Kruppel-like factor (EKLF) in expression of the human beta-globin genes in compound EKLF knockout/human beta-locus transgenic mice. EKLF affects only the adult mouse beta-globin genes in homozygous knockout mice; heterozygous mice are unaffected

  10. Localization of the human OB gene (OBS) to chromosome 7q32 by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Geffroy, S.; Duban, B.; Martinville, B. de [Universitaire de Lille (France)] [and others

    1995-08-10

    An important gene involved in the pathogenesis of obesity is the product of the human homologue of the murine obese gene (gene symbol OBS). Using fluorescence in situ hybridization (FISH), we have localized the human OB gene to human chromosome 7, specifically to region 7q32.1. The FISH data of human OBS provide a gene-associated marker for genetic mapping. 8 refs., 1 fig.

  11. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    Directory of Open Access Journals (Sweden)

    Hudler Petra

    2009-10-01

    Full Text Available Abstract Background Loss of DNA mismatch repair (MMR in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC. Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Methods Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. Results The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Conclusion Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene.

  12. Assessment and Improvement of Gene Transfer into Human Hematopoietic Stem Cells

    NARCIS (Netherlands)

    D.A. Breems (Dimitri)

    1997-01-01

    textabstractThe application of somatic gene transfer as a potential treatment in human disease has progressed from speculation to reality in a short time [4,20,21,84,85,87,105,117,174]. In May 1989 the first clinical marker gene protocol took place [145], followed by the first gene therapy protocol

  13. Genes Involved in Human Ribosome Biogenesis areTranscriptionally Upregulated in Colorectal Cancer

    DEFF Research Database (Denmark)

    Mansilla, Francisco; Lamy, Philippe; Ørntoft, Torben Falck

    2009-01-01

    Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p<10-3) when compared to normal mucosa. Overexpression was independent of microsate......Microarray gene expression profiling comprising 168 colorectal adenocarcinomas and 10 normal mucosas showed that over 79% of the genes involved in human ribosome biogenesis are significantly upregulated (log2>0.5, p... of rRNA processing genes points towards a coordinated process enabling the overproduction of matured ribosomal structures....

  14. Structural organization of the human short-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Corydon, M J; Andresen, B S; Bross, P

    1997-01-01

    of ethylmalonic acid (EMA). To define the genetic basis of SCAD deficiency and ethylmalonic aciduria in patients, we have determined the sequence of the complete coding portion of the human SCAD gene (ACADS) and all of the intron-exon boundaries. The SCAD gene is approximately 13 kb in length and consists of 10......, 990T, 1260C) constitutes an allelic variant with a frequency of 22% in the general Danish population. Using fluorescence in-situ hybridization, we confirm the localization of the human SCAD gene to the distal part of Chromosome (Chr) 12 and suggest that the SCAD gene is a single-copy gene...

  15. Transforming fusions of FGFR and TACC genes in human glioblastoma.

    Science.gov (United States)

    Singh, Devendra; Chan, Joseph Minhow; Zoppoli, Pietro; Niola, Francesco; Sullivan, Ryan; Castano, Angelica; Liu, Eric Minwei; Reichel, Jonathan; Porrati, Paola; Pellegatta, Serena; Qiu, Kunlong; Gao, Zhibo; Ceccarelli, Michele; Riccardi, Riccardo; Brat, Daniel J; Guha, Abhijit; Aldape, Ken; Golfinos, John G; Zagzag, David; Mikkelsen, Tom; Finocchiaro, Gaetano; Lasorella, Anna; Rabadan, Raul; Iavarone, Antonio

    2012-09-07

    The brain tumor glioblastoma multiforme (GBM) is among the most lethal forms of human cancer. Here, we report that a small subset of GBMs (3.1%; 3 of 97 tumors examined) harbors oncogenic chromosomal translocations that fuse in-frame the tyrosine kinase coding domains of fibroblast growth factor receptor (FGFR) genes (FGFR1 or FGFR3) to the transforming acidic coiled-coil (TACC) coding domains of TACC1 or TACC3, respectively. The FGFR-TACC fusion protein displays oncogenic activity when introduced into astrocytes or stereotactically transduced in the mouse brain. The fusion protein, which localizes to mitotic spindle poles, has constitutive kinase activity and induces mitotic and chromosomal segregation defects and triggers aneuploidy. Inhibition of FGFR kinase corrects the aneuploidy, and oral administration of an FGFR inhibitor prolongs survival of mice harboring intracranial FGFR3-TACC3-initiated glioma. FGFR-TACC fusions could potentially identify a subset of GBM patients who would benefit from targeted FGFR kinase inhibition.

  16. Altered gene expression in human placenta after suspected preterm labour.

    Science.gov (United States)

    Oros, D; Strunk, M; Breton, P; Paules, C; Benito, R; Moreno, E; Garcés, M; Godino, J; Schoorlemmer, J

    2017-07-01

    Suspected preterm labour occurs in around 9% of pregnancies. However, almost two-thirds of women admitted for threatened preterm labour ultimately deliver at term and are considered risk-free for fetal development. We examined placental and umbilical cord blood samples from preterm or term deliveries after threatened preterm labour as well as term deliveries without threatened preterm labour. We quantitatively analysed the mRNA expression of inflammatory markers (IL6, IFNγ, and TNFα) and modulators of angiogenesis (FGF2, PGF, VEGFA, VEGFB, and VEGFR1). A total of 132 deliveries were analysed. Preterm delivery and term delivery after suspected preterm labour groups showed similar increases in TNFα expression compared with the term delivery control group in umbilical cord blood samples. Placental samples from preterm and term deliveries after suspected preterm labour exhibited significantly increased expression of TNFα and IL6 and decreased expression of IFNγ. Suspected preterm labour was also associated with altered expression of angiogenic factors, although not all differences reached statistical significance. We found gene expression patterns indicative of inflammation in human placentas after suspected preterm labour regardless of whether the deliveries occurred preterm or at term. Similarly, a trend towards altered expression of angiogeneic factors was not limited to preterm birth. These findings suggest that the biological mechanisms underlying threatened preterm labour affect pregnancies independently of gestational age at birth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mapping and annotating obesity-related genes in pig and human genomes.

    Science.gov (United States)

    Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita

    2014-01-01

    Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.

  18. Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice

    DEFF Research Database (Denmark)

    Fromont-Racine, M; Bucchini, D; Madsen, O;

    1990-01-01

    Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific tra...... of the transgene was observed in cell types other than beta-islet cells.......Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific......, and -168 allowed correct initiation of the transcripts and cell specificity of expression, while quantitative expression gradually decreased. Deletion to -58 completely abolished the expression of the gene. The amount of human product that in mice harboring the longest fragment contributes up to 50...

  19. Detection of gene x gene interactions in genome-wide association studies of human population data

    National Research Council Canada - National Science Library

    Musani, Solomon K; Shriner, Daniel; Liu, Nianjun; Feng, Rui; Coffey, Christopher S; Yi, Nengjun; Tiwari, Hemant K; Allison, David B

    2007-01-01

    Empirical evidence supporting the commonality of gene x gene interactions, coupled with frequent failure to replicate results from previous association studies, has prompted statisticians to develop...

  20. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  1. Viral Etiology Relationship between Human Papillomavirus and Human Breast Cancer and Target of Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    YAN Chen; TENG Zhi Ping; CHEN Yun Xin; SHEN Dan Hua; LI Jin Tao; ZENG Yi

    2016-01-01

    ObjectiveTo explore the viral etiology of human breast cancer to determine whether there are novel molecular targets for gene therapy of breast cancer and provide evidence for the research of gene therapy and vaccine development for breast cancer. MethodsPCR was used to screen HPV16 and HPV18 oncogenesE6 andE7 in the SKBR3 cell line andin 76 paraffin embedded breast cancer tissue samples. RNA interference was used to knock down the expression of HPV18E6 andE7 in SKBR3 cells, then the changes in the expression of cell-cycle related proteins, cell viability, colony formation, metastasis, and cell cycle progression were determined. ResultsHPV18 oncogenesE6 andE7 were amplified and sequenced from the SKBR3 cells. Ofthe patient samples, 6.58% and 23.68% were tested to bepositivefor HPV18E6 and HPV18E7. In the cell culture models, the knockdown of HPV18E6 andE7 inhibited the proliferation, metastasis, and cell cycle progression of SKBR3 cell. The knockdown also clearly affected the expression levels of cell cycle related proteins. ConclusionHPV was a contributor to virus causedhuman breast cancer, suggesting that the oncogenes in HPV were potential targets for gene therapy of breast cancer.

  2. Natural selection on protein-coding genes in the human genome

    DEFF Research Database (Denmark)

    Bustamente, Carlos D.; Fledel-Alon, Adi; Williamson, Scott

    2005-01-01

    Comparisons of DNA polymorphism within species to divergence between species enables the discovery of molecular adaptation in evolutionarily constrained genes as well as the differentiation of weak from strong purifying selection 1, 2, 3, 4 . The extent to which weak negative and positive darwini......, show an excess of rapidly evolving genes, whereas others, such as cytoskeletal proteins, show an excess of genes with extensive amino acid polymorphism within humans and yet little amino acid divergence between humans and chimpanzees....

  3. Screening and analysis of breast cancer genes regulated by the human mammary microenvironment in a humanized mouse model

    Science.gov (United States)

    Zheng, Mingjie; Wang, Jue; Ling, Lijun; Xue, Dandan; Wang, Shui; Zhao, Yi

    2016-01-01

    Tumor microenvironments play critical regulatory roles in tumor growth. Although mouse cancer models have contributed to the understanding of human tumor biology, the effectiveness of mouse cancer models is limited by the inability of the models to accurately present humanized tumor microenvironments. Previously, a humanized breast cancer model in severe combined immunodeficiency mice was established, in which human breast cancer tissue was implanted subcutaneously, followed by injection of human breast cancer cells. It was demonstrated that breast cancer cells showed improved growth in the human mammary microenvironment compared with a conventional subcutaneous mouse model. In the present study, the novel mouse model and microarray technology was used to analyze changes in the expression of genes in breast cancer cells that are regulated by the human mammary microenvironment. Humanized breast and conventional subcutaneous mouse models were established, and orthotopic tumor cells were obtained from orthotopic tumor masses by primary culture. An expression microarray using Illumina HumanHT-12 v4 Expression BeadChip and database analyses were performed to investigate changes in gene expression between tumors from each microenvironment. A total of 94 genes were differentially expressed between the primary cells cultured from the humanized and conventional mouse models. Significant upregulation of genes that promote cell proliferation and metastasis or inhibit apoptosis, such as SH3-domain binding protein 5 (BTK-associated), sodium/chloride cotransporter 3 and periostin, osteoblast specific factor, and genes that promote angiogenesis, such as KIAA1618, was also noted. Other genes that restrain cell proliferation and accelerate cell apoptosis, including tripartite motif containing TRIM36 and NES1, were downregulated. The present results revealed differences in various aspects of tumor growth and metabolism between the two model groups and indicated the functional

  4. Iodide uptake in human anaplastic thyroid carcinoma cells after transfer of the human thyroid peroxidase gene

    Energy Technology Data Exchange (ETDEWEB)

    Haberkom, U. [Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg (Germany); Dept. of Nuclear Medicine, Univ. of Heidelberg (Germany); Altmann, A.; Jiang, S.; Morr, I.; Mahmut, M. [Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg (Germany); Eisenhut, M. [Dept. of Nuclear Medicine, Univ. of Heidelberg (Germany)

    2001-05-01

    Human thyroperoxidase (hTPO) is critical for the accumulation of iodide in thyroid tissues. Poorly differentiated and anaplastic thyroid tumours which lack thyroid-specific gene expression fail to accumulate iodide and, therefore, do not respond to iodine-131 therapy. We consequently investigated whether transfer of the hTPO gene is sufficient to restore the iodide-trapping capacity in undifferentiated thyroid and non-thyroid tumour cells. The human anaplastic thyroid carcinoma cell lines C643 and SW1736, the rat Morris hepatoma cell line MH3924A and the rat papillary thyroid carcinoma cell line L2 were used as in vitro model systems. Employing a bicistronic retroviral vector based on the myeloproliferative sarcoma virus for the transfer of the hTPO and the neomycin resistance gene, the C643 cells and SW1736 cells were transfected while the L2 cells and MH3924A cells were infected with retroviral particles. Seven recombinant C643 and seven SW1736 cell lines as well as four recombinant L2 and four MH3924A cell lines were established by neomycin selection. They were studied for hTPO expression using an antibody-based luminescence kit, followed by determination of the enzyme activity in the guaiacol assay and of the iodide uptake capacity in the presence of Na{sup 125}I. Genetically modified cell lines expressed up to 1,800 times more hTPO as compared to wild type tumour cells. The level of hTPO expression varied significantly between individual neomycin-resistant cell lines, suggesting that the recombinant retroviral DNA was integrated at different sites of the cellular genome. The accumulation of iodide, however, was not significantly enhanced in individual recombinant cell lines, irrespective of low or high hTPO expression. Moreover, there was no correlation between hTPO expression and enzyme activity in individual cell lines. The transduction of the hTPO gene per se is not sufficient to restore iodide trapping in non-iodide-concentrating tumour cells. Future

  5. An STS in the human adenosine deaminase gene (located 20q12-q13. 11)

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, B.C.; States, J.C. (Wayne State Univ., Detroit, MI (United States))

    1991-09-25

    The human adenosine deaminase gene has been characterized in detail. The adenosine gene product, as part of the purine catabolic pathway, catalyzes the irreversible deamination of adenosine and deoxyadenosine. Deficiency of this activity in humans is associated with an autosomal recessive form of severe combined immunodeficiency disease. Recently, this genetic deficiency disease has been targeted for the first attempts at gene therapy in humans. Using the polymerase chain reaction (PCR), a fragment of the expected size (160 bp) was amplified from human genomic DNA.

  6. Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans.

    Science.gov (United States)

    Quiring, R; Walldorf, U; Kloter, U; Gehring, W J

    1994-08-05

    A Drosophila gene that contains both a paired box and a homeobox and has extensive sequence homology to the mouse Pax-6 (Small eye) gene was isolated and mapped to chromosome IV in a region close to the eyeless locus. Two spontaneous mutations, ey2 and eyR, contain transposable element insertions into the cloned gene and affect gene expression, particularly in the eye primordia. This indicates that the cloned gene encodes ey. The finding that ey of Drosophila, Small eye of the mouse, and human Aniridia are encoded by homologous genes suggests that eye morphogenesis is under similar genetic control in both vertebrates and insects, in spite of the large differences in eye morphology and mode of development.

  7. The Use of Amelogenin Gene in Sex Determination from Human Skeletal Fragments and Teeth Specimens

    Directory of Open Access Journals (Sweden)

    Abdullahi Daudu Zagga

    2014-08-01

    Full Text Available Alternative approaches to sex determination of DNA samples involve investigation of regions of the amelogenin gene. This is the gene that encodes tooth enamel and is present on both the X and Y chromosomes. A review composed via Medline Internet search of literature and contributions from our experiences as well as experiences from colleagues. The rareness of failures in sex determination provides confidence in current techniques, but amelogenin gene method (singly of sex determination is not without failures. Amelogenin PCR method/system of sex determination should not, at the moment, completely replace traditional methods of sex identification. Hence, sex identification with amelogenin gene, of subjects for forensic purposes should be conducted as much as possible through a multiple morphological-molecular combined methods to avoid fallibility of amelogenin gene. [Archives Medical Review Journal 2014; 23(4.000: 605-622

  8. Mobile genes in the human microbiome are structured from global to individual scales.

    Science.gov (United States)

    Brito, I L; Yilmaz, S; Huang, K; Xu, L; Jupiter, S D; Jenkins, A P; Naisilisili, W; Tamminen, M; Smillie, C S; Wortman, J R; Birren, B W; Xavier, R J; Blainey, P C; Singh, A K; Gevers, D; Alm, E J

    2016-07-21

    Recent work has underscored the importance of the microbiome in human health, and has largely attributed differences in phenotype to differences in the species present among individuals. However, mobile genes can confer profoundly different phenotypes on different strains of the same species. Little is known about the function and distribution of mobile genes in the human microbiome, and in particular whether the gene pool is globally homogenous or constrained by human population structure. Here, we investigate this question by comparing the mobile genes found in the microbiomes of 81 metropolitan North Americans with those of 172 agrarian Fiji islanders using a combination of single-cell genomics and metagenomics. We find large differences in mobile gene content between the Fijian and North American microbiomes, with functional variation that mirrors known dietary differences such as the excess of plant-based starch degradation genes found in Fijian individuals. Notably, we also observed differences between the mobile gene pools of neighbouring Fijian villages, even though microbiome composition across villages is similar. Finally, we observe high rates of recombination leading to individual-specific mobile elements, suggesting that the abundance of some genes may reflect environmental selection rather than dispersal limitation. Together, these data support the hypothesis that human activities and behaviours provide selective pressures that shape mobile gene pools, and that acquisition of mobile genes is important for colonizing specific human populations.

  9. Genetics of human longevity with emphasis on the relevance of HSP70 as candidate genes

    DEFF Research Database (Denmark)

    Singh, Ripudaman; Kølvrå, Steen; Rattan, Suresh I S

    2007-01-01

    Human longevity is determined to a certain extent by genetic factors. Several candidate genes have been studied for their association with human longevity, but the data collected so far are inconclusive. One of the reasons is the choice of the candidate genes in addition to the choice of an appro......Human longevity is determined to a certain extent by genetic factors. Several candidate genes have been studied for their association with human longevity, but the data collected so far are inconclusive. One of the reasons is the choice of the candidate genes in addition to the choice...... been significantly associated with human longevity and survival. We have also provided some functional evidence for these genetic associations by showing that isolated peripheral blood cells from those genotypes which are negatively associated with human longevity also have less ability to respond...

  10. Comparative Analysis of Gene Regulation by the Transcription Factor PPARα between Mouse and Human

    Science.gov (United States)

    Rakhshandehroo, Maryam; Hooiveld, Guido; Müller, Michael; Kersten, Sander

    2009-01-01

    Background Studies in mice have shown that PPARα is an important regulator of hepatic lipid metabolism and the acute phase response. However, little information is available on the role of PPARα in human liver. Here we set out to compare the function of PPARα in mouse and human hepatocytes via analysis of target gene regulation. Methodology/Principal Findings Primary hepatocytes from 6 human and 6 mouse donors were treated with PPARα agonist Wy14643 and gene expression profiling was performed using Affymetrix GeneChips followed by a systems biology analysis. Baseline PPARα expression was similar in human and mouse hepatocytes. Depending on species and time of exposure, Wy14643 significantly induced the expression of 362–672 genes. Surprisingly minor overlap was observed between the Wy14643-regulated genes from mouse and human, although more substantial overlap was observed at the pathway level. Xenobiotics metabolism and apolipoprotein synthesis were specifically regulated by PPARα in human hepatocytes, whereas glycolysis-gluconeogenesis was regulated specifically in mouse hepatocytes. Most of the genes commonly regulated in mouse and human were involved in lipid metabolism and many represented known PPARα targets, including CPT1A, HMGCS2, FABP1, ACSL1, and ADFP. Several genes were identified that were specifically induced by PPARα in human (MBL2, ALAS1, CYP1A1, TSKU) or mouse (Fbp2, lgals4, Cd36, Ucp2, Pxmp4). Furthermore, several putative novel PPARα targets were identified that were commonly regulated in both species, including CREB3L3, KLF10, KLF11 and MAP3K8. Conclusions/Significance Our results suggest that PPARα activation has a major impact on gene regulation in human hepatocytes. Importantly, the role of PPARα as master regulator of hepatic lipid metabolism is generally well-conserved between mouse and human. Overall, however, PPARα regulates a mostly divergent set of genes in mouse and human hepatocytes. PMID:19710929

  11. Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human.

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    Full Text Available BACKGROUND: Studies in mice have shown that PPARalpha is an important regulator of hepatic lipid metabolism and the acute phase response. However, little information is available on the role of PPARalpha in human liver. Here we set out to compare the function of PPARalpha in mouse and human hepatocytes via analysis of target gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: Primary hepatocytes from 6 human and 6 mouse donors were treated with PPARalpha agonist Wy14643 and gene expression profiling was performed using Affymetrix GeneChips followed by a systems biology analysis. Baseline PPARalpha expression was similar in human and mouse hepatocytes. Depending on species and time of exposure, Wy14643 significantly induced the expression of 362-672 genes. Surprisingly minor overlap was observed between the Wy14643-regulated genes from mouse and human, although more substantial overlap was observed at the pathway level. Xenobiotics metabolism and apolipoprotein synthesis were specifically regulated by PPARalpha in human hepatocytes, whereas glycolysis-gluconeogenesis was regulated specifically in mouse hepatocytes. Most of the genes commonly regulated in mouse and human were involved in lipid metabolism and many represented known PPARalpha targets, including CPT1A, HMGCS2, FABP1, ACSL1, and ADFP. Several genes were identified that were specifically induced by PPARalpha in human (MBL2, ALAS1, CYP1A1, TSKU or mouse (Fbp2, lgals4, Cd36, Ucp2, Pxmp4. Furthermore, several putative novel PPARalpha targets were identified that were commonly regulated in both species, including CREB3L3, KLF10, KLF11 and MAP3K8. CONCLUSIONS/SIGNIFICANCE: Our results suggest that PPARalpha activation has a major impact on gene regulation in human hepatocytes. Importantly, the role of PPARalpha as master regulator of hepatic lipid metabolism is generally well-conserved between mouse and human. Overall, however, PPARalpha regulates a mostly divergent set of genes in mouse and

  12. Gene targeting in a HUES line of human embryonic stem cells via electroporation.

    Science.gov (United States)

    Ruby, Katherine M; Zheng, Binhai

    2009-07-01

    Genetic modification is critical for achieving the full potential of human embryonic stem (ES) cells as a tool for therapeutic development and for basic research. Targeted modifications in human ES cells have met with limited success because of the unique culture conditions for many human ES cell lines. The HUES lines of human ES cells were developed for ease of manipulation and are gaining increased utility in stem cell research. We tested conditions for gene targeting via electroporation in the HUES-9 human ES cell line and demonstrate here successful gene targeting at the gene encoding Fezf2 (also known as Fezl), a transcription factor involved in corticospinal neuron development. With a targeting strategy involving positive and negative selection that is applicable to all genes, we observed a gene targeting frequency of approximately 1.5% for Fezf2, a gene not expressed in human ES cells. We found that conditions developed for gene targeting in mouse ES cells can be readily adapted to HUES cells with few key modifications. HUES-9 cells exhibit an intrinsically high efficiency of clonal expansion and sustain electroporation-based gene targeting procedures without any significant loss of pluripotency marker expression or karyotypic stability. Thus, human ES cell lines adapted for enzymatic passage and efficient clonal expansion can be highly amenable to genetic modifications, which will facilitate their application in basic science and clinical development.

  13. Design of retrovirus vectors for transfer and expression of the human. beta. -globin gene

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.D.; Bender, M.A.; Harris, E.A.S.; Kaleko, M.; Gelinas, R.E.

    1988-11-01

    Regulated expression of the human ..beta..-globin gene has been demonstrated in cultured murine erythroleukemia cells and in mice after retrovirus-mediated gene transfer. However, the low titer of recombinant viruses described to date results in relatively inefficient gene transfer, which limits their usefulness for animal studies and for potential gene therapy in humans for diseases involving defective ..beta..-globin genes. The authors found regions that interfered with virus production within intron 2 of the ..beta..-globin gene and on both sides of the gene. The flanking regions could be removed, but intron 2 was required for ..beta..-globin expression. Inclusion of ..beta..-globin introns necessitates an antisense orientation of the gene within the retrovirus vector. However, they found no effect of the antisense ..beta..-globin transcription on virus production. A region downstream of the ..beta..-globin gene that stimulates expression of the gene in transgenic mice was included in the viruses without detrimental effects on virus titer. Virus titers of over 10/sup 6/ CFU/ml were obtained with the final vector design, which retained the ability to direct regulated expression of human ..beta..-globin in murine erythroleukemia cells. The vector also allowed transfer and expression of the human ..beta..-globin gene in hematopoietic cells (CFU-S cells) in mice.

  14. The Evaluation of Nerve Growth Factor Over Expression on Neural Lineage Specific Genes in Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Mortazavi Yousef

    2016-07-01

    Full Text Available Objective Treatment and repair of neurodegenerative diseases such as brain tumors, spinal cord injuries, and functional disorders, including Alzheimer’s disease, are challenging problems. A common treatment approach for such disorders involves the use of mesenchymal stem cells (MSCs as an alternative cell source to replace injured cells. However, use of these cells in hosts may potentially cause adverse outcomes such as tumorigenesis and uncontrolled differentiation. In attempt to generate mesenchymal derived neural cells, we have infected MSCs with recombinant lentiviruses that expressed nerve growth factor (NGF and assessed their neural lineage genes. Materials and Methods In this experimental study, we cloned the NGF gene sequence into a helper dependent lentiviral vector that contained the green fluorescent protein (GFP gene. The recombinant vector was amplified in DH5 bacterial cells. Recombinant viruses were generated in the human embryonic kidney 293 (HEK-293 packaging cell line with the helper vectors and analyzed under fluorescent microscopy. Bone marrow mesenchymal cells were infected by recombinant viruses for three days followed by assessment of neural differentiation. We evaluated expression of NGF through measurement of the NGF protein in culture medium by ELISA; neural specific genes were quantified by real-time polymerase chain reaction (PCR. Results We observed neural morphological changes after three days. Quantitative PCR showed that expressions of NESTIN, glial derived neurotrophic factor (GDNF, glial fibrillary acidic protein (GFAP and Microtubule-associated protein 2 (MAP2 genes increased following induction of NGF overexpression, whereas expressions of endogenous NGF and brain derived neural growth factor (BDNF genes reduced. Conclusion Ectopic expression of NGF can induce neurogenesis in MSCs. Direct injection of MSCs may cause tumorigenesis and an undesirable outcome. Therefore an alternative choice to overcome this

  15. Systematic Characterization and Prediction of Human Hypertension Genes.

    Science.gov (United States)

    Li, Yan-Hui; Zhang, Gai-Gai; Wang, Nanping

    2017-02-01

    Hypertension is a major cardiovascular risk factor and accounts for a large part of cardiovascular mortality. In this work, we analyzed the properties of hypertension genes and found that when compared with genes not yet known to be involved in hypertension regulation, known hypertension genes display distinguishing features: (1) hypertension genes tend to be located at network center; (2) hypertension genes tend to interact with each other; and (3) hypertension genes tend to enrich in certain biological processes and show certain phenotypes. Based on these features, we developed a machine-learning algorithm to predict new hypertension genes. One hundred and seventy-seven candidates were predicted with a posterior probability >0.9. Evidence supporting 17 of the predictions has been found. © 2016 American Heart Association, Inc.

  16. PseudoGeneQuest – Service for identification of different pseudogene types in the human genome

    OpenAIRE

    Vihinen Mauno; Ortutay Csaba

    2008-01-01

    Abstract Background Pseudogenes, nonfunctional copies of genes, evolve fast due the lack of evolutionary pressures and thus appear in several different forms. PseudoGeneQuest is an online tool to search the human genome for a given query sequence and to identify different types of pseudogenes as well as novel genes and gene fragments. Description The service can detect pseudogenes, that have arisen either by retrotransposition or segmental genome duplication, many of which are not listed in t...

  17. Influenza A Virus with a Human-Like N2 Gene Is Circulating in Pigs

    DEFF Research Database (Denmark)

    Breum, Solvej Østergaard; Hjulsager, Charlotte Kristiane; Trebbien, Ramona

    2013-01-01

    A novel reassortant influenza A virus, H1avN2hu, has been found in Danish swine. The virus contains an H1 gene similar to the hemagglutinin (HA) gene of H1N1 avian-like swine viruses and an N2 gene most closely related to the neuraminidase (NA) gene of human H3N2 viruses from the mid-1990s....

  18. Genome-wide prediction and analysis of human tissue-selective genes using microarray expression data

    OpenAIRE

    Teng Shaolei; Yang Jack Y; Wang Liangjiang

    2013-01-01

    Abstract Background Understanding how genes are expressed specifically in particular tissues is a fundamental question in developmental biology. Many tissue-specific genes are involved in the pathogenesis of complex human diseases. However, experimental identification of tissue-specific genes is time consuming and difficult. The accurate predictions of tissue-specific gene targets could provide useful information for biomarker development and drug target identification. Results In this study,...

  19. β-2 microglobulin is unsuitable as an internal reference gene for the analysis of gene expression in human colorectal cancer.

    Science.gov (United States)

    Nihon-Yanagi, Yasuhiro; Terai, Kensuke; Murano, Takeyoshi; Kawai, Takayuki; Kimura, Shinya; Okazumi, Shinichi

    2013-03-01

    It is well-known that gene expression levels should be normalized to a carefully selected and appropriately stable internal control gene. However, numerous studies have demonstrated that the expression of housekeeping (HK) genes, typically used as internal control genes varies considerably. A number of studies have shown that β-2 microglobulin (B2M), an HK gene, frequently used as an internal reference gene, is expressed at low levels in colorectal cancer tissue, when assessed using real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Due to the fact that the expression levels of various HK genes vary depending on the tissue type or experimental conditions, it has been suggested that several control genes should be analyzed in parallel for certain tissues. In the present study, mRNA expression levels of toll-like receptors 2 (TLR2) and 4 (TLR4) in sporadic human colorectal cancerous and non-cancerous tissues were analyzed relative to three HK genes, β-glucuronidase (GUS), β-actin (BA) and B2M, using a commercially available tool. Relative expression levels were quantified using the three genes individually and together, and TLR2 as well as TLR4 expression was compared in cancerous and non-cancerous colorectal tissue specimens. Consistent data were obtained in most cases when GUS and BA were used as internal control genes. When B2M was used as the internal control gene, TLR2 and TLR4 expression was demonstrated to be higher in cancerous compared to non-cancerous colorectal tissues. These results were consistent with previous observations of low-level B2M expression in cancerous colorectal tissue and suggest that B2M may be inappropriate as an internal control gene for gene expression studies of colorectal cancer.

  20. Detection of Abundantly Transcribed Genes and Gene Translocation in Human Immunodeficiency Virus-Associated Non—Hodgkin's Lymphoma

    Directory of Open Access Journals (Sweden)

    V. Tarantul

    2001-01-01

    Full Text Available Several novel, differentially transcribed genes were identified in one centroblastic and one immunoblastic HIV-associated B-cell non-Hodgkin's lymphoma (BNHL by subtractive cloning. In both lymphomas, we detected an upregulated transcription of several mitochondrial genes. In the centroblastic B-NHL, we found a high level transcription of nuclear genes including the interferon-inducible gene (INF-ind, the immunoglobulin light chain gene (IgL, the set oncogene, and several unknown genes. The data obtained on upregulated expression of the genes in human B-NHL of HIV-infected patients considerably overlap with those obtained earlier for the B-NHL of simian immunodeficiency virus-infected monkeys. In the centroblastic lymphoma, one transcript revealed a fusion of the 3'-untranslated region of the set gene and the C-terminal region of the IgL gene. This chimeric sequence was confirmed by a site-directed polymerase chain reaction performed with total cDNA and genomic DNA. The expected amplification product was obtained in both cases pointing to a genomic rearrangement. The IgL-set fusion sequence was not found in cDNA preparations and genomic DNA of the immunoblastic HIV-associated B-NHL. Further studies are necessary to determine whether these genes contribute to lymphoma development or can be used as therapeutic targets.