WorldWideScience

Sample records for human gene annotation

  1. Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

    Science.gov (United States)

    Hu, Yang; Zhou, Wenyang; Ren, Jun; Dong, Lixiang; Wang, Yadong; Jin, Shuilin; Cheng, Liang

    2016-01-01

    Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

  2. New genes expressed in human brains: implications for annotating evolving genomes.

    Science.gov (United States)

    Zhang, Yong E; Landback, Patrick; Vibranovski, Maria; Long, Manyuan

    2012-11-01

    New genes have frequently formed and spread to fixation in a wide variety of organisms, constituting abundant sets of lineage-specific genes. It was recently reported that an excess of primate-specific and human-specific genes were upregulated in the brains of fetuses and infants, and especially in the prefrontal cortex, which is involved in cognition. These findings reveal the prevalent addition of new genetic components to the transcriptome of the human brain. More generally, these findings suggest that genomes are continually evolving in both sequence and content, eroding the conservation endowed by common ancestry. Despite increasing recognition of the importance of new genes, we highlight here that these genes are still seriously under-characterized in functional studies and that new gene annotation is inconsistent in current practice. We propose an integrative approach to annotate new genes, taking advantage of functional and evolutionary genomic methods. We finally discuss how the refinement of new gene annotation will be important for the detection of evolutionary forces governing new gene origination. Copyright © 2012 WILEY Periodicals, Inc.

  3. Gene expression and functional annotation of the human and mouse choroid plexus epithelium.

    Directory of Open Access Journals (Sweden)

    Sarah F Janssen

    Full Text Available BACKGROUND: The choroid plexus epithelium (CPE is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF, which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE. METHODS: We performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data. RESULTS: Overall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE. CONCLUSION: Human and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE

  4. Annotating the human genome with Disease Ontology

    Science.gov (United States)

    Osborne, John D; Flatow, Jared; Holko, Michelle; Lin, Simon M; Kibbe, Warren A; Zhu, Lihua (Julie); Danila, Maria I; Feng, Gang; Chisholm, Rex L

    2009-01-01

    Background The human genome has been extensively annotated with Gene Ontology for biological functions, but minimally computationally annotated for diseases. Results We used the Unified Medical Language System (UMLS) MetaMap Transfer tool (MMTx) to discover gene-disease relationships from the GeneRIF database. We utilized a comprehensive subset of UMLS, which is disease-focused and structured as a directed acyclic graph (the Disease Ontology), to filter and interpret results from MMTx. The results were validated against the Homayouni gene collection using recall and precision measurements. We compared our results with the widely used Online Mendelian Inheritance in Man (OMIM) annotations. Conclusion The validation data set suggests a 91% recall rate and 97% precision rate of disease annotation using GeneRIF, in contrast with a 22% recall and 98% precision using OMIM. Our thesaurus-based approach allows for comparisons to be made between disease containing databases and allows for increased accuracy in disease identification through synonym matching. The much higher recall rate of our approach demonstrates that annotating human genome with Disease Ontology and GeneRIF for diseases dramatically increases the coverage of the disease annotation of human genome. PMID:19594883

  5. Discovering gene annotations in biomedical text databases

    Directory of Open Access Journals (Sweden)

    Ozsoyoglu Gultekin

    2008-03-01

    Full Text Available Abstract Background Genes and gene products are frequently annotated with Gene Ontology concepts based on the evidence provided in genomics articles. Manually locating and curating information about a genomic entity from the biomedical literature requires vast amounts of human effort. Hence, there is clearly a need forautomated computational tools to annotate the genes and gene products with Gene Ontology concepts by computationally capturing the related knowledge embedded in textual data. Results In this article, we present an automated genomic entity annotation system, GEANN, which extracts information about the characteristics of genes and gene products in article abstracts from PubMed, and translates the discoveredknowledge into Gene Ontology (GO concepts, a widely-used standardized vocabulary of genomic traits. GEANN utilizes textual "extraction patterns", and a semantic matching framework to locate phrases matching to a pattern and produce Gene Ontology annotations for genes and gene products. In our experiments, GEANN has reached to the precision level of 78% at therecall level of 61%. On a select set of Gene Ontology concepts, GEANN either outperforms or is comparable to two other automated annotation studies. Use of WordNet for semantic pattern matching improves the precision and recall by 24% and 15%, respectively, and the improvement due to semantic pattern matching becomes more apparent as the Gene Ontology terms become more general. Conclusion GEANN is useful for two distinct purposes: (i automating the annotation of genomic entities with Gene Ontology concepts, and (ii providing existing annotations with additional "evidence articles" from the literature. The use of textual extraction patterns that are constructed based on the existing annotations achieve high precision. The semantic pattern matching framework provides a more flexible pattern matching scheme with respect to "exactmatching" with the advantage of locating approximate

  6. A framework for annotating human genome in disease context.

    Science.gov (United States)

    Xu, Wei; Wang, Huisong; Cheng, Wenqing; Fu, Dong; Xia, Tian; Kibbe, Warren A; Lin, Simon M

    2012-01-01

    Identification of gene-disease association is crucial to understanding disease mechanism. A rapid increase in biomedical literatures, led by advances of genome-scale technologies, poses challenge for manually-curated-based annotation databases to characterize gene-disease associations effectively and timely. We propose an automatic method-The Disease Ontology Annotation Framework (DOAF) to provide a comprehensive annotation of the human genome using the computable Disease Ontology (DO), the NCBO Annotator service and NCBI Gene Reference Into Function (GeneRIF). DOAF can keep the resulting knowledgebase current by periodically executing automatic pipeline to re-annotate the human genome using the latest DO and GeneRIF releases at any frequency such as daily or monthly. Further, DOAF provides a computable and programmable environment which enables large-scale and integrative analysis by working with external analytic software or online service platforms. A user-friendly web interface (doa.nubic.northwestern.edu) is implemented to allow users to efficiently query, download, and view disease annotations and the underlying evidences.

  7. OAHG: an integrated resource for annotating human genes with multi-level ontologies.

    Science.gov (United States)

    Cheng, Liang; Sun, Jie; Xu, Wanying; Dong, Lixiang; Hu, Yang; Zhou, Meng

    2016-10-05

    OAHG, an integrated resource, aims to establish a comprehensive functional annotation resource for human protein-coding genes (PCGs), miRNAs, and lncRNAs by multi-level ontologies involving Gene Ontology (GO), Disease Ontology (DO), and Human Phenotype Ontology (HPO). Many previous studies have focused on inferring putative properties and biological functions of PCGs and non-coding RNA genes from different perspectives. During the past several decades, a few of databases have been designed to annotate the functions of PCGs, miRNAs, and lncRNAs, respectively. A part of functional descriptions in these databases were mapped to standardize terminologies, such as GO, which could be helpful to do further analysis. Despite these developments, there is no comprehensive resource recording the function of these three important types of genes. The current version of OAHG, release 1.0 (Jun 2016), integrates three ontologies involving GO, DO, and HPO, six gene functional databases and two interaction databases. Currently, OAHG contains 1,434,694 entries involving 16,929 PCGs, 637 miRNAs, 193 lncRNAs, and 24,894 terms of ontologies. During the performance evaluation, OAHG shows the consistencies with existing gene interactions and the structure of ontology. For example, terms with more similar structure could be associated with more associated genes (Pearson correlation γ 2  = 0.2428, p < 2.2e-16).

  8. A Resource of Quantitative Functional Annotation for Homo sapiens Genes.

    Science.gov (United States)

    Taşan, Murat; Drabkin, Harold J; Beaver, John E; Chua, Hon Nian; Dunham, Julie; Tian, Weidong; Blake, Judith A; Roth, Frederick P

    2012-02-01

    The body of human genomic and proteomic evidence continues to grow at ever-increasing rates, while annotation efforts struggle to keep pace. A surprisingly small fraction of human genes have clear, documented associations with specific functions, and new functions continue to be found for characterized genes. Here we assembled an integrated collection of diverse genomic and proteomic data for 21,341 human genes and make quantitative associations of each to 4333 Gene Ontology terms. We combined guilt-by-profiling and guilt-by-association approaches to exploit features unique to the data types. Performance was evaluated by cross-validation, prospective validation, and by manual evaluation with the biological literature. Functional-linkage networks were also constructed, and their utility was demonstrated by identifying candidate genes related to a glioma FLN using a seed network from genome-wide association studies. Our annotations are presented-alongside existing validated annotations-in a publicly accessible and searchable web interface.

  9. Combining gene prediction methods to improve metagenomic gene annotation

    Directory of Open Access Journals (Sweden)

    Rosen Gail L

    2011-01-01

    Full Text Available Abstract Background Traditional gene annotation methods rely on characteristics that may not be available in short reads generated from next generation technology, resulting in suboptimal performance for metagenomic (environmental samples. Therefore, in recent years, new programs have been developed that optimize performance on short reads. In this work, we benchmark three metagenomic gene prediction programs and combine their predictions to improve metagenomic read gene annotation. Results We not only analyze the programs' performance at different read-lengths like similar studies, but also separate different types of reads, including intra- and intergenic regions, for analysis. The main deficiencies are in the algorithms' ability to predict non-coding regions and gene edges, resulting in more false-positives and false-negatives than desired. In fact, the specificities of the algorithms are notably worse than the sensitivities. By combining the programs' predictions, we show significant improvement in specificity at minimal cost to sensitivity, resulting in 4% improvement in accuracy for 100 bp reads with ~1% improvement in accuracy for 200 bp reads and above. To correctly annotate the start and stop of the genes, we find that a consensus of all the predictors performs best for shorter read lengths while a unanimous agreement is better for longer read lengths, boosting annotation accuracy by 1-8%. We also demonstrate use of the classifier combinations on a real dataset. Conclusions To optimize the performance for both prediction and annotation accuracies, we conclude that the consensus of all methods (or a majority vote is the best for reads 400 bp and shorter, while using the intersection of GeneMark and Orphelia predictions is the best for reads 500 bp and longer. We demonstrate that most methods predict over 80% coding (including partially coding reads on a real human gut sample sequenced by Illumina technology.

  10. High-performance web services for querying gene and variant annotation.

    Science.gov (United States)

    Xin, Jiwen; Mark, Adam; Afrasiabi, Cyrus; Tsueng, Ginger; Juchler, Moritz; Gopal, Nikhil; Stupp, Gregory S; Putman, Timothy E; Ainscough, Benjamin J; Griffith, Obi L; Torkamani, Ali; Whetzel, Patricia L; Mungall, Christopher J; Mooney, Sean D; Su, Andrew I; Wu, Chunlei

    2016-05-06

    Efficient tools for data management and integration are essential for many aspects of high-throughput biology. In particular, annotations of genes and human genetic variants are commonly used but highly fragmented across many resources. Here, we describe MyGene.info and MyVariant.info, high-performance web services for querying gene and variant annotation information. These web services are currently accessed more than three million times permonth. They also demonstrate a generalizable cloud-based model for organizing and querying biological annotation information. MyGene.info and MyVariant.info are provided as high-performance web services, accessible at http://mygene.info and http://myvariant.info . Both are offered free of charge to the research community.

  11. JGI Plant Genomics Gene Annotation Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Shengqiang; Rokhsar, Dan; Goodstein, David; Hayes, David; Mitros, Therese

    2014-07-14

    Plant genomes vary in size and are highly complex with a high amount of repeats, genome duplication and tandem duplication. Gene encodes a wealth of information useful in studying organism and it is critical to have high quality and stable gene annotation. Thanks to advancement of sequencing technology, many plant species genomes have been sequenced and transcriptomes are also sequenced. To use these vastly large amounts of sequence data to make gene annotation or re-annotation in a timely fashion, an automatic pipeline is needed. JGI plant genomics gene annotation pipeline, called integrated gene call (IGC), is our effort toward this aim with aid of a RNA-seq transcriptome assembly pipeline. It utilizes several gene predictors based on homolog peptides and transcript ORFs. See Methods for detail. Here we present genome annotation of JGI flagship green plants produced by this pipeline plus Arabidopsis and rice except for chlamy which is done by a third party. The genome annotations of these species and others are used in our gene family build pipeline and accessible via JGI Phytozome portal whose URL and front page snapshot are shown below.

  12. Gene expression and functional annotation of the human ciliary body epithelia.

    Directory of Open Access Journals (Sweden)

    Sarah F Janssen

    Full Text Available PURPOSE: The ciliary body (CB of the human eye consists of the non-pigmented (NPE and pigmented (PE neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed molecular signatures for the NPE and PE and studied possible new clues for glaucoma. METHODS: We isolated NPE and PE cells from seven healthy human donor eyes using laser dissection microscopy. Next, we performed RNA isolation, amplification, labeling and hybridization against 44×k Agilent microarrays. For microarray conformations, we used a literature study, RT-PCRs, and immunohistochemical stainings. We analyzed the gene expression data with R and with the knowledge database Ingenuity. RESULTS: The gene expression profiles and functional annotations of the NPE and PE were highly similar. We found that the most important functionalities of the NPE and PE were related to developmental processes, neural nature of the tissue, endocrine and metabolic signaling, and immunological functions. In total 1576 genes differed statistically significantly between NPE and PE. From these genes, at least 3 were cell-specific for the NPE and 143 for the PE. Finally, we observed high expression in the (NPE of 35 genes previously implicated in molecular mechanisms related to glaucoma. CONCLUSION: Our gene expression analysis suggested that the NPE and PE of the CB were quite similar. Nonetheless, cell-type specific differences were found. The molecular machineries of the human NPE and PE are involved in a range of neuro-endocrinological, developmental and immunological functions, and perhaps glaucoma.

  13. Linking human diseases to animal models using ontology-based phenotype annotation.

    Directory of Open Access Journals (Sweden)

    Nicole L Washington

    2009-11-01

    Full Text Available Scientists and clinicians who study genetic alterations and disease have traditionally described phenotypes in natural language. The considerable variation in these free-text descriptions has posed a hindrance to the important task of identifying candidate genes and models for human diseases and indicates the need for a computationally tractable method to mine data resources for mutant phenotypes. In this study, we tested the hypothesis that ontological annotation of disease phenotypes will facilitate the discovery of new genotype-phenotype relationships within and across species. To describe phenotypes using ontologies, we used an Entity-Quality (EQ methodology, wherein the affected entity (E and how it is affected (Q are recorded using terms from a variety of ontologies. Using this EQ method, we annotated the phenotypes of 11 gene-linked human diseases described in Online Mendelian Inheritance in Man (OMIM. These human annotations were loaded into our Ontology-Based Database (OBD along with other ontology-based phenotype descriptions of mutants from various model organism databases. Phenotypes recorded with this EQ method can be computationally compared based on the hierarchy of terms in the ontologies and the frequency of annotation. We utilized four similarity metrics to compare phenotypes and developed an ontology of homologous and analogous anatomical structures to compare phenotypes between species. Using these tools, we demonstrate that we can identify, through the similarity of the recorded phenotypes, other alleles of the same gene, other members of a signaling pathway, and orthologous genes and pathway members across species. We conclude that EQ-based annotation of phenotypes, in conjunction with a cross-species ontology, and a variety of similarity metrics can identify biologically meaningful similarities between genes by comparing phenotypes alone. This annotation and search method provides a novel and efficient means to identify

  14. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    Energy Technology Data Exchange (ETDEWEB)

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  15. Annotating gene sets by mining large literature collections with protein networks.

    Science.gov (United States)

    Wang, Sheng; Ma, Jianzhu; Yu, Michael Ku; Zheng, Fan; Huang, Edward W; Han, Jiawei; Peng, Jian; Ideker, Trey

    2018-01-01

    Analysis of patient genomes and transcriptomes routinely recognizes new gene sets associated with human disease. Here we present an integrative natural language processing system which infers common functions for a gene set through automatic mining of the scientific literature with biological networks. This system links genes with associated literature phrases and combines these links with protein interactions in a single heterogeneous network. Multiscale functional annotations are inferred based on network distances between phrases and genes and then visualized as an ontology of biological concepts. To evaluate this system, we predict functions for gene sets representing known pathways and find that our approach achieves substantial improvement over the conventional text-mining baseline method. Moreover, our system discovers novel annotations for gene sets or pathways without previously known functions. Two case studies demonstrate how the system is used in discovery of new cancer-related pathways with ontological annotations.

  16. GoGene: gene annotation in the fast lane.

    Science.gov (United States)

    Plake, Conrad; Royer, Loic; Winnenburg, Rainer; Hakenberg, Jörg; Schroeder, Michael

    2009-07-01

    High-throughput screens such as microarrays and RNAi screens produce huge amounts of data. They typically result in hundreds of genes, which are often further explored and clustered via enriched GeneOntology terms. The strength of such analyses is that they build on high-quality manual annotations provided with the GeneOntology. However, the weakness is that annotations are restricted to process, function and location and that they do not cover all known genes in model organisms. GoGene addresses this weakness by complementing high-quality manual annotation with high-throughput text mining extracting co-occurrences of genes and ontology terms from literature. GoGene contains over 4,000,000 associations between genes and gene-related terms for 10 model organisms extracted from more than 18,000,000 PubMed entries. It does not cover only process, function and location of genes, but also biomedical categories such as diseases, compounds, techniques and mutations. By bringing it all together, GoGene provides the most recent and most complete facts about genes and can rank them according to novelty and importance. GoGene accepts keywords, gene lists, gene sequences and protein sequences as input and supports search for genes in PubMed, EntrezGene and via BLAST. Since all associations of genes to terms are supported by evidence in the literature, the results are transparent and can be verified by the user. GoGene is available at http://gopubmed.org/gogene.

  17. Gene coexpression network analysis as a source of functional annotation for rice genes.

    Directory of Open Access Journals (Sweden)

    Kevin L Childs

    Full Text Available With the existence of large publicly available plant gene expression data sets, many groups have undertaken data analyses to construct gene coexpression networks and functionally annotate genes. Often, a large compendium of unrelated or condition-independent expression data is used to construct gene networks. Condition-dependent expression experiments consisting of well-defined conditions/treatments have also been used to create coexpression networks to help examine particular biological processes. Gene networks derived from either condition-dependent or condition-independent data can be difficult to interpret if a large number of genes and connections are present. However, algorithms exist to identify modules of highly connected and biologically relevant genes within coexpression networks. In this study, we have used publicly available rice (Oryza sativa gene expression data to create gene coexpression networks using both condition-dependent and condition-independent data and have identified gene modules within these networks using the Weighted Gene Coexpression Network Analysis method. We compared the number of genes assigned to modules and the biological interpretability of gene coexpression modules to assess the utility of condition-dependent and condition-independent gene coexpression networks. For the purpose of providing functional annotation to rice genes, we found that gene modules identified by coexpression analysis of condition-dependent gene expression experiments to be more useful than gene modules identified by analysis of a condition-independent data set. We have incorporated our results into the MSU Rice Genome Annotation Project database as additional expression-based annotation for 13,537 genes, 2,980 of which lack a functional annotation description. These results provide two new types of functional annotation for our database. Genes in modules are now associated with groups of genes that constitute a collective functional

  18. Transcript-level annotation of Affymetrix probesets improves the interpretation of gene expression data

    Directory of Open Access Journals (Sweden)

    Tu Kang

    2007-06-01

    Full Text Available Abstract Background The wide use of Affymetrix microarray in broadened fields of biological research has made the probeset annotation an important issue. Standard Affymetrix probeset annotation is at gene level, i.e. a probeset is precisely linked to a gene, and probeset intensity is interpreted as gene expression. The increased knowledge that one gene may have multiple transcript variants clearly brings up the necessity of updating this gene-level annotation to a refined transcript-level. Results Through performing rigorous alignments of the Affymetrix probe sequences against a comprehensive pool of currently available transcript sequences, and further linking the probesets to the International Protein Index, we generated transcript-level or protein-level annotation tables for two popular Affymetrix expression arrays, Mouse Genome 430A 2.0 Array and Human Genome U133A Array. Application of our new annotations in re-examining existing expression data sets shows increased expression consistency among synonymous probesets and strengthened expression correlation between interacting proteins. Conclusion By refining the standard Affymetrix annotation of microarray probesets from the gene level to the transcript level and protein level, one can achieve a more reliable interpretation of their experimental data, which may lead to discovery of more profound regulatory mechanism.

  19. Large-scale inference of gene function through phylogenetic annotation of Gene Ontology terms: case study of the apoptosis and autophagy cellular processes.

    Science.gov (United States)

    Feuermann, Marc; Gaudet, Pascale; Mi, Huaiyu; Lewis, Suzanna E; Thomas, Paul D

    2016-01-01

    We previously reported a paradigm for large-scale phylogenomic analysis of gene families that takes advantage of the large corpus of experimentally supported Gene Ontology (GO) annotations. This 'GO Phylogenetic Annotation' approach integrates GO annotations from evolutionarily related genes across ∼100 different organisms in the context of a gene family tree, in which curators build an explicit model of the evolution of gene functions. GO Phylogenetic Annotation models the gain and loss of functions in a gene family tree, which is used to infer the functions of uncharacterized (or incompletely characterized) gene products, even for human proteins that are relatively well studied. Here, we report our results from applying this paradigm to two well-characterized cellular processes, apoptosis and autophagy. This revealed several important observations with respect to GO annotations and how they can be used for function inference. Notably, we applied only a small fraction of the experimentally supported GO annotations to infer function in other family members. The majority of other annotations describe indirect effects, phenotypes or results from high throughput experiments. In addition, we show here how feedback from phylogenetic annotation leads to significant improvements in the PANTHER trees, the GO annotations and GO itself. Thus GO phylogenetic annotation both increases the quantity and improves the accuracy of the GO annotations provided to the research community. We expect these phylogenetically based annotations to be of broad use in gene enrichment analysis as well as other applications of GO annotations.Database URL: http://amigo.geneontology.org/amigo. © The Author(s) 2016. Published by Oxford University Press.

  20. Current trend of annotating single nucleotide variation in humans--A case study on SNVrap.

    Science.gov (United States)

    Li, Mulin Jun; Wang, Junwen

    2015-06-01

    As high throughput methods, such as whole genome genotyping arrays, whole exome sequencing (WES) and whole genome sequencing (WGS), have detected huge amounts of genetic variants associated with human diseases, function annotation of these variants is an indispensable step in understanding disease etiology. Large-scale functional genomics projects, such as The ENCODE Project and Roadmap Epigenomics Project, provide genome-wide profiling of functional elements across different human cell types and tissues. With the urgent demands for identification of disease-causal variants, comprehensive and easy-to-use annotation tool is highly in demand. Here we review and discuss current progress and trend of the variant annotation field. Furthermore, we introduce a comprehensive web portal for annotating human genetic variants. We use gene-based features and the latest functional genomics datasets to annotate single nucleotide variation (SNVs) in human, at whole genome scale. We further apply several function prediction algorithms to annotate SNVs that might affect different biological processes, including transcriptional gene regulation, alternative splicing, post-transcriptional regulation, translation and post-translational modifications. The SNVrap web portal is freely available at http://jjwanglab.org/snvrap. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Integrative annotation of 21,037 human genes validated by full-length cDNA clones.

    Directory of Open Access Journals (Sweden)

    Tadashi Imanishi

    2004-06-01

    Full Text Available The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/. It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs, identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA

  2. ExpTreeDB: web-based query and visualization of manually annotated gene expression profiling experiments of human and mouse from GEO.

    Science.gov (United States)

    Ni, Ming; Ye, Fuqiang; Zhu, Juanjuan; Li, Zongwei; Yang, Shuai; Yang, Bite; Han, Lu; Wu, Yongge; Chen, Ying; Li, Fei; Wang, Shengqi; Bo, Xiaochen

    2014-12-01

    Numerous public microarray datasets are valuable resources for the scientific communities. Several online tools have made great steps to use these data by querying related datasets with users' own gene signatures or expression profiles. However, dataset annotation and result exhibition still need to be improved. ExpTreeDB is a database that allows for queries on human and mouse microarray experiments from Gene Expression Omnibus with gene signatures or profiles. Compared with similar applications, ExpTreeDB pays more attention to dataset annotations and result visualization. We introduced a multiple-level annotation system to depict and organize original experiments. For example, a tamoxifen-treated cell line experiment is hierarchically annotated as 'agent→drug→estrogen receptor antagonist→tamoxifen'. Consequently, retrieved results are exhibited by an interactive tree-structured graphics, which provide an overview for related experiments and might enlighten users on key items of interest. The database is freely available at http://biotech.bmi.ac.cn/ExpTreeDB. Web site is implemented in Perl, PHP, R, MySQL and Apache. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. The GATO gene annotation tool for research laboratories

    Directory of Open Access Journals (Sweden)

    A. Fujita

    2005-11-01

    Full Text Available Large-scale genome projects have generated a rapidly increasing number of DNA sequences. Therefore, development of computational methods to rapidly analyze these sequences is essential for progress in genomic research. Here we present an automatic annotation system for preliminary analysis of DNA sequences. The gene annotation tool (GATO is a Bioinformatics pipeline designed to facilitate routine functional annotation and easy access to annotated genes. It was designed in view of the frequent need of genomic researchers to access data pertaining to a common set of genes. In the GATO system, annotation is generated by querying some of the Web-accessible resources and the information is stored in a local database, which keeps a record of all previous annotation results. GATO may be accessed from everywhere through the internet or may be run locally if a large number of sequences are going to be annotated. It is implemented in PHP and Perl and may be run on any suitable Web server. Usually, installation and application of annotation systems require experience and are time consuming, but GATO is simple and practical, allowing anyone with basic skills in informatics to access it without any special training. GATO can be downloaded at [http://mariwork.iq.usp.br/gato/]. Minimum computer free space required is 2 MB.

  4. The use of semantic similarity measures for optimally integrating heterogeneous Gene Ontology data from large scale annotation pipelines

    Directory of Open Access Journals (Sweden)

    Gaston K Mazandu

    2014-08-01

    Full Text Available With the advancement of new high throughput sequencing technologies, there has been an increase in the number of genome sequencing projects worldwide, which has yielded complete genome sequences of human, animals and plants. Subsequently, several labs have focused on genome annotation, consisting of assigning functions to gene products, mostly using Gene Ontology (GO terms. As a consequence, there is an increased heterogeneity in annotations across genomes due to different approaches used by different pipelines to infer these annotations and also due to the nature of the GO structure itself. This makes a curator's task difficult, even if they adhere to the established guidelines for assessing these protein annotations. Here we develop a genome-scale approach for integrating GO annotations from different pipelines using semantic similarity measures. We used this approach to identify inconsistencies and similarities in functional annotations between orthologs of human and Drosophila melanogaster, to assess the quality of GO annotations derived from InterPro2GO mappings compared to manually annotated GO annotations for the Drosophila melanogaster proteome from a FlyBase dataset and human, and to filter GO annotation data for these proteomes. Results obtained indicate that an efficient integration of GO annotations eliminates redundancy up to 27.08 and 22.32% in the Drosophila melanogaster and human GO annotation datasets, respectively. Furthermore, we identified lack of and missing annotations for some orthologs, and annotation mismatches between InterPro2GO and manual pipelines in these two proteomes, thus requiring further curation. This simplifies and facilitates tasks of curators in assessing protein annotations, reduces redundancy and eliminates inconsistencies in large annotation datasets for ease of comparative functional genomics.

  5. Experimental annotation of the human genome using microarray technology.

    Science.gov (United States)

    Shoemaker, D D; Schadt, E E; Armour, C D; He, Y D; Garrett-Engele, P; McDonagh, P D; Loerch, P M; Leonardson, A; Lum, P Y; Cavet, G; Wu, L F; Altschuler, S J; Edwards, S; King, J; Tsang, J S; Schimmack, G; Schelter, J M; Koch, J; Ziman, M; Marton, M J; Li, B; Cundiff, P; Ward, T; Castle, J; Krolewski, M; Meyer, M R; Mao, M; Burchard, J; Kidd, M J; Dai, H; Phillips, J W; Linsley, P S; Stoughton, R; Scherer, S; Boguski, M S

    2001-02-15

    The most important product of the sequencing of a genome is a complete, accurate catalogue of genes and their products, primarily messenger RNA transcripts and their cognate proteins. Such a catalogue cannot be constructed by computational annotation alone; it requires experimental validation on a genome scale. Using 'exon' and 'tiling' arrays fabricated by ink-jet oligonucleotide synthesis, we devised an experimental approach to validate and refine computational gene predictions and define full-length transcripts on the basis of co-regulated expression of their exons. These methods can provide more accurate gene numbers and allow the detection of mRNA splice variants and identification of the tissue- and disease-specific conditions under which genes are expressed. We apply our technique to chromosome 22q under 69 experimental condition pairs, and to the entire human genome under two experimental conditions. We discuss implications for more comprehensive, consistent and reliable genome annotation, more efficient, full-length complementary DNA cloning strategies and application to complex diseases.

  6. PanCoreGen - Profiling, detecting, annotating protein-coding genes in microbial genomes.

    Science.gov (United States)

    Paul, Sandip; Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V; Chattopadhyay, Sujay

    2015-12-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing the pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen - a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for a species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars - Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis

    Directory of Open Access Journals (Sweden)

    Baseler Michael W

    2007-11-01

    Full Text Available Abstract Background Due to the complex and distributed nature of biological research, our current biological knowledge is spread over many redundant annotation databases maintained by many independent groups. Analysts usually need to visit many of these bioinformatics databases in order to integrate comprehensive annotation information for their genes, which becomes one of the bottlenecks, particularly for the analytic task associated with a large gene list. Thus, a highly centralized and ready-to-use gene-annotation knowledgebase is in demand for high throughput gene functional analysis. Description The DAVID Knowledgebase is built around the DAVID Gene Concept, a single-linkage method to agglomerate tens of millions of gene/protein identifiers from a variety of public genomic resources into DAVID gene clusters. The grouping of such identifiers improves the cross-reference capability, particularly across NCBI and UniProt systems, enabling more than 40 publicly available functional annotation sources to be comprehensively integrated and centralized by the DAVID gene clusters. The simple, pair-wise, text format files which make up the DAVID Knowledgebase are freely downloadable for various data analysis uses. In addition, a well organized web interface allows users to query different types of heterogeneous annotations in a high-throughput manner. Conclusion The DAVID Knowledgebase is designed to facilitate high throughput gene functional analysis. For a given gene list, it not only provides the quick accessibility to a wide range of heterogeneous annotation data in a centralized location, but also enriches the level of biological information for an individual gene. Moreover, the entire DAVID Knowledgebase is freely downloadable or searchable at http://david.abcc.ncifcrf.gov/knowledgebase/.

  8. Improved methods and resources for paramecium genomics: transcription units, gene annotation and gene expression.

    Science.gov (United States)

    Arnaiz, Olivier; Van Dijk, Erwin; Bétermier, Mireille; Lhuillier-Akakpo, Maoussi; de Vanssay, Augustin; Duharcourt, Sandra; Sallet, Erika; Gouzy, Jérôme; Sperling, Linda

    2017-06-26

    The 15 sibling species of the Paramecium aurelia cryptic species complex emerged after a whole genome duplication that occurred tens of millions of years ago. Given extensive knowledge of the genetics and epigenetics of Paramecium acquired over the last century, this species complex offers a uniquely powerful system to investigate the consequences of whole genome duplication in a unicellular eukaryote as well as the genetic and epigenetic mechanisms that drive speciation. High quality Paramecium gene models are important for research using this system. The major aim of the work reported here was to build an improved gene annotation pipeline for the Paramecium lineage. We generated oriented RNA-Seq transcriptome data across the sexual process of autogamy for the model species Paramecium tetraurelia. We determined, for the first time in a ciliate, candidate P. tetraurelia transcription start sites using an adapted Cap-Seq protocol. We developed TrUC, multi-threaded Perl software that in conjunction with TopHat mapping of RNA-Seq data to a reference genome, predicts transcription units for the annotation pipeline. We used EuGene software to combine annotation evidence. The high quality gene structural annotations obtained for P. tetraurelia were used as evidence to improve published annotations for 3 other Paramecium species. The RNA-Seq data were also used for differential gene expression analysis, providing a gene expression atlas that is more sensitive than the previously established microarray resource. We have developed a gene annotation pipeline tailored for the compact genomes and tiny introns of Paramecium species. A novel component of this pipeline, TrUC, predicts transcription units using Cap-Seq and oriented RNA-Seq data. TrUC could prove useful beyond Paramecium, especially in the case of high gene density. Accurate predictions of 3' and 5' UTR will be particularly valuable for studies of gene expression (e.g. nucleosome positioning, identification of cis

  9. Identifying and annotating human bifunctional RNAs reveals their versatile functions.

    Science.gov (United States)

    Chen, Geng; Yang, Juan; Chen, Jiwei; Song, Yunjie; Cao, Ruifang; Shi, Tieliu; Shi, Leming

    2016-10-01

    Bifunctional RNAs that possess both protein-coding and noncoding functional properties were less explored and poorly understood. Here we systematically explored the characteristics and functions of such human bifunctional RNAs by integrating tandem mass spectrometry and RNA-seq data. We first constructed a pipeline to identify and annotate bifunctional RNAs, leading to the characterization of 132 high-confidence bifunctional RNAs. Our analyses indicate that bifunctional RNAs may be involved in human embryonic development and can be functional in diverse tissues. Moreover, bifunctional RNAs could interact with multiple miRNAs and RNA-binding proteins to exert their corresponding roles. Bifunctional RNAs may also function as competing endogenous RNAs to regulate the expression of many genes by competing for common targeting miRNAs. Finally, somatic mutations of diverse carcinomas may generate harmful effect on corresponding bifunctional RNAs. Collectively, our study not only provides the pipeline for identifying and annotating bifunctional RNAs but also reveals their important gene-regulatory functions.

  10. Lynx web services for annotations and systems analysis of multi-gene disorders.

    Science.gov (United States)

    Sulakhe, Dinanath; Taylor, Andrew; Balasubramanian, Sandhya; Feng, Bo; Xie, Bingqing; Börnigen, Daniela; Dave, Utpal J; Foster, Ian T; Gilliam, T Conrad; Maltsev, Natalia

    2014-07-01

    Lynx is a web-based integrated systems biology platform that supports annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Lynx has integrated multiple classes of biomedical data (genomic, proteomic, pathways, phenotypic, toxicogenomic, contextual and others) from various public databases as well as manually curated data from our group and collaborators (LynxKB). Lynx provides tools for gene list enrichment analysis using multiple functional annotations and network-based gene prioritization. Lynx provides access to the integrated database and the analytical tools via REST based Web Services (http://lynx.ci.uchicago.edu/webservices.html). This comprises data retrieval services for specific functional annotations, services to search across the complete LynxKB (powered by Lucene), and services to access the analytical tools built within the Lynx platform. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Functional annotation of the human retinal pigment epithelium transcriptome

    Directory of Open Access Journals (Sweden)

    Gorgels Theo GMF

    2009-04-01

    Full Text Available Abstract Background To determine level, variability and functional annotation of gene expression of the human retinal pigment epithelium (RPE, the key tissue involved in retinal diseases like age-related macular degeneration and retinitis pigmentosa. Macular RPE cells from six selected healthy human donor eyes (aged 63–78 years were laser dissected and used for 22k microarray studies (Agilent technologies. Data were analyzed with Rosetta Resolver, the web tool DAVID and Ingenuity software. Results In total, we identified 19,746 array entries with significant expression in the RPE. Gene expression was analyzed according to expression levels, interindividual variability and functionality. A group of highly (n = 2,194 expressed RPE genes showed an overrepresentation of genes of the oxidative phosphorylation, ATP synthesis and ribosome pathways. In the group of moderately expressed genes (n = 8,776 genes of the phosphatidylinositol signaling system and aminosugars metabolism were overrepresented. As expected, the top 10 percent (n = 2,194 of genes with the highest interindividual differences in expression showed functional overrepresentation of the complement cascade, essential in inflammation in age-related macular degeneration, and other signaling pathways. Surprisingly, this same category also includes the genes involved in Bruch's membrane (BM composition. Among the top 10 percent of genes with low interindividual differences, there was an overrepresentation of genes involved in local glycosaminoglycan turnover. Conclusion Our study expands current knowledge of the RPE transcriptome by assigning new genes, and adding data about expression level and interindividual variation. Functional annotation suggests that the RPE has high levels of protein synthesis, strong energy demands, and is exposed to high levels of oxidative stress and a variable degree of inflammation. Our data sheds new light on the molecular composition of BM, adjacent to the

  12. On the Use of Gene Ontology Annotations to Assess Functional Similarity among Orthologs and Paralogs: A Short Report.

    Directory of Open Access Journals (Sweden)

    Paul D Thomas

    Full Text Available A recent paper (Nehrt et al., PLoS Comput. Biol. 7:e1002073, 2011 has proposed a metric for the "functional similarity" between two genes that uses only the Gene Ontology (GO annotations directly derived from published experimental results. Applying this metric, the authors concluded that paralogous genes within the mouse genome or the human genome are more functionally similar on average than orthologous genes between these genomes, an unexpected result with broad implications if true. We suggest, based on both theoretical and empirical considerations, that this proposed metric should not be interpreted as a functional similarity, and therefore cannot be used to support any conclusions about the "ortholog conjecture" (or, more properly, the "ortholog functional conservation hypothesis". First, we reexamine the case studies presented by Nehrt et al. as examples of orthologs with divergent functions, and come to a very different conclusion: they actually exemplify how GO annotations for orthologous genes provide complementary information about conserved biological functions. We then show that there is a global ascertainment bias in the experiment-based GO annotations for human and mouse genes: particular types of experiments tend to be performed in different model organisms. We conclude that the reported statistical differences in annotations between pairs of orthologous genes do not reflect differences in biological function, but rather complementarity in experimental approaches. Our results underscore two general considerations for researchers proposing novel types of analysis based on the GO: 1 that GO annotations are often incomplete, potentially in a biased manner, and subject to an "open world assumption" (absence of an annotation does not imply absence of a function, and 2 that conclusions drawn from a novel, large-scale GO analysis should whenever possible be supported by careful, in-depth examination of examples, to help ensure the

  13. PanCoreGen – profiling, detecting, annotating protein-coding genes in microbial genomes

    Science.gov (United States)

    Bhardwaj, Archana; Bag, Sumit K; Sokurenko, Evgeni V.

    2015-01-01

    A large amount of genomic data, especially from multiple isolates of a single species, has opened new vistas for microbial genomics analysis. Analyzing pan-genome (i.e. the sum of genetic repertoire) of microbial species is crucial in understanding the dynamics of molecular evolution, where virulence evolution is of major interest. Here we present PanCoreGen – a standalone application for pan- and core-genomic profiling of microbial protein-coding genes. PanCoreGen overcomes key limitations of the existing pan-genomic analysis tools, and develops an integrated annotation-structure for species-specific pan-genomic profile. It provides important new features for annotating draft genomes/contigs and detecting unidentified genes in annotated genomes. It also generates user-defined group-specific datasets within the pan-genome. Interestingly, analyzing an example-set of Salmonella genomes, we detect potential footprints of adaptive convergence of horizontally transferred genes in two human-restricted pathogenic serovars – Typhi and Paratyphi A. Overall, PanCoreGen represents a state-of-the-art tool for microbial phylogenomics and pathogenomics study. PMID:26456591

  14. Protein Annotation from Protein Interaction Networks and Gene Ontology

    OpenAIRE

    Nguyen, Cao D.; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2011-01-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precis...

  15. Algal Functional Annotation Tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data

    Directory of Open Access Journals (Sweden)

    Merchant Sabeeha S

    2011-07-01

    Full Text Available Abstract Background Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations to interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. Description The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of

  16. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcin P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2008-10-27

    Hypothetical and conserved hypothetical genes account for>30percent of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved hypothetical (9.5percent) along with 887 hypothetical genes (24.4percent). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 hypothetical and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC-MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. 1212 of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations.

  17. Extracting Cross-Ontology Weighted Association Rules from Gene Ontology Annotations.

    Science.gov (United States)

    Agapito, Giuseppe; Milano, Marianna; Guzzi, Pietro Hiram; Cannataro, Mario

    2016-01-01

    Gene Ontology (GO) is a structured repository of concepts (GO Terms) that are associated to one or more gene products through a process referred to as annotation. The analysis of annotated data is an important opportunity for bioinformatics. There are different approaches of analysis, among those, the use of association rules (AR) which provides useful knowledge, discovering biologically relevant associations between terms of GO, not previously known. In a previous work, we introduced GO-WAR (Gene Ontology-based Weighted Association Rules), a methodology for extracting weighted association rules from ontology-based annotated datasets. We here adapt the GO-WAR algorithm to mine cross-ontology association rules, i.e., rules that involve GO terms present in the three sub-ontologies of GO. We conduct a deep performance evaluation of GO-WAR by mining publicly available GO annotated datasets, showing how GO-WAR outperforms current state of the art approaches.

  18. In-silico human genomics with GeneCards

    Directory of Open Access Journals (Sweden)

    Stelzer Gil

    2011-10-01

    Full Text Available Abstract Since 1998, the bioinformatics, systems biology, genomics and medical communities have enjoyed a synergistic relationship with the GeneCards database of human genes (http://www.genecards.org. This human gene compendium was created to help to introduce order into the increasing chaos of information flow. As a consequence of viewing details and deep links related to specific genes, users have often requested enhanced capabilities, such that, over time, GeneCards has blossomed into a suite of tools (including GeneDecks, GeneALaCart, GeneLoc, GeneNote and GeneAnnot for a variety of analyses of both single human genes and sets thereof. In this paper, we focus on inhouse and external research activities which have been enabled, enhanced, complemented and, in some cases, motivated by GeneCards. In turn, such interactions have often inspired and propelled improvements in GeneCards. We describe here the evolution and architecture of this project, including examples of synergistic applications in diverse areas such as synthetic lethality in cancer, the annotation of genetic variations in disease, omics integration in a systems biology approach to kidney disease, and bioinformatics tools.

  19. Canine candidate genes for dilated cardiomyopathy: annotation of and polymorphic markers for 14 genes.

    Science.gov (United States)

    Wiersma, Anje C; Leegwater, Peter Aj; van Oost, Bernard A; Ollier, William E; Dukes-McEwan, Joanna

    2007-10-19

    Dilated cardiomyopathy is a myocardial disease occurring in humans and domestic animals and is characterized by dilatation of the left ventricle, reduced systolic function and increased sphericity of the left ventricle. Dilated cardiomyopathy has been observed in several, mostly large and giant, dog breeds, such as the Dobermann and the Great Dane. A number of genes have been identified, which are associated with dilated cardiomyopathy in the human, mouse and hamster. These genes mainly encode structural proteins of the cardiac myocyte. We present the annotation of, and marker development for, 14 of these genes of the dog genome, i.e. alpha-cardiac actin, caveolin 1, cysteine-rich protein 3, desmin, lamin A/C, LIM-domain binding factor 3, myosin heavy polypeptide 7, phospholamban, sarcoglycan delta, titin cap, alpha-tropomyosin, troponin I, troponin T and vinculin. A total of 33 Single Nucleotide Polymorphisms were identified for these canine genes and 11 polymorphic microsatellite repeats were developed. The presented polymorphisms provide a tool to investigate the role of the corresponding genes in canine Dilated Cardiomyopathy by linkage analysis or association studies.

  20. Evaluating Functional Annotations of Enzymes Using the Gene Ontology.

    Science.gov (United States)

    Holliday, Gemma L; Davidson, Rebecca; Akiva, Eyal; Babbitt, Patricia C

    2017-01-01

    The Gene Ontology (GO) (Ashburner et al., Nat Genet 25(1):25-29, 2000) is a powerful tool in the informatics arsenal of methods for evaluating annotations in a protein dataset. From identifying the nearest well annotated homologue of a protein of interest to predicting where misannotation has occurred to knowing how confident you can be in the annotations assigned to those proteins is critical. In this chapter we explore what makes an enzyme unique and how we can use GO to infer aspects of protein function based on sequence similarity. These can range from identification of misannotation or other errors in a predicted function to accurate function prediction for an enzyme of entirely unknown function. Although GO annotation applies to any gene products, we focus here a describing our approach for hierarchical classification of enzymes in the Structure-Function Linkage Database (SFLD) (Akiva et al., Nucleic Acids Res 42(Database issue):D521-530, 2014) as a guide for informed utilisation of annotation transfer based on GO terms.

  1. Protannotator: a semiautomated pipeline for chromosome-wise functional annotation of the "missing" human proteome.

    Science.gov (United States)

    Islam, Mohammad T; Garg, Gagan; Hancock, William S; Risk, Brian A; Baker, Mark S; Ranganathan, Shoba

    2014-01-03

    The chromosome-centric human proteome project (C-HPP) aims to define the complete set of proteins encoded in each human chromosome. The neXtProt database (September 2013) lists 20,128 proteins for the human proteome, of which 3831 human proteins (∼19%) are considered "missing" according to the standard metrics table (released September 27, 2013). In support of the C-HPP initiative, we have extended the annotation strategy developed for human chromosome 7 "missing" proteins into a semiautomated pipeline to functionally annotate the "missing" human proteome. This pipeline integrates a suite of bioinformatics analysis and annotation software tools to identify homologues and map putative functional signatures, gene ontology, and biochemical pathways. From sequential BLAST searches, we have primarily identified homologues from reviewed nonhuman mammalian proteins with protein evidence for 1271 (33.2%) "missing" proteins, followed by 703 (18.4%) homologues from reviewed nonhuman mammalian proteins and subsequently 564 (14.7%) homologues from reviewed human proteins. Functional annotations for 1945 (50.8%) "missing" proteins were also determined. To accelerate the identification of "missing" proteins from proteomics studies, we generated proteotypic peptides in silico. Matching these proteotypic peptides to ENCODE proteogenomic data resulted in proteomic evidence for 107 (2.8%) of the 3831 "missing proteins, while evidence from a recent membrane proteomic study supported the existence for another 15 "missing" proteins. The chromosome-wise functional annotation of all "missing" proteins is freely available to the scientific community through our web server (http://biolinfo.org/protannotator).

  2. Gene Ontology annotation of the rice blast fungus, Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Deng Jixin

    2009-02-01

    Full Text Available Abstract Background Magnaporthe oryzae, the causal agent of blast disease of rice, is the most destructive disease of rice worldwide. The genome of this fungal pathogen has been sequenced and an automated annotation has recently been updated to Version 6 http://www.broad.mit.edu/annotation/genome/magnaporthe_grisea/MultiDownloads.html. However, a comprehensive manual curation remains to be performed. Gene Ontology (GO annotation is a valuable means of assigning functional information using standardized vocabulary. We report an overview of the GO annotation for Version 5 of M. oryzae genome assembly. Methods A similarity-based (i.e., computational GO annotation with manual review was conducted, which was then integrated with a literature-based GO annotation with computational assistance. For similarity-based GO annotation a stringent reciprocal best hits method was used to identify similarity between predicted proteins of M. oryzae and GO proteins from multiple organisms with published associations to GO terms. Significant alignment pairs were manually reviewed. Functional assignments were further cross-validated with manually reviewed data, conserved domains, or data determined by wet lab experiments. Additionally, biological appropriateness of the functional assignments was manually checked. Results In total, 6,286 proteins received GO term assignment via the homology-based annotation, including 2,870 hypothetical proteins. Literature-based experimental evidence, such as microarray, MPSS, T-DNA insertion mutation, or gene knockout mutation, resulted in 2,810 proteins being annotated with GO terms. Of these, 1,673 proteins were annotated with new terms developed for Plant-Associated Microbe Gene Ontology (PAMGO. In addition, 67 experiment-determined secreted proteins were annotated with PAMGO terms. Integration of the two data sets resulted in 7,412 proteins (57% being annotated with 1,957 distinct and specific GO terms. Unannotated proteins

  3. Gene annotation from scientific literature using mappings between keyword systems.

    Science.gov (United States)

    Pérez, Antonio J; Perez-Iratxeta, Carolina; Bork, Peer; Thode, Guillermo; Andrade, Miguel A

    2004-09-01

    The description of genes in databases by keywords helps the non-specialist to quickly grasp the properties of a gene and increases the efficiency of computational tools that are applied to gene data (e.g. searching a gene database for sequences related to a particular biological process). However, the association of keywords to genes or protein sequences is a difficult process that ultimately implies examination of the literature related to a gene. To support this task, we present a procedure to derive keywords from the set of scientific abstracts related to a gene. Our system is based on the automated extraction of mappings between related terms from different databases using a model of fuzzy associations that can be applied with all generality to any pair of linked databases. We tested the system by annotating genes of the SWISS-PROT database with keywords derived from the abstracts linked to their entries (stored in the MEDLINE database of scientific references). The performance of the annotation procedure was much better for SWISS-PROT keywords (recall of 47%, precision of 68%) than for Gene Ontology terms (recall of 8%, precision of 67%). The algorithm can be publicly accessed and used for the annotation of sequences through a web server at http://www.bork.embl.de/kat

  4. Canine candidate genes for dilated cardiomyopathy: annotation of and polymorphic markers for 14 genes

    Directory of Open Access Journals (Sweden)

    van Oost Bernard A

    2007-10-01

    Full Text Available Abstract Background Dilated cardiomyopathy is a myocardial disease occurring in humans and domestic animals and is characterized by dilatation of the left ventricle, reduced systolic function and increased sphericity of the left ventricle. Dilated cardiomyopathy has been observed in several, mostly large and giant, dog breeds, such as the Dobermann and the Great Dane. A number of genes have been identified, which are associated with dilated cardiomyopathy in the human, mouse and hamster. These genes mainly encode structural proteins of the cardiac myocyte. Results We present the annotation of, and marker development for, 14 of these genes of the dog genome, i.e. α-cardiac actin, caveolin 1, cysteine-rich protein 3, desmin, lamin A/C, LIM-domain binding factor 3, myosin heavy polypeptide 7, phospholamban, sarcoglycan δ, titin cap, α-tropomyosin, troponin I, troponin T and vinculin. A total of 33 Single Nucleotide Polymorphisms were identified for these canine genes and 11 polymorphic microsatellite repeats were developed. Conclusion The presented polymorphisms provide a tool to investigate the role of the corresponding genes in canine Dilated Cardiomyopathy by linkage analysis or association studies.

  5. An efficient annotation and gene-expression derivation tool for Illumina Solexa datasets.

    Science.gov (United States)

    Hosseini, Parsa; Tremblay, Arianne; Matthews, Benjamin F; Alkharouf, Nadim W

    2010-07-02

    The data produced by an Illumina flow cell with all eight lanes occupied, produces well over a terabyte worth of images with gigabytes of reads following sequence alignment. The ability to translate such reads into meaningful annotation is therefore of great concern and importance. Very easily, one can get flooded with such a great volume of textual, unannotated data irrespective of read quality or size. CASAVA, a optional analysis tool for Illumina sequencing experiments, enables the ability to understand INDEL detection, SNP information, and allele calling. To not only extract from such analysis, a measure of gene expression in the form of tag-counts, but furthermore to annotate such reads is therefore of significant value. We developed TASE (Tag counting and Analysis of Solexa Experiments), a rapid tag-counting and annotation software tool specifically designed for Illumina CASAVA sequencing datasets. Developed in Java and deployed using jTDS JDBC driver and a SQL Server backend, TASE provides an extremely fast means of calculating gene expression through tag-counts while annotating sequenced reads with the gene's presumed function, from any given CASAVA-build. Such a build is generated for both DNA and RNA sequencing. Analysis is broken into two distinct components: DNA sequence or read concatenation, followed by tag-counting and annotation. The end result produces output containing the homology-based functional annotation and respective gene expression measure signifying how many times sequenced reads were found within the genomic ranges of functional annotations. TASE is a powerful tool to facilitate the process of annotating a given Illumina Solexa sequencing dataset. Our results indicate that both homology-based annotation and tag-count analysis are achieved in very efficient times, providing researchers to delve deep in a given CASAVA-build and maximize information extraction from a sequencing dataset. TASE is specially designed to translate sequence data

  6. Annotating individual human genomes.

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A; Topol, Eric J; Schork, Nicholas J

    2011-10-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. ANNOTATING INDIVIDUAL HUMAN GENOMES*

    Science.gov (United States)

    Torkamani, Ali; Scott-Van Zeeland, Ashley A.; Topol, Eric J.; Schork, Nicholas J.

    2014-01-01

    Advances in DNA sequencing technologies have made it possible to rapidly, accurately and affordably sequence entire individual human genomes. As impressive as this ability seems, however, it will not likely to amount to much if one cannot extract meaningful information from individual sequence data. Annotating variations within individual genomes and providing information about their biological or phenotypic impact will thus be crucially important in moving individual sequencing projects forward, especially in the context of the clinical use of sequence information. In this paper we consider the various ways in which one might annotate individual sequence variations and point out limitations in the available methods for doing so. It is arguable that, in the foreseeable future, DNA sequencing of individual genomes will become routine for clinical, research, forensic, and personal purposes. We therefore also consider directions and areas for further research in annotating genomic variants. PMID:21839162

  8. Protein annotation from protein interaction networks and Gene Ontology.

    Science.gov (United States)

    Nguyen, Cao D; Gardiner, Katheleen J; Cios, Krzysztof J

    2011-10-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precision and 60% recall versus 45% and 26% for Majority and 24% and 61% for χ²-statistics, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Draft Genome Sequence and Gene Annotation of the Entomopathogenic Fungus Verticillium hemipterigenum

    OpenAIRE

    Horn, Fabian; Habel, Andreas; Scharf, Daniel H.; Dworschak, Jan; Brakhage, Axel A.; Guthke, Reinhard; Hertweck, Christian; Linde, J?rg

    2015-01-01

    Verticillium hemipterigenum (anamorph Torrubiella hemipterigena) is an entomopathogenic fungus and produces a broad range of secondary metabolites. Here, we present the draft genome sequence of the fungus, including gene structure and functional annotation. Genes were predicted incorporating RNA-Seq data and functionally annotated to provide the basis for further genome studies.

  10. Genome-wide Annotation, Identification, and Global Transcriptomic Analysis of Regulatory or Small RNA Gene Expression in Staphylococcus aureus.

    Science.gov (United States)

    Carroll, Ronan K; Weiss, Andy; Broach, William H; Wiemels, Richard E; Mogen, Austin B; Rice, Kelly C; Shaw, Lindsey N

    2016-02-09

    In Staphylococcus aureus, hundreds of small regulatory or small RNAs (sRNAs) have been identified, yet this class of molecule remains poorly understood and severely understudied. sRNA genes are typically absent from genome annotation files, and as a consequence, their existence is often overlooked, particularly in global transcriptomic studies. To facilitate improved detection and analysis of sRNAs in S. aureus, we generated updated GenBank files for three commonly used S. aureus strains (MRSA252, NCTC 8325, and USA300), in which we added annotations for >260 previously identified sRNAs. These files, the first to include genome-wide annotation of sRNAs in S. aureus, were then used as a foundation to identify novel sRNAs in the community-associated methicillin-resistant strain USA300. This analysis led to the discovery of 39 previously unidentified sRNAs. Investigating the genomic loci of the newly identified sRNAs revealed a surprising degree of inconsistency in genome annotation in S. aureus, which may be hindering the analysis and functional exploration of these elements. Finally, using our newly created annotation files as a reference, we perform a global analysis of sRNA gene expression in S. aureus and demonstrate that the newly identified tsr25 is the most highly upregulated sRNA in human serum. This study provides an invaluable resource to the S. aureus research community in the form of our newly generated annotation files, while at the same time presenting the first examination of differential sRNA expression in pathophysiologically relevant conditions. Despite a large number of studies identifying regulatory or small RNA (sRNA) genes in Staphylococcus aureus, their annotation is notably lacking in available genome files. In addition to this, there has been a considerable lack of cross-referencing in the wealth of studies identifying these elements, often leading to the same sRNA being identified multiple times and bearing multiple names. In this work

  11. Annotating activation/inhibition relationships to protein-protein interactions using gene ontology relations.

    Science.gov (United States)

    Yim, Soorin; Yu, Hasun; Jang, Dongjin; Lee, Doheon

    2018-04-11

    Signaling pathways can be reconstructed by identifying 'effect types' (i.e. activation/inhibition) of protein-protein interactions (PPIs). Effect types are composed of 'directions' (i.e. upstream/downstream) and 'signs' (i.e. positive/negative), thereby requiring directions as well as signs of PPIs to predict signaling events from PPI networks. Here, we propose a computational method for systemically annotating effect types to PPIs using relations between functional information of proteins. We used regulates, positively regulates, and negatively regulates relations in Gene Ontology (GO) to predict directions and signs of PPIs. These relations indicate both directions and signs between GO terms so that we can project directions and signs between relevant GO terms to PPIs. Independent test results showed that our method is effective for predicting both directions and signs of PPIs. Moreover, our method outperformed a previous GO-based method that did not consider the relations between GO terms. We annotated effect types to human PPIs and validated several highly confident effect types against literature. The annotated human PPIs are available in Additional file 2 to aid signaling pathway reconstruction and network biology research. We annotated effect types to PPIs by using regulates, positively regulates, and negatively regulates relations in GO. We demonstrated that those relations are effective for predicting not only signs, but also directions of PPIs. The usefulness of those relations suggests their potential applications to other types of interactions such as protein-DNA interactions.

  12. Mapping and annotating obesity-related genes in pig and human genomes.

    Science.gov (United States)

    Martelli, Pier Luigi; Fontanesi, Luca; Piovesan, Damiano; Fariselli, Piero; Casadio, Rita

    2014-01-01

    Background. Obesity is a major health problem in both developed and emerging countries. Obesity is a complex disease whose etiology involves genetic factors in strong interplay with environmental determinants and lifestyle. The discovery of genetic factors and biological pathways underlying human obesity is hampered by the difficulty in controlling the genetic background of human cohorts. Animal models are then necessary to further dissect the genetics of obesity. Pig has emerged as one of the most attractive models, because of the similarity with humans in the mechanisms regulating the fat deposition. Results. We collected the genes related to obesity in humans and to fat deposition traits in pig. We localized them on both human and pig genomes, building a map useful to interpret comparative studies on obesity. We characterized the collected genes structurally and functionally with BAR+ and mapped them on KEGG pathways and on STRING protein interaction network. Conclusions. The collected set consists of 361 obesity related genes in human and pig genomes. All genes were mapped on the human genome, and 54 could not be localized on the pig genome (release 2012). Only for 3 human genes there is no counterpart in pig, confirming that this animal is a good model for human obesity studies. Obesity related genes are mostly involved in regulation and signaling processes/pathways and relevant connection emerges between obesity-related genes and diseases such as cancer and infectious diseases.

  13. Gene calling and bacterial genome annotation with BG7.

    Science.gov (United States)

    Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo

    2015-01-01

    New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services).

  14. COGNATE: comparative gene annotation characterizer.

    Science.gov (United States)

    Wilbrandt, Jeanne; Misof, Bernhard; Niehuis, Oliver

    2017-07-17

    The comparison of gene and genome structures across species has the potential to reveal major trends of genome evolution. However, such a comparative approach is currently hampered by a lack of standardization (e.g., Elliott TA, Gregory TR, Philos Trans Royal Soc B: Biol Sci 370:20140331, 2015). For example, testing the hypothesis that the total amount of coding sequences is a reliable measure of potential proteome diversity (Wang M, Kurland CG, Caetano-Anollés G, PNAS 108:11954, 2011) requires the application of standardized definitions of coding sequence and genes to create both comparable and comprehensive data sets and corresponding summary statistics. However, such standard definitions either do not exist or are not consistently applied. These circumstances call for a standard at the descriptive level using a minimum of parameters as well as an undeviating use of standardized terms, and for software that infers the required data under these strict definitions. The acquisition of a comprehensive, descriptive, and standardized set of parameters and summary statistics for genome publications and further analyses can thus greatly benefit from the availability of an easy to use standard tool. We developed a new open-source command-line tool, COGNATE (Comparative Gene Annotation Characterizer), which uses a given genome assembly and its annotation of protein-coding genes for a detailed description of the respective gene and genome structure parameters. Additionally, we revised the standard definitions of gene and genome structures and provide the definitions used by COGNATE as a working draft suggestion for further reference. Complete parameter lists and summary statistics are inferred using this set of definitions to allow down-stream analyses and to provide an overview of the genome and gene repertoire characteristics. COGNATE is written in Perl and freely available at the ZFMK homepage ( https://www.zfmk.de/en/COGNATE ) and on github ( https

  15. The Co-regulation Data Harvester: Automating gene annotation starting from a transcriptome database

    Science.gov (United States)

    Tsypin, Lev M.; Turkewitz, Aaron P.

    Identifying co-regulated genes provides a useful approach for defining pathway-specific machinery in an organism. To be efficient, this approach relies on thorough genome annotation, a process much slower than genome sequencing per se. Tetrahymena thermophila, a unicellular eukaryote, has been a useful model organism and has a fully sequenced but sparsely annotated genome. One important resource for studying this organism has been an online transcriptomic database. We have developed an automated approach to gene annotation in the context of transcriptome data in T. thermophila, called the Co-regulation Data Harvester (CDH). Beginning with a gene of interest, the CDH identifies co-regulated genes by accessing the Tetrahymena transcriptome database. It then identifies their closely related genes (orthologs) in other organisms by using reciprocal BLAST searches. Finally, it collates the annotations of those orthologs' functions, which provides the user with information to help predict the cellular role of the initial query. The CDH, which is freely available, represents a powerful new tool for analyzing cell biological pathways in Tetrahymena. Moreover, to the extent that genes and pathways are conserved between organisms, the inferences obtained via the CDH should be relevant, and can be explored, in many other systems.

  16. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    Motivation: Detecting genes in viral genomes is a complex task. Due to the biological necessity of them being constrained in length, RNA viruses in particular tend to code in overlapping reading frames. Since one amino acid is encoded by a triplet of nucleic acids, up to three genes may be coded...... allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  17. Construction of coffee transcriptome networks based on gene annotation semantics

    Directory of Open Access Journals (Sweden)

    Castillo Luis F.

    2012-12-01

    Full Text Available Gene annotation is a process that encompasses multiple approaches on the analysis of nucleic acids or protein sequences in order to assign structural and functional characteristics to gene models. When thousands of gene models are being described in an organism genome, construction and visualization of gene networks impose novel challenges in the understanding of complex expression patterns and the generation of new knowledge in genomics research. In order to take advantage of accumulated text data after conventional gene sequence analysis, this work applied semantics in combination with visualization tools to build transcriptome networks from a set of coffee gene annotations. A set of selected coffee transcriptome sequences, chosen by the quality of the sequence comparison reported by Basic Local Alignment Search Tool (BLAST and Interproscan, were filtered out by coverage, identity, length of the query, and e-values. Meanwhile, term descriptors for molecular biology and biochemistry were obtained along the Wordnet dictionary in order to construct a Resource Description Framework (RDF using Ruby scripts and Methontology to find associations between concepts. Relationships between sequence annotations and semantic concepts were graphically represented through a total of 6845 oriented vectors, which were reduced to 745 non-redundant associations. A large gene network connecting transcripts by way of relational concepts was created where detailed connections remain to be validated for biological significance based on current biochemical and genetics frameworks. Besides reusing text information in the generation of gene connections and for data mining purposes, this tool development opens the possibility to visualize complex and abundant transcriptome data, and triggers the formulation of new hypotheses in metabolic pathways analysis.

  18. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae

    Science.gov (United States)

    2013-01-01

    Background Secondary metabolite production, a hallmark of filamentous fungi, is an expanding area of research for the Aspergilli. These compounds are potent chemicals, ranging from deadly toxins to therapeutic antibiotics to potential anti-cancer drugs. The genome sequences for multiple Aspergilli have been determined, and provide a wealth of predictive information about secondary metabolite production. Sequence analysis and gene overexpression strategies have enabled the discovery of novel secondary metabolites and the genes involved in their biosynthesis. The Aspergillus Genome Database (AspGD) provides a central repository for gene annotation and protein information for Aspergillus species. These annotations include Gene Ontology (GO) terms, phenotype data, gene names and descriptions and they are crucial for interpreting both small- and large-scale data and for aiding in the design of new experiments that further Aspergillus research. Results We have manually curated Biological Process GO annotations for all genes in AspGD with recorded functions in secondary metabolite production, adding new GO terms that specifically describe each secondary metabolite. We then leveraged these new annotations to predict roles in secondary metabolism for genes lacking experimental characterization. As a starting point for manually annotating Aspergillus secondary metabolite gene clusters, we used antiSMASH (antibiotics and Secondary Metabolite Analysis SHell) and SMURF (Secondary Metabolite Unknown Regions Finder) algorithms to identify potential clusters in A. nidulans, A. fumigatus, A. niger and A. oryzae, which we subsequently refined through manual curation. Conclusions This set of 266 manually curated secondary metabolite gene clusters will facilitate the investigation of novel Aspergillus secondary metabolites. PMID:23617571

  19. Human transporter database: comprehensive knowledge and discovery tools in the human transporter genes.

    Directory of Open Access Journals (Sweden)

    Adam Y Ye

    Full Text Available Transporters are essential in homeostatic exchange of endogenous and exogenous substances at the systematic, organic, cellular, and subcellular levels. Gene mutations of transporters are often related to pharmacogenetics traits. Recent developments in high throughput technologies on genomics, transcriptomics and proteomics allow in depth studies of transporter genes in normal cellular processes and diverse disease conditions. The flood of high throughput data have resulted in urgent need for an updated knowledgebase with curated, organized, and annotated human transporters in an easily accessible way. Using a pipeline with the combination of automated keywords query, sequence similarity search and manual curation on transporters, we collected 1,555 human non-redundant transporter genes to develop the Human Transporter Database (HTD (http://htd.cbi.pku.edu.cn. Based on the extensive annotations, global properties of the transporter genes were illustrated, such as expression patterns and polymorphisms in relationships with their ligands. We noted that the human transporters were enriched in many fundamental biological processes such as oxidative phosphorylation and cardiac muscle contraction, and significantly associated with Mendelian and complex diseases such as epilepsy and sudden infant death syndrome. Overall, HTD provides a well-organized interface to facilitate research communities to search detailed molecular and genetic information of transporters for development of personalized medicine.

  20. The duplicated genes database: identification and functional annotation of co-localised duplicated genes across genomes.

    Directory of Open Access Journals (Sweden)

    Marion Ouedraogo

    Full Text Available BACKGROUND: There has been a surge in studies linking genome structure and gene expression, with special focus on duplicated genes. Although initially duplicated from the same sequence, duplicated genes can diverge strongly over evolution and take on different functions or regulated expression. However, information on the function and expression of duplicated genes remains sparse. Identifying groups of duplicated genes in different genomes and characterizing their expression and function would therefore be of great interest to the research community. The 'Duplicated Genes Database' (DGD was developed for this purpose. METHODOLOGY: Nine species were included in the DGD. For each species, BLAST analyses were conducted on peptide sequences corresponding to the genes mapped on a same chromosome. Groups of duplicated genes were defined based on these pairwise BLAST comparisons and the genomic location of the genes. For each group, Pearson correlations between gene expression data and semantic similarities between functional GO annotations were also computed when the relevant information was available. CONCLUSIONS: The Duplicated Gene Database provides a list of co-localised and duplicated genes for several species with the available gene co-expression level and semantic similarity value of functional annotation. Adding these data to the groups of duplicated genes provides biological information that can prove useful to gene expression analyses. The Duplicated Gene Database can be freely accessed through the DGD website at http://dgd.genouest.org.

  1. Experimental-confirmation and functional-annotation of predicted proteins in the chicken genome

    Directory of Open Access Journals (Sweden)

    McCarthy Fiona M

    2007-11-01

    Full Text Available Abstract Background The chicken genome was sequenced because of its phylogenetic position as a non-mammalian vertebrate, its use as a biomedical model especially to study embryology and development, its role as a source of human disease organisms and its importance as the major source of animal derived food protein. However, genomic sequence data is, in itself, of limited value; generally it is not equivalent to understanding biological function. The benefit of having a genome sequence is that it provides a basis for functional genomics. However, the sequence data currently available is poorly structurally and functionally annotated and many genes do not have standard nomenclature assigned. Results We analysed eight chicken tissues and improved the chicken genome structural annotation by providing experimental support for the in vivo expression of 7,809 computationally predicted proteins, including 30 chicken proteins that were only electronically predicted or hypothetical translations in human. To improve functional annotation (based on Gene Ontology, we mapped these identified proteins to their human and mouse orthologs and used this orthology to transfer Gene Ontology (GO functional annotations to the chicken proteins. The 8,213 orthology-based GO annotations that we produced represent an 8% increase in currently available chicken GO annotations. Orthologous chicken products were also assigned standardized nomenclature based on current chicken nomenclature guidelines. Conclusion We demonstrate the utility of high-throughput expression proteomics for rapid experimental structural annotation of a newly sequenced eukaryote genome. These experimentally-supported predicted proteins were further annotated by assigning the proteins with standardized nomenclature and functional annotation. This method is widely applicable to a diverse range of species. Moreover, information from one genome can be used to improve the annotation of other genomes and

  2. Snap: an integrated SNP annotation platform

    DEFF Research Database (Denmark)

    Li, Shengting; Ma, Lijia; Li, Heng

    2007-01-01

    Snap (Single Nucleotide Polymorphism Annotation Platform) is a server designed to comprehensively analyze single genes and relationships between genes basing on SNPs in the human genome. The aim of the platform is to facilitate the study of SNP finding and analysis within the framework of medical...

  3. Deep convolutional neural networks for annotating gene expression patterns in the mouse brain.

    Science.gov (United States)

    Zeng, Tao; Li, Rongjian; Mukkamala, Ravi; Ye, Jieping; Ji, Shuiwang

    2015-05-07

    Profiling gene expression in brain structures at various spatial and temporal scales is essential to understanding how genes regulate the development of brain structures. The Allen Developing Mouse Brain Atlas provides high-resolution 3-D in situ hybridization (ISH) gene expression patterns in multiple developing stages of the mouse brain. Currently, the ISH images are annotated with anatomical terms manually. In this paper, we propose a computational approach to annotate gene expression pattern images in the mouse brain at various structural levels over the course of development. We applied deep convolutional neural network that was trained on a large set of natural images to extract features from the ISH images of developing mouse brain. As a baseline representation, we applied invariant image feature descriptors to capture local statistics from ISH images and used the bag-of-words approach to build image-level representations. Both types of features from multiple ISH image sections of the entire brain were then combined to build 3-D, brain-wide gene expression representations. We employed regularized learning methods for discriminating gene expression patterns in different brain structures. Results show that our approach of using convolutional model as feature extractors achieved superior performance in annotating gene expression patterns at multiple levels of brain structures throughout four developing ages. Overall, we achieved average AUC of 0.894 ± 0.014, as compared with 0.820 ± 0.046 yielded by the bag-of-words approach. Deep convolutional neural network model trained on natural image sets and applied to gene expression pattern annotation tasks yielded superior performance, demonstrating its transfer learning property is applicable to such biological image sets.

  4. PANDA: pathway and annotation explorer for visualizing and interpreting gene-centric data.

    Science.gov (United States)

    Hart, Steven N; Moore, Raymond M; Zimmermann, Michael T; Oliver, Gavin R; Egan, Jan B; Bryce, Alan H; Kocher, Jean-Pierre A

    2015-01-01

    Objective. Bringing together genomics, transcriptomics, proteomics, and other -omics technologies is an important step towards developing highly personalized medicine. However, instrumentation has advances far beyond expectations and now we are able to generate data faster than it can be interpreted. Materials and Methods. We have developed PANDA (Pathway AND Annotation) Explorer, a visualization tool that integrates gene-level annotation in the context of biological pathways to help interpret complex data from disparate sources. PANDA is a web-based application that displays data in the context of well-studied pathways like KEGG, BioCarta, and PharmGKB. PANDA represents data/annotations as icons in the graph while maintaining the other data elements (i.e., other columns for the table of annotations). Custom pathways from underrepresented diseases can be imported when existing data sources are inadequate. PANDA also allows sharing annotations among collaborators. Results. In our first use case, we show how easy it is to view supplemental data from a manuscript in the context of a user's own data. Another use-case is provided describing how PANDA was leveraged to design a treatment strategy from the somatic variants found in the tumor of a patient with metastatic sarcomatoid renal cell carcinoma. Conclusion. PANDA facilitates the interpretation of gene-centric annotations by visually integrating this information with context of biological pathways. The application can be downloaded or used directly from our website: http://bioinformaticstools.mayo.edu/research/panda-viewer/.

  5. tagtog: interactive and text-mining-assisted annotation of gene mentions in PLOS full-text articles.

    Science.gov (United States)

    Cejuela, Juan Miguel; McQuilton, Peter; Ponting, Laura; Marygold, Steven J; Stefancsik, Raymund; Millburn, Gillian H; Rost, Burkhard

    2014-01-01

    The breadth and depth of biomedical literature are increasing year upon year. To keep abreast of these increases, FlyBase, a database for Drosophila genomic and genetic information, is constantly exploring new ways to mine the published literature to increase the efficiency and accuracy of manual curation and to automate some aspects, such as triaging and entity extraction. Toward this end, we present the 'tagtog' system, a web-based annotation framework that can be used to mark up biological entities (such as genes) and concepts (such as Gene Ontology terms) in full-text articles. tagtog leverages manual user annotation in combination with automatic machine-learned annotation to provide accurate identification of gene symbols and gene names. As part of the BioCreative IV Interactive Annotation Task, FlyBase has used tagtog to identify and extract mentions of Drosophila melanogaster gene symbols and names in full-text biomedical articles from the PLOS stable of journals. We show here the results of three experiments with different sized corpora and assess gene recognition performance and curation speed. We conclude that tagtog-named entity recognition improves with a larger corpus and that tagtog-assisted curation is quicker than manual curation. DATABASE URL: www.tagtog.net, www.flybase.org.

  6. Assessment of orthologous splicing isoforms in human and mouse orthologous genes

    Directory of Open Access Journals (Sweden)

    Horner David S

    2010-10-01

    Full Text Available Abstract Background Recent discoveries have highlighted the fact that alternative splicing and alternative transcripts are the rule, rather than the exception, in metazoan genes. Since multiple transcript and protein variants expressed by the same gene are, by definition, structurally distinct and need not to be functionally equivalent, the concept of gene orthology should be extended to the transcript level in order to describe evolutionary relationships between structurally similar transcript variants. In other words, the identification of true orthology relationships between gene products now should progress beyond primary sequence and "splicing orthology", consisting in ancestrally shared exon-intron structures, is required to define orthologous isoforms at transcript level. Results As a starting step in this direction, in this work we performed a large scale human- mouse gene comparison with a twofold goal: first, to assess if and to which extent traditional gene annotations such as RefSeq capture genuine splicing orthology; second, to provide a more detailed annotation and quantification of true human-mouse orthologous transcripts defined as transcripts of orthologous genes exhibiting the same splicing patterns. Conclusions We observed an identical exon/intron structure for 32% of human and mouse orthologous genes. This figure increases to 87% using less stringent criteria for gene structure similarity, thus implying that for about 13% of the human RefSeq annotated genes (and about 25% of the corresponding transcripts we could not identify any mouse transcript showing sufficient similarity to be confidently assigned as a splicing ortholog. Our data suggest that current gene and transcript data may still be rather incomplete - with several splicing variants still unknown. The observation that alternative splicing produces large numbers of alternative transcripts and proteins, some of them conserved across species and others truly species

  7. Tagging like Humans: Diverse and Distinct Image Annotation

    KAUST Repository

    Wu, Baoyuan

    2018-03-31

    In this work we propose a new automatic image annotation model, dubbed {\\\\bf diverse and distinct image annotation} (D2IA). The generative model D2IA is inspired by the ensemble of human annotations, which create semantically relevant, yet distinct and diverse tags. In D2IA, we generate a relevant and distinct tag subset, in which the tags are relevant to the image contents and semantically distinct to each other, using sequential sampling from a determinantal point process (DPP) model. Multiple such tag subsets that cover diverse semantic aspects or diverse semantic levels of the image contents are generated by randomly perturbing the DPP sampling process. We leverage a generative adversarial network (GAN) model to train D2IA. Extensive experiments including quantitative and qualitative comparisons, as well as human subject studies, on two benchmark datasets demonstrate that the proposed model can produce more diverse and distinct tags than the state-of-the-arts.

  8. nGASP - the nematode genome annotation assessment project

    Energy Technology Data Exchange (ETDEWEB)

    Coghlan, A; Fiedler, T J; McKay, S J; Flicek, P; Harris, T W; Blasiar, D; Allen, J; Stein, L D

    2008-12-19

    While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders. While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C

  9. Seeing the forest for the trees: annotating small RNA producing genes in plants.

    Science.gov (United States)

    Coruh, Ceyda; Shahid, Saima; Axtell, Michael J

    2014-04-01

    A key goal in genomics is the complete annotation of the expressed regions of the genome. In plants, substantial portions of the genome make regulatory small RNAs produced by Dicer-Like (DCL) proteins and utilized by Argonaute (AGO) proteins. These include miRNAs and various types of endogenous siRNAs. Small RNA-seq, enabled by cheap and fast DNA sequencing, has produced an enormous volume of data on plant miRNA and siRNA expression in recent years. In this review, we discuss recent progress in using small RNA-seq data to produce stable and reliable annotations of miRNA and siRNA genes in plants. In addition, we highlight key goals for the future of small RNA gene annotation in plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. LeARN: a platform for detecting, clustering and annotating non-coding RNAs

    Directory of Open Access Journals (Sweden)

    Schiex Thomas

    2008-01-01

    Full Text Available Abstract Background In the last decade, sequencing projects have led to the development of a number of annotation systems dedicated to the structural and functional annotation of protein-coding genes. These annotation systems manage the annotation of the non-protein coding genes (ncRNAs in a very crude way, allowing neither the edition of the secondary structures nor the clustering of ncRNA genes into families which are crucial for appropriate annotation of these molecules. Results LeARN is a flexible software package which handles the complete process of ncRNA annotation by integrating the layers of automatic detection and human curation. Conclusion This software provides the infrastructure to deal properly with ncRNAs in the framework of any annotation project. It fills the gap between existing prediction software, that detect independent ncRNA occurrences, and public ncRNA repositories, that do not offer the flexibility and interactivity required for annotation projects. The software is freely available from the download section of the website http://bioinfo.genopole-toulouse.prd.fr/LeARN

  11. Computational prediction of over-annotated protein-coding genes in the genome of Agrobacterium tumefaciens strain C58

    International Nuclear Information System (INIS)

    Yu Jia-Feng; Sui Tian-Xiang; Wang Ji-Hua; Wang Hong-Mei; Wang Chun-Ling; Jing Li

    2015-01-01

    Agrobacterium tumefaciens strain C58 is a type of pathogen that can cause tumors in some dicotyledonous plants. Ever since the genome of A. tumefaciens strain C58 was sequenced, the quality of annotation of its protein-coding genes has been queried continually, because the annotation varies greatly among different databases. In this paper, the questionable hypothetical genes were re-predicted by integrating the TN curve and Z curve methods. As a result, 30 genes originally annotated as “hypothetical” were discriminated as being non-coding sequences. By testing the re-prediction program 10 times on data sets composed of the function-known genes, the mean accuracy of 99.99% and mean Matthews correlation coefficient value of 0.9999 were obtained. Further sequence analysis and COG analysis showed that the re-annotation results were very reliable. This work can provide an efficient tool and data resources for future studies of A. tumefaciens strain C58. (special topic)

  12. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Grigoriev Igor V

    2009-02-01

    Full Text Available Abstract Background Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI and another predicted protein set from another A.niger sequence. Tandem mass spectra (MS/MS were acquired from 1d gel electrophoresis bands and searched against all available gene models using Average Peptide Scoring (APS and reverse database searching to produce confident identifications at an acceptable false discovery rate (FDR. Results 405 identified peptide sequences were mapped to 214 different A.niger genomic loci to which 4093 predicted gene models clustered, 2872 of which contained the mapped peptides. Interestingly, 13 (6% of these loci either had no preferred predicted gene model or the genome annotators' chosen "best" model for that genomic locus was not found to be the most parsimonious match to the identified peptides. The peptides identified also boosted confidence in predicted gene structures spanning 54 introns from different gene models. Conclusion This work highlights the potential of integrating experimental proteomics data into genomic annotation pipelines much as expressed sequence tag (EST data has been. A comparison of the published genome from another strain of A.niger sequenced by DSM showed that a number of the gene models or proteins with proteomics evidence did not occur in both genomes, further highlighting the utility of the method.

  13. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger.

    Science.gov (United States)

    Wright, James C; Sugden, Deana; Francis-McIntyre, Sue; Riba-Garcia, Isabel; Gaskell, Simon J; Grigoriev, Igor V; Baker, Scott E; Beynon, Robert J; Hubbard, Simon J

    2009-02-04

    Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI) and another predicted protein set from another A.niger sequence. Tandem mass spectra (MS/MS) were acquired from 1d gel electrophoresis bands and searched against all available gene models using Average Peptide Scoring (APS) and reverse database searching to produce confident identifications at an acceptable false discovery rate (FDR). 405 identified peptide sequences were mapped to 214 different A.niger genomic loci to which 4093 predicted gene models clustered, 2872 of which contained the mapped peptides. Interestingly, 13 (6%) of these loci either had no preferred predicted gene model or the genome annotators' chosen "best" model for that genomic locus was not found to be the most parsimonious match to the identified peptides. The peptides identified also boosted confidence in predicted gene structures spanning 54 introns from different gene models. This work highlights the potential of integrating experimental proteomics data into genomic annotation pipelines much as expressed sequence tag (EST) data has been. A comparison of the published genome from another strain of A.niger sequenced by DSM showed that a number of the gene models or proteins with proteomics evidence did not occur in both genomes, further highlighting the utility of the method.

  14. annot8r: GO, EC and KEGG annotation of EST datasets

    Directory of Open Access Journals (Sweden)

    Schmid Ralf

    2008-04-01

    Full Text Available Abstract Background The expressed sequence tag (EST methodology is an attractive option for the generation of sequence data for species for which no completely sequenced genome is available. The annotation and comparative analysis of such datasets poses a formidable challenge for research groups that do not have the bioinformatics infrastructure of major genome sequencing centres. Therefore, there is a need for user-friendly tools to facilitate the annotation of non-model species EST datasets with well-defined ontologies that enable meaningful cross-species comparisons. To address this, we have developed annot8r, a platform for the rapid annotation of EST datasets with GO-terms, EC-numbers and KEGG-pathways. Results annot8r automatically downloads all files relevant for the annotation process and generates a reference database that stores UniProt entries, their associated Gene Ontology (GO, Enzyme Commission (EC and Kyoto Encyclopaedia of Genes and Genomes (KEGG annotation and additional relevant data. For each of GO, EC and KEGG, annot8r extracts a specific sequence subset from the UniProt dataset based on the information stored in the reference database. These three subsets are then formatted for BLAST searches. The user provides the protein or nucleotide sequences to be annotated and annot8r runs BLAST searches against these three subsets. The BLAST results are parsed and the corresponding annotations retrieved from the reference database. The annotations are saved both as flat files and also in a relational postgreSQL results database to facilitate more advanced searches within the results. annot8r is integrated with the PartiGene suite of EST analysis tools. Conclusion annot8r is a tool that assigns GO, EC and KEGG annotations for data sets resulting from EST sequencing projects both rapidly and efficiently. The benefits of an underlying relational database, flexibility and the ease of use of the program make it ideally suited for non

  15. AnnoLnc: a web server for systematically annotating novel human lncRNAs.

    Science.gov (United States)

    Hou, Mei; Tang, Xing; Tian, Feng; Shi, Fangyuan; Liu, Fenglin; Gao, Ge

    2016-11-16

    Long noncoding RNAs (lncRNAs) have been shown to play essential roles in almost every important biological process through multiple mechanisms. Although the repertoire of human lncRNAs has rapidly expanded, their biological function and regulation remain largely elusive, calling for a systematic and integrative annotation tool. Here we present AnnoLnc ( http://annolnc.cbi.pku.edu.cn ), a one-stop portal for systematically annotating novel human lncRNAs. Based on more than 700 data sources and various tool chains, AnnoLnc enables a systematic annotation covering genomic location, secondary structure, expression patterns, transcriptional regulation, miRNA interaction, protein interaction, genetic association and evolution. An intuitive web interface is available for interactive analysis through both desktops and mobile devices, and programmers can further integrate AnnoLnc into their pipeline through standard JSON-based Web Service APIs. To the best of our knowledge, AnnoLnc is the only web server to provide on-the-fly and systematic annotation for newly identified human lncRNAs. Compared with similar tools, the annotation generated by AnnoLnc covers a much wider spectrum with intuitive visualization. Case studies demonstrate the power of AnnoLnc in not only rediscovering known functions of human lncRNAs but also inspiring novel hypotheses.

  16. Annotating DNA variants is the next major goal for human genetics.

    Science.gov (United States)

    Cutting, Garry R

    2014-01-02

    Clinical genetic testing has undergone a dramatic transformation in the past two decades. Diagnostic laboratories that previously tested for well-established disease-causing DNA variants in a handful of genes have evolved into sequencing factories identifying thousands of variants of known and unknown medical consequence. Sorting out what does and does not cause disease in our genomes is the next great challenge in making genetics a central feature of healthcare. I propose that closing the gap in our ability to interpret variation responsible for Mendelian disorders provides a grand and unprecedented opportunity for geneticists. Human geneticists are well placed to coordinate a systematic evaluation of variants in collaboration with basic scientists and clinicians. Sharing of knowledge, data, methods, and tools will aid both researchers and healthcare workers in achieving their common goal of defining the pathogenic potential of variants. Generation of variant annotations will inform genetic testing and will deepen our understanding of gene and protein function, thereby aiding the search for molecular targeted therapies. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Computational prediction of over-annotated protein-coding genes in the genome of Agrobacterium tumefaciens strain C58

    Science.gov (United States)

    Yu, Jia-Feng; Sui, Tian-Xiang; Wang, Hong-Mei; Wang, Chun-Ling; Jing, Li; Wang, Ji-Hua

    2015-12-01

    Agrobacterium tumefaciens strain C58 is a type of pathogen that can cause tumors in some dicotyledonous plants. Ever since the genome of A. tumefaciens strain C58 was sequenced, the quality of annotation of its protein-coding genes has been queried continually, because the annotation varies greatly among different databases. In this paper, the questionable hypothetical genes were re-predicted by integrating the TN curve and Z curve methods. As a result, 30 genes originally annotated as “hypothetical” were discriminated as being non-coding sequences. By testing the re-prediction program 10 times on data sets composed of the function-known genes, the mean accuracy of 99.99% and mean Matthews correlation coefficient value of 0.9999 were obtained. Further sequence analysis and COG analysis showed that the re-annotation results were very reliable. This work can provide an efficient tool and data resources for future studies of A. tumefaciens strain C58. Project supported by the National Natural Science Foundation of China (Grant Nos. 61302186 and 61271378) and the Funding from the State Key Laboratory of Bioelectronics of Southeast University.

  18. Evidence-based gene models for structural and functional annotations of the oil palm genome.

    Science.gov (United States)

    Chan, Kuang-Lim; Tatarinova, Tatiana V; Rosli, Rozana; Amiruddin, Nadzirah; Azizi, Norazah; Halim, Mohd Amin Ab; Sanusi, Nik Shazana Nik Mohd; Jayanthi, Nagappan; Ponomarenko, Petr; Triska, Martin; Solovyev, Victor; Firdaus-Raih, Mohd; Sambanthamurthi, Ravigadevi; Murphy, Denis; Low, Eng-Ti Leslie

    2017-09-08

    Oil palm is an important source of edible oil. The importance of the crop, as well as its long breeding cycle (10-12 years) has led to the sequencing of its genome in 2013 to pave the way for genomics-guided breeding. Nevertheless, the first set of gene predictions, although useful, had many fragmented genes. Classification and characterization of genes associated with traits of interest, such as those for fatty acid biosynthesis and disease resistance, were also limited. Lipid-, especially fatty acid (FA)-related genes are of particular interest for the oil palm as they specify oil yields and quality. This paper presents the characterization of the oil palm genome using different gene prediction methods and comparative genomics analysis, identification of FA biosynthesis and disease resistance genes, and the development of an annotation database and bioinformatics tools. Using two independent gene-prediction pipelines, Fgenesh++ and Seqping, 26,059 oil palm genes with transcriptome and RefSeq support were identified from the oil palm genome. These coding regions of the genome have a characteristic broad distribution of GC 3 (fraction of cytosine and guanine in the third position of a codon) with over half the GC 3 -rich genes (GC 3  ≥ 0.75286) being intronless. In comparison, only one-seventh of the oil palm genes identified are intronless. Using comparative genomics analysis, characterization of conserved domains and active sites, and expression analysis, 42 key genes involved in FA biosynthesis in oil palm were identified. For three of them, namely EgFABF, EgFABH and EgFAD3, segmental duplication events were detected. Our analysis also identified 210 candidate resistance genes in six classes, grouped by their protein domain structures. We present an accurate and comprehensive annotation of the oil palm genome, focusing on analysis of important categories of genes (GC 3 -rich and intronless), as well as those associated with important functions, such as FA

  19. Pairagon+N-SCAN_EST: a model-based gene annotation pipeline

    DEFF Research Database (Denmark)

    Arumugam, Manimozhiyan; Wei, Chaochun; Brown, Randall H

    2006-01-01

    This paper describes Pairagon+N-SCAN_EST, a gene annotation pipeline that uses only native alignments. For each expressed sequence it chooses the best genomic alignment. Systems like ENSEMBL and ExoGean rely on trans alignments, in which expressed sequences are aligned to the genomic loci...... with de novo gene prediction by using N-SCAN_EST. N-SCAN_EST is based on a generalized HMM probability model augmented with a phylogenetic conservation model and EST alignments. It can predict complete transcripts by extending or merging EST alignments, but it can also predict genes in regions without EST...

  20. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  1. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  2. Avoiding inconsistencies over time and tracking difficulties in Applied Biosystems AB1700™/Panther™ probe-to-gene annotations

    Directory of Open Access Journals (Sweden)

    Benecke Arndt

    2005-12-01

    Full Text Available Abstract Background Significant inconsistencies between probe-to-gene annotations between different releases of probe set identifiers by commercial microarray platform solutions have been reported. Such inconsistencies lead to misleading or ambiguous interpretation of published gene expression results. Results We report here similar inconsistencies in the probe-to-gene annotation of Applied Biosystems AB1700 data, demonstrating that this is not an isolated concern. Moreover, the online information source PANTHER does not provide information required to track such inconsistencies, hence, even correctly annotated datasets, when resubmitted after PANTHER was updated to a new probe-to-gene annotation release, will generate differing results without any feedback on the origin of the change. Conclusion The importance of unequivocal annotation of microarray experiments can not be underestimated. Inconsistencies greatly diminish the usefulness of the technology. Novel methods in the analysis of transcriptome profiles often rely on large disparate datasets stemming from multiple sources. The predictive and analytic power of such approaches rapidly diminishes if only least-common subsets can be used for analysis. We present here the information that needs to be provided together with the raw AB1700 data, and the information required together with the biologic interpretation of such data to avoid inconsistencies and tracking difficulties.

  3. Re-annotation of the genome sequence of Helicobacter pylori 26695

    Directory of Open Access Journals (Sweden)

    Resende Tiago

    2013-12-01

    Full Text Available Helicobacter pylori is a pathogenic bacterium that colonizes the human epithelia, causing duodenal and gastric ulcers, and gastric cancer. The genome of H. pylori 26695 has been previously sequenced and annotated. In addition, two genome-scale metabolic models have been developed. In order to maintain accurate and relevant information on coding sequences (CDS and to retrieve new information, the assignment of new functions to Helicobacter pylori 26695s genes was performed in this work. The use of software tools, on-line databases and an annotation pipeline for inspecting each gene allowed the attribution of validated EC numbers and TC numbers to metabolic genes encoding enzymes and transport proteins, respectively. 1212 genes encoding proteins were identified in this annotation, being 712 metabolic genes and 500 non-metabolic, while 191 new functions were assignment to the CDS of this bacterium. This information provides relevant biological information for the scientific community dealing with this organism and can be used as the basis for a new metabolic model reconstruction.

  4. A robust data-driven approach for gene ontology annotation.

    Science.gov (United States)

    Li, Yanpeng; Yu, Hong

    2014-01-01

    Gene ontology (GO) and GO annotation are important resources for biological information management and knowledge discovery, but the speed of manual annotation became a major bottleneck of database curation. BioCreative IV GO annotation task aims to evaluate the performance of system that automatically assigns GO terms to genes based on the narrative sentences in biomedical literature. This article presents our work in this task as well as the experimental results after the competition. For the evidence sentence extraction subtask, we built a binary classifier to identify evidence sentences using reference distance estimator (RDE), a recently proposed semi-supervised learning method that learns new features from around 10 million unlabeled sentences, achieving an F1 of 19.3% in exact match and 32.5% in relaxed match. In the post-submission experiment, we obtained 22.1% and 35.7% F1 performance by incorporating bigram features in RDE learning. In both development and test sets, RDE-based method achieved over 20% relative improvement on F1 and AUC performance against classical supervised learning methods, e.g. support vector machine and logistic regression. For the GO term prediction subtask, we developed an information retrieval-based method to retrieve the GO term most relevant to each evidence sentence using a ranking function that combined cosine similarity and the frequency of GO terms in documents, and a filtering method based on high-level GO classes. The best performance of our submitted runs was 7.8% F1 and 22.2% hierarchy F1. We found that the incorporation of frequency information and hierarchy filtering substantially improved the performance. In the post-submission evaluation, we obtained a 10.6% F1 using a simpler setting. Overall, the experimental analysis showed our approaches were robust in both the two tasks. © The Author(s) 2014. Published by Oxford University Press.

  5. Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica.

    Science.gov (United States)

    Fernandez-Valverde, Selene L; Calcino, Andrew D; Degnan, Bernard M

    2015-05-15

    The demosponge Amphimedon queenslandica is amongst the few early-branching metazoans with an assembled and annotated draft genome, making it an important species in the study of the origin and early evolution of animals. Current gene models in this species are largely based on in silico predictions and low coverage expressed sequence tag (EST) evidence. Amphimedon queenslandica protein-coding gene models are improved using deep RNA-Seq data from four developmental stages and CEL-Seq data from 82 developmental samples. Over 86% of previously predicted genes are retained in the new gene models, although 24% have additional exons; there is also a marked increase in the total number of annotated 3' and 5' untranslated regions (UTRs). Importantly, these new developmental transcriptome data reveal numerous previously unannotated protein-coding genes in the Amphimedon genome, increasing the total gene number by 25%, from 30,060 to 40,122. In general, Amphimedon genes have introns that are markedly smaller than those in other animals and most of the alternatively spliced genes in Amphimedon undergo intron-retention; exon-skipping is the least common mode of alternative splicing. Finally, in addition to canonical polyadenylation signal sequences, Amphimedon genes are enriched in a number of unique AT-rich motifs in their 3' UTRs. The inclusion of developmental transcriptome data has substantially improved the structure and composition of protein-coding gene models in Amphimedon queenslandica, providing a more accurate and comprehensive set of genes for functional and comparative studies. These improvements reveal the Amphimedon genome is comprised of a remarkably high number of tightly packed genes. These genes have small introns and there is pervasive intron retention amongst alternatively spliced transcripts. These aspects of the sponge genome are more similar unicellular opisthokont genomes than to other animal genomes.

  6. A Scan for Positively Selected Genes in the Genomes of Humans and Chimpanzees

    DEFF Research Database (Denmark)

    Nielsen, Rasmus; Bustamente, Carlos; Clark, Andrew G.

    2005-01-01

    Since the divergence of humans and chimpanzees about 5 million years ago, these species have undergone a remarkable evolution with drastic divergence in anatomy and cognitive abilities. At the molecular level, despite the small overall magnitude of DNA sequence divergence, we might expect...... such evolutionary changes to leave a noticeable signature throughout the genome. We here compare 13,731 annotated genes from humans to their chimpanzee orthologs to identify genes that show evidence of positive selection. Many of the genes that present a signature of positive selection tend to be involved...

  7. Facilitating functional annotation of chicken microarray data

    Directory of Open Access Journals (Sweden)

    Gresham Cathy R

    2009-10-01

    Full Text Available Abstract Background Modeling results from chicken microarray studies is challenging for researchers due to little functional annotation associated with these arrays. The Affymetrix GenChip chicken genome array, one of the biggest arrays that serve as a key research tool for the study of chicken functional genomics, is among the few arrays that link gene products to Gene Ontology (GO. However the GO annotation data presented by Affymetrix is incomplete, for example, they do not show references linked to manually annotated functions. In addition, there is no tool that facilitates microarray researchers to directly retrieve functional annotations for their datasets from the annotated arrays. This costs researchers amount of time in searching multiple GO databases for functional information. Results We have improved the breadth of functional annotations of the gene products associated with probesets on the Affymetrix chicken genome array by 45% and the quality of annotation by 14%. We have also identified the most significant diseases and disorders, different types of genes, and known drug targets represented on Affymetrix chicken genome array. To facilitate functional annotation of other arrays and microarray experimental datasets we developed an Array GO Mapper (AGOM tool to help researchers to quickly retrieve corresponding functional information for their dataset. Conclusion Results from this study will directly facilitate annotation of other chicken arrays and microarray experimental datasets. Researchers will be able to quickly model their microarray dataset into more reliable biological functional information by using AGOM tool. The disease, disorders, gene types and drug targets revealed in the study will allow researchers to learn more about how genes function in complex biological systems and may lead to new drug discovery and development of therapies. The GO annotation data generated will be available for public use via AgBase website and

  8. Automatic annotation of protein motif function with Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2004-09-01

    Full Text Available Abstract Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

  9. LS-SNP/PDB: annotated non-synonymous SNPs mapped to Protein Data Bank structures.

    Science.gov (United States)

    Ryan, Michael; Diekhans, Mark; Lien, Stephanie; Liu, Yun; Karchin, Rachel

    2009-06-01

    LS-SNP/PDB is a new WWW resource for genome-wide annotation of human non-synonymous (amino acid changing) SNPs. It serves high-quality protein graphics rendered with UCSF Chimera molecular visualization software. The system is kept up-to-date by an automated, high-throughput build pipeline that systematically maps human nsSNPs onto Protein Data Bank structures and annotates several biologically relevant features. LS-SNP/PDB is available at (http://ls-snp.icm.jhu.edu/ls-snp-pdb) and via links from protein data bank (PDB) biology and chemistry tabs, UCSC Genome Browser Gene Details and SNP Details pages and PharmGKB Gene Variants Downloads/Cross-References pages.

  10. Gene Expression and Functional Annotation of the Human Ciliary Body Epithelia

    NARCIS (Netherlands)

    Janssen, Sarah F.; Gorgels, Theo G. M. F.; Bossers, Koen; ten Brink, Jacoline B.; Essing, Anke H. W.; Nagtegaal, Martijn; van der Spek, Peter J.; Jansonius, Nomdo M.; Bergen, Arthur A. B.

    2012-01-01

    Purpose: The ciliary body (CB) of the human eye consists of the non-pigmented (NPE) and pigmented (PE) neuro-epithelia. We investigated the gene expression of NPE and PE, to shed light on the molecular mechanisms underlying the most important functions of the CB. We also developed molecular

  11. Annotating the biomedical literature for the human variome.

    Science.gov (United States)

    Verspoor, Karin; Jimeno Yepes, Antonio; Cavedon, Lawrence; McIntosh, Tara; Herten-Crabb, Asha; Thomas, Zoë; Plazzer, John-Paul

    2013-01-01

    This article introduces the Variome Annotation Schema, a schema that aims to capture the core concepts and relations relevant to cataloguing and interpreting human genetic variation and its relationship to disease, as described in the published literature. The schema was inspired by the needs of the database curators of the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) database, but is intended to have application to genetic variation information in a range of diseases. The schema has been applied to a small corpus of full text journal publications on the subject of inherited colorectal cancer. We show that the inter-annotator agreement on annotation of this corpus ranges from 0.78 to 0.95 F-score across different entity types when exact matching is measured, and improves to a minimum F-score of 0.87 when boundary matching is relaxed. Relations show more variability in agreement, but several are reliable, with the highest, cohort-has-size, reaching 0.90 F-score. We also explore the relevance of the schema to the InSiGHT database curation process. The schema and the corpus represent an important new resource for the development of text mining solutions that address relationships among patient cohorts, disease and genetic variation, and therefore, we also discuss the role text mining might play in the curation of information related to the human variome. The corpus is available at http://opennicta.com/home/health/variome.

  12. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms.

    Science.gov (United States)

    Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H

    2014-11-19

    Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new

  13. A scan for positively selected genes in the genomes of humans and chimpanzees.

    Directory of Open Access Journals (Sweden)

    Rasmus Nielsen

    2005-06-01

    Full Text Available Since the divergence of humans and chimpanzees about 5 million years ago, these species have undergone a remarkable evolution with drastic divergence in anatomy and cognitive abilities. At the molecular level, despite the small overall magnitude of DNA sequence divergence, we might expect such evolutionary changes to leave a noticeable signature throughout the genome. We here compare 13,731 annotated genes from humans to their chimpanzee orthologs to identify genes that show evidence of positive selection. Many of the genes that present a signature of positive selection tend to be involved in sensory perception or immune defenses. However, the group of genes that show the strongest evidence for positive selection also includes a surprising number of genes involved in tumor suppression and apoptosis, and of genes involved in spermatogenesis. We hypothesize that positive selection in some of these genes may be driven by genomic conflict due to apoptosis during spermatogenesis. Genes with maximal expression in the brain show little or no evidence for positive selection, while genes with maximal expression in the testis tend to be enriched with positively selected genes. Genes on the X chromosome also tend to show an elevated tendency for positive selection. We also present polymorphism data from 20 Caucasian Americans and 19 African Americans for the 50 annotated genes showing the strongest evidence for positive selection. The polymorphism analysis further supports the presence of positive selection in these genes by showing an excess of high-frequency derived nonsynonymous mutations.

  14. From Annotated Multimodal Corpora to Simulated Human-Like Behaviors

    DEFF Research Database (Denmark)

    Rehm, Matthias; André, Elisabeth

    2008-01-01

    Multimodal corpora prove useful at different stages of the development process of embodied conversational agents. Insights into human-human communicative behaviors can be drawn from such corpora. Rules for planning and generating such behavior in agents can be derived from this information....... And even the evaluation of human-agent interactions can rely on corpus data from human-human communication. In this paper, we exemplify how corpora can be exploited at the different development steps, starting with the question of how corpora are annotated and on what level of granularity. The corpus data...

  15. Prosecutor: parameter-free inference of gene function for prokaryotes using DNA microarray data, genomic context and multiple gene annotation sources

    Directory of Open Access Journals (Sweden)

    van Hijum Sacha AFT

    2008-10-01

    Full Text Available Abstract Background Despite a plethora of functional genomic efforts, the function of many genes in sequenced genomes remains unknown. The increasing amount of microarray data for many species allows employing the guilt-by-association principle to predict function on a large scale: genes exhibiting similar expression patterns are more likely to participate in shared biological processes. Results We developed Prosecutor, an application that enables researchers to rapidly infer gene function based on available gene expression data and functional annotations. Our parameter-free functional prediction method uses a sensitive algorithm to achieve a high association rate of linking genes with unknown function to annotated genes. Furthermore, Prosecutor utilizes additional biological information such as genomic context and known regulatory mechanisms that are specific for prokaryotes. We analyzed publicly available transcriptome data sets and used literature sources to validate putative functions suggested by Prosecutor. We supply the complete results of our analysis for 11 prokaryotic organisms on a dedicated website. Conclusion The Prosecutor software and supplementary datasets available at http://www.prosecutor.nl allow researchers working on any of the analyzed organisms to quickly identify the putative functions of their genes of interest. A de novo analysis allows new organisms to be studied.

  16. NoGOA: predicting noisy GO annotations using evidences and sparse representation.

    Science.gov (United States)

    Yu, Guoxian; Lu, Chang; Wang, Jun

    2017-07-21

    Gene Ontology (GO) is a community effort to represent functional features of gene products. GO annotations (GOA) provide functional associations between GO terms and gene products. Due to resources limitation, only a small portion of annotations are manually checked by curators, and the others are electronically inferred. Although quality control techniques have been applied to ensure the quality of annotations, the community consistently report that there are still considerable noisy (or incorrect) annotations. Given the wide application of annotations, however, how to identify noisy annotations is an important but yet seldom studied open problem. We introduce a novel approach called NoGOA to predict noisy annotations. NoGOA applies sparse representation on the gene-term association matrix to reduce the impact of noisy annotations, and takes advantage of sparse representation coefficients to measure the semantic similarity between genes. Secondly, it preliminarily predicts noisy annotations of a gene based on aggregated votes from semantic neighborhood genes of that gene. Next, NoGOA estimates the ratio of noisy annotations for each evidence code based on direct annotations in GOA files archived on different periods, and then weights entries of the association matrix via estimated ratios and propagates weights to ancestors of direct annotations using GO hierarchy. Finally, it integrates evidence-weighted association matrix and aggregated votes to predict noisy annotations. Experiments on archived GOA files of six model species (H. sapiens, A. thaliana, S. cerevisiae, G. gallus, B. Taurus and M. musculus) demonstrate that NoGOA achieves significantly better results than other related methods and removing noisy annotations improves the performance of gene function prediction. The comparative study justifies the effectiveness of integrating evidence codes with sparse representation for predicting noisy GO annotations. Codes and datasets are available at http://mlda.swu.edu.cn/codes.php?name=NoGOA .

  17. Structuring osteosarcoma knowledge: an osteosarcoma-gene association database based on literature mining and manual annotation.

    Science.gov (United States)

    Poos, Kathrin; Smida, Jan; Nathrath, Michaela; Maugg, Doris; Baumhoer, Daniel; Neumann, Anna; Korsching, Eberhard

    2014-01-01

    Osteosarcoma (OS) is the most common primary bone cancer exhibiting high genomic instability. This genomic instability affects multiple genes and microRNAs to a varying extent depending on patient and tumor subtype. Massive research is ongoing to identify genes including their gene products and microRNAs that correlate with disease progression and might be used as biomarkers for OS. However, the genomic complexity hampers the identification of reliable biomarkers. Up to now, clinico-pathological factors are the key determinants to guide prognosis and therapeutic treatments. Each day, new studies about OS are published and complicate the acquisition of information to support biomarker discovery and therapeutic improvements. Thus, it is necessary to provide a structured and annotated view on the current OS knowledge that is quick and easily accessible to researchers of the field. Therefore, we developed a publicly available database and Web interface that serves as resource for OS-associated genes and microRNAs. Genes and microRNAs were collected using an automated dictionary-based gene recognition procedure followed by manual review and annotation by experts of the field. In total, 911 genes and 81 microRNAs related to 1331 PubMed abstracts were collected (last update: 29 October 2013). Users can evaluate genes and microRNAs according to their potential prognostic and therapeutic impact, the experimental procedures, the sample types, the biological contexts and microRNA target gene interactions. Additionally, a pathway enrichment analysis of the collected genes highlights different aspects of OS progression. OS requires pathways commonly deregulated in cancer but also features OS-specific alterations like deregulated osteoclast differentiation. To our knowledge, this is the first effort of an OS database containing manual reviewed and annotated up-to-date OS knowledge. It might be a useful resource especially for the bone tumor research community, as specific

  18. The Genome Sequence of Leishmania (Leishmania) amazonensis: Functional Annotation and Extended Analysis of Gene Models

    Science.gov (United States)

    Real, Fernando; Vidal, Ramon Oliveira; Carazzolle, Marcelo Falsarella; Mondego, Jorge Maurício Costa; Costa, Gustavo Gilson Lacerda; Herai, Roberto Hirochi; Würtele, Martin; de Carvalho, Lucas Miguel; e Ferreira, Renata Carmona; Mortara, Renato Arruda; Barbiéri, Clara Lucia; Mieczkowski, Piotr; da Silveira, José Franco; Briones, Marcelo Ribeiro da Silva; Pereira, Gonçalo Amarante Guimarães; Bahia, Diana

    2013-01-01

    We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment. PMID:23857904

  19. Ribosome Profiling Reveals Pervasive Translation Outside of Annotated Protein-Coding Genes

    Directory of Open Access Journals (Sweden)

    Nicholas T. Ingolia

    2014-09-01

    Full Text Available Ribosome profiling suggests that ribosomes occupy many regions of the transcriptome thought to be noncoding, including 5′ UTRs and long noncoding RNAs (lncRNAs. Apparent ribosome footprints outside of protein-coding regions raise the possibility of artifacts unrelated to translation, particularly when they occupy multiple, overlapping open reading frames (ORFs. Here, we show hallmarks of translation in these footprints: copurification with the large ribosomal subunit, response to drugs targeting elongation, trinucleotide periodicity, and initiation at early AUGs. We develop a metric for distinguishing between 80S footprints and nonribosomal sources using footprint size distributions, which validates the vast majority of footprints outside of coding regions. We present evidence for polypeptide production beyond annotated genes, including the induction of immune responses following human cytomegalovirus (HCMV infection. Translation is pervasive on cytosolic transcripts outside of conserved reading frames, and direct detection of this expanded universe of translated products enables efforts at understanding how cells manage and exploit its consequences.

  20. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3.

    Science.gov (United States)

    Han, Mira V; Thomas, Gregg W C; Lugo-Martinez, Jose; Hahn, Matthew W

    2013-08-01

    Current sequencing methods produce large amounts of data, but genome assemblies constructed from these data are often fragmented and incomplete. Incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. This means that methods attempting to estimate rates of gene duplication and loss often will be misled by such errors and that rates of gene family evolution will be consistently overestimated. Here, we present a method that takes these errors into account, allowing one to accurately infer rates of gene gain and loss among genomes even with low assembly and annotation quality. The method is implemented in the newest version of the software package CAFE, along with several other novel features. We demonstrate the accuracy of the method with extensive simulations and reanalyze several previously published data sets. Our results show that errors in genome annotation do lead to higher inferred rates of gene gain and loss but that CAFE 3 sufficiently accounts for these errors to provide accurate estimates of important evolutionary parameters.

  1. HMM-Based Gene Annotation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Haussler, David; Hughey, Richard; Karplus, Keven

    1999-09-20

    Development of new statistical methods and computational tools to identify genes in human genomic DNA, and to provide clues to their functions by identifying features such as transcription factor binding sites, tissue, specific expression and splicing patterns, and remove homologies at the protein level with genes of known function.

  2. Estimating the annotation error rate of curated GO database sequence annotations

    Directory of Open Access Journals (Sweden)

    Brown Alfred L

    2007-05-01

    Full Text Available Abstract Background Annotations that describe the function of sequences are enormously important to researchers during laboratory investigations and when making computational inferences. However, there has been little investigation into the data quality of sequence function annotations. Here we have developed a new method of estimating the error rate of curated sequence annotations, and applied this to the Gene Ontology (GO sequence database (GOSeqLite. This method involved artificially adding errors to sequence annotations at known rates, and used regression to model the impact on the precision of annotations based on BLAST matched sequences. Results We estimated the error rate of curated GO sequence annotations in the GOSeqLite database (March 2006 at between 28% and 30%. Annotations made without use of sequence similarity based methods (non-ISS had an estimated error rate of between 13% and 18%. Annotations made with the use of sequence similarity methodology (ISS had an estimated error rate of 49%. Conclusion While the overall error rate is reasonably low, it would be prudent to treat all ISS annotations with caution. Electronic annotators that use ISS annotations as the basis of predictions are likely to have higher false prediction rates, and for this reason designers of these systems should consider avoiding ISS annotations where possible. Electronic annotators that use ISS annotations to make predictions should be viewed sceptically. We recommend that curators thoroughly review ISS annotations before accepting them as valid. Overall, users of curated sequence annotations from the GO database should feel assured that they are using a comparatively high quality source of information.

  3. BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal M.

    2015-08-18

    Background Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). Results The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON’s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced. Conclusions We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/

  4. BEACON: automated tool for Bacterial GEnome Annotation ComparisON.

    Science.gov (United States)

    Kalkatawi, Manal; Alam, Intikhab; Bajic, Vladimir B

    2015-08-18

    Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON's utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27%, while the number of genes without any function assignment is reduced. We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  5. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger

    OpenAIRE

    Wright, James C.; Sugden, Deana; Francis-McIntyre, Sue; Riba Garcia, Isabel; Gaskell, Simon J.; Grigoriev, Igor V.; Baker, Scott E.; Beynon, Robert J.; Hubbard, Simon J.

    2009-01-01

    Abstract Background Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI) and another predicted protein set from another A.niger sequence. Tandem mass spectra (MS/MS) were ac...

  6. A statistical framework to predict functional non-coding regions in the human genome through integrated analysis of annotation data.

    Science.gov (United States)

    Lu, Qiongshi; Hu, Yiming; Sun, Jiehuan; Cheng, Yuwei; Cheung, Kei-Hoi; Zhao, Hongyu

    2015-05-27

    Identifying functional regions in the human genome is a major goal in human genetics. Great efforts have been made to functionally annotate the human genome either through computational predictions, such as genomic conservation, or high-throughput experiments, such as the ENCODE project. These efforts have resulted in a rich collection of functional annotation data of diverse types that need to be jointly analyzed for integrated interpretation and annotation. Here we present GenoCanyon, a whole-genome annotation method that performs unsupervised statistical learning using 22 computational and experimental annotations thereby inferring the functional potential of each position in the human genome. With GenoCanyon, we are able to predict many of the known functional regions. The ability of predicting functional regions as well as its generalizable statistical framework makes GenoCanyon a unique and powerful tool for whole-genome annotation. The GenoCanyon web server is available at http://genocanyon.med.yale.edu.

  7. AGORA : Organellar genome annotation from the amino acid and nucleotide references.

    Science.gov (United States)

    Jung, Jaehee; Kim, Jong Im; Jeong, Young-Sik; Yi, Gangman

    2018-03-29

    Next-generation sequencing (NGS) technologies have led to the accumulation of highthroughput sequence data from various organisms in biology. To apply gene annotation of organellar genomes for various organisms, more optimized tools for functional gene annotation are required. Almost all gene annotation tools are mainly focused on the chloroplast genome of land plants or the mitochondrial genome of animals.We have developed a web application AGORA for the fast, user-friendly, and improved annotations of organellar genomes. AGORA annotates genes based on a BLAST-based homology search and clustering with selected reference sequences from the NCBI database or user-defined uploaded data. AGORA can annotate the functional genes in almost all mitochondrion and plastid genomes of eukaryotes. The gene annotation of a genome with an exon-intron structure within a gene or inverted repeat region is also available. It provides information of start and end positions of each gene, BLAST results compared with the reference sequence, and visualization of gene map by OGDRAW. Users can freely use the software, and the accessible URL is https://bigdata.dongguk.edu/gene_project/AGORA/.The main module of the tool is implemented by the python and php, and the web page is built by the HTML and CSS to support all browsers. gangman@dongguk.edu.

  8. Transcriptome sequencing and annotation for the Jamaican fruit bat (Artibeus jamaicensis.

    Directory of Open Access Journals (Sweden)

    Timothy I Shaw

    Full Text Available The Jamaican fruit bat (Artibeus jamaicensis is one of the most common bats in the tropical Americas. It is thought to be a potential reservoir host of Tacaribe virus, an arenavirus closely related to the South American hemorrhagic fever viruses. We performed transcriptome sequencing and annotation from lung, kidney and spleen tissues using 454 and Illumina platforms to develop this species as an animal model. More than 100,000 contigs were assembled, with 25,000 genes that were functionally annotated. Of the remaining unannotated contigs, 80% were found within bat genomes or transcriptomes. Annotated genes are involved in a broad range of activities ranging from cellular metabolism to genome regulation through ncRNAs. Reciprocal BLAST best hits yielded 8,785 sequences that are orthologous to mouse, rat, cattle, horse and human. Species tree analysis of sequences from 2,378 loci was used to achieve 95% bootstrap support for the placement of bat as sister to the clade containing horse, dog, and cattle. Through substitution rate estimation between bat and human, 32 genes were identified with evidence for positive selection. We also identified 466 immune-related genes, which may be useful for studying Tacaribe virus infection of this species. The Jamaican fruit bat transcriptome dataset is a resource that should provide additional candidate markers for studying bat evolution and ecology, and tools for analysis of the host response and pathology of disease.

  9. Identification and characterization of two functional variants in the human longevity gene FOXO3

    DEFF Research Database (Denmark)

    Flachsbart, Friederike; Dose, Janina; Gentschew, Liljana

    2017-01-01

    FOXO3 is consistently annotated as a human longevity gene. However, functional variants and underlying mechanisms for the association remain unknown. Here, we perform resequencing of the FOXO3 locus and single-nucleotide variant (SNV) genotyping in three European populations. We find two FOXO3 SN...

  10. Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection.

    Science.gov (United States)

    Bencke-Malato, Marta; Cabreira, Caroline; Wiebke-Strohm, Beatriz; Bücker-Neto, Lauro; Mancini, Estefania; Osorio, Marina B; Homrich, Milena S; Turchetto-Zolet, Andreia Carina; De Carvalho, Mayra C C G; Stolf, Renata; Weber, Ricardo L M; Westergaard, Gastón; Castagnaro, Atílio P; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C; Margis-Pinheiro, Márcia; Bodanese-Zanettini, Maria Helena

    2014-09-10

    Many previous studies have shown that soybean WRKY transcription factors are involved in the plant response to biotic and abiotic stresses. Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, one of the most important soybean diseases. There are evidences that WRKYs are involved in the resistance of some soybean genotypes against that fungus. The number of WRKY genes already annotated in soybean genome was underrepresented. In the present study, a genome-wide annotation of the soybean WRKY family was carried out and members involved in the response to P. pachyrhizi were identified. As a result of a soybean genomic databases search, 182 WRKY-encoding genes were annotated and 33 putative pseudogenes identified. Genes involved in the response to P. pachyrhizi infection were identified using superSAGE, RNA-Seq of microdissected lesions and microarray experiments. Seventy-five genes were differentially expressed during fungal infection. The expression of eight WRKY genes was validated by RT-qPCR. The expression of these genes in a resistant genotype was earlier and/or stronger compared with a susceptible genotype in response to P. pachyrhizi infection. Soybean somatic embryos were transformed in order to overexpress or silence WRKY genes. Embryos overexpressing a WRKY gene were obtained, but they were unable to convert into plants. When infected with P. pachyrhizi, the leaves of the silenced transgenic line showed a higher number of lesions than the wild-type plants. The present study reports a genome-wide annotation of soybean WRKY family. The participation of some members in response to P. pachyrhizi infection was demonstrated. The results contribute to the elucidation of gene function and suggest the manipulation of WRKYs as a strategy to increase fungal resistance in soybean plants.

  11. MEETING: Chlamydomonas Annotation Jamboree - October 2003

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Arthur R

    2007-04-13

    Shotgun sequencing of the nuclear genome of Chlamydomonas reinhardtii (Chlamydomonas throughout) was performed at an approximate 10X coverage by JGI. Roughly half of the genome is now contained on 26 scaffolds, all of which are at least 1.6 Mb, and the coverage of the genome is ~95%. There are now over 200,000 cDNA sequence reads that we have generated as part of the Chlamydomonas genome project (Grossman, 2003; Shrager et al., 2003; Grossman et al. 2007; Merchant et al., 2007); other sequences have also been generated by the Kasuza sequence group (Asamizu et al., 1999; Asamizu et al., 2000) or individual laboratories that have focused on specific genes. Shrager et al. (2003) placed the reads into distinct contigs (an assemblage of reads with overlapping nucleotide sequences), and contigs that group together as part of the same genes have been designated ACEs (assembly of contigs generated from EST information). All of the reads have also been mapped to the Chlamydomonas nuclear genome and the cDNAs and their corresponding genomic sequences have been reassembled, and the resulting assemblage is called an ACEG (an Assembly of contiguous EST sequences supported by genomic sequence) (Jain et al., 2007). Most of the unique genes or ACEGs are also represented by gene models that have been generated by the Joint Genome Institute (JGI, Walnut Creek, CA). These gene models have been placed onto the DNA scaffolds and are presented as a track on the Chlamydomonas genome browser associated with the genome portal (http://genome.jgi-psf.org/Chlre3/Chlre3.home.html). Ultimately, the meeting grant awarded by DOE has helped enormously in the development of an annotation pipeline (a set of guidelines used in the annotation of genes) and resulted in high quality annotation of over 4,000 genes; the annotators were from both Europe and the USA. Some of the people who led the annotation initiative were Arthur Grossman, Olivier Vallon, and Sabeeha Merchant (with many individual

  12. Correction of the Caulobacter crescentus NA1000 genome annotation.

    Directory of Open Access Journals (Sweden)

    Bert Ely

    Full Text Available Bacterial genome annotations are accumulating rapidly in the GenBank database and the use of automated annotation technologies to create these annotations has become the norm. However, these automated methods commonly result in a small, but significant percentage of genome annotation errors. To improve accuracy and reliability, we analyzed the Caulobacter crescentus NA1000 genome utilizing computer programs Artemis and MICheck to manually examine the third codon position GC content, alignment to a third codon position GC frame plot peak, and matches in the GenBank database. We identified 11 new genes, modified the start site of 113 genes, and changed the reading frame of 38 genes that had been incorrectly annotated. Furthermore, our manual method of identifying protein-coding genes allowed us to remove 112 non-coding regions that had been designated as coding regions. The improved NA1000 genome annotation resulted in a reduction in the use of rare codons since noncoding regions with atypical codon usage were removed from the annotation and 49 new coding regions were added to the annotation. Thus, a more accurate codon usage table was generated as well. These results demonstrate that a comparison of the location of peaks third codon position GC content to the location of protein coding regions could be used to verify the annotation of any genome that has a GC content that is greater than 60%.

  13. Pipeline to upgrade the genome annotations

    Directory of Open Access Journals (Sweden)

    Lijin K. Gopi

    2017-12-01

    Full Text Available Current era of functional genomics is enriched with good quality draft genomes and annotations for many thousands of species and varieties with the support of the advancements in the next generation sequencing technologies (NGS. Around 25,250 genomes, of the organisms from various kingdoms, are submitted in the NCBI genome resource till date. Each of these genomes was annotated using various tools and knowledge-bases that were available during the period of the annotation. It is obvious that these annotations will be improved if the same genome is annotated using improved tools and knowledge-bases. Here we present a new genome annotation pipeline, strengthened with various tools and knowledge-bases that are capable of producing better quality annotations from the consensus of the predictions from different tools. This resource also perform various additional annotations, apart from the usual gene predictions and functional annotations, which involve SSRs, novel repeats, paralogs, proteins with transmembrane helices, signal peptides etc. This new annotation resource is trained to evaluate and integrate all the predictions together to resolve the overlaps and ambiguities of the boundaries. One of the important highlights of this resource is the capability of predicting the phylogenetic relations of the repeats using the evolutionary trace analysis and orthologous gene clusters. We also present a case study, of the pipeline, in which we upgrade the genome annotation of Nelumbo nucifera (sacred lotus. It is demonstrated that this resource is capable of producing an improved annotation for a better understanding of the biology of various organisms.

  14. Annotation of mammalian primary microRNAs

    Directory of Open Access Journals (Sweden)

    Enright Anton J

    2008-11-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are important regulators of gene expression and have been implicated in development, differentiation and pathogenesis. Hundreds of miRNAs have been discovered in mammalian genomes. Approximately 50% of mammalian miRNAs are expressed from introns of protein-coding genes; the primary transcript (pri-miRNA is therefore assumed to be the host transcript. However, very little is known about the structure of pri-miRNAs expressed from intergenic regions. Here we annotate transcript boundaries of miRNAs in human, mouse and rat genomes using various transcription features. The 5' end of the pri-miRNA is predicted from transcription start sites, CpG islands and 5' CAGE tags mapped in the upstream flanking region surrounding the precursor miRNA (pre-miRNA. The 3' end of the pri-miRNA is predicted based on the mapping of polyA signals, and supported by cDNA/EST and ditags data. The predicted pri-miRNAs are also analyzed for promoter and insulator-associated regulatory regions. Results We define sets of conserved and non-conserved human, mouse and rat pre-miRNAs using bidirectional BLAST and synteny analysis. Transcription features in their flanking regions are used to demarcate the 5' and 3' boundaries of the pri-miRNAs. The lengths and boundaries of primary transcripts are highly conserved between orthologous miRNAs. A significant fraction of pri-miRNAs have lengths between 1 and 10 kb, with very few introns. We annotate a total of 59 pri-miRNA structures, which include 82 pre-miRNAs. 36 pri-miRNAs are conserved in all 3 species. In total, 18 of the confidently annotated transcripts express more than one pre-miRNA. The upstream regions of 54% of the predicted pri-miRNAs are found to be associated with promoter and insulator regulatory sequences. Conclusion Little is known about the primary transcripts of intergenic miRNAs. Using comparative data, we are able to identify the boundaries of a significant proportion of

  15. Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence

    Directory of Open Access Journals (Sweden)

    Dorrell Nick

    2007-06-01

    Full Text Available Abstract Background Campylobacter jejuni is the leading bacterial cause of human gastroenteritis in the developed world. To improve our understanding of this important human pathogen, the C. jejuni NCTC11168 genome was sequenced and published in 2000. The original annotation was a milestone in Campylobacter research, but is outdated. We now describe the complete re-annotation and re-analysis of the C. jejuni NCTC11168 genome using current database information, novel tools and annotation techniques not used during the original annotation. Results Re-annotation was carried out using sequence database searches such as FASTA, along with programs such as TMHMM for additional support. The re-annotation also utilises sequence data from additional Campylobacter strains and species not available during the original annotation. Re-annotation was accompanied by a full literature search that was incorporated into the updated EMBL file [EMBL: AL111168]. The C. jejuni NCTC11168 re-annotation reduced the total number of coding sequences from 1654 to 1643, of which 90.0% have additional information regarding the identification of new motifs and/or relevant literature. Re-annotation has led to 18.2% of coding sequence product functions being revised. Conclusions Major updates were made to genes involved in the biosynthesis of important surface structures such as lipooligosaccharide, capsule and both O- and N-linked glycosylation. This re-annotation will be a key resource for Campylobacter research and will also provide a prototype for the re-annotation and re-interpretation of other bacterial genomes.

  16. Automatic extraction of gene ontology annotation and its correlation with clusters in protein networks

    Directory of Open Access Journals (Sweden)

    Mazo Ilya

    2007-07-01

    Full Text Available Abstract Background Uncovering cellular roles of a protein is a task of tremendous importance and complexity that requires dedicated experimental work as well as often sophisticated data mining and processing tools. Protein functions, often referred to as its annotations, are believed to manifest themselves through topology of the networks of inter-proteins interactions. In particular, there is a growing body of evidence that proteins performing the same function are more likely to interact with each other than with proteins with other functions. However, since functional annotation and protein network topology are often studied separately, the direct relationship between them has not been comprehensively demonstrated. In addition to having the general biological significance, such demonstration would further validate the data extraction and processing methods used to compose protein annotation and protein-protein interactions datasets. Results We developed a method for automatic extraction of protein functional annotation from scientific text based on the Natural Language Processing (NLP technology. For the protein annotation extracted from the entire PubMed, we evaluated the precision and recall rates, and compared the performance of the automatic extraction technology to that of manual curation used in public Gene Ontology (GO annotation. In the second part of our presentation, we reported a large-scale investigation into the correspondence between communities in the literature-based protein networks and GO annotation groups of functionally related proteins. We found a comprehensive two-way match: proteins within biological annotation groups form significantly denser linked network clusters than expected by chance and, conversely, densely linked network communities exhibit a pronounced non-random overlap with GO groups. We also expanded the publicly available GO biological process annotation using the relations extracted by our NLP technology

  17. Metab2MeSH: annotating compounds with medical subject headings.

    Science.gov (United States)

    Sartor, Maureen A; Ade, Alex; Wright, Zach; States, David; Omenn, Gilbert S; Athey, Brian; Karnovsky, Alla

    2012-05-15

    Progress in high-throughput genomic technologies has led to the development of a variety of resources that link genes to functional information contained in the biomedical literature. However, tools attempting to link small molecules to normal and diseased physiology and published data relevant to biologists and clinical investigators, are still lacking. With metabolomics rapidly emerging as a new omics field, the task of annotating small molecule metabolites becomes highly relevant. Our tool Metab2MeSH uses a statistical approach to reliably and automatically annotate compounds with concepts defined in Medical Subject Headings, and the National Library of Medicine's controlled vocabulary for biomedical concepts. These annotations provide links from compounds to biomedical literature and complement existing resources such as PubChem and the Human Metabolome Database.

  18. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants.

    Science.gov (United States)

    Pilkington, Sarah M; Crowhurst, Ross; Hilario, Elena; Nardozza, Simona; Fraser, Lena; Peng, Yongyan; Gunaseelan, Kularajathevan; Simpson, Robert; Tahir, Jibran; Deroles, Simon C; Templeton, Kerry; Luo, Zhiwei; Davy, Marcus; Cheng, Canhong; McNeilage, Mark; Scaglione, Davide; Liu, Yifei; Zhang, Qiong; Datson, Paul; De Silva, Nihal; Gardiner, Susan E; Bassett, Heather; Chagné, David; McCallum, John; Dzierzon, Helge; Deng, Cecilia; Wang, Yen-Yi; Barron, Lorna; Manako, Kelvina; Bowen, Judith; Foster, Toshi M; Erridge, Zoe A; Tiffin, Heather; Waite, Chethi N; Davies, Kevin M; Grierson, Ella P; Laing, William A; Kirk, Rebecca; Chen, Xiuyin; Wood, Marion; Montefiori, Mirco; Brummell, David A; Schwinn, Kathy E; Catanach, Andrew; Fullerton, Christina; Li, Dawei; Meiyalaghan, Sathiyamoorthy; Nieuwenhuizen, Niels; Read, Nicola; Prakash, Roneel; Hunter, Don; Zhang, Huaibi; McKenzie, Marian; Knäbel, Mareike; Harris, Alastair; Allan, Andrew C; Gleave, Andrew; Chen, Angela; Janssen, Bart J; Plunkett, Blue; Ampomah-Dwamena, Charles; Voogd, Charlotte; Leif, Davin; Lafferty, Declan; Souleyre, Edwige J F; Varkonyi-Gasic, Erika; Gambi, Francesco; Hanley, Jenny; Yao, Jia-Long; Cheung, Joey; David, Karine M; Warren, Ben; Marsh, Ken; Snowden, Kimberley C; Lin-Wang, Kui; Brian, Lara; Martinez-Sanchez, Marcela; Wang, Mindy; Ileperuma, Nadeesha; Macnee, Nikolai; Campin, Robert; McAtee, Peter; Drummond, Revel S M; Espley, Richard V; Ireland, Hilary S; Wu, Rongmei; Atkinson, Ross G; Karunairetnam, Sakuntala; Bulley, Sean; Chunkath, Shayhan; Hanley, Zac; Storey, Roy; Thrimawithana, Amali H; Thomson, Susan; David, Charles; Testolin, Raffaele; Huang, Hongwen; Hellens, Roger P; Schaffer, Robert J

    2018-04-16

    Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and

  19. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  20. Automated update, revision, and quality control of the maize genome annotations using MAKER-P improves the B73 RefGen_v3 gene models and identifies new genes

    Science.gov (United States)

    The large size and relative complexity of many plant genomes make creation, quality control, and dissemination of high-quality gene structure annotations challenging. In response, we have developed MAKER-P, a fast and easy-to-use genome annotation engine for plants. Here, we report the use of MAKER-...

  1. ACID: annotation of cassette and integron data

    Directory of Open Access Journals (Sweden)

    Stokes Harold W

    2009-04-01

    Full Text Available Abstract Background Although integrons and their associated gene cassettes are present in ~10% of bacteria and can represent up to 3% of the genome in which they are found, very few have been properly identified and annotated in public databases. These genetic elements have been overlooked in comparison to other vectors that facilitate lateral gene transfer between microorganisms. Description By automating the identification of integron integrase genes and of the non-coding cassette-associated attC recombination sites, we were able to assemble a database containing all publicly available sequence information regarding these genetic elements. Specialists manually curated the database and this information was used to improve the automated detection and annotation of integrons and their encoded gene cassettes. ACID (annotation of cassette and integron data can be searched using a range of queries and the data can be downloaded in a number of formats. Users can readily annotate their own data and integrate it into ACID using the tools provided. Conclusion ACID is a community resource providing easy access to annotations of integrons and making tools available to detect them in novel sequence data. ACID also hosts a forum to prompt integron-related discussion, which can hopefully lead to a more universal definition of this genetic element.

  2. GRN2SBML: automated encoding and annotation of inferred gene regulatory networks complying with SBML.

    Science.gov (United States)

    Vlaic, Sebastian; Hoffmann, Bianca; Kupfer, Peter; Weber, Michael; Dräger, Andreas

    2013-09-01

    GRN2SBML automatically encodes gene regulatory networks derived from several inference tools in systems biology markup language. Providing a graphical user interface, the networks can be annotated via the simple object access protocol (SOAP)-based application programming interface of BioMart Central Portal and minimum information required in the annotation of models registry. Additionally, we provide an R-package, which processes the output of supported inference algorithms and automatically passes all required parameters to GRN2SBML. Therefore, GRN2SBML closes a gap in the processing pipeline between the inference of gene regulatory networks and their subsequent analysis, visualization and storage. GRN2SBML is freely available under the GNU Public License version 3 and can be downloaded from http://www.hki-jena.de/index.php/0/2/490. General information on GRN2SBML, examples and tutorials are available at the tool's web page.

  3. Gene expression analysis uncovers novel Hedgehog interacting protein (HHIP) effects in human bronchial epithelial cells

    Science.gov (United States)

    Zhou, Xiaobo; Qiu, Weiliang; Sathirapongsasuti, J. Fah.; Cho, Michael H.; Mancini, John D.; Lao, Taotao; Thibault, Derek M.; Litonjua, Gus; Bakke, Per S.; Gulsvik, Amund; Lomas, David A.; Beaty, Terri H.; Hersh, Craig P.; Anderson, Christopher; Geigenmuller, Ute; Raby, Benjamin A.; Rennard, Stephen I.; Perrella, Mark A.; Choi, Augustine M.K.; Quackenbush, John; Silverman, Edwin K.

    2013-01-01

    Hedgehog Interacting Protein (HHIP) was implicated in chronic obstructive pulmonary disease (COPD) by genome-wide association studies (GWAS). However, it remains unclear how HHIP contributes to COPD pathogenesis. To identify genes regulated by HHIP, we performed gene expression microarray analysis in a human bronchial epithelial cell line (Beas-2B) stably infected with HHIP shRNAs. HHIP silencing led to differential expression of 296 genes; enrichment for variants nominally associated with COPD was found. Eighteen of the differentially expressed genes were validated by real-time PCR in Beas-2B cells. Seven of 11 validated genes tested in human COPD and control lung tissues demonstrated significant gene expression differences. Functional annotation indicated enrichment for extracellular matrix and cell growth genes. Network modeling demonstrated that the extracellular matrix and cell proliferation genes influenced by HHIP tended to be interconnected. Thus, we identified potential HHIP targets in human bronchial epithelial cells that may contribute to COPD pathogenesis. PMID:23459001

  4. Contributions to In Silico Genome Annotation

    KAUST Repository

    Kalkatawi, Manal M.

    2017-11-30

    Genome annotation is an important topic since it provides information for the foundation of downstream genomic and biological research. It is considered as a way of summarizing part of existing knowledge about the genomic characteristics of an organism. Annotating different regions of a genome sequence is known as structural annotation, while identifying functions of these regions is considered as a functional annotation. In silico approaches can facilitate both tasks that otherwise would be difficult and timeconsuming. This study contributes to genome annotation by introducing several novel bioinformatics methods, some based on machine learning (ML) approaches. First, we present Dragon PolyA Spotter (DPS), a method for accurate identification of the polyadenylation signals (PAS) within human genomic DNA sequences. For this, we derived a novel feature-set able to characterize properties of the genomic region surrounding the PAS, enabling development of high accuracy optimized ML predictive models. DPS considerably outperformed the state-of-the-art results. The second contribution concerns developing generic models for structural annotation, i.e., the recognition of different genomic signals and regions (GSR) within eukaryotic DNA. We developed DeepGSR, a systematic framework that facilitates generating ML models to predict GSR with high accuracy. To the best of our knowledge, no available generic and automated method exists for such task that could facilitate the studies of newly sequenced organisms. The prediction module of DeepGSR uses deep learning algorithms to derive highly abstract features that depend mainly on proper data representation and hyperparameters calibration. DeepGSR, which was evaluated on recognition of PAS and translation initiation sites (TIS) in different organisms, yields a simpler and more precise representation of the problem under study, compared to some other hand-tailored models, while producing high accuracy prediction results. Finally

  5. Co-LncRNA: investigating the lncRNA combinatorial effects in GO annotations and KEGG pathways based on human RNA-Seq data.

    Science.gov (United States)

    Zhao, Zheng; Bai, Jing; Wu, Aiwei; Wang, Yuan; Zhang, Jinwen; Wang, Zishan; Li, Yongsheng; Xu, Juan; Li, Xia

    2015-01-01

    Long non-coding RNAs (lncRNAs) are emerging as key regulators of diverse biological processes and diseases. However, the combinatorial effects of these molecules in a specific biological function are poorly understood. Identifying co-expressed protein-coding genes of lncRNAs would provide ample insight into lncRNA functions. To facilitate such an effort, we have developed Co-LncRNA, which is a web-based computational tool that allows users to identify GO annotations and KEGG pathways that may be affected by co-expressed protein-coding genes of a single or multiple lncRNAs. LncRNA co-expressed protein-coding genes were first identified in publicly available human RNA-Seq datasets, including 241 datasets across 6560 total individuals representing 28 tissue types/cell lines. Then, the lncRNA combinatorial effects in a given GO annotations or KEGG pathways are taken into account by the simultaneous analysis of multiple lncRNAs in user-selected individual or multiple datasets, which is realized by enrichment analysis. In addition, this software provides a graphical overview of pathways that are modulated by lncRNAs, as well as a specific tool to display the relevant networks between lncRNAs and their co-expressed protein-coding genes. Co-LncRNA also supports users in uploading their own lncRNA and protein-coding gene expression profiles to investigate the lncRNA combinatorial effects. It will be continuously updated with more human RNA-Seq datasets on an annual basis. Taken together, Co-LncRNA provides a web-based application for investigating lncRNA combinatorial effects, which could shed light on their biological roles and could be a valuable resource for this community. Database URL: http://www.bio-bigdata.com/Co-LncRNA/. © The Author(s) 2015. Published by Oxford University Press.

  6. NuChart: an R package to study gene spatial neighbourhoods with multi-omics annotations.

    Directory of Open Access Journals (Sweden)

    Ivan Merelli

    Full Text Available Long-range chromosomal associations between genomic regions, and their repositioning in the 3D space of the nucleus, are now considered to be key contributors to the regulation of gene expression and important links have been highlighted with other genomic features involved in DNA rearrangements. Recent Chromosome Conformation Capture (3C measurements performed with high throughput sequencing (Hi-C and molecular dynamics studies show that there is a large correlation between colocalization and coregulation of genes, but these important researches are hampered by the lack of biologists-friendly analysis and visualisation software. Here, we describe NuChart, an R package that allows the user to annotate and statistically analyse a list of input genes with information relying on Hi-C data, integrating knowledge about genomic features that are involved in the chromosome spatial organization. NuChart works directly with sequenced reads to identify the related Hi-C fragments, with the aim of creating gene-centric neighbourhood graphs on which multi-omics features can be mapped. Predictions about CTCF binding sites, isochores and cryptic Recombination Signal Sequences are provided directly with the package for mapping, although other annotation data in bed format can be used (such as methylation profiles and histone patterns. Gene expression data can be automatically retrieved and processed from the Gene Expression Omnibus and ArrayExpress repositories to highlight the expression profile of genes in the identified neighbourhood. Moreover, statistical inferences about the graph structure and correlations between its topology and multi-omics features can be performed using Exponential-family Random Graph Models. The Hi-C fragment visualisation provided by NuChart allows the comparisons of cells in different conditions, thus providing the possibility of novel biomarkers identification. NuChart is compliant with the Bioconductor standard and it is freely

  7. Supplementary Material for: BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal M.; Alam, Intikhab; Bajic, Vladimir B.

    2015-01-01

    Abstract Background Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). Results The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACONâ s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced. Conclusions We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  8. Jannovar: a java library for exome annotation.

    Science.gov (United States)

    Jäger, Marten; Wang, Kai; Bauer, Sebastian; Smedley, Damian; Krawitz, Peter; Robinson, Peter N

    2014-05-01

    Transcript-based annotation and pedigree analysis are two basic steps in the computational analysis of whole-exome sequencing experiments in genetic diagnostics and disease-gene discovery projects. Here, we present Jannovar, a stand-alone Java application as well as a Java library designed to be used in larger software frameworks for exome and genome analysis. Jannovar uses an interval tree to identify all transcripts affected by a given variant, and provides Human Genome Variation Society-compliant annotations both for variants affecting coding sequences and splice junctions as well as untranslated regions and noncoding RNA transcripts. Jannovar can also perform family-based pedigree analysis with Variant Call Format (VCF) files with data from members of a family segregating a Mendelian disorder. Using a desktop computer, Jannovar requires a few seconds to annotate a typical VCF file with exome data. Jannovar is freely available under the BSD2 license. Source code as well as the Java application and library file can be downloaded from http://compbio.charite.de (with tutorial) and https://github.com/charite/jannovar. © 2014 WILEY PERIODICALS, INC.

  9. Functional annotation of hierarchical modularity.

    Directory of Open Access Journals (Sweden)

    Kanchana Padmanabhan

    Full Text Available In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology and the association of individual genes or proteins with these concepts (e.g., GO terms, our method will assign a Hierarchical Modularity Score (HMS to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our

  10. Reduce manual curation by combining gene predictions from multiple annotation engines, a case study of start codon prediction.

    Directory of Open Access Journals (Sweden)

    Thomas H A Ederveen

    Full Text Available Nowadays, prokaryotic genomes are sequenced faster than the capacity to manually curate gene annotations. Automated genome annotation engines provide users a straight-forward and complete solution for predicting ORF coordinates and function. For many labs, the use of AGEs is therefore essential to decrease the time necessary for annotating a given prokaryotic genome. However, it is not uncommon for AGEs to provide different and sometimes conflicting predictions. Combining multiple AGEs might allow for more accurate predictions. Here we analyzed the ab initio open reading frame (ORF calling performance of different AGEs based on curated genome annotations of eight strains from different bacterial species with GC% ranging from 35-52%. We present a case study which demonstrates a novel way of comparative genome annotation, using combinations of AGEs in a pre-defined order (or path to predict ORF start codons. The order of AGE combinations is from high to low specificity, where the specificity is based on the eight genome annotations. For each AGE combination we are able to derive a so-called projected confidence value, which is the average specificity of ORF start codon prediction based on the eight genomes. The projected confidence enables estimating likeliness of a correct prediction for a particular ORF start codon by a particular AGE combination, pinpointing ORFs notoriously difficult to predict start codons. We correctly predict start codons for 90.5±4.8% of the genes in a genome (based on the eight genomes with an accuracy of 81.1±7.6%. Our consensus-path methodology allows a marked improvement over majority voting (9.7±4.4% and with an optimal path ORF start prediction sensitivity is gained while maintaining a high specificity.

  11. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    Science.gov (United States)

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  12. High-density rhesus macaque oligonucleotide microarray design using early-stage rhesus genome sequence information and human genome annotations

    Directory of Open Access Journals (Sweden)

    Magness Charles L

    2007-01-01

    Full Text Available Abstract Background Until recently, few genomic reagents specific for non-human primate research have been available. To address this need, we have constructed a macaque-specific high-density oligonucleotide microarray by using highly fragmented low-pass sequence contigs from the rhesus genome project together with the detailed sequence and exon structure of the human genome. Using this method, we designed oligonucleotide probes to over 17,000 distinct rhesus/human gene orthologs and increased by four-fold the number of available genes relative to our first-generation expressed sequence tag (EST-derived array. Results We constructed a database containing 248,000 exon sequences from 23,000 human RefSeq genes and compared each human exon with its best matching sequence in the January 2005 version of the rhesus genome project list of 486,000 DNA contigs. Best matching rhesus exon sequences for each of the 23,000 human genes were then concatenated in the proper order and orientation to produce a rhesus "virtual transcriptome." Microarray probes were designed, one per gene, to the region closest to the 3' untranslated region (UTR of each rhesus virtual transcript. Each probe was compared to a composite rhesus/human transcript database to test for cross-hybridization potential yielding a final probe set representing 18,296 rhesus/human gene orthologs, including transcript variants, and over 17,000 distinct genes. We hybridized mRNA from rhesus brain and spleen to both the EST- and genome-derived microarrays. Besides four-fold greater gene coverage, the genome-derived array also showed greater mean signal intensities for genes present on both arrays. Genome-derived probes showed 99.4% identity when compared to 4,767 rhesus GenBank sequence tag site (STS sequences indicating that early stage low-pass versions of complex genomes are of sufficient quality to yield valuable functional genomic information when combined with finished genome information from

  13. Annotation of the Domestic Pig Genome by Quantitative Proteogenomics.

    Science.gov (United States)

    Marx, Harald; Hahne, Hannes; Ulbrich, Susanne E; Schnieke, Angelika; Rottmann, Oswald; Frishman, Dmitrij; Kuster, Bernhard

    2017-08-04

    The pig is one of the earliest domesticated animals in the history of human civilization and represents one of the most important livestock animals. The recent sequencing of the Sus scrofa genome was a major step toward the comprehensive understanding of porcine biology, evolution, and its utility as a promising large animal model for biomedical and xenotransplantation research. However, the functional and structural annotation of the Sus scrofa genome is far from complete. Here, we present mass spectrometry-based quantitative proteomics data of nine juvenile organs and six embryonic stages between 18 and 39 days after gestation. We found that the data provide evidence for and improve the annotation of 8176 protein-coding genes including 588 novel and 321 refined gene models. The analysis of tissue-specific proteins and the temporal expression profiles of embryonic proteins provides an initial functional characterization of expressed protein interaction networks and modules including as yet uncharacterized proteins. Comparative transcript and protein expression analysis to human organs reveal a moderate conservation of protein translation across species. We anticipate that this resource will facilitate basic and applied research on Sus scrofa as well as its porcine relatives.

  14. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    Science.gov (United States)

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel

  15. Evaluation of three automated genome annotations for Halorhabdus utahensis.

    Directory of Open Access Journals (Sweden)

    Peter Bakke

    2009-07-01

    Full Text Available Genome annotations are accumulating rapidly and depend heavily on automated annotation systems. Many genome centers offer annotation systems but no one has compared their output in a systematic way to determine accuracy and inherent errors. Errors in the annotations are routinely deposited in databases such as NCBI and used to validate subsequent annotation errors. We submitted the genome sequence of halophilic archaeon Halorhabdus utahensis to be analyzed by three genome annotation services. We have examined the output from each service in a variety of ways in order to compare the methodology and effectiveness of the annotations, as well as to explore the genes, pathways, and physiology of the previously unannotated genome. The annotation services differ considerably in gene calls, features, and ease of use. We had to manually identify the origin of replication and the species-specific consensus ribosome-binding site. Additionally, we conducted laboratory experiments to test H. utahensis growth and enzyme activity. Current annotation practices need to improve in order to more accurately reflect a genome's biological potential. We make specific recommendations that could improve the quality of microbial annotation projects.

  16. Expressed Peptide Tags: An additional layer of data for genome annotation

    Energy Technology Data Exchange (ETDEWEB)

    Savidor, Alon [ORNL; Donahoo, Ryan S [ORNL; Hurtado-Gonzales, Oscar [University of Tennessee, Knoxville (UTK); Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Lamour, Kurt H [ORNL; McDonald, W Hayes [ORNL

    2006-01-01

    While genome sequencing is becoming ever more routine, genome annotation remains a challenging process. Identification of the coding sequences within the genomic milieu presents a tremendous challenge, especially for eukaryotes with their complex gene architectures. Here we present a method to assist the annotation process through the use of proteomic data and bioinformatics. Mass spectra of digested protein preparations of the organism of interest were acquired and searched against a protein database created by a six frame translation of the genome. The identified peptides were mapped back to the genome, compared to the current annotation, and then categorized as supporting or extending the current genome annotation. We named the classified peptides Expressed Peptide Tags (EPTs). The well annotated bacterium Rhodopseudomonas palustris was used as a control for the method and showed high degree of correlation between EPT mapping and the current annotation, with 86% of the EPTs confirming existing gene calls and less than 1% of the EPTs expanding on the current annotation. The eukaryotic plant pathogens Phytophthora ramorum and Phytophthora sojae, whose genomes have been recently sequenced and are much less well annotated, were also subjected to this method. A series of algorithmic steps were taken to increase the confidence of EPT identification for these organisms, including generation of smaller sub-databases to be searched against, and definition of EPT criteria that accommodates the more complex eukaryotic gene architecture. As expected, the analysis of the Phytophthora species showed less correlation between EPT mapping and their current annotation. While ~77% of Phytophthora EPTs supported the current annotation, a portion of them (7.2% and 12.6% for P. ramorum and P. sojae, respectively) suggested modification to current gene calls or identified novel genes that were missed by the current genome annotation of these organisms.

  17. IntelliGO: a new vector-based semantic similarity measure including annotation origin

    Directory of Open Access Journals (Sweden)

    Devignes Marie-Dominique

    2010-12-01

    Full Text Available Abstract Background The Gene Ontology (GO is a well known controlled vocabulary describing the biological process, molecular function and cellular component aspects of gene annotation. It has become a widely used knowledge source in bioinformatics for annotating genes and measuring their semantic similarity. These measures generally involve the GO graph structure, the information content of GO aspects, or a combination of both. However, only a few of the semantic similarity measures described so far can handle GO annotations differently according to their origin (i.e. their evidence codes. Results We present here a new semantic similarity measure called IntelliGO which integrates several complementary properties in a novel vector space model. The coefficients associated with each GO term that annotates a given gene or protein include its information content as well as a customized value for each type of GO evidence code. The generalized cosine similarity measure, used for calculating the dot product between two vectors, has been rigorously adapted to the context of the GO graph. The IntelliGO similarity measure is tested on two benchmark datasets consisting of KEGG pathways and Pfam domains grouped as clans, considering the GO biological process and molecular function terms, respectively, for a total of 683 yeast and human genes and involving more than 67,900 pair-wise comparisons. The ability of the IntelliGO similarity measure to express the biological cohesion of sets of genes compares favourably to four existing similarity measures. For inter-set comparison, it consistently discriminates between distinct sets of genes. Furthermore, the IntelliGO similarity measure allows the influence of weights assigned to evidence codes to be checked. Finally, the results obtained with a complementary reference technique give intermediate but correct correlation values with the sequence similarity, Pfam, and Enzyme classifications when compared to

  18. Combined evidence annotation of transposable elements in genome sequences.

    Directory of Open Access Journals (Sweden)

    Hadi Quesneville

    2005-07-01

    Full Text Available Transposable elements (TEs are mobile, repetitive sequences that make up significant fractions of metazoan genomes. Despite their near ubiquity and importance in genome and chromosome biology, most efforts to annotate TEs in genome sequences rely on the results of a single computational program, RepeatMasker. In contrast, recent advances in gene annotation indicate that high-quality gene models can be produced from combining multiple independent sources of computational evidence. To elevate the quality of TE annotations to a level comparable to that of gene models, we have developed a combined evidence-model TE annotation pipeline, analogous to systems used for gene annotation, by integrating results from multiple homology-based and de novo TE identification methods. As proof of principle, we have annotated "TE models" in Drosophila melanogaster Release 4 genomic sequences using the combined computational evidence derived from RepeatMasker, BLASTER, TBLASTX, all-by-all BLASTN, RECON, TE-HMM and the previous Release 3.1 annotation. Our system is designed for use with the Apollo genome annotation tool, allowing automatic results to be curated manually to produce reliable annotations. The euchromatic TE fraction of D. melanogaster is now estimated at 5.3% (cf. 3.86% in Release 3.1, and we found a substantially higher number of TEs (n = 6,013 than previously identified (n = 1,572. Most of the new TEs derive from small fragments of a few hundred nucleotides long and highly abundant families not previously annotated (e.g., INE-1. We also estimated that 518 TE copies (8.6% are inserted into at least one other TE, forming a nest of elements. The pipeline allows rapid and thorough annotation of even the most complex TE models, including highly deleted and/or nested elements such as those often found in heterochromatic sequences. Our pipeline can be easily adapted to other genome sequences, such as those of the D. melanogaster heterochromatin or other

  19. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements.

    Science.gov (United States)

    Mi, Huaiyu; Huang, Xiaosong; Muruganujan, Anushya; Tang, Haiming; Mills, Caitlin; Kang, Diane; Thomas, Paul D

    2017-01-04

    The PANTHER database (Protein ANalysis THrough Evolutionary Relationships, http://pantherdb.org) contains comprehensive information on the evolution and function of protein-coding genes from 104 completely sequenced genomes. PANTHER software tools allow users to classify new protein sequences, and to analyze gene lists obtained from large-scale genomics experiments. In the past year, major improvements include a large expansion of classification information available in PANTHER, as well as significant enhancements to the analysis tools. Protein subfamily functional classifications have more than doubled due to progress of the Gene Ontology Phylogenetic Annotation Project. For human genes (as well as a few other organisms), PANTHER now also supports enrichment analysis using pathway classifications from the Reactome resource. The gene list enrichment tools include a new 'hierarchical view' of results, enabling users to leverage the structure of the classifications/ontologies; the tools also allow users to upload genetic variant data directly, rather than requiring prior conversion to a gene list. The updated coding single-nucleotide polymorphisms (SNP) scoring tool uses an improved algorithm. The hidden Markov model (HMM) search tools now use HMMER3, dramatically reducing search times and improving accuracy of E-value statistics. Finally, the PANTHER Tree-Attribute Viewer has been implemented in JavaScript, with new views for exploring protein sequence evolution. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Concept annotation in the CRAFT corpus.

    Science.gov (United States)

    Bada, Michael; Eckert, Miriam; Evans, Donald; Garcia, Kristin; Shipley, Krista; Sitnikov, Dmitry; Baumgartner, William A; Cohen, K Bretonnel; Verspoor, Karin; Blake, Judith A; Hunter, Lawrence E

    2012-07-09

    Manually annotated corpora are critical for the training and evaluation of automated methods to identify concepts in biomedical text. This paper presents the concept annotations of the Colorado Richly Annotated Full-Text (CRAFT) Corpus, a collection of 97 full-length, open-access biomedical journal articles that have been annotated both semantically and syntactically to serve as a research resource for the biomedical natural-language-processing (NLP) community. CRAFT identifies all mentions of nearly all concepts from nine prominent biomedical ontologies and terminologies: the Cell Type Ontology, the Chemical Entities of Biological Interest ontology, the NCBI Taxonomy, the Protein Ontology, the Sequence Ontology, the entries of the Entrez Gene database, and the three subontologies of the Gene Ontology. The first public release includes the annotations for 67 of the 97 articles, reserving two sets of 15 articles for future text-mining competitions (after which these too will be released). Concept annotations were created based on a single set of guidelines, which has enabled us to achieve consistently high interannotator agreement. As the initial 67-article release contains more than 560,000 tokens (and the full set more than 790,000 tokens), our corpus is among the largest gold-standard annotated biomedical corpora. Unlike most others, the journal articles that comprise the corpus are drawn from diverse biomedical disciplines and are marked up in their entirety. Additionally, with a concept-annotation count of nearly 100,000 in the 67-article subset (and more than 140,000 in the full collection), the scale of conceptual markup is also among the largest of comparable corpora. The concept annotations of the CRAFT Corpus have the potential to significantly advance biomedical text mining by providing a high-quality gold standard for NLP systems. The corpus, annotation guidelines, and other associated resources are freely available at http://bionlp-corpora.sourceforge.net/CRAFT/index.shtml.

  1. Annotating Human P-Glycoprotein Bioassay Data.

    Science.gov (United States)

    Zdrazil, Barbara; Pinto, Marta; Vasanthanathan, Poongavanam; Williams, Antony J; Balderud, Linda Zander; Engkvist, Ola; Chichester, Christine; Hersey, Anne; Overington, John P; Ecker, Gerhard F

    2012-08-01

    Huge amounts of small compound bioactivity data have been entering the public domain as a consequence of open innovation initiatives. It is now the time to carefully analyse existing bioassay data and give it a systematic structure. Our study aims to annotate prominent in vitro assays used for the determination of bioactivities of human P-glycoprotein inhibitors and substrates as they are represented in the ChEMBL and TP-search open source databases. Furthermore, the ability of data, determined in different assays, to be combined with each other is explored. As a result of this study, it is suggested that for inhibitors of human P-glycoprotein it is possible to combine data coming from the same assay type, if the cell lines used are also identical and the fluorescent or radiolabeled substrate have overlapping binding sites. In addition, it demonstrates that there is a need for larger chemical diverse datasets that have been measured in a panel of different assays. This would certainly alleviate the search for other inter-correlations between bioactivity data yielded by different assay setups.

  2. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes

    DEFF Research Database (Denmark)

    Pantano, Lorena; Jodar, Meritxell; Bak, Mads

    2015-01-01

    -specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed...... into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource...... for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline....

  3. Cross-organism learning method to discover new gene functionalities.

    Science.gov (United States)

    Domeniconi, Giacomo; Masseroli, Marco; Moro, Gianluca; Pinoli, Pietro

    2016-04-01

    Knowledge of gene and protein functions is paramount for the understanding of physiological and pathological biological processes, as well as in the development of new drugs and therapies. Analyses for biomedical knowledge discovery greatly benefit from the availability of gene and protein functional feature descriptions expressed through controlled terminologies and ontologies, i.e., of gene and protein biomedical controlled annotations. In the last years, several databases of such annotations have become available; yet, these valuable annotations are incomplete, include errors and only some of them represent highly reliable human curated information. Computational techniques able to reliably predict new gene or protein annotations with an associated likelihood value are thus paramount. Here, we propose a novel cross-organisms learning approach to reliably predict new functionalities for the genes of an organism based on the known controlled annotations of the genes of another, evolutionarily related and better studied, organism. We leverage a new representation of the annotation discovery problem and a random perturbation of the available controlled annotations to allow the application of supervised algorithms to predict with good accuracy unknown gene annotations. Taking advantage of the numerous gene annotations available for a well-studied organism, our cross-organisms learning method creates and trains better prediction models, which can then be applied to predict new gene annotations of a target organism. We tested and compared our method with the equivalent single organism approach on different gene annotation datasets of five evolutionarily related organisms (Homo sapiens, Mus musculus, Bos taurus, Gallus gallus and Dictyostelium discoideum). Results show both the usefulness of the perturbation method of available annotations for better prediction model training and a great improvement of the cross-organism models with respect to the single-organism ones

  4. Gene Ontology

    Directory of Open Access Journals (Sweden)

    Gaston K. Mazandu

    2012-01-01

    Full Text Available The wide coverage and biological relevance of the Gene Ontology (GO, confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation is inconsistent between orthologues.

  5. Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-Seq and ESTs.

    Directory of Open Access Journals (Sweden)

    Nicholas J Schurch

    Full Text Available The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct and complete annotation in addition to the underlying genomic sequence is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3' untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3' polyadenylation sites to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1 gene and 3' UTR re-annotation (including extension of one 3' UTR by 5.9 kb; (2 disentangling of gene expression in complex regions; (3 clearer interpretation of small RNA expression and (4 identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental data.

  6. Annotated Gene and Proteome Data Support Recognition of Interconnections Between the Results of Different Experiments in Space Research

    Science.gov (United States)

    Bauer, Johann; Wehland, Markus; Pietsch, Jessica; Sickmann, Albert; Weber, Gerhard; Grimm, Daniela

    2016-06-01

    In a series of studies, human thyroid and endothelial cells exposed to real or simulated microgravity were analyzed in terms of changes in gene expression patterns or protein content. Due to the limitation of available cells in many space research experiments, comparative and control experiments had to be done in a serial manner. Therefore, detected genes or proteins were annotated with gene names and SwissProt numbers, in order to allow searches for interconnections between results obtained in different experiments by different methods. A crosscheck of several studies on the behavior of cytoskeletal genes and proteins suggested that clusters of cytoskeletal components change differently under the influence of microgravity and/or vibration in different cell types. The result that LOX and ISG15 gene expression were clearly altered during the Shenzhou-8 spaceflight mission could be estimated by comparison with the results of other experiments. The more than 100-fold down-regulation of LOX supports our hypothesis that the amount and stability of extracellular matrix have a great influence on the formation of three-dimensional aggregates under microgravity. The approximately 40-fold up-regulation of ISG15 cannot yet be explained in detail, but strongly suggests that ISGylation, an alternative form of posttranslational modification, plays a role in longterm cultures.

  7. The BioC-BioGRID corpus: full text articles annotated for curation of protein–protein and genetic interactions

    Science.gov (United States)

    Kim, Sun; Chatr-aryamontri, Andrew; Chang, Christie S.; Oughtred, Rose; Rust, Jennifer; Wilbur, W. John; Comeau, Donald C.; Dolinski, Kara; Tyers, Mike

    2017-01-01

    A great deal of information on the molecular genetics and biochemistry of model organisms has been reported in the scientific literature. However, this data is typically described in free text form and is not readily amenable to computational analyses. To this end, the BioGRID database systematically curates the biomedical literature for genetic and protein interaction data. This data is provided in a standardized computationally tractable format and includes structured annotation of experimental evidence. BioGRID curation necessarily involves substantial human effort by expert curators who must read each publication to extract the relevant information. Computational text-mining methods offer the potential to augment and accelerate manual curation. To facilitate the development of practical text-mining strategies, a new challenge was organized in BioCreative V for the BioC task, the collaborative Biocurator Assistant Task. This was a non-competitive, cooperative task in which the participants worked together to build BioC-compatible modules into an integrated pipeline to assist BioGRID curators. As an integral part of this task, a test collection of full text articles was developed that contained both biological entity annotations (gene/protein and organism/species) and molecular interaction annotations (protein–protein and genetic interactions (PPIs and GIs)). This collection, which we call the BioC-BioGRID corpus, was annotated by four BioGRID curators over three rounds of annotation and contains 120 full text articles curated in a dataset representing two major model organisms, namely budding yeast and human. The BioC-BioGRID corpus contains annotations for 6409 mentions of genes and their Entrez Gene IDs, 186 mentions of organism names and their NCBI Taxonomy IDs, 1867 mentions of PPIs and 701 annotations of PPI experimental evidence statements, 856 mentions of GIs and 399 annotations of GI evidence statements. The purpose, characteristics and possible future

  8. False positive reduction in protein-protein interaction predictions using gene ontology annotations

    Directory of Open Access Journals (Sweden)

    Lin Yen-Han

    2007-07-01

    Full Text Available Abstract Background Many crucial cellular operations such as metabolism, signalling, and regulations are based on protein-protein interactions. However, the lack of robust protein-protein interaction information is a challenge. One reason for the lack of solid protein-protein interaction information is poor agreement between experimental findings and computational sets that, in turn, comes from huge false positive predictions in computational approaches. Reduction of false positive predictions and enhancing true positive fraction of computationally predicted protein-protein interaction datasets based on highly confident experimental results has not been adequately investigated. Results Gene Ontology (GO annotations were used to reduce false positive protein-protein interactions (PPI pairs resulting from computational predictions. Using experimentally obtained PPI pairs as a training dataset, eight top-ranking keywords were extracted from GO molecular function annotations. The sensitivity of these keywords is 64.21% in the yeast experimental dataset and 80.83% in the worm experimental dataset. The specificities, a measure of recovery power, of these keywords applied to four predicted PPI datasets for each studied organisms, are 48.32% and 46.49% (by average of four datasets in yeast and worm, respectively. Based on eight top-ranking keywords and co-localization of interacting proteins a set of two knowledge rules were deduced and applied to remove false positive protein pairs. The 'strength', a measure of improvement provided by the rules was defined based on the signal-to-noise ratio and implemented to measure the applicability of knowledge rules applying to the predicted PPI datasets. Depending on the employed PPI-predicting methods, the strength varies between two and ten-fold of randomly removing protein pairs from the datasets. Conclusion Gene Ontology annotations along with the deduced knowledge rules could be implemented to partially

  9. Graph-based sequence annotation using a data integration approach

    Directory of Open Access Journals (Sweden)

    Pesch Robert

    2008-06-01

    Full Text Available The automated annotation of data from high throughput sequencing and genomics experiments is a significant challenge for bioinformatics. Most current approaches rely on sequential pipelines of gene finding and gene function prediction methods that annotate a gene with information from different reference data sources. Each function prediction method contributes evidence supporting a functional assignment. Such approaches generally ignore the links between the information in the reference datasets. These links, however, are valuable for assessing the plausibility of a function assignment and can be used to evaluate the confidence in a prediction. We are working towards a novel annotation system that uses the network of information supporting the function assignment to enrich the annotation process for use by expert curators and predicting the function of previously unannotated genes. In this paper we describe our success in the first stages of this development. We present the data integration steps that are needed to create the core database of integrated reference databases (UniProt, PFAM, PDB, GO and the pathway database Ara- Cyc which has been established in the ONDEX data integration system. We also present a comparison between different methods for integration of GO terms as part of the function assignment pipeline and discuss the consequences of this analysis for improving the accuracy of gene function annotation.

  10. Systematically profiling and annotating long intergenic non-coding RNAs in human embryonic stem cell.

    Science.gov (United States)

    Tang, Xing; Hou, Mei; Ding, Yang; Li, Zhaohui; Ren, Lichen; Gao, Ge

    2013-01-01

    While more and more long intergenic non-coding RNAs (lincRNAs) were identified to take important roles in both maintaining pluripotency and regulating differentiation, how these lincRNAs may define and drive cell fate decisions on a global scale are still mostly elusive. Systematical profiling and comprehensive annotation of embryonic stem cells lincRNAs may not only bring a clearer big picture of these novel regulators but also shed light on their functionalities. Based on multiple RNA-Seq datasets, we systematically identified 300 human embryonic stem cell lincRNAs (hES lincRNAs). Of which, one forth (78 out of 300) hES lincRNAs were further identified to be biasedly expressed in human ES cells. Functional analysis showed that they were preferentially involved in several early-development related biological processes. Comparative genomics analysis further suggested that around half of the identified hES lincRNAs were conserved in mouse. To facilitate further investigation of these hES lincRNAs, we constructed an online portal for biologists to access all their sequences and annotations interactively. In addition to navigation through a genome browse interface, users can also locate lincRNAs through an advanced query interface based on both keywords and expression profiles, and analyze results through multiple tools. By integrating multiple RNA-Seq datasets, we systematically characterized and annotated 300 hES lincRNAs. A full functional web portal is available freely at http://scbrowse.cbi.pku.edu.cn. As the first global profiling and annotating of human embryonic stem cell lincRNAs, this work aims to provide a valuable resource for both experimental biologists and bioinformaticians.

  11. Identification of rat genes by TWINSCAN gene prediction, RT-PCR, and direct sequencing

    DEFF Research Database (Denmark)

    Wu, Jia Qian; Shteynberg, David; Arumugam, Manimozhiyan

    2004-01-01

    an alternative approach: reverse transcription-polymerase chain reaction (RT-PCR) and direct sequencing based on dual-genome de novo predictions from TWINSCAN. We tested 444 TWINSCAN-predicted rat genes that showed significant homology to known human genes implicated in disease but that were partially...... in the single-intron experiment. Spliced sequences were amplified in 46 cases (34%). We conclude that this procedure for elucidating gene structures with native cDNA sequences is cost-effective and will become even more so as it is further optimized.......The publication of a draft sequence of a third mammalian genome--that of the rat--suggests a need to rethink genome annotation. New mammalian sequences will not receive the kind of labor-intensive annotation efforts that are currently being devoted to human. In this paper, we demonstrate...

  12. Annotation of the protein coding regions of the equine genome

    DEFF Research Database (Denmark)

    Hestand, Matthew S.; Kalbfleisch, Theodore S.; Coleman, Stephen J.

    2015-01-01

    Current gene annotation of the horse genome is largely derived from in silico predictions and cross-species alignments. Only a small number of genes are annotated based on equine EST and mRNA sequences. To expand the number of equine genes annotated from equine experimental evidence, we sequenced m...... and appear to be small errors in the equine reference genome, since they are also identified as homozygous variants by genomic DNA resequencing of the reference horse. Taken together, we provide a resource of equine mRNA structures and protein coding variants that will enhance equine and cross...

  13. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  14. Graph-based sequence annotation using a data integration approach.

    Science.gov (United States)

    Pesch, Robert; Lysenko, Artem; Hindle, Matthew; Hassani-Pak, Keywan; Thiele, Ralf; Rawlings, Christopher; Köhler, Jacob; Taubert, Jan

    2008-08-25

    The automated annotation of data from high throughput sequencing and genomics experiments is a significant challenge for bioinformatics. Most current approaches rely on sequential pipelines of gene finding and gene function prediction methods that annotate a gene with information from different reference data sources. Each function prediction method contributes evidence supporting a functional assignment. Such approaches generally ignore the links between the information in the reference datasets. These links, however, are valuable for assessing the plausibility of a function assignment and can be used to evaluate the confidence in a prediction. We are working towards a novel annotation system that uses the network of information supporting the function assignment to enrich the annotation process for use by expert curators and predicting the function of previously unannotated genes. In this paper we describe our success in the first stages of this development. We present the data integration steps that are needed to create the core database of integrated reference databases (UniProt, PFAM, PDB, GO and the pathway database Ara-Cyc) which has been established in the ONDEX data integration system. We also present a comparison between different methods for integration of GO terms as part of the function assignment pipeline and discuss the consequences of this analysis for improving the accuracy of gene function annotation. The methods and algorithms presented in this publication are an integral part of the ONDEX system which is freely available from http://ondex.sf.net/.

  15. Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.

    Science.gov (United States)

    Le, Duc-Hau; Dao, Lan T M

    2018-05-23

    Recently, many long non-coding RNAs (lncRNAs) have been identified and their biological function has been characterized; however, our understanding of their underlying molecular mechanisms related to disease is still limited. To overcome the limitation in experimentally identifying disease-lncRNA associations, computational methods have been proposed as a powerful tool to predict such associations. These methods are usually based on the similarities between diseases or lncRNAs since it was reported that similar diseases are associated with functionally similar lncRNAs. Therefore, prediction performance is highly dependent on how well the similarities can be captured. Previous studies have calculated the similarity between two diseases by mapping exactly each disease to a single Disease Ontology (DO) term, and then use a semantic similarity measure to calculate the similarity between them. However, the problem of this approach is that a disease can be described by more than one DO terms. Until now, there is no annotation database of DO terms for diseases except for genes. In contrast, Human Phenotype Ontology (HPO) is designed to fully annotate human disease phenotypes. Therefore, in this study, we constructed disease similarity networks/matrices using HPO instead of DO. Then, we used these networks/matrices as inputs of two representative machine learning-based and network-based ranking algorithms, that is, regularized least square and heterogeneous graph-based inference, respectively. The results showed that the prediction performance of the two algorithms on HPO-based is better than that on DO-based networks/matrices. In addition, our method can predict 11 novel cancer-associated lncRNAs, which are supported by literature evidence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes

    Energy Technology Data Exchange (ETDEWEB)

    Brettin, Thomas; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Shukla, Maulik; Thomason, James A.; Stevens, Rick; Vonstein, Veronika; Wattam, Alice R.; Xia, Fangfang

    2015-02-10

    The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.

  17. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes.

    Science.gov (United States)

    Brettin, Thomas; Davis, James J; Disz, Terry; Edwards, Robert A; Gerdes, Svetlana; Olsen, Gary J; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D; Shukla, Maulik; Thomason, James A; Stevens, Rick; Vonstein, Veronika; Wattam, Alice R; Xia, Fangfang

    2015-02-10

    The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.

  18. The BioC-BioGRID corpus: full text articles annotated for curation of protein-protein and genetic interactions.

    Science.gov (United States)

    Islamaj Dogan, Rezarta; Kim, Sun; Chatr-Aryamontri, Andrew; Chang, Christie S; Oughtred, Rose; Rust, Jennifer; Wilbur, W John; Comeau, Donald C; Dolinski, Kara; Tyers, Mike

    2017-01-01

    A great deal of information on the molecular genetics and biochemistry of model organisms has been reported in the scientific literature. However, this data is typically described in free text form and is not readily amenable to computational analyses. To this end, the BioGRID database systematically curates the biomedical literature for genetic and protein interaction data. This data is provided in a standardized computationally tractable format and includes structured annotation of experimental evidence. BioGRID curation necessarily involves substantial human effort by expert curators who must read each publication to extract the relevant information. Computational text-mining methods offer the potential to augment and accelerate manual curation. To facilitate the development of practical text-mining strategies, a new challenge was organized in BioCreative V for the BioC task, the collaborative Biocurator Assistant Task. This was a non-competitive, cooperative task in which the participants worked together to build BioC-compatible modules into an integrated pipeline to assist BioGRID curators. As an integral part of this task, a test collection of full text articles was developed that contained both biological entity annotations (gene/protein and organism/species) and molecular interaction annotations (protein-protein and genetic interactions (PPIs and GIs)). This collection, which we call the BioC-BioGRID corpus, was annotated by four BioGRID curators over three rounds of annotation and contains 120 full text articles curated in a dataset representing two major model organisms, namely budding yeast and human. The BioC-BioGRID corpus contains annotations for 6409 mentions of genes and their Entrez Gene IDs, 186 mentions of organism names and their NCBI Taxonomy IDs, 1867 mentions of PPIs and 701 annotations of PPI experimental evidence statements, 856 mentions of GIs and 399 annotations of GI evidence statements. The purpose, characteristics and possible future

  19. FIGENIX: Intelligent automation of genomic annotation: expertise integration in a new software platform

    Directory of Open Access Journals (Sweden)

    Pontarotti Pierre

    2005-08-01

    Full Text Available Abstract Background Two of the main objectives of the genomic and post-genomic era are to structurally and functionally annotate genomes which consists of detecting genes' position and structure, and inferring their function (as well as of other features of genomes. Structural and functional annotation both require the complex chaining of numerous different software, algorithms and methods under the supervision of a biologist. The automation of these pipelines is necessary to manage huge amounts of data released by sequencing projects. Several pipelines already automate some of these complex chaining but still necessitate an important contribution of biologists for supervising and controlling the results at various steps. Results Here we propose an innovative automated platform, FIGENIX, which includes an expert system capable to substitute to human expertise at several key steps. FIGENIX currently automates complex pipelines of structural and functional annotation under the supervision of the expert system (which allows for example to make key decisions, check intermediate results or refine the dataset. The quality of the results produced by FIGENIX is comparable to those obtained by expert biologists with a drastic gain in terms of time costs and avoidance of errors due to the human manipulation of data. Conclusion The core engine and expert system of the FIGENIX platform currently handle complex annotation processes of broad interest for the genomic community. They could be easily adapted to new, or more specialized pipelines, such as for example the annotation of miRNAs, the classification of complex multigenic families, annotation of regulatory elements and other genomic features of interest.

  20. Genes involved in immunity and apoptosis are associated with human presbycusis based on microarray analysis.

    Science.gov (United States)

    Dong, Yang; Li, Ming; Liu, Puzhao; Song, Haiyan; Zhao, Yuping; Shi, Jianrong

    2014-06-01

    Genes involved in immunity and apoptosis were associated with human presbycusis. CCR3 and GILZ played an important role in the pathogenesis of presbycusis, probably through regulating chemokine receptor, T-cell apoptosis, or T-cell activation pathways. To identify genes associated with human presbycusis and explore the molecular mechanism of presbycusis. Hearing function was tested by pure-tone audiometry. Microarray analysis was performed to identify presbycusis-correlated genes by Illumina Human-6 BeadChip using the peripheral blood samples of subjects. To identify biological process categories and pathways associated with presbycusis-correlated genes, bioinformatics analysis was carried out by Gene Ontology Tree Machine (GOTM) and database for annotation, visualization, and integrated discovery (DAVID). Quantitative RT-PCR (qRT-PCR) was used to validate the microarray data. Microarray analysis identified 469 up-regulated genes and 323 down-regulated genes. Both the dominant biological processes by Gene Ontology (GO) analysis and the enriched pathways by Kyoto encyclopedia of genes and genomes (KEGG) and BIOCARTA showed that genes involved in immunity and apoptosis were associated with presbycusis. In addition, CCR3, GILZ, CXCL10, and CX3CR1 genes showed consistent difference between groups for both the gene chip and qRT-PCR data. The differences of CCR3 and GILZ between presbycusis patients and controls were statistically significant (p < 0.05).

  1. Annotate-it: a Swiss-knife approach to annotation, analysis and interpretation of single nucleotide variation in human disease.

    Science.gov (United States)

    Sifrim, Alejandro; Van Houdt, Jeroen Kj; Tranchevent, Leon-Charles; Nowakowska, Beata; Sakai, Ryo; Pavlopoulos, Georgios A; Devriendt, Koen; Vermeesch, Joris R; Moreau, Yves; Aerts, Jan

    2012-01-01

    The increasing size and complexity of exome/genome sequencing data requires new tools for clinical geneticists to discover disease-causing variants. Bottlenecks in identifying the causative variation include poor cross-sample querying, constantly changing functional annotation and not considering existing knowledge concerning the phenotype. We describe a methodology that facilitates exploration of patient sequencing data towards identification of causal variants under different genetic hypotheses. Annotate-it facilitates handling, analysis and interpretation of high-throughput single nucleotide variant data. We demonstrate our strategy using three case studies. Annotate-it is freely available and test data are accessible to all users at http://www.annotate-it.org.

  2. Interestingness measures and strategies for mining multi-ontology multi-level association rules from gene ontology annotations for the discovery of new GO relationships.

    Science.gov (United States)

    Manda, Prashanti; McCarthy, Fiona; Bridges, Susan M

    2013-10-01

    The Gene Ontology (GO), a set of three sub-ontologies, is one of the most popular bio-ontologies used for describing gene product characteristics. GO annotation data containing terms from multiple sub-ontologies and at different levels in the ontologies is an important source of implicit relationships between terms from the three sub-ontologies. Data mining techniques such as association rule mining that are tailored to mine from multiple ontologies at multiple levels of abstraction are required for effective knowledge discovery from GO annotation data. We present a data mining approach, Multi-ontology data mining at All Levels (MOAL) that uses the structure and relationships of the GO to mine multi-ontology multi-level association rules. We introduce two interestingness measures: Multi-ontology Support (MOSupport) and Multi-ontology Confidence (MOConfidence) customized to evaluate multi-ontology multi-level association rules. We also describe a variety of post-processing strategies for pruning uninteresting rules. We use publicly available GO annotation data to demonstrate our methods with respect to two applications (1) the discovery of co-annotation suggestions and (2) the discovery of new cross-ontology relationships. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Automatic annotation of head velocity and acceleration in Anvil

    DEFF Research Database (Denmark)

    Jongejan, Bart

    2012-01-01

    We describe an automatic face tracker plugin for the ANVIL annotation tool. The face tracker produces data for velocity and for acceleration in two dimensions. We compare the annotations generated by the face tracking algorithm with independently made manual annotations for head movements....... The annotations are a useful supplement to manual annotations and may help human annotators to quickly and reliably determine onset of head movements and to suggest which kind of head movement is taking place....

  4. MixtureTree annotator: a program for automatic colorization and visual annotation of MixtureTree.

    Directory of Open Access Journals (Sweden)

    Shu-Chuan Chen

    Full Text Available The MixtureTree Annotator, written in JAVA, allows the user to automatically color any phylogenetic tree in Newick format generated from any phylogeny reconstruction program and output the Nexus file. By providing the ability to automatically color the tree by sequence name, the MixtureTree Annotator provides a unique advantage over any other programs which perform a similar function. In addition, the MixtureTree Annotator is the only package that can efficiently annotate the output produced by MixtureTree with mutation information and coalescent time information. In order to visualize the resulting output file, a modified version of FigTree is used. Certain popular methods, which lack good built-in visualization tools, for example, MEGA, Mesquite, PHY-FI, TreeView, treeGraph and Geneious, may give results with human errors due to either manually adding colors to each node or with other limitations, for example only using color based on a number, such as branch length, or by taxonomy. In addition to allowing the user to automatically color any given Newick tree by sequence name, the MixtureTree Annotator is the only method that allows the user to automatically annotate the resulting tree created by the MixtureTree program. The MixtureTree Annotator is fast and easy-to-use, while still allowing the user full control over the coloring and annotating process.

  5. Defining the Human Macula Transcriptome and Candidate Retinal Disease Genes UsingEyeSAGE

    Science.gov (United States)

    Rickman, Catherine Bowes; Ebright, Jessica N.; Zavodni, Zachary J.; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P.; Wistow, Graeme; Boon, Kathy; Hauser, Michael A.

    2009-01-01

    Purpose To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Methods Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Results Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. Conclusions The EyeSAGE database, combining three different gene-profiling platforms including the authors’ multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions. PMID:16723438

  6. A collection of annotated and harmonized human breast cancer transcriptome datasets, including immunologic classification [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Jessica Roelands

    2018-02-01

    Full Text Available The increased application of high-throughput approaches in translational research has expanded the number of publicly available data repositories. Gathering additional valuable information contained in the datasets represents a crucial opportunity in the biomedical field. To facilitate and stimulate utilization of these datasets, we have recently developed an interactive data browsing and visualization web application, the Gene Expression Browser (GXB. In this note, we describe a curated compendium of 13 public datasets on human breast cancer, representing a total of 2142 transcriptome profiles. We classified the samples according to different immune based classification systems and integrated this information into the datasets. Annotated and harmonized datasets were uploaded to GXB. Study samples were categorized in different groups based on their immunologic tumor response profiles, intrinsic molecular subtypes and multiple clinical parameters. Ranked gene lists were generated based on relevant group comparisons. In this data note, we demonstrate the utility of GXB to evaluate the expression of a gene of interest, find differential gene expression between groups and investigate potential associations between variables with a specific focus on immunologic classification in breast cancer. This interactive resource is publicly available online at: http://breastcancer.gxbsidra.org/dm3/geneBrowser/list.

  7. MitoBamAnnotator: A web-based tool for detecting and annotating heteroplasmy in human mitochondrial DNA sequences.

    Science.gov (United States)

    Zhidkov, Ilia; Nagar, Tal; Mishmar, Dan; Rubin, Eitan

    2011-11-01

    The use of Next-Generation Sequencing of mitochondrial DNA is becoming widespread in biological and clinical research. This, in turn, creates a need for a convenient tool that detects and analyzes heteroplasmy. Here we present MitoBamAnnotator, a user friendly web-based tool that allows maximum flexibility and control in heteroplasmy research. MitoBamAnnotator provides the user with a comprehensively annotated overview of mitochondrial genetic variation, allowing for an in-depth analysis with no prior knowledge in programming. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.

  8. Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Ansong, Charles; Tolic, Nikola; Purvine, Samuel O.; Porwollik, Steffen; Jones, Marcus B.; Yoon, Hyunjin; Payne, Samuel H.; Martin, Jessica L.; Burnet, Meagan C.; Monroe, Matthew E.; Venepally, Pratap; Smith, Richard D.; Peterson, Scott; Heffron, Fred; Mcclelland, Michael; Adkins, Joshua N.

    2011-08-25

    Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. For example systems biology-oriented genome scale modeling efforts greatly benefit from accurate annotation of protein-coding genes to develop proper functioning models. However, determining protein-coding genes for most new genomes is almost completely performed by inference, using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function. With the ability to directly measure peptides arising from expressed proteins, mass spectrometry-based proteomics approaches can be used to augment and verify coding regions of a genomic sequence and importantly detect post-translational processing events. In this study we utilized “shotgun” proteomics to guide accurate primary genome annotation of the bacterial pathogen Salmonella Typhimurium 14028 to facilitate a systems-level understanding of Salmonella biology. The data provides protein-level experimental confirmation for 44% of predicted protein-coding genes, suggests revisions to 48 genes assigned incorrect translational start sites, and uncovers 13 non-annotated genes missed by gene prediction programs. We also present a comprehensive analysis of post-translational processing events in Salmonella, revealing a wide range of complex chemical modifications (70 distinct modifications) and confirming more than 130 signal peptide and N-terminal methionine cleavage events in Salmonella. This study highlights several ways in which proteomics data applied during the primary stages of annotation can improve the quality of genome annotations, especially with regards to the annotation of mature protein products.

  9. Annotation of nerve cord transcriptome in earthworm Eisenia fetida

    Directory of Open Access Journals (Sweden)

    Vasanthakumar Ponesakki

    2017-12-01

    Full Text Available In annelid worms, the nerve cord serves as a crucial organ to control the sensory and behavioral physiology. The inadequate genome resource of earthworms has prioritized the comprehensive analysis of their transcriptome dataset to monitor the genes express in the nerve cord and predict their role in the neurotransmission and sensory perception of the species. The present study focuses on identifying the potential transcripts and predicting their functional features by annotating the transcriptome dataset of nerve cord tissues prepared by Gong et al., 2010 from the earthworm Eisenia fetida. Totally 9762 transcripts were successfully annotated against the NCBI nr database using the BLASTX algorithm and among them 7680 transcripts were assigned to a total of 44,354 GO terms. The conserve domain analysis indicated the over representation of P-loop NTPase domain and calcium binding EF-hand domain. The COG functional annotation classified 5860 transcript sequences into 25 functional categories. Further, 4502 contig sequences were found to map with 124 KEGG pathways. The annotated contig dataset exhibited 22 crucial neuropeptides having considerable matches to the marine annelid Platynereis dumerilii, suggesting their possible role in neurotransmission and neuromodulation. In addition, 108 human stem cell marker homologs were identified including the crucial epigenetic regulators, transcriptional repressors and cell cycle regulators, which may contribute to the neuronal and segmental regeneration. The complete functional annotation of this nerve cord transcriptome can be further utilized to interpret genetic and molecular mechanisms associated with neuronal development, nervous system regeneration and nerve cord function.

  10. trieFinder: an efficient program for annotating Digital Gene Expression (DGE) tags.

    Science.gov (United States)

    Renaud, Gabriel; LaFave, Matthew C; Liang, Jin; Wolfsberg, Tyra G; Burgess, Shawn M

    2014-10-13

    Quantification of a transcriptional profile is a useful way to evaluate the activity of a cell at a given point in time. Although RNA-Seq has revolutionized transcriptional profiling, the costs of RNA-Seq are still significantly higher than microarrays, and often the depth of data delivered from RNA-Seq is in excess of what is needed for simple transcript quantification. Digital Gene Expression (DGE) is a cost-effective, sequence-based approach for simple transcript quantification: by sequencing one read per molecule of RNA, this technique can be used to efficiently count transcripts while obviating the need for transcript-length normalization and reducing the total numbers of reads necessary for accurate quantification. Here, we present trieFinder, a program specifically designed to rapidly map, parse, and annotate DGE tags of various lengths against cDNA and/or genomic sequence databases. The trieFinder algorithm maps DGE tags in a two-step process. First, it scans FASTA files of RefSeq, UniGene, and genomic DNA sequences to create a database of all tags that can be derived from a predefined restriction site. Next, it compares the experimental DGE tags to this tag database, taking advantage of the fact that the tags are stored as a prefix tree, or "trie", which allows for linear-time searches for exact matches. DGE tags with mismatches are analyzed by recursive calls in the data structure. We find that, in terms of alignment speed, the mapping functionality of trieFinder compares favorably with Bowtie. trieFinder can quickly provide the user an annotation of the DGE tags from three sources simultaneously, simplifying transcript quantification and novel transcript detection, delivering the data in a simple parsed format, obviating the need to post-process the alignment results. trieFinder is available at http://research.nhgri.nih.gov/software/trieFinder/.

  11. Current and future trends in marine image annotation software

    Science.gov (United States)

    Gomes-Pereira, Jose Nuno; Auger, Vincent; Beisiegel, Kolja; Benjamin, Robert; Bergmann, Melanie; Bowden, David; Buhl-Mortensen, Pal; De Leo, Fabio C.; Dionísio, Gisela; Durden, Jennifer M.; Edwards, Luke; Friedman, Ariell; Greinert, Jens; Jacobsen-Stout, Nancy; Lerner, Steve; Leslie, Murray; Nattkemper, Tim W.; Sameoto, Jessica A.; Schoening, Timm; Schouten, Ronald; Seager, James; Singh, Hanumant; Soubigou, Olivier; Tojeira, Inês; van den Beld, Inge; Dias, Frederico; Tempera, Fernando; Santos, Ricardo S.

    2016-12-01

    Given the need to describe, analyze and index large quantities of marine imagery data for exploration and monitoring activities, a range of specialized image annotation tools have been developed worldwide. Image annotation - the process of transposing objects or events represented in a video or still image to the semantic level, may involve human interactions and computer-assisted solutions. Marine image annotation software (MIAS) have enabled over 500 publications to date. We review the functioning, application trends and developments, by comparing general and advanced features of 23 different tools utilized in underwater image analysis. MIAS requiring human input are basically a graphical user interface, with a video player or image browser that recognizes a specific time code or image code, allowing to log events in a time-stamped (and/or geo-referenced) manner. MIAS differ from similar software by the capability of integrating data associated to video collection, the most simple being the position coordinates of the video recording platform. MIAS have three main characteristics: annotating events in real time, posteriorly to annotation and interact with a database. These range from simple annotation interfaces, to full onboard data management systems, with a variety of toolboxes. Advanced packages allow to input and display data from multiple sensors or multiple annotators via intranet or internet. Posterior human-mediated annotation often include tools for data display and image analysis, e.g. length, area, image segmentation, point count; and in a few cases the possibility of browsing and editing previous dive logs or to analyze the annotations. The interaction with a database allows the automatic integration of annotations from different surveys, repeated annotation and collaborative annotation of shared datasets, browsing and querying of data. Progress in the field of automated annotation is mostly in post processing, for stable platforms or still images

  12. Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes

    DEFF Research Database (Denmark)

    Storling, Joachim; Brorsson, Caroline Anna

    2013-01-01

    In type 1 diabetes (T1D), the insulin-producing β cells are destroyed by an immune-mediated process leading to complete insulin deficiency. There is a strong genetic component in T1D. Genes located in the human leukocyte antigen (HLA) region are the most important genetic determinants of disease......, but more than 40 additional loci are known to significantly affect T1D risk. Since most of the currently known genetic candidates have annotated immune cell functions, it is generally considered that most of the genetic susceptibility in T1D is caused by variation in genes affecting immune cell function....... Recent studies, however, indicate that most T1D candidate genes are expressed in human islets suggesting that the functions of the genes are not restricted to immune cells, but also play roles in the islets and possibly the β cells. Several candidates change expression levels within the islets following...

  13. High-throughput interpretation of gene structure changes in human and nonhuman resequencing data, using ACE.

    Science.gov (United States)

    Majoros, William H; Campbell, Michael S; Holt, Carson; DeNardo, Erin K; Ware, Doreen; Allen, Andrew S; Yandell, Mark; Reddy, Timothy E

    2017-05-15

    The accurate interpretation of genetic variants is critical for characterizing genotype-phenotype associations. Because the effects of genetic variants can depend strongly on their local genomic context, accurate genome annotations are essential. Furthermore, as some variants have the potential to disrupt or alter gene structure, variant interpretation efforts stand to gain from the use of individualized annotations that account for differences in gene structure between individuals or strains. We describe a suite of software tools for identifying possible functional changes in gene structure that may result from sequence variants. ACE ('Assessing Changes to Exons') converts phased genotype calls to a collection of explicit haplotype sequences, maps transcript annotations onto them, detects gene-structure changes and their possible repercussions, and identifies several classes of possible loss of function. Novel transcripts predicted by ACE are commonly supported by spliced RNA-seq reads, and can be used to improve read alignment and transcript quantification when an individual-specific genome sequence is available. Using publicly available RNA-seq data, we show that ACE predictions confirm earlier results regarding the quantitative effects of nonsense-mediated decay, and we show that predicted loss-of-function events are highly concordant with patterns of intolerance to mutations across the human population. ACE can be readily applied to diverse species including animals and plants, making it a broadly useful tool for use in eukaryotic population-based resequencing projects, particularly for assessing the joint impact of all variants at a locus. ACE is written in open-source C ++ and Perl and is available from geneprediction.org/ACE. myandell@genetics.utah.edu or tim.reddy@duke.edu. Supplementary information is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e

  14. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae

    DEFF Research Database (Denmark)

    Vongsangnak, Wanwipa; Olsen, Peter; Hansen, Kim

    2008-01-01

    Background: Since ancient times the filamentous fungus Aspergillus oryzae has been used in the fermentation industry for the production of fermented sauces and the production of industrial enzymes. Recently, the genome sequence of A. oryzae with 12,074 annotated genes was released but the number...... to a genome scale metabolic model of A. oryzae. Results: Our assembled EST sequences we identified 1,046 newly predicted genes in the A. oryzae genome. Furthermore, it was possible to assign putative protein functions to 398 of the newly predicted genes. Noteworthy, our annotation strategy resulted...... model was validated and shown to correctly describe the phenotypic behavior of A. oryzae grown on different carbon sources. Conclusion: A much enhanced annotation of the A. oryzae genome was performed and a genomescale metabolic model of A. oryzae was reconstructed. The model accurately predicted...

  15. PANNZER2: a rapid functional annotation web server.

    Science.gov (United States)

    Törönen, Petri; Medlar, Alan; Holm, Liisa

    2018-05-08

    The unprecedented growth of high-throughput sequencing has led to an ever-widening annotation gap in protein databases. While computational prediction methods are available to make up the shortfall, a majority of public web servers are hindered by practical limitations and poor performance. Here, we introduce PANNZER2 (Protein ANNotation with Z-scoRE), a fast functional annotation web server that provides both Gene Ontology (GO) annotations and free text description predictions. PANNZER2 uses SANSparallel to perform high-performance homology searches, making bulk annotation based on sequence similarity practical. PANNZER2 can output GO annotations from multiple scoring functions, enabling users to see which predictions are robust across predictors. Finally, PANNZER2 predictions scored within the top 10 methods for molecular function and biological process in the CAFA2 NK-full benchmark. The PANNZER2 web server is updated on a monthly schedule and is accessible at http://ekhidna2.biocenter.helsinki.fi/sanspanz/. The source code is available under the GNU Public Licence v3.

  16. First generation annotations for the fathead minnow (Pimephales promelas) genome

    Science.gov (United States)

    Ab initio gene prediction and evidence alignment were used to produce the first annotations for the fathead minnow SOAPdenovo genome assembly. Additionally, a genome browser hosted at genome.setac.org provides simplified access to the annotation data in context with fathead minno...

  17. The other side of comparative genomics: genes with no orthologs between the cow and other mammalian species

    Directory of Open Access Journals (Sweden)

    Ajmone-Marsan Paolo

    2009-12-01

    Full Text Available Abstract Background With the rapid growth in the availability of genome sequence data, the automated identification of orthologous genes between species (orthologs is of fundamental importance to facilitate functional annotation and studies on comparative and evolutionary genomics. Genes with no apparent orthologs between the bovine and human genome may be responsible for major differences between the species, however, such genes are often neglected in functional genomics studies. Results A BLAST-based method was exploited to explore the current annotation and orthology predictions in Ensembl. Genes with no orthologs between the two genomes were classified into groups based on alignments, ontology, manual curation and publicly available information. Starting from a high quality and specific set of orthology predictions, as provided by Ensembl, hidden relationship between genes and genomes of different mammalian species were unveiled using a highly sensitive approach, based on sequence similarity and genomic comparison. Conclusions The analysis identified 3,801 bovine genes with no orthologs in human and 1010 human genes with no orthologs in cow, among which 411 and 43 genes, respectively, had no match at all in the other species. Most of the apparently non-orthologous genes may potentially have orthologs which were missed in the annotation process, despite having a high percentage of identity, because of differences in gene length and structure. The comparative analysis reported here identified gene variants, new genes and species-specific features and gave an overview of the other side of orthology which may help to improve the annotation of the bovine genome and the knowledge of structural differences between species.

  18. BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal M.; Alam, Intikhab; Bajic, Vladimir B.

    2015-01-01

    We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/

  19. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing.

    Science.gov (United States)

    Gupta, Vikas; Estrada, April D; Blakley, Ivory; Reid, Rob; Patel, Ketan; Meyer, Mason D; Andersen, Stig Uggerhøj; Brown, Allan F; Lila, Mary Ann; Loraine, Ann E

    2015-01-01

    Blueberries are a rich source of antioxidants and other beneficial compounds that can protect against disease. Identifying genes involved in synthesis of bioactive compounds could enable the breeding of berry varieties with enhanced health benefits. Toward this end, we annotated a previously sequenced draft blueberry genome assembly using RNA-Seq data from five stages of berry fruit development and ripening. Genome-guided assembly of RNA-Seq read alignments combined with output from ab initio gene finders produced around 60,000 gene models, of which more than half were similar to proteins from other species, typically the grape Vitis vinifera. Comparison of gene models to the PlantCyc database of metabolic pathway enzymes identified candidate genes involved in synthesis of bioactive compounds, including bixin, an apocarotenoid with potential disease-fighting properties, and defense-related cyanogenic glycosides, which are toxic. Cyanogenic glycoside (CG) biosynthetic enzymes were highly expressed in green fruit, and a candidate CG detoxification enzyme was up-regulated during fruit ripening. Candidate genes for ethylene, anthocyanin, and 400 other biosynthetic pathways were also identified. Homology-based annotation using Blast2GO and InterPro assigned Gene Ontology terms to around 15,000 genes. RNA-Seq expression profiling showed that blueberry growth, maturation, and ripening involve dynamic gene expression changes, including coordinated up- and down-regulation of metabolic pathway enzymes and transcriptional regulators. Analysis of RNA-seq alignments identified developmentally regulated alternative splicing, promoter use, and 3' end formation. We report genome sequence, gene models, functional annotations, and RNA-Seq expression data that provide an important new resource enabling high throughput studies in blueberry.

  20. Diverse Image Annotation

    KAUST Repository

    Wu, Baoyuan

    2017-11-09

    In this work we study the task of image annotation, of which the goal is to describe an image using a few tags. Instead of predicting the full list of tags, here we target for providing a short list of tags under a limited number (e.g., 3), to cover as much information as possible of the image. The tags in such a short list should be representative and diverse. It means they are required to be not only corresponding to the contents of the image, but also be different to each other. To this end, we treat the image annotation as a subset selection problem based on the conditional determinantal point process (DPP) model, which formulates the representation and diversity jointly. We further explore the semantic hierarchy and synonyms among the candidate tags, and require that two tags in a semantic hierarchy or in a pair of synonyms should not be selected simultaneously. This requirement is then embedded into the sampling algorithm according to the learned conditional DPP model. Besides, we find that traditional metrics for image annotation (e.g., precision, recall and F1 score) only consider the representation, but ignore the diversity. Thus we propose new metrics to evaluate the quality of the selected subset (i.e., the tag list), based on the semantic hierarchy and synonyms. Human study through Amazon Mechanical Turk verifies that the proposed metrics are more close to the humans judgment than traditional metrics. Experiments on two benchmark datasets show that the proposed method can produce more representative and diverse tags, compared with existing image annotation methods.

  1. Diverse Image Annotation

    KAUST Repository

    Wu, Baoyuan; Jia, Fan; Liu, Wei; Ghanem, Bernard

    2017-01-01

    In this work we study the task of image annotation, of which the goal is to describe an image using a few tags. Instead of predicting the full list of tags, here we target for providing a short list of tags under a limited number (e.g., 3), to cover as much information as possible of the image. The tags in such a short list should be representative and diverse. It means they are required to be not only corresponding to the contents of the image, but also be different to each other. To this end, we treat the image annotation as a subset selection problem based on the conditional determinantal point process (DPP) model, which formulates the representation and diversity jointly. We further explore the semantic hierarchy and synonyms among the candidate tags, and require that two tags in a semantic hierarchy or in a pair of synonyms should not be selected simultaneously. This requirement is then embedded into the sampling algorithm according to the learned conditional DPP model. Besides, we find that traditional metrics for image annotation (e.g., precision, recall and F1 score) only consider the representation, but ignore the diversity. Thus we propose new metrics to evaluate the quality of the selected subset (i.e., the tag list), based on the semantic hierarchy and synonyms. Human study through Amazon Mechanical Turk verifies that the proposed metrics are more close to the humans judgment than traditional metrics. Experiments on two benchmark datasets show that the proposed method can produce more representative and diverse tags, compared with existing image annotation methods.

  2. Assessment of community-submitted ontology annotations from a novel database-journal partnership.

    Science.gov (United States)

    Berardini, Tanya Z; Li, Donghui; Muller, Robert; Chetty, Raymond; Ploetz, Larry; Singh, Shanker; Wensel, April; Huala, Eva

    2012-01-01

    As the scientific literature grows, leading to an increasing volume of published experimental data, so does the need to access and analyze this data using computational tools. The most commonly used method to convert published experimental data on gene function into controlled vocabulary annotations relies on a professional curator, employed by a model organism database or a more general resource such as UniProt, to read published articles and compose annotation statements based on the articles' contents. A more cost-effective and scalable approach capable of capturing gene function data across the whole range of biological research organisms in computable form is urgently needed. We have analyzed a set of ontology annotations generated through collaborations between the Arabidopsis Information Resource and several plant science journals. Analysis of the submissions entered using the online submission tool shows that most community annotations were well supported and the ontology terms chosen were at an appropriate level of specificity. Of the 503 individual annotations that were submitted, 97% were approved and community submissions captured 72% of all possible annotations. This new method for capturing experimental results in a computable form provides a cost-effective way to greatly increase the available body of annotations without sacrificing annotation quality. Database URL: www.arabidopsis.org.

  3. Annotation-based feature extraction from sets of SBML models.

    Science.gov (United States)

    Alm, Rebekka; Waltemath, Dagmar; Wolfien, Markus; Wolkenhauer, Olaf; Henkel, Ron

    2015-01-01

    Model repositories such as BioModels Database provide computational models of biological systems for the scientific community. These models contain rich semantic annotations that link model entities to concepts in well-established bio-ontologies such as Gene Ontology. Consequently, thematically similar models are likely to share similar annotations. Based on this assumption, we argue that semantic annotations are a suitable tool to characterize sets of models. These characteristics improve model classification, allow to identify additional features for model retrieval tasks, and enable the comparison of sets of models. In this paper we discuss four methods for annotation-based feature extraction from model sets. We tested all methods on sets of models in SBML format which were composed from BioModels Database. To characterize each of these sets, we analyzed and extracted concepts from three frequently used ontologies, namely Gene Ontology, ChEBI and SBO. We find that three out of the methods are suitable to determine characteristic features for arbitrary sets of models: The selected features vary depending on the underlying model set, and they are also specific to the chosen model set. We show that the identified features map on concepts that are higher up in the hierarchy of the ontologies than the concepts used for model annotations. Our analysis also reveals that the information content of concepts in ontologies and their usage for model annotation do not correlate. Annotation-based feature extraction enables the comparison of model sets, as opposed to existing methods for model-to-keyword comparison, or model-to-model comparison.

  4. Annotating breast cancer microarray samples using ontologies

    Science.gov (United States)

    Liu, Hongfang; Li, Xin; Yoon, Victoria; Clarke, Robert

    2008-01-01

    As the most common cancer among women, breast cancer results from the accumulation of mutations in essential genes. Recent advance in high-throughput gene expression microarray technology has inspired researchers to use the technology to assist breast cancer diagnosis, prognosis, and treatment prediction. However, the high dimensionality of microarray experiments and public access of data from many experiments have caused inconsistencies which initiated the development of controlled terminologies and ontologies for annotating microarray experiments, such as the standard microarray Gene Expression Data (MGED) ontology (MO). In this paper, we developed BCM-CO, an ontology tailored specifically for indexing clinical annotations of breast cancer microarray samples from the NCI Thesaurus. Our research showed that the coverage of NCI Thesaurus is very limited with respect to i) terms used by researchers to describe breast cancer histology (covering 22 out of 48 histology terms); ii) breast cancer cell lines (covering one out of 12 cell lines); and iii) classes corresponding to the breast cancer grading and staging. By incorporating a wider range of those terms into BCM-CO, we were able to indexed breast cancer microarray samples from GEO using BCM-CO and MGED ontology and developed a prototype system with web interface that allows the retrieval of microarray data based on the ontology annotations. PMID:18999108

  5. Annotating non-coding regions of the genome.

    Science.gov (United States)

    Alexander, Roger P; Fang, Gang; Rozowsky, Joel; Snyder, Michael; Gerstein, Mark B

    2010-08-01

    Most of the human genome consists of non-protein-coding DNA. Recently, progress has been made in annotating these non-coding regions through the interpretation of functional genomics experiments and comparative sequence analysis. One can conceptualize functional genomics analysis as involving a sequence of steps: turning the output of an experiment into a 'signal' at each base pair of the genome; smoothing this signal and segmenting it into small blocks of initial annotation; and then clustering these small blocks into larger derived annotations and networks. Finally, one can relate functional genomics annotations to conserved units and measures of conservation derived from comparative sequence analysis.

  6. Identification of "pathologs" (disease-related genes from the RIKEN mouse cDNA dataset using human curation plus FACTS, a new biological information extraction system

    Directory of Open Access Journals (Sweden)

    Socha Luis A

    2004-04-01

    Full Text Available Abstract Background A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term "patholog" to mean a homolog of a human disease-related gene encoding a product (transcript, anti-sense or protein potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity (70–85% identity to known human-disease genes. Using a newly developed biological information extraction and annotation tool (FACTS in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic (53%, hereditary (24%, immunological (5%, cardio-vascular (4%, or other (14%, disorders. Conclusions Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.

  7. The caBIG annotation and image Markup project.

    Science.gov (United States)

    Channin, David S; Mongkolwat, Pattanasak; Kleper, Vladimir; Sepukar, Kastubh; Rubin, Daniel L

    2010-04-01

    Image annotation and markup are at the core of medical interpretation in both the clinical and the research setting. Digital medical images are managed with the DICOM standard format. While DICOM contains a large amount of meta-data about whom, where, and how the image was acquired, DICOM says little about the content or meaning of the pixel data. An image annotation is the explanatory or descriptive information about the pixel data of an image that is generated by a human or machine observer. An image markup is the graphical symbols placed over the image to depict an annotation. While DICOM is the standard for medical image acquisition, manipulation, transmission, storage, and display, there are no standards for image annotation and markup. Many systems expect annotation to be reported verbally, while markups are stored in graphical overlays or proprietary formats. This makes it difficult to extract and compute with both of them. The goal of the Annotation and Image Markup (AIM) project is to develop a mechanism, for modeling, capturing, and serializing image annotation and markup data that can be adopted as a standard by the medical imaging community. The AIM project produces both human- and machine-readable artifacts. This paper describes the AIM information model, schemas, software libraries, and tools so as to prepare researchers and developers for their use of AIM.

  8. Systematic interpretation of microarray data using experiment annotations

    Directory of Open Access Journals (Sweden)

    Frohme Marcus

    2006-12-01

    Full Text Available Abstract Background Up to now, microarray data are mostly assessed in context with only one or few parameters characterizing the experimental conditions under study. More explicit experiment annotations, however, are highly useful for interpreting microarray data, when available in a statistically accessible format. Results We provide means to preprocess these additional data, and to extract relevant traits corresponding to the transcription patterns under study. We found correspondence analysis particularly well-suited for mapping such extracted traits. It visualizes associations both among and between the traits, the hereby annotated experiments, and the genes, revealing how they are all interrelated. Here, we apply our methods to the systematic interpretation of radioactive (single channel and two-channel data, stemming from model organisms such as yeast and drosophila up to complex human cancer samples. Inclusion of technical parameters allows for identification of artifacts and flaws in experimental design. Conclusion Biological and clinical traits can act as landmarks in transcription space, systematically mapping the variance of large datasets from the predominant changes down toward intricate details.

  9. MeSH key terms for validation and annotation of gene expression clusters

    Energy Technology Data Exchange (ETDEWEB)

    Rechtsteiner, A. (Andreas); Rocha, L. M. (Luis Mateus)

    2004-01-01

    Integration of different sources of information is a great challenge for the analysis of gene expression data, and for the field of Functional Genomics in general. As the availability of numerical data from high-throughput methods increases, so does the need for technologies that assist in the validation and evaluation of the biological significance of results extracted from these data. In mRNA assaying with microarrays, for example, numerical analysis often attempts to identify clusters of co-expressed genes. The important task to find the biological significance of the results and validate them has so far mostly fallen to the biological expert who had to perform this task manually. One of the most promising avenues to develop automated and integrative technology for such tasks lies in the application of modern Information Retrieval (IR) and Knowledge Management (KM) algorithms to databases with biomedical publications and data. Examples of databases available for the field are bibliographic databases c ntaining scientific publications (e.g. MEDLINE/PUBMED), databases containing sequence data (e.g. GenBank) and databases of semantic annotations (e.g. the Gene Ontology Consortium and Medical Subject Headings (MeSH)). We present here an approach that uses the MeSH terms and their concept hierarchies to validate and obtain functional information for gene expression clusters. The controlled and hierarchical MeSH vocabulary is used by the National Library of Medicine (NLM) to index all the articles cited in MEDLINE. Such indexing with a controlled vocabulary eliminates some of the ambiguity due to polysemy (terms that have multiple meanings) and synonymy (multiple terms have similar meaning) that would be encountered if terms would be extracted directly from the articles due to differing article contexts or author preferences and background. Further, the hierarchical organization of the MeSH terms can illustrate the conceptuallfunctional relationships of genes

  10. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production.

    Science.gov (United States)

    Chowdhary, Nupoor; Selvaraj, Ashok; KrishnaKumaar, Lakshmi; Kumar, Gopal Ramesh

    2015-01-01

    Caldicellulosiruptor saccharolyticus has proven itself to be an excellent candidate for biological hydrogen (H2) production, but still it has major drawbacks like sensitivity to high osmotic pressure and low volumetric H2 productivity, which should be considered before it can be used industrially. A whole genome re-annotation work has been carried out as an attempt to update the incomplete genome information that causes gap in the knowledge especially in the area of metabolic engineering, to improve the H2 producing capabilities of C. saccharolyticus. Whole genome re-annotation was performed through manual means for 2,682 Coding Sequences (CDSs). Bioinformatics tools based on sequence similarity, motif search, phylogenetic analysis and fold recognition were employed for re-annotation. Our methodology could successfully add functions for 409 hypothetical proteins (HPs), 46 proteins previously annotated as putative and assigned more accurate functions for the known protein sequences. Homology based gene annotation has been used as a standard method for assigning function to novel proteins, but over the past few years many non-homology based methods such as genomic context approaches for protein function prediction have been developed. Using non-homology based functional prediction methods, we were able to assign cellular processes or physical complexes for 249 hypothetical sequences. Our re-annotation pipeline highlights the addition of 231 new CDSs generated from MicroScope Platform, to the original genome with functional prediction for 49 of them. The re-annotation of HPs and new CDSs is stored in the relational database that is available on the MicroScope web-based platform. In parallel, a comparative genome analyses were performed among the members of genus Caldicellulosiruptor to understand the function and evolutionary processes. Further, with results from integrated re-annotation studies (homology and genomic context approach), we strongly suggest that Csac

  11. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production.

    Directory of Open Access Journals (Sweden)

    Nupoor Chowdhary

    Full Text Available Caldicellulosiruptor saccharolyticus has proven itself to be an excellent candidate for biological hydrogen (H2 production, but still it has major drawbacks like sensitivity to high osmotic pressure and low volumetric H2 productivity, which should be considered before it can be used industrially. A whole genome re-annotation work has been carried out as an attempt to update the incomplete genome information that causes gap in the knowledge especially in the area of metabolic engineering, to improve the H2 producing capabilities of C. saccharolyticus. Whole genome re-annotation was performed through manual means for 2,682 Coding Sequences (CDSs. Bioinformatics tools based on sequence similarity, motif search, phylogenetic analysis and fold recognition were employed for re-annotation. Our methodology could successfully add functions for 409 hypothetical proteins (HPs, 46 proteins previously annotated as putative and assigned more accurate functions for the known protein sequences. Homology based gene annotation has been used as a standard method for assigning function to novel proteins, but over the past few years many non-homology based methods such as genomic context approaches for protein function prediction have been developed. Using non-homology based functional prediction methods, we were able to assign cellular processes or physical complexes for 249 hypothetical sequences. Our re-annotation pipeline highlights the addition of 231 new CDSs generated from MicroScope Platform, to the original genome with functional prediction for 49 of them. The re-annotation of HPs and new CDSs is stored in the relational database that is available on the MicroScope web-based platform. In parallel, a comparative genome analyses were performed among the members of genus Caldicellulosiruptor to understand the function and evolutionary processes. Further, with results from integrated re-annotation studies (homology and genomic context approach, we strongly

  12. Functional Potential of Bacterial Communities using Gene Context Information

    Directory of Open Access Journals (Sweden)

    Anwesha Mohapatra

    2017-12-01

    Full Text Available Estimation of the functional potential of a bacterial genome can be determined by accurate annotation of its metabolic pathways. Existing homology based methods for pathway annotation fail to account for homologous genes that participate in multiple pathways, causing overestimation of gene copy number. Mere presence of constituent genes of a candidate pathway which are dispersed on a genome often results in incorrect annotation, thereby leading to erroneous gene abundance and pathway estimation. Clusters of evolutionarily conserved coregulated genes are characteristic features in bacterial genomes and their spatial arrangement in the genome is constrained by the pathway encoded by them. Thus, in order to improve the accuracy of pathway prediction, it is important to augment homology based annotation with gene organization information. In this communication, we present a methodology considering prioritization of gene context for improved pathway annotation. Extensive literature mining was performed to confirm conserved juxtaposed arrangement of gene components of various pathways. Our method was utilized to identify and analyse the functional potential of all available completely sequenced bacterial genomes. The accuracy of the predicted gene clusters and their importance in metabolic pathways will be demonstrated using a few case studies. One of such case study corresponds to butyrate production pathways in gut bacteria where it was observed that gut pathogens and commensals possess a distinct set of pathway components. In another example, we will demonstrate how our methodology improves the prediction accuracy of carbohydrate metabolic potential in human microbial communities. Applicability of our method for estimation of functional potential in bacterial communities present in diverse environments will also be illustrated.

  13. xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud.

    Science.gov (United States)

    Duvick, Jon; Standage, Daniel S; Merchant, Nirav; Brendel, Volker P

    2016-04-01

    Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today's pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant's Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching. © 2016 American Society of Plant Biologists. All rights reserved.

  14. Signals of historical interlocus gene conversion in human segmental duplications.

    Directory of Open Access Journals (Sweden)

    Beth L Dumont

    Full Text Available Standard methods of DNA sequence analysis assume that sequences evolve independently, yet this assumption may not be appropriate for segmental duplications that exchange variants via interlocus gene conversion (IGC. Here, we use high quality multiple sequence alignments from well-annotated segmental duplications to systematically identify IGC signals in the human reference genome. Our analysis combines two complementary methods: (i a paralog quartet method that uses DNA sequence simulations to identify a statistical excess of sites consistent with inter-paralog exchange, and (ii the alignment-based method implemented in the GENECONV program. One-quarter (25.4% of the paralog families in our analysis harbor clear IGC signals by the quartet approach. Using GENECONV, we identify 1477 gene conversion tracks that cumulatively span 1.54 Mb of the genome. Our analyses confirm the previously reported high rates of IGC in subtelomeric regions and Y-chromosome palindromes, and identify multiple novel IGC hotspots, including the pregnancy specific glycoproteins and the neuroblastoma breakpoint gene families. Although the duplication history of a paralog family is described by a single tree, we show that IGC has introduced incredible site-to-site variation in the evolutionary relationships among paralogs in the human genome. Our findings indicate that IGC has left significant footprints in patterns of sequence diversity across segmental duplications in the human genome, out-pacing the contributions of single base mutation by orders of magnitude. Collectively, the IGC signals we report comprise a catalog that will provide a critical reference for interpreting observed patterns of DNA sequence variation across duplicated genomic regions, including targets of recent adaptive evolution in humans.

  15. Using Gene Ontology to describe the role of the neurexin-neuroligin-SHANK complex in human, mouse and rat and its relevance to autism.

    Science.gov (United States)

    Patel, Sejal; Roncaglia, Paola; Lovering, Ruth C

    2015-06-06

    People with an autistic spectrum disorder (ASD) display a variety of characteristic behavioral traits, including impaired social interaction, communication difficulties and repetitive behavior. This complex neurodevelopment disorder is known to be associated with a combination of genetic and environmental factors. Neurexins and neuroligins play a key role in synaptogenesis and neurexin-neuroligin adhesion is one of several processes that have been implicated in autism spectrum disorders. In this report we describe the manual annotation of a selection of gene products known to be associated with autism and/or the neurexin-neuroligin-SHANK complex and demonstrate how a focused annotation approach leads to the creation of more descriptive Gene Ontology (GO) terms, as well as an increase in both the number of gene product annotations and their granularity, thus improving the data available in the GO database. The manual annotations we describe will impact on the functional analysis of a variety of future autism-relevant datasets. Comprehensive gene annotation is an essential aspect of genomic and proteomic studies, as the quality of gene annotations incorporated into statistical analysis tools affects the effective interpretation of data obtained through genome wide association studies, next generation sequencing, proteomic and transcriptomic datasets.

  16. NegGOA: negative GO annotations selection using ontology structure.

    Science.gov (United States)

    Fu, Guangyuan; Wang, Jun; Yang, Bo; Yu, Guoxian

    2016-10-01

    Predicting the biological functions of proteins is one of the key challenges in the post-genomic era. Computational models have demonstrated the utility of applying machine learning methods to predict protein function. Most prediction methods explicitly require a set of negative examples-proteins that are known not carrying out a particular function. However, Gene Ontology (GO) almost always only provides the knowledge that proteins carry out a particular function, and functional annotations of proteins are incomplete. GO structurally organizes more than tens of thousands GO terms and a protein is annotated with several (or dozens) of these terms. For these reasons, the negative examples of a protein can greatly help distinguishing true positive examples of the protein from such a large candidate GO space. In this paper, we present a novel approach (called NegGOA) to select negative examples. Specifically, NegGOA takes advantage of the ontology structure, available annotations and potentiality of additional annotations of a protein to choose negative examples of the protein. We compare NegGOA with other negative examples selection algorithms and find that NegGOA produces much fewer false negatives than them. We incorporate the selected negative examples into an efficient function prediction model to predict the functions of proteins in Yeast, Human, Mouse and Fly. NegGOA also demonstrates improved accuracy than these comparing algorithms across various evaluation metrics. In addition, NegGOA is less suffered from incomplete annotations of proteins than these comparing methods. The Matlab and R codes are available at https://sites.google.com/site/guoxian85/neggoa gxyu@swu.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Genome-wide identification of coding and non-coding conserved sequence tags in human and mouse genomes

    Directory of Open Access Journals (Sweden)

    Maggi Giorgio P

    2008-06-01

    Full Text Available Abstract Background The accurate detection of genes and the identification of functional regions is still an open issue in the annotation of genomic sequences. This problem affects new genomes but also those of very well studied organisms such as human and mouse where, despite the great efforts, the inventory of genes and regulatory regions is far from complete. Comparative genomics is an effective approach to address this problem. Unfortunately it is limited by the computational requirements needed to perform genome-wide comparisons and by the problem of discriminating between conserved coding and non-coding sequences. This discrimination is often based (thus dependent on the availability of annotated proteins. Results In this paper we present the results of a comprehensive comparison of human and mouse genomes performed with a new high throughput grid-based system which allows the rapid detection of conserved sequences and accurate assessment of their coding potential. By detecting clusters of coding conserved sequences the system is also suitable to accurately identify potential gene loci. Following this analysis we created a collection of human-mouse conserved sequence tags and carefully compared our results to reliable annotations in order to benchmark the reliability of our classifications. Strikingly we were able to detect several potential gene loci supported by EST sequences but not corresponding to as yet annotated genes. Conclusion Here we present a new system which allows comprehensive comparison of genomes to detect conserved coding and non-coding sequences and the identification of potential gene loci. Our system does not require the availability of any annotated sequence thus is suitable for the analysis of new or poorly annotated genomes.

  18. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Qiongshi Lu

    2017-07-01

    Full Text Available Continuing efforts from large international consortia have made genome-wide epigenomic and transcriptomic annotation data publicly available for a variety of cell and tissue types. However, synthesis of these datasets into effective summary metrics to characterize the functional non-coding genome remains a challenge. Here, we present GenoSkyline-Plus, an extension of our previous work through integration of an expanded set of epigenomic and transcriptomic annotations to produce high-resolution, single tissue annotations. After validating our annotations with a catalog of tissue-specific non-coding elements previously identified in the literature, we apply our method using data from 127 different cell and tissue types to present an atlas of heritability enrichment across 45 different GWAS traits. We show that broader organ system categories (e.g. immune system increase statistical power in identifying biologically relevant tissue types for complex diseases while annotations of individual cell types (e.g. monocytes or B-cells provide deeper insights into disease etiology. Additionally, we use our GenoSkyline-Plus annotations in an in-depth case study of late-onset Alzheimer's disease (LOAD. Our analyses suggest a strong connection between LOAD heritability and genetic variants contained in regions of the genome functional in monocytes. Furthermore, we show that LOAD shares a similar localization of SNPs to monocyte-functional regions with Parkinson's disease. Overall, we demonstrate that integrated genome annotations at the single tissue level provide a valuable tool for understanding the etiology of complex human diseases. Our GenoSkyline-Plus annotations are freely available at http://genocanyon.med.yale.edu/GenoSkyline.

  19. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer's disease.

    Science.gov (United States)

    Lu, Qiongshi; Powles, Ryan L; Abdallah, Sarah; Ou, Derek; Wang, Qian; Hu, Yiming; Lu, Yisi; Liu, Wei; Li, Boyang; Mukherjee, Shubhabrata; Crane, Paul K; Zhao, Hongyu

    2017-07-01

    Continuing efforts from large international consortia have made genome-wide epigenomic and transcriptomic annotation data publicly available for a variety of cell and tissue types. However, synthesis of these datasets into effective summary metrics to characterize the functional non-coding genome remains a challenge. Here, we present GenoSkyline-Plus, an extension of our previous work through integration of an expanded set of epigenomic and transcriptomic annotations to produce high-resolution, single tissue annotations. After validating our annotations with a catalog of tissue-specific non-coding elements previously identified in the literature, we apply our method using data from 127 different cell and tissue types to present an atlas of heritability enrichment across 45 different GWAS traits. We show that broader organ system categories (e.g. immune system) increase statistical power in identifying biologically relevant tissue types for complex diseases while annotations of individual cell types (e.g. monocytes or B-cells) provide deeper insights into disease etiology. Additionally, we use our GenoSkyline-Plus annotations in an in-depth case study of late-onset Alzheimer's disease (LOAD). Our analyses suggest a strong connection between LOAD heritability and genetic variants contained in regions of the genome functional in monocytes. Furthermore, we show that LOAD shares a similar localization of SNPs to monocyte-functional regions with Parkinson's disease. Overall, we demonstrate that integrated genome annotations at the single tissue level provide a valuable tool for understanding the etiology of complex human diseases. Our GenoSkyline-Plus annotations are freely available at http://genocanyon.med.yale.edu/GenoSkyline.

  20. Comparative genomic mapping of the bovine Fragile Histidine Triad (FHIT tumour suppressor gene: characterization of a 2 Mb BAC contig covering the locus, complete annotation of the gene, analysis of cDNA and of physiological expression profiles

    Directory of Open Access Journals (Sweden)

    Boussaha Mekki

    2006-05-01

    Full Text Available Abstract Background The Fragile Histidine Triad gene (FHIT is an oncosuppressor implicated in many human cancers, including vesical tumors. FHIT is frequently hit by deletions caused by fragility at FRA3B, the most active of human common fragile sites, where FHIT lays. Vesical tumors affect also cattle, including animals grazing in the wild on bracken fern; compounds released by the fern are known to induce chromosome fragility and may trigger cancer with the interplay of latent Papilloma virus. Results The bovine FHIT was characterized by assembling a contig of 78 BACs. Sequence tags were designed on human exons and introns and used directly to select bovine BACs, or compared with sequence data in the bovine genome database or in the trace archive of the bovine genome sequencing project, and adapted before use. FHIT is split in ten exons like in man, with exons 5 to 9 coding for a 149 amino acids protein. VISTA global alignments between bovine genomic contigs retrieved from the bovine genome database and the human FHIT region were performed. Conservation was extremely high over a 2 Mb region spanning the whole FHIT locus, including the size of introns. Thus, the bovine FHIT covers about 1.6 Mb compared to 1.5 Mb in man. Expression was analyzed by RT-PCR and Northern blot, and was found to be ubiquitous. Four cDNA isoforms were isolated and sequenced, that originate from an alternative usage of three variants of exon 4, revealing a size very close to the major human FHIT cDNAs. Conclusion A comparative genomic approach allowed to assemble a contig of 78 BACs and to completely annotate a 1.6 Mb region spanning the bovine FHIT gene. The findings confirmed the very high level of conservation between human and bovine genomes and the importance of comparative mapping to speed the annotation process of the recently sequenced bovine genome. The detailed knowledge of the genomic FHIT region will allow to study the role of FHIT in bovine cancerogenesis

  1. Comparative genomic mapping of the bovine Fragile Histidine Triad (FHIT) tumour suppressor gene: characterization of a 2 Mb BAC contig covering the locus, complete annotation of the gene, analysis of cDNA and of physiological expression profiles.

    Science.gov (United States)

    Uboldi, Cristina; Guidi, Elena; Roperto, Sante; Russo, Valeria; Roperto, Franco; Di Meo, Giulia Pia; Iannuzzi, Leopoldo; Floriot, Sandrine; Boussaha, Mekki; Eggen, André; Ferretti, Luca

    2006-05-23

    The Fragile Histidine Triad gene (FHIT) is an oncosuppressor implicated in many human cancers, including vesical tumors. FHIT is frequently hit by deletions caused by fragility at FRA3B, the most active of human common fragile sites, where FHIT lays. Vesical tumors affect also cattle, including animals grazing in the wild on bracken fern; compounds released by the fern are known to induce chromosome fragility and may trigger cancer with the interplay of latent Papilloma virus. The bovine FHIT was characterized by assembling a contig of 78 BACs. Sequence tags were designed on human exons and introns and used directly to select bovine BACs, or compared with sequence data in the bovine genome database or in the trace archive of the bovine genome sequencing project, and adapted before use. FHIT is split in ten exons like in man, with exons 5 to 9 coding for a 149 amino acids protein. VISTA global alignments between bovine genomic contigs retrieved from the bovine genome database and the human FHIT region were performed. Conservation was extremely high over a 2 Mb region spanning the whole FHIT locus, including the size of introns. Thus, the bovine FHIT covers about 1.6 Mb compared to 1.5 Mb in man. Expression was analyzed by RT-PCR and Northern blot, and was found to be ubiquitous. Four cDNA isoforms were isolated and sequenced, that originate from an alternative usage of three variants of exon 4, revealing a size very close to the major human FHIT cDNAs. A comparative genomic approach allowed to assemble a contig of 78 BACs and to completely annotate a 1.6 Mb region spanning the bovine FHIT gene. The findings confirmed the very high level of conservation between human and bovine genomes and the importance of comparative mapping to speed the annotation process of the recently sequenced bovine genome. The detailed knowledge of the genomic FHIT region will allow to study the role of FHIT in bovine cancerogenesis, especially of vesical papillomavirus-associated cancers of

  2. BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS.

    Science.gov (United States)

    Hoff, Katharina J; Lange, Simone; Lomsadze, Alexandre; Borodovsky, Mark; Stanke, Mario

    2016-03-01

    Gene finding in eukaryotic genomes is notoriously difficult to automate. The task is to design a work flow with a minimal set of tools that would reach state-of-the-art performance across a wide range of species. GeneMark-ET is a gene prediction tool that incorporates RNA-Seq data into unsupervised training and subsequently generates ab initio gene predictions. AUGUSTUS is a gene finder that usually requires supervised training and uses information from RNA-Seq reads in the prediction step. Complementary strengths of GeneMark-ET and AUGUSTUS provided motivation for designing a new combined tool for automatic gene prediction. We present BRAKER1, a pipeline for unsupervised RNA-Seq-based genome annotation that combines the advantages of GeneMark-ET and AUGUSTUS. As input, BRAKER1 requires a genome assembly file and a file in bam-format with spliced alignments of RNA-Seq reads to the genome. First, GeneMark-ET performs iterative training and generates initial gene structures. Second, AUGUSTUS uses predicted genes for training and then integrates RNA-Seq read information into final gene predictions. In our experiments, we observed that BRAKER1 was more accurate than MAKER2 when it is using RNA-Seq as sole source for training and prediction. BRAKER1 does not require pre-trained parameters or a separate expert-prepared training step. BRAKER1 is available for download at http://bioinf.uni-greifswald.de/bioinf/braker/ and http://exon.gatech.edu/GeneMark/ katharina.hoff@uni-greifswald.de or borodovsky@gatech.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. PedAM: a database for Pediatric Disease Annotation and Medicine.

    Science.gov (United States)

    Jia, Jinmeng; An, Zhongxin; Ming, Yue; Guo, Yongli; Li, Wei; Li, Xin; Liang, Yunxiang; Guo, Dongming; Tai, Jun; Chen, Geng; Jin, Yaqiong; Liu, Zhimei; Ni, Xin; Shi, Tieliu

    2018-01-04

    There is a significant number of children around the world suffering from the consequence of the misdiagnosis and ineffective treatment for various diseases. To facilitate the precision medicine in pediatrics, a database namely the Pediatric Disease Annotations & Medicines (PedAM) has been built to standardize and classify pediatric diseases. The PedAM integrates both biomedical resources and clinical data from Electronic Medical Records to support the development of computational tools, by which enables robust data analysis and integration. It also uses disease-manifestation (D-M) integrated from existing biomedical ontologies as prior knowledge to automatically recognize text-mined, D-M-specific syntactic patterns from 774 514 full-text articles and 8 848 796 abstracts in MEDLINE. Additionally, disease connections based on phenotypes or genes can be visualized on the web page of PedAM. Currently, the PedAM contains standardized 8528 pediatric disease terms (4542 unique disease concepts and 3986 synonyms) with eight annotation fields for each disease, including definition synonyms, gene, symptom, cross-reference (Xref), human phenotypes and its corresponding phenotypes in the mouse. The database PedAM is freely accessible at http://www.unimd.org/pedam/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. A Novel Quality Measure and Correction Procedure for the Annotation of Microbial Translation Initiation Sites.

    Directory of Open Access Journals (Sweden)

    Lex Overmars

    Full Text Available The identification of translation initiation sites (TISs constitutes an important aspect of sequence-based genome analysis. An erroneous TIS annotation can impair the identification of regulatory elements and N-terminal signal peptides, and also may flaw the determination of descent, for any particular gene. We have formulated a reference-free method to score the TIS annotation quality. The method is based on a comparison of the observed and expected distribution of all TISs in a particular genome given prior gene-calling. We have assessed the TIS annotations for all available NCBI RefSeq microbial genomes and found that approximately 87% is of appropriate quality, whereas 13% needs substantial improvement. We have analyzed a number of factors that could affect TIS annotation quality such as GC-content, taxonomy, the fraction of genes with a Shine-Dalgarno sequence and the year of publication. The analysis showed that only the first factor has a clear effect. We have then formulated a straightforward Principle Component Analysis-based TIS identification strategy to self-organize and score potential TISs. The strategy is independent of reference data and a priori calculations. A representative set of 277 genomes was subjected to the analysis and we found a clear increase in TIS annotation quality for the genomes with a low quality score. The PCA-based annotation was also compared with annotation with the current tool of reference, Prodigal. The comparison for the model genome of Escherichia coli K12 showed that both methods supplement each other and that prediction agreement can be used as an indicator of a correct TIS annotation. Importantly, the data suggest that the addition of a PCA-based strategy to a Prodigal prediction can be used to 'flag' TIS annotations for re-evaluation and in addition can be used to evaluate a given annotation in case a Prodigal annotation is lacking.

  5. xGDBvm: A Web GUI-Driven Workflow for Annotating Eukaryotic Genomes in the Cloud[OPEN

    Science.gov (United States)

    Merchant, Nirav

    2016-01-01

    Genome-wide annotation of gene structure requires the integration of numerous computational steps. Currently, annotation is arguably best accomplished through collaboration of bioinformatics and domain experts, with broad community involvement. However, such a collaborative approach is not scalable at today’s pace of sequence generation. To address this problem, we developed the xGDBvm software, which uses an intuitive graphical user interface to access a number of common genome analysis and gene structure tools, preconfigured in a self-contained virtual machine image. Once their virtual machine instance is deployed through iPlant’s Atmosphere cloud services, users access the xGDBvm workflow via a unified Web interface to manage inputs, set program parameters, configure links to high-performance computing (HPC) resources, view and manage output, apply analysis and editing tools, or access contextual help. The xGDBvm workflow will mask the genome, compute spliced alignments from transcript and/or protein inputs (locally or on a remote HPC cluster), predict gene structures and gene structure quality, and display output in a public or private genome browser complete with accessory tools. Problematic gene predictions are flagged and can be reannotated using the integrated yrGATE annotation tool. xGDBvm can also be configured to append or replace existing data or load precomputed data. Multiple genomes can be annotated and displayed, and outputs can be archived for sharing or backup. xGDBvm can be adapted to a variety of use cases including de novo genome annotation, reannotation, comparison of different annotations, and training or teaching. PMID:27020957

  6. A database of annotated promoters of genes associated with common respiratory and related diseases

    KAUST Repository

    Chowdhary, Rajesh

    2012-07-01

    Many genes have been implicated in the pathogenesis of common respiratory and related diseases (RRDs), yet the underlying mechanisms are largely unknown. Differential gene expression patterns in diseased and healthy individuals suggest that RRDs affect or are affected by modified transcription regulation programs. It is thus crucial to characterize implicated genes in terms of transcriptional regulation. For this purpose, we conducted a promoter analysis of genes associated with 11 common RRDs including allergic rhinitis, asthma, bronchiectasis, bronchiolitis, bronchitis, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, eczema, psoriasis, and urticaria, many of which are thought to be genetically related. The objective of the present study was to obtain deeper insight into the transcriptional regulation of these disease-associated genes by annotating their promoter regions with transcription factors (TFs) and TF binding sites (TFBSs). We discovered many TFs that are significantly enriched in the target disease groups including associations that have been documented in the literature. We also identified a number of putative TFs/TFBSs that appear to be novel. The results of our analysis are provided in an online database that is freely accessible to researchers at http://www.respiratorygenomics.com. Promoter-associated TFBS information and related genomic features, such as histone modification sites, microsatellites, CpG islands, and SNPs, are graphically summarized in the database. Users can compare and contrast underlying mechanisms of specific RRDs relative to candidate genes, TFs, gene ontology terms, micro-RNAs, and biological pathways for the conduct of metaanalyses. This database represents a novel, useful resource for RRD researchers. Copyright © 2012 by the American Thoracic Society.

  7. A database of annotated promoters of genes associated with common respiratory and related diseases

    KAUST Repository

    Chowdhary, Rajesh; Tan, Sinlam; Pavesi, Giulio; Jin, Gg; Dong, Difeng; Mathur, Sameer K.; Burkart, Arthur; Narang, Vipin; Glurich, Ingrid E.; Raby, Benjamin A.; Weiss, Scott T.; Limsoon, Wong; Liu, Jun; Bajic, Vladimir B.

    2012-01-01

    Many genes have been implicated in the pathogenesis of common respiratory and related diseases (RRDs), yet the underlying mechanisms are largely unknown. Differential gene expression patterns in diseased and healthy individuals suggest that RRDs affect or are affected by modified transcription regulation programs. It is thus crucial to characterize implicated genes in terms of transcriptional regulation. For this purpose, we conducted a promoter analysis of genes associated with 11 common RRDs including allergic rhinitis, asthma, bronchiectasis, bronchiolitis, bronchitis, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, eczema, psoriasis, and urticaria, many of which are thought to be genetically related. The objective of the present study was to obtain deeper insight into the transcriptional regulation of these disease-associated genes by annotating their promoter regions with transcription factors (TFs) and TF binding sites (TFBSs). We discovered many TFs that are significantly enriched in the target disease groups including associations that have been documented in the literature. We also identified a number of putative TFs/TFBSs that appear to be novel. The results of our analysis are provided in an online database that is freely accessible to researchers at http://www.respiratorygenomics.com. Promoter-associated TFBS information and related genomic features, such as histone modification sites, microsatellites, CpG islands, and SNPs, are graphically summarized in the database. Users can compare and contrast underlying mechanisms of specific RRDs relative to candidate genes, TFs, gene ontology terms, micro-RNAs, and biological pathways for the conduct of metaanalyses. This database represents a novel, useful resource for RRD researchers. Copyright © 2012 by the American Thoracic Society.

  8. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database.

    Science.gov (United States)

    Winsor, Geoffrey L; Griffiths, Emma J; Lo, Raymond; Dhillon, Bhavjinder K; Shay, Julie A; Brinkman, Fiona S L

    2016-01-04

    The Pseudomonas Genome Database (http://www.pseudomonas.com) is well known for the application of community-based annotation approaches for producing a high-quality Pseudomonas aeruginosa PAO1 genome annotation, and facilitating whole-genome comparative analyses with other Pseudomonas strains. To aid analysis of potentially thousands of complete and draft genome assemblies, this database and analysis platform was upgraded to integrate curated genome annotations and isolate metadata with enhanced tools for larger scale comparative analysis and visualization. Manually curated gene annotations are supplemented with improved computational analyses that help identify putative drug targets and vaccine candidates or assist with evolutionary studies by identifying orthologs, pathogen-associated genes and genomic islands. The database schema has been updated to integrate isolate metadata that will facilitate more powerful analysis of genomes across datasets in the future. We continue to place an emphasis on providing high-quality updates to gene annotations through regular review of the scientific literature and using community-based approaches including a major new Pseudomonas community initiative for the assignment of high-quality gene ontology terms to genes. As we further expand from thousands of genomes, we plan to provide enhancements that will aid data visualization and analysis arising from whole-genome comparative studies including more pan-genome and population-based approaches. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. A compendium of canine normal tissue gene expression.

    Directory of Open Access Journals (Sweden)

    Joseph Briggs

    Full Text Available BACKGROUND: Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. METHODOLOGY/PRINCIPAL FINDINGS: The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. CONCLUSIONS/SIGNIFICANCE: These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large.

  10. Characterizing and annotating the genome using RNA-seq data.

    Science.gov (United States)

    Chen, Geng; Shi, Tieliu; Shi, Leming

    2017-02-01

    Bioinformatics methods for various RNA-seq data analyses are in fast evolution with the improvement of sequencing technologies. However, many challenges still exist in how to efficiently process the RNA-seq data to obtain accurate and comprehensive results. Here we reviewed the strategies for improving diverse transcriptomic studies and the annotation of genetic variants based on RNA-seq data. Mapping RNA-seq reads to the genome and transcriptome represent two distinct methods for quantifying the expression of genes/transcripts. Besides the known genes annotated in current databases, many novel genes/transcripts (especially those long noncoding RNAs) still can be identified on the reference genome using RNA-seq. Moreover, owing to the incompleteness of current reference genomes, some novel genes are missing from them. Genome- guided and de novo transcriptome reconstruction are two effective and complementary strategies for identifying those novel genes/transcripts on or beyond the reference genome. In addition, integrating the genes of distinct databases to conduct transcriptomics and genetics studies can improve the results of corresponding analyses.

  11. Transcription factors and stress response gene alterations in human keratinocytes following Solar Simulated Ultra Violet Radiation.

    Science.gov (United States)

    Marais, Thomas L Des; Kluz, Thomas; Xu, Dazhong; Zhang, Xiaoru; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2017-10-19

    Ultraviolet radiation (UVR) from sunlight is the major effector for skin aging and carcinogenesis. However, genes and pathways altered by solar-simulated UVR (ssUVR), a mixture of UVA and UVB, are not well characterized. Here we report global changes in gene expression as well as associated pathways and upstream transcription factors in human keratinocytes exposed to ssUVR. Human HaCaT keratinocytes were exposed to either a single dose or 5 repetitive doses of ssUVR. Comprehensive analyses of gene expression profiles as well as functional annotation were performed at 24 hours post irradiation. Our results revealed that ssUVR modulated genes with diverse cellular functions changed in a dose-dependent manner. Gene expression in cells exposed to a single dose of ssUVR differed significantly from those that underwent repetitive exposures. While single ssUVR caused a significant inhibition in genes involved in cell cycle progression, especially G2/M checkpoint and mitotic regulation, repetitive ssUVR led to extensive changes in genes related to cell signaling and metabolism. We have also identified a panel of ssUVR target genes that exhibited persistent changes in gene expression even at 1 week after irradiation. These results revealed a complex network of transcriptional regulators and pathways that orchestrate the cellular response to ssUVR.

  12. BG7: A New Approach for Bacterial Genome Annotation Designed for Next Generation Sequencing Data

    Science.gov (United States)

    Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Pareja, Eduardo; Tobes, Raquel

    2012-01-01

    BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version – which is developed in Java, takes advantage of Amazon Web Services (AWS) cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future. PMID:23185310

  13. BG7: a new approach for bacterial genome annotation designed for next generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Pablo Pareja-Tobes

    Full Text Available BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version - which is developed in Java, takes advantage of Amazon Web Services (AWS cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future.

  14. Discovery and Characterization of piRNAs in the Human Fetal Ovary

    Directory of Open Access Journals (Sweden)

    Zev Williams

    2015-10-01

    Full Text Available Piwi-interacting RNAs (piRNAs, a class of 26- to 32-nt non-coding RNAs (ncRNAs, function in germline development, transposon silencing, and epigenetic regulation. We performed deep sequencing and annotation of untreated and periodate-treated small RNA cDNA libraries from human fetal and adult germline and reference somatic tissues. This revealed abundant piRNAs originating from 150 piRNA-encoding genes, including some exhibiting gender-specific expression, in fetal ovary and adult testis—developmental periods coinciding with mitotic cell divisions expanding fetal germ cells prior to meiotic divisions. The absence of reads mapping uniquely to annotated piRNA genes demonstrated their paucity in fetal testis and adult ovary and absence in somatic tissues. We curated human piRNA-expressing regions and defined their precise borders and observed piRNA-guided cleavage of transcripts antisense to some piRNA-producing genes. This study provides insights into sex-specific mammalian piRNA expression and function and serves as a reference for human piRNA analysis and annotation.

  15. Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer’s disease

    Science.gov (United States)

    Abdallah, Sarah; Ou, Derek; Wang, Qian; Hu, Yiming; Lu, Yisi; Liu, Wei; Li, Boyang; Mukherjee, Shubhabrata; Crane, Paul K.; Zhao, Hongyu

    2017-01-01

    Continuing efforts from large international consortia have made genome-wide epigenomic and transcriptomic annotation data publicly available for a variety of cell and tissue types. However, synthesis of these datasets into effective summary metrics to characterize the functional non-coding genome remains a challenge. Here, we present GenoSkyline-Plus, an extension of our previous work through integration of an expanded set of epigenomic and transcriptomic annotations to produce high-resolution, single tissue annotations. After validating our annotations with a catalog of tissue-specific non-coding elements previously identified in the literature, we apply our method using data from 127 different cell and tissue types to present an atlas of heritability enrichment across 45 different GWAS traits. We show that broader organ system categories (e.g. immune system) increase statistical power in identifying biologically relevant tissue types for complex diseases while annotations of individual cell types (e.g. monocytes or B-cells) provide deeper insights into disease etiology. Additionally, we use our GenoSkyline-Plus annotations in an in-depth case study of late-onset Alzheimer’s disease (LOAD). Our analyses suggest a strong connection between LOAD heritability and genetic variants contained in regions of the genome functional in monocytes. Furthermore, we show that LOAD shares a similar localization of SNPs to monocyte-functional regions with Parkinson’s disease. Overall, we demonstrate that integrated genome annotations at the single tissue level provide a valuable tool for understanding the etiology of complex human diseases. Our GenoSkyline-Plus annotations are freely available at http://genocanyon.med.yale.edu/GenoSkyline. PMID:28742084

  16. GOseek: a gene ontology search engine using enhanced keywords.

    Science.gov (United States)

    Taha, Kamal

    2013-01-01

    We propose in this paper a biological search engine called GOseek, which overcomes the limitation of current gene similarity tools. Given a set of genes, GOseek returns the most significant genes that are semantically related to the given genes. These returned genes are usually annotated to one of the Lowest Common Ancestors (LCA) of the Gene Ontology (GO) terms annotating the given genes. Most genes have several annotation GO terms. Therefore, there may be more than one LCA for the GO terms annotating the given genes. The LCA annotating the genes that are most semantically related to the given gene is the one that receives the most aggregate semantic contribution from the GO terms annotating the given genes. To identify this LCA, GOseek quantifies the contribution of the GO terms annotating the given genes to the semantics of their LCAs. That is, it encodes the semantic contribution into a numeric format. GOseek uses microarray experiment data to rank result genes based on their significance. We evaluated GOseek experimentally and compared it with a comparable gene prediction tool. Results showed marked improvement over the tool.

  17. MetaStorm: A Public Resource for Customizable Metagenomics Annotation.

    Directory of Open Access Journals (Sweden)

    Gustavo Arango-Argoty

    Full Text Available Metagenomics is a trending research area, calling for the need to analyze large quantities of data generated from next generation DNA sequencing technologies. The need to store, retrieve, analyze, share, and visualize such data challenges current online computational systems. Interpretation and annotation of specific information is especially a challenge for metagenomic data sets derived from environmental samples, because current annotation systems only offer broad classification of microbial diversity and function. Moreover, existing resources are not configured to readily address common questions relevant to environmental systems. Here we developed a new online user-friendly metagenomic analysis server called MetaStorm (http://bench.cs.vt.edu/MetaStorm/, which facilitates customization of computational analysis for metagenomic data sets. Users can upload their own reference databases to tailor the metagenomics annotation to focus on various taxonomic and functional gene markers of interest. MetaStorm offers two major analysis pipelines: an assembly-based annotation pipeline and the standard read annotation pipeline used by existing web servers. These pipelines can be selected individually or together. Overall, MetaStorm provides enhanced interactive visualization to allow researchers to explore and manipulate taxonomy and functional annotation at various levels of resolution.

  18. MetaStorm: A Public Resource for Customizable Metagenomics Annotation.

    Science.gov (United States)

    Arango-Argoty, Gustavo; Singh, Gargi; Heath, Lenwood S; Pruden, Amy; Xiao, Weidong; Zhang, Liqing

    2016-01-01

    Metagenomics is a trending research area, calling for the need to analyze large quantities of data generated from next generation DNA sequencing technologies. The need to store, retrieve, analyze, share, and visualize such data challenges current online computational systems. Interpretation and annotation of specific information is especially a challenge for metagenomic data sets derived from environmental samples, because current annotation systems only offer broad classification of microbial diversity and function. Moreover, existing resources are not configured to readily address common questions relevant to environmental systems. Here we developed a new online user-friendly metagenomic analysis server called MetaStorm (http://bench.cs.vt.edu/MetaStorm/), which facilitates customization of computational analysis for metagenomic data sets. Users can upload their own reference databases to tailor the metagenomics annotation to focus on various taxonomic and functional gene markers of interest. MetaStorm offers two major analysis pipelines: an assembly-based annotation pipeline and the standard read annotation pipeline used by existing web servers. These pipelines can be selected individually or together. Overall, MetaStorm provides enhanced interactive visualization to allow researchers to explore and manipulate taxonomy and functional annotation at various levels of resolution.

  19. MetaStorm: A Public Resource for Customizable Metagenomics Annotation

    Science.gov (United States)

    Arango-Argoty, Gustavo; Singh, Gargi; Heath, Lenwood S.; Pruden, Amy; Xiao, Weidong; Zhang, Liqing

    2016-01-01

    Metagenomics is a trending research area, calling for the need to analyze large quantities of data generated from next generation DNA sequencing technologies. The need to store, retrieve, analyze, share, and visualize such data challenges current online computational systems. Interpretation and annotation of specific information is especially a challenge for metagenomic data sets derived from environmental samples, because current annotation systems only offer broad classification of microbial diversity and function. Moreover, existing resources are not configured to readily address common questions relevant to environmental systems. Here we developed a new online user-friendly metagenomic analysis server called MetaStorm (http://bench.cs.vt.edu/MetaStorm/), which facilitates customization of computational analysis for metagenomic data sets. Users can upload their own reference databases to tailor the metagenomics annotation to focus on various taxonomic and functional gene markers of interest. MetaStorm offers two major analysis pipelines: an assembly-based annotation pipeline and the standard read annotation pipeline used by existing web servers. These pipelines can be selected individually or together. Overall, MetaStorm provides enhanced interactive visualization to allow researchers to explore and manipulate taxonomy and functional annotation at various levels of resolution. PMID:27632579

  20. EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries.

    Science.gov (United States)

    Smith, Robin P; Buchser, William J; Lemmon, Marcus B; Pardinas, Jose R; Bixby, John L; Lemmon, Vance P

    2008-04-10

    Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples) produced by subtractive hybridization. EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects.

  1. EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries

    Directory of Open Access Journals (Sweden)

    Pardinas Jose R

    2008-04-01

    Full Text Available Abstract Background Several biological techniques result in the acquisition of functional sets of cDNAs that must be sequenced and analyzed. The emergence of redundant databases such as UniGene and centralized annotation engines such as Entrez Gene has allowed the development of software that can analyze a great number of sequences in a matter of seconds. Results We have developed "EST Express", a suite of analytical tools that identify and annotate ESTs originating from specific mRNA populations. The software consists of a user-friendly GUI powered by PHP and MySQL that allows for online collaboration between researchers and continuity with UniGene, Entrez Gene and RefSeq. Two key features of the software include a novel, simplified Entrez Gene parser and tools to manage cDNA library sequencing projects. We have tested the software on a large data set (2,016 samples produced by subtractive hybridization. Conclusion EST Express is an open-source, cross-platform web server application that imports sequences from cDNA libraries, such as those generated through subtractive hybridization or yeast two-hybrid screens. It then provides several layers of annotation based on Entrez Gene and RefSeq to allow the user to highlight useful genes and manage cDNA library projects.

  2. Human Gene Therapy: Genes without Frontiers?

    Science.gov (United States)

    Simon, Eric J.

    2002-01-01

    Describes the latest advancements and setbacks in human gene therapy to provide reference material for biology teachers to use in their science classes. Focuses on basic concepts such as recombinant DNA technology, and provides examples of human gene therapy such as severe combined immunodeficiency syndrome, familial hypercholesterolemia, and…

  3. Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells

    International Nuclear Information System (INIS)

    Lambert, Carine B.; Spire, Catherine; Claude, Nancy; Guillouzo, Andre

    2009-01-01

    Phenobarbital (PB) induces or represses a wide spectrum of genes in rodent liver. Much less is known about its effects in human liver. We used pangenomic cDNA microarrays to analyze concentration- and time-dependent gene expression profile changes induced by PB in the well-differentiated human HepaRG cell line. Changes in gene expression profiles clustered at specific concentration ranges and treatment times. The number of correctly annotated genes significantly modulated by at least three different PB concentration ranges (spanning 0.5 to 3.2 mM) at 20 h exposure amounted to 77 and 128 genes (p ≤ 0.01) at 2- and 1.8-fold filter changes, respectively. At low concentrations (0.5 and 1 mM), PB-responsive genes included the well-recognized CAR- and PXR-dependent responsive cytochromes P450 (CYP2B6, CYP3A4), sulfotransferase 2A1 and plasma transporters (ABCB1, ABCC2), as well as a number of genes critically involved in various metabolic pathways, including lipid (CYP4A11, CYP4F3), vitamin D (CYP24A1) and bile (CYP7A1 and CYP8B1) metabolism. At concentrations of 3.2 mM or higher after 20 h, and especially 48 h, increased cytotoxic effects were associated with disregulation of numerous genes related to oxidative stress, DNA repair and apoptosis. Primary human hepatocyte cultures were also exposed to 1 and 3.2 mM PB for 20 h and the changes were comparable to those found in HepaRG cells treated under the same conditions. Taken altogether, our data provide further evidence that HepaRG cells closely resemble primary human hepatocytes and provide new information on the effects of PB in human liver. These data also emphasize the importance of investigating dose- and time-dependent effects of chemicals when using toxicogenomic approaches

  4. Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana

    Science.gov (United States)

    Itoh, Takeshi; Tanaka, Tsuyoshi; Barrero, Roberto A.; Yamasaki, Chisato; Fujii, Yasuyuki; Hilton, Phillip B.; Antonio, Baltazar A.; Aono, Hideo; Apweiler, Rolf; Bruskiewich, Richard; Bureau, Thomas; Burr, Frances; Costa de Oliveira, Antonio; Fuks, Galina; Habara, Takuya; Haberer, Georg; Han, Bin; Harada, Erimi; Hiraki, Aiko T.; Hirochika, Hirohiko; Hoen, Douglas; Hokari, Hiroki; Hosokawa, Satomi; Hsing, Yue; Ikawa, Hiroshi; Ikeo, Kazuho; Imanishi, Tadashi; Ito, Yukiyo; Jaiswal, Pankaj; Kanno, Masako; Kawahara, Yoshihiro; Kawamura, Toshiyuki; Kawashima, Hiroaki; Khurana, Jitendra P.; Kikuchi, Shoshi; Komatsu, Setsuko; Koyanagi, Kanako O.; Kubooka, Hiromi; Lieberherr, Damien; Lin, Yao-Cheng; Lonsdale, David; Matsumoto, Takashi; Matsuya, Akihiro; McCombie, W. Richard; Messing, Joachim; Miyao, Akio; Mulder, Nicola; Nagamura, Yoshiaki; Nam, Jongmin; Namiki, Nobukazu; Numa, Hisataka; Nurimoto, Shin; O’Donovan, Claire; Ohyanagi, Hajime; Okido, Toshihisa; OOta, Satoshi; Osato, Naoki; Palmer, Lance E.; Quetier, Francis; Raghuvanshi, Saurabh; Saichi, Naomi; Sakai, Hiroaki; Sakai, Yasumichi; Sakata, Katsumi; Sakurai, Tetsuya; Sato, Fumihiko; Sato, Yoshiharu; Schoof, Heiko; Seki, Motoaki; Shibata, Michie; Shimizu, Yuji; Shinozaki, Kazuo; Shinso, Yuji; Singh, Nagendra K.; Smith-White, Brian; Takeda, Jun-ichi; Tanino, Motohiko; Tatusova, Tatiana; Thongjuea, Supat; Todokoro, Fusano; Tsugane, Mika; Tyagi, Akhilesh K.; Vanavichit, Apichart; Wang, Aihui; Wing, Rod A.; Yamaguchi, Kaori; Yamamoto, Mayu; Yamamoto, Naoyuki; Yu, Yeisoo; Zhang, Hao; Zhao, Qiang; Higo, Kenichi; Burr, Benjamin; Gojobori, Takashi; Sasaki, Takuji

    2007-01-01

    We present here the annotation of the complete genome of rice Oryza sativa L. ssp. japonica cultivar Nipponbare. All functional annotations for proteins and non-protein-coding RNA (npRNA) candidates were manually curated. Functions were identified or inferred in 19,969 (70%) of the proteins, and 131 possible npRNAs (including 58 antisense transcripts) were found. Almost 5000 annotated protein-coding genes were found to be disrupted in insertional mutant lines, which will accelerate future experimental validation of the annotations. The rice loci were determined by using cDNA sequences obtained from rice and other representative cereals. Our conservative estimate based on these loci and an extrapolation suggested that the gene number of rice is ∼32,000, which is smaller than previous estimates. We conducted comparative analyses between rice and Arabidopsis thaliana and found that both genomes possessed several lineage-specific genes, which might account for the observed differences between these species, while they had similar sets of predicted functional domains among the protein sequences. A system to control translational efficiency seems to be conserved across large evolutionary distances. Moreover, the evolutionary process of protein-coding genes was examined. Our results suggest that natural selection may have played a role for duplicated genes in both species, so that duplication was suppressed or favored in a manner that depended on the function of a gene. PMID:17210932

  5. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects.

    Science.gov (United States)

    Holt, Carson; Yandell, Mark

    2011-12-22

    Second-generation sequencing technologies are precipitating major shifts with regards to what kinds of genomes are being sequenced and how they are annotated. While the first generation of genome projects focused on well-studied model organisms, many of today's projects involve exotic organisms whose genomes are largely terra incognita. This complicates their annotation, because unlike first-generation projects, there are no pre-existing 'gold-standard' gene-models with which to train gene-finders. Improvements in genome assembly and the wide availability of mRNA-seq data are also creating opportunities to update and re-annotate previously published genome annotations. Today's genome projects are thus in need of new genome annotation tools that can meet the challenges and opportunities presented by second-generation sequencing technologies. We present MAKER2, a genome annotation and data management tool designed for second-generation genome projects. MAKER2 is a multi-threaded, parallelized application that can process second-generation datasets of virtually any size. We show that MAKER2 can produce accurate annotations for novel genomes where training-data are limited, of low quality or even non-existent. MAKER2 also provides an easy means to use mRNA-seq data to improve annotation quality; and it can use these data to update legacy annotations, significantly improving their quality. We also show that MAKER2 can evaluate the quality of genome annotations, and identify and prioritize problematic annotations for manual review. MAKER2 is the first annotation engine specifically designed for second-generation genome projects. MAKER2 scales to datasets of any size, requires little in the way of training data, and can use mRNA-seq data to improve annotation quality. It can also update and manage legacy genome annotation datasets.

  6. A semi-automatic annotation tool for cooking video

    Science.gov (United States)

    Bianco, Simone; Ciocca, Gianluigi; Napoletano, Paolo; Schettini, Raimondo; Margherita, Roberto; Marini, Gianluca; Gianforme, Giorgio; Pantaleo, Giuseppe

    2013-03-01

    In order to create a cooking assistant application to guide the users in the preparation of the dishes relevant to their profile diets and food preferences, it is necessary to accurately annotate the video recipes, identifying and tracking the foods of the cook. These videos present particular annotation challenges such as frequent occlusions, food appearance changes, etc. Manually annotate the videos is a time-consuming, tedious and error-prone task. Fully automatic tools that integrate computer vision algorithms to extract and identify the elements of interest are not error free, and false positive and false negative detections need to be corrected in a post-processing stage. We present an interactive, semi-automatic tool for the annotation of cooking videos that integrates computer vision techniques under the supervision of the user. The annotation accuracy is increased with respect to completely automatic tools and the human effort is reduced with respect to completely manual ones. The performance and usability of the proposed tool are evaluated on the basis of the time and effort required to annotate the same video sequences.

  7. Coordinated and sequential transcription of the cyprinid herpesvirus-3 annotated genes.

    Science.gov (United States)

    Ilouze, Maya; Dishon, Arnon; Kotler, Moshe

    2012-10-01

    Cyprinid herpesvirus-3 (CyHV-3) is the cause of a fatal disease in carp and koi fish. The disease is seasonal and appears when water temperatures range from 18 to 28°C. CyHV-3 is a member of the Alloherpesviridae, a family in the Herpesvirales order that encompasses mammalian, avian and reptilian viruses. CyHV-3 is a large double-stranded DNA (dsDNA) herpesvirus with a genome of approximately 295kbp, divergent from other mammalian, avian and reptilian herpesviruses, but bearing several genes similar to cyprinid herpesvirus-1 (CyHV-1), CyHV-2, anguillid herpesvirus-1 (AngHV-1), ictalurid herpesvirus-1 (IcHV-1) and ranid herpes virus-1 (RaHV-1). Here we show that viral DNA synthesis commences 4-8h post-infection (p.i.), and is completely inhibited by pre-treatment with cytosine β-d-arabinofuranoside (Ara-C). Transcription of CyHV-3 genes initiates after infection as early as 1-2h p.i., and precedes viral DNA synthesis. All 156 annotated open reading frames (ORFs) of the CyHV-3 genome are transcribed into RNAs, most of which can be classified into immediate early (IE or α), early (E or β) and late (L or γ) classes, similar to all other herpesviruses. Several ORFs belonging to these groups are clustered along the viral genome. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Determining Semantically Related Significant Genes.

    Science.gov (United States)

    Taha, Kamal

    2014-01-01

    GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement.

  9. Characterization and distribution of repetitive elements in association with genes in the human genome.

    Science.gov (United States)

    Liang, Kai-Chiang; Tseng, Joseph T; Tsai, Shaw-Jenq; Sun, H Sunny

    2015-08-01

    Repetitive elements constitute more than 50% of the human genome. Recent studies implied that the complexity of living organisms is not just a direct outcome of a number of coding sequences; the repetitive elements, which do not encode proteins, may also play a significant role. Though scattered studies showed that repetitive elements in the regulatory regions of a gene control gene expression, no systematic survey has been done to report the characterization and distribution of various types of these repetitive elements in the human genome. Sequences from 5' and 3' untranslated regions and upstream and downstream of a gene were downloaded from the Ensembl database. The repetitive elements in the neighboring of each gene were identified and classified using cross-matching implemented in the RepeatMasker. The annotation and distribution of distinct classes of repetitive elements associated with individual gene were collected to characterize genes in association with different types of repetitive elements using systems biology program. We identified a total of 1,068,400 repetitive elements which belong to 37-class families and 1235 subclasses that are associated with 33,761 genes and 57,365 transcripts. In addition, we found that the tandem repeats preferentially locate proximal to the transcription start site (TSS) of genes and the major function of these genes are involved in developmental processes. On the other hand, interspersed repetitive elements showed a tendency to be accumulated at distal region from the TSS and the function of interspersed repeat-containing genes took part in the catabolic/metabolic processes. Results from the distribution analysis were collected and used to construct a gene-based repetitive element database (GBRED; http://www.binfo.ncku.edu.tw/GBRED/index.html). A user-friendly web interface was designed to provide the information of repetitive elements associated with any particular gene(s). This is the first study focusing on the gene

  10. Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study

    Directory of Open Access Journals (Sweden)

    Nachon Raethong

    2016-01-01

    Full Text Available Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes, electrochemical potential-driven transporters (33 genes, and primary active transporters (15 genes. To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H+-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction.

  11. Sequence- and Structure-Based Functional Annotation and Assessment of Metabolic Transporters in Aspergillus oryzae: A Representative Case Study.

    Science.gov (United States)

    Raethong, Nachon; Wong-Ekkabut, Jirasak; Laoteng, Kobkul; Vongsangnak, Wanwipa

    2016-01-01

    Aspergillus oryzae is widely used for the industrial production of enzymes. In A. oryzae metabolism, transporters appear to play crucial roles in controlling the flux of molecules for energy generation, nutrients delivery, and waste elimination in the cell. While the A. oryzae genome sequence is available, transporter annotation remains limited and thus the connectivity of metabolic networks is incomplete. In this study, we developed a metabolic annotation strategy to understand the relationship between the sequence, structure, and function for annotation of A. oryzae metabolic transporters. Sequence-based analysis with manual curation showed that 58 genes of 12,096 total genes in the A. oryzae genome encoded metabolic transporters. Under consensus integrative databases, 55 unambiguous metabolic transporter genes were distributed into channels and pores (7 genes), electrochemical potential-driven transporters (33 genes), and primary active transporters (15 genes). To reveal the transporter functional role, a combination of homology modeling and molecular dynamics simulation was implemented to assess the relationship between sequence to structure and structure to function. As in the energy metabolism of A. oryzae, the H(+)-ATPase encoded by the AO090005000842 gene was selected as a representative case study of multilevel linkage annotation. Our developed strategy can be used for enhancing metabolic network reconstruction.

  12. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes

    Science.gov (United States)

    Pantano, Lorena; Jodar, Meritxell; Bak, Mads; Ballescà, Josep Lluís; Tommerup, Niels; Oliva, Rafael; Vavouri, Tanya

    2015-01-01

    At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline. PMID:25904136

  13. GeneTopics - interpretation of gene sets via literature-driven topic models

    Science.gov (United States)

    2013-01-01

    Background Annotation of a set of genes is often accomplished through comparison to a library of labelled gene sets such as biological processes or canonical pathways. However, this approach might fail if the employed libraries are not up to date with the latest research, don't capture relevant biological themes or are curated at a different level of granularity than is required to appropriately analyze the input gene set. At the same time, the vast biomedical literature offers an unstructured repository of the latest research findings that can be tapped to provide thematic sub-groupings for any input gene set. Methods Our proposed method relies on a gene-specific text corpus and extracts commonalities between documents in an unsupervised manner using a topic model approach. We automatically determine the number of topics summarizing the corpus and calculate a gene relevancy score for each topic allowing us to eliminate non-specific topics. As a result we obtain a set of literature topics in which each topic is associated with a subset of the input genes providing directly interpretable keywords and corresponding documents for literature research. Results We validate our method based on labelled gene sets from the KEGG metabolic pathway collection and the genetic association database (GAD) and show that the approach is able to detect topics consistent with the labelled annotation. Furthermore, we discuss the results on three different types of experimentally derived gene sets, (1) differentially expressed genes from a cardiac hypertrophy experiment in mice, (2) altered transcript abundance in human pancreatic beta cells, and (3) genes implicated by GWA studies to be associated with metabolite levels in a healthy population. In all three cases, we are able to replicate findings from the original papers in a quick and semi-automated manner. Conclusions Our approach provides a novel way of automatically generating meaningful annotations for gene sets that are directly

  14. SEGEL: A Web Server for Visualization of Smoking Effects on Human Lung Gene Expression.

    Science.gov (United States)

    Xu, Yan; Hu, Brian; Alnajm, Sammy S; Lu, Yin; Huang, Yangxin; Allen-Gipson, Diane; Cheng, Feng

    2015-01-01

    Cigarette smoking is a major cause of death worldwide resulting in over six million deaths per year. Cigarette smoke contains complex mixtures of chemicals that are harmful to nearly all organs of the human body, especially the lungs. Cigarette smoking is considered the major risk factor for many lung diseases, particularly chronic obstructive pulmonary diseases (COPD) and lung cancer. However, the underlying molecular mechanisms of smoking-induced lung injury associated with these lung diseases still remain largely unknown. Expression microarray techniques have been widely applied to detect the effects of smoking on gene expression in different human cells in the lungs. These projects have provided a lot of useful information for researchers to understand the potential molecular mechanism(s) of smoke-induced pathogenesis. However, a user-friendly web server that would allow scientists to fast query these data sets and compare the smoking effects on gene expression across different cells had not yet been established. For that reason, we have integrated eight public expression microarray data sets from trachea epithelial cells, large airway epithelial cells, small airway epithelial cells, and alveolar macrophage into an online web server called SEGEL (Smoking Effects on Gene Expression of Lung). Users can query gene expression patterns across these cells from smokers and nonsmokers by gene symbols, and find the effects of smoking on the gene expression of lungs from this web server. Sex difference in response to smoking is also shown. The relationship between the gene expression and cigarette smoking consumption were calculated and are shown in the server. The current version of SEGEL web server contains 42,400 annotated gene probe sets represented on the Affymetrix Human Genome U133 Plus 2.0 platform. SEGEL will be an invaluable resource for researchers interested in the effects of smoking on gene expression in the lungs. The server also provides useful information

  15. Canine candidate genes for dilated cardiomyopathy: annotation of and polymorphic markers for 14 genes

    OpenAIRE

    Wiersma, Anje C; Leegwater, Peter AJ; van Oost, Bernard A; Ollier, William E; Dukes-McEwan, Joanna

    2007-01-01

    Abstract Background Dilated cardiomyopathy is a myocardial disease occurring in humans and domestic animals and is characterized by dilatation of the left ventricle, reduced systolic function and increased sphericity of the left ventricle. Dilated cardiomyopathy has been observed in several, mostly large and giant, dog breeds, such as the Dobermann and the Great Dane. A number of genes have been identified, which are associated with dilated cardiomyopathy in the human, mouse and hamster. Thes...

  16. Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Mathieu Barbier

    Full Text Available Platelet adhesion to the brain microvasculature has been associated with cerebral malaria (CM in humans, suggesting that platelets play a role in the pathogenesis of this syndrome. In vitro co-cultures have shown that platelets can act as a bridge between Plasmodium falciparum-infected red blood cells (pRBC and human brain microvascular endothelial cells (HBEC and potentiate HBEC apoptosis. Using cDNA microarray technology, we analyzed transcriptional changes of HBEC in response to platelets in the presence or the absence of tumor necrosis factor (TNF and pRBC, which have been reported to alter gene expression in endothelial cells. Using a rigorous statistical approach with multiple test corrections, we showed a significant effect of platelets on gene expression in HBEC. We also detected a strong effect of TNF, whereas there was no transcriptional change induced specifically by pRBC. Nevertheless, a global ANOVA and a two-way ANOVA suggested that pRBC acted in interaction with platelets and TNF to alter gene expression in HBEC. The expression of selected genes was validated by RT-qPCR. The analysis of gene functional annotation indicated that platelets induce the expression of genes involved in inflammation and apoptosis, such as genes involved in chemokine-, TREM1-, cytokine-, IL10-, TGFβ-, death-receptor-, and apoptosis-signaling. Overall, our results support the hypothesis that platelets play a pathogenic role in CM.

  17. Comparative study of human mitochondrial proteome reveals extensive protein subcellular relocalization after gene duplications

    Directory of Open Access Journals (Sweden)

    Huang Yong

    2009-11-01

    Full Text Available Abstract Background Gene and genome duplication is the principle creative force in evolution. Recently, protein subcellular relocalization, or neolocalization was proposed as one of the mechanisms responsible for the retention of duplicated genes. This hypothesis received support from the analysis of yeast genomes, but has not been tested thoroughly on animal genomes. In order to evaluate the importance of subcellular relocalizations for retention of duplicated genes in animal genomes, we systematically analyzed nuclear encoded mitochondrial proteins in the human genome by reconstructing phylogenies of mitochondrial multigene families. Results The 456 human mitochondrial proteins selected for this study were clustered into 305 gene families including 92 multigene families. Among the multigene families, 59 (64% consisted of both mitochondrial and cytosolic (non-mitochondrial proteins (mt-cy families while the remaining 33 (36% were composed of mitochondrial proteins (mt-mt families. Phylogenetic analyses of mt-cy families revealed three different scenarios of their neolocalization following gene duplication: 1 relocalization from mitochondria to cytosol, 2 from cytosol to mitochondria and 3 multiple subcellular relocalizations. The neolocalizations were most commonly enabled by the gain or loss of N-terminal mitochondrial targeting signals. The majority of detected subcellular relocalization events occurred early in animal evolution, preceding the evolution of tetrapods. Mt-mt protein families showed a somewhat different pattern, where gene duplication occurred more evenly in time. However, for both types of protein families, most duplication events appear to roughly coincide with two rounds of genome duplications early in vertebrate evolution. Finally, we evaluated the effects of inaccurate and incomplete annotation of mitochondrial proteins and found that our conclusion of the importance of subcellular relocalization after gene duplication on

  18. Meta4: a web application for sharing and annotating metagenomic gene predictions using web services.

    Science.gov (United States)

    Richardson, Emily J; Escalettes, Franck; Fotheringham, Ian; Wallace, Robert J; Watson, Mick

    2013-01-01

    Whole-genome shotgun metagenomics experiments produce DNA sequence data from entire ecosystems, and provide a huge amount of novel information. Gene discovery projects require up-to-date information about sequence homology and domain structure for millions of predicted proteins to be presented in a simple, easy-to-use system. There is a lack of simple, open, flexible tools that allow the rapid sharing of metagenomics datasets with collaborators in a format they can easily interrogate. We present Meta4, a flexible and extensible web application that can be used to share and annotate metagenomic gene predictions. Proteins and predicted domains are stored in a simple relational database, with a dynamic front-end which displays the results in an internet browser. Web services are used to provide up-to-date information about the proteins from homology searches against public databases. Information about Meta4 can be found on the project website, code is available on Github, a cloud image is available, and an example implementation can be seen at.

  19. Integrating Ontological Knowledge and Textual Evidence in Estimating Gene and Gene Product Similarity

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Tratz, Stephen C.; Gregory, Michelle L.

    2006-06-08

    With the rising influence of the Gene On-tology, new approaches have emerged where the similarity between genes or gene products is obtained by comparing Gene Ontology code annotations associ-ated with them. So far, these approaches have solely relied on the knowledge en-coded in the Gene Ontology and the gene annotations associated with the Gene On-tology database. The goal of this paper is to demonstrate that improvements to these approaches can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  20. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4).

    Science.gov (United States)

    Huntemann, Marcel; Ivanova, Natalia N; Mavromatis, Konstantinos; Tripp, H James; Paez-Espino, David; Palaniappan, Krishnaveni; Szeto, Ernest; Pillay, Manoj; Chen, I-Min A; Pati, Amrita; Nielsen, Torben; Markowitz, Victor M; Kyrpides, Nikos C

    2015-01-01

    The DOE-JGI Microbial Genome Annotation Pipeline performs structural and functional annotation of microbial genomes that are further included into the Integrated Microbial Genome comparative analysis system. MGAP is applied to assembled nucleotide sequence datasets that are provided via the IMG submission site. Dataset submission for annotation first requires project and associated metadata description in GOLD. The MGAP sequence data processing consists of feature prediction including identification of protein-coding genes, non-coding RNAs and regulatory RNA features, as well as CRISPR elements. Structural annotation is followed by assignment of protein product names and functions.

  1. AutoFACT: An Automatic Functional Annotation and Classification Tool

    Directory of Open Access Journals (Sweden)

    Lang B Franz

    2005-06-01

    Full Text Available Abstract Background Assignment of function to new molecular sequence data is an essential step in genomics projects. The usual process involves similarity searches of a given sequence against one or more databases, an arduous process for large datasets. Results We present AutoFACT, a fully automated and customizable annotation tool that assigns biologically informative functions to a sequence. Key features of this tool are that it (1 analyzes nucleotide and protein sequence data; (2 determines the most informative functional description by combining multiple BLAST reports from several user-selected databases; (3 assigns putative metabolic pathways, functional classes, enzyme classes, GeneOntology terms and locus names; and (4 generates output in HTML, text and GFF formats for the user's convenience. We have compared AutoFACT to four well-established annotation pipelines. The error rate of functional annotation is estimated to be only between 1–2%. Comparison of AutoFACT to the traditional top-BLAST-hit annotation method shows that our procedure increases the number of functionally informative annotations by approximately 50%. Conclusion AutoFACT will serve as a useful annotation tool for smaller sequencing groups lacking dedicated bioinformatics staff. It is implemented in PERL and runs on LINUX/UNIX platforms. AutoFACT is available at http://megasun.bch.umontreal.ca/Software/AutoFACT.htm.

  2. Analysis of LYSA-calculus with explicit confidentiality annotations

    DEFF Research Database (Denmark)

    Gao, Han; Nielson, Hanne Riis

    2006-01-01

    Recently there has been an increased research interest in applying process calculi in the verification of cryptographic protocols due to their ability to formally model protocols. This work presents LYSA with explicit confidentiality annotations for indicating the expected behavior of target...... malicious activities performed by attackers as specified by the confidentiality annotations. The proposed analysis approach is fully automatic without the need of human intervention and has been applied successfully to a number of protocols....

  3. Ubiquitous Annotation Systems

    DEFF Research Database (Denmark)

    Hansen, Frank Allan

    2006-01-01

    Ubiquitous annotation systems allow users to annotate physical places, objects, and persons with digital information. Especially in the field of location based information systems much work has been done to implement adaptive and context-aware systems, but few efforts have focused on the general...... requirements for linking information to objects in both physical and digital space. This paper surveys annotation techniques from open hypermedia systems, Web based annotation systems, and mobile and augmented reality systems to illustrate different approaches to four central challenges ubiquitous annotation...... systems have to deal with: anchoring, structuring, presentation, and authoring. Through a number of examples each challenge is discussed and HyCon, a context-aware hypermedia framework developed at the University of Aarhus, Denmark, is used to illustrate an integrated approach to ubiquitous annotations...

  4. Patenting human genes: Chinese academic articles' portrayal of gene patents.

    Science.gov (United States)

    Du, Li

    2018-04-24

    The patenting of human genes has been the subject of debate for decades. While China has gradually come to play an important role in the global genomics-based testing and treatment market, little is known about Chinese scholars' perspectives on patent protection for human genes. A content analysis of academic literature was conducted to identify Chinese scholars' concerns regarding gene patents, including benefits and risks of patenting human genes, attitudes that researchers hold towards gene patenting, and any legal and policy recommendations offered for the gene patent regime in China. 57.2% of articles were written by law professors, but scholars from health sciences, liberal arts, and ethics also participated in discussions on gene patent issues. While discussions of benefits and risks were relatively balanced in the articles, 63.5% of the articles favored gene patenting in general and, of the articles (n = 41) that explored gene patents in the Chinese context, 90.2% supported patent protections for human genes in China. The patentability of human genes was discussed in 33 articles, and 75.8% of these articles reached the conclusion that human genes are patentable. Chinese scholars view the patent regime as an important legal tool to protect the interests of inventors and inventions as well as the genetic resources of China. As such, many scholars support a gene patent system in China. These attitudes towards gene patents remain unchanged following the court ruling in the Myriad case in 2013, but arguments have been raised about the scope of gene patents, in particular that the increasing numbers of gene patents may negatively impact public health in China.

  5. Identification of early target genes of aflatoxin B1 in human hepatocytes, inter-individual variability and comparison with other genotoxic compounds

    International Nuclear Information System (INIS)

    Josse, Rozenn; Dumont, Julie; Fautrel, Alain; Robin, Marie-Anne; Guillouzo, André

    2012-01-01

    Gene expression profiling has recently emerged as a promising approach to identify early target genes and discriminate genotoxic carcinogens from non-genotoxic carcinogens and non-carcinogens. However, early gene changes induced by genotoxic compounds in human liver remain largely unknown. Primary human hepatocytes and differentiated HepaRG cells were exposed to aflatoxin B1 (AFB1) that induces DNA damage following enzyme-mediated bioactivation. Gene expression profile changes induced by a 24 h exposure of these hepatocyte models to 0.05 and 0.25 μM AFB1 were analyzed by using oligonucleotide pangenomic microarrays. The main altered signaling pathway was the p53 pathway and related functions such as cell cycle, apoptosis and DNA repair. Direct involvement of the p53 protein in response to AFB1 was verified by using siRNA directed against p53. Among the 83 well-annotated genes commonly modulated in two pools of three human hepatocyte populations and HepaRG cells, several genes were identified as altered by AFB1 for the first time. In addition, a subset of 10 AFB1-altered genes, selected upon basis of their function or tumor suppressor role, was tested in four human hepatocyte populations and in response to other chemicals. Although they exhibited large variable inter-donor fold-changes, several of these genes, particularly FHIT, BCAS3 and SMYD3, were found to be altered by various direct and other indirect genotoxic compounds and unaffected by non-genotoxic compounds. Overall, this comprehensive analysis of early gene expression changes induced by AFB1 in human hepatocytes identified a gene subset that included several genes representing potential biomarkers of genotoxic compounds. -- Highlights: ► Gene expression profile changes induced by aflatoxin B1 in human hepatocytes. ► AFB1 modulates various genes including tumor suppressor genes and proto-oncogenes. ► Important inter-individual variations in the response to AFB1. ► Some genes also altered by other

  6. Annotation Of Novel And Conserved MicroRNA Genes In The Build 10 Sus scrofa Reference Genome And Determination Of Their Expression Levels In Ten Different Tissues

    DEFF Research Database (Denmark)

    Thomsen, Bo; Nielsen, Mathilde; Hedegaard, Jakob

    The DNA template used in the pig genome sequencing project was provided by a Duroc pig named TJ Tabasco. In an effort to annotate microRNA (miRNA) genes in the reference genome we have conducted deep sequencing to determine the miRNA transcriptomes in ten different tissues isolated from Pinky......, a genetically identical clone of TJ Tabasco. The purpose was to generate miRNA sequences that are highly homologous to the reference genome sequence, which along with computational prediction will improve confidence in the genomic annotation of miRNA genes. Based on homology searches of the sequence data...... against miRBase, we identified more than 600 conserved known miRNA/miRNA*, which is a significant increase relative to the 211 porcine miRNA/miRNA* deposited in the current version of miRBase. Furthermore, the genome-wide transcript profiles provided important information on the relative abundance...

  7. H2DB: a heritability database across multiple species by annotating trait-associated genomic loci.

    Science.gov (United States)

    Kaminuma, Eli; Fujisawa, Takatomo; Tanizawa, Yasuhiro; Sakamoto, Naoko; Kurata, Nori; Shimizu, Tokurou; Nakamura, Yasukazu

    2013-01-01

    H2DB (http://tga.nig.ac.jp/h2db/), an annotation database of genetic heritability estimates for humans and other species, has been developed as a knowledge database to connect trait-associated genomic loci. Heritability estimates have been investigated for individual species, particularly in human twin studies and plant/animal breeding studies. However, there appears to be no comprehensive heritability database for both humans and other species. Here, we introduce an annotation database for genetic heritabilities of various species that was annotated by manually curating online public resources in PUBMED abstracts and journal contents. The proposed heritability database contains attribute information for trait descriptions, experimental conditions, trait-associated genomic loci and broad- and narrow-sense heritability specifications. Annotated trait-associated genomic loci, for which most are single-nucleotide polymorphisms derived from genome-wide association studies, may be valuable resources for experimental scientists. In addition, we assigned phenotype ontologies to the annotated traits for the purposes of discussing heritability distributions based on phenotypic classifications.

  8. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon

    Directory of Open Access Journals (Sweden)

    Wu Jiajie

    2010-10-01

    Full Text Available Abstract Background Glycoside hydrolases cleave the bond between a carbohydrate and another carbohydrate, a protein, lipid or other moiety. Genes encoding glycoside hydrolases are found in a wide range of organisms, from archea to animals, and are relatively abundant in plant genomes. In plants, these enzymes are involved in diverse processes, including starch metabolism, defense, and cell-wall remodeling. Glycoside hydrolase genes have been previously cataloged for Oryza sativa (rice, the model dicotyledonous plant Arabidopsis thaliana, and the fast-growing tree Populus trichocarpa (poplar. To improve our understanding of glycoside hydrolases in plants generally and in grasses specifically, we annotated the glycoside hydrolase genes in the grasses Brachypodium distachyon (an emerging monocotyledonous model and Sorghum bicolor (sorghum. We then compared the glycoside hydrolases across species, at the levels of the whole genome and individual glycoside hydrolase families. Results We identified 356 glycoside hydrolase genes in Brachypodium and 404 in sorghum. The corresponding proteins fell into the same 34 families that are represented in rice, Arabidopsis, and poplar, helping to define a glycoside hydrolase family profile which may be common to flowering plants. For several glycoside hydrolase familes (GH5, GH13, GH18, GH19, GH28, and GH51, we present a detailed literature review together with an examination of the family structures. This analysis of individual families revealed both similarities and distinctions between monocots and eudicots, as well as between species. Shared evolutionary histories appear to be modified by lineage-specific expansions or deletions. Within GH families, the Brachypodium and sorghum proteins generally cluster with those from other monocots. Conclusions This work provides the foundation for further comparative and functional analyses of plant glycoside hydrolases. Defining the Brachypodium glycoside hydrolases sets

  9. Assessment of disease named entity recognition on a corpus of annotated sentences.

    Science.gov (United States)

    Jimeno, Antonio; Jimenez-Ruiz, Ernesto; Lee, Vivian; Gaudan, Sylvain; Berlanga, Rafael; Rebholz-Schuhmann, Dietrich

    2008-04-11

    In recent years, the recognition of semantic types from the biomedical scientific literature has been focused on named entities like protein and gene names (PGNs) and gene ontology terms (GO terms). Other semantic types like diseases have not received the same level of attention. Different solutions have been proposed to identify disease named entities in the scientific literature. While matching the terminology with language patterns suffers from low recall (e.g., Whatizit) other solutions make use of morpho-syntactic features to better cover the full scope of terminological variability (e.g., MetaMap). Currently, MetaMap that is provided from the National Library of Medicine (NLM) is the state of the art solution for the annotation of concepts from UMLS (Unified Medical Language System) in the literature. Nonetheless, its performance has not yet been assessed on an annotated corpus. In addition, little effort has been invested so far to generate an annotated dataset that links disease entities in text to disease entries in a database, thesaurus or ontology and that could serve as a gold standard to benchmark text mining solutions. As part of our research work, we have taken a corpus that has been delivered in the past for the identification of associations of genes to diseases based on the UMLS Metathesaurus and we have reprocessed and re-annotated the corpus. We have gathered annotations for disease entities from two curators, analyzed their disagreement (0.51 in the kappa-statistic) and composed a single annotated corpus for public use. Thereafter, three solutions for disease named entity recognition including MetaMap have been applied to the corpus to automatically annotate it with UMLS Metathesaurus concepts. The resulting annotations have been benchmarked to compare their performance. The annotated corpus is publicly available at ftp://ftp.ebi.ac.uk/pub/software/textmining/corpora/diseases and can serve as a benchmark to other systems. In addition, we found

  10. miRBase: integrating microRNA annotation and deep-sequencing data.

    Science.gov (United States)

    Kozomara, Ana; Griffiths-Jones, Sam

    2011-01-01

    miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15,000 microRNA gene loci in over 140 species, and over 17,000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/.

  11. Genic regions of a large salamander genome contain long introns and novel genes

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2009-01-01

    Full Text Available Abstract Background The basis of genome size variation remains an outstanding question because DNA sequence data are lacking for organisms with large genomes. Sixteen BAC clones from the Mexican axolotl (Ambystoma mexicanum: c-value = 32 × 109 bp were isolated and sequenced to characterize the structure of genic regions. Results Annotation of genes within BACs showed that axolotl introns are on average 10× longer than orthologous vertebrate introns and they are predicted to contain more functional elements, including miRNAs and snoRNAs. Loci were discovered within BACs for two novel EST transcripts that are differentially expressed during spinal cord regeneration and skin metamorphosis. Unexpectedly, a third novel gene was also discovered while manually annotating BACs. Analysis of human-axolotl protein-coding sequences suggests there are 2% more lineage specific genes in the axolotl genome than the human genome, but the great majority (86% of genes between axolotl and human are predicted to be 1:1 orthologs. Considering that axolotl genes are on average 5× larger than human genes, the genic component of the salamander genome is estimated to be incredibly large, approximately 2.8 gigabases! Conclusion This study shows that a large salamander genome has a correspondingly large genic component, primarily because genes have incredibly long introns. These intronic sequences may harbor novel coding and non-coding sequences that regulate biological processes that are unique to salamanders.

  12. The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction

    Directory of Open Access Journals (Sweden)

    Garzón-Martínez Gina A

    2012-04-01

    Full Text Available Abstract Background Physalis peruviana commonly known as Cape gooseberry is a member of the Solanaceae family that has an increasing popularity due to its nutritional and medicinal values. A broad range of genomic tools is available for other Solanaceae, including tomato and potato. However, limited genomic resources are currently available for Cape gooseberry. Results We report the generation of a total of 652,614 P. peruviana Expressed Sequence Tags (ESTs, using 454 GS FLX Titanium technology. ESTs, with an average length of 371 bp, were obtained from a normalized leaf cDNA library prepared using a Colombian commercial variety. De novo assembling was performed to generate a collection of 24,014 isotigs and 110,921 singletons, with an average length of 1,638 bp and 354 bp, respectively. Functional annotation was performed using NCBI’s BLAST tools and Blast2GO, which identified putative functions for 21,191 assembled sequences, including gene families involved in all the major biological processes and molecular functions as well as defense response and amino acid metabolism pathways. Gene model predictions in P. peruviana were obtained by using the genomes of Solanum lycopersicum (tomato and Solanum tuberosum (potato. We predict 9,436 P. peruviana sequences with multiple-exon models and conserved intron positions with respect to the potato and tomato genomes. Additionally, to study species diversity we developed 5,971 SSR markers from assembled ESTs. Conclusions We present the first comprehensive analysis of the Physalis peruviana leaf transcriptome, which will provide valuable resources for development of genetic tools in the species. Assembled transcripts with gene models could serve as potential candidates for marker discovery with a variety of applications including: functional diversity, conservation and improvement to increase productivity and fruit quality. P. peruviana was estimated to be phylogenetically branched out before the

  13. The Physalis peruviana leaf transcriptome: assembly, annotation and gene model prediction.

    Science.gov (United States)

    Garzón-Martínez, Gina A; Zhu, Z Iris; Landsman, David; Barrero, Luz S; Mariño-Ramírez, Leonardo

    2012-04-25

    Physalis peruviana commonly known as Cape gooseberry is a member of the Solanaceae family that has an increasing popularity due to its nutritional and medicinal values. A broad range of genomic tools is available for other Solanaceae, including tomato and potato. However, limited genomic resources are currently available for Cape gooseberry. We report the generation of a total of 652,614 P. peruviana Expressed Sequence Tags (ESTs), using 454 GS FLX Titanium technology. ESTs, with an average length of 371 bp, were obtained from a normalized leaf cDNA library prepared using a Colombian commercial variety. De novo assembling was performed to generate a collection of 24,014 isotigs and 110,921 singletons, with an average length of 1,638 bp and 354 bp, respectively. Functional annotation was performed using NCBI's BLAST tools and Blast2GO, which identified putative functions for 21,191 assembled sequences, including gene families involved in all the major biological processes and molecular functions as well as defense response and amino acid metabolism pathways. Gene model predictions in P. peruviana were obtained by using the genomes of Solanum lycopersicum (tomato) and Solanum tuberosum (potato). We predict 9,436 P. peruviana sequences with multiple-exon models and conserved intron positions with respect to the potato and tomato genomes. Additionally, to study species diversity we developed 5,971 SSR markers from assembled ESTs. We present the first comprehensive analysis of the Physalis peruviana leaf transcriptome, which will provide valuable resources for development of genetic tools in the species. Assembled transcripts with gene models could serve as potential candidates for marker discovery with a variety of applications including: functional diversity, conservation and improvement to increase productivity and fruit quality. P. peruviana was estimated to be phylogenetically branched out before the divergence of five other Solanaceae family members, S

  14. Human Chromosome 7: DNA Sequence and Biology

    OpenAIRE

    Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E.

    2003-01-01

    DNA sequence and annotation of the entire human chromosome 7, encompassing nearly 158 million nucleotides of DNA and 1917 gene structures, are presented. To generate a higher order description, additional structural features such as imprinted genes, fragile sites, and segmental duplications were integrated at the level of the DNA sequence with medical genetic data, including 440 chromosome rearrangement breakpoints associated with disease. This approach enabled the discovery of candidate gene...

  15. Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry.

    Science.gov (United States)

    Boudah, Samia; Olivier, Marie-Françoise; Aros-Calt, Sandrine; Oliveira, Lydie; Fenaille, François; Tabet, Jean-Claude; Junot, Christophe

    2014-09-01

    This work aims at evaluating the relevance and versatility of liquid chromatography coupled to high resolution mass spectrometry (LC/HRMS) for performing a qualitative and comprehensive study of the human serum metabolome. To this end, three different chromatographic systems based on a reversed phase (RP), hydrophilic interaction chromatography (HILIC) and a pentafluorophenylpropyl (PFPP) stationary phase were used, with detection in both positive and negative electrospray modes. LC/HRMS platforms were first assessed for their ability to detect, retain and separate 657 metabolite standards representative of the chemical families occurring in biological fluids. More than 75% were efficiently retained in either one LC-condition and less than 5% were exclusively retained by the RP column. These three LC/HRMS systems were then evaluated for their coverage of serum metabolome. The combination of RP, HILIC and PFPP based LC/HRMS methods resulted in the annotation of about 1328 features in the negative ionization mode, and 1358 in the positive ionization mode on the basis of their accurate mass and precise retention time in at least one chromatographic condition. Less than 12% of these annotations were shared by the three LC systems, which highlights their complementarity. HILIC column ensured the greatest metabolome coverage in the negative ionization mode, whereas PFPP column was the most effective in the positive ionization mode. Altogether, 192 annotations were confirmed using our spectral database and 74 others by performing MS/MS experiments. This resulted in the formal or putative identification of 266 metabolites, among which 59 are reported for the first time in human serum. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. LCGbase: A Comprehensive Database for Lineage-Based Co-regulated Genes.

    Science.gov (United States)

    Wang, Dapeng; Zhang, Yubin; Fan, Zhonghua; Liu, Guiming; Yu, Jun

    2012-01-01

    Animal genes of different lineages, such as vertebrates and arthropods, are well-organized and blended into dynamic chromosomal structures that represent a primary regulatory mechanism for body development and cellular differentiation. The majority of genes in a genome are actually clustered, which are evolutionarily stable to different extents and biologically meaningful when evaluated among genomes within and across lineages. Until now, many questions concerning gene organization, such as what is the minimal number of genes in a cluster and what is the driving force leading to gene co-regulation, remain to be addressed. Here, we provide a user-friendly database-LCGbase (a comprehensive database for lineage-based co-regulated genes)-hosting information on evolutionary dynamics of gene clustering and ordering within animal kingdoms in two different lineages: vertebrates and arthropods. The database is constructed on a web-based Linux-Apache-MySQL-PHP framework and effective interactive user-inquiry service. Compared to other gene annotation databases with similar purposes, our database has three comprehensible advantages. First, our database is inclusive, including all high-quality genome assemblies of vertebrates and representative arthropod species. Second, it is human-centric since we map all gene clusters from other genomes in an order of lineage-ranks (such as primates, mammals, warm-blooded, and reptiles) onto human genome and start the database from well-defined gene pairs (a minimal cluster where the two adjacent genes are oriented as co-directional, convergent, and divergent pairs) to large gene clusters. Furthermore, users can search for any adjacent genes and their detailed annotations. Third, the database provides flexible parameter definitions, such as the distance of transcription start sites between two adjacent genes, which is extendable to genes that flanking the cluster across species. We also provide useful tools for sequence alignment, gene

  17. PCAS – a precomputed proteome annotation database resource

    Directory of Open Access Journals (Sweden)

    Luo Jingchu

    2003-11-01

    Full Text Available Abstract Background Many model proteomes or "complete" sets of proteins of given organisms are now publicly available. Much effort has been invested in computational annotation of those "draft" proteomes. Motif or domain based algorithms play a pivotal role in functional classification of proteins. Employing most available computational algorithms, mainly motif or domain recognition algorithms, we set up to develop an online proteome annotation system with integrated proteome annotation data to complement existing resources. Results We report here the development of PCAS (ProteinCentric Annotation System as an online resource of pre-computed proteome annotation data. We applied most available motif or domain databases and their analysis methods, including hmmpfam search of HMMs in Pfam, SMART and TIGRFAM, RPS-PSIBLAST search of PSSMs in CDD, pfscan of PROSITE patterns and profiles, as well as PSI-BLAST search of SUPERFAMILY PSSMs. In addition, signal peptide and TM are predicted using SignalP and TMHMM respectively. We mapped SUPERFAMILY and COGs to InterPro, so the motif or domain databases are integrated through InterPro. PCAS displays table summaries of pre-computed data and a graphical presentation of motifs or domains relative to the protein. As of now, PCAS contains human IPI, mouse IPI, and rat IPI, A. thaliana, C. elegans, D. melanogaster, S. cerevisiae, and S. pombe proteome. PCAS is available at http://pak.cbi.pku.edu.cn/proteome/gca.php Conclusion PCAS gives better annotation coverage for model proteomes by employing a wider collection of available algorithms. Besides presenting the most confident annotation data, PCAS also allows customized query so users can inspect statistically less significant boundary information as well. Therefore, besides providing general annotation information, PCAS could be used as a discovery platform. We plan to update PCAS twice a year. We will upgrade PCAS when new proteome annotation algorithms

  18. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Directory of Open Access Journals (Sweden)

    Toub Omid

    2010-10-01

    Full Text Available Abstract Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS were predicted by in silico analysis of the grapevine (Vitis vinifera genome assembly 1. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information

  19. Annotation of two large contiguous regions from the Haemonchus contortus genome using RNA-seq and comparative analysis with Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Roz Laing

    Full Text Available The genomes of numerous parasitic nematodes are currently being sequenced, but their complexity and size, together with high levels of intra-specific sequence variation and a lack of reference genomes, makes their assembly and annotation a challenging task. Haemonchus contortus is an economically significant parasite of livestock that is widely used for basic research as well as for vaccine development and drug discovery. It is one of many medically and economically important parasites within the strongylid nematode group. This group of parasites has the closest phylogenetic relationship with the model organism Caenorhabditis elegans, making comparative analysis a potentially powerful tool for genome annotation and functional studies. To investigate this hypothesis, we sequenced two contiguous fragments from the H. contortus genome and undertook detailed annotation and comparative analysis with C. elegans. The adult H. contortus transcriptome was sequenced using an Illumina platform and RNA-seq was used to annotate a 409 kb overlapping BAC tiling path relating to the X chromosome and a 181 kb BAC insert relating to chromosome I. In total, 40 genes and 12 putative transposable elements were identified. 97.5% of the annotated genes had detectable homologues in C. elegans of which 60% had putative orthologues, significantly higher than previous analyses based on EST analysis. Gene density appears to be less in H. contortus than in C. elegans, with annotated H. contortus genes being an average of two-to-three times larger than their putative C. elegans orthologues due to a greater intron number and size. Synteny appears high but gene order is generally poorly conserved, although areas of conserved microsynteny are apparent. C. elegans operons appear to be partially conserved in H. contortus. Our findings suggest that a combination of RNA-seq and comparative analysis with C. elegans is a powerful approach for the annotation and analysis of strongylid

  20. On the total number of genes and their length distribution in complete microbial genomes

    DEFF Research Database (Denmark)

    Skovgaard, M; Jensen, L J; Brunak, S

    2001-01-01

    In sequenced microbial genomes, some of the annotated genes are actually not protein-coding genes, but rather open reading frames that occur by chance. Therefore, the number of annotated genes is higher than the actual number of genes for most of these microbes. Comparison of the length distribut......In sequenced microbial genomes, some of the annotated genes are actually not protein-coding genes, but rather open reading frames that occur by chance. Therefore, the number of annotated genes is higher than the actual number of genes for most of these microbes. Comparison of the length...... distribution of the annotated genes with the length distribution of those matching a known protein reveals that too many short genes are annotated in many genomes. Here we estimate the true number of protein-coding genes for sequenced genomes. Although it is often claimed that Escherichia coli has about 4300...... genes, we show that it probably has only approximately 3800 genes, and that a similar discrepancy exists for almost all published genomes....

  1. IIS--Integrated Interactome System: a web-based platform for the annotation, analysis and visualization of protein-metabolite-gene-drug interactions by integrating a variety of data sources and tools.

    Science.gov (United States)

    Carazzolle, Marcelo Falsarella; de Carvalho, Lucas Miguel; Slepicka, Hugo Henrique; Vidal, Ramon Oliveira; Pereira, Gonçalo Amarante Guimarães; Kobarg, Jörg; Meirelles, Gabriela Vaz

    2014-01-01

    High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two

  2. An integrated and comparative approach towards identification, characterization and functional annotation of candidate genes for drought tolerance in sorghum (Sorghum bicolor (L.) Moench).

    Science.gov (United States)

    Woldesemayat, Adugna Abdi; Van Heusden, Peter; Ndimba, Bongani K; Christoffels, Alan

    2017-12-22

    Drought is the most disastrous abiotic stress that severely affects agricultural productivity worldwide. Understanding the biological basis of drought-regulated traits, requires identification and an in-depth characterization of genetic determinants using model organisms and high-throughput technologies. However, studies on drought tolerance have generally been limited to traditional candidate gene approach that targets only a single gene in a pathway that is related to a trait. In this study, we used sorghum, one of the model crops that is well adapted to arid regions, to mine genes and define determinants for drought tolerance using drought expression libraries and RNA-seq data. We provide an integrated and comparative in silico candidate gene identification, characterization and annotation approach, with an emphasis on genes playing a prominent role in conferring drought tolerance in sorghum. A total of 470 non-redundant functionally annotated drought responsive genes (DRGs) were identified using experimental data from drought responses by employing pairwise sequence similarity searches, pathway and interpro-domain analysis, expression profiling and orthology relation. Comparison of the genomic locations between these genes and sorghum quantitative trait loci (QTLs) showed that 40% of these genes were co-localized with QTLs known for drought tolerance. The genome reannotation conducted using the Program to Assemble Spliced Alignment (PASA), resulted in 9.6% of existing single gene models being updated. In addition, 210 putative novel genes were identified using AUGUSTUS and PASA based analysis on expression dataset. Among these, 50% were single exonic, 69.5% represented drought responsive and 5.7% were complete gene structure models. Analysis of biochemical metabolism revealed 14 metabolic pathways that are related to drought tolerance and also had a strong biological network, among categories of genes involved. Identification of these pathways, signifies the

  3. MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.

    Science.gov (United States)

    Wang, Julia; Al-Ouran, Rami; Hu, Yanhui; Kim, Seon-Young; Wan, Ying-Wooi; Wangler, Michael F; Yamamoto, Shinya; Chao, Hsiao-Tuan; Comjean, Aram; Mohr, Stephanie E; Perrimon, Norbert; Liu, Zhandong; Bellen, Hugo J

    2017-06-01

    One major challenge encountered with interpreting human genetic variants is the limited understanding of the functional impact of genetic alterations on biological processes. Furthermore, there remains an unmet demand for an efficient survey of the wealth of information on human homologs in model organisms across numerous databases. To efficiently assess the large volume of publically available information, it is important to provide a concise summary of the most relevant information in a rapid user-friendly format. To this end, we created MARRVEL (model organism aggregated resources for rare variant exploration). MARRVEL is a publicly available website that integrates information from six human genetic databases and seven model organism databases. For any given variant or gene, MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER. Importantly, it curates model organism-specific databases to concurrently display a concise summary regarding the human gene homologs in budding and fission yeast, worm, fly, fish, mouse, and rat on a single webpage. Experiment-based information on tissue expression, protein subcellular localization, biological process, and molecular function for the human gene and homologs in the seven model organisms are arranged into a concise output. Hence, rather than visiting multiple separate databases for variant and gene analysis, users can obtain important information by searching once through MARRVEL. Altogether, MARRVEL dramatically improves efficiency and accessibility to data collection and facilitates analysis of human genes and variants by cross-disciplinary integration of 18 million records available in public databases to facilitate clinical diagnosis and basic research. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. Evaluating the effect of annotation size on measures of semantic similarity

    KAUST Repository

    Kulmanov, Maxat

    2017-02-13

    Background: Ontologies are widely used as metadata in biological and biomedical datasets. Measures of semantic similarity utilize ontologies to determine how similar two entities annotated with classes from ontologies are, and semantic similarity is increasingly applied in applications ranging from diagnosis of disease to investigation in gene networks and functions of gene products.

  5. A comprehensive evaluation of rodent malaria parasite genomes and gene expression

    KAUST Repository

    Otto, Thomas D

    2014-10-30

    Background: Rodent malaria parasites (RMP) are used extensively as models of human malaria. Draft RMP genomes have been published for Plasmodium yoelii, P. berghei ANKA (PbA) and P. chabaudi AS (PcAS). Although availability of these genomes made a significant impact on recent malaria research, these genomes were highly fragmented and were annotated with little manual curation. The fragmented nature of the genomes has hampered genome wide analysis of Plasmodium gene regulation and function. Results: We have greatly improved the genome assemblies of PbA and PcAS, newly sequenced the virulent parasite P. yoelii YM genome, sequenced additional RMP isolates/lines and have characterized genotypic diversity within RMP species. We have produced RNA-seq data and utilized it to improve gene-model prediction and to provide quantitative, genome-wide, data on gene expression. Comparison of the RMP genomes with the genome of the human malaria parasite P. falciparum and RNA-seq mapping permitted gene annotation at base-pair resolution. Full-length chromosomal annotation permitted a comprehensive classification of all subtelomeric multigene families including the `Plasmodium interspersed repeat genes\\' (pir). Phylogenetic classification of the pir family, combined with pir expression patterns, indicates functional diversification within this family. Conclusions: Complete RMP genomes, RNA-seq and genotypic diversity data are excellent and important resources for gene-function and post-genomic analyses and to better interrogate Plasmodium biology. Genotypic diversity between P. chabaudi isolates makes this species an excellent parasite to study genotype-phenotype relationships. The improved classification of multigene families will enhance studies on the role of (variant) exported proteins in virulence and immune evasion/modulation.

  6. The 2008 update of the Aspergillus nidulans genome annotation: A community effort

    DEFF Research Database (Denmark)

    Wortman, Jennifer Russo; Gilsenan, Jane Mabey; Joardar, Vinita

    2009-01-01

    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional ap...

  7. The 2008 update of the Aspergillus nidulans genome annotation : a community effort

    NARCIS (Netherlands)

    Wortman, Jennifer Russo; Gilsenan, Jane Mabey; Joardar, Vinita; Deegan, Jennifer; Clutterbuck, John; Andersen, Mikael R; Archer, David; Bencina, Mojca; Braus, Gerhard; Coutinho, Pedro; von Döhren, Hans; Doonan, John; Driessen, Arnold J M; Durek, Pawel; Espeso, Eduardo; Fekete, Erzsébet; Flipphi, Michel; Estrada, Carlos Garcia; Geysens, Steven; Goldman, Gustavo; de Groot, Piet W J; Hansen, Kim; Harris, Steven D; Heinekamp, Thorsten; Helmstaedt, Kerstin; Henrissat, Bernard; Hofmann, Gerald; Homan, Tim; Horio, Tetsuya; Horiuchi, Hiroyuki; James, Steve; Jones, Meriel; Karaffa, Levente; Karányi, Zsolt; Kato, Masashi; Keller, Nancy; Kelly, Diane E; Kiel, Jan A K W; Kim, Jung-Mi; van der Klei, Ida J; Klis, Frans M; Kovalchuk, Andriy; Krasevec, Nada; Kubicek, Christian P; Liu, Bo; Maccabe, Andrew; Meyer, Vera; Mirabito, Pete; Miskei, Márton; Mos, Magdalena; Mullins, Jonathan; Nelson, David R; Nielsen, Jens; Oakley, Berl R; Osmani, Stephen A; Pakula, Tiina; Paszewski, Andrzej; Paulsen, Ian; Pilsyk, Sebastian; Pócsi, István; Punt, Peter J; Ram, Arthur F J; Ren, Qinghu; Robellet, Xavier; Robson, Geoff; Seiboth, Bernhard; van Solingen, Piet; Specht, Thomas; Sun, Jibin; Taheri-Talesh, Naimeh; Takeshita, Norio; Ussery, Dave; vanKuyk, Patricia A; Visser, Hans; van de Vondervoort, Peter J I; de Vries, Ronald P; Walton, Jonathan; Xiang, Xin; Xiong, Yi; Zeng, An Ping; Brandt, Bernd W; Cornell, Michael J; van den Hondel, Cees A M J J; Visser, Jacob; Oliver, Stephen G; Turner, Geoffrey

    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional

  8. The 2008 update of the Aspergillus nidulans genome annotation : A community effort

    NARCIS (Netherlands)

    Wortman, Jennifer Russo; Gilsenan, Jane Mabey; Joardar, Vinita; Deegan, Jennifer; Clutterbuck, John; Andersen, Mikael R.; Archer, David; Bencina, Mojca; Braus, Gerhard; Coutinho, Pedro; von Doehren, Hans; Doonan, John; Driessen, Arnold J. M.; Durek, Pawel; Espeso, Eduardo; Fekete, Erzsebet; Flipphi, Michel; Garcia Estrada, Carlos; Geysens, Steven; Goldman, Gustavo; de Groot, Piet W. J.; Hansen, Kim; Harris, Steven D.; Heinekamp, Thorsten; Helmstaedt, Kerstin; Henrissat, Bernard; Hofmann, Gerald; Homan, Tim; Horio, Tetsuya; Horiuchi, Hiroyuki; James, Steve; Jones, Meriel; Karaffa, Levente; Karanyi, Zsolt; Kato, Masashi; Keller, Nancy; Kelly, Diane E.; Kiel, Jan A. K. W.; Kim, Jung-Mi; van der Klei, Ida J.; Klis, Frans M.; Kovalchuk, Andriy; Krasevec, Nada; Kubicek, Christian P.; Liu, Bo; MacCabe, Andrew; Meyer, Vera; Mirabito, Pete; Miskei, Marton; Mos, Magdalena; Mullins, Jonathan; Nelson, David R.; Nielsen, Jens; Oakley, Berl R.; Osmani, Stephen A.; Pakula, Tiina; Paszewski, Andrzej; Paulsen, Ian; Pilsyk, Sebastian; Pocsi, Istvan; Punt, Peter J.; Ram, Arthur F. J.; Ren, Qinghu; Robellet, Xavier; Robson, Geoff; Seiboth, Bernhard; van Solingen, Piet; Specht, Thomas; Sun, Jibin; Taheri-Talesh, Naimeh; Takeshita, Norio; Ussery, Dave; Vankuyk, Patricia A.; Visser, Hans; de Vondervoort, Peter J. I. van; Walton, Jonathan; Xiang, Xin; Xiong, Yi; Zeng, An Ping; Brandt, Bernd W.; Cornell, Michael J.; van den Hondel, Cees A. M. J. J.; Visser, Jacob; Oliver, Stephen G.; Turner, Geoffrey; Kraševec, Nada; Kuyk, Patricia A. van; Döhren, D.H.; van Seilboth, B; de Vries, R.

    The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional

  9. GeneNotes – A novel information management software for biologists

    Directory of Open Access Journals (Sweden)

    Wong Wing H

    2005-02-01

    Full Text Available Abstract Background Collecting and managing information is a challenging task in a genome-wide profiling research project. Most databases and online computational tools require a direct human involvement. Information and computational results are presented in various multimedia formats (e.g., text, image, PDF, word files, etc., many of which cannot be automatically processed by computers in biologically meaningful ways. In addition, the quality of computational results is far from perfect and requires nontrivial manual examination. The timely selection, integration and interpretation of heterogeneous biological information still heavily rely on the sensibility of biologists. Biologists often feel overwhelmed by the huge amount of and the great diversity of distributed heterogeneous biological information. Description We developed an information management application called GeneNotes. GeneNotes is the first application that allows users to collect and manage multimedia biological information about genes/ESTs. GeneNotes provides an integrated environment for users to surf the Internet, collect notes for genes/ESTs, and retrieve notes. GeneNotes is supported by a server that integrates gene annotations from many major databases (e.g., HGNC, MGI, etc.. GeneNotes uses the integrated gene annotations to (a identify genes given various types of gene IDs (e.g., RefSeq ID, GenBank ID, etc., and (b provide quick views of genes. GeneNotes is free for academic usage. The program and the tutorials are available at: http://bayes.fas.harvard.edu/genenotes/. Conclusions GeneNotes provides a novel human-computer interface to assist researchers to collect and manage biological information. It also provides a platform for studying how users behave when they manipulate biological information. The results of such study can lead to innovation of more intelligent human-computer interfaces that greatly shorten the cycle of biology research.

  10. dictyBase 2015: Expanding data and annotations in a new software environment.

    Science.gov (United States)

    Basu, Siddhartha; Fey, Petra; Jimenez-Morales, David; Dodson, Robert J; Chisholm, Rex L

    2015-08-01

    dictyBase is the model organism database for the social amoeba Dictyostelium discoideum and related species. The primary mission of dictyBase is to provide the biomedical research community with well-integrated high quality data, and tools that enable original research. Data presented at dictyBase is obtained from sequencing centers, groups performing high throughput experiments such as large-scale mutagenesis studies, and RNAseq data, as well as a growing number of manually added functional gene annotations from the published literature, including Gene Ontology, strain, and phenotype annotations. Through the Dicty Stock Center we provide the community with an impressive amount of annotated strains and plasmids. Recently, dictyBase accomplished a major overhaul to adapt an outdated infrastructure to the current technological advances, thus facilitating the implementation of innovative tools and comparative genomics. It also provides new strategies for high quality annotations that enable bench researchers to benefit from the rapidly increasing volume of available data. dictyBase is highly responsive to its users needs, building a successful relationship that capitalizes on the vast efforts of the Dictyostelium research community. dictyBase has become the trusted data resource for Dictyostelium investigators, other investigators or organizations seeking information about Dictyostelium, as well as educators who use this model system. © 2015 Wiley Periodicals, Inc.

  11. Analysis of indel variations in the human disease-associated genes ...

    Indian Academy of Sciences (India)

    Keywords. insertion–deletion variations; haematological disease; tumours; human genetics. Journal of Genetics ... domly selected healthy Korean individuals using a blood genomic DNA ... Bioinformatics annotation and 3-D protein structure analysis. In this study ..... 2009 A genome-wide meta-analysis identifies. Journal of ...

  12. Integrated annotation and analysis of in situ hybridization images using the ImAnno system: application to the ear and sensory organs of the fetal mouse.

    Science.gov (United States)

    Romand, Raymond; Ripp, Raymond; Poidevin, Laetitia; Boeglin, Marcel; Geffers, Lars; Dollé, Pascal; Poch, Olivier

    2015-01-01

    An in situ hybridization (ISH) study was performed on 2000 murine genes representing around 10% of the protein-coding genes present in the mouse genome using data generated by the EURExpress consortium. This study was carried out in 25 tissues of late gestation embryos (E14.5), with a special emphasis on the developing ear and on five distinct developing sensory organs, including the cochlea, the vestibular receptors, the sensory retina, the olfactory organ, and the vibrissae follicles. The results obtained from an analysis of more than 11,000 micrographs have been integrated in a newly developed knowledgebase, called ImAnno. In addition to managing the multilevel micrograph annotations performed by human experts, ImAnno provides public access to various integrated databases and tools. Thus, it facilitates the analysis of complex ISH gene expression patterns, as well as functional annotation and interaction of gene sets. It also provides direct links to human pathways and diseases. Hierarchical clustering of expression patterns in the 25 tissues revealed three main branches corresponding to tissues with common functions and/or embryonic origins. To illustrate the integrative power of ImAnno, we explored the expression, function and disease traits of the sensory epithelia of the five presumptive sensory organs. The study identified 623 genes (out of 2000) concomitantly expressed in the five embryonic epithelia, among which many (∼12%) were involved in human disorders. Finally, various multilevel interaction networks were characterized, highlighting differential functional enrichments of directly or indirectly interacting genes. These analyses exemplify an under-represention of "sensory" functions in the sensory gene set suggests that E14.5 is a pivotal stage between the developmental stage and the functional phase that will be fully reached only after birth.

  13. Genome-Wide Detection and Analysis of Multifunctional Genes

    Science.gov (United States)

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  14. OxyGene: an innovative platform for investigating oxidative-response genes in whole prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Barloy-Hubler Frédérique

    2008-12-01

    Full Text Available Abstract Background Oxidative stress is a common stress encountered by living organisms and is due to an imbalance between intracellular reactive oxygen and nitrogen species (ROS, RNS and cellular antioxidant defence. To defend themselves against ROS/RNS, bacteria possess a subsystem of detoxification enzymes, which are classified with regard to their substrates. To identify such enzymes in prokaryotic genomes, different approaches based on similarity, enzyme profiles or patterns exist. Unfortunately, several problems persist in the annotation, classification and naming of these enzymes due mainly to some erroneous entries in databases, mistake propagation, absence of updating and disparity in function description. Description In order to improve the current annotation of oxidative stress subsystems, an innovative platform named OxyGene has been developed. It integrates an original database called OxyDB, holding thoroughly tested anchor-based signatures associated to subfamilies of oxidative stress enzymes, and a new anchor-driven annotator, for ab initio detection of ROS/RNS response genes. All complete Bacterial and Archaeal genomes have been re-annotated, and the results stored in the OxyGene repository can be interrogated via a Graphical User Interface. Conclusion OxyGene enables the exploration and comparative analysis of enzymes belonging to 37 detoxification subclasses in 664 microbial genomes. It proposes a new classification that improves both the ontology and the annotation of the detoxification subsystems in prokaryotic whole genomes, while discovering new ORFs and attributing precise function to hypothetical annotated proteins. OxyGene is freely available at: http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software

  15. Towards Viral Genome Annotation Standards, Report from the 2010 NCBI Annotation Workshop.

    Science.gov (United States)

    Brister, James Rodney; Bao, Yiming; Kuiken, Carla; Lefkowitz, Elliot J; Le Mercier, Philippe; Leplae, Raphael; Madupu, Ramana; Scheuermann, Richard H; Schobel, Seth; Seto, Donald; Shrivastava, Susmita; Sterk, Peter; Zeng, Qiandong; Klimke, William; Tatusova, Tatiana

    2010-10-01

    Improvements in DNA sequencing technologies portend a new era in virology and could possibly lead to a giant leap in our understanding of viral evolution and ecology. Yet, as viral genome sequences begin to fill the world's biological databases, it is critically important to recognize that the scientific promise of this era is dependent on consistent and comprehensive genome annotation. With this in mind, the NCBI Genome Annotation Workshop recently hosted a study group tasked with developing sequence, function, and metadata annotation standards for viral genomes. This report describes the issues involved in viral genome annotation and reviews policy recommendations presented at the NCBI Annotation Workshop.

  16. Towards Viral Genome Annotation Standards, Report from the 2010 NCBI Annotation Workshop

    Directory of Open Access Journals (Sweden)

    Qiandong Zeng

    2010-10-01

    Full Text Available Improvements in DNA sequencing technologies portend a new era in virology and could possibly lead to a giant leap in our understanding of viral evolution and ecology. Yet, as viral genome sequences begin to fill the world’s biological databases, it is critically important to recognize that the scientific promise of this era is dependent on consistent and comprehensive genome annotation. With this in mind, the NCBI Genome Annotation Workshop recently hosted a study group tasked with developing sequence, function, and metadata annotation standards for viral genomes. This report describes the issues involved in viral genome annotation and reviews policy recommendations presented at the NCBI Annotation Workshop.

  17. Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images

    Directory of Open Access Journals (Sweden)

    Jianfang Cao

    2015-01-01

    Full Text Available With the advances in electronic and imaging techniques, the production of digital images has rapidly increased, and the extraction and automated annotation of emotional semantics implied by images have become issues that must be urgently addressed. To better simulate human subjectivity and ambiguity for understanding scene images, the current study proposes an emotional semantic annotation method for scene images based on fuzzy set theory. A fuzzy membership degree was calculated to describe the emotional degree of a scene image and was implemented using the Adaboost algorithm and a back-propagation (BP neural network. The automated annotation method was trained and tested using scene images from the SUN Database. The annotation results were then compared with those based on artificial annotation. Our method showed an annotation accuracy rate of 91.2% for basic emotional values and 82.4% after extended emotional values were added, which correspond to increases of 5.5% and 8.9%, respectively, compared with the results from using a single BP neural network algorithm. Furthermore, the retrieval accuracy rate based on our method reached approximately 89%. This study attempts to lay a solid foundation for the automated emotional semantic annotation of more types of images and therefore is of practical significance.

  18. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers.

    Science.gov (United States)

    de Miguel, Marina; de Maria, Nuria; Guevara, M Angeles; Diaz, Luis; Sáez-Laguna, Enrique; Sánchez-Gómez, David; Chancerel, Emilie; Aranda, Ismael; Collada, Carmen; Plomion, Christophe; Cabezas, José-Antonio; Cervera, María-Teresa

    2012-10-04

    Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.

  19. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers

    Directory of Open Access Journals (Sweden)

    de Miguel Marina

    2012-10-01

    Full Text Available Abstract Background Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15 belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. Results We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. Conclusions This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.

  20. Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle.

    Science.gov (United States)

    Mota, R R; Guimarães, S E F; Fortes, M R S; Hayes, B; Silva, F F; Verardo, L L; Kelly, M J; de Campos, C F; Guimarães, J D; Wenceslau, R R; Penitente-Filho, J M; Garcia, J F; Moore, S

    2017-12-01

    We performed a genome-wide mapping for the age at first calving (AFC) with the goal of annotating candidate genes that regulate fertility in Nellore cattle. Phenotypic data from 762 cows and 777k SNP genotypes from 2,992 bulls and cows were used. Single nucleotide polymorphism (SNP) effects based on the single-step GBLUP methodology were blocked into adjacent windows of 1 Megabase (Mb) to explain the genetic variance. SNP windows explaining more than 0.40% of the AFC genetic variance were identified on chromosomes 2, 8, 9, 14, 16 and 17. From these windows, we identified 123 coding protein genes that were used to build gene networks. From the association study and derived gene networks, putative candidate genes (e.g., PAPPA, PREP, FER1L6, TPR, NMNAT1, ACAD10, PCMTD1, CRH, OPKR1, NPBWR1 and NCOA2) and transcription factors (TF) (STAT1, STAT3, RELA, E2F1 and EGR1) were strongly associated with female fertility (e.g., negative regulation of luteinizing hormone secretion, folliculogenesis and establishment of uterine receptivity). Evidence suggests that AFC inheritance is complex and controlled by multiple loci across the genome. As several windows explaining higher proportion of the genetic variance were identified on chromosome 14, further studies investigating the interaction across haplotypes to better understand the molecular architecture behind AFC in Nellore cattle should be undertaken. © 2017 Blackwell Verlag GmbH.

  1. RCAS: an RNA centric annotation system for transcriptome-wide regions of interest.

    Science.gov (United States)

    Uyar, Bora; Yusuf, Dilmurat; Wurmus, Ricardo; Rajewsky, Nikolaus; Ohler, Uwe; Akalin, Altuna

    2017-06-02

    In the field of RNA, the technologies for studying the transcriptome have created a tremendous potential for deciphering the puzzles of the RNA biology. Along with the excitement, the unprecedented volume of RNA related omics data is creating great challenges in bioinformatics analyses. Here, we present the RNA Centric Annotation System (RCAS), an R package, which is designed to ease the process of creating gene-centric annotations and analysis for the genomic regions of interest obtained from various RNA-based omics technologies. The design of RCAS is modular, which enables flexible usage and convenient integration with other bioinformatics workflows. RCAS is an R/Bioconductor package but we also created graphical user interfaces including a Galaxy wrapper and a stand-alone web service. The application of RCAS on published datasets shows that RCAS is not only able to reproduce published findings but also helps generate novel knowledge and hypotheses. The meta-gene profiles, gene-centric annotation, motif analysis and gene-set analysis provided by RCAS provide contextual knowledge which is necessary for understanding the functional aspects of different biological events that involve RNAs. In addition, the array of different interfaces and deployment options adds the convenience of use for different levels of users. RCAS is available at http://bioconductor.org/packages/release/bioc/html/RCAS.html and http://rcas.mdc-berlin.de. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication.

    Science.gov (United States)

    Tanizawa, Yasuhiro; Fujisawa, Takatomo; Nakamura, Yasukazu

    2018-03-15

    We developed a prokaryotic genome annotation pipeline, DFAST, that also supports genome submission to public sequence databases. DFAST was originally started as an on-line annotation server, and to date, over 7000 jobs have been processed since its first launch in 2016. Here, we present a newly implemented background annotation engine for DFAST, which is also available as a standalone command-line program. The new engine can annotate a typical-sized bacterial genome within 10 min, with rich information such as pseudogenes, translation exceptions and orthologous gene assignment between given reference genomes. In addition, the modular framework of DFAST allows users to customize the annotation workflow easily and will also facilitate extensions for new functions and incorporation of new tools in the future. The software is implemented in Python 3 and runs in both Python 2.7 and 3.4-on Macintosh and Linux systems. It is freely available at https://github.com/nigyta/dfast_core/under the GPLv3 license with external binaries bundled in the software distribution. An on-line version is also available at https://dfast.nig.ac.jp/. yn@nig.ac.jp. Supplementary data are available at Bioinformatics online.

  3. Semi-Semantic Annotation: A guideline for the URDU.KON-TB treebank POS annotation

    Directory of Open Access Journals (Sweden)

    Qaiser ABBAS

    2016-12-01

    Full Text Available This work elaborates the semi-semantic part of speech annotation guidelines for the URDU.KON-TB treebank: an annotated corpus. A hierarchical annotation scheme was designed to label the part of speech and then applied on the corpus. This raw corpus was collected from the Urdu Wikipedia and the Jang newspaper and then annotated with the proposed semi-semantic part of speech labels. The corpus contains text of local & international news, social stories, sports, culture, finance, religion, traveling, etc. This exercise finally contributed a part of speech annotation to the URDU.KON-TB treebank. Twenty-two main part of speech categories are divided into subcategories, which conclude the morphological, and semantical information encoded in it. This article reports the annotation guidelines in major; however, it also briefs the development of the URDU.KON-TB treebank, which includes the raw corpus collection, designing & employment of annotation scheme and finally, its statistical evaluation and results. The guidelines presented as follows, will be useful for linguistic community to annotate the sentences not only for the national language Urdu but for the other indigenous languages like Punjab, Sindhi, Pashto, etc., as well.

  4. An automated annotation tool for genomic DNA sequences using

    Indian Academy of Sciences (India)

    Genomic sequence data are often available well before the annotated sequence is published. We present a method for analysis of genomic DNA to identify coding sequences using the GeneScan algorithm and characterize these resultant sequences by BLAST. The routines are used to develop a system for automated ...

  5. ORF Sequence: Ca19AnnotatedDec2004aaSeq [GENIUS II[Archive

    Lifescience Database Archive (English)

    Full Text Available Ca19AnnotatedDec2004aaSeq orf19.3361 >orf19.3361; Contig19-10173; 157397..>158185;... YAT2*; carnitine acetyltransferase; gene family | truncated protein MSTYRFQETLEKLPIPDLVQTCNAYLEALKPLQTEQEHE

  6. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database.

    Science.gov (United States)

    Carver, Tim; Berriman, Matthew; Tivey, Adrian; Patel, Chinmay; Böhme, Ulrike; Barrell, Barclay G; Parkhill, Julian; Rajandream, Marie-Adèle

    2008-12-01

    Artemis and Artemis Comparison Tool (ACT) have become mainstream tools for viewing and annotating sequence data, particularly for microbial genomes. Since its first release, Artemis has been continuously developed and supported with additional functionality for editing and analysing sequences based on feedback from an active user community of laboratory biologists and professional annotators. Nevertheless, its utility has been somewhat restricted by its limitation to reading and writing from flat files. Therefore, a new version of Artemis has been developed, which reads from and writes to a relational database schema, and allows users to annotate more complex, often large and fragmented, genome sequences. Artemis and ACT have now been extended to read and write directly to the Generic Model Organism Database (GMOD, http://www.gmod.org) Chado relational database schema. In addition, a Gene Builder tool has been developed to provide structured forms and tables to edit coordinates of gene models and edit functional annotation, based on standard ontologies, controlled vocabularies and free text. Artemis and ACT are freely available (under a GPL licence) for download (for MacOSX, UNIX and Windows) at the Wellcome Trust Sanger Institute web sites: http://www.sanger.ac.uk/Software/Artemis/ http://www.sanger.ac.uk/Software/ACT/

  7. Analysis of high-throughput sequencing and annotation strategies for phage genomes.

    Directory of Open Access Journals (Sweden)

    Matthew R Henn

    Full Text Available BACKGROUND: Bacterial viruses (phages play a critical role in shaping microbial populations as they influence both host mortality and horizontal gene transfer. As such, they have a significant impact on local and global ecosystem function and human health. Despite their importance, little is known about the genomic diversity harbored in phages, as methods to capture complete phage genomes have been hampered by the lack of knowledge about the target genomes, and difficulties in generating sufficient quantities of genomic DNA for sequencing. Of the approximately 550 phage genomes currently available in the public domain, fewer than 5% are marine phage. METHODOLOGY/PRINCIPAL FINDINGS: To advance the study of phage biology through comparative genomic approaches we used marine cyanophage as a model system. We compared DNA preparation methodologies (DNA extraction directly from either phage lysates or CsCl purified phage particles, and sequencing strategies that utilize either Sanger sequencing of a linker amplification shotgun library (LASL or of a whole genome shotgun library (WGSL, or 454 pyrosequencing methods. We demonstrate that genomic DNA sample preparation directly from a phage lysate, combined with 454 pyrosequencing, is best suited for phage genome sequencing at scale, as this method is capable of capturing complete continuous genomes with high accuracy. In addition, we describe an automated annotation informatics pipeline that delivers high-quality annotation and yields few false positives and negatives in ORF calling. CONCLUSIONS/SIGNIFICANCE: These DNA preparation, sequencing and annotation strategies enable a high-throughput approach to the burgeoning field of phage genomics.

  8. Data for constructing insect genome content matrices for phylogenetic analysis and functional annotation

    Directory of Open Access Journals (Sweden)

    Jeffrey Rosenfeld

    2016-03-01

    Full Text Available Twenty one fully sequenced and well annotated insect genomes were used to construct genome content matrices for phylogenetic analysis and functional annotation of insect genomes. To examine the role of e-value cutoff in ortholog determination we used scaled e-value cutoffs and a single linkage clustering approach.. The present communication includes (1 a list of the genomes used to construct the genome content phylogenetic matrices, (2 a nexus file with the data matrices used in phylogenetic analysis, (3 a nexus file with the Newick trees generated by phylogenetic analysis, (4 an excel file listing the Core (CORE genes and Unique (UNI genes found in five insect groups, and (5 a figure showing a plot of consistency index (CI versus percent of unannotated genes that are apomorphies in the data set for gene losses and gains and bar plots of gains and losses for four consistency index (CI cutoffs.

  9. Extraction and analysis of signatures from the Gene Expression Omnibus by the crowd

    DEFF Research Database (Denmark)

    Wang, Zichen; Monteiro, Caroline D.; Jagodnik, Kathleen M.

    2016-01-01

    Gene expression data are accumulating exponentially in public repositories. Reanalysis and integration of themed collections from these studies may provide new insights, but requires further human curation. Here we report a crowdsourcing project to annotate and reanalyse a large number of gene...... signatures from the entire GEO repository. We develop a web portal to serve these signatures for query, download and visualization....

  10. BioAnnote: a software platform for annotating biomedical documents with application in medical learning environments.

    Science.gov (United States)

    López-Fernández, H; Reboiro-Jato, M; Glez-Peña, D; Aparicio, F; Gachet, D; Buenaga, M; Fdez-Riverola, F

    2013-07-01

    Automatic term annotation from biomedical documents and external information linking are becoming a necessary prerequisite in modern computer-aided medical learning systems. In this context, this paper presents BioAnnote, a flexible and extensible open-source platform for automatically annotating biomedical resources. Apart from other valuable features, the software platform includes (i) a rich client enabling users to annotate multiple documents in a user friendly environment, (ii) an extensible and embeddable annotation meta-server allowing for the annotation of documents with local or remote vocabularies and (iii) a simple client/server protocol which facilitates the use of our meta-server from any other third-party application. In addition, BioAnnote implements a powerful scripting engine able to perform advanced batch annotations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Human proton/oligopeptide transporter (POT) genes

    DEFF Research Database (Denmark)

    Botka, C. W.; Wittig, T. W.; Graul, R. C.

    2000-01-01

    The proton-dependent oligopeptide transporters (POT) gene family currently consists of approximately 70 cloned cDNAs derived from diverse organisms. In mammals, two genes encoding peptide transporters, PepT1 and PepT2 have been cloned in several species including humans, in addition to a rat...... histidine/peptide transporter (rPHT1). Because the Candida elegans genome contains five putative POT genes, we searched the available protein and nucleic acid databases for additional mammalian/human POT genes, using iterative BLAST runs and the human expressed sequence tags (EST) database. The apparent...... and introns of the likely human orthologue (termed hPHT2). Northern analyses with EST clones indicated that hPHT1 is primarily expressed in skeletal muscle and spleen, whereas hPHT2 is found in spleen, placenta, lung, leukocytes, and heart. These results suggest considerable complexity of the human POT gene...

  12. Chado controller: advanced annotation management with a community annotation system.

    Science.gov (United States)

    Guignon, Valentin; Droc, Gaëtan; Alaux, Michael; Baurens, Franc-Christophe; Garsmeur, Olivier; Poiron, Claire; Carver, Tim; Rouard, Mathieu; Bocs, Stéphanie

    2012-04-01

    We developed a controller that is compliant with the Chado database schema, GBrowse and genome annotation-editing tools such as Artemis and Apollo. It enables the management of public and private data, monitors manual annotation (with controlled vocabularies, structural and functional annotation controls) and stores versions of annotation for all modified features. The Chado controller uses PostgreSQL and Perl. The Chado Controller package is available for download at http://www.gnpannot.org/content/chado-controller and runs on any Unix-like operating system, and documentation is available at http://www.gnpannot.org/content/chado-controller-doc The system can be tested using the GNPAnnot Sandbox at http://www.gnpannot.org/content/gnpannot-sandbox-form valentin.guignon@cirad.fr; stephanie.sidibe-bocs@cirad.fr Supplementary data are available at Bioinformatics online.

  13. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy

    Science.gov (United States)

    Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.

    2015-01-01

    Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID

  14. Inconsistencies of genome annotations in apicomplexan parasites revealed by 5'-end-one-pass and full-length sequences of oligo-capped cDNAs

    Directory of Open Access Journals (Sweden)

    Sugano Sumio

    2009-07-01

    Full Text Available Abstract Background Apicomplexan parasites are causative agents of various diseases including malaria and have been targets of extensive genomic sequencing. We generated 5'-EST collections for six apicomplexa parasites using our full-length oligo-capping cDNA library method. To improve upon the current genome annotations, as well as to validate the importance for physical cDNA clone resources, we generated a large-scale collection of full-length cDNAs for several apicomplexa parasites. Results In this study, we used a total of 61,056 5'-end-single-pass cDNA sequences from Plasmodium falciparum, P. vivax, P. yoelii, P. berghei, Cryptosporidium parvum, and Toxoplasma gondii. We compared these partially sequenced cDNA sequences with the currently annotated gene models and observed significant inconsistencies between the two datasets. In particular, we found that on average 14% of the exons in the current gene models were not supported by any cDNA evidence, and that 16% of the current gene models may contain at least one mis-annotation and should be re-evaluated. We also identified a large number of transcripts that had been previously unidentified. For 732 cDNAs in T. gondii, the entire sequences were determined in order to evaluate the annotated gene models at the complete full-length transcript level. We found that 41% of the T. gondii gene models contained at least one inconsistency. We also identified and confirmed by RT-PCR 140 previously unidentified transcripts found in the intergenic regions of the current gene annotations. We show that the majority of these discrepancies are due to questionable predictions of one or two extra exons in the upstream or downstream regions of the genes. Conclusion Our data indicates that the current gene models are likely to still be incomplete and have much room for improvement. Our unique full-length cDNA information is especially useful for further refinement of the annotations for the genomes of

  15. Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs.

    Science.gov (United States)

    Powell, Bradford C; Hutchison, Clyde A

    2006-01-19

    Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs) of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs). We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not) are attractive targets when seeking errors of gene prediction. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency). We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes.

  16. Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs

    Directory of Open Access Journals (Sweden)

    Hutchison Clyde A

    2006-01-01

    Full Text Available Abstract Background Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs. We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. Results "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not are attractive targets when seeking errors of gene predicion. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency. We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Conclusion Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes.

  17. Single Amplified Genomes as Source for Novel Extremozymes: Annotation, Expression and Functional Assessment

    KAUST Repository

    Grötzinger, Stefan

    2017-12-01

    Enzymes, as nature’s catalysts, show remarkable abilities that can revolutionize the chemical, biotechnological, bioremediation, agricultural and pharmaceutical industries. However, the narrow range of stability of the majority of described biocatalysts limits their use for many applications. To overcome these restrictions, extremozymes derived from microorganisms thriving under harsh conditions can be used. Extremophiles living in high salinity are especially interesting as they operate at low water activity, which is similar to conditions used in standard chemical applications. Because only about 0.1 % of all microorganisms can be cultured, the traditional way of culture-based enzyme function determination needs to be overcome. The rise of high-throughput next-generation-sequencing technologies allows for deep insight into nature’s variety. Single amplified genomes (SAGs) specifically allow for whole genome assemblies from small sample volumes with low cell yields, as are typical for extreme environments. Although these technologies have been available for years, the expected boost in biotechnology has held off. One of the main reasons is the lack of reliable functional annotation of the genomic data, which is caused by the low amount (0.15 %) of experimentally described genes. Here, we present a novel annotation algorithm, designed to annotate the enzymatic function of genomes from microorganisms with low homologies to described microorganisms. The algorithm was established on SAGs from the extreme environment of selected hypersaline Red Sea brine pools with 4.3 M salinity and temperatures up to 68°C. Additionally, a novel consensus pattern for the identification of γ-carbonic anhydrases was created and applied in the algorithm. To verify the annotation, selected genes were expressed in the hypersaline expression system Halobacterium salinarum. This expression system was established and optimized in a continuously stirred tank reactor, leading to

  18. Gene expression profiles of cryopreserved CD34{sup +} human umbilical cord blood cells are related to their bone marrow reconstitution abilities in mouse xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Kazuhiro [Cell Engineering Division, RIKEN BioResource Center, Tsukuba (Japan); Yasuda, Jun, E-mail: yasuda-jun@umin.ac.jp [Omics Science Center, RIKEN, Yokohama (Japan); Department of Cell Biology, The JFCR-Cancer Institute (Japan); Nakamura, Yukio, E-mail: yukionak@brc.riken.jp [Cell Engineering Division, RIKEN BioResource Center, Tsukuba (Japan)

    2010-07-09

    Human umbilical cord blood (UCB) cells are an alternative source of hematopoietic stem cells for treatment of leukemia and other diseases. It is very difficult to assess the quality of UCB cells in the clinical situation. Here, we sought to assess the quality of UCB cells by transplantation to immunodeficient mice. Cryopreserved CD34{sup +} UCB cells from twelve different human donors were transplanted into sublethally irradiated NOD/shi-scid Jic mice. In parallel, the gene expression profiles of the UCB cells were determined from oligonucleotide microarrays. UCB cells from three donors failed to establish an engraftment in the host mice, while the other nine succeeded to various extents. Gene expression profiling indicated that 71 genes, including HOXB4, C/EBP-{beta}, and ETS2, were specifically overexpressed and 23 genes were suppressed more than 2-fold in the successful UCB cells compared to those that failed. Functional annotation revealed that cell growth and cell cycle regulators were more abundant in the successful UCB cells. Our results suggest that hematopoietic ability may vary among cryopreserved UCB cells and that this ability can be distinguished by profiling expression of certain sets of genes.

  19. Extending eScience Provenance with User-Submitted Semantic Annotations

    Science.gov (United States)

    Michaelis, J.; Zednik, S.; West, P.; Fox, P. A.; McGuinness, D. L.

    2010-12-01

    eScience based systems generate provenance of their data products, related to such things as: data processing, data collection conditions, expert evaluation, and data product quality. Recent advances in web-based technology offer users the possibility of making annotations to both data products and steps in accompanying provenance traces, thereby expanding the utility of such provenance for others. These contributing users may have varying backgrounds, ranging from system experts to outside domain experts to citizen scientists. Furthermore, such users may wish to make varying types of annotations - ranging from documenting the purpose of a provenance step to raising concerns about the quality of data dependencies. Semantic Web technologies allow for such kinds of rich annotations to be made to provenance through the use of ontology vocabularies for (i) organizing provenance, and (ii) organizing user/annotation classifications. Furthermore, through Linked Data practices, Semantic linkages may be made from provenance steps to external data of interest. A desire for Semantically-annotated provenance has been motivated by data management issues in the Mauna Loa Solar Observatory’s (MLSO) Advanced Coronal Observing System (ACOS). In ACOS, photomoeter-based readings are taken of solar activity and subsequently processed into final data products consumable by end users. At intermediate stages of ACOS processing, factors such as evaluations by human experts and weather conditions are logged, which could impact data product quality. If such factors are linked via user-submitted annotations to provenance, it could be significantly beneficial for other users. Likewise, the background of a user could impact the credibility of their annotations. For example, an annotation made by a citizen scientist describing the purpose of a provenance step may not be as reliable as a similar annotation made by an ACOS project member. For this work, we have developed a software package that

  20. An open annotation ontology for science on web 3.0.

    Science.gov (United States)

    Ciccarese, Paolo; Ocana, Marco; Garcia Castro, Leyla Jael; Das, Sudeshna; Clark, Tim

    2011-05-17

    There is currently a gap between the rich and expressive collection of published biomedical ontologies, and the natural language expression of biomedical papers consumed on a daily basis by scientific researchers. The purpose of this paper is to provide an open, shareable structure for dynamic integration of biomedical domain ontologies with the scientific document, in the form of an Annotation Ontology (AO), thus closing this gap and enabling application of formal biomedical ontologies directly to the literature as it emerges. Initial requirements for AO were elicited by analysis of integration needs between biomedical web communities, and of needs for representing and integrating results of biomedical text mining. Analysis of strengths and weaknesses of previous efforts in this area was also performed. A series of increasingly refined annotation tools were then developed along with a metadata model in OWL, and deployed for feedback and additional requirements the ontology to users at a major pharmaceutical company and a major academic center. Further requirements and critiques of the model were also elicited through discussions with many colleagues and incorporated into the work. This paper presents Annotation Ontology (AO), an open ontology in OWL-DL for annotating scientific documents on the web. AO supports both human and algorithmic content annotation. It enables "stand-off" or independent metadata anchored to specific positions in a web document by any one of several methods. In AO, the document may be annotated but is not required to be under update control of the annotator. AO contains a provenance model to support versioning, and a set model for specifying groups and containers of annotation. AO is freely available under open source license at http://purl.org/ao/, and extensive documentation including screencasts is available on AO's Google Code page: http://code.google.com/p/annotation-ontology/ . The Annotation Ontology meets critical requirements for

  1. GFFview: A Web Server for Parsing and Visualizing Annotation Information of Eukaryotic Genome.

    Science.gov (United States)

    Deng, Feilong; Chen, Shi-Yi; Wu, Zhou-Lin; Hu, Yongsong; Jia, Xianbo; Lai, Song-Jia

    2017-10-01

    Owing to wide application of RNA sequencing (RNA-seq) technology, more and more eukaryotic genomes have been extensively annotated, such as the gene structure, alternative splicing, and noncoding loci. Annotation information of genome is prevalently stored as plain text in General Feature Format (GFF), which could be hundreds or thousands Mb in size. Therefore, it is a challenge for manipulating GFF file for biologists who have no bioinformatic skill. In this study, we provide a web server (GFFview) for parsing the annotation information of eukaryotic genome and then generating statistical description of six indices for visualization. GFFview is very useful for investigating quality and difference of the de novo assembled transcriptome in RNA-seq studies.

  2. More than 9,000,000 unique genes in human gut bacterial community: estimating gene numbers inside a human body.

    Science.gov (United States)

    Yang, Xing; Xie, Lu; Li, Yixue; Wei, Chaochun

    2009-06-29

    Estimating the number of genes in human genome has been long an important problem in computational biology. With the new conception of considering human as a super-organism, it is also interesting to estimate the number of genes in this human super-organism. We presented our estimation of gene numbers in the human gut bacterial community, the largest microbial community inside the human super-organism. We got 552,700 unique genes from 202 complete human gut bacteria genomes. Then, a novel gene counting model was built to check the total number of genes by combining culture-independent sequence data and those complete genomes. 16S rRNAs were used to construct a three-level tree and different counting methods were introduced for the three levels: strain-to-species, species-to-genus, and genus-and-up. The model estimates that the total number of genes is about 9,000,000 after those with identity percentage of 97% or up were merged. By combining completed genomes currently available and culture-independent sequencing data, we built a model to estimate the number of genes in human gut bacterial community. The total number of genes is estimated to be about 9 million. Although this number is huge, we believe it is underestimated. This is an initial step to tackle this gene counting problem for the human super-organism. It will still be an open problem in the near future. The list of genomes used in this paper can be found in the supplementary table.

  3. Bayesian assignment of gene ontology terms to gene expression experiments

    Science.gov (United States)

    Sykacek, P.

    2012-01-01

    Motivation: Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. Results: This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Availability: Source code under GPL license is available from the author. Contact: peter.sykacek@boku.ac.at PMID:22962488

  4. Bayesian assignment of gene ontology terms to gene expression experiments.

    Science.gov (United States)

    Sykacek, P

    2012-09-15

    Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Source code under GPL license is available from the author. peter.sykacek@boku.ac.at.

  5. Genetic control of functional traits related to photosynthesis and water use efficiency in Pinus pinaster Ait. drought response: integration of genome annotation, allele association and QTL detection for candidate gene identification.

    Science.gov (United States)

    de Miguel, Marina; Cabezas, José-Antonio; de María, Nuria; Sánchez-Gómez, David; Guevara, María-Ángeles; Vélez, María-Dolores; Sáez-Laguna, Enrique; Díaz, Luis-Manuel; Mancha, Jose-Antonio; Barbero, María-Carmen; Collada, Carmen; Díaz-Sala, Carmen; Aranda, Ismael; Cervera, María-Teresa

    2014-06-12

    Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought. High density linkage maps for Pinus pinaster were used in the detection of QTL for photosynthesis and water use efficiency at three water irrigation regimes. A total of 28 significant and 27 suggestive QTL were found. QTL detected for photochemical traits accounted for the higher percentage of phenotypic variance. Functional annotation of genes within the QTL suggested 58 candidate genes for the analyzed traits. Allele association analysis in selected candidate genes showed three SNPs located in a MYB transcription factor that were significantly associated with efficiency of energy capture by open PSII reaction centers and specific leaf area. The integration of QTL mapping of functional traits, genome annotation and allele association yielded several candidate genes involved with molecular control of photosynthesis and water use efficiency in response to drought in a conifer species. The results obtained highlight the importance of maintaining the integrity of the photochemical machinery in P. pinaster drought response.

  6. Formalization of taxon-based constraints to detect inconsistencies in annotation and ontology development

    Directory of Open Access Journals (Sweden)

    Mungall Christopher J

    2010-10-01

    Full Text Available Abstract Background The Gene Ontology project supports categorization of gene products according to their location of action, the molecular functions that they carry out, and the processes that they are involved in. Although the ontologies are intentionally developed to be taxon neutral, and to cover all species, there are inherent taxon specificities in some branches. For example, the process 'lactation' is specific to mammals and the location 'mitochondrion' is specific to eukaryotes. The lack of an explicit formalization of these constraints can lead to errors and inconsistencies in automated and manual annotation. Results We have formalized the taxonomic constraints implicit in some GO classes, and specified these at various levels in the ontology. We have also developed an inference system that can be used to check for violations of these constraints in annotations. Using the constraints in conjunction with the inference system, we have detected and removed errors in annotations and improved the structure of the ontology. Conclusions Detection of inconsistencies in taxon-specificity enables gradual improvement of the ontologies, the annotations, and the formalized constraints. This is progressively improving the quality of our data. The full system is available for download, and new constraints or proposed changes to constraints can be submitted online at https://sourceforge.net/tracker/?atid=605890&group_id=36855.

  7. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database

    Science.gov (United States)

    Carver, Tim; Berriman, Matthew; Tivey, Adrian; Patel, Chinmay; Böhme, Ulrike; Barrell, Barclay G.; Parkhill, Julian; Rajandream, Marie-Adèle

    2008-01-01

    Motivation: Artemis and Artemis Comparison Tool (ACT) have become mainstream tools for viewing and annotating sequence data, particularly for microbial genomes. Since its first release, Artemis has been continuously developed and supported with additional functionality for editing and analysing sequences based on feedback from an active user community of laboratory biologists and professional annotators. Nevertheless, its utility has been somewhat restricted by its limitation to reading and writing from flat files. Therefore, a new version of Artemis has been developed, which reads from and writes to a relational database schema, and allows users to annotate more complex, often large and fragmented, genome sequences. Results: Artemis and ACT have now been extended to read and write directly to the Generic Model Organism Database (GMOD, http://www.gmod.org) Chado relational database schema. In addition, a Gene Builder tool has been developed to provide structured forms and tables to edit coordinates of gene models and edit functional annotation, based on standard ontologies, controlled vocabularies and free text. Availability: Artemis and ACT are freely available (under a GPL licence) for download (for MacOSX, UNIX and Windows) at the Wellcome Trust Sanger Institute web sites: http://www.sanger.ac.uk/Software/Artemis/ http://www.sanger.ac.uk/Software/ACT/ Contact: artemis@sanger.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18845581

  8. On the total number of genes and their length distribution in complete microbial genomes

    DEFF Research Database (Denmark)

    Skovgaard, Marie; Jensen, L.J.; Brunak, Søren

    2001-01-01

    In sequenced microbial genomes, some of the annotated genes are actually not protein-coding genes, but rather open reading frames that occur by chance. Therefore, the number of annotated genes is higher than the actual number of genes for most of these microbes. Comparison of the length...... distribution of the annotated genes with the length distribution of those matching a known protein reveals that too many short genes are annotated in many genomes. Here we estimate the true number of protein-coding genes for sequenced genomes. Although it is often claimed that Escherichia coli has about 4300...... genes, we show that it probably has only similar to 3800 genes, and that a similar discrepancy exists for almost all published genomes....

  9. RNA sequencing reveals sexually dimorphic gene expression before gonadal differentiation in chicken and allows comprehensive annotation of the W-chromosome

    Science.gov (United States)

    2013-01-01

    Background Birds have a ZZ male: ZW female sex chromosome system and while the Z-linked DMRT1 gene is necessary for testis development, the exact mechanism of sex determination in birds remains unsolved. This is partly due to the poor annotation of the W chromosome, which is speculated to carry a female determinant. Few genes have been mapped to the W and little is known of their expression. Results We used RNA-seq to produce a comprehensive profile of gene expression in chicken blastoderms and embryonic gonads prior to sexual differentiation. We found robust sexually dimorphic gene expression in both tissues pre-dating gonadogenesis, including sex-linked and autosomal genes. This supports the hypothesis that sexual differentiation at the molecular level is at least partly cell autonomous in birds. Different sets of genes were sexually dimorphic in the two tissues, indicating that molecular sexual differentiation is tissue specific. Further analyses allowed the assembly of full-length transcripts for 26 W chromosome genes, providing a view of the W transcriptome in embryonic tissues. This is the first extensive analysis of W-linked genes and their expression profiles in early avian embryos. Conclusion Sexual differentiation at the molecular level is established in chicken early in embryogenesis, before gonadal sex differentiation. We find that the W chromosome is more transcriptionally active than previously thought, expand the number of known genes to 26 and present complete coding sequences for these W genes. This includes two novel W-linked sequences and three small RNAs reassigned to the W from the Un_Random chromosome. PMID:23531366

  10. LINE FUSION GENES: a database of LINE expression in human genes

    Directory of Open Access Journals (Sweden)

    Park Hong-Seog

    2006-06-01

    Full Text Available Abstract Background Long Interspersed Nuclear Elements (LINEs are the most abundant retrotransposons in humans. About 79% of human genes are estimated to contain at least one segment of LINE per transcription unit. Recent studies have shown that LINE elements can affect protein sequences, splicing patterns and expression of human genes. Description We have developed a database, LINE FUSION GENES, for elucidating LINE expression throughout the human gene database. We searched the 28,171 genes listed in the NCBI database for LINE elements and analyzed their structures and expression patterns. The results show that the mRNA sequences of 1,329 genes were affected by LINE expression. The LINE expression types were classified on the basis of LINEs in the 5' UTR, exon or 3' UTR sequences of the mRNAs. Our database provides further information, such as the tissue distribution and chromosomal location of the genes, and the domain structure that is changed by LINE integration. We have linked all the accession numbers to the NCBI data bank to provide mRNA sequences for subsequent users. Conclusion We believe that our work will interest genome scientists and might help them to gain insight into the implications of LINE expression for human evolution and disease. Availability http://www.primate.or.kr/line

  11. Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence

    Directory of Open Access Journals (Sweden)

    Kim Dong Seon

    2012-11-01

    Full Text Available Abstract Background Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. Results We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Conclusions Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution.

  12. Discovery and annotation of small proteins using genomics, proteomics and computational approaches

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan; Tschaplinski, Timothy J.; Hurst, Gregory B.; Jawdy, Sara; Abraham, Paul E.; Lankford, Patricia K.; Adams, Rachel M.; Shah, Manesh B.; Hettich, Robert L.; Lindquist, Erika; Kalluri, Udaya C.; Gunter, Lee E.; Pennacchio, Christa; Tuskan, Gerald A.

    2011-03-02

    Small proteins (10 200 amino acids aa in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering, and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained 2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10 200 aa in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: (1) codingpotential prediction, (2) evolutionary conservation between P. deltoides and other plant species, and (3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were supported by proteomics data. Of the 611 highest-confidence candidate sORF genes, 56 were new to the current Populus genome annotation. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.

  13. Towards the integration, annotation and association of historical microarray experiments with RNA-seq.

    Science.gov (United States)

    Chavan, Shweta S; Bauer, Michael A; Peterson, Erich A; Heuck, Christoph J; Johann, Donald J

    2013-01-01

    Transcriptome analysis by microarrays has produced important advances in biomedicine. For instance in multiple myeloma (MM), microarray approaches led to the development of an effective disease subtyping via cluster assignment, and a 70 gene risk score. Both enabled an improved molecular understanding of MM, and have provided prognostic information for the purposes of clinical management. Many researchers are now transitioning to Next Generation Sequencing (NGS) approaches and RNA-seq in particular, due to its discovery-based nature, improved sensitivity, and dynamic range. Additionally, RNA-seq allows for the analysis of gene isoforms, splice variants, and novel gene fusions. Given the voluminous amounts of historical microarray data, there is now a need to associate and integrate microarray and RNA-seq data via advanced bioinformatic approaches. Custom software was developed following a model-view-controller (MVC) approach to integrate Affymetrix probe set-IDs, and gene annotation information from a variety of sources. The tool/approach employs an assortment of strategies to integrate, cross reference, and associate microarray and RNA-seq datasets. Output from a variety of transcriptome reconstruction and quantitation tools (e.g., Cufflinks) can be directly integrated, and/or associated with Affymetrix probe set data, as well as necessary gene identifiers and/or symbols from a diversity of sources. Strategies are employed to maximize the annotation and cross referencing process. Custom gene sets (e.g., MM 70 risk score (GEP-70)) can be specified, and the tool can be directly assimilated into an RNA-seq pipeline. A novel bioinformatic approach to aid in the facilitation of both annotation and association of historic microarray data, in conjunction with richer RNA-seq data, is now assisting with the study of MM cancer biology.

  14. High-throughput proteogenomics of Ruegeria pomeroyi: seeding a better genomic annotation for the whole marine Roseobacter clade

    Directory of Open Access Journals (Sweden)

    Christie-Oleza Joseph A

    2012-02-01

    Full Text Available Abstract Background The structural and functional annotation of genomes is now heavily based on data obtained using automated pipeline systems. The key for an accurate structural annotation consists of blending similarities between closely related genomes with biochemical evidence of the genome interpretation. In this work we applied high-throughput proteogenomics to Ruegeria pomeroyi, a member of the Roseobacter clade, an abundant group of marine bacteria, as a seed for the annotation of the whole clade. Results A large dataset of peptides from R. pomeroyi was obtained after searching over 1.1 million MS/MS spectra against a six-frame translated genome database. We identified 2006 polypeptides, of which thirty-four were encoded by open reading frames (ORFs that had not previously been annotated. From the pool of 'one-hit-wonders', i.e. those ORFs specified by only one peptide detected by tandem mass spectrometry, we could confirm the probable existence of five additional new genes after proving that the corresponding RNAs were transcribed. We also identified the most-N-terminal peptide of 486 polypeptides, of which sixty-four had originally been wrongly annotated. Conclusions By extending these re-annotations to the other thirty-six Roseobacter isolates sequenced to date (twenty different genera, we propose the correction of the assigned start codons of 1082 homologous genes in the clade. In addition, we also report the presence of novel genes within operons encoding determinants of the important tricarboxylic acid cycle, a feature that seems to be characteristic of some Roseobacter genomes. The detection of their corresponding products in large amounts raises the question of their function. Their discoveries point to a possible theory for protein evolution that will rely on high expression of orphans in bacteria: their putative poor efficiency could be counterbalanced by a higher level of expression. Our proteogenomic analysis will increase

  15. Vertebrate gene predictions and the problem of large genes

    DEFF Research Database (Denmark)

    Wang, Jun; Li, ShengTing; Zhang, Yong

    2003-01-01

    To find unknown protein-coding genes, annotation pipelines use a combination of ab initio gene prediction and similarity to experimentally confirmed genes or proteins. Here, we show that although the ab initio predictions have an intrinsically high false-positive rate, they also have a consistent...

  16. PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources.

    Science.gov (United States)

    Kahanda, Indika; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa

    2015-01-01

    The human phenotype ontology (HPO) was recently developed as a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. At present, only a small fraction of human protein coding genes have HPO annotations. But, researchers believe that a large portion of currently unannotated genes are related to disease phenotypes. Therefore, it is important to predict gene-HPO term associations using accurate computational methods. In this work we demonstrate the performance advantage of the structured SVM approach which was shown to be highly effective for Gene Ontology term prediction in comparison to several baseline methods. Furthermore, we highlight a collection of informative data sources suitable for the problem of predicting gene-HPO associations, including large scale literature mining data.

  17. The Sequence and Analysis of Duplication Rich Human Chromosome 16

    Science.gov (United States)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-01-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  18. The sequence and analysis of duplication rich human chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Joel; Han, Cliff; Gordon, Laurie A.; Terry, Astrid; Prabhakar, Shyam; She, Xinwei; Xie, Gary; Hellsten, Uffe; Man Chan, Yee; Altherr, Michael; Couronne, Olivier; Aerts, Andrea; Bajorek, Eva; Black, Stacey; Blumer, Heather; Branscomb, Elbert; Brown, Nancy C.; Bruno, William J.; Buckingham, Judith M.; Callen, David F.; Campbell, Connie S.; Campbell, Mary L.; Campbell, Evelyn W.; Caoile, Chenier; Challacombe, Jean F.; Chasteen, Leslie A.; Chertkov, Olga; Chi, Han C.; Christensen, Mari; Clark, Lynn M.; Cohn, Judith D.; Denys, Mirian; Detter, John C.; Dickson, Mark; Dimitrijevic-Bussod, Mira; Escobar, Julio; Fawcett, Joseph J.; Flowers, Dave; Fotopulos, Dea; Glavina, Tijana; Gomez, Maria; Gonzales, Eidelyn; Goodstein, David; Goodwin, Lynne A.; Grady, Deborah L.; Grigoriev, Igor; Groza, Matthew; Hammon, Nancy; Hawkins, Trevor; Haydu, Lauren; Hildebrand, Carl E.; Huang, Wayne; Israni, Sanjay; Jett, Jamie; Jewett, Phillip E.; Kadner, Kristen; Kimball, Heather; Kobayashi, Arthur; Krawczyk, Marie-Claude; Leyba, Tina; Longmire, Jonathan L.; Lopez, Frederick; Lou, Yunian; Lowry, Steve; Ludeman, Thom; Mark, Graham A.; Mcmurray, Kimberly L.; Meincke, Linda J.; Morgan, Jenna; Moyzis, Robert K.; Mundt, Mark O.; Munk, A. Christine; Nandkeshwar, Richard D.; Pitluck, Sam; Pollard, Martin; Predki, Paul; Parson-Quintana, Beverly; Ramirez, Lucia; Rash, Sam; Retterer, James; Ricke, Darryl O.; Robinson, Donna L.; Rodriguez, Alex; Salamov, Asaf; Saunders, Elizabeth H.; Scott, Duncan; Shough, Timothy; Stallings, Raymond L.; Stalvey, Malinda; Sutherland, Robert D.; Tapia, Roxanne; Tesmer, Judith G.; Thayer, Nina; Thompson, Linda S.; Tice, Hope; Torney, David C.; Tran-Gyamfi, Mary; Tsai, Ming; Ulanovsky, Levy E.; Ustaszewska, Anna; Vo, Nu; White, P. Scott; Williams, Albert L.; Wills, Patricia L.; Wu, Jung-Rung; Wu, Kevin; Yang, Joan; DeJong, Pieter; Bruce, David; Doggett, Norman; Deaven, Larry; Schmutz, Jeremy; Grimwood, Jane; Richardson, Paul; et al.

    2004-08-01

    We report here the 78,884,754 base pairs of finished human chromosome 16 sequence, representing over 99.9 percent of its euchromatin. Manual annotation revealed 880 protein coding genes confirmed by 1,637 aligned transcripts, 19 tRNA genes, 341 pseudogenes and 3 RNA pseudogenes. These genes include metallothionein, cadherin and iroquois gene families, as well as the disease genes for polycystic kidney disease and acute myelomonocytic leukemia. Several large-scale structural polymorphisms spanning hundreds of kilobasepairs were identified and result in gene content differences across humans. One of the unique features of chromosome 16 is its high level of segmental duplication, ranked among the highest of the human autosomes. While the segmental duplications are enriched in the relatively gene poor pericentromere of the p-arm, some are involved in recent gene duplication and conversion events which are likely to have had an impact on the evolution of primates and human disease susceptibility.

  19. Sequence-based feature prediction and annotation of proteins

    DEFF Research Database (Denmark)

    Juncker, Agnieszka; Jensen, Lars J.; Pierleoni, Andrea

    2009-01-01

    A recent trend in computational methods for annotation of protein function is that many prediction tools are combined in complex workflows and pipelines to facilitate the analysis of feature combinations, for example, the entire repertoire of kinase-binding motifs in the human proteome....

  20. Cloning, analysis and functional annotation of expressed sequence tags from the Earthworm Eisenia fetida

    Science.gov (United States)

    Pirooznia, Mehdi; Gong, Ping; Guan, Xin; Inouye, Laura S; Yang, Kuan; Perkins, Edward J; Deng, Youping

    2007-01-01

    Background Eisenia fetida, commonly known as red wiggler or compost worm, belongs to the Lumbricidae family of the Annelida phylum. Little is known about its genome sequence although it has been extensively used as a test organism in terrestrial ecotoxicology. In order to understand its gene expression response to environmental contaminants, we cloned 4032 cDNAs or expressed sequence tags (ESTs) from two E. fetida libraries enriched with genes responsive to ten ordnance related compounds using suppressive subtractive hybridization-PCR. Results A total of 3144 good quality ESTs (GenBank dbEST accession number EH669363–EH672369 and EL515444–EL515580) were obtained from the raw clone sequences after cleaning. Clustering analysis yielded 2231 unique sequences including 448 contigs (from 1361 ESTs) and 1783 singletons. Comparative genomic analysis showed that 743 or 33% of the unique sequences shared high similarity with existing genes in the GenBank nr database. Provisional function annotation assigned 830 Gene Ontology terms to 517 unique sequences based on their homology with the annotated genomes of four model organisms Drosophila melanogaster, Mus musculus, Saccharomyces cerevisiae, and Caenorhabditis elegans. Seven percent of the unique sequences were further mapped to 99 Kyoto Encyclopedia of Genes and Genomes pathways based on their matching Enzyme Commission numbers. All the information is stored and retrievable at a highly performed, web-based and user-friendly relational database called EST model database or ESTMD version 2. Conclusion The ESTMD containing the sequence and annotation information of 4032 E. fetida ESTs is publicly accessible at . PMID:18047730

  1. Intra-species sequence comparisons for annotating genomes

    Energy Technology Data Exchange (ETDEWEB)

    Boffelli, Dario; Weer, Claire V.; Weng, Li; Lewis, Keith D.; Shoukry, Malak I.; Pachter, Lior; Keys, David N.; Rubin, Edward M.

    2004-07-15

    Analysis of sequence variation among members of a single species offers a potential approach to identify functional DNA elements responsible for biological features unique to that species. Due to its high rate of allelic polymorphism and ease of genetic manipulability, we chose the sea squirt, Ciona intestinalis, to explore intra-species sequence comparisons for genome annotation. A large number of C. intestinalis specimens were collected from four continents and a set of genomic intervals amplified, resequenced and analyzed to determine the mutation rates at each nucleotide in the sequence. We found that regions with low mutation rates efficiently demarcated functionally constrained sequences: these include a set of noncoding elements, which we showed in C intestinalis transgenic assays to act as tissue-specific enhancers, as well as the location of coding sequences. This illustrates that comparisons of multiple members of a species can be used for genome annotation, suggesting a path for the annotation of the sequenced genomes of organisms occupying uncharacterized phylogenetic branches of the animal kingdom and raises the possibility that the resequencing of a large number of Homo sapiens individuals might be used to annotate the human genome and identify sequences defining traits unique to our species. The sequence data from this study has been submitted to GenBank under accession nos. AY667278-AY667407.

  2. Fast gene ontology based clustering for microarray experiments.

    Science.gov (United States)

    Ovaska, Kristian; Laakso, Marko; Hautaniemi, Sampsa

    2008-11-21

    Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  3. Discovery of rare protein-coding genes in model methylotroph Methylobacterium extorquens AM1.

    Science.gov (United States)

    Kumar, Dhirendra; Mondal, Anupam Kumar; Yadav, Amit Kumar; Dash, Debasis

    2014-12-01

    Proteogenomics involves the use of MS to refine annotation of protein-coding genes and discover genes in a genome. We carried out comprehensive proteogenomic analysis of Methylobacterium extorquens AM1 (ME-AM1) from publicly available proteomics data with a motive to improve annotation for methylotrophs; organisms capable of surviving in reduced carbon compounds such as methanol. Besides identifying 2482(50%) proteins, 29 new genes were discovered and 66 annotated gene models were revised in ME-AM1 genome. One such novel gene is identified with 75 peptides, lacks homolog in other methylobacteria but has glycosyl transferase and lipopolysaccharide biosynthesis protein domains, indicating its potential role in outer membrane synthesis. Many novel genes are present only in ME-AM1 among methylobacteria. Distant homologs of these genes in unrelated taxonomic classes and low GC-content of few genes suggest lateral gene transfer as a potential mode of their origin. Annotations of methylotrophy related genes were also improved by the discovery of a short gene in methylotrophy gene island and redefining a gene important for pyrroquinoline quinone synthesis, essential for methylotrophy. The combined use of proteogenomics and rigorous bioinformatics analysis greatly enhanced the annotation of protein-coding genes in model methylotroph ME-AM1 genome. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. TypeLoader: A fast and efficient automated workflow for the annotation and submission of novel full-length HLA alleles.

    Science.gov (United States)

    Surendranath, V; Albrecht, V; Hayhurst, J D; Schöne, B; Robinson, J; Marsh, S G E; Schmidt, A H; Lange, V

    2017-07-01

    Recent years have seen a rapid increase in the discovery of novel allelic variants of the human leukocyte antigen (HLA) genes. Commonly, only the exons encoding the peptide binding domains of novel HLA alleles are submitted. As a result, the IPD-IMGT/HLA Database lacks sequence information outside those regions for the majority of known alleles. This has implications for the application of the new sequencing technologies, which deliver sequence data often covering the complete gene. As these technologies simplify the characterization of the complete gene regions, it is desirable for novel alleles to be submitted as full-length sequences to the database. However, the manual annotation of full-length alleles and the generation of specific formats required by the sequence repositories is prone to error and time consuming. We have developed TypeLoader to address both these facets. With only the full-length sequence as a starting point, Typeloader performs automatic sequence annotation and subsequently handles all steps involved in preparing the specific formats for submission with very little manual intervention. TypeLoader is routinely used at the DKMS Life Science Lab and has aided in the successful submission of more than 900 novel HLA alleles as full-length sequences to the European Nucleotide Archive repository and the IPD-IMGT/HLA Database with a 95% reduction in the time spent on annotation and submission when compared with handling these processes manually. TypeLoader is implemented as a web application and can be easily installed and used on a standalone Linux desktop system or within a Linux client/server architecture. TypeLoader is downloadable from http://www.github.com/DKMS-LSL/typeloader. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Supplementing High-Density SNP Microarrays for Additional Coverage of Disease-Related Genes: Addiction as a Paradigm

    Energy Technology Data Exchange (ETDEWEB)

    SacconePhD, Scott F [Washington University, St. Louis; Chesler, Elissa J [ORNL; Bierut, Laura J [Washington University, St. Louis; Kalivas, Peter J [Medical College of South Carolina, Charleston; Lerman, Caryn [University of Pennsylvania; Saccone, Nancy L [Washington University, St. Louis; Uhl, George R [Johns Hopkins University; Li, Chuan-Yun [Peking University; Philip, Vivek M [ORNL; Edenberg, Howard [Indiana University; Sherry, Steven [National Center for Biotechnology Information; Feolo, Michael [National Center for Biotechnology Information; Moyzis, Robert K [Johns Hopkins University; Rutter, Joni L [National Institute of Drug Abuse

    2009-01-01

    Commercial SNP microarrays now provide comprehensive and affordable coverage of the human genome. However, some diseases have biologically relevant genomic regions that may require additional coverage. Addiction, for example, is thought to be influenced by complex interactions among many relevant genes and pathways. We have assembled a list of 486 biologically relevant genes nominated by a panel of experts on addiction. We then added 424 genes that showed evidence of association with addiction phenotypes through mouse QTL mappings and gene co-expression analysis. We demonstrate that there are a substantial number of SNPs in these genes that are not well represented by commercial SNP platforms. We address this problem by introducing a publicly available SNP database for addiction. The database is annotated using numeric prioritization scores indicating the extent of biological relevance. The scores incorporate a number of factors such as SNP/gene functional properties (including synonymy and promoter regions), data from mouse systems genetics and measures of human/mouse evolutionary conservation. We then used HapMap genotyping data to determine if a SNP is tagged by a commercial microarray through linkage disequilibrium. This combination of biological prioritization scores and LD tagging annotation will enable addiction researchers to supplement commercial SNP microarrays to ensure comprehensive coverage of biologically relevant regions.

  6. The DNA sequence, annotation and analysis of human chromosome 3

    DEFF Research Database (Denmark)

    Muzny, D.M.; Bolund, Lars; As part of the Chinese Human Genome Sequencing Consortium, E.T.A.L.

    2006-01-01

    as numerous loci involved in multiple human cancers such as the gene encoding FHIT, which contains the most common constitutive fragile site in the genome, FRA3B. Using genomic sequence from chimpanzee and rhesus macaque, we were able to characterize the breakpoints defining a large pericentric inversion...

  7. Widespread of horizontal gene transfer in the human genome.

    Science.gov (United States)

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-04-04

    A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. From the pair-wise alignments between human genome and 53 vertebrate genomes, 1,467 human genome regions (2.6 M bases) from all chromosomes were found to be more conserved with non-mammals than with most mammals. These human genome regions involve 642 known genes, which are enriched with ion binding. Compared to known horizontal gene transfer regions in the human genome, there were few overlapping regions, which indicated horizontal gene transfer is more common than we expected in the human genome. Horizontal gene transfer impacts hundreds of human genes and this study provided insight into potential mechanisms of HGT in the human genome.

  8. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Science.gov (United States)

    2012-01-01

    Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920

  9. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-12-01

    Full Text Available Abstract Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas.

  10. Evaluating Hierarchical Structure in Music Annotations.

    Science.gov (United States)

    McFee, Brian; Nieto, Oriol; Farbood, Morwaread M; Bello, Juan Pablo

    2017-01-01

    Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR), it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for "flat" descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  11. Evaluating Hierarchical Structure in Music Annotations

    Directory of Open Access Journals (Sweden)

    Brian McFee

    2017-08-01

    Full Text Available Music exhibits structure at multiple scales, ranging from motifs to large-scale functional components. When inferring the structure of a piece, different listeners may attend to different temporal scales, which can result in disagreements when they describe the same piece. In the field of music informatics research (MIR, it is common to use corpora annotated with structural boundaries at different levels. By quantifying disagreements between multiple annotators, previous research has yielded several insights relevant to the study of music cognition. First, annotators tend to agree when structural boundaries are ambiguous. Second, this ambiguity seems to depend on musical features, time scale, and genre. Furthermore, it is possible to tune current annotation evaluation metrics to better align with these perceptual differences. However, previous work has not directly analyzed the effects of hierarchical structure because the existing methods for comparing structural annotations are designed for “flat” descriptions, and do not readily generalize to hierarchical annotations. In this paper, we extend and generalize previous work on the evaluation of hierarchical descriptions of musical structure. We derive an evaluation metric which can compare hierarchical annotations holistically across multiple levels. sing this metric, we investigate inter-annotator agreement on the multilevel annotations of two different music corpora, investigate the influence of acoustic properties on hierarchical annotations, and evaluate existing hierarchical segmentation algorithms against the distribution of inter-annotator agreement.

  12. Annotation of Regular Polysemy

    DEFF Research Database (Denmark)

    Martinez Alonso, Hector

    Regular polysemy has received a lot of attention from the theory of lexical semantics and from computational linguistics. However, there is no consensus on how to represent the sense of underspecified examples at the token level, namely when annotating or disambiguating senses of metonymic words...... and metonymic. We have conducted an analysis in English, Danish and Spanish. Later on, we have tried to replicate the human judgments by means of unsupervised and semi-supervised sense prediction. The automatic sense-prediction systems have been unable to find empiric evidence for the underspecified sense, even...

  13. CGKB: an annotation knowledge base for cowpea (Vigna unguiculata L. methylation filtered genomic genespace sequences

    Directory of Open Access Journals (Sweden)

    Spraggins Thomas A

    2007-04-01

    Full Text Available Abstract Background Cowpea [Vigna unguiculata (L. Walp.] is one of the most important food and forage legumes in the semi-arid tropics because of its ability to tolerate drought and grow on poor soils. It is cultivated mostly by poor farmers in developing countries, with 80% of production taking place in the dry savannah of tropical West and Central Africa. Cowpea is largely an underexploited crop with relatively little genomic information available for use in applied plant breeding. The goal of the Cowpea Genomics Initiative (CGI, funded by the Kirkhouse Trust, a UK-based charitable organization, is to leverage modern molecular genetic tools for gene discovery and cowpea improvement. One aspect of the initiative is the sequencing of the gene-rich region of the cowpea genome (termed the genespace recovered using methylation filtration technology and providing annotation and analysis of the sequence data. Description CGKB, Cowpea Genespace/Genomics Knowledge Base, is an annotation knowledge base developed under the CGI. The database is based on information derived from 298,848 cowpea genespace sequences (GSS isolated by methylation filtering of genomic DNA. The CGKB consists of three knowledge bases: GSS annotation and comparative genomics knowledge base, GSS enzyme and metabolic pathway knowledge base, and GSS simple sequence repeats (SSRs knowledge base for molecular marker discovery. A homology-based approach was applied for annotations of the GSS, mainly using BLASTX against four public FASTA formatted protein databases (NCBI GenBank Proteins, UniProtKB-Swiss-Prot, UniprotKB-PIR (Protein Information Resource, and UniProtKB-TrEMBL. Comparative genome analysis was done by BLASTX searches of the cowpea GSS against four plant proteomes from Arabidopsis thaliana, Oryza sativa, Medicago truncatula, and Populus trichocarpa. The possible exons and introns on each cowpea GSS were predicted using the HMM-based Genscan gene predication program and the

  14. Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray.

    Directory of Open Access Journals (Sweden)

    Kouji Satoh

    Full Text Available Rice (Oryza sativa L. is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE genes, 33K annotated non-expressed (ANE genes, and 5.5K non-annotated expressed (NAE genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria.

  15. Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene

    Science.gov (United States)

    2012-01-01

    Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. PMID:23061798

  16. A nuclear magnetic resonance based approach to accurate functional annotation of putative enzymes in the methanogen Methanosarcina acetivorans

    Directory of Open Access Journals (Sweden)

    Nikolau Basil J

    2011-06-01

    Full Text Available Abstract Background Correct annotation of function is essential if one is to take full advantage of the vast amounts of genomic sequence data. The accuracy of sequence-based functional annotations is often variable, particularly if the sequence homology to a known function is low. Indeed recent work has shown that even proteins with very high sequence identity can have different folds and functions, and therefore caution is needed in assigning functions by sequence homology in the absence of experimental validation. Experimental methods are therefore needed to efficiently evaluate annotations in a way that complements current high throughput technologies. Here, we describe the use of nuclear magnetic resonance (NMR-based ligand screening as a tool for testing functional assignments of putative enzymes that may be of variable reliability. Results The target genes for this study are putative enzymes from the methanogenic archaeon Methanosarcina acetivorans (MA that have been selected after manual genome re-annotation and demonstrate detectable in vivo expression at the level of the transcriptome. The experimental approach begins with heterologous E. coli expression and purification of individual MA gene products. An NMR-based ligand screen of the purified protein then identifies possible substrates or products from a library of candidate compounds chosen from the putative pathway and other related pathways. These data are used to determine if the current sequence-based annotation is likely to be correct. For a number of case studies, additional experiments (such as in vivo genetic complementation were performed to determine function so that the reliability of the NMR screen could be independently assessed. Conclusions In all examples studied, the NMR screen was indicative of whether the functional annotation was correct. Thus, the case studies described demonstrate that NMR-based ligand screening is an effective and rapid tool for confirming or

  17. MicroScope: a platform for microbial genome annotation and comparative genomics.

    Science.gov (United States)

    Vallenet, D; Engelen, S; Mornico, D; Cruveiller, S; Fleury, L; Lajus, A; Rouy, Z; Roche, D; Salvignol, G; Scarpelli, C; Médigue, C

    2009-01-01

    The initial outcome of genome sequencing is the creation of long text strings written in a four letter alphabet. The role of in silico sequence analysis is to assist biologists in the act of associating biological knowledge with these sequences, allowing investigators to make inferences and predictions that can be tested experimentally. A wide variety of software is available to the scientific community, and can be used to identify genomic objects, before predicting their biological functions. However, only a limited number of biologically interesting features can be revealed from an isolated sequence. Comparative genomics tools, on the other hand, by bringing together the information contained in numerous genomes simultaneously, allow annotators to make inferences based on the idea that evolution and natural selection are central to the definition of all biological processes. We have developed the MicroScope platform in order to offer a web-based framework for the systematic and efficient revision of microbial genome annotation and comparative analysis (http://www.genoscope.cns.fr/agc/microscope). Starting with the description of the flow chart of the annotation processes implemented in the MicroScope pipeline, and the development of traditional and novel microbial annotation and comparative analysis tools, this article emphasizes the essential role of expert annotation as a complement of automatic annotation. Several examples illustrate the use of implemented tools for the review and curation of annotations of both new and publicly available microbial genomes within MicroScope's rich integrated genome framework. The platform is used as a viewer in order to browse updated annotation information of available microbial genomes (more than 440 organisms to date), and in the context of new annotation projects (117 bacterial genomes). The human expertise gathered in the MicroScope database (about 280,000 independent annotations) contributes to improve the quality of

  18. Improved Genome Assembly and Annotation for the Rock Pigeon (Columba livia).

    Science.gov (United States)

    Holt, Carson; Campbell, Michael; Keays, David A; Edelman, Nathaniel; Kapusta, Aurélie; Maclary, Emily; T Domyan, Eric; Suh, Alexander; Warren, Wesley C; Yandell, Mark; Gilbert, M Thomas P; Shapiro, Michael D

    2018-05-04

    The domestic rock pigeon ( Columba livia ) is among the most widely distributed and phenotypically diverse avian species. C. livia is broadly studied in ecology, genetics, physiology, behavior, and evolutionary biology, and has recently emerged as a model for understanding the molecular basis of anatomical diversity, the magnetic sense, and other key aspects of avian biology. Here we report an update to the C. livia genome reference assembly and gene annotation dataset. Greatly increased scaffold lengths in the updated reference assembly, along with an updated annotation set, provide improved tools for evolutionary and functional genetic studies of the pigeon, and for comparative avian genomics in general. Copyright © 2018 Holt et al.

  19. BioCause: Annotating and analysing causality in the biomedical domain.

    Science.gov (United States)

    Mihăilă, Claudiu; Ohta, Tomoko; Pyysalo, Sampo; Ananiadou, Sophia

    2013-01-16

    Biomedical corpora annotated with event-level information represent an important resource for domain-specific information extraction (IE) systems. However, bio-event annotation alone cannot cater for all the needs of biologists. Unlike work on relation and event extraction, most of which focusses on specific events and named entities, we aim to build a comprehensive resource, covering all statements of causal association present in discourse. Causality lies at the heart of biomedical knowledge, such as diagnosis, pathology or systems biology, and, thus, automatic causality recognition can greatly reduce the human workload by suggesting possible causal connections and aiding in the curation of pathway models. A biomedical text corpus annotated with such relations is, hence, crucial for developing and evaluating biomedical text mining. We have defined an annotation scheme for enriching biomedical domain corpora with causality relations. This schema has subsequently been used to annotate 851 causal relations to form BioCause, a collection of 19 open-access full-text biomedical journal articles belonging to the subdomain of infectious diseases. These documents have been pre-annotated with named entity and event information in the context of previous shared tasks. We report an inter-annotator agreement rate of over 60% for triggers and of over 80% for arguments using an exact match constraint. These increase significantly using a relaxed match setting. Moreover, we analyse and describe the causality relations in BioCause from various points of view. This information can then be leveraged for the training of automatic causality detection systems. Augmenting named entity and event annotations with information about causal discourse relations could benefit the development of more sophisticated IE systems. These will further influence the development of multiple tasks, such as enabling textual inference to detect entailments, discovering new facts and providing new

  20. Community annotation and bioinformatics workforce development in concert--Little Skate Genome Annotation Workshops and Jamborees.

    Science.gov (United States)

    Wang, Qinghua; Arighi, Cecilia N; King, Benjamin L; Polson, Shawn W; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F; Page, Shallee T; Rendino, Marc Farnum; Thomas, William Kelley; Udwary, Daniel W; Wu, Cathy H

    2012-01-01

    Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome.

  1. Community annotation and bioinformatics workforce development in concert—Little Skate Genome Annotation Workshops and Jamborees

    Science.gov (United States)

    Wang, Qinghua; Arighi, Cecilia N.; King, Benjamin L.; Polson, Shawn W.; Vincent, James; Chen, Chuming; Huang, Hongzhan; Kingham, Brewster F.; Page, Shallee T.; Farnum Rendino, Marc; Thomas, William Kelley; Udwary, Daniel W.; Wu, Cathy H.

    2012-01-01

    Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome. PMID:22434832

  2. EcoGene 3.0.

    Science.gov (United States)

    Zhou, Jindan; Rudd, Kenneth E

    2013-01-01

    EcoGene (http://ecogene.org) is a database and website devoted to continuously improving the structural and functional annotation of Escherichia coli K-12, one of the most well understood model organisms, represented by the MG1655(Seq) genome sequence and annotations. Major improvements to EcoGene in the past decade include (i) graphic presentations of genome map features; (ii) ability to design Boolean queries and Venn diagrams from EcoArray, EcoTopics or user-provided GeneSets; (iii) the genome-wide clone and deletion primer design tool, PrimerPairs; (iv) sequence searches using a customized EcoBLAST; (v) a Cross Reference table of synonymous gene and protein identifiers; (vi) proteome-wide indexing with GO terms; (vii) EcoTools access to >2000 complete bacterial genomes in EcoGene-RefSeq; (viii) establishment of a MySql relational database; and (ix) use of web content management systems. The biomedical literature is surveyed daily to provide citation and gene function updates. As of September 2012, the review of 37 397 abstracts and articles led to creation of 98 425 PubMed-Gene links and 5415 PubMed-Topic links. Annotation updates to Genbank U00096 are transmitted from EcoGene to NCBI. Experimental verifications include confirmation of a CTG start codon, pseudogene restoration and quality assurance of the Keio strain collection.

  3. EcoGene 3.0

    Science.gov (United States)

    Zhou, Jindan; Rudd, Kenneth E.

    2013-01-01

    EcoGene (http://ecogene.org) is a database and website devoted to continuously improving the structural and functional annotation of Escherichia coli K-12, one of the most well understood model organisms, represented by the MG1655(Seq) genome sequence and annotations. Major improvements to EcoGene in the past decade include (i) graphic presentations of genome map features; (ii) ability to design Boolean queries and Venn diagrams from EcoArray, EcoTopics or user-provided GeneSets; (iii) the genome-wide clone and deletion primer design tool, PrimerPairs; (iv) sequence searches using a customized EcoBLAST; (v) a Cross Reference table of synonymous gene and protein identifiers; (vi) proteome-wide indexing with GO terms; (vii) EcoTools access to >2000 complete bacterial genomes in EcoGene-RefSeq; (viii) establishment of a MySql relational database; and (ix) use of web content management systems. The biomedical literature is surveyed daily to provide citation and gene function updates. As of September 2012, the review of 37 397 abstracts and articles led to creation of 98 425 PubMed-Gene links and 5415 PubMed-Topic links. Annotation updates to Genbank U00096 are transmitted from EcoGene to NCBI. Experimental verifications include confirmation of a CTG start codon, pseudogene restoration and quality assurance of the Keio strain collection. PMID:23197660

  4. Assembly, Annotation, and Analysis of Multiple Mycorrhizal Fungal Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Initiative Consortium, Mycorrhizal Genomics; Kuo, Alan; Grigoriev, Igor; Kohler, Annegret; Martin, Francis

    2013-03-08

    Mycorrhizal fungi play critical roles in host plant health, soil community structure and chemistry, and carbon and nutrient cycling, all areas of intense interest to the US Dept. of Energy (DOE) Joint Genome Institute (JGI). To this end we are building on our earlier sequencing of the Laccaria bicolor genome by partnering with INRA-Nancy and the mycorrhizal research community in the MGI to sequence and analyze dozens of mycorrhizal genomes of all Basidiomycota and Ascomycota orders and multiple ecological types (ericoid, orchid, and ectomycorrhizal). JGI has developed and deployed high-throughput sequencing techniques, and Assembly, RNASeq, and Annotation Pipelines. In 2012 alone we sequenced, assembled, and annotated 12 draft or improved genomes of mycorrhizae, and predicted ~;;232831 genes and ~;;15011 multigene families, All of this data is publicly available on JGI MycoCosm (http://jgi.doe.gov/fungi/), which provides access to both the genome data and tools with which to analyze the data. Preliminary comparisons of the current total of 14 public mycorrhizal genomes suggest that 1) short secreted proteins potentially involved in symbiosis are more enriched in some orders than in others amongst the mycorrhizal Agaricomycetes, 2) there are wide ranges of numbers of genes involved in certain functional categories, such as signal transduction and post-translational modification, and 3) novel gene families are specific to some ecological types.

  5. Analysis of mammalian gene function through broad based phenotypic screens across a consortium of mouse clinics

    Science.gov (United States)

    Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl MJ; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie

    2015-01-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse ES cell knockout resource provides a basis for characterisation of relationships between gene and phenotype. The EUMODIC consortium developed and validated robust methodologies for broad-based phenotyping of knockouts through a pipeline comprising 20 disease-orientated platforms. We developed novel statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no prior functional annotation. We captured data from over 27,000 mice finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. Novel phenotypes were uncovered for many genes with unknown function providing a powerful basis for hypothesis generation and further investigation in diverse systems. PMID:26214591

  6. Coupled Transcriptome and Proteome Analysis of Human Lymphotropic Tumor Viruses: Insights on the Detection and Discovery of Viral Genes

    Energy Technology Data Exchange (ETDEWEB)

    Dresang, Lindsay R.; Teuton, Jeremy R.; Feng, Huichen; Jacobs, Jon M.; Camp, David G.; Purvine, Samuel O.; Gritsenko, Marina A.; Li, Zhihua; Smith, Richard D.; Sugden, Bill; Moore, Patrick S.; Chang, Yuan

    2011-12-20

    Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are related human tumor viruses that cause primary effusion lymphomas (PEL) and Burkitt's lymphomas (BL), respectively. Viral genes expressed in naturally-infected cancer cells contribute to disease pathogenesis; knowing which viral genes are expressed is critical in understanding how these viruses cause cancer. To evaluate the expression of viral genes, we used high-resolution separation and mass spectrometry coupled with custom tiling arrays to align the viral proteomes and transcriptomes of three PEL and two BL cell lines under latent and lytic culture conditions. Results The majority of viral genes were efficiently detected at the transcript and/or protein level on manipulating the viral life cycle. Overall the correlation of expressed viral proteins and transcripts was highly complementary in both validating and providing orthogonal data with latent/lytic viral gene expression. Our approach also identified novel viral genes in both KSHV and EBV, and extends viral genome annotation. Several previously uncharacterized genes were validated at both transcript and protein levels. Conclusions This systems biology approach coupling proteome and transcriptome measurements provides a comprehensive view of viral gene expression that could not have been attained using each methodology independently. Detection of viral proteins in combination with viral transcripts is a potentially powerful method for establishing virus-disease relationships.

  7. Reasoning with Annotations of Texts

    OpenAIRE

    Ma , Yue; Lévy , François; Ghimire , Sudeep

    2011-01-01

    International audience; Linguistic and semantic annotations are important features for text-based applications. However, achieving and maintaining a good quality of a set of annotations is known to be a complex task. Many ad hoc approaches have been developed to produce various types of annotations, while comparing those annotations to improve their quality is still rare. In this paper, we propose a framework in which both linguistic and domain information can cooperate to reason with annotat...

  8. wANNOVAR: annotating genetic variants for personal genomes via the web.

    Science.gov (United States)

    Chang, Xiao; Wang, Kai

    2012-07-01

    High-throughput DNA sequencing platforms have become widely available. As a result, personal genomes are increasingly being sequenced in research and clinical settings. However, the resulting massive amounts of variants data pose significant challenges to the average biologists and clinicians without bioinformatics skills. We developed a web server called wANNOVAR to address the critical needs for functional annotation of genetic variants from personal genomes. The server provides simple and intuitive interface to help users determine the functional significance of variants. These include annotating single nucleotide variants and insertions/deletions for their effects on genes, reporting their conservation levels (such as PhyloP and GERP++ scores), calculating their predicted functional importance scores (such as SIFT and PolyPhen scores), retrieving allele frequencies in public databases (such as the 1000 Genomes Project and NHLBI-ESP 5400 exomes), and implementing a 'variants reduction' protocol to identify a subset of potentially deleterious variants/genes. We illustrated how wANNOVAR can help draw biological insights from sequencing data, by analysing genetic variants generated on two Mendelian diseases. We conclude that wANNOVAR will help biologists and clinicians take advantage of the personal genome information to expedite scientific discoveries. The wANNOVAR server is available at http://wannovar.usc.edu, and will be continuously updated to reflect the latest annotation information.

  9. Importing statistical measures into Artemis enhances gene identification in the Leishmania genome project

    Directory of Open Access Journals (Sweden)

    McDonagh Paul D

    2003-06-01

    Full Text Available Abstract Background Seattle Biomedical Research Institute (SBRI as part of the Leishmania Genome Network (LGN is sequencing chromosomes of the trypanosomatid protozoan species Leishmania major. At SBRI, chromosomal sequence is annotated using a combination of trained and untrained non-consensus gene-prediction algorithms with ARTEMIS, an annotation platform with rich and user-friendly interfaces. Results Here we describe a methodology used to import results from three different protein-coding gene-prediction algorithms (GLIMMER, TESTCODE and GENESCAN into the ARTEMIS sequence viewer and annotation tool. Comparison of these methods, along with the CODONUSAGE algorithm built into ARTEMIS, shows the importance of combining methods to more accurately annotate the L. major genomic sequence. Conclusion An improvised and powerful tool for gene prediction has been developed by importing data from widely-used algorithms into an existing annotation platform. This approach is especially fruitful in the Leishmania genome project where there is large proportion of novel genes requiring manual annotation.

  10. RNA-seq analysis of Quercus pubescens Leaves: de novo transcriptome assembly, annotation and functional markers development.

    Directory of Open Access Journals (Sweden)

    Sara Torre

    Full Text Available Quercus pubescens Willd., a species distributed from Spain to southwest Asia, ranks high for drought tolerance among European oaks. Q. pubescens performs a role of outstanding significance in most Mediterranean forest ecosystems, but few mechanistic studies have been conducted to explore its response to environmental constrains, due to the lack of genomic resources. In our study, we performed a deep transcriptomic sequencing in Q. pubescens leaves, including de novo assembly, functional annotation and the identification of new molecular markers. Our results are a pre-requisite for undertaking molecular functional studies, and may give support in population and association genetic studies. 254,265,700 clean reads were generated by the Illumina HiSeq 2000 platform, with an average length of 98 bp. De novo assembly, using CLC Genomics, produced 96,006 contigs, having a mean length of 618 bp. Sequence similarity analyses against seven public databases (Uniprot, NR, RefSeq and KOGs at NCBI, Pfam, InterPro and KEGG resulted in 83,065 transcripts annotated with gene descriptions, conserved protein domains, or gene ontology terms. These annotations and local BLAST allowed identify genes specifically associated with mechanisms of drought avoidance. Finally, 14,202 microsatellite markers and 18,425 single nucleotide polymorphisms (SNPs were, in silico, discovered in assembled and annotated sequences. We completed a successful global analysis of the Q. pubescens leaf transcriptome using RNA-seq. The assembled and annotated sequences together with newly discovered molecular markers provide genomic information for functional genomic studies in Q. pubescens, with special emphasis to response mechanisms to severe constrain of the Mediterranean climate. Our tools enable comparative genomics studies on other Quercus species taking advantage of large intra-specific ecophysiological differences.

  11. Human gene therapy: novel approaches to improve the current gene delivery systems.

    Science.gov (United States)

    Cucchiarini, Magali

    2016-06-01

    Even though gene therapy made its way through the clinics to treat a number of human pathologies since the early years of experimental research and despite the recent approval of the first gene-based product (Glybera) in Europe, the safe and effective use of gene transfer vectors remains a challenge in human gene therapy due to the existence of barriers in the host organism. While work is under active investigation to improve the gene transfer systems themselves, the use of controlled release approaches may offer alternative, convenient tools of vector delivery to achieve a performant gene transfer in vivo while overcoming the various physiological barriers that preclude its wide use in patients. This article provides an overview of the most significant contributions showing how the principles of controlled release strategies may be adapted for human gene therapy.

  12. Pertinent Discussions Toward Modeling the Social Edition: Annotated Bibliographies

    NARCIS (Netherlands)

    Siemens, R.; Timney, M.; Leitch, C.; Koolen, C.; Garnett, A.

    2012-01-01

    The two annotated bibliographies present in this publication document and feature pertinent discussions toward the activity of modeling the social edition, first exploring reading devices, tools and social media issues and, second, social networking tools for professional readers in the Humanities.

  13. Fast Gene Ontology based clustering for microarray experiments

    Directory of Open Access Journals (Sweden)

    Ovaska Kristian

    2008-11-01

    Full Text Available Abstract Background Analysis of a microarray experiment often results in a list of hundreds of disease-associated genes. In order to suggest common biological processes and functions for these genes, Gene Ontology annotations with statistical testing are widely used. However, these analyses can produce a very large number of significantly altered biological processes. Thus, it is often challenging to interpret GO results and identify novel testable biological hypotheses. Results We present fast software for advanced gene annotation using semantic similarity for Gene Ontology terms combined with clustering and heat map visualisation. The methodology allows rapid identification of genes sharing the same Gene Ontology cluster. Conclusion Our R based semantic similarity open-source package has a speed advantage of over 2000-fold compared to existing implementations. From the resulting hierarchical clustering dendrogram genes sharing a GO term can be identified, and their differences in the gene expression patterns can be seen from the heat map. These methods facilitate advanced annotation of genes resulting from data analysis.

  14. Functional genomics tools applied to plant metabolism: a survey on plant respiration, its connections and the annotation of complex gene functions

    Directory of Open Access Journals (Sweden)

    Wagner L. Araújo

    2012-09-01

    Full Text Available The application of post-genomic techniques in plant respiration studies has greatly improved our ability to assign functions to gene products. In addition it has also revealed previously unappreciated interactions between distal elements of metabolism. Such results have reinforced the need to consider plant respiratory metabolism as part of a complex network and making sense of such interactions will ultimately require the construction of predictive and mechanistic models. Transcriptomics, proteomics, metabolomics and the quantification of metabolic flux will be of great value in creating such models both by facilitating the annotation of complex gene function, determining their structure and by furnishing the quantitative data required to test them. In this review we highlight how these experimental approaches have contributed to our current understanding of plant respiratory metabolism and its interplay with associated process (e.g. photosynthesis, photorespiration and nitrogen metabolism. We also discuss how data from these techniques may be integrated, with the ultimate aim of identifying mechanisms that control and regulate plant respiration and discovering novel gene functions with potential biotechnological implications.

  15. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  16. Simultaneous gene finding in multiple genomes.

    Science.gov (United States)

    König, Stefanie; Romoth, Lars W; Gerischer, Lizzy; Stanke, Mario

    2016-11-15

    As the tree of life is populated with sequenced genomes ever more densely, the new challenge is the accurate and consistent annotation of entire clades of genomes. We address this problem with a new approach to comparative gene finding that takes a multiple genome alignment of closely related species and simultaneously predicts the location and structure of protein-coding genes in all input genomes, thereby exploiting negative selection and sequence conservation. The model prefers potential gene structures in the different genomes that are in agreement with each other, or-if not-where the exon gains and losses are plausible given the species tree. We formulate the multi-species gene finding problem as a binary labeling problem on a graph. The resulting optimization problem is NP hard, but can be efficiently approximated using a subgradient-based dual decomposition approach. The proposed method was tested on whole-genome alignments of 12 vertebrate and 12 Drosophila species. The accuracy was evaluated for human, mouse and Drosophila melanogaster and compared to competing methods. Results suggest that our method is well-suited for annotation of (a large number of) genomes of closely related species within a clade, in particular, when RNA-Seq data are available for many of the genomes. The transfer of existing annotations from one genome to another via the genome alignment is more accurate than previous approaches that are based on protein-spliced alignments, when the genomes are at close to medium distances. The method is implemented in C ++ as part of Augustus and available open source at http://bioinf.uni-greifswald.de/augustus/ CONTACT: stefaniekoenig@ymail.com or mario.stanke@uni-greifswald.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    He Ningjia

    2008-01-01

    Full Text Available Abstract Background The most abundant family of insect cuticular proteins, the CPR family, is recognized by the R&R Consensus, a domain of about 64 amino acids that binds to chitin and is present throughout arthropods. Several species have now been shown to have more than 100 CPR genes, inviting speculation as to the functional importance of this large number and diversity. Results We have identified 156 genes in Anopheles gambiae that code for putative cuticular proteins in this CPR family, over 1% of the total number of predicted genes in this species. Annotation was verified using several criteria including identification of TATA boxes, INRs, and DPEs plus support from proteomic and gene expression analyses. Two previously recognized CPR classes, RR-1 and RR-2, form separate, well-supported clades with the exception of a small set of genes with long branches whose relationships are poorly resolved. Several of these outliers have clear orthologs in other species. Although both clades are under purifying selection, the RR-1 variant of the R&R Consensus is evolving at twice the rate of the RR-2 variant and is structurally more labile. In contrast, the regions flanking the R&R Consensus have diversified in amino-acid composition to a much greater extent in RR-2 genes compared with RR-1 genes. Many genes are found in compact tandem arrays that may include similar or dissimilar genes but always include just one of the two classes. Tandem arrays of RR-2 genes frequently contain subsets of genes coding for highly similar proteins (sequence clusters. Properties of the proteins indicated that each cluster may serve a distinct function in the cuticle. Conclusion The complete annotation of this large gene family provides insight on the mechanisms of gene family evolution and clues about the need for so many CPR genes. These data also should assist annotation of other Anopheles genes.

  18. Developmental gene discovery in a hemimetabolous insect: de novo assembly and annotation of a transcriptome for the cricket Gryllus bimaculatus.

    Directory of Open Access Journals (Sweden)

    Victor Zeng

    Full Text Available Most genomic resources available for insects represent the Holometabola, which are insects that undergo complete metamorphosis like beetles and flies. In contrast, the Hemimetabola (direct developing insects, representing the basal branches of the insect tree, have very few genomic resources. We have therefore created a large and publicly available transcriptome for the hemimetabolous insect Gryllus bimaculatus (cricket, a well-developed laboratory model organism whose potential for functional genetic experiments is currently limited by the absence of genomic resources. cDNA was prepared using mRNA obtained from adult ovaries containing all stages of oogenesis, and from embryo samples on each day of embryogenesis. Using 454 Titanium pyrosequencing, we sequenced over four million raw reads, and assembled them into 21,512 isotigs (predicted transcripts and 120,805 singletons with an average coverage per base pair of 51.3. We annotated the transcriptome manually for over 400 conserved genes involved in embryonic patterning, gametogenesis, and signaling pathways. BLAST comparison of the transcriptome against the NCBI non-redundant protein database (nr identified significant similarity to nr sequences for 55.5% of transcriptome sequences, and suggested that the transcriptome may contain 19,874 unique transcripts. For predicted transcripts without significant similarity to known sequences, we assessed their similarity to other orthopteran sequences, and determined that these transcripts contain recognizable protein domains, largely of unknown function. We created a searchable, web-based database to allow public access to all raw, assembled and annotated data. This database is to our knowledge the largest de novo assembled and annotated transcriptome resource available for any hemimetabolous insect. We therefore anticipate that these data will contribute significantly to more effective and higher-throughput deployment of molecular analysis tools in

  19. Towards the VWO Annotation Service: a Success Story of the IMAGE RPI Expert Rating System

    Science.gov (United States)

    Reinisch, B. W.; Galkin, I. A.; Fung, S. F.; Benson, R. F.; Kozlov, A. V.; Khmyrov, G. M.; Garcia, L. N.

    2010-12-01

    Interpretation of Heliophysics wave data requires specialized knowledge of wave phenomena. Users of the virtual wave observatory (VWO) will greatly benefit from a data annotation service that will allow querying of data by phenomenon type, thus helping accomplish the VWO goal to make Heliophysics wave data searchable, understandable, and usable by the scientific community. Individual annotations can be sorted by phenomenon type and reduced into event lists (catalogs). However, in contrast to the event lists, annotation records allow a greater flexibility of collaborative management by more easily admitting operations of addition, revision, or deletion. They can therefore become the building blocks for an interactive Annotation Service with a suitable graphic user interface to the VWO middleware. The VWO Annotation Service vision is an interactive, collaborative sharing of domain expert knowledge with fellow scientists and students alike. An effective prototype of the VWO Annotation Service has been in operation at the University of Massachusetts Lowell since 2001. An expert rating system (ERS) was developed for annotating the IMAGE radio plasma imager (RPI) active sounding data containing 1.2 million plasmagrams. The RPI data analysts can use ERS to submit expert ratings of plasmagram features, such as presence of echo traces resulted from reflected RPI signals from distant plasma structures. Since its inception in 2001, the RPI ERS has accumulated 7351 expert plasmagram ratings in 16 phenomenon categories, together with free-text descriptions and other metadata. In addition to human expert ratings, the system holds 225,125 ratings submitted by the CORPRAL data prospecting software that employs a model of the human pre-attentive vision to select images potentially containing interesting features. The annotation records proved to be instrumental in a number of investigations where manual data exploration would have been prohibitively tedious and expensive

  20. Wiki-pi: a web-server of annotated human protein-protein interactions to aid in discovery of protein function.

    Directory of Open Access Journals (Sweden)

    Naoki Orii

    Full Text Available Protein-protein interactions (PPIs are the basis of biological functions. Knowledge of the interactions of a protein can help understand its molecular function and its association with different biological processes and pathways. Several publicly available databases provide comprehensive information about individual proteins, such as their sequence, structure, and function. There also exist databases that are built exclusively to provide PPIs by curating them from published literature. The information provided in these web resources is protein-centric, and not PPI-centric. The PPIs are typically provided as lists of interactions of a given gene with links to interacting partners; they do not present a comprehensive view of the nature of both the proteins involved in the interactions. A web database that allows search and retrieval based on biomedical characteristics of PPIs is lacking, and is needed. We present Wiki-Pi (read Wiki-π, a web-based interface to a database of human PPIs, which allows users to retrieve interactions by their biomedical attributes such as their association to diseases, pathways, drugs and biological functions. Each retrieved PPI is shown with annotations of both of the participant proteins side-by-side, creating a basis to hypothesize the biological function facilitated by the interaction. Conceptually, it is a search engine for PPIs analogous to PubMed for scientific literature. Its usefulness in generating novel scientific hypotheses is demonstrated through the study of IGSF21, a little-known gene that was recently identified to be associated with diabetic retinopathy. Using Wiki-Pi, we infer that its association to diabetic retinopathy may be mediated through its interactions with the genes HSPB1, KRAS, TMSB4X and DGKD, and that it may be involved in cellular response to external stimuli, cytoskeletal organization and regulation of molecular activity. The website also provides a wiki-like capability allowing users

  1. Transcriptator: An Automated Computational Pipeline to Annotate Assembled Reads and Identify Non Coding RNA.

    Directory of Open Access Journals (Sweden)

    Kumar Parijat Tripathi

    Full Text Available RNA-seq is a new tool to measure RNA transcript counts, using high-throughput sequencing at an extraordinary accuracy. It provides quantitative means to explore the transcriptome of an organism of interest. However, interpreting this extremely large data into biological knowledge is a problem, and biologist-friendly tools are lacking. In our lab, we developed Transcriptator, a web application based on a computational Python pipeline with a user-friendly Java interface. This pipeline uses the web services available for BLAST (Basis Local Search Alignment Tool, QuickGO and DAVID (Database for Annotation, Visualization and Integrated Discovery tools. It offers a report on statistical analysis of functional and Gene Ontology (GO annotation's enrichment. It helps users to identify enriched biological themes, particularly GO terms, pathways, domains, gene/proteins features and protein-protein interactions related informations. It clusters the transcripts based on functional annotations and generates a tabular report for functional and gene ontology annotations for each submitted transcript to the web server. The implementation of QuickGo web-services in our pipeline enable the users to carry out GO-Slim analysis, whereas the integration of PORTRAIT (Prediction of transcriptomic non coding RNA (ncRNA by ab initio methods helps to identify the non coding RNAs and their regulatory role in transcriptome. In summary, Transcriptator is a useful software for both NGS and array data. It helps the users to characterize the de-novo assembled reads, obtained from NGS experiments for non-referenced organisms, while it also performs the functional enrichment analysis of differentially expressed transcripts/genes for both RNA-seq and micro-array experiments. It generates easy to read tables and interactive charts for better understanding of the data. The pipeline is modular in nature, and provides an opportunity to add new plugins in the future. Web application is

  2. Automatically annotating topics in transcripts of patient-provider interactions via machine learning.

    Science.gov (United States)

    Wallace, Byron C; Laws, M Barton; Small, Kevin; Wilson, Ira B; Trikalinos, Thomas A

    2014-05-01

    Annotated patient-provider encounters can provide important insights into clinical communication, ultimately suggesting how it might be improved to effect better health outcomes. But annotating outpatient transcripts with Roter or General Medical Interaction Analysis System (GMIAS) codes is expensive, limiting the scope of such analyses. We propose automatically annotating transcripts of patient-provider interactions with topic codes via machine learning. We use a conditional random field (CRF) to model utterance topic probabilities. The model accounts for the sequential structure of conversations and the words comprising utterances. We assess predictive performance via 10-fold cross-validation over GMIAS-annotated transcripts of 360 outpatient visits (>230,000 utterances). We then use automated in place of manual annotations to reproduce an analysis of 116 additional visits from a randomized trial that used GMIAS to assess the efficacy of an intervention aimed at improving communication around antiretroviral (ARV) adherence. With respect to 6 topic codes, the CRF achieved a mean pairwise kappa compared with human annotators of 0.49 (range: 0.47-0.53) and a mean overall accuracy of 0.64 (range: 0.62-0.66). With respect to the RCT reanalysis, results using automated annotations agreed with those obtained using manual ones. According to the manual annotations, the median number of ARV-related utterances without and with the intervention was 49.5 versus 76, respectively (paired sign test P = 0.07). When automated annotations were used, the respective numbers were 39 versus 55 (P = 0.04). While moderately accurate, the predicted annotations are far from perfect. Conversational topics are intermediate outcomes, and their utility is still being researched. This foray into automated topic inference suggests that machine learning methods can classify utterances comprising patient-provider interactions into clinically relevant topics with reasonable accuracy.

  3. Semantic annotation of consumer health questions.

    Science.gov (United States)

    Kilicoglu, Halil; Ben Abacha, Asma; Mrabet, Yassine; Shooshan, Sonya E; Rodriguez, Laritza; Masterton, Kate; Demner-Fushman, Dina

    2018-02-06

    Consumers increasingly use online resources for their health information needs. While current search engines can address these needs to some extent, they generally do not take into account that most health information needs are complex and can only fully be expressed in natural language. Consumer health question answering (QA) systems aim to fill this gap. A major challenge in developing consumer health QA systems is extracting relevant semantic content from the natural language questions (question understanding). To develop effective question understanding tools, question corpora semantically annotated for relevant question elements are needed. In this paper, we present a two-part consumer health question corpus annotated with several semantic categories: named entities, question triggers/types, question frames, and question topic. The first part (CHQA-email) consists of relatively long email requests received by the U.S. National Library of Medicine (NLM) customer service, while the second part (CHQA-web) consists of shorter questions posed to MedlinePlus search engine as queries. Each question has been annotated by two annotators. The annotation methodology is largely the same between the two parts of the corpus; however, we also explain and justify the differences between them. Additionally, we provide information about corpus characteristics, inter-annotator agreement, and our attempts to measure annotation confidence in the absence of adjudication of annotations. The resulting corpus consists of 2614 questions (CHQA-email: 1740, CHQA-web: 874). Problems are the most frequent named entities, while treatment and general information questions are the most common question types. Inter-annotator agreement was generally modest: question types and topics yielded highest agreement, while the agreement for more complex frame annotations was lower. Agreement in CHQA-web was consistently higher than that in CHQA-email. Pairwise inter-annotator agreement proved most

  4. Positive selection on gene expression in the human brain

    DEFF Research Database (Denmark)

    Khaitovich, Philipp; Tang, Kun; Franz, Henriette

    2006-01-01

    Recent work has shown that the expression levels of genes transcribed in the brains of humans and chimpanzees have changed less than those of genes transcribed in other tissues [1] . However, when gene expression changes are mapped onto the evolutionary lineage in which they occurred, the brain...... shows more changes than other tissues in the human lineage compared to the chimpanzee lineage [1] , [2] and [3] . There are two possible explanations for this: either positive selection drove more gene expression changes to fixation in the human brain than in the chimpanzee brain, or genes expressed...... in the brain experienced less purifying selection in humans than in chimpanzees, i.e. gene expression in the human brain is functionally less constrained. The first scenario would be supported if genes that changed their expression in the brain in the human lineage showed more selective sweeps than other genes...

  5. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  6. Predicting word sense annotation agreement

    DEFF Research Database (Denmark)

    Martinez Alonso, Hector; Johannsen, Anders Trærup; Lopez de Lacalle, Oier

    2015-01-01

    High agreement is a common objective when annotating data for word senses. However, a number of factors make perfect agreement impossible, e.g. the limitations of the sense inventories, the difficulty of the examples or the interpretation preferences of the annotations. Estimating potential...... agreement is thus a relevant task to supplement the evaluation of sense annotations. In this article we propose two methods to predict agreement on word-annotation instances. We experiment with a continuous representation and a three-way discretization of observed agreement. In spite of the difficulty...

  7. Alignment-Annotator web server: rendering and annotating sequence alignments.

    Science.gov (United States)

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-07-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Revised annotation of Plutella xylostella microRNAs and their genome-wide target identification.

    Science.gov (United States)

    Etebari, K; Asgari, S

    2016-12-01

    The diamondback moth, Plutella xylostella, is the most devastating pest of brassica crops worldwide. Although 128 mature microRNAs (miRNAs) have been annotated from this species in miRBase, there is a need to extend and correct the current P. xylostella miRNA repertoire as a result of its recently improved genome assembly and more available small RNA sequence data. We used our new ultra-deep sequence data and bioinformatics to re-annotate the P. xylostella genome for high confidence miRNAs with the correct 5p and 3p arm features. Furthermore, all the P. xylostella annotated genes were also screened to identify potential miRNA binding sites using three target-predicting algorithms. In total, 203 mature miRNAs were annotated, including 33 novel miRNAs. We identified 7691 highly confident binding sites for 160 pxy-miRNAs. The data provided here will facilitate future studies involving functional analyses of P. xylostella miRNAs as a platform to introduce novel approaches for sustainable management of this destructive pest. © 2016 The Royal Entomological Society.

  9. Finding the missing honey bee genes: lessons learned from a genome upgrade.

    Science.gov (United States)

    Elsik, Christine G; Worley, Kim C; Bennett, Anna K; Beye, Martin; Camara, Francisco; Childers, Christopher P; de Graaf, Dirk C; Debyser, Griet; Deng, Jixin; Devreese, Bart; Elhaik, Eran; Evans, Jay D; Foster, Leonard J; Graur, Dan; Guigo, Roderic; Hoff, Katharina Jasmin; Holder, Michael E; Hudson, Matthew E; Hunt, Greg J; Jiang, Huaiyang; Joshi, Vandita; Khetani, Radhika S; Kosarev, Peter; Kovar, Christie L; Ma, Jian; Maleszka, Ryszard; Moritz, Robin F A; Munoz-Torres, Monica C; Murphy, Terence D; Muzny, Donna M; Newsham, Irene F; Reese, Justin T; Robertson, Hugh M; Robinson, Gene E; Rueppell, Olav; Solovyev, Victor; Stanke, Mario; Stolle, Eckart; Tsuruda, Jennifer M; Vaerenbergh, Matthias Van; Waterhouse, Robert M; Weaver, Daniel B; Whitfield, Charles W; Wu, Yuanqing; Zdobnov, Evgeny M; Zhang, Lan; Zhu, Dianhui; Gibbs, Richard A

    2014-01-30

    The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.

  10. De novo assembly, gene annotation, and marker discovery in stored-product pest Liposcelis entomophila (Enderlein using transcriptome sequences.

    Directory of Open Access Journals (Sweden)

    Dan-Dan Wei

    Full Text Available BACKGROUND: As a major stored-product pest insect, Liposcelis entomophila has developed high levels of resistance to various insecticides in grain storage systems. However, the molecular mechanisms underlying resistance and environmental stress have not been characterized. To date, there is a lack of genomic information for this species. Therefore, studies aimed at profiling the L. entomophila transcriptome would provide a better understanding of the biological functions at the molecular levels. METHODOLOGY/PRINCIPAL FINDINGS: We applied Illumina sequencing technology to sequence the transcriptome of L. entomophila. A total of 54,406,328 clean reads were obtained and that de novo assembled into 54,220 unigenes, with an average length of 571 bp. Through a similarity search, 33,404 (61.61% unigenes were matched to known proteins in the NCBI non-redundant (Nr protein database. These unigenes were further functionally annotated with gene ontology (GO, cluster of orthologous groups of proteins (COG, and Kyoto Encyclopedia of Genes and Genomes (KEGG databases. A large number of genes potentially involved in insecticide resistance were manually curated, including 68 putative cytochrome P450 genes, 37 putative glutathione S-transferase (GST genes, 19 putative carboxyl/cholinesterase (CCE genes, and other 126 transcripts to contain target site sequences or encoding detoxification genes representing eight types of resistance enzymes. Furthermore, to gain insight into the molecular basis of the L. entomophila toward thermal stresses, 25 heat shock protein (Hsp genes were identified. In addition, 1,100 SSRs and 57,757 SNPs were detected and 231 pairs of SSR primes were designed for investigating the genetic diversity in future. CONCLUSIONS/SIGNIFICANCE: We developed a comprehensive transcriptomic database for L. entomophila. These sequences and putative molecular markers would further promote our understanding of the molecular mechanisms underlying

  11. Human reporter genes: potential use in clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Serganova, Inna [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Ponomarev, Vladimir [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Blasberg, Ronald [Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (United States)], E-mail: blasberg@neuro1.mskcc.org

    2007-10-15

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  12. Human reporter genes: potential use in clinical studies

    International Nuclear Information System (INIS)

    Serganova, Inna; Ponomarev, Vladimir; Blasberg, Ronald

    2007-01-01

    The clinical application of positron-emission-tomography-based reporter gene imaging will expand over the next several years. The translation of reporter gene imaging technology into clinical applications is the focus of this review, with emphasis on the development and use of human reporter genes. Human reporter genes will play an increasingly more important role in this development, and it is likely that one or more reporter systems (human gene and complimentary radiopharmaceutical) will take leading roles. Three classes of human reporter genes are discussed and compared: receptors, transporters and enzymes. Examples of highly expressed cell membrane receptors include specific membrane somatostatin receptors (hSSTrs). The transporter group includes the sodium iodide symporter (hNIS) and the norepinephrine transporter (hNET). The endogenous enzyme classification includes human mitochondrial thymidine kinase 2 (hTK2). In addition, we also discuss the nonhuman dopamine 2 receptor and two viral reporter genes, the wild-type herpes simplex virus 1 thymidine kinase (HSV1-tk) gene and the HSV1-tk mutant (HSV1-sr39tk). Initial applications of reporter gene imaging in patients will be developed within two different clinical disciplines: (a) gene therapy and (b) adoptive cell-based therapies. These studies will benefit from the availability of efficient human reporter systems that can provide critical monitoring information for adenoviral-based, retroviral-based and lenteviral-based gene therapies, oncolytic bacterial and viral therapies, and adoptive cell-based therapies. Translational applications of noninvasive in vivo reporter gene imaging are likely to include: (a) quantitative monitoring of gene therapy vectors for targeting and transduction efficacy in clinical protocols by imaging the location, extent and duration of transgene expression; (b) monitoring of cell trafficking, targeting, replication and activation in adoptive T-cell and stem/progenitor cell therapies

  13. ANNOTATION SUPPORTED OCCLUDED OBJECT TRACKING

    Directory of Open Access Journals (Sweden)

    Devinder Kumar

    2012-08-01

    Full Text Available Tracking occluded objects at different depths has become as extremely important component of study for any video sequence having wide applications in object tracking, scene recognition, coding, editing the videos and mosaicking. The paper studies the ability of annotation to track the occluded object based on pyramids with variation in depth further establishing a threshold at which the ability of the system to track the occluded object fails. Image annotation is applied on 3 similar video sequences varying in depth. In the experiment, one bike occludes the other at a depth of 60cm, 80cm and 100cm respectively. Another experiment is performed on tracking humans with similar depth to authenticate the results. The paper also computes the frame by frame error incurred by the system, supported by detailed simulations. This system can be effectively used to analyze the error in motion tracking and further correcting the error leading to flawless tracking. This can be of great interest to computer scientists while designing surveillance systems etc.

  14. Complete fold annotation of the human proteome using a novel structural feature space.

    Science.gov (United States)

    Middleton, Sarah A; Illuminati, Joseph; Kim, Junhyong

    2017-04-13

    Recognition of protein structural fold is the starting point for many structure prediction tools and protein function inference. Fold prediction is computationally demanding and recognizing novel folds is difficult such that the majority of proteins have not been annotated for fold classification. Here we describe a new machine learning approach using a novel feature space that can be used for accurate recognition of all 1,221 currently known folds and inference of unknown novel folds. We show that our method achieves better than 94% accuracy even when many folds have only one training example. We demonstrate the utility of this method by predicting the folds of 34,330 human protein domains and showing that these predictions can yield useful insights into potential biological function, such as prediction of RNA-binding ability. Our method can be applied to de novo fold prediction of entire proteomes and identify candidate novel fold families.

  15. Whole-Genome Expression Analysis of Human Mesenchymal Stromal Cells Exposed to Ultrasmooth Tantalum vs. Titanium Oxide Surfaces

    DEFF Research Database (Denmark)

    Stiehler, C.; Bunger, C.; Overall, R. W.

    2013-01-01

    to titanium (Ti) surface. The aim of this study was to extend the previous investigation of biocompatibility by monitoring temporal gene expression of MSCs on topographically comparable smooth Ta and Ti surfaces using whole-genome gene expression analysis. Total RNA samples from telomerase-immortalized human...... MSCs cultivated on plain sputter-coated surfaces of Ta or Ti for 1, 2, 4, and 8 days were hybridized to n = 16 U133 Plus 2.0 arrays (Affymetrix(A (R))). Functional annotation, cluster and pathway analyses were performed. The vast majority of genes were differentially regulated after 4 days...... of cultivation and genes upregulated by MSCs exposed to Ta and Ti were predominantly related to the processes of differentiation and transcription, respectively. Functional annotation analysis of the 1,000 temporally most significantly regulated genes suggests earlier cellular differentiation on Ta compared...

  16. Good genes, complementary genes and human mate preferences.

    Science.gov (United States)

    Roberts, S Craig; Little, Anthony C

    2008-09-01

    The past decade has witnessed a rapidly growing interest in the biological basis of human mate choice. Here we review recent studies that demonstrate preferences for traits which might reveal genetic quality to prospective mates, with potential but still largely unknown influence on offspring fitness. These include studies assessing visual, olfactory and auditory preferences for potential good-gene indicator traits, such as dominance or bilateral symmetry. Individual differences in these robust preferences mainly arise through within and between individual variation in condition and reproductive status. Another set of studies have revealed preferences for traits indicating complementary genes, focussing on discrimination of dissimilarity at genes in the major histocompatibility complex (MHC). As in animal studies, we are only just beginning to understand how preferences for specific traits vary and inter-relate, how consideration of good and compatible genes can lead to substantial variability in individual mate choice decisions and how preferences expressed in one sensory modality may reflect those in another. Humans may be an ideal model species in which to explore these interesting complexities.

  17. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics.

    Science.gov (United States)

    de Angelis, Martin Hrabě; Nicholson, George; Selloum, Mohammed; White, Jacqui; Morgan, Hugh; Ramirez-Solis, Ramiro; Sorg, Tania; Wells, Sara; Fuchs, Helmut; Fray, Martin; Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl Mj; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie; Holmes, Chris; Steel, Karen P; Herault, Yann; Gailus-Durner, Valérie; Mallon, Ann-Marie; Brown, Steve Dm

    2015-09-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.

  18. Citrus sinensis annotation project (CAP): a comprehensive database for sweet orange genome.

    Science.gov (United States)

    Wang, Jia; Chen, Dijun; Lei, Yang; Chang, Ji-Wei; Hao, Bao-Hai; Xing, Feng; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Chen, Ling-Ling

    2014-01-01

    Citrus is one of the most important and widely grown fruit crop with global production ranking firstly among all the fruit crops in the world. Sweet orange accounts for more than half of the Citrus production both in fresh fruit and processed juice. We have sequenced the draft genome of a double-haploid sweet orange (C. sinensis cv. Valencia), and constructed the Citrus sinensis annotation project (CAP) to store and visualize the sequenced genomic and transcriptome data. CAP provides GBrowse-based organization of sweet orange genomic data, which integrates ab initio gene prediction, EST, RNA-seq and RNA-paired end tag (RNA-PET) evidence-based gene annotation. Furthermore, we provide a user-friendly web interface to show the predicted protein-protein interactions (PPIs) and metabolic pathways in sweet orange. CAP provides comprehensive information beneficial to the researchers of sweet orange and other woody plants, which is freely available at http://citrus.hzau.edu.cn/.

  19. Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids.

    Science.gov (United States)

    Herbschleb-Voogt, E; Grzeschik, K H; Pearson, P L; Meera Khan, P

    1981-01-01

    The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts. An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.

  20. Modeling multiple time series annotations as noisy distortions of the ground truth: An Expectation-Maximization approach.

    Science.gov (United States)

    Gupta, Rahul; Audhkhasi, Kartik; Jacokes, Zach; Rozga, Agata; Narayanan, Shrikanth

    2018-01-01

    Studies of time-continuous human behavioral phenomena often rely on ratings from multiple annotators. Since the ground truth of the target construct is often latent, the standard practice is to use ad-hoc metrics (such as averaging annotator ratings). Despite being easy to compute, such metrics may not provide accurate representations of the underlying construct. In this paper, we present a novel method for modeling multiple time series annotations over a continuous variable that computes the ground truth by modeling annotator specific distortions. We condition the ground truth on a set of features extracted from the data and further assume that the annotators provide their ratings as modification of the ground truth, with each annotator having specific distortion tendencies. We train the model using an Expectation-Maximization based algorithm and evaluate it on a study involving natural interaction between a child and a psychologist, to predict confidence ratings of the children's smiles. We compare and analyze the model against two baselines where: (i) the ground truth in considered to be framewise mean of ratings from various annotators and, (ii) each annotator is assumed to bear a distinct time delay in annotation and their annotations are aligned before computing the framewise mean.

  1. Objective-guided image annotation.

    Science.gov (United States)

    Mao, Qi; Tsang, Ivor Wai-Hung; Gao, Shenghua

    2013-04-01

    Automatic image annotation, which is usually formulated as a multi-label classification problem, is one of the major tools used to enhance the semantic understanding of web images. Many multimedia applications (e.g., tag-based image retrieval) can greatly benefit from image annotation. However, the insufficient performance of image annotation methods prevents these applications from being practical. On the other hand, specific measures are usually designed to evaluate how well one annotation method performs for a specific objective or application, but most image annotation methods do not consider optimization of these measures, so that they are inevitably trapped into suboptimal performance of these objective-specific measures. To address this issue, we first summarize a variety of objective-guided performance measures under a unified representation. Our analysis reveals that macro-averaging measures are very sensitive to infrequent keywords, and hamming measure is easily affected by skewed distributions. We then propose a unified multi-label learning framework, which directly optimizes a variety of objective-specific measures of multi-label learning tasks. Specifically, we first present a multilayer hierarchical structure of learning hypotheses for multi-label problems based on which a variety of loss functions with respect to objective-guided measures are defined. And then, we formulate these loss functions as relaxed surrogate functions and optimize them by structural SVMs. According to the analysis of various measures and the high time complexity of optimizing micro-averaging measures, in this paper, we focus on example-based measures that are tailor-made for image annotation tasks but are seldom explored in the literature. Experiments show consistency with the formal analysis on two widely used multi-label datasets, and demonstrate the superior performance of our proposed method over state-of-the-art baseline methods in terms of example-based measures on four

  2. Neurocarta: aggregating and sharing disease-gene relations for the neurosciences.

    Science.gov (United States)

    Portales-Casamar, Elodie; Ch'ng, Carolyn; Lui, Frances; St-Georges, Nicolas; Zoubarev, Anton; Lai, Artemis Y; Lee, Mark; Kwok, Cathy; Kwok, Willie; Tseng, Luchia; Pavlidis, Paul

    2013-02-26

    Understanding the genetic basis of diseases is key to the development of better diagnoses and treatments. Unfortunately, only a small fraction of the existing data linking genes to phenotypes is available through online public resources and, when available, it is scattered across multiple access tools. Neurocarta is a knowledgebase that consolidates information on genes and phenotypes across multiple resources and allows tracking and exploring of the associations. The system enables automatic and manual curation of evidence supporting each association, as well as user-enabled entry of their own annotations. Phenotypes are recorded using controlled vocabularies such as the Disease Ontology to facilitate computational inference and linking to external data sources. The gene-to-phenotype associations are filtered by stringent criteria to focus on the annotations most likely to be relevant. Neurocarta is constantly growing and currently holds more than 30,000 lines of evidence linking over 7,000 genes to 2,000 different phenotypes. Neurocarta is a one-stop shop for researchers looking for candidate genes for any disorder of interest. In Neurocarta, they can review the evidence linking genes to phenotypes and filter out the evidence they're not interested in. In addition, researchers can enter their own annotations from their experiments and analyze them in the context of existing public annotations. Neurocarta's in-depth annotation of neurodevelopmental disorders makes it a unique resource for neuroscientists working on brain development.

  3. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.

    Science.gov (United States)

    Zhou, Hang; Yang, Yang; Shen, Hong-Bin

    2017-03-15

    Protein subcellular localization prediction has been an important research topic in computational biology over the last decade. Various automatic methods have been proposed to predict locations for large scale protein datasets, where statistical machine learning algorithms are widely used for model construction. A key step in these predictors is encoding the amino acid sequences into feature vectors. Many studies have shown that features extracted from biological domains, such as gene ontology and functional domains, can be very useful for improving the prediction accuracy. However, domain knowledge usually results in redundant features and high-dimensional feature spaces, which may degenerate the performance of machine learning models. In this paper, we propose a new amino acid sequence-based human protein subcellular location prediction approach Hum-mPLoc 3.0, which covers 12 human subcellular localizations. The sequences are represented by multi-view complementary features, i.e. context vocabulary annotation-based gene ontology (GO) terms, peptide-based functional domains, and residue-based statistical features. To systematically reflect the structural hierarchy of the domain knowledge bases, we propose a novel feature representation protocol denoted as HCM (Hidden Correlation Modeling), which will create more compact and discriminative feature vectors by modeling the hidden correlations between annotation terms. Experimental results on four benchmark datasets show that HCM improves prediction accuracy by 5-11% and F 1 by 8-19% compared with conventional GO-based methods. A large-scale application of Hum-mPLoc 3.0 on the whole human proteome reveals proteins co-localization preferences in the cell. www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/. hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  4. Different level of population differentiation among human genes.

    Science.gov (United States)

    Wu, Dong-Dong; Zhang, Ya-Ping

    2011-01-14

    During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations. Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher FST SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection. Our analysis demonstrates different level of population differentiation among human populations for different gene groups.

  5. BIOCAT: a pattern recognition platform for customizable biological image classification and annotation.

    Science.gov (United States)

    Zhou, Jie; Lamichhane, Santosh; Sterne, Gabriella; Ye, Bing; Peng, Hanchuan

    2013-10-04

    Pattern recognition algorithms are useful in bioimage informatics applications such as quantifying cellular and subcellular objects, annotating gene expressions, and classifying phenotypes. To provide effective and efficient image classification and annotation for the ever-increasing microscopic images, it is desirable to have tools that can combine and compare various algorithms, and build customizable solution for different biological problems. However, current tools often offer a limited solution in generating user-friendly and extensible tools for annotating higher dimensional images that correspond to multiple complicated categories. We develop the BIOimage Classification and Annotation Tool (BIOCAT). It is able to apply pattern recognition algorithms to two- and three-dimensional biological image sets as well as regions of interest (ROIs) in individual images for automatic classification and annotation. We also propose a 3D anisotropic wavelet feature extractor for extracting textural features from 3D images with xy-z resolution disparity. The extractor is one of the about 20 built-in algorithms of feature extractors, selectors and classifiers in BIOCAT. The algorithms are modularized so that they can be "chained" in a customizable way to form adaptive solution for various problems, and the plugin-based extensibility gives the tool an open architecture to incorporate future algorithms. We have applied BIOCAT to classification and annotation of images and ROIs of different properties with applications in cell biology and neuroscience. BIOCAT provides a user-friendly, portable platform for pattern recognition based biological image classification of two- and three- dimensional images and ROIs. We show, via diverse case studies, that different algorithms and their combinations have different suitability for various problems. The customizability of BIOCAT is thus expected to be useful for providing effective and efficient solutions for a variety of biological

  6. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Directory of Open Access Journals (Sweden)

    McGuire John J

    2005-09-01

    Full Text Available Abstract Background The rTS gene (ENOSF1, first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis.

  7. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Science.gov (United States)

    Liang, Ping; Nair, Jayakumar R; Song, Lei; McGuire, John J; Dolnick, Bruce J

    2005-01-01

    Background The rTS gene (ENOSF1), first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS) mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis. PMID:16162288

  8. Genes, Environment, and Human Behavior.

    Science.gov (United States)

    Bloom, Mark V.; Cutter, Mary Ann; Davidson, Ronald; Dougherty, Michael J.; Drexler, Edward; Gelernter, Joel; McCullough, Laurence B.; McInerney, Joseph D.; Murray, Jeffrey C.; Vogler, George P.; Zola, John

    This curriculum module explores genes, environment, and human behavior. This book provides materials to teach about the nature and methods of studying human behavior, raise some of the ethical and public policy dilemmas emerging from the Human Genome Project, and provide professional development for teachers. An extensive Teacher Background…

  9. Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: Pathway description and gene discovery for production of next-generation biofuels

    Directory of Open Access Journals (Sweden)

    Bibby Kyle

    2011-03-01

    Full Text Available Abstract Background Biodiesel or ethanol derived from lipids or starch produced by microalgae may overcome many of the sustainability challenges previously ascribed to petroleum-based fuels and first generation plant-based biofuels. The paucity of microalgae genome sequences, however, limits gene-based biofuel feedstock optimization studies. Here we describe the sequencing and de novo transcriptome assembly for the non-model microalgae species, Dunaliella tertiolecta, and identify pathways and genes of importance related to biofuel production. Results Next generation DNA pyrosequencing technology applied to D. tertiolecta transcripts produced 1,363,336 high quality reads with an average length of 400 bases. Following quality and size trimming, ~ 45% of the high quality reads were assembled into 33,307 isotigs with a 31-fold coverage and 376,482 singletons. Assembled sequences and singletons were subjected to BLAST similarity searches and annotated with Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG orthology (KO identifiers. These analyses identified the majority of lipid and starch biosynthesis and catabolism pathways in D. tertiolecta. Conclusions The construction of metabolic pathways involved in the biosynthesis and catabolism of fatty acids, triacylglycrols, and starch in D. tertiolecta as well as the assembled transcriptome provide a foundation for the molecular genetics and functional genomics required to direct metabolic engineering efforts that seek to enhance the quantity and character of microalgae-based biofuel feedstock.

  10. Recode-2: new design, new search tools, and many more genes.

    LENUS (Irish Health Repository)

    Bekaert, Michaël

    2010-01-01

    \\'Recoding\\' is a term used to describe non-standard read-out of the genetic code, and encompasses such phenomena as programmed ribosomal frameshifting, stop codon readthrough, selenocysteine insertion and translational bypassing. Although only a small proportion of genes utilize recoding in protein synthesis, accurate annotation of \\'recoded\\' genes lags far behind annotation of \\'standard\\' genes. In order to address this issue, provide a service to researchers in the field, and offer training data for developers of gene-annotation software, we have gathered together known cases of recoding within the Recode database. Recode-2 is an improved and updated version of the database. It provides access to detailed information on genes known to utilize translational recoding and allows complex search queries, browsing of recoding data and enhanced visualization of annotated sequence elements. At present, the Recode-2 database stores information on approximately 1500 genes that are known to utilize recoding in their expression--a factor of approximately three increase over the previous version of the database. Recode-2 is available at http:\\/\\/recode.ucc.ie.

  11. Towards precise classification of cancers based on robust gene functional expression profiles

    Directory of Open Access Journals (Sweden)

    Zhu Jing

    2005-03-01

    Full Text Available Abstract Background Development of robust and efficient methods for analyzing and interpreting high dimension gene expression profiles continues to be a focus in computational biology. The accumulated experiment evidence supports the assumption that genes express and perform their functions in modular fashions in cells. Therefore, there is an open space for development of the timely and relevant computational algorithms that use robust functional expression profiles towards precise classification of complex human diseases at the modular level. Results Inspired by the insight that genes act as a module to carry out a highly integrated cellular function, we thus define a low dimension functional expression profile for data reduction. After annotating each individual gene to functional categories defined in a proper gene function classification system such as Gene Ontology applied in this study, we identify those functional categories enriched with differentially expressed genes. For each functional category or functional module, we compute a summary measure (s for the raw expression values of the annotated genes to capture the overall activity level of the module. In this way, we can treat the gene expressions within a functional module as an integrative data point to replace the multiple values of individual genes. We compare the classification performance of decision trees based on functional expression profiles with the conventional gene expression profiles using four publicly available datasets, which indicates that precise classification of tumour types and improved interpretation can be achieved with the reduced functional expression profiles. Conclusion This modular approach is demonstrated to be a powerful alternative approach to analyzing high dimension microarray data and is robust to high measurement noise and intrinsic biological variance inherent in microarray data. Furthermore, efficient integration with current biological knowledge

  12. The truth about mouse, human, worms and yeast

    Directory of Open Access Journals (Sweden)

    Nelson David R

    2004-01-01

    Full Text Available Abstract Genome comparisons are behind the powerful new annotation methods being developed to find all human genes, as well as genes from other genomes. Genomes are now frequently being studied in pairs to provide cross-comparison datasets. This 'Noah's Ark' approach often reveals unsuspected genes and may support the deletion of false-positive predictions. Joining mouse and human as the cross-comparison dataset for the first two mammals are: two Drosophila species, D. melanogaster and D. pseudoobscura; two sea squirts, Ciona intestinalis and Ciona savignyi; four yeast (Saccharomyces species; two nematodes, Caenorhabditis elegans and Caenorhabditis briggsae; and two pufferfish (Takefugu rubripes and Tetraodon nigroviridis. Even genomes like yeast and C. elegans, which have been known for more than five years, are now being significantly improved. Methods developed for yeast or nematodes will now be applied to mouse and human, and soon to additional mammals such as rat and dog, to identify all the mammalian protein-coding genes. Current large disparities between human Unigene predictions (127,835 genes and gene-scanning methods (45,000 genes still need to be resolved. This will be the challenge during the next few years.

  13. A database of annotated tentative orthologs from crop abiotic stress transcripts.

    Science.gov (United States)

    Balaji, Jayashree; Crouch, Jonathan H; Petite, Prasad V N S; Hoisington, David A

    2006-10-07

    A minimal requirement to initiate a comparative genomics study on plant responses to abiotic stresses is a dataset of orthologous sequences. The availability of a large amount of sequence information, including those derived from stress cDNA libraries allow for the identification of stress related genes and orthologs associated with the stress response. Orthologous sequences serve as tools to explore genes and their relationships across species. For this purpose, ESTs from stress cDNA libraries across 16 crop species including 6 important cereal crops and 10 dicots were systematically collated and subjected to bioinformatics analysis such as clustering, grouping of tentative orthologous sets, identification of protein motifs/patterns in the predicted protein sequence, and annotation with stress conditions, tissue/library source and putative function. All data are available to the scientific community at http://intranet.icrisat.org/gt1/tog/homepage.htm. We believe that the availability of annotated plant abiotic stress ortholog sets will be a valuable resource for researchers studying the biology of environmental stresses in plant systems, molecular evolution and genomics.

  14. Characterization of human septic sera induced gene expression modulation in human myocytes

    Science.gov (United States)

    Hussein, Shaimaa; Michael, Paul; Brabant, Danielle; Omri, Abdelwahab; Narain, Ravin; Passi, Kalpdrum; Ramana, Chilakamarti V.; Parrillo, Joseph E.; Kumar, Anand; Parissenti, Amadeo; Kumar, Aseem

    2009-01-01

    To gain a better understanding of the gene expression changes that occurs during sepsis, we have performed a cDNA microarray study utilizing a tissue culture model that mimics human sepsis. This study utilized an in vitro model of cultured human fetal cardiac myocytes treated with 10% sera from septic patients or 10% sera from healthy volunteers. A 1700 cDNA expression microarray was used to compare the transcription profile from human cardiac myocytes treated with septic sera vs normal sera. Septic sera treatment of myocytes resulted in the down-regulation of 178 genes and the up-regulation of 4 genes. Our data indicate that septic sera induced cell cycle, metabolic, transcription factor and apoptotic gene expression changes in human myocytes. Identification and characterization of gene expression changes that occur during sepsis may lead to the development of novel therapeutics and diagnostics. PMID:19684886

  15. Gene expression studies on human keratinocytes transduced with human growth hormone gene for a possible utilization in gene therapy

    International Nuclear Information System (INIS)

    Mathor, Monica Beatriz.

    1994-01-01

    Taking advantage of the recent progress in the DNA-recombinant techniques and of the potentiality of normal human keratinocytes primary culture to reconstitute the epidermis, it was decided to genetically transform these keratinocytes to produce human growth hormone under controllable conditions that would be used in gene therapy at this hormone deficient patients. The first step to achieve this goal was to standardize infection of keratinocytes with retrovirus producer cells containing a construct which included the gene of bacterial b-galactosidase. The best result was obtained cultivating the keratinocytes for 3 days in a 2:1 mixture of retrovirus producer cells and 3T3-J2 fibroblasts irradiated with 60 Gy, and splitting these infected keratinocytes on 3T3-J2 fibroblasts feeder layer. Another preliminary experiment was to infect normal human keratinocytes with interleukin-6 gene (hIL-6) that, in pathologic conditions, could be reproduced by keratinocytes and secreted to the blood stream. Thus, we verify that infected keratinocytes secrete an average amount of 500 ng/10 6 cell/day of cytokin during the in vitro life time, that certify the stable character of the injection. These keratinocytes, when grafted in mice, secrete hIL-6 to the blood stream reaching levels of 40 pg/ml of serum. After these preliminary experiments, we construct a retroviral vector with the human growth hormone gene (h GH) driven by human metallothionein promoter (h PMT), designated DChPMTGH. Normal human keratinocytes were infected with DChPMTGH producer cells, following previously standardized protocol, obtaining infected keratinocytes secreting to the culture media 340 ng h GH/10 6 cell/day without promoter activation. This is the highest level of h GH secreted in human keratinocytes primary culture described in literature. The h GH value increases approximately 10 times after activation with 100 μM Zn +2 for 8-12 hours. (author). 158 refs., 42 figs., 6 tabs

  16. Human gene therapy and imaging: cardiology

    International Nuclear Information System (INIS)

    Wu, Joseph C.; Yla-Herttuala, Seppo

    2005-01-01

    This review discusses the basics of cardiovascular gene therapy, the results of recent human clinical trials, and the rapid progress in imaging techniques in cardiology. Improved understanding of the molecular and genetic basis of coronary heart disease has made gene therapy a potential new alternative for the treatment of cardiovascular diseases. Experimental studies have established the proof-of-principle that gene transfer to the cardiovascular system can achieve therapeutic effects. First human clinical trials provided initial evidence of feasibility and safety of cardiovascular gene therapy. However, phase II/III clinical trials have so far been rather disappointing and one of the major problems in cardiovascular gene therapy has been the inability to verify gene expression in the target tissue. New imaging techniques could significantly contribute to the development of better gene therapeutic approaches. Although the exact choice of imaging modality will depend on the biological question asked, further improvement in image resolution and detection sensitivity will be needed for all modalities as we move from imaging of organs and tissues to imaging of cells and genes. (orig.)

  17. DBGC: A Database of Human Gastric Cancer

    Science.gov (United States)

    Wang, Chao; Zhang, Jun; Cai, Mingdeng; Zhu, Zhenggang; Gu, Wenjie; Yu, Yingyan; Zhang, Xiaoyan

    2015-01-01

    The Database of Human Gastric Cancer (DBGC) is a comprehensive database that integrates various human gastric cancer-related data resources. Human gastric cancer-related transcriptomics projects, proteomics projects, mutations, biomarkers and drug-sensitive genes from different sources were collected and unified in this database. Moreover, epidemiological statistics of gastric cancer patients in China and clinicopathological information annotated with gastric cancer cases were also integrated into the DBGC. We believe that this database will greatly facilitate research regarding human gastric cancer in many fields. DBGC is freely available at http://bminfor.tongji.edu.cn/dbgc/index.do PMID:26566288

  18. Candidate Gene Identification with SNP Marker-Based Fine Mapping of Anthracnose Resistance Gene Co-4 in Common Bean.

    Science.gov (United States)

    Burt, Andrew J; William, H Manilal; Perry, Gregory; Khanal, Raja; Pauls, K Peter; Kelly, James D; Navabi, Alireza

    2015-01-01

    Anthracnose, caused by Colletotrichum lindemuthianum, is an important fungal disease of common bean (Phaseolus vulgaris). Alleles at the Co-4 locus confer resistance to a number of races of C. lindemuthianum. A population of 94 F4:5 recombinant inbred lines of a cross between resistant black bean genotype B09197 and susceptible navy bean cultivar Nautica was used to identify markers associated with resistance in bean chromosome 8 (Pv08) where Co-4 is localized. Three SCAR markers with known linkage to Co-4 and a panel of single nucleotide markers were used for genotyping. A refined physical region on Pv08 with significant association with anthracnose resistance identified by markers was used in BLAST searches with the genomic sequence of common bean accession G19833. Thirty two unique annotated candidate genes were identified that spanned a physical region of 936.46 kb. A majority of the annotated genes identified had functional similarity to leucine rich repeats/receptor like kinase domains. Three annotated genes had similarity to 1, 3-β-glucanase domains. There were sequence similarities between some of the annotated genes found in the study and the genes associated with phosphoinositide-specific phosphilipases C associated with Co-x and the COK-4 loci found in previous studies. It is possible that the Co-4 locus is structured as a group of genes with functional domains dominated by protein tyrosine kinase along with leucine rich repeats/nucleotide binding site, phosphilipases C as well as β-glucanases.

  19. Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease.

    Science.gov (United States)

    Johnson, Michael R; Shkura, Kirill; Langley, Sarah R; Delahaye-Duriez, Andree; Srivastava, Prashant; Hill, W David; Rackham, Owen J L; Davies, Gail; Harris, Sarah E; Moreno-Moral, Aida; Rotival, Maxime; Speed, Doug; Petrovski, Slavé; Katz, Anaïs; Hayward, Caroline; Porteous, David J; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Starr, John M; Liewald, David C; Visconti, Alessia; Falchi, Mario; Bottolo, Leonardo; Rossetti, Tiziana; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Grote, Alexander; Helmstaedter, Christoph; Becker, Albert J; Kaminski, Rafal M; Deary, Ian J; Petretto, Enrico

    2016-02-01

    Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease-associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network influencing cognition and neurodevelopmental disease.

  20. AIGO: Towards a unified framework for the Analysis and the Inter-comparison of GO functional annotations

    Directory of Open Access Journals (Sweden)

    Defoin-Platel Michael

    2011-11-01

    Full Text Available Abstract Background In response to the rapid growth of available genome sequences, efforts have been made to develop automatic inference methods to functionally characterize them. Pipelines that infer functional annotation are now routinely used to produce new annotations at a genome scale and for a broad variety of species. These pipelines differ widely in their inference algorithms, confidence thresholds and data sources for reasoning. This heterogeneity makes a comparison of the relative merits of each approach extremely complex. The evaluation of the quality of the resultant annotations is also challenging given there is often no existing gold-standard against which to evaluate precision and recall. Results In this paper, we present a pragmatic approach to the study of functional annotations. An ensemble of 12 metrics, describing various aspects of functional annotations, is defined and implemented in a unified framework, which facilitates their systematic analysis and inter-comparison. The use of this framework is demonstrated on three illustrative examples: analysing the outputs of state-of-the-art inference pipelines, comparing electronic versus manual annotation methods, and monitoring the evolution of publicly available functional annotations. The framework is part of the AIGO library (http://code.google.com/p/aigo for the Analysis and the Inter-comparison of the products of Gene Ontology (GO annotation pipelines. The AIGO library also provides functionalities to easily load, analyse, manipulate and compare functional annotations and also to plot and export the results of the analysis in various formats. Conclusions This work is a step toward developing a unified framework for the systematic study of GO functional annotations. This framework has been designed so that new metrics on GO functional annotations can be added in a very straightforward way.

  1. Different level of population differentiation among human genes

    Directory of Open Access Journals (Sweden)

    Zhang Ya-Ping

    2011-01-01

    Full Text Available Abstract Background During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations. Results Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher FST SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection. Conclusion Our analysis demonstrates different level of population differentiation among human populations for different gene groups.

  2. A human-specific de novo protein-coding gene associated with human brain functions.

    Directory of Open Access Journals (Sweden)

    Chuan-Yun Li

    2010-03-01

    Full Text Available To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203. Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706's mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer's brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer's disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.

  3. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development.

    Science.gov (United States)

    Szabo, Linda; Morey, Robert; Palpant, Nathan J; Wang, Peter L; Afari, Nastaran; Jiang, Chuan; Parast, Mana M; Murry, Charles E; Laurent, Louise C; Salzman, Julia

    2015-06-16

    The pervasive expression of circular RNA is a recently discovered feature of gene expression in highly diverged eukaryotes, but the functions of most circular RNAs are still unknown. Computational methods to discover and quantify circular RNA are essential. Moreover, discovering biological contexts where circular RNAs are regulated will shed light on potential functional roles they may play. We present a new algorithm that increases the sensitivity and specificity of circular RNA detection by discovering and quantifying circular and linear RNA splicing events at both annotated and un-annotated exon boundaries, including intergenic regions of the genome, with high statistical confidence. Unlike approaches that rely on read count and exon homology to determine confidence in prediction of circular RNA expression, our algorithm uses a statistical approach. Using our algorithm, we unveiled striking induction of general and tissue-specific circular RNAs, including in the heart and lung, during human fetal development. We discover regions of the human fetal brain, such as the frontal cortex, with marked enrichment for genes where circular RNA isoforms are dominant. The vast majority of circular RNA production occurs at major spliceosome splice sites; however, we find the first examples of developmentally induced circular RNAs processed by the minor spliceosome, and an enriched propensity of minor spliceosome donors to splice into circular RNA at un-annotated, rather than annotated, exons. Together, these results suggest a potentially significant role for circular RNA in human development.

  4. Using machine learning to speed up manual image annotation: application to a 3D imaging protocol for measuring single cell gene expression in the developing C. elegans embryo

    Directory of Open Access Journals (Sweden)

    Waterston Robert H

    2010-02-01

    Full Text Available Abstract Background Image analysis is an essential component in many biological experiments that study gene expression, cell cycle progression, and protein localization. A protocol for tracking the expression of individual C. elegans genes was developed that collects image samples of a developing embryo by 3-D time lapse microscopy. In this protocol, a program called StarryNite performs the automatic recognition of fluorescently labeled cells and traces their lineage. However, due to the amount of noise present in the data and due to the challenges introduced by increasing number of cells in later stages of development, this program is not error free. In the current version, the error correction (i.e., editing is performed manually using a graphical interface tool named AceTree, which is specifically developed for this task. For a single experiment, this manual annotation task takes several hours. Results In this paper, we reduce the time required to correct errors made by StarryNite. We target one of the most frequent error types (movements annotated as divisions and train a support vector machine (SVM classifier to decide whether a division call made by StarryNite is correct or not. We show, via cross-validation experiments on several benchmark data sets, that the SVM successfully identifies this type of error significantly. A new version of StarryNite that includes the trained SVM classifier is available at http://starrynite.sourceforge.net. Conclusions We demonstrate the utility of a machine learning approach to error annotation for StarryNite. In the process, we also provide some general methodologies for developing and validating a classifier with respect to a given pattern recognition task.

  5. WImpiBLAST: web interface for mpiBLAST to help biologists perform large-scale annotation using high performance computing.

    Directory of Open Access Journals (Sweden)

    Parichit Sharma

    Full Text Available The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture

  6. WImpiBLAST: web interface for mpiBLAST to help biologists perform large-scale annotation using high performance computing.

    Science.gov (United States)

    Sharma, Parichit; Mantri, Shrikant S

    2014-01-01

    The function of a newly sequenced gene can be discovered by determining its sequence homology with known proteins. BLAST is the most extensively used sequence analysis program for sequence similarity search in large databases of sequences. With the advent of next generation sequencing technologies it has now become possible to study genes and their expression at a genome-wide scale through RNA-seq and metagenome sequencing experiments. Functional annotation of all the genes is done by sequence similarity search against multiple protein databases. This annotation task is computationally very intensive and can take days to obtain complete results. The program mpiBLAST, an open-source parallelization of BLAST that achieves superlinear speedup, can be used to accelerate large-scale annotation by using supercomputers and high performance computing (HPC) clusters. Although many parallel bioinformatics applications using the Message Passing Interface (MPI) are available in the public domain, researchers are reluctant to use them due to lack of expertise in the Linux command line and relevant programming experience. With these limitations, it becomes difficult for biologists to use mpiBLAST for accelerating annotation. No web interface is available in the open-source domain for mpiBLAST. We have developed WImpiBLAST, a user-friendly open-source web interface for parallel BLAST searches. It is implemented in Struts 1.3 using a Java backbone and runs atop the open-source Apache Tomcat Server. WImpiBLAST supports script creation and job submission features and also provides a robust job management interface for system administrators. It combines script creation and modification features with job monitoring and management through the Torque resource manager on a Linux-based HPC cluster. Use case information highlights the acceleration of annotation analysis achieved by using WImpiBLAST. Here, we describe the WImpiBLAST web interface features and architecture, explain design

  7. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology.

    Science.gov (United States)

    Masino, Aaron J; Dechene, Elizabeth T; Dulik, Matthew C; Wilkens, Alisha; Spinner, Nancy B; Krantz, Ian D; Pennington, Jeffrey W; Robinson, Peter N; White, Peter S

    2014-07-21

    Exome sequencing is a promising method for diagnosing patients with a complex phenotype. However, variant interpretation relative to patient phenotype can be challenging in some scenarios, particularly clinical assessment of rare complex phenotypes. Each patient's sequence reveals many possibly damaging variants that must be individually assessed to establish clear association with patient phenotype. To assist interpretation, we implemented an algorithm that ranks a given set of genes relative to patient phenotype. The algorithm orders genes by the semantic similarity computed between phenotypic descriptors associated with each gene and those describing the patient. Phenotypic descriptor terms are taken from the Human Phenotype Ontology (HPO) and semantic similarity is derived from each term's information content. Model validation was performed via simulation and with clinical data. We simulated 33 Mendelian diseases with 100 patients per disease. We modeled clinical conditions by adding noise and imprecision, i.e. phenotypic terms unrelated to the disease and terms less specific than the actual disease terms. We ranked the causative gene against all 2488 HPO annotated genes. The median causative gene rank was 1 for the optimal and noise cases, 12 for the imprecision case, and 60 for the imprecision with noise case. Additionally, we examined a clinical cohort of subjects with hearing impairment. The disease gene median rank was 22. However, when also considering the patient's exome data and filtering non-exomic and common variants, the median rank improved to 3. Semantic similarity can rank a causative gene highly within a gene list relative to patient phenotype characteristics, provided that imprecision is mitigated. The clinical case results suggest that phenotype rank combined with variant analysis provides significant improvement over the individual approaches. We expect that this combined prioritization approach may increase accuracy and decrease effort for

  8. pGenN, a Gene Normalization Tool for Plant Genes and Proteins in Scientific Literature

    Science.gov (United States)

    Ding, Ruoyao; Arighi, Cecilia N.; Lee, Jung-Youn; Wu, Cathy H.; Vijay-Shanker, K.

    2015-01-01

    Background Automatically detecting gene/protein names in the literature and connecting them to databases records, also known as gene normalization, provides a means to structure the information buried in free-text literature. Gene normalization is critical for improving the coverage of annotation in the databases, and is an essential component of many text mining systems and database curation pipelines. Methods In this manuscript, we describe a gene normalization system specifically tailored for plant species, called pGenN (pivot-based Gene Normalization). The system consists of three steps: dictionary-based gene mention detection, species assignment, and intra species normalization. We have developed new heuristics to improve each of these phases. Results We evaluated the performance of pGenN on an in-house expertly annotated corpus consisting of 104 plant relevant abstracts. Our system achieved an F-value of 88.9% (Precision 90.9% and Recall 87.2%) on this corpus, outperforming state-of-art systems presented in BioCreative III. We have processed over 440,000 plant-related Medline abstracts using pGenN. The gene normalization results are stored in a local database for direct query from the pGenN web interface (proteininformationresource.org/pgenn/). The annotated literature corpus is also publicly available through the PIR text mining portal (proteininformationresource.org/iprolink/). PMID:26258475

  9. GRtoGR: a system for mapping GO relations to gene relations.

    Science.gov (United States)

    Taha, Kamal

    2013-12-01

    We introduce in this paper a biological search engine called GRtoGR. Given a set of S genes, GRtoGR would determine from GO graph the most significant Lowest Common Ancestor (LCA) of the GO terms annotating the set S. This significant LCA annotates the genes that are the most semantically related to the set S. The framework of GRtoGR refines the concept of LCA by introducing the concepts of Relevant Lowest Common Ancestor (RLCA) and Semantically Relevant Lowest Common Anc