WorldWideScience

Sample records for human frontal cortex

  1. [Neuroanatomy of Frontal Association Cortex].

    Science.gov (United States)

    Takada, Masahiko

    2016-11-01

    The frontal association cortex is composed of the prefrontal cortex and the motor-related areas except the primary motor cortex (i.e., the so-called higher motor areas), and is well-developed in primates, including humans. The prefrontal cortex receives and integrates large bits of diverse information from the parietal, temporal, and occipital association cortical areas (termed the posterior association cortex), and paralimbic association cortical areas. This information is then transmitted to the primary motor cortex via multiple motor-related areas. Given these facts, it is likely that the prefrontal cortex exerts executive functions for behavioral control. The functional input pathways from the posterior and paralimbic association cortical areas to the prefrontal cortex are classified primarily into six groups. Cognitive signals derived from the prefrontal cortex are conveyed to the rostral motor-related areas to transform them into motor signals, which finally enter the primary motor cortex via the caudal motor-related areas. Furthermore, it has been shown that, similar to the primary motor cortex, areas of the frontal association cortex form individual networks (known as "loop circuits") with the basal ganglia and cerebellum via the thalamus, and hence are extensively involved in the expression and control of behavioral actions.

  2. Influence of motivation on control hierarchy in the human frontal cortex.

    Science.gov (United States)

    Bahlmann, Jörg; Aarts, Esther; D'Esposito, Mark

    2015-02-18

    The frontal cortex mediates cognitive control and motivation to shape human behavior. It is generally observed that medial frontal areas are involved in motivational aspects of behavior, whereas lateral frontal regions are involved in cognitive control. Recent models of cognitive control suggest a rostro-caudal gradient in lateral frontal regions, such that progressively more rostral (anterior) regions process more complex aspects of cognitive control. How motivation influences such a control hierarchy is still under debate. Although some researchers argue that both systems work in parallel, others argue in favor of an interaction between motivation and cognitive control. In the latter case it is yet unclear how motivation would affect the different levels of the control hierarchy. This was investigated in the present functional MRI study applying different levels of cognitive control under different motivational states (low vs high reward anticipation). Three levels of cognitive control were tested by varying rule complexity: stimulus-response mapping (low-level), flexible task updating (mid-level), and sustained cue-task associations (high-level). We found an interaction between levels of cognitive control and motivation in medial and lateral frontal subregions. Specifically, flexible updating (mid-level of control) showed the strongest beneficial effect of reward and only this level exhibited functional coupling between dopamine-rich midbrain regions and the lateral frontal cortex. These findings suggest that motivation differentially affects the levels of a control hierarchy, influencing recruitment of frontal cortical control regions depending on specific task demands. Copyright © 2015 the authors 0270-6474/15/353207-11$15.00/0.

  3. Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion

    NARCIS (Netherlands)

    Cohen, M.X.; Ridderinkhof, K.R.; Haupt, S.; Elger, C.E.; Fell, J.

    2008-01-01

    The medial frontal cortex (MFC) has been implicated in the monitoring and selection of actions in the face of competing alternatives, but much remains unknown about its functional properties, including electrophysiological oscillations, during response conflict tasks. Here, we recorded intracranial

  4. Adrenergic receptors in frontal cortex in human brain.

    Science.gov (United States)

    Cash, R; Raisman, R; Ruberg, M; Agid, Y

    1985-02-05

    The binding of three adrenergic ligands ([3H]prazosin, [3H]clonidine, [3H]dihydroalprenolol) was studied in the frontal cortex of human brain. alpha 1-Receptors, labeled by [3H]prazosin, predominated. [3H]Clonidine bound to two classes of sites, one of high affinity and one of low affinity. Guanosine triphosphate appeared to lower the affinity of [3H]clonidine for its receptor. [3H]Dihydroalprenolol bound to three classes of sites: the beta 1-receptor, the beta 2-receptor and a receptor with low affinity which represented about 40% of the total binding, but which was probably a non-specific site; the beta 1/beta 2 ratio was 1/2.

  5. Better without (lateral) frontal cortex? Insight problems solved by frontal patients.

    Science.gov (United States)

    Reverberi, Carlo; Toraldo, Alessio; D'Agostini, Serena; Skrap, Miran

    2005-12-01

    A recently proposed theory on frontal lobe functions claims that the prefrontal cortex, particularly its dorso-lateral aspect, is crucial in defining a set of responses suitable for a particular task, and biasing these for selection. This activity is carried out for virtually any kind of non-routine tasks, without distinction of content. The aim of this study is to test the prediction of Frith's 'sculpting the response space' hypothesis by means of an 'insight' problem-solving task, namely the matchstick arithmetic task. Starting from Knoblich et al.'s interpretation for the failure of healthy controls to solve the matchstick problem, and Frith's theory on the role of dorsolateral frontal cortex, we derived the counterintuitive prediction that patients with focal damage to the lateral frontal cortex should perform better than a group of healthy participants on this rather difficult task. We administered the matchstick task to 35 patients (aged 26-65 years) with a single focal brain lesion as determined by a CT or an MRI scan, and to 23 healthy participants (aged 34-62 years). The findings seemed in line with theoretical predictions. While only 43% of healthy participants could solve the most difficult matchstick problems ('type C'), 82% of lateral frontal patients did so (Fisher's exact test, P < 0.05). In conclusion, the combination of Frith's and Knoblich et al.'s theories was corroborated.

  6. OBscure but not OBsolete: Perturbations of the frontal cortex in common between rodent olfactory bulbectomy model and major depression.

    Science.gov (United States)

    Rajkumar, Ramamoorthy; Dawe, Gavin S

    2018-04-07

    Olfactory bulbectomy (OBX) has been used as a model of depression over several decades. This model presupposes a mechanism that is still not proven in clinical depression. A wealth of clinical literature has focused on the derangements in frontal cortex (prefrontal, orbitofrontal and anterior cingulate cortices) associated with depression. In this comprehensive review, anatomical, electrophysiological and molecular sequelae of bulbectomy in the rodent frontal cortex are explored and compared with findings on brains of humans with major depression. Certain commonalities in neurobiological features of the perturbed frontal cortex in the bulbectomised rodent and the depressed human brain are evident. Also, meta-analysis reports on clinical studies on depressed patients provide prima facie evidence that perturbations in the frontal cortex are associated with major depression. Analysing the pattern of perturbations in the chemical neuroanatomy of the frontal cortex will contribute to understanding of the neurobiology of depression. Revisiting the OBX model of depression to examine these neurobiological changes in frontal cortex with contemporary imaging, proteomics, lipidomics, metabolomics and epigenomics technologies is proposed as an approach to enhance the translational value of this animal model to facilitate identification of targets and biomarkers for clinical depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Responses of primate frontal cortex neurons during natural vocal communication.

    Science.gov (United States)

    Miller, Cory T; Thomas, A Wren; Nummela, Samuel U; de la Mothe, Lisa A

    2015-08-01

    The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors. Copyright © 2015 the American Physiological Society.

  8. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players.

    Science.gov (United States)

    Xu, Huan; Wang, Pin; Ye, Zhuo'er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus

  9. The Role of Medial Frontal Cortex in Action Anticipation in Professional Badminton Players

    Science.gov (United States)

    Xu, Huan; Wang, Pin; Ye, Zhuo’er; Di, Xin; Xu, Guiping; Mo, Lei; Lin, Huiyan; Rao, Hengyi; Jin, Hua

    2016-01-01

    Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent activation was assessed by means of functional magnetic resonance imaging. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex). Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate cortex, right fusiform gyrus

  10. Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex.

    Science.gov (United States)

    Deen, Ben; Saxe, Rebecca; Bedny, Marina

    2015-08-01

    In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.

  11. Human medial frontal cortex activity predicts learning from errors.

    Science.gov (United States)

    Hester, Robert; Barre, Natalie; Murphy, Kevin; Silk, Tim J; Mattingley, Jason B

    2008-08-01

    Learning from errors is a critical feature of human cognition. It underlies our ability to adapt to changing environmental demands and to tune behavior for optimal performance. The posterior medial frontal cortex (pMFC) has been implicated in the evaluation of errors to control behavior, although it has not previously been shown that activity in this region predicts learning from errors. Using functional magnetic resonance imaging, we examined activity in the pMFC during an associative learning task in which participants had to recall the spatial locations of 2-digit targets and were provided with immediate feedback regarding accuracy. Activity within the pMFC was significantly greater for errors that were subsequently corrected than for errors that were repeated. Moreover, pMFC activity during recall errors predicted future responses (correct vs. incorrect), despite a sizeable interval (on average 70 s) between an error and the next presentation of the same recall probe. Activity within the hippocampus also predicted future performance and correlated with error-feedback-related pMFC activity. A relationship between performance expectations and pMFC activity, in the absence of differing reinforcement value for errors, is consistent with the idea that error-related pMFC activity reflects the extent to which an outcome is "worse than expected."

  12. Accurate external localization of the left frontal cortex in dogs by using pointer based frameless neuronavigation

    Directory of Open Access Journals (Sweden)

    Robrecht Dockx

    2017-07-01

    Full Text Available Background In humans, non-stereotactic frameless neuronavigation systems are used as a topographical tool for non-invasive brain stimulation methods such as Transcranial Magnetic Stimulation (TMS. TMS studies in dogs may provide treatment modalities for several neuropsychological disorders in dogs. Nevertheless, an accurate non-invasive localization of a stimulation target has not yet been performed in this species. Hypothesis This study was primarily put forward to externally locate the left frontal cortex in 18 healthy dogs by means of a human non-stereotactic neuronavigation system. Secondly, the accuracy of the external localization was assessed. Animals A total of 18 healthy dogs, drawn at random from the research colony present at the faculty of Veterinary Medicine (Ghent University, were used. Methods Two sets of coordinates (X, Y, Z and X″, Y″, Z″ were compared on each dog their tomographical dataset. Results The non-stereotactic neuronavigation system was able to externally locate the frontal cortex in dogs with accuracy comparable with human studies. Conclusion and clinical importance This result indicates that a non-stereotactic neuronavigation system can accurately externally locate the left frontal cortex and paves the way to use guided non-invasive brain stimulation methods as an alternative treatment procedure for neurological and behavioral disorders in dogs. This technique could, in analogy with human guided non-invasive brain stimulation, provide a better treatment outcome for dogs suffering from anxiety disorders when compared to its non-guided alternative.

  13. Specific metabolomics adaptations define a differential regional vulnerability in the adult human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Rosanna Cabré

    2016-12-01

    Full Text Available Brain neurons offer diverse responses to stresses and detrimental factors during development and aging, and as a result of both neurodegenerative and neuropsychiatric disorders. This multiplicity of responses can be ascribed to the great diversity among neuronal populations. Here we have determined the metabolomic profile of three healthy adult human brain regions—entorhinal cortex, hippocampus, and frontal cortex—using mass spectrometry-based technologies. Our results show the existence of a lessened energy demand, mitochondrial stress, and lower one-carbon metabolism (particularly restricted to the methionine cycle specifically in frontal cortex. These findings, along with the better antioxidant capacity and lower mTOR signaling also seen in frontal cortex, suggest that this brain region is especially resistant to stress compared to the entorhinal cortex and hippocampus, which are more vulnerable regions. Globally, our results show the presence of specific metabolomics adaptations in three mature, healthy human brain regions, confirming the existence of cross-regional differences in cell vulnerability in the human cerebral cortex.

  14. Functional specialization of the primate frontal cortex during decision making.

    Science.gov (United States)

    Lee, Daeyeol; Rushworth, Matthew F S; Walton, Mark E; Watanabe, Masataka; Sakagami, Masamichi

    2007-08-01

    Economic theories of decision making are based on the principle of utility maximization, and reinforcement-learning theory provides computational algorithms that can be used to estimate the overall reward expected from alternative choices. These formal models not only account for a large range of behavioral observations in human and animal decision makers, but also provide useful tools for investigating the neural basis of decision making. Nevertheless, in reality, decision makers must combine different types of information about the costs and benefits associated with each available option, such as the quality and quantity of expected reward and required work. In this article, we put forward the hypothesis that different subdivisions of the primate frontal cortex may be specialized to focus on different aspects of dynamic decision-making processes. In this hypothesis, the lateral prefrontal cortex is primarily involved in maintaining the state representation necessary to identify optimal actions in a given environment. In contrast, the orbitofrontal cortex and the anterior cingulate cortex might be primarily involved in encoding and updating the utilities associated with different sensory stimuli and alternative actions, respectively. These cortical areas are also likely to contribute to decision making in a social context.

  15. Fetal frontal cortex transplant (14C) 2-deoxyglucose uptake and histology: survival in cavities of host rat brain motor cortex

    International Nuclear Information System (INIS)

    Sharp, F.R.; Gonzalez, M.F.

    1984-01-01

    Fetal frontal neocortex from 18-day-old rat embryonic brain was transplanted into cavities in 30-day-old host motor cortex. Sixty days after transplantation, 5 of 15 transplanted rats had surviving fetal transplants. The fetal cortex transplants were physically attached to the host brain, completely filled the original cavity, and had numerous surviving cells including pyramidal neurons. Cell lamination within the fetal transplant was abnormal. The ( 14 C) 2-deoxyglucose uptake of all five of the fetal neocortex transplants was less than adjacent cortex and contralateral host motor-sensory cortex, but more than adjacent corpus callosum white matter. The results indicate that fetal frontal neocortex can be transplanted into damaged rat motor cortex. The metabolic rate of the transplants suggests they could be partially functional

  16. Learning a New Selection Rule in Visual and Frontal Cortex.

    Science.gov (United States)

    van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R

    2016-08-01

    How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. © The Author 2016. Published by Oxford University Press.

  17. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    International Nuclear Information System (INIS)

    Petrides, M.; Pandya, D.N.

    1988-01-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus

  18. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey.

    Science.gov (United States)

    Petrides, M; Pandya, D N

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  19. Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey

    Energy Technology Data Exchange (ETDEWEB)

    Petrides, M.; Pandya, D.N.

    1988-07-01

    The projections to the frontal cortex that originate from the various areas of the superior temporal region of the rhesus monkey were investigated with the autoradiographic technique. The results demonstrated that the rostral part of the superior temporal gyrus (areas Pro, Ts1, and Ts2) projects to the proisocortical areas of the orbital and medial frontal cortex, as well as to the nearby orbital areas 13, 12, and 11, and to medial areas 9, 10, and 14. These fibers travel to the frontal lobe as part of the uncinate fascicle. The middle part of the superior temporal gyrus (areas Ts3 and paAlt) projects predominantly to the lateral frontal cortex (areas 12, upper 46, and 9) and to the dorsal aspect of the medial frontal lobe (areas 9 and 10). Only a small number of these fibers terminated within the orbitofrontal cortex. The temporofrontal fibers originating from the middle part of the superior temporal gyrus occupy the lower portion of the extreme capsule and lie just dorsal to the fibers of the uncinate fascicle. The posterior part of the superior temporal gyrus projects to the lateral frontal cortex (area 46, dorsal area 8, and the rostralmost part of dorsal area 6). Some of the fibers from the posterior superior temporal gyrus run initially through the extreme capsule and then cross the claustrum as they ascend to enter the external capsule before continuing their course to the frontal lobe. A larger group of fibers curves round the caudalmost Sylvian fissure and travels to the frontal cortex occupying a position just above and medial to the upper branch of the circular sulcus. This latter pathway constitutes a part of the classically described arcuate fasciculus.

  20. GABAA receptor B subunit expression in the superior frontal cortex of human alcoholics

    International Nuclear Information System (INIS)

    Buckley, S.T.; Dodd, P.R.

    2001-01-01

    Full text: Changes in GABA A receptor pharmacology can be ascribed to alterations in expression of specific GABA A receptor subunits. Ethanol is known to be a potent agonist of the GABA A receptor. Chronic abuse of alcohol in humans results in damage of selective brain regions such as the superior frontal cortex (SFC), leading to neuronal cell loss. Studies in our laboratory 1 and elsewhere 2 have shown differences in expression of a number of GABA A receptor subunits in chronic human alcoholism. This suggests that alterations in GABA A receptor composition may be involved in the pathogenesis of alcoholic brain damage. We analysed the expression of the β 1 ,β 2 and β 3 isoforms of the GABA A receptor by a competitive reverse transcription polymerase chain reaction (RT-PCR) technique, which utilised an internal standard (IS) for quantitation. 35 S-dATP was incorporated to enable visualisation of the PCR products. Human brain tissue was obtained at autopsy and stored in 0.32 M sucrose at -80 deg C. Total RNA was extracted from pathologically susceptible and spared regions, SFC and motor cortex respectively,of 22 control and 22 alcoholic patients. 1 μg of total RNA from each sample was co-amplified with 0.5 pg of IS and a ratio determined. A standard consisting of known amounts of β 1 cRNA titrated against 0.5 pg of IS enabled a standard curve to be generated for quantitation of each unknown sample. The samples were subjected to polyacrylamide gel electrophoresis and the dried gel exposed to a phosphorimager screen. Data analysis was performed using the ImageQuant program. Initial results indicate that there is a reduction in expression of all the β transcripts in alcoholics when compared with controls, which supports the hypothesis that the GABA A receptor is altered by alcohol abuse. Supported by NHMRC. Copyright (2001) Australian Neuroscience Society

  1. On the functional relevance of frontal cortex for passive and voluntarily controlled bistable vision.

    Science.gov (United States)

    de Graaf, Tom A; de Jong, Maartje C; Goebel, Rainer; van Ee, Raymond; Sack, Alexander T

    2011-10-01

    In bistable vision, one constant ambiguous stimulus leads to 2 alternating conscious percepts. This perceptual switching occurs spontaneously but can also be influenced through voluntary control. Neuroimaging studies have reported that frontal regions are activated during spontaneous perceptual switches, leading some researchers to suggest that frontal regions causally induce perceptual switches. But the opposite also seems possible: frontal activations may themselves be caused by spontaneous switches. Classically implicated in attentional processes, these same regions are also candidates for the origins of voluntary control over bistable vision. Here too, it remains unknown whether frontal cortex is actually functionally relevant. It is even possible that spontaneous perceptual switches and voluntarily induced switches are mediated by the same top-down mechanisms. To directly address these issues, we here induced "virtual lesions," with transcranial magnetic stimulation, in frontal, parietal, and 2 lower level visual cortices using an established ambiguous structure-from-motion stimulus. We found that dorsolateral prefrontal cortex was causally relevant for voluntary control over perceptual switches. In contrast, we failed to find any evidence for an active role of frontal cortex in passive bistable vision. Thus, it seems the same pathway used for willed top-down modulation of bistable vision is not used during passive bistable viewing.

  2. Modulating phonemic fluency performance in healthy subjects with transcranial magnetic stimulation over the left or right lateral frontal cortex.

    Science.gov (United States)

    Smirni, Daniela; Turriziani, Patrizia; Mangano, Giuseppa Renata; Bracco, Martina; Oliveri, Massimiliano; Cipolotti, Lisa

    2017-07-28

    A growing body of evidence have suggested that non-invasive brain stimulation techniques, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), can improve the performance of aphasic patients in language tasks. For example, application of inhibitory rTMS or tDCs over the right frontal lobe of dysphasic patients resulted in improved naming abilities. Several studies have also reported that in healthy controls (HC) tDCS application over the left prefrontal cortex (PFC) improve performance in naming and semantic fluency tasks. The aim of this study was to investigate in HC, for the first time, the effects of inhibitory repetitive TMS (rTMS) over left and right lateral frontal cortex (BA 47) on two phonemic fluency tasks (FAS or FPL). 44 right-handed HCs were administered rTMS or sham over the left or right lateral frontal cortex in two separate testing sessions, with a 24h interval, followed by the two phonemic fluency tasks. To account for possible practice effects, an additional 22 HCs were tested on only the phonemic fluency task across two sessions with no stimulation. We found that rTMS-inhibition over the left lateral frontal cortex significantly worsened phonemic fluency performance when compared to sham. In contrast, rTMS-inhibition over the right lateral frontal cortex significantly improved phonemic fluency performance when compared to sham. These results were not accounted for practice effects. We speculated that rTMS over the right lateral frontal cortex may induce plastic neural changes to the left lateral frontal cortex by suppressing interhemispheric inhibitory interactions. This resulted in an increased excitability (disinhibition) of the contralateral unstimulated left lateral frontal cortex, consequently enhancing phonemic fluency performance. Conversely, application of rTMS over the left lateral frontal cortex may induce a temporary, virtual lesion, with effects similar to those reported in left frontal

  3. A frontal cortex event-related potential driven by the basal forebrain

    Science.gov (United States)

    Nguyen, David P; Lin, Shih-Chieh

    2014-01-01

    Event-related potentials (ERPs) are widely used in both healthy and neuropsychiatric conditions as physiological indices of cognitive functions. Contrary to the common belief that cognitive ERPs are generated by local activity within the cerebral cortex, here we show that an attention-related ERP in the frontal cortex is correlated with, and likely generated by, subcortical inputs from the basal forebrain (BF). In rats performing an auditory oddball task, both the amplitude and timing of the frontal ERP were coupled with BF neuronal activity in single trials. The local field potentials (LFPs) associated with the frontal ERP, concentrated in deep cortical layers corresponding to the zone of BF input, were similarly coupled with BF activity and consistently triggered by BF electrical stimulation within 5–10 msec. These results highlight the important and previously unrecognized role of long-range subcortical inputs from the BF in the generation of cognitive ERPs. DOI: http://dx.doi.org/10.7554/eLife.02148.001 PMID:24714497

  4. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex

    Directory of Open Access Journals (Sweden)

    O.A. Olulade

    2015-01-01

    Full Text Available fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called “visual word form area”, VWFA, is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009. Similarly, the left inferior frontal cortex (IFC has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007. Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009. Building on these studies, we here (1 investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2 compare typically reading with dyslexic children, and (3 examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We

  5. Reduced N-acetylaspartate levels in the frontal cortex of 3,4-methylenedioxymethamphetamine (Ecstasy) users: preliminary results.

    Science.gov (United States)

    Reneman, Liesbeth; Majoie, Charles B L M; Flick, Herman; den Heeten, Gerard J

    2002-02-01

    The perceived safety of the recreational drug methylenedioxymethamphetamine (MDMA), or Ecstasy, conflicts with animal evidence indicating that MDMA damages cortical serotonin (5-HT) neurons at doses similar to those used by humans. Few data are available about the effects of MDMA on the human brain. This study was designed to evaluate MDMA-related alterations in metabolite ratios with single-voxel proton ((1)H) MR spectroscopy. Fifteen male MDMA users (mean lifetime exposure, 723 tablets; mean time since last tablet, 12.0 weeks) and 12 age-matched control subjects underwent single-voxel (1)H MR spectroscopy. N-Acetylaspartate (NAA)/creatine (Cr), NAA/Choline (Cho), and myoinositol (MI)/Cr ratios were measured in midfrontal gray matter, midoccipital gray matter, and right parietal white matter. Data were analyzed with linear model-based multivariate analysis of variance. NAA/Cr (P =.04) and NAA/Cho (P =.03) ratios, markers associated with neuronal loss or dysfunction, were reduced in the frontal cortex of MDMA users. Neither NAA/Cr (P =.72) nor NAA/Cho (P =.12) ratios were different between both groups in occipital gray matter and parietal white matter (P =.18). Extent of previous MDMA use and frontal cortical NAA/Cr (rho = -.50, P =.012) or NAA/Cho (rho = -.550, P spectroscopy provide evidence for neuronal abnormality in the frontal cortex of MDMA users; these are correlated with the degree of MDMA exposure. These data suggest that MDMA may be a neurotoxin in humans, as it is in animals.

  6. Exploratory Metabolomic Analyses Reveal Compounds Correlated with Lutein Concentration in Frontal Cortex, Hippocampus, and Occipital Cortex of Human Infant Brain.

    Directory of Open Access Journals (Sweden)

    Jacqueline C Lieblein-Boff

    Full Text Available Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510 were excluded. In addition, moderate correlations with xenobiotic relationships (2 or those driven by single outliers (3 were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region-specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.

  7. Autobiographical memory of the recent past following frontal cortex or temporal lobe excisions.

    Science.gov (United States)

    Thaiss, Laila; Petrides, Michael

    2008-08-01

    Previous research has raised questions regarding the necessity of the frontal cortex in autobiographical memory and the role that it plays in actively retrieving contextual information associated with personally relevant events. Autobiographical memory was studied in patients with unilateral excisions restricted to the frontal cortex or temporal lobe involving the amygdalo-hippocampal region and in normal controls using an event-sampling method. We examined accuracy of free recall, use of strategies during retrieval and memory for specific aspects of the autobiographical events, including temporal order. Patients with temporal lobe excisions were impaired in autobiographical recall. By contrast, patients with frontal cortical excisions exhibited normal autobiographical recall but were less likely to use temporal order spontaneously to organize event retrieval. Instruction to organize retrieval by temporal order failed to improve recall in temporal lobe patients and increased the incidence of plausible intrusion errors in left temporal patients. In contrast, patients with frontal cortical excisions now surpassed control subjects in recall of autobiographical events. Furthermore, the retrieval accuracy for the temporal order of diary events was not impaired in these patients. In a subsequent cued recall test, temporal lobe patients were impaired in their memory for the details of the diary events and their context. In conclusion, a basic impairment in autobiographical memory (including memory for temporal context) results from damage to the temporal lobe and not the frontal cortex. Patients with frontal excisions fail to use organizational strategies spontaneously to aid retrieval but can use these effectively if instructed to do so.

  8. The threshold for conscious report: Signal loss and response bias in visual and frontal cortex.

    Science.gov (United States)

    van Vugt, Bram; Dagnino, Bruno; Vartak, Devavrat; Safaai, Houman; Panzeri, Stefano; Dehaene, Stanislas; Roelfsema, Pieter R

    2018-05-04

    Why are some visual stimuli consciously detected, whereas others remain subliminal? We investigated the fate of weak visual stimuli in the visual and frontal cortex of awake monkeys trained to report stimulus presence. Reported stimuli were associated with strong sustained activity in the frontal cortex, and frontal activity was weaker and quickly decayed for unreported stimuli. Information about weak stimuli could be lost at successive stages en route from the visual to the frontal cortex, and these propagation failures were confirmed through microstimulation of area V1. Fluctuations in response bias and sensitivity during perception of identical stimuli were traced back to prestimulus brain-state markers. A model in which stimuli become consciously reportable when they elicit a nonlinear ignition process in higher cortical areas explained our results. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. Quantitative analysis of basal dendritic tree of layer III pyramidal neurons in different areas of adult human frontal cortex.

    Science.gov (United States)

    Zeba, Martina; Jovanov-Milosević, Natasa; Petanjek, Zdravko

    2008-01-01

    Large long projecting (cortico-cortical) layer IIIc pyramidal neurons were recently disclosed to be in the basis of cognitive processing in primates. Therefore, we quantitatively examined the basal dendritic morphology of these neurons by using rapid Golgi and Golgi Cox impregnation methods among three distinct Brodmann areas (BA) of an adult human frontal cortex: the primary motor BA4 and the associative magnopyramidal BA9 from left hemisphere and the Broca's speech BA45 from both hemispheres. There was no statistically significant difference in basal dendritic length or complexity, as dendritic spine number or their density between analyzed BA's. In addition, we analyzed each of these BA's immunocytochemically for distribution of SMI-32, a marker of largest long distance projecting neurons. Within layer IIIc, the highest density of SMI-32 immunopositive pyramidal neurons was observed in associative BA9, while in primary BA4 they were sparse. Taken together, these data suggest that an increase in the complexity of cortico-cortical network within human frontal areas of different functional order may be principally based on the increase in density of large, SMI-32 immunopositive layer IIIc neurons, rather than by further increase in complexity of their dendritic tree and synaptic network.

  10. Reduced number of (/sup 3/H)nicotine and (/sup 3/H)acelylcholine binding sites in the frontal cortex of Alzheimer brains

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, A; Winblad, B

    1986-12-03

    Nicotinic cholinergic receptors were measured in human frontal cortex using (/sup 3/H)nicotine and (/sup 3/H)acetylcholine (in the presence of atropine) as receptor ligands. A parallel marked reduction in number of (/sup 3/H)nicotine (52%, P<0.01) and (/sup 3/H)acetylcholine (-55%, P<0.05) binding was found in the frontal cortex of Alzheimer brains (AD/SDAT) when compared to age-matched control brains. As a comparison the number of muscarinic receptors was quantified using (/sup 3/H)quinuclidinyl benzilate and found to be significantly increased (+23%, P<0.01) in AD/SDAT compared to controls. 26 refs.

  11. Bilateral lesions of the medial frontal cortex disrupt recognition of social hierarchy during antiphonal communication in naked mole-rats (Heterocephalus glaber).

    Science.gov (United States)

    Yosida, Shigeto; Okanoya, Kazuo

    2012-02-01

    Generation of the motor patterns of emotional sounds in mammals occurs in the periaqueductal gray matter of the midbrain and is not directly controlled by the cortex. The medial frontal cortex indirectly controls vocalizations, based on the recognition of social context. We examined whether the medial frontal cortex was responsible for antiphonal vocalization, or turn-taking, in naked mole-rats. In normal turn-taking, naked mole-rats vocalize more frequently to dominant individuals than to subordinate ones. Bilateral lesions of the medial frontal cortex disrupted differentiation of call rates to the stimulus animals, which had varied social relationships to the subject. However, medial frontal cortex lesions did not affect either the acoustic properties of the vocalizations or the timing of the vocal exchanges. This suggests that the medial frontal cortex may be involved in social cognition or decision making during turn-taking, while other regions of the brain regulate when animals vocalize and the vocalizations themselves.

  12. Cytoarchitecture, probability maps and functions of the human frontal pole.

    Science.gov (United States)

    Bludau, S; Eickhoff, S B; Mohlberg, H; Caspers, S; Laird, A R; Fox, P T; Schleicher, A; Zilles, K; Amunts, K

    2014-06-01

    The frontal pole has more expanded than any other part in the human brain as compared to our ancestors. It plays an important role for specifically human behavior and cognitive abilities, e.g. action selection (Kovach et al., 2012). Evidence about divergent functions of its medial and lateral part has been provided, both in the healthy brain and in psychiatric disorders. The anatomical correlates of such functional segregation, however, are still unknown due to a lack of stereotaxic, microstructural maps obtained in a representative sample of brains. Here we show that the human frontopolar cortex consists of two cytoarchitectonically and functionally distinct areas: lateral frontopolar area 1 (Fp1) and medial frontopolar area 2 (Fp2). Based on observer-independent mapping in serial, cell-body stained sections of 10 brains, three-dimensional, probabilistic maps of areas Fp1 and Fp2 were created. They show, for each position of the reference space, the probability with which each area was found in a particular voxel. Applying these maps as seed regions for a meta-analysis revealed that Fp1 and Fp2 differentially contribute to functional networks: Fp1 was involved in cognition, working memory and perception, whereas Fp2 was part of brain networks underlying affective processing and social cognition. The present study thus disclosed cortical correlates of a functional segregation of the human frontopolar cortex. The probabilistic maps provide a sound anatomical basis for interpreting neuroimaging data in the living human brain, and open new perspectives for analyzing structure-function relationships in the prefrontal cortex. The new data will also serve as a starting point for further comparative studies between human and non-human primate brains. This allows finding similarities and differences in the organizational principles of the frontal lobe during evolution as neurobiological basis for our behavior and cognitive abilities. Copyright © 2013 Elsevier Inc. All

  13. The rat frontal cortex serotonin receptors. Influence of supraletal irradiation

    International Nuclear Information System (INIS)

    Chanez, P.O.; Timmermans, R.; Gerber, G.B.

    1984-01-01

    The density of the frontal cortex serotonin-2 receptors was determined after a supralethal irradiation (20 Gy) in Wistar rat. Using spiperone as ligand, we observed an important decrease in the density of serotonin-2 receptor and an increase in the dissociation constant receptor-ligand, 3 days after exposure [fr

  14. Local-circuit phenotypes of layer 5 neurons in motor-frontal cortex of YFP-H mice

    Directory of Open Access Journals (Sweden)

    Jianing Yu

    2008-12-01

    Full Text Available Layer 5 pyramidal neurons comprise an important but heterogeneous group of cortical projection neurons. In motor-frontal cortex, these neurons are centrally involved in the cortical control of movement. Recent studies indicate that local excitatory networks in mouse motor-frontal cortex are dominated by descending pathways from layer 2/3 to 5. However, those pathways were identified in experiments involving unlabeled neurons in wild type mice. Here, to explore the possibility of class-specific connectivity in this descending pathway, we mapped the local sources of excitatory synaptic input to a genetically labeled population of cortical neurons: YFP-positive layer 5 neurons of YFP-H mice. We found, first, that in motor cortex, YFP-positive neurons were distributed in a double blade, consistent with the idea of layer 5B having greater thickness in frontal neocortex. Second, whereas unlabeled neurons in upper layer 5 received their strongest inputs from layer 2, YFP-positive neurons in the upper blade received prominent layer 3 inputs. Third, YFP-positive neurons exhibited distinct electrophysiological properties, including low spike frequency adaptation, as reported previously. Our results with this genetically labeled neuronal population indicate the presence of distinct local-circuit phenotypes among layer 5 pyramidal neurons in mouse motor-frontal cortex, and present a paradigm for investigating local circuit organization in other genetically labeled populations of cortical neurons.

  15. Grammatical distinctions in the left frontal cortex.

    Science.gov (United States)

    Shapiro, K A; Pascual-Leone, A; Mottaghy, F M; Gangitano, M; Caramazza, A

    2001-08-15

    Selective deficits in producing verbs relative to nouns in speech are well documented in neuropsychology and have been associated with left hemisphere frontal cortical lesions resulting from stroke and other neurological disorders. The basis for these impairments is unresolved: Do they arise because of differences in the way grammatical categories of words are organized in the brain, or because of differences in the neural representation of actions and objects? We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefrontal cortex and to assess its role in producing nouns and verbs. In one experiment subjects generated real words; in a second, they produced pseudowords as nouns or verbs. In both experiments, response latencies increased for verbs but were unaffected for nouns following rTMS. These results demonstrate that grammatical categories have a neuroanatomical basis and that the left prefrontal cortex is selectively engaged in processing verbs as grammatical objects.

  16. Role of Frontal Cortex in Attentional Capture by Singleton Distractors

    Science.gov (United States)

    de Fockert, Jan W.; Theeuwes, Jan

    2012-01-01

    The role of frontal cortex in selective attention to visual distractors was examined in an attentional capture task in which participants searched for a unique shape in the presence or absence of an additional colour singleton distractor. The presence of the additional singleton was associated with slower behavioural responses to the shape target,…

  17. Maps of space in human frontoparietal cortex.

    Science.gov (United States)

    Jerde, Trenton A; Curtis, Clayton E

    2013-12-01

    Prefrontal cortex (PFC) and posterior parietal cortex (PPC) are neural substrates for spatial cognition. We here review studies in which we tested the hypothesis that human frontoparietal cortex may function as a priority map. According to priority map theory, objects or locations in the visual world are represented by neural activity that is proportional to their attentional priority. Using functional magnetic resonance imaging (fMRI), we first identified topographic maps in PFC and PPC as candidate priority maps of space. We then measured fMRI activity in candidate priority maps during the delay periods of a covert attention task, a spatial working memory task, and a motor planning task to test whether the activity depended on the particular spatial cognition. Our hypothesis was that some, but not all, candidate priority maps in PFC and PPC would be agnostic with regard to what was being prioritized, in that their activity would reflect the location in space across tasks rather than a particular kind of spatial cognition (e.g., covert attention). To test whether patterns of delay period activity were interchangeable during the spatial cognitive tasks, we used multivariate classifiers. We found that decoders trained to predict the locations on one task (e.g., working memory) cross-predicted the locations on the other tasks (e.g., covert attention and motor planning) in superior precentral sulcus (sPCS) and in a region of intraparietal sulcus (IPS2), suggesting that these patterns of maintenance activity may be interchangeable across the tasks. Such properties make sPCS in frontal cortex and IPS2 in parietal cortex viable priority map candidates, and suggest that these areas may be the human homologs of the monkey frontal eye field (FEF) and lateral intraparietal area (LIP). Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Directory of Open Access Journals (Sweden)

    Andrew C. Talk

    2016-12-01

    Full Text Available Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity.

  19. Preconditioning of Spatial and Auditory Cues: Roles of the Hippocampus, Frontal Cortex, and Cue-Directed Attention

    Science.gov (United States)

    Talk, Andrew C.; Grasby, Katrina L.; Rawson, Tim; Ebejer, Jane L.

    2016-01-01

    Loss of function of the hippocampus or frontal cortex is associated with reduced performance on memory tasks, in which subjects are incidentally exposed to cues at specific places in the environment and are subsequently asked to recollect the location at which the cue was experienced. Here, we examined the roles of the rodent hippocampus and frontal cortex in cue-directed attention during encoding of memory for the location of a single incidentally experienced cue. During a spatial sensory preconditioning task, rats explored an elevated platform while an auditory cue was incidentally presented at one corner. The opposite corner acted as an unpaired control location. The rats demonstrated recollection of location by avoiding the paired corner after the auditory cue was in turn paired with shock. Damage to either the dorsal hippocampus or the frontal cortex impaired this memory ability. However, we also found that hippocampal lesions enhanced attention directed towards the cue during the encoding phase, while frontal cortical lesions reduced cue-directed attention. These results suggest that the deficit in spatial sensory preconditioning caused by frontal cortical damage may be mediated by inattention to the location of cues during the latent encoding phase, while deficits following hippocampal damage must be related to other mechanisms such as generation of neural plasticity. PMID:27999366

  20. Challenge-driven attention: interacting frontal and brainstem systems

    Directory of Open Access Journals (Sweden)

    Rajeev D S Raizada

    2008-03-01

    Full Text Available The world is an unpredictable place, presenting challenges that fl uctuate from moment to moment. However, the neural systems for responding to such challenges are far from fully understood. Using fMRI, we studied an audiovisual task in which the trials' diffi culty and onset times varied unpredictably. Two regions were found to increase their activation for challenging trials, with their activities strongly correlated: right frontal cortex and the brainstem. The frontal area matched regions found in previous human studies of cognitive control, and activated in a graded manner with increasing task diffi culty. The brainstem responded only to the most diffi cult trials, showing a phasic activity pattern paralleling locus coeruleus recordings in monkeys. These results reveal a bridge between animal and human studies, and suggest interacting roles for the brainstem and right frontal cortex: the brainstem may signal that an attentional challenge is occurring, while right frontal cortex allocates cognitive resources in response.

  1. The morphology of midcingulate cortex predicts frontal-midline theta neurofeedback success

    Directory of Open Access Journals (Sweden)

    Stefanie eEnriquez-Geppert

    2013-08-01

    Full Text Available Humans differ in their ability to learn how to control their own brain activity by neurofeedback. However, neural mechanisms underlying these inter-individual differences, which may determine training success and associated cognitive enhancement, are not well understood. Here, it is asked whether neurofeedback success of frontal-midline (fm theta, an oscillation related to higher cognitive functions, could be predicted by the morphology of brain structures known to be critically involved in fm-theta generation. Nineteen young, right-handed participants underwent magnetic resonance imaging of T1-weighted brain images, and took part in an individualized, eight-session neurofeedback training in order to learn how to enhance activity in their fm-theta frequency band. Initial training success, measured at the second training session, was correlated with the final outcome measure. We found that the inferior, superior and middle frontal cortices were not associated with training success. However, volume of the midcingulate cortex as well as volume and concentration of the underlying white matter structures act as predictor variables for the general responsiveness to training. These findings suggest a neuroanatomical foundation for the ability to learn to control one’s own brain activity.

  2. Cerebellar modulation of frontal cortex dopamine efflux in mice: relevance to autism and schizophrenia.

    Science.gov (United States)

    Mittleman, Guy; Goldowitz, Daniel; Heck, Detlef H; Blaha, Charles D

    2008-07-01

    Cerebellar and frontal cortical pathologies have been commonly reported in schizophrenia, autism, and other developmental disorders. Whether there is a relationship between prefrontal and cerebellar pathologies is unknown. Using fixed potential amperometry, dopamine (DA) efflux evoked by cerebellar or, dentate nucleus electrical stimulation (50 Hz, 200 muA) was recorded in prefrontal cortex of urethane anesthetized lurcher (Lc/+) mice with 100% loss of cerebellar Purkinje cells and wildtype (+/+) control mice. Cerebellar stimulation with 25 and 100 pulses evoked prefrontal cortex DA efflux in +/+ mice that persisted for 12 and 25 s poststimulation, respectively. In contrast, 25 pulse cerebellar stimulation failed to evoke prefrontal cortex DA efflux in Lc/+ mice indicating a dependency on cerebellar Purkinje cell outputs. Dentate nucleus stimulation (25 pulses) evoked a comparable but briefer (baseline recovery within 7 s) increase in prefrontal cortex DA efflux compared to similar cerebellar stimulation in +/+ mice. However, in Lc/+ mice 25 pulse dentate nucleus evoked prefrontal cortex DA efflux was attenuated by 60% with baseline recovery within 4 s suggesting that dentate nucleus outputs to prefrontal cortex remain partially functional. DA reuptake blockade enhanced 100 pulse stimulation evoked prefrontal cortex responses, while serotonin or norepinephrine reuptake blockade were without effect indicating the specificity of the amperometric recordings to DA. Results provide neurochemical evidence that the cerebellum can modulate DA efflux in the prefrontal cortex. Together, these findings may explain why cerebellar and frontal cortical pathologies co-occur, and may provide a mechanism that accounts for the diversity of symptoms common to multiple developmental disorders.

  3. "Lipid raft aging" in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease.

    Science.gov (United States)

    Díaz, Mario; Fabelo, Noemí; Ferrer, Isidre; Marín, Raquel

    2018-07-01

    Lipid rafts are highly dynamic membrane domains featured by distinctive biochemical composition and physicochemical properties compared with the surrounding plasma membrane. These microstructures are associated not only with cellular signaling and communication in normal nerve cells but also with pathological processing of amyloid precursor protein in Alzheimer's disease. Using lipid rafts isolated from human frontal cortex in nondemented subjects aging 24 to 85 years, we demonstrate here that lipid structure of lipid rafts undergo significant alterations of specific lipid classes and phospholipid-bound fatty acids as brain cortex correlating with aging. Main changes affect levels of plasmalogens, polyunsaturated fatty acids (especially docosahexaenoic acid and arachidonic acid), total polar lipids (mainly phosphatidylinositol, sphingomyelin, sulfatides, and cerebrosides), and total neutral lipids (particularly cholesterol and sterol esters). Besides, relevant relationships between main fatty acids and/or lipid classes were altered in an age-related manner. This "lipid raft aging" exhibits clear gender differences and appear to be more pronounced in women than in men, especially in older (postmenopausal) women. The outcomes led us to conclude that human cortical lipid rafts are modified by aging in a gender-dependent fashion. Given the central role of bilayer lipid matrix in lipid rafts functionality and neuronal signaling, we hypothesize that these findings might underlie the higher prevalence of cognitive decline evolving toward Alzheimer's disease in postmenopausal women. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Enoxacin elevates microRNA levels in rat frontal cortex and prevents learned helplessness

    Directory of Open Access Journals (Sweden)

    Neil R Smalheiser

    2014-02-01

    Full Text Available Major depressive disorder (MDD is a major public health concern. Despite tremendous advancement, the pathogenic mechanisms associated with MDD are still unclear. Moreover, a significant number of MDD subjects do not respond to the currently available medication. MicroRNAs (miRNAs are a class of small non-coding RNAs that control gene expression by modulating translation, mRNA degradation or stability of mRNA targets. The role of miRNAs in disease pathophysiology is emerging rapidly. Recently, we reported that miRNA expression is down-regulated in frontal cortex of depressed suicide subjects, and that rats exposed to repeated inescapable shock show differential miRNA changes depending on whether they exhibited normal adaptive responses or learned helpless behavior. Enoxacin, a fluoroquinolone used clinically as an antibacterial compound, enhances the production of miRNAs in vitro and in peripheral tissues in vivo, but has not yet been tested as an experimental tool to study the relation of miRNA expression to neural functions or behavior. Treatment of rats with 10 or 25 mg/kg enoxacin for one week increased the expression of miRNAs in frontal cortex and decreased the proportion of rats exhibiting learned helpless behavior following inescapable shock. Further studies are warranted to learn whether enoxacin may ameliorate depressive behavior in other rodent paradigms and in human clinical situations, and if so whether its mechanism is due to upregulation of miRNAs.

  5. [Interaction between neurons of the frontal cortex and hippocampus during the realization of choice of food reinforcement quality in cats].

    Science.gov (United States)

    Merzhanova, G Kh; Dolbakian, E E; Khokhlova, V N

    2003-01-01

    Six cats were subjected to the procedure of appetitive instrumental conditioning (with light as a conditioned stimuls) by the method of the "active choice" of reinforcement quality. Short-delay conditioned bar-press responses were rewarded with bread-meat mixture, and the delayed responses were reinforced by meat. The animals differed in behavior strategy: four animals preferred the bar-pressing with a long delay (the so-called "self-control" group), and two cats preferred the bar-pressing with a short delay (the so-called "impulsive" group). Multiunit activity in the frontal cortex and hippocampus (CA3) was recorded via chronically implanted nichrome wire semimicroelectrodes. An interaction between the neighboring neurons in the frontal cortex and hippocampus (within local neural networks) and between the neurons of the frontal cortex and hippocampus (distributed neural networks in frontal-hippocampal and hippocampal-frontal directions) was evaluated by means of statistical crosscorrelation analysis of spike trains. Crosscorrelations between neuronal spike trains in the delay range of 0-100 ms were explored. It was shown that the number of crosscorrelations between the neuronal discharges both in the local and distributed networks was significantly higher in the "self-control" cats. It was suggested that the local and distributed neural networks of the frontal cortex and hippocampus are involved in the system of brain structures which determine the behavioral strategy of animals in the "self-control" group.

  6. Orbito-frontal cortex and thalamus volumes in the patients with obsessive-compulsive disorder before and after cognitive behavioral therapy.

    Science.gov (United States)

    Atmaca, Murad; Yildirim, Hanefi; Yilmaz, Seda; Caglar, Neslihan; Mermi, Osman; Korkmaz, Sevda; Akaslan, Unsal; Gurok, M Gurkan; Kekilli, Yasemin; Turkcapar, Hakan

    2018-07-01

    Background The effect of a variety of treatment modalities including psychopharmacological and cognitive behavioral therapy on the brain volumes and neurochemicals have not been investigated enough in the patients with obsessive-compulsive disorder. Therefore, in the present study, we aimed to investigate the effect of cognitive behavioral therapy on the volumes of the orbito-frontal cortex and thalamus regions which seem to be abnormal in the patients with obsessive-compulsive disorder. We hypothesized that there would be change in the volumes of the orbito-frontal cortex and thalamus. Methods Twelve patients with obsessive-compulsive disorder and same number of healthy controls were included into the study. At the beginning of the study, the volumes of the orbito-frontal cortex and thalamus were compared by using magnetic resonance imaging. In addition, volumes of these regions were measured before and after the cognitive behavioral therapy treatment in the patient group. Results The patients with obsessive-compulsive disorder had greater left and right thalamus volumes and smaller left and right orbito-frontal cortex volumes compared to those of healthy control subjects at the beginning of the study. When we compared baseline volumes of the patients with posttreatment ones, we detected that thalamus volumes significantly decreased throughout the period for both sides and that the orbito-frontal cortex volumes significantly increased throughout the period for only left side. Conclusions In summary, we found that cognitive behavioral therapy might volumetrically affect the key brain regions involved in the neuroanatomy of obsessive-compulsive disorder. However, future studies with larger sample are required.

  7. Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination

    OpenAIRE

    Zhe Charles Zhou; Chunxiu Yu; Kristin K. Sellers; Flavio Fröhlich

    2016-01-01

    Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contr...

  8. The primary motor and premotor areas of the human cerebral cortex.

    Science.gov (United States)

    Chouinard, Philippe A; Paus, Tomás

    2006-04-01

    Brodmann's cytoarchitectonic map of the human cortex designates area 4 as cortex in the anterior bank of the precentral sulcus and area 6 as cortex encompassing the precentral gyrus and the posterior portion of the superior frontal gyrus on both the lateral and medial surfaces of the brain. More than 70 years ago, Fulton proposed a functional distinction between these two areas, coining the terms primary motor area for cortex in Brodmann area 4 and premotor area for cortex in Brodmann area 6. The parcellation of the cortical motor system has subsequently become more complex. Several nonprimary motor areas have been identified in the brain of the macaque monkey, and associations between anatomy and function in the human brain are being tested continuously using brain mapping techniques. In the present review, the authors discuss the unique properties of the primary motor area (M1), the dorsal portion of the premotor cortex (PMd), and the ventral portion of the premotor cortex (PMv). They end this review by discussing how the premotor areas influence M1.

  9. Tritiated imipramine binding sites are decreased in the frontal cortex of suicides

    International Nuclear Information System (INIS)

    Stanley, M.; Virgilio, J.; Gershon, S.

    1982-01-01

    Binding characteristics of tritiated imipramine were determined in the frontal cortex of suicides and well-matched controls. Maximal binding was significantly lower in brains from the suicides. This finding is consistent with reports of decreased tritiated imipramine binding in the platelets of patients diagnosed as having a major affective disorder

  10. Ventromedial Frontal Cortex Is Critical for Guiding Attention to Reward-Predictive Visual Features in Humans.

    Science.gov (United States)

    Vaidya, Avinash R; Fellows, Lesley K

    2015-09-16

    Adaptively interacting with our environment requires extracting information that will allow us to successfully predict reward. This can be a challenge, particularly when there are many candidate cues, and when rewards are probabilistic. Recent work has demonstrated that visual attention is allocated to stimulus features that have been associated with reward on previous trials. The ventromedial frontal lobe (VMF) has been implicated in learning in dynamic environments of this kind, but the mechanism by which this region influences this process is not clear. Here, we hypothesized that the VMF plays a critical role in guiding attention to reward-predictive stimulus features based on feedback. We tested the effects of VMF damage in human subjects on a visual search task in which subjects were primed to attend to task-irrelevant colors associated with different levels of reward, incidental to the search task. Consistent with previous work, we found that distractors had a greater influence on reaction time when they appeared in colors associated with high reward in the previous trial compared with colors associated with low reward in healthy control subjects and patients with prefrontal damage sparing the VMF. However, this reward modulation of attentional priming was absent in patients with VMF damage. Thus, an intact VMF is necessary for directing attention based on experience with cue-reward associations. We suggest that this region plays a role in selecting reward-predictive cues to facilitate future learning. There has been a swell of interest recently in the ventromedial frontal cortex (VMF), a brain region critical to associative learning. However, the underlying mechanism by which this region guides learning is not well understood. Here, we tested the effects of damage to this region in humans on a task in which rewards were linked incidentally to visual features, resulting in trial-by-trial attentional priming. Controls and subjects with prefrontal damage

  11. Chronic consumption of a western diet modifies the DNA methylation profile in the frontal cortex of mice.

    Science.gov (United States)

    Yokoyama, Amy S; Dunaway, Keith; Rutkowsky, Jennifer; Rutledge, John C; Milenkovic, Dragan

    2018-02-21

    In our previous work in mice, we have shown that chronic consumption of a Western diet (WD; 42% kcal fat, 0.2% total cholesterol and 34% sucrose) is correlated with impaired cognitive function. Cognitive decline has also been associated with alterations in DNA methylation. Additionally, although there have been many studies analyzing the effect of maternal consumption of a WD on DNA methylation in the offspring, few studies have analyzed how an individual's consumption of a WD can impact his/her DNA methylation. Since the frontal cortex is involved in the regulation of cognitive function and is often affected in cases of cognitive decline, this study aimed to examine how chronic consumption of a WD affects DNA methylation in the frontal cortex of mice. Eight-week-old male mice were fed either a control diet (CD) or a WD for 12 weeks, after which time alterations in DNA methylation were analyzed. Assessment of global DNA methylation in the frontal cortex using dot blot analysis revealed that there was a decrease in global DNA methylation in the WD-fed mice compared with the CD-fed mice. Bioinformatic analysis identified several networks and pathways containing genes displaying differential methylation, particularly those involved in metabolism, cell adhesion and cytoskeleton integrity, inflammation and neurological function. In conclusion, the results from this study suggest that consumption of a WD alters DNA methylation in the frontal cortex of mice and could provide one of the mechanisms by which consumption of a WD impairs cognitive function.

  12. Reversed Procrastination by Focal Disruption of Medial Frontal Cortex.

    Science.gov (United States)

    Jha, Ashwani; Diehl, Beate; Scott, Catherine; McEvoy, Andrew W; Nachev, Parashkev

    2016-11-07

    An enduring puzzle in the neuroscience of voluntary action is the origin of the remarkably wide dispersion of the reaction time distribution, an interval far greater than is explained by synaptic or signal transductive noise [1, 2]. That we are able to change our planned actions-a key criterion of volition [3]-so close to the time of their onset implies decision-making must reach deep into the execution of action itself [4-6]. It has been influentially suggested the reaction time distribution therefore reflects deliberate neural procrastination [7], giving alternative response tendencies sufficient time for fair competition in pursuing a decision threshold that determines which one is behaviorally manifest: a race model, where action selection and execution are closely interrelated [8-11]. Although the medial frontal cortex exhibits a sensitivity to reaction time on functional imaging that is consistent with such a mechanism [12-14], direct evidence from disruptive studies has hitherto been lacking. If movement-generating and movement-delaying neural substrates are closely co-localized here, a large-scale lesion will inevitably mask any acceleration, for the movement itself could be disrupted. Circumventing this problem, here we observed focal intracranial electrical disruption of the medial frontal wall in the context of the pre-surgical evaluation of two patients with epilepsy temporarily reversing such hypothesized procrastination. Effector-specific behavioral acceleration, time-locked to the period of electrical disruption, occurred exclusively at a specific locus at the ventral border of the pre-supplementary motor area. A cardinal prediction of race models of voluntary action is thereby substantiated in the human brain. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Aberrant network integrity of the inferior frontal cortex in women with anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Stephanie Kullmann

    2014-01-01

    These results suggest that AN patients have reduced connectivity within the cognitive control system of the brain and increased connectivity within regions important for salience processing. Due to its fundamental role in inhibitory behavior, including motor response, altered integrity of the inferior frontal cortex could contribute to hyperactivity in AN.

  14. The toxic influence of dibromoacetic acid on the hippocampus and pre-frontal cortex of rat: involvement of neuroinflammation response and oxidative stress.

    Science.gov (United States)

    Jiang, Wenbo; Li, Bai; Chen, Yingying; Gao, Shuying

    2017-12-01

    Dibromoacetic acid (DBA) exsits in drinking water as a by-product of disinfection as a result of chlorination or ozonation processes. Hippocampus and pre-frontal cortex are the key structures in memory formation and weanling babies are more sensitive to environmental toxicant than adults, so this study was conducted to evaluate the potential neurotoxicity effects of DBA exposure when administered intragastrically for 4 weeks to weanling Sprague-Dawley rats, at concentration of 0, 20, 50, 125 mg/kg via the neurobehavioral and neurochemical effects. Results indicated that animals weight gain and food consumption were not significantly affected by DBA. However, morris water maze test showed varying degrees of changes between control and high-dose group. Additionally, the level of malondialdehyde (MDA) and generation of reactive oxygen species (ROS) in the hippocampus and pre-frontal cortex of rats increased significantly. The activities of total superoxide dismutase (SOD) and the glutathione (GSH) content in the hippocampus and pre-frontal cortex of rats decreased significantly after treatment with DBA. Treatment with DBA increased the protein and mRNA expression of Iba-1, NF-κB, TNF-α, IL-6, IL-1β and HO-1 in the hippocampus and pre-frontal cortex of rats. These data suggested that DBA had a toxic influence on the hippocampus and pre-frontal cortex of rats, and that the mechanism of toxicity might be associated with the neuroinflammation response and oxidative stress.

  15. Co-activation-based parcellation of the lateral prefrontal cortex delineates the inferior frontal junction area

    OpenAIRE

    Muhle-Karbe, Paul Simon; Derrfuss, Jan; Lynn, Maggie; Neubert, Franz Xaver; Fox, Peter; Brass, Marcel; Eickhoff, Simon

    2016-01-01

    The inferior frontal junction (IFJ) area, a small region in the posterior lateral prefrontal cortex (LPFC), has received increasing interest in recent years due to its central involvement in the control of action, attention, and memory. Yet, both its function and anatomy remain controversial. Here, we employed a meta-analytic parcellation of the left LPFC to show that the IFJ can be isolated based on its specific functional connections. A seed region, oriented along the left inferior frontal ...

  16. Auditory Connections and Functions of Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Bethany ePlakke

    2014-07-01

    Full Text Available The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC. In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition.

  17. Auditory connections and functions of prefrontal cortex

    Science.gov (United States)

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  18. Differentiated parietal connectivity of frontal regions for "what" and "where" memory.

    Science.gov (United States)

    Rottschy, C; Caspers, S; Roski, C; Reetz, K; Dogan, I; Schulz, J B; Zilles, K; Laird, A R; Fox, P T; Eickhoff, S B

    2013-11-01

    In a previous meta-analysis across almost 200 neuroimaging experiments, working memory for object location showed significantly stronger convergence on the posterior superior frontal gyrus, whereas working memory for identity showed stronger convergence on the posterior inferior frontal gyrus (dorsal to, but overlapping with Brodmann's area BA 44). As similar locations have been discussed as part of a dorsal frontal-superior parietal reach system and an inferior frontal grasp system, the aim of the present study was to test whether the regions of working-memory related "what" and "where" processing show a similar distinction in parietal connectivity. The regions that were found in the previous meta-analysis were used as seeds for functional connectivity analyses using task-based meta-analytic connectivity modelling and task-independent resting state correlations. While the ventral seed showed significantly stronger connectivity with the bilateral intraparietal sulcus (IPS), the dorsal seed showed stronger connectivity with the bilateral posterior inferior parietal and the medial superior parietal lobule. The observed connections of regions involved in memory for object location and identity thus clearly demonstrate a distinction into separate pathways that resemble the parietal connectivity patterns of the dorsal and ventral premotor cortex in non-human primates and humans. It may hence be speculated that memory for a particular location and reaching towards it as well as object memory and finger positioning for manipulation may rely on shared neural systems. Moreover, the ensuing regions, in turn, featured differential connectivity with the bilateral ventral and dorsal extrastriate cortex, suggesting largely segregated bilateral connectivity pathways from the dorsal visual cortex via the superior and inferior parietal lobules to the dorsal posterior frontal cortex and from the ventral visual cortex via the IPS to the ventral posterior frontal cortex that may

  19. The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making.

    Science.gov (United States)

    Rudebeck, P H; Bannerman, D M; Rushworth, M F S

    2008-12-01

    Damage to the ventromedial frontal cortex (VMFC) in humans is associated with deficits in decision making. Decision making, however, often happens while people are interacting with others, where it is important to take the social consequences of a course of action into account. It is well known that VMFC lesions also lead to marked alterations in patients' emotions and ability to interact socially; however, it has not been clear which parts of the VMFC are critical for these changes. Recently, there has been considerable interest in the role of the VMFC in choice behavior during interpersonal exchanges. Here, we highlight recent research that suggests that two areas within or adjacent to the VMFC, the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), may play distinct but complementary roles in mediating normal patterns of emotion and social behavior. Converging lines of evidence from human, macaque, and rat studies now suggest that the OFC may be more specialized for simple emotional responses, such as fear and aggression, through its role in representing primary reinforcement or punishment. By contrast, the ACC may play a distinct role in more complex aspects of emotion, such as social interaction, by virtue of its connections with the discrete parts of the temporal lobe and subcortical structures that control autonomic responses.

  20. Frontal cortex gray matter volume alterations in pathological gambling occur independently from substance use disorder.

    Science.gov (United States)

    Zois, Evangelos; Kiefer, Falk; Lemenager, Tagrid; Vollstädt-Klein, Sabine; Mann, Karl; Fauth-Bühler, Mira

    2017-05-01

    Neuroimaging in pathological gambling (PG) allows studying brain structure independent of pharmacological/neurotoxic effects occurring in substance addiction. Because of high comorbidity of PG with substance use disorder (SUD), first results on structural deficits in PG are controversial. The current investigation is the first to examine gray matter (GM) volume alterations in PG controlling for the impact of SUD by comparing non-comorbid (PG PURE ) and two comorbid (PG ALCOHOL and PG POLY ) groups. Two hundred and five individuals were included in the analysis: 107 patients diagnosed with PG and 98 healthy controls (HCs). We employed voxel-based morphometry to look for GM volume differences between the groups controlling for age, smoking and depression. GM decreases in the superior medial and orbital frontal cortex occur independently of substance use in PG PURE compared with HCs. The frontal pattern of GM decrease was comparable with PG ALCOHOL group where additionally GM volume was decreased in the anterior cingulate but increased in the amygdala. Moreover, regions in PG ALCOHOL + POLY with reduced GM volume were the medial frontal, anterior cingulate and occipital lobe regions. PG ALCOHOL + POLY not only exhibited structural deficits in comparison with HCs but also relative to PG PURE in the precuneus and post-central gyrus. We demonstrated specific frontal cortex GM deficits in PG without SUD comorbidities. Whereas some target regions reported in earlier studies might result from comorbid substance abuse, there seems to be a core set of frontal alterations associated with addicted gambling behaviour independent of toxic substance effects. © 2016 Society for the Study of Addiction.

  1. Laminar recordings in frontal cortex suggest distinct layers for maintenance and control of working memory.

    Science.gov (United States)

    Bastos, André M; Loonis, Roman; Kornblith, Simon; Lundqvist, Mikael; Miller, Earl K

    2018-01-30

    All of the cerebral cortex has some degree of laminar organization. These different layers are composed of neurons with distinct connectivity patterns, embryonic origins, and molecular profiles. There are little data on the laminar specificity of cognitive functions in the frontal cortex, however. We recorded neuronal spiking/local field potentials (LFPs) using laminar probes in the frontal cortex (PMd, 8A, 8B, SMA/ACC, DLPFC, and VLPFC) of monkeys performing working memory (WM) tasks. LFP power in the gamma band (50-250 Hz) was strongest in superficial layers, and LFP power in the alpha/beta band (4-22 Hz) was strongest in deep layers. Memory delay activity, including spiking and stimulus-specific gamma bursting, was predominately in superficial layers. LFPs from superficial and deep layers were synchronized in the alpha/beta bands. This was primarily unidirectional, with alpha/beta bands in deep layers driving superficial layer activity. The phase of deep layer alpha/beta modulated superficial gamma bursting associated with WM encoding. Thus, alpha/beta rhythms in deep layers may regulate the superficial layer gamma bands and hence maintenance of the contents of WM. Copyright © 2018 the Author(s). Published by PNAS.

  2. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice.

    Science.gov (United States)

    Huang, Rong-Rong; Hu, Wen; Yin, Yan-Yan; Wang, Yu-Chan; Li, Wei-Ping; Li, Wei-Zu

    2015-02-01

    Chronic stress has been implicated in many types of neurodegenerative diseases, such as Alzheimer's disease (AD). In our previous study, we demonstrated that chronic restraint stress (CRS) induced reactive oxygen species (ROS) overproduction and oxidative damage in the frontal cortex and hippocampus in mice. In the present study, we investigated the effects of CRS (over a period of 8 weeks) on learning and memory impairment and endoplasmic reticulum (ER) stress in the frontal cortex and hippocampus in male mice. The Morris water maze was used to investigate the effects of CRS on learning and memory impairment. Immunohistochemistry and immunoblot analysis were also used to determine the expression levels of protein kinase C α (PKCα), 78 kDa glucose-regulated protein (GRP78), C/EBP-homologous protein (CHOP) and mesencephalic astrocyte-derived neurotrophic factor (MANF). The results revealed that CRS significantly accelerated learning and memory impairment, and induced neuronal damage in the frontal cortex and hippocampus CA1 region. Moreover, CRS significantly increased the expression of PKCα, CHOP and MANF, and decreased that of GRP78 in the frontal cortex and hippocampus. Our data suggest that exposure to CRS (for 8 weeks) significantly accelerates learning and memory impairment, and the mechanisms involved may be related to ER stress in the frontal cortex and hippocampus.

  3. Subregions of the human superior frontal gyrus and their connections.

    Science.gov (United States)

    Li, Wei; Qin, Wen; Liu, Huaigui; Fan, Lingzhong; Wang, Jiaojian; Jiang, Tianzi; Yu, Chunshui

    2013-09-01

    The superior frontal gyrus (SFG) is located at the superior part of the prefrontal cortex and is involved in a variety of functions, suggesting the existence of functional subregions. However, parcellation schemes of the human SFG and the connection patterns of each subregion remain unclear. We firstly parcellated the human SFG into the anteromedial (SFGam), dorsolateral (SFGdl), and posterior (SFGp) subregions based on diffusion tensor tractography. The SFGam was anatomically connected with the anterior and mid-cingulate cortices, which are critical nodes of the cognitive control network and the default mode network (DMN). The SFGdl was connected with the middle and inferior frontal gyri, which are involved in the cognitive execution network. The SFGp was connected with the precentral gyrus, caudate, thalamus, and frontal operculum, which are nodes of the motor control network. Resting-state functional connectivity analysis further revealed that the SFGam was mainly correlated with the cognitive control network and the DMN; the SFGdl was correlated with the cognitive execution network and the DMN; and the SFGp was correlated with the sensorimotor-related brain regions. The SFGam and SFGdl were further parcellated into three and two subclusters that are well corresponding to Brodmann areas. These findings suggest that the human SFG consists of multiple dissociable subregions that have distinct connection patterns and that these subregions are involved in different functional networks and serve different functions. These results may improve our understanding on the functional complexity of the SFG and provide us an approach to investigate the SFG at the subregional level. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Storage and executive processes in the frontal lobes.

    Science.gov (United States)

    Smith, E E; Jonides, J

    1999-03-12

    The human frontal cortex helps mediate working memory, a system that is used for temporary storage and manipulation of information and that is involved in many higher cognitive functions. Working memory includes two components: short-term storage (on the order of seconds) and executive processes that operate on the contents of storage. Recently, these two components have been investigated in functional neuroimaging studies. Studies of storage indicate that different frontal regions are activated for different kinds of information: storage for verbal materials activates Broca's area and left-hemisphere supplementary and premotor areas; storage of spatial information activates the right-hemisphere premotor cortex; and storage of object information activates other areas of the prefrontal cortex. Two of the fundamental executive processes are selective attention and task management. Both processes activate the anterior cingulate and dorsolateral prefrontal cortex.

  5. Rostro-Caudal Organization of Connectivity between Cingulate Motor Areas and Lateral Frontal Regions

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    2018-01-01

    Full Text Available According to contemporary views, the lateral frontal cortex is organized along a rostro-caudal functional axis with increasingly complex cognitive/behavioral control implemented rostrally, and increasingly detailed motor control implemented caudally. Whether the medial frontal cortex follows the same organization remains to be elucidated. To address this issue, the functional connectivity of the 3 cingulate motor areas (CMAs in the human brain with the lateral frontal cortex was investigated. First, the CMAs and their representations of hand, tongue, and eye movements were mapped via task-related functional magnetic resonance imaging (fMRI. Second, using resting-state fMRI, their functional connectivity with lateral prefrontal and lateral motor cortical regions of interest (ROIs were examined. Importantly, the above analyses were conducted at the single-subject level to account for variability in individual cingulate morphology. The results demonstrated a rostro-caudal functional organization of the CMAs in the human brain that parallels that in the lateral frontal cortex: the rostral CMA has stronger functional connectivity with prefrontal regions and weaker connectivity with motor regions; conversely, the more caudal CMAs have weaker prefrontal and stronger motor connectivity. Connectivity patterns of the hand, tongue and eye representations within the CMAs are consistent with that of their parent CMAs. The parallel rostral-to-caudal functional organization observed in the medial and lateral frontal cortex could likely contribute to different hierarchies of cognitive-motor control.

  6. Reciprocal activation/inactivation of ERK in the amygdala and frontal cortex is correlated with the degree of novelty of an open-field environment.

    Science.gov (United States)

    Sanguedo, Frederico Velasco; Dias, Caio Vitor Bueno; Dias, Flavia Regina Cruz; Samuels, Richard Ian; Carey, Robert J; Carrera, Marinete Pinheiro

    2016-03-01

    Phosphorylated extracellular signal-regulated kinase (ERK) has been used to identify brain areas activated by exogenous stimuli including psychostimulant drugs. Assess the role of the amygdala in emotional responses. Experimental manipulations were performed in which environmental familiarity was the variable. To provide the maximal degree of familiarity, ERK was measured after removal from the home cage and re-placement back into the same cage. To maximize exposure to an unfamiliar environment, ERK was measured following placement into a novel open field. To assess whether familiarity was the critical variable in the ERK response to the novel open field, ERK was also measured after either four or eight placements into the same environment. ERK quantification was carried out in the amygdala, frontal cortex, and the nucleus accumbens. After home cage re-placement, ERK activation was found in the frontal cortex and nucleus accumbens but was absent in the amygdala. Following placement in a novel environment, ERK activation was more prominent in the amygdala than the frontal cortex or nucleus accumbens. In contrast, with habituation to the novel environment, ERK phosphors declined markedly in the amygdala but increased in the frontal cortex and nucleus accumbens to the level observed following home cage re-placement. The differential responsiveness of the amygdala versus the frontal cortex and the nucleus accumbens to a novel versus a habituated environment is consistent with a reciprocal interaction between these neural systems and points to their important role in the mediation of behavioral activation to novelty and behavioral inactivation with habituation.

  7. The R-enantiomer of citalopram counteracts escitalopram-induced increase in extracellular 5-HT in the frontal cortex of freely moving rats

    DEFF Research Database (Denmark)

    Mørk, A; Kreilgaard, Mads; Sánchez, C

    2003-01-01

    The selective serotonin (5-HT) reuptake inhibitor, citalopram, is a racemic mixture of an S(+)- and R(-)-enantiomer, escitalopram and R-citalopram, respectively. The present study compares the effects of escitalopram, R-citalopram and citalopram on extracellular levels of 5-HT in the frontal cortex...... of freely moving rats. In addition, co-injection of escitalopram and R-citalopram (ratios 1:2 and 1:4) were assessed. In some experiments escitalopram and R-citalopram were infused into the frontal cortex by reverse microdialysis. Finally, the extracellular level of escitalopram in the frontal cortex...... was studied after administration of escitalopram alone or in combination with R-citalopram. Escitalopram (1.0-3.9 mg/kg, s.c.) produced a greater maximal increase in extracellular 5-HT than citalopram (2.0-8.0 mg/kg, s.c.). R-citalopram (15.6 mg/kg s.c.) did not affect the 5-HT levels. When co-injected, R...

  8. Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Martinez, Hector R; Gonzalez-Garza, Maria T; Moreno-Cuevas, Jorge E; Caro, Enrique; Gutierrez-Jimenez, Eugenio; Segura, Jose J

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by the selective death of motor neurons. CD133(+) stem cells are known to have the capacity to differentiate into neural lineages. Stem cells may provide an alternative treatment for ALS and other neurodegenerative diseases. Five men and five women (aged 38-62 years) with confirmed ALS were included in this study. Our institutional ethics and research committees approved the protocol. After informed consent was obtained, patients underwent Hidrogen-Magnetic Resonance Imaging (H-MRI) spectroscopy and were given scores according to an ALS functional rating scale, Medical Research Council power muscle scale and daily living activities. Bone marrow was stimulated with 300 microg filgrastim subcutaneously daily for 3 days. Peripheral blood mononuclear cells were obtained after admission by leukapheresis. The cell suspension was conjugated with anti-human CD133 superparamagnetic microbeads, and linked cells were isolated in a magnetic field. The isolated cells (2.5-7.5x10(5)) were resuspended in 300 microL of the patient's cerebrospinal fluid, and implanted in motor cortexes using a Hamilton syringe. Ten patients with confirmed ALS without transplantation were used as a control group. Patients were followed up for a period of 1 year. The autologous transplantation of CD133(+) stem cells into the frontal motor cortex is a safe and well-tolerated procedure in ALS patients. The survival of treated patients was statistically higher (P=0.01) than untreated control patients. Stem-cell transplantation in the motor cortex delays ALS progression and improves quality of life.

  9. Dissociable Changes of Frontal and Parietal Cortices in Inherent Functional Flexibility across the Human Life Span.

    Science.gov (United States)

    Yin, Dazhi; Liu, Wenjing; Zeljic, Kristina; Wang, Zhiwei; Lv, Qian; Fan, Mingxia; Cheng, Wenhong; Wang, Zheng

    2016-09-28

    Extensive evidence suggests that frontoparietal regions can dynamically update their pattern of functional connectivity, supporting cognitive control and adaptive implementation of task demands. However, it is largely unknown whether this flexibly functional reconfiguration is intrinsic and occurs even in the absence of overt tasks. Based on recent advances in dynamics of resting-state functional resonance imaging (fMRI), we propose a probabilistic framework in which dynamic reconfiguration of intrinsic functional connectivity between each brain region and others can be represented as a probability distribution. A complexity measurement (i.e., entropy) was used to quantify functional flexibility, which characterizes heterogeneous connectivity between a particular region and others over time. Following this framework, we identified both functionally flexible and specialized regions over the human life span (112 healthy subjects from 13 to 76 years old). Across brainwide regions, we found regions showing high flexibility mainly in the higher-order association cortex, such as the lateral prefrontal cortex (LPFC), lateral parietal cortex, and lateral temporal lobules. In contrast, visual, auditory, and sensory areas exhibited low flexibility. Furthermore, we observed that flexibility of the right LPFC improved during maturation and reduced due to normal aging, with the opposite occurring for the left lateral parietal cortex. Our findings reveal dissociable changes of frontal and parietal cortices over the life span in terms of inherent functional flexibility. This study not only provides a new framework to quantify the spatiotemporal behavior of spontaneous brain activity, but also sheds light on the organizational principle behind changes in brain function across the human life span. Recent neuroscientific research has demonstrated that the human capability of adaptive task control is primarily the result of the flexible operation of frontal brain networks. However

  10. High-alpha band synchronization across frontal, parietal and visual cortex mediates behavioral and neuronal effects of visuospatial attention.

    Science.gov (United States)

    Lobier, Muriel; Palva, J Matias; Palva, Satu

    2018-01-15

    Visuospatial attention prioritizes processing of attended visual stimuli. It is characterized by lateralized alpha-band (8-14 Hz) amplitude suppression in visual cortex and increased neuronal activity in a network of frontal and parietal areas. It has remained unknown what mechanisms coordinate neuronal processing among frontoparietal network and visual cortices and implement the attention-related modulations of alpha-band amplitudes and behavior. We investigated whether large-scale network synchronization could be such a mechanism. We recorded human cortical activity with magnetoencephalography (MEG) during a visuospatial attention task. We then identified the frequencies and anatomical networks of inter-areal phase synchronization from source localized MEG data. We found that visuospatial attention is associated with robust and sustained long-range synchronization of cortical oscillations exclusively in the high-alpha (10-14 Hz) frequency band. This synchronization connected frontal, parietal and visual regions and was observed concurrently with amplitude suppression of low-alpha (6-9 Hz) band oscillations in visual cortex. Furthermore, stronger high-alpha phase synchronization was associated with decreased reaction times to attended stimuli and larger suppression of alpha-band amplitudes. These results thus show that high-alpha band phase synchronization is functionally significant and could coordinate the neuronal communication underlying the implementation of visuospatial attention. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Long-range functional interactions of anterior insula and medial frontal cortex are differently modulated by visuospatial and inductive reasoning tasks.

    Science.gov (United States)

    Ebisch, Sjoerd J H; Mantini, Dante; Romanelli, Roberta; Tommasi, Marco; Perrucci, Mauro G; Romani, Gian Luca; Colom, Roberto; Saggino, Aristide

    2013-09-01

    The brain is organized into functionally specific networks as characterized by intrinsic functional relationships within discrete sets of brain regions. However, it is poorly understood whether such functional networks are dynamically organized according to specific task-states. The anterior insular cortex (aIC)-dorsal anterior cingulate cortex (dACC)/medial frontal cortex (mFC) network has been proposed to play a central role in human cognitive abilities. The present functional magnetic resonance imaging (fMRI) study aimed at testing whether functional interactions of the aIC-dACC/mFC network in terms of temporally correlated patterns of neural activity across brain regions are dynamically modulated by transitory, ongoing task demands. For this purpose, functional interactions of the aIC-dACC/mFC network are compared during two distinguishable fluid reasoning tasks, Visualization and Induction. The results show an increased functional coupling of bilateral aIC with visual cortices in the occipital lobe during the Visualization task, whereas coupling of mFC with right anterior frontal cortex was enhanced during the Induction task. These task-specific modulations of functional interactions likely reflect ability related neural processing. Furthermore, functional connectivity strength between right aIC and right dACC/mFC reliably predicts general task performance. The findings suggest that the analysis of long-range functional interactions may provide complementary information about brain-behavior relationships. On the basis of our results, it is proposed that the aIC-dACC/mFC network contributes to the integration of task-common and task-specific information based on its within-network as well as its between-network dynamic functional interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Is evaluation of humorous stimuli associated with frontal cortex morphology? A pilot study using facial micro-movement analysis and MRI.

    Science.gov (United States)

    Juckel, Georg; Mergl, Roland; Brüne, Martin; Villeneuve, Isabelle; Frodl, Thomas; Schmitt, Gisela; Zetzsche, Thomas; Born, Christine; Hahn, Klaus; Reiser, Maximilian; Möller, Hans-Jürgen; Bär, Karl-Jürgen; Hegerl, Ulrich; Meisenzahl, Eva Maria

    2011-05-01

    Humour involves the ability to detect incongruous ideas violating social rules and norms. Accordingly, humour requires a complex array of cognitive skills for which intact frontal lobe functioning is critical. Here, we sought to examine the association of facial expression during an emotion inducing experiment with frontal cortex morphology in healthy subjects. Thirty-one healthy male subjects (mean age: 30.8±8.9 years; all right-handers) watching a humorous movie ("Mr. Bean") were investigated. Markers fixed at certain points of the face emitting high-frequency ultrasonic signals allowed direct measurement of facial movements with high spatial-temporal resolution. Magnetic resonance images of the frontal cortex were obtained with a 1.5-T Magnetom using a coronar T2- and protondensity-weighted Dual-Echo-Sequence and a 3D-magnetization-prepared rapid gradient echo (MPRAGE) sequence. Volumetric analysis was performed using BRAINS. Frontal cortex volume was partly associated with slower speed of "laughing" movements of the eyes ("genuine" or Duchenne smile). Specifically, grey matter volume was associated with longer emotional reaction time ipsilaterally, even when controlled for age and daily alcohol intake. These results lend support to the hypothesis that superior cognitive evaluation of humorous stimuli - mediated by larger prefrontal grey and white matter volume - leads to a measurable reduction of speed of emotional expressivity in normal adults. Copyright © 2010 Elsevier Srl. All rights reserved.

  13. Prenatal alcohol exposure modifies glucocorticoid receptor subcellular distribution in the medial prefrontal cortex and impairs frontal cortex-dependent learning.

    Directory of Open Access Journals (Sweden)

    Andrea M Allan

    Full Text Available Prenatal alcohol exposure (PAE has been shown to impair learning, memory and executive functioning in children. Perseveration, or the failure to respond adaptively to changing contingencies, is a hallmark on neurobehavioral assessment tasks for human fetal alcohol spectrum disorder (FASD. Adaptive responding is predominantly a product of the medial prefrontal cortex (mPFC and is regulated by corticosteroids. In our mouse model of PAE we recently reported deficits in hippocampal formation-dependent learning and memory and a dysregulation of hippocampal formation glucocorticoid receptor (GR subcellular distribution. Here, we examined the effect of PAE on frontal cortical-dependent behavior, as well as mPFC GR subcellular distribution and the levels of regulators of intracellular GR transport. PAE mice displayed significantly reduced response flexibility in a Y-maze reversal learning task. While the levels of total nuclear GR were reduced in PAE mPFC, levels of GR phosphorylated at serines 203, 211 and 226 were not significantly changed. Cytosolic, but not nuclear, MR levels were elevated in the PAE mPFC. The levels of critical GR trafficking proteins, FKBP51, Hsp90, cyclophilin 40, dynamitin and dynein intermediate chain, were altered in PAE mice, in favor of the exclusion of GR from the nucleus, indicating dysregulation of GR trafficking. Our findings suggest that there may be a link between a deficit in GR nuclear localization and frontal cortical learning deficits in prenatal alcohol-exposed mice.

  14. Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain

    Directory of Open Access Journals (Sweden)

    Minchenko Dimitri

    2010-04-01

    Full Text Available Abstract Background The Rett Syndrome (RTT brain displays regional histopathology and volumetric reduction, with frontal cortex showing such abnormalities, whereas the occipital cortex is relatively less affected. Results Using microarrays and quantitative PCR, the mRNA expression profiles of these two neuroanatomical regions were compared in postmortem brain tissue from RTT patients and normal controls. A subset of genes was differentially expressed in the frontal cortex of RTT brains, some of which are known to be associated with neurological disorders (clusterin and cytochrome c oxidase subunit 1 or are involved in synaptic vesicle cycling (dynamin 1. RNAi-mediated knockdown of MeCP2 in vitro, followed by further expression analysis demonstrated that the same direction of abnormal expression was recapitulated with MeCP2 knockdown, which for cytochrome c oxidase subunit 1 was associated with a functional respiratory chain defect. Chromatin immunoprecipitation (ChIP analysis showed that MeCP2 associated with the promoter regions of some of these genes suggesting that loss of MeCP2 function may be responsible for their overexpression. Conclusions This study has shed more light on the subset of aberrantly expressed genes that result from MECP2 mutations. The mitochondrion has long been implicated in the pathogenesis of RTT, however it has not been at the forefront of RTT research interest since the discovery of MECP2 mutations. The functional consequence of the underexpression of cytochrome c oxidase subunit 1 indicates that this is an area that should be revisited.

  15. Amygdala Contributions to Stimulus–Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning

    Science.gov (United States)

    Averbeck, Bruno B.

    2017-01-01

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus–reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus–reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus–reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus–reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus–reward associations. MFC also

  16. Acute effect of Ethanol and Taurine on frontal cortex absolute beta power before and after exercise

    Science.gov (United States)

    Cagy, Mauricio; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Alvarenga, Renato; Alonso, Luciano; Pompeu, Fernando A. M. S.

    2018-01-01

    Ethanol (ET) is a substance that modulates the Central Nervous System (CNS). Frequently, ET intake occurs combined with energy drinks, which contain taurine (TA), an important amino acid found in the body (i.e brain and muscles). Although TA administration has been used in the improvement of physical performance, the impact of TA, ET and exercise remains unknown. This study aimed to analyze the acute effect of 6g of Taurine (TA), 0.6 mL∙kg-1 of Ethanol (ET), and Taurine combined with Ethanol (TA+ET) ingestion on the electrocortical activity before and after a moderate intensity exercise in 9 subjects, 5 women (counterbalanced experimental design). In each of the 4 treatments (Placebo—PL, TA, ET and TA+ET), electroencephalography (EEG) tests were conducted in order to analyze changes in absolute beta power (ABP) in the frontal lobe in 3 moments: baseline (before ingestion), peak (before exercise) and post-exercise. In the PL treatment, the frontal areas showed decrease in ABP after exercise. However, in the ET+TA treatment, ABP values were greater after exercise, except for Fp1. The ET treatment had no effect on the Superior Frontal Gyrus area (F3, Fz and F4) and ABP decreased after exercise in Fp1 and Fp2. In the TA treatment, ABP increased after exercise, while it decreased at the peak moment in most of the frontal regions, except for Fp1, F3 and Fz. We concluded that after a moderate intensity exercise, a decrease in cortical activity occurs in placebo treatment. Moreover, we found a inhibitory effect of TA on cortical activity before exercise and a increased in cortical activity after exercise. A small ET dose is not enough to alter ABP in all regions of the frontal cortex and, in combination with TA, it showed an increase in the frontal cortex activity at the post-exercise moment. PMID:29538445

  17. The role of inferior parietal and inferior frontal cortex in working memory.

    Science.gov (United States)

    Baldo, Juliana V; Dronkers, Nina F

    2006-09-01

    Verbal working memory involves two major components: a phonological store that holds auditory-verbal information very briefly and an articulatory rehearsal process that allows that information to be refreshed and thus held longer in short-term memory (A. Baddeley, 1996, 2000; A. Baddeley & G. Hitch, 1974). In the current study, the authors tested two groups of patients who were chosen on the basis of their relatively focal lesions in the inferior parietal (IP) cortex or inferior frontal (IF) cortex. Patients were tested on a series of tasks that have been previously shown to tap phonological storage (span, auditory rhyming, and repetition) and articulatory rehearsal (visual rhyming and a 2-back task). As predicted, IP patients were disproportionately impaired on the span, rhyming, and repetition tasks and thus demonstrated a phonological storage deficit. IF patients, however, did not show impairment on these storage tasks but did exhibit impairment on the visual rhyming task, which requires articulatory rehearsal. These findings lend further support to the working memory model and provide evidence of the roles of IP and IF cortex in separable working memory processes. ((c) 2006 APA, all rights reserved).

  18. Alteration of astrocytes and Wnt/β-catenin signaling in the frontal cortex of autistic subjects

    Directory of Open Access Journals (Sweden)

    Cao Fujiang

    2012-09-01

    Full Text Available Abstract Background Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. To date the etiology of this disorder is poorly understood. Studies suggest that astrocytes play critical roles in neural plasticity by detecting neuronal activity and modulating neuronal networks. Recently, a number of studies suggested that an abnormal function of glia/astrocytes may be involved in the development of autism. However, there is yet no direct evidence showing how astrocytes develop in the brain of autistic individuals. Methods Study subjects include brain tissue from autistic subjects, BTBR T + tfJ (BTBR and Neuroligin (NL-3 knock-down mice. Western blot analysis, Immunohistochemistry and confocal microscopy studies have be used to examine the density and morphology of astrocytes, as well as Wnt and β-catenin protein expression. Results In this study, we demonstrate that the astrocytes in autisitcsubjects exhibit significantly reduced branching processes, total branching length and cell body sizes. We also detected an astrocytosis in the frontal cortex of autistic subjects. In addition, we found that the astrocytes in the brain of an NL3 knockdown mouse exhibited similar alterations to what we found in the autistic brain. Furthermore, we detected that both Wnt and β-catenin proteins are decreased in the frontal cortex of autistic subjects. Wnt/β-catenin pathway has been suggested to be involved in the regulation of astrocyte development. Conclusions Our findings imply that defects in astrocytes could impair neuronal plasticity and partially contribute to the development of autistic-like behaviors in both humans and mice. The alteration of Wnt/β-catenin pathway in the brain of autistic subjects may contribute to the changes of astrocytes.

  19. Early growth hormone (GH) treatment promotes relevant motor functional improvement after severe frontal cortex lesion in adult rats.

    Science.gov (United States)

    Heredia, Margarita; Fuente, A; Criado, J; Yajeya, J; Devesa, J; Riolobos, A S

    2013-06-15

    A number of studies, in animals and humans, describe the positive effects of the growth hormone (GH) treatment combined with rehabilitation on brain reparation after brain injury. We examined the effect of GH treatment and rehabilitation in adult rats with severe frontal motor cortex ablation. Thirty-five male rats were trained in the paw-reaching-for-food task and the preferred forelimb was recorded. Under anesthesia, the motor cortex contralateral to the preferred forelimb was aspirated or sham-operated. Animals were then treated with GH (0.15 mg/kg/day, s.c) or vehicle during 5 days, commencing immediately or 6 days post-lesion. Rehabilitation was applied at short- and long-term after GH treatment. Behavioral data were analized by ANOVA following Bonferroni post hoc test. After sacrifice, immunohistochemical detection of glial fibrillary acid protein (GFAP) and nestin were undertaken in the brain of all groups. Animal group treated with GH immediately after the lesion, but not any other group, showed a significant improvement of the motor impairment induced by the motor lesion, and their performances in the motor test were no different from sham-operated controls. GFAP immunolabeling and nestin immunoreactivity were observed in the perilesional area in all injured animals; nestin immunoreactivity was higher in GH-treated injured rats (mainly in animals GH-treated 6 days post-lesion). GFAP immunoreactivity was similar among injured rats. Interestingly, nestin re-expression was detected in the contralateral undamaged motor cortex only in GH-treated injured rats, being higher in animals GH-treated immediately after the lesion than in animals GH-treated 6 days post-lesion. Early GH treatment induces significant recovery of the motor impairment produced by frontal cortical ablation. GH effects include increased neurogenesis for reparation (perilesional area) and for increased brain plasticity (contralateral motor area). Copyright © 2013 Elsevier B.V. All rights

  20. Right inferior frontal cortex activity correlates with tolcapone responsivity in problem and pathological gamblers

    Directory of Open Access Journals (Sweden)

    Andrew S. Kayser

    2017-01-01

    Full Text Available Failures of self-regulation in problem and pathological gambling (PPG are thought to emerge from failures of top-down control, reflected neurophysiologically in a reduced capacity of prefrontal cortex to influence activity within subcortical structures. In patients with addictions, these impairments have been argued to alter evaluation of reward within dopaminergic neuromodulatory systems. Previously we demonstrated that augmenting dopamine tone in frontal cortex via use of tolcapone, an inhibitor of the dopamine-degrading enzyme catechol-O-methyltransferase (COMT, reduced delay discounting, a measure of impulsivity, in healthy subjects. To evaluate this potentially translational approach to augmenting prefrontal inhibitory control, here we hypothesized that increasing cortical dopamine tone would reduce delay discounting in PPG subjects in proportion to its ability to augment top-down control. To causally test this hypothesis, we administered the COMT inhibitor tolcapone in a randomized, double-blind, placebo-controlled, within-subject study of 17 PPG subjects who performed a delay discounting task while functional MRI images were obtained. In this subject population, we found that greater BOLD activity during the placebo condition within the right inferior frontal cortex (RIFC, a region thought to be important for inhibitory control, correlated with greater declines in impulsivity on tolcapone versus placebo. Intriguingly, connectivity between RIFC and the right striatum, and not the level of activity within RIFC itself, increased on tolcapone versus placebo. Together, these findings support the hypothesis that tolcapone-mediated increases in top-down control may reduce impulsivity in PPG subjects, a finding with potential translational relevance for gambling disorders, and for behavioral addictions in general.

  1. Auditory and visual connectivity gradients in frontoparietal cortex.

    Science.gov (United States)

    Braga, Rodrigo M; Hellyer, Peter J; Wise, Richard J S; Leech, Robert

    2017-01-01

    A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal-ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior-anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top-down modulation of modality-specific information to occur within higher-order cortex. This could provide a potentially faster and more efficient pathway by which top-down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long-range connections to sensory cortices. Hum Brain Mapp 38:255-270, 2017. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  2. Investigation of human frontal cortex under noxious thermal stimulation of temporo-mandibular joint using functional near infrared spectroscopy

    Science.gov (United States)

    Yennu, Amarnath; Rawat, Rohit; Manry, Michael T.; Gatchel, Robert; Liu, Hanli

    2013-03-01

    According to American Academy of Orofacial Pain, 75% of the U.S. population experiences painful symptoms of temporo-mandibular joint and muscle disorder (TMJMD) during their lifetime. Thus, objective assessment of pain is crucial for efficient pain management. We used near infrared spectroscopy (NIRS) as a tool to explore hemodynamic responses in the frontal cortex to noxious thermal stimulation of temporomadibular joint (TMJ). NIRS experiments were performed on 9 healthy volunteers under both low pain stimulation (LPS) and high pain stimulation (HPS), using a temperature-controlled thermal stimulator. To induce thermal pain, a 16X16 mm2 thermode was strapped onto the right TMJ of each subject. Initially, subjects were asked to rate perceived pain on a scale of 0 to 10 for the temperatures from 41°C to 47°C. For the NIRS measurement, two magnitudes of temperatures, one rated as 3 and another rated as 7, were chosen as LPS and HPS, respectively. By analyzing the temporal profiles of changes in oxy-hemoglobin concentration (HbO) using cluster-based statistical tests, we were able to identify several regions of interest (ROI), (e.g., secondary somatosensory cortex and prefrontal cortex), where significant differences (ppain, a neural-network-based classification algorithm was used. With leave-one-out cross validation from 9 subjects, the two levels of pain were identified with 100% mean sensitivity, 98% mean specificity and 99% mean accuracy to high pain. From the receiver operating characteristics curve, 0.99 mean area under curve was observed.

  3. Short-Term Memory for Space and Time Flexibly Recruit Complementary Sensory-Biased Frontal Lobe Attention Networks.

    Science.gov (United States)

    Michalka, Samantha W; Kong, Lingqiang; Rosen, Maya L; Shinn-Cunningham, Barbara G; Somers, David C

    2015-08-19

    The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Short-term memory for space and time flexibly recruit complementary sensory-biased frontal lobe attention networks

    Science.gov (United States)

    Michalka, Samantha W.; Kong, Lingqiang; Rosen, Maya L.; Shinn-Cunningham, Barbara G.; Somers, David C.

    2015-01-01

    Summary The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. PMID:26291168

  5. Reduced frontal cortex thickness and cortical volume associated with pathological narcissism.

    Science.gov (United States)

    Mao, Yu; Sang, Na; Wang, Yongchao; Hou, Xin; Huang, Hui; Wei, Dongtao; Zhang, Jinfu; Qiu, Jiang

    2016-07-22

    Pathological narcissism is often characterized by arrogant behavior, a lack of empathy, and willingness to exploit other individuals. Generally, individuals with high levels of narcissism are more likely to suffer mental disorders. However, the brain structural basis of individual pathological narcissism trait among healthy people has not yet been investigated with surface-based morphometry. Thus, in this study, we investigated the relationship between cortical thickness (CT), cortical volume (CV), and individual pathological narcissism in a large healthy sample of 176 college students. Multiple regression was used to analyze the correlation between regional CT, CV, and the total Pathological Narcissism Inventory (PNI) score, adjusting for age, sex, and total intracranial volume. The results showed that the PNI score was significantly negatively associated with CT and CV in the right dorsolateral prefrontal cortex (DLPFC, key region of the central executive network, CEN), which might be associated with impaired emotion regulation processes. Furthermore, the PNI score showed significant negative associations with CV in the right postcentral gyrus, left medial prefrontal cortex (MPFC), and the CT in the right inferior frontal cortex (IFG, overlap with social brain network), which may be related to impairments in social cognition. Together, these findings suggest a unique structural basis for individual differences in pathological narcissism, distributed across different gray matter regions of the social brain network and CEN. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving.

    Directory of Open Access Journals (Sweden)

    Noriyuki Oka

    Full Text Available In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves, but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS.The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task. Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections.Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05, but cerebral oxygen exchange increased significantly more during left curves (p < 0.05 in the right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p < 0.05 only in the right frontal eye field.Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions.

  7. Greater Activity in the Frontal Cortex on Left Curves: A Vector-Based fNIRS Study of Left and Right Curve Driving

    Science.gov (United States)

    Oka, Noriyuki; Yoshino, Kayoko; Yamamoto, Kouji; Takahashi, Hideki; Li, Shuguang; Sugimachi, Toshiyuki; Nakano, Kimihiko; Suda, Yoshihiro; Kato, Toshinori

    2015-01-01

    Objectives In the brain, the mechanisms of attention to the left and the right are known to be different. It is possible that brain activity when driving also differs with different horizontal road alignments (left or right curves), but little is known about this. We found driver brain activity to be different when driving on left and right curves, in an experiment using a large-scale driving simulator and functional near-infrared spectroscopy (fNIRS). Research Design and Methods The participants were fifteen healthy adults. We created a course simulating an expressway, comprising straight line driving and gentle left and right curves, and monitored the participants under driving conditions, in which they drove at a constant speed of 100 km/h, and under non-driving conditions, in which they simply watched the screen (visual task). Changes in hemoglobin concentrations were monitored at 48 channels including the prefrontal cortex, the premotor cortex, the primary motor cortex and the parietal cortex. From orthogonal vectors of changes in deoxyhemoglobin and changes in oxyhemoglobin, we calculated changes in cerebral oxygen exchange, reflecting neural activity, and statistically compared the resulting values from the right and left curve sections. Results Under driving conditions, there were no sites where cerebral oxygen exchange increased significantly more during right curves than during left curves (p > 0.05), but cerebral oxygen exchange increased significantly more during left curves (p right premotor cortex, the right frontal eye field and the bilateral prefrontal cortex. Under non-driving conditions, increases were significantly greater during left curves (p right frontal eye field. Conclusions Left curve driving was thus found to require more brain activity at multiple sites, suggesting that left curve driving may require more visual attention than right curve driving. The right frontal eye field was activated under both driving and non-driving conditions

  8. Amodal processing in human prefrontal cortex.

    Science.gov (United States)

    Tamber-Rosenau, Benjamin J; Dux, Paul E; Tombu, Michael N; Asplund, Christopher L; Marois, René

    2013-07-10

    Information enters the cortex via modality-specific sensory regions, whereas actions are produced by modality-specific motor regions. Intervening central stages of information processing map sensation to behavior. Humans perform this central processing in a flexible, abstract manner such that sensory information in any modality can lead to response via any motor system. Cognitive theories account for such flexible behavior by positing amodal central information processing (e.g., "central executive," Baddeley and Hitch, 1974; "supervisory attentional system," Norman and Shallice, 1986; "response selection bottleneck," Pashler, 1994). However, the extent to which brain regions embodying central mechanisms of information processing are amodal remains unclear. Here we apply multivariate pattern analysis to functional magnetic resonance imaging (fMRI) data to compare response selection, a cognitive process widely believed to recruit an amodal central resource across sensory and motor modalities. We show that most frontal and parietal cortical areas known to activate across a wide variety of tasks code modality, casting doubt on the notion that these regions embody a central processor devoid of modality representation. Importantly, regions of anterior insula and dorsolateral prefrontal cortex consistently failed to code modality across four experiments. However, these areas code at least one other task dimension, process (instantiated as response selection vs response execution), ensuring that failure to find coding of modality is not driven by insensitivity of multivariate pattern analysis in these regions. We conclude that abstract encoding of information modality is primarily a property of subregions of the prefrontal cortex.

  9. Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.

    Science.gov (United States)

    Rudebeck, Peter H; Ripple, Joshua A; Mitz, Andrew R; Averbeck, Bruno B; Murray, Elisabeth A

    2017-02-22

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus-reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus-reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus-reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus-reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus-reward associations. MFC also showed

  10. Using fNIRS to Examine Occipital and Temporal Responses to Stimulus Repetition in Young Infants: Evidence of Selective Frontal Cortex Involvement

    Science.gov (United States)

    Emberson, Lauren L.; Cannon, Grace; Palmeri, Holly; Richards, John E.; Aslin, Richard N.

    2016-01-01

    How does the developing brain respond to recent experience? Repetition suppression (RS) is a robust and well-characterized response of to recent experience found, predominantly, in the perceptual cortices of the adult brain. We use functional near-infrared spectroscopy (fNIRS) to investigate how perceptual (temporal and occipital) and frontal cortices in the infant brain respond to auditory and visual stimulus repetitions (spoken words and faces). In Experiment 1, we find strong evidence of repetition suppression in the frontal cortex but only for auditory stimuli. In perceptual cortices, we find only suggestive evidence of auditory RS in the temporal cortex and no evidence of visual RS in any ROI. In Experiments 2 and 3, we replicate and extend these findings. Overall, we provide the first evidence that infant and adult brains respond differently to stimulus repetition. We suggest that the frontal lobe may support the development of RS in perceptual cortices. PMID:28012401

  11. Intrinsic frequency biases and profiles across human cortex.

    Science.gov (United States)

    Mellem, Monika S; Wohltjen, Sophie; Gotts, Stephen J; Ghuman, Avniel Singh; Martin, Alex

    2017-11-01

    Recent findings in monkeys suggest that intrinsic periodic spiking activity in selective cortical areas occurs at timescales that follow a sensory or lower order-to-higher order processing hierarchy (Murray JD, Bernacchia A, Freedman DJ, Romo R, Wallis JD, Cai X, Padoa-Schioppa C, Pasternak T, Seo H, Lee D, Wang XJ. Nat Neurosci 17: 1661-1663, 2014). It has not yet been fully explored if a similar timescale hierarchy is present in humans. Additionally, these measures in the monkey studies have not addressed findings that rhythmic activity within a brain area can occur at multiple frequencies. In this study we investigate in humans if regions may be biased toward particular frequencies of intrinsic activity and if a full cortical mapping still reveals an organization that follows this hierarchy. We examined the spectral power in multiple frequency bands (0.5-150 Hz) from task-independent data using magnetoencephalography (MEG). We compared standardized power across bands to find regional frequency biases. Our results demonstrate a mix of lower and higher frequency biases across sensory and higher order regions. Thus they suggest a more complex cortical organization that does not simply follow this hierarchy. Additionally, some regions do not display a bias for a single band, and a data-driven clustering analysis reveals a regional organization with high standardized power in multiple bands. Specifically, theta and beta are both high in dorsal frontal cortex, whereas delta and gamma are high in ventral frontal cortex and temporal cortex. Occipital and parietal regions are biased more narrowly toward alpha power, and ventral temporal lobe displays specific biases toward gamma. Thus intrinsic rhythmic neural activity displays a regional organization but one that is not necessarily hierarchical. NEW & NOTEWORTHY The organization of rhythmic neural activity is not well understood. Whereas it has been postulated that rhythms are organized in a hierarchical manner across

  12. The role of the frontal cortex in memory: an investigation of the Von Restorff effect

    Science.gov (United States)

    Elhalal, Anat; Davelaar, Eddy J.; Usher, Marius

    2014-01-01

    Evidence from neuropsychology and neuroimaging indicate that the pre-frontal cortex (PFC) plays an important role in human memory. Although frontal patients are able to form new memories, these memories appear qualitatively different from those of controls by lacking distinctiveness. Neuroimaging studies of memory indicate activation in the PFC under deep encoding conditions, and under conditions of semantic elaboration. Based on these results, we hypothesize that the PFC enhances memory by extracting differences and commonalities in the studied material. To test this hypothesis, we carried out an experimental investigation to test the relationship between the PFC-dependent factors and semantic factors associated with common and specific features of words. These experiments were performed using Free-Recall of word lists with healthy adults, exploiting the correlation between PFC function and fluid intelligence. As predicted, a correlation was found between fluid intelligence and the Von-Restorff effect (better memory for semantic isolates, e.g., isolate “cat” within category members of “fruit”). Moreover, memory for the semantic isolate was found to depend on the isolate's serial position. The isolate item tends to be recalled first, in comparison to non-isolates, suggesting that the process interacts with short term memory. These results are captured within a computational model of free recall, which includes a PFC mechanism that is sensitive to both commonality and distinctiveness, sustaining a trade-off between the two. PMID:25018721

  13. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C.; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue. PMID:26594619

  14. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome.

    Science.gov (United States)

    Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C; Joudoi, Takako; Kawatani, Junko; Shigihara, Yoshihito; Tomoda, Akemi; Miike, Teruhisa; Imai-Matsumura, Kyoko; Sadato, Norihiro; Watanabe, Yasuyoshi

    2015-01-01

    The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS). We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension) and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG), which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC) and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  15. Less efficient and costly processes of frontal cortex in childhood chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    Kei Mizuno

    2015-01-01

    Full Text Available The ability to divide one's attention deteriorates in patients with childhood chronic fatigue syndrome (CCFS. We conducted a study using a dual verbal task to assess allocation of attentional resources to two simultaneous activities (picking out vowels and reading for story comprehension and functional magnetic resonance imaging. Patients exhibited a much larger area of activation, recruiting additional frontal areas. The right middle frontal gyrus (MFG, which is included in the dorsolateral prefrontal cortex, of CCFS patients was specifically activated in both the single and dual tasks; this activation level was positively correlated with motivation scores for the tasks and accuracy of story comprehension. In addition, in patients, the dorsal anterior cingulate gyrus (dACC and left MFG were activated only in the dual task, and activation levels of the dACC and left MFG were positively associated with the motivation and fatigue scores, respectively. Patients with CCFS exhibited a wider area of activated frontal regions related to attentional resources in order to increase their poorer task performance with massive mental effort. This is likely to be less efficient and costly in terms of energy requirements. It seems to be related to the pathophysiology of patients with CCFS and to cause a vicious cycle of further increases in fatigue.

  16. 3-D Cytoarchitectonic parcellation of human orbitofrontal cortex Correlation with postmortem MRI

    NARCIS (Netherlands)

    Uylings, H.B.M.; Sanz-Arigita, E.J.; Vos, K.; Pool, C.W.; Evers, P.; Rajkowska, G.

    2010-01-01

    The orbitofrontal cortex (OFC) is located on the basal surface of the frontal lobe and is distinguished by its unique anatomical and functional features. Clinical and postmortem studies suggest the involvement of the orbitofrontal cortex in psychiatric disorders. However, the exact parcellation of

  17. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    unknown. Therefore we aim to examine the relationship between BMI and gene expression of central inflammatory markers in the human frontal cortex. Microarray data of 141 neurologically and psychiatrically healthy individuals were obtained through the BrainCloud database. A simple linear regression...... correlated (Plinear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...... analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...

  18. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex.

    Science.gov (United States)

    Yeo, B T Thomas; Krienen, Fenna M; Chee, Michael W L; Buckner, Randy L

    2014-03-01

    The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. © 2013.

  19. Subliminal semantic priming changes the dynamic causal influence between the left frontal and temporal cortex.

    Science.gov (United States)

    Matsumoto, Atsushi; Kakigi, Ryusuke

    2014-01-01

    Recent neuroimaging experiments have revealed that subliminal priming of a target stimulus leads to the reduction of neural activity in specific regions concerned with processing the target. Such findings lead to questions about the degree to which the subliminal priming effect is based only on decreased activity in specific local brain regions, as opposed to the influence of neural mechanisms that regulate communication between brain regions. To address this question, this study recorded EEG during performance of a subliminal semantic priming task. We adopted an information-based approach that used independent component analysis and multivariate autoregressive modeling. Results indicated that subliminal semantic priming caused significant modulation of alpha band activity in the left inferior frontal cortex and modulation of gamma band activity in the left inferior temporal regions. The multivariate autoregressive approach confirmed significant increases in information flow from the inferior frontal cortex to inferior temporal regions in the early time window that was induced by subliminal priming. In the later time window, significant enhancement of bidirectional causal flow between these two regions underlying subliminal priming was observed. Results suggest that unconscious processing of words influences not only local activity of individual brain regions but also the dynamics of neural communication between those regions.

  20. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex.

    Science.gov (United States)

    Martín, Virginia; Fabelo, Noemí; Santpere, Gabriel; Puig, Berta; Marín, Raquel; Ferrer, Isidre; Díaz, Mario

    2010-01-01

    Lipid rafts are membrane microdomains intimately associated with cell signaling. These biochemical microstructures are characterized by their high contents of sphingolipids, cholesterol and saturated fatty acids and a reduced content of polyunsaturated fatty acids (PUFA). Here, we have purified lipid rafts of human frontal brain cortex from normal and Alzheimer's disease (AD) and characterized their biochemical lipid composition. The results revealed that lipid rafts from AD brains exhibit aberrant lipid profiles compared to healthy brains. In particular, lipid rafts from AD brains displayed abnormally low levels of n-3 long chain polyunsaturated fatty acids (LCPUFA, mainly 22:6n-3, docosahexaenoic acid) and monoenes (mainly 18:1n-9, oleic acid), as well as reduced unsaturation and peroxidability indexes. Also, multiple relationships between phospholipids and fatty acids were altered in AD lipid rafts. Importantly, no changes were observed in the mole percentage of lipid classes and fatty acids in rafts from normal brains throughout the lifespan (24-85 years). These indications point to the existence of homeostatic mechanisms preserving lipid raft status in normal frontal cortex. The disruption of such mechanisms in AD brains leads to a considerable increase in lipid raft order and viscosity, which may explain the alterations in lipid raft signaling observed in AD.

  1. Bereitschaftspotentials recorded from the lateral part of the superior frontal gyrus in humans.

    Science.gov (United States)

    Ohara, Shinji; Ikeda, Akio; Matsuhashi, Masao; Satow, Takeshi; Kunieda, Takeharu; Mikuni, Nobuhiro; Baba, Koichi; Mihara, Tadahiro; Miyamoto, Susumu; Shibasaki, Hiroshi

    2006-05-15

    To demonstrate the Bereitschaftspotentials (BPs) over the high lateral convexity in the superior frontal gyrus, movement-related cortical potentials with respect to the middle finger extension were recorded in seven patients with refractory epilepsy who underwent subdural implantation of platinum electrode grids and/or strips covering the high lateral frontal convexity. In two out of the seven patients, BPs were recorded from the electrodes placed on the superior frontal gyrus in the vicinity of the border between the medial and lateral frontal lobes, which were distinct from those recorded from the primary sensorimotor cortex. The results suggest the possible contribution of either the lateral dorsal non-primary motor area or the SMA to the generation of the BPs.

  2. Effects of sleep deprivation on extracellular serotonin in hippocampus and frontal cortex of the rat

    OpenAIRE

    Bjorvatn, B; Grønli, J; Hamre, F; Sørensen, E; Fiske, E; Bjorkum, Alvhild Alette; Portas, CM; Ursin, R

    2002-01-01

    Sleep deprivation improves the mood of depressed patients, but the exact mechanism behind this effect is unclear. An enhancement of serotonergic neurotransmission has been suggested. In this study, we used in vivo microdialysis to monitor extracellular serotonin in the hippocampus and the frontal cortex of rats during an 8 h sleep deprivation period. These brain regions were selected since both have been implicated in depression. The behavioral state of the animal was continuously monitored b...

  3. Issues in localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology.

    Science.gov (United States)

    Miller, Gregory A; Crocker, Laura D; Spielberg, Jeffrey M; Infantolino, Zachary P; Heller, Wendy

    2013-01-01

    The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative) or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left-hemisphere. Findings that appear contradictory at the level of frontal lobes as the units of analysis can be accommodated because hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives.

  4. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.

    Science.gov (United States)

    Marshall, Tom R; O'Shea, Jacinta; Jensen, Ole; Bergmann, Til O

    2015-01-28

    Covertly directing visuospatial attention produces a frequency-specific modulation of neuronal oscillations in occipital and parietal cortices: anticipatory alpha (8-12 Hz) power decreases contralateral and increases ipsilateral to attention, whereas stimulus-induced gamma (>40 Hz) power is boosted contralaterally and attenuated ipsilaterally. These modulations must be under top-down control; however, the control mechanisms are not yet fully understood. Here we investigated the causal contribution of the human frontal eye field (FEF) by combining repetitive transcranial magnetic stimulation (TMS) with subsequent magnetoencephalography. Following inhibitory theta burst stimulation to the left FEF, right FEF, or vertex, participants performed a visual discrimination task requiring covert attention to either visual hemifield. Both left and right FEF TMS caused marked attenuation of alpha modulation in the occipitoparietal cortex. Notably, alpha modulation was consistently reduced in the hemisphere contralateral to stimulation, leaving the ipsilateral hemisphere relatively unaffected. Additionally, right FEF TMS enhanced gamma modulation in left visual cortex. Behaviorally, TMS caused a relative slowing of response times to targets contralateral to stimulation during the early task period. Our results suggest that left and right FEF are causally involved in the attentional top-down control of anticipatory alpha power in the contralateral visual system, whereas a right-hemispheric dominance seems to exist for control of stimulus-induced gamma power. These findings contrast the assumption of primarily intrahemispheric connectivity between FEF and parietal cortex, emphasizing the relevance of interhemispheric interactions. The contralaterality of effects may result from a transient functional reorganization of the dorsal attention network after inhibition of either FEF. Copyright © 2015 the authors 0270-6474/15/351638-10$15.00/0.

  5. The role of frontal and parietal brain areas in bistable perception

    NARCIS (Netherlands)

    Knapen, T.; Brascamp, J.; Pearson, J.; van Ee, R.; Blake, R.

    2011-01-01

    When sensory input allows for multiple, competing perceptual interpretations, observers' perception can fluctuate over time, which is called bistable perception. Imaging studies in humans have revealed transient responses in a right-lateralized network in the frontal-parietal cortex (rFPC) around

  6. Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats.

    Science.gov (United States)

    Carageorgiou, Haris; Pantos, Constantinos; Zarros, Apostolos; Stolakis, Vasileios; Mourouzis, Iordanis; Cokkinos, Dennis; Tsakiris, Stylianos

    2007-08-01

    The thyroid hormones (THs) are crucial determinants of normal development and metabolism, especially in the central nervous system. The metabolic rate is known to increase in hyperthyroidism and decrease in hypothyroidism. The aim of this work was to investigate how changes in metabolism induced by THs could affect the activities of acetylcholinesterase (AChE), (Na+,K+)- and Mg2+-adenosinetriphosphatase (ATPase) in the frontal cortex and the hippocampus of adult rats. Hyperthyroidism was induced by subcutaneous administration of thyroxine (25 microg/100 g body weight) once daily for 14 days, and hypothyroidism was induced by oral administration of propylthiouracil (0.05%) for 21 days. All enzyme activities were evaluated spectrophotometrically in the homogenated brain regions of 10 three-animal pools. A region-specific behavior was observed concerning the examined enzyme activities in hyper- and hypothyroidism. In hyperthyroidism, AChE activity was significantly increased only in the hippocampus (+22%), whereas Na+,K+-ATPase activity was significantly decreased in the hyperthyroid rat hippocampus (-47%) and remained unchanged in the frontal cortex. In hypothyroidism, AChE activity was significantly decreased in the frontal cortex (-23%) and increased in the hippocampus (+21%). Na+,K+-ATPase activity was significantly decreased in both the frontal cortex (-35%) and the hippocampus (-43%) of hypothyroid rats. Mg2+-ATPase remained unchanged in the regions of both hyper- and hypothyroid rat brains. Our data revealed that THs affect the examined adult rat brain parameters in a region- and state-specific way. The TH-reduced Na+,K+-ATPase activity may increase the synaptic acetylcholine release and, thus, modulate AChE activity. Moreover, the above TH-induced changes may affect the monoamine neurotransmitter systems in the examined brain regions.

  7. Motor areas of the frontal cortex in patients with motor eloquent brain lesions.

    Science.gov (United States)

    Bulubas, Lucia; Sabih, Jamil; Wohlschlaeger, Afra; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-12-01

    OBJECTIVE Because of its huge clinical potential, the importance of premotor areas for motor function itself and plastic reshaping due to tumors or ischemic brain lesions has received increased attention. Thus, in this study the authors used navigated transcranial magnetic stimulation (nTMS) to investigate whether tumorous brain lesions induce a change in motor cortex localization in the human brain. METHODS Between 2010 and 2013, nTMS motor mapping was performed in a prospective cohort of 100 patients with brain tumors in or adjacent to the rolandic cortex. Spatial data analysis was performed by normalization of the individual motor maps and creation of overlays according to tumor location. Analysis of motor evoked potential (MEP) latencies was performed regarding mean overall latencies and potentially polysynaptic latencies, defined as latencies longer than 1 SD above the mean value. Hemispheric dominance, lesion location, and motor-function deficits were also considered. RESULTS Graphical analysis showed that motor areas were not restricted to the precentral gyrus. Instead, they spread widely in the anterior-posterior direction. An analysis of MEP latency showed that mean MEP latencies were shortest in the precentral gyrus and longest in the superior and middle frontal gyri. The percentage of latencies longer than 1 SD differed widely across gyri. The dominant hemisphere showed a greater number of longer latencies than the nondominant hemisphere (p < 0.0001). Moreover, tumor location-dependent changes in distribution of polysynaptic latencies were observed (p = 0.0002). Motor-function deficit did not show any statistically significant effect. CONCLUSIONS The distribution of primary and polysynaptic motor areas changes in patients with brain tumors and highly depends on tumor location. Thus, these data should be considered for resection planning.

  8. Issues in Localization of brain function: The case of lateralized frontal cortex in cognition, emotion, and psychopathology

    Directory of Open Access Journals (Sweden)

    Gregory A. Miller

    2013-01-01

    Full Text Available The appeal of simple, sweeping portraits of large-scale brain mechanisms relevant to psychological phenomena competes with a rich, complex research base. As a prominent example, two views of frontal brain organization have emphasized dichotomous lateralization as a function of either emotional valence (positive/negative or approach/avoidance motivation. Compelling findings support each. The literature has struggled to choose between them for three decades, without success. Both views are proving untenable as comprehensive models. Recent evidence indicates that positive valence and approach motivation are associated with different areas in the left hemisphere. Evidence of other frontal lateralizations, involving distinctions among dimensions of depression and anxiety, make a dichotomous view even more problematic. Hemodynamic and electromagnetic neuroimaging studies suggest considerable functional differentiation, in specialization and activation, of subregions of frontal cortex, including their connectivity to each other and to other regions. Such findings contribute to a more nuanced understanding of functional localization that accommodates aspects of multiple theoretical perspectives.

  9. Lateral frontal cortex volume reduction in Tourette syndrome revealed by VBM

    Directory of Open Access Journals (Sweden)

    Wittfoth Matthias

    2012-02-01

    Full Text Available Abstract Background Structural changes have been found predominantly in the frontal cortex and in the striatum in children and adolescents with Gilles de la Tourette syndrome (GTS. The influence of comorbid symptomatology is unclear. Here we sought to address the question of gray matter abnormalities in GTS patients with co-morbid obsessive-compulsive disorder (OCD and/or attention deficit hyperactivity disorder (ADHD using voxel-based morphometry (VBM in twenty-nine adult actually unmedicated GTS patients and twenty-five healthy control subjects. Results In GTS we detected a cluster of decreased gray matter volume in the left inferior frontal gyrus (IFG, but no regions demonstrating volume increases. By comparing subgroups of GTS with comorbid ADHD to the subgroup with comorbid OCD, we found a left-sided amygdalar volume increase. Conclusions From our results it is suggested that the left IFG may constitute a common underlying structural correlate of GTS with co-morbid OCD/ADHD. A volume reduction in this brain region that has been previously identified as a key region in OCD and was associated with the active inhibition of attentional processes may reflect the failure to control behavior. Amygdala volume increase is discussed on the background of a linkage of this structure with ADHD symptomatology. Correlations with clinical data revealed gray matter volume changes in specific brain areas that have been described in these conditions each.

  10. The role of medial frontal gyrus in action anticipation in professional badminton players

    Directory of Open Access Journals (Sweden)

    Huan Xu

    2016-11-01

    Full Text Available Some studies show that the medial frontal cortex is associated with more skilled action anticipation, while similar findings are not observed in some other studies, possibly due to the stimuli employed and the participants used as the control group. In addition, no studies have investigated whether there is any functional connectivity between the medial frontal cortex and other brain regions in more skilled action anticipation. Therefore, the present study aimed to re-investigate how the medial frontal cortex is involved in more skilled action anticipation by circumventing the limitations of previous research and to investigate that the medial frontal cortex functionally connected with other brain regions involved in action processing in more skilled action anticipation. To this end, professional badminton players and novices were asked to anticipate the landing position of the shuttlecock while watching badminton match videos or to judge the gender of the players in the matches. The video clips ended right at the point that the shuttlecock and the racket came into contact to reduce the effect of information about the trajectory of the shuttlecock. Novices who lacked training and watching experience were recruited for the control group to reduce the effect of sport-related experience on the medial frontal cortex. Blood oxygenation level-dependent (BOLD activation was assessed by means of functional magnetic resonance imaging (fMRI. Compared to novices, badminton players exhibited stronger activation in the left medial frontal cortex during action anticipation and greater functional connectivity between left medial frontal cortex and some other brain regions (e.g., right posterior cingulate cortex. Therefore, the present study supports the position that the medial frontal cortex plays a role in more skilled action anticipation and that there is a specific brain network for more skilled action anticipation that involves right posterior cingulate

  11. Selective visual attention to emotional words: Early parallel frontal and visual activations followed by interactive effects in visual cortex.

    Science.gov (United States)

    Schindler, Sebastian; Kissler, Johanna

    2016-10-01

    Human brains spontaneously differentiate between various emotional and neutral stimuli, including written words whose emotional quality is symbolic. In the electroencephalogram (EEG), emotional-neutral processing differences are typically reflected in the early posterior negativity (EPN, 200-300 ms) and the late positive potential (LPP, 400-700 ms). These components are also enlarged by task-driven visual attention, supporting the assumption that emotional content naturally drives attention. Still, the spatio-temporal dynamics of interactions between emotional stimulus content and task-driven attention remain to be specified. Here, we examine this issue in visual word processing. Participants attended to negative, neutral, or positive nouns while high-density EEG was recorded. Emotional content and top-down attention both amplified the EPN component in parallel. On the LPP, by contrast, emotion and attention interacted: Explicit attention to emotional words led to a substantially larger amplitude increase than did explicit attention to neutral words. Source analysis revealed early parallel effects of emotion and attention in bilateral visual cortex and a later interaction of both in right visual cortex. Distinct effects of attention were found in inferior, middle and superior frontal, paracentral, and parietal areas, as well as in the anterior cingulate cortex (ACC). Results specify separate and shared mechanisms of emotion and attention at distinct processing stages. Hum Brain Mapp 37:3575-3587, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Origin of human motor readiness field linked to left middle frontal gyrus by MEG and PET

    DEFF Research Database (Denmark)

    Pedersen, Jane Rygaard; Johannsen, P; Bak, Christen Kjeldahl

    1998-01-01

    Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known as the Bereitschaftspotent......Combined magnetoencephalography and positron emission tomography identified a prior source of activity in the left middle frontal gyrus duping uncued movements of the right index finger Voluntary movements gave rise to a change in the cortical electrical potential known...... sources subsequently to be active were mapped to the supplementary motor area, premotor cortex, and motor cortex (M1), all in the left hemisphere. (C) 1998 Academic Press....

  13. Modeling Conflict and Error in the Medial Frontal Cortex

    Science.gov (United States)

    Mayer, Andrew R.; Teshiba, Terri M.; Franco, Alexandre R.; Ling, Josef; Shane, Matthew S.; Stephen, Julia M.; Jung, Rex E.

    2014-01-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anticorrelated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). PMID:21976411

  14. Modeling conflict and error in the medial frontal cortex.

    Science.gov (United States)

    Mayer, Andrew R; Teshiba, Terri M; Franco, Alexandre R; Ling, Josef; Shane, Matthew S; Stephen, Julia M; Jung, Rex E

    2012-12-01

    Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). Copyright © 2011 Wiley Periodicals, Inc.

  15. Cholinergic receptor binding in the frontal cortex of suicide victims

    International Nuclear Information System (INIS)

    Stanley, M.

    1986-01-01

    Because there is a high incidence of individuals diagnosed as having an affective disorder who subsequently commit suicide, the author thought it would be of interest to determine QNB binding in the brains of a large sample of suicide victims, and to compare the findings with a well-matched control group. Brain samples were obtained at autopsy from 22 suicide victims and 22 controls. Frontal cortex samples were diseected, frozen, and stored until assayed. Samples of tissue homogenate were incubated in duplicate with 10 concentrations of tritium-QNB. Specific binding was determined with and without atropine. The results confirmed previous studies in which no changes were noted in suicide versus control brains. While the findings neither disprove nor support the cholinergic hypothesis of depression, they do suggest that the neurochemical basis for the in vivo observations of increased responsivity of depressed individuals to muscarinic cholinergic agents might not involve changes in receptors estimated by QNB binding

  16. Orbitofrontal cortex contribution to working memory. N-back ERP study

    International Nuclear Information System (INIS)

    Nakao, Yoshiaki; Tamura, Toshiyo; Kodabashi, Atsushi; Fujimoto, Toshiro; Yarita, Masaru

    2011-01-01

    Remarkable progress in cognitive neuroscience has revealed the involvement of the prefrontal cortex and the orbitofrontal cortex in human working memory, but the orbitofrontal cortex is still one of the least understood regions in the human brain. To elucidate the contribution of the orbitofrontal cortex to human working memory, we studied electroencephalography (EEG) P300 activity in n-back task. We elicited early P3 around 300 ms and late P3 around 360 ms of P300 components in n-back event related potentials (ERP). The amplitudes of the respective peaks changed depending on the working memory load (0-back, 1-back, 2-back, 3-back). We used source analysis to evaluate the orbitofrontal cortex in P3 components. A source model was constructed with the sources seeded from fMRI meta-analysis of n-back task and additional sources in the orbitofrontal cortex and the visual cortex estimated with P100 and late P3 components in the n-back ERP. This source model had more than 99% of GOF (goodness of fit) in n-back ERP. It gave us an insight of brain activity at the positions where sources existed. Early P3 was mainly produced by the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex, the inferior parietal lobule, the medial posterior parietal and the visual cortex. Late P3 was mainly produced by the medial premotor, the lateral premotor, the frontal pole and the orbitofrontal cortex. The contribution of the frontal pole and the orbitofrontal cortex had peaks around 390 ms which were later than late P3 component. In this study, the method to evaluate the orbitofrontal cortex activity in n-back ERP was provided. Our results elicited the involvement of the orbitofrontal cortex in late P3 component of n-back ERP. (author)

  17. Trait aggression and trait impulsivity are not related to frontal cortex 5-HT2A receptor binding in healthy individuals

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sophie; Stenbæk, Dea Siggaard; Holst, Klaus

    2013-01-01

    age 47.0±18.7, range 23-86) to determine if trait aggression and trait impulsivity were related to frontal cortex 5-HT2A receptor binding (5-HT2AR) as measured with [(18)F]-altanserin PET imaging. Trait aggression and trait impulsivity were assessed with the Buss-Perry Aggression Questionnaire (AQ...... and the AQ or BIS-11 total scores. Also, there was no significant interaction between gender and frontal cortex 5-HT2AR in predicting trait aggression and trait impulsivity. This is the first study to examine how 5-HT2AR relates to trait aggression and trait impulsivity in a large sample of healthy......Numerous studies indicate that the serotonergic (5-HT) transmitter system is involved in the regulation of impulsive aggression and there is from post-mortem, in vivo imaging and genetic studies evidence that the 5-HT2A receptor may be involved. We investigated 94 healthy individuals (60 men, mean...

  18. Frontal and parietal cortical interactions with distributed visual representations during selective attention and action selection.

    Science.gov (United States)

    Nelissen, Natalie; Stokes, Mark; Nobre, Anna C; Rushworth, Matthew F S

    2013-10-16

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity.

  19. Frontal and Parietal Cortical Interactions with Distributed Visual Representations during Selective Attention and Action Selection

    Science.gov (United States)

    Stokes, Mark; Nobre, Anna C.; Rushworth, Matthew F. S.

    2013-01-01

    Using multivoxel pattern analysis (MVPA), we studied how distributed visual representations in human occipitotemporal cortex are modulated by attention and link their modulation to concurrent activity in frontal and parietal cortex. We detected similar occipitotemporal patterns during a simple visuoperceptual task and an attention-to-working-memory task in which one or two stimuli were cued before being presented among other pictures. Pattern strength varied from highest to lowest when the stimulus was the exclusive focus of attention, a conjoint focus, and when it was potentially distracting. Although qualitatively similar effects were seen inside regions relatively specialized for the stimulus category and outside, the former were quantitatively stronger. By regressing occipitotemporal pattern strength against activity elsewhere in the brain, we identified frontal and parietal areas exerting top-down control over, or reading information out from, distributed patterns in occipitotemporal cortex. Their interactions with patterns inside regions relatively specialized for that stimulus category were higher than those with patterns outside those regions and varied in strength as a function of the attentional condition. One area, the frontal operculum, was distinguished by selectively interacting with occipitotemporal patterns only when they were the focus of attention. There was no evidence that any frontal or parietal area actively inhibited occipitotemporal representations even when they should be ignored and were suppressed. Using MVPA to decode information within these frontal and parietal areas showed that they contained information about attentional context and/or readout information from occipitotemporal cortex to guide behavior but that frontal regions lacked information about category identity. PMID:24133250

  20. Monoamine oxidase-A and B activities in the cerebellum and frontal cortex of children and young adults with autism.

    Science.gov (United States)

    Gu, Feng; Chauhan, Ved; Chauhan, Abha

    2017-10-01

    Monoamine oxidases (MAOs) catalyze the metabolism of monoamine neurotransmitters, such as serotonin, dopamine, and norepinephrine, and are key regulators for brain function. In this study, we analyzed the activities of MAO-A and MAO-B in the cerebellum and frontal cortex from subjects with autism and age-matched control subjects. In the cerebellum, MAO-A activity in subjects with autism (aged 4-38 years) was significantly lower by 20.6% than in controls. When the subjects were divided into children (aged 4-12 years) and young adults (aged 13-38 years) subgroups, a significant decrease by 27.8% in the MAO-A activity was observed only in children with autism compared with controls. When the 95% confidence interval of the control group was taken as a reference range, reduced activity of MAO-A was observed in 70% of children with autism. In the frontal cortex, MAO-A activity in children with autism was also lower by 30% than in the control group, and impaired activity of MAO-A was observed in 55.6% of children with autism, although the difference between the autism and control groups was not significant when all subjects were considered. On the contrary, there was no significant difference in MAO-B activity in both the cerebellum and frontal cortex between children with autism and the control group as well as in adults. These results suggest impaired MAO-A activity in the brain of subjects with autism, especially in children with autism. Decreased activity of MAOs may lead to increased levels of monoaminergic neurotransmitters, such as serotonin, which have been suggested to have a critical role in autism. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Non-primary motor areas in the human frontal lobe are connected directly to hand muscles.

    Science.gov (United States)

    Teitti, S; Määttä, S; Säisänen, L; Könönen, M; Vanninen, R; Hannula, H; Mervaala, E; Karhu, J

    2008-04-15

    Structural studies in primates have shown that, in addition to the primary motor cortex (M1), premotor areas are a source of corticospinal tracts. The function of these putative corticospinal neuronal tracts in humans is still unclear. We found frontal non-primary motor areas (NPMAs), which react to targeted non-invasive magnetic pulses and activate peripheral muscles as fast as or even faster than those in M1. Hand muscle movements were observed in all our subjects about 20 ms after transcranial stimulation of the superior frontal gyrus (Brodmann areas 6 and 8). Stimulation of NPMA could activate both proximal and distal upper limb muscles with the same delay as a stimulation of the M1, indicating converging motor representations with direct functional connections to the hand. We suggest that these non-primary cortical motor representations provide additional capacity for the fast execution of movements. Such a capacity may play a role in motor learning and in recovery from motor deficits.

  2. Functional magnetic resonance imaging of the frontal eye fields during saccadic eye movements

    International Nuclear Information System (INIS)

    Miki, Atsushi; Takagi, Mineo; Abe, Haruki; Nakajima, Takashi; Miyauchi, Satoru.

    1996-01-01

    We evaluated activity-induced signal intensity changes in the human cerebral cortex during horizontal saccadic eye movements using functional magnetic resonance imaging (fMRI) based on the blood-oxygenation-level-dependent (BOLD) contrast method. Compared with central fixation, significant signal increases were observed bilaterally in the middle frontal gyrus (Brodmann area 8) during saccadic conditions. The location of the activated area was consistent with that of previously reported frontal eye fields (FEF). These results suggest that fMRI has potential merit for the study of cortical control of eye movements in humans. (author)

  3. Parcellation of the human orbitofrontal cortex based on gray matter volume covariance.

    Science.gov (United States)

    Liu, Huaigui; Qin, Wen; Qi, Haotian; Jiang, Tianzi; Yu, Chunshui

    2015-02-01

    The human orbitofrontal cortex (OFC) is an enigmatic brain region that cannot be parcellated reliably using diffusional and functional magnetic resonance imaging (fMRI) because there is signal dropout that results from an inherent defect in imaging techniques. We hypothesise that the OFC can be reliably parcellated into subregions based on gray matter volume (GMV) covariance patterns that are derived from artefact-free structural images. A total of 321 healthy young subjects were examined by high-resolution structural MRI. The OFC was parcellated into subregions-based GMV covariance patterns; and then sex and laterality differences in GMV covariance pattern of each OFC subregion were compared. The human OFC was parcellated into the anterior (OFCa), medial (OFCm), posterior (OFCp), intermediate (OFCi), and lateral (OFCl) subregions. This parcellation scheme was validated by the same analyses of the left OFC and the bilateral OFCs in male and female subjects. Both visual observation and quantitative comparisons indicated a unique GMV covariance pattern for each OFC subregion. These OFC subregions mainly covaried with the prefrontal and temporal cortices, cingulate cortex and amygdala. In addition, GMV correlations of most OFC subregions were similar across sex and laterality except for significant laterality difference in the OFCl. The right OFCl had stronger GMV correlation with the right inferior frontal cortex. Using high-resolution structural images, we established a reliable parcellation scheme for the human OFC, which may provide an in vivo guide for subregion-level studies of this region and improve our understanding of the human OFC at subregional levels. © 2014 Wiley Periodicals, Inc.

  4. A Postmortem Study of Frontal and Temporal Gyri Thickness and Cell Number in Human Obesity.

    Science.gov (United States)

    Gómez-Apo, Erick; García-Sierra, Adrián; Silva-Pereyra, Juan; Soto-Abraham, Virgilia; Mondragón-Maya, Alejandra; Velasco-Vales, Verónica; Pescatello, Linda S

    2018-01-01

    This study aimed to compare cortex thickness and neuronal cell density in postmortem brain tissue from people with overweight or obesity and normal weight. The cortex thickness and neuron density of eight donors with overweight or obesity (mean = 31.6 kg/m 2 ; SD = 4.35; n = 8; 6 male) and eight donors with normal weight (mean = 21.8 kg/m 2 ; SD = 1.5; n = 8; 5 male) were compared. All participants were Mexican and lived in Mexico City. Randomly selected thickness measures of different cortex areas from the frontal and temporal lobes were analyzed based on high-resolution real-size photographs. A histological analysis of systematic-random fields was used to quantify the number of neurons in postmortem left and right of the first, second, and third gyri of frontal and temporal lobe brain samples. No statistical difference was found in cortical thickness between donors with overweight or obesity and individuals with normal weight. A smaller number of neurons was found among the donors with overweight or obesity than the donors with normal weight at different frontal and temporal areas. A lower density of neurons is associated with overweight or obesity. The morphological basis for structural brain changes in obesity requires further investigation. © 2017 The Obesity Society.

  5. Conceptual control across modalities: graded specialisation for pictures and words in inferior frontal and posterior temporal cortex

    OpenAIRE

    Krieger-Redwood, Katya; Teige, Catarina; Davey, James; Hymers, Mark; Jefferies, Elizabeth

    2015-01-01

    Controlled semantic retrieval to words elicits co-activation of inferior frontal (IFG) and left posterior temporal cortex (pMTG), but research has not yet established (i) the distinct contributions of these regions or (ii) whether the same processes are recruited for non-verbal stimuli. Words have relatively flexible meanings – as a consequence, identifying the context that links two specific words is relatively demanding. In contrast, pictures are richer stimuli and their precise meaning is ...

  6. Functional connection between posterior superior temporal gyrus and ventrolateral prefrontal cortex in human.

    Science.gov (United States)

    Garell, P C; Bakken, H; Greenlee, J D W; Volkov, I; Reale, R A; Oya, H; Kawasaki, H; Howard, M A; Brugge, J F

    2013-10-01

    The connection between auditory fields of the temporal lobe and prefrontal cortex has been well characterized in nonhuman primates. Little is known of temporofrontal connectivity in humans, however, due largely to the fact that invasive experimental approaches used so successfully to trace anatomical pathways in laboratory animals cannot be used in humans. Instead, we used a functional tract-tracing method in 12 neurosurgical patients with multicontact electrode arrays chronically implanted over the left (n = 7) or right (n = 5) perisylvian temporal auditory cortex (area PLST) and the ventrolateral prefrontal cortex (VLPFC) of the inferior frontal gyrus (IFG) for diagnosis and treatment of medically intractable epilepsy. Area PLST was identified by the distribution of average auditory-evoked potentials obtained in response to simple and complex sounds. The same sounds evoked little if there is any activity in VLPFC. A single bipolar electrical pulse (0.2 ms, charge-balanced) applied between contacts within physiologically identified PLST resulted in polyphasic evoked potentials clustered in VLPFC, with greatest activation being in pars triangularis of the IFG. The average peak latency of the earliest negative deflection of the evoked potential on VLPFC was 13.48 ms (range: 9.0-18.5 ms), providing evidence for a rapidly conducting pathway between area PLST and VLPFC.

  7. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  8. Genotype-induced changes in biophysical properties of frontal cortex lipid raft from APP/PS1 transgenic mice

    Directory of Open Access Journals (Sweden)

    Mario L Diaz

    2012-11-01

    Full Text Available Alterations in the lipid composition of lipid rafts have been demonstrated both in human brain and transgenic mouse models, and it has been postulated that aberrant lipid composition in lipid rafts is partly responsible for neuronal degeneration. In order to assess the impact of lipid changes on lipid raft functional properties, we have aimed at determining relevant physicochemical modifications in lipid rafts purified from frontal cortex of wild type (WT and APP/PS1 double transgenic mice. By means of steady-state fluorescence anisotropy analyses using two lipid soluble fluorescent probes, TMA-DPH (1-[(4-trimethyl-aminophenyl]-6-phenyl-1,3,5-hexatriene and DPH (1,6-diphenyl-1,3,5-hexatriene, we demonstrate that cortical lipid rafts from WT and APP/PS1 animals exhibit different biophysical behaviours, depending on genotype but also on age. Thus, aged APP/PS1 animals exhibited slightly more liquid-ordered lipid rafts than WT counterparts. Membrane microviscosity napp analyses demonstrate that WT lipid rafts are more fluid than APP/PS1 animals of similar age, both at the aqueous interface and hydrophobic core of the membrane. napp in APP/PS1 animals was higher for DPH than for TMA-DPH under similar experimental conditions, indicating that the internal core of the membrane is more viscous than the raft membrane at the aqueous interface. The most dramatic changes in biophysical properties of lipid rafts were observed when membrane cholesterol was depleted with methyl-beta-cyclodextrin. Overall, our results indicate that APP/PS1 genotype strongly affects physicochemical properties of lipid raft. Such alterations appear not to be homogeneous across the raft membrane axis, but rather are more prominent at the membrane plane. These changes correlate with aberrant proportions of sphingomyelin, cholesterol and saturated fatty acids, as well as polyunsaturated fatty acids, measured in lipid rafts from frontal cortex in this familial model of

  9. Rule-guided executive control of response inhibition: functional topography of the inferior frontal cortex.

    Directory of Open Access Journals (Sweden)

    Weidong Cai

    Full Text Available The human inferior frontal cortex (IFC is a large heterogeneous structure with distinct cytoarchitectonic subdivisions and fiber connections. It has been found involved in a wide range of executive control processes from target detection, rule retrieval to response control. Since these processes are often being studied separately, the functional organization of executive control processes within the IFC remains unclear.We conducted an fMRI study to examine the activities of the subdivisions of IFC during the presentation of a task cue (rule retrieval and during the performance of a stop-signal task (requiring response generation and inhibition in comparison to a not-stop task (requiring response generation but not inhibition. We utilized a mixed event-related and block design to separate brain activity in correspondence to transient control processes from rule-related and sustained control processes. We found differentiation in control processes within the IFC. Our findings reveal that the bilateral ventral-posterior IFC/anterior insula are more active on both successful and unsuccessful stop trials relative to not-stop trials, suggesting their potential role in the early stage of stopping such as triggering the stop process. Direct countermanding seems to be outside of the IFC. In contrast, the dorsal-posterior IFC/inferior frontal junction (IFJ showed transient activity in correspondence to the infrequent presentation of the stop signal in both tasks and the left anterior IFC showed differential activity in response to the task cues. The IFC subdivisions also exhibited similar but distinct patterns of functional connectivity during response control.Our findings suggest that executive control processes are distributed across the IFC and that the different subdivisions of IFC may support different control operations through parallel cortico-cortical and cortico-striatal circuits.

  10. Frontal and subcortical grey matter reductions in PTSD.

    Science.gov (United States)

    O'Doherty, Daniel C M; Tickell, Ashleigh; Ryder, Will; Chan, Charles; Hermens, Daniel F; Bennett, Maxwell R; Lagopoulos, Jim

    2017-08-30

    Post-traumatic stress disorder (PTSD) is characterised by a range of debilitating psychological, physical and cognitive symptoms. PTSD has been associated with grey matter atrophy in limbic and frontal cortical brain regions. However, previous studies have reported heterogeneous findings, with grey matter changes observed beyond limbic/frontal areas. Seventy-five adults were recruited from the community, 25 diagnosed with PTSD along with 25 healthy and 25 trauma exposed age and gender matched controls. Participants underwent clinical assessment and magnetic resonance imaging. The data-analyses method Voxel Based Morphometry (VBM) was used to estimate cortical grey matter volumes. When compared to both healthy and trauma exposed controls, PTSD subjects demonstrated decreased grey matter volumes within subcortical brain regions-including the hippocampus and amygdala-along with reductions in the anterior cingulate cortex, frontal medial cortex, middle frontal gyrus, superior frontal gyrus, paracingulate gyrus, and precuneus cortex. Significant negative correlations were found between total CAPS lifetime clinical scores/sub-scores and GM volume of both the PTSD and TC groups. GM volumes of the left rACC and right amygdala showed a significant negative correlation within PTSD diagnosed subjects. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Updating expected action outcome in the medial frontal cortex involves an evaluation of error type.

    Science.gov (United States)

    Maier, Martin E; Steinhauser, Marco

    2013-10-02

    Forming expectations about the outcome of an action is an important prerequisite for action control and reinforcement learning in the human brain. The medial frontal cortex (MFC) has been shown to play an important role in the representation of outcome expectations, particularly when an update of expected outcome becomes necessary because an error is detected. However, error detection alone is not always sufficient to compute expected outcome because errors can occur in various ways and different types of errors may be associated with different outcomes. In the present study, we therefore investigate whether updating expected outcome in the human MFC is based on an evaluation of error type. Our approach was to consider an electrophysiological correlate of MFC activity on errors, the error-related negativity (Ne/ERN), in a task in which two types of errors could occur. Because the two error types were associated with different amounts of monetary loss, updating expected outcomes on error trials required an evaluation of error type. Our data revealed a pattern of Ne/ERN amplitudes that closely mirrored the amount of monetary loss associated with each error type, suggesting that outcome expectations are updated based on an evaluation of error type. We propose that this is achieved by a proactive evaluation process that anticipates error types by continuously monitoring error sources or by dynamically representing possible response-outcome relations.

  12. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type.

    Science.gov (United States)

    Rajmohan, Ravi; Anderson, Ronald C; Fang, Dan; Meyer, Austin G; Laengvejkal, Pavis; Julayanont, Parunyou; Hannabas, Greg; Linton, Kitten; Culberson, John; Khan, Hafiz; De Toledo, John; Reddy, P Hemachandra; O'Boyle, Michael W

    2017-01-01

    Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT) through the use of the sex determination test (SDT). In the current study, four (1 female, 3 males) CDDAT and nine (4 females, 5 males) age-matched neurotypicals (NT) completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA) and anterior cingulate cortex (ACC). DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF) and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT) performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC), but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability.

  13. Social isolation stress and chronic glutathione deficiency have a common effect on the glutamine-to-glutamate ratio and myo-inositol concentration in the mouse frontal cortex.

    Science.gov (United States)

    Corcoba, Alberto; Gruetter, Rolf; Do, Kim Q; Duarte, João M N

    2017-09-01

    Environmental stress can interact with genetic predisposition to increase the risk of developing psychopathology. In this work, we tested the hypothesis that social isolation stress interacts with impaired glutathione synthesis and have cumulative effects on the neurochemical profile of the frontal cortex. A mouse model with chronic glutathione deficit induced by knockout (-/-) of the glutamate-cysteine ligase modulatory subunit (Gclm) was exposed to social isolation stress from weaning to post-natal day 65. Using magnetic resonance methods at high-field (14.1 T), we analysed the neurochemical profile in the frontal cortex, brain size and ventricular volume of adult animals. Glutathione deficit was accompanied by elevated concentrations of N-acetylaspartate, alanine, and glutamine, as well as the ratio of glutamine-to-glutamate (Gln/Glu), and by a reduction in levels of myo-inositol and choline-containing compounds in the frontal cortex of -/- animals with respect to wild-type littermates. Although there was no significant interaction between social isolation stress and glutathione deficiency, mice reared in isolation displayed lower myo-inositol concentration (-8.4%, p social isolation had no effect on these parameters. We conclude that social isolation caused neurochemical alterations that may add to those associated to impaired glutathione synthesis. © 2017 International Society for Neurochemistry.

  14. Dorso-Lateral Frontal Cortex of the Ferret Encodes Perceptual Difficulty during Visual Discrimination.

    Science.gov (United States)

    Zhou, Zhe Charles; Yu, Chunxiu; Sellers, Kristin K; Fröhlich, Flavio

    2016-03-30

    Visual discrimination requires sensory processing followed by a perceptual decision. Despite a growing understanding of visual areas in this behavior, it is unclear what role top-down signals from prefrontal cortex play, in particular as a function of perceptual difficulty. To address this gap, we investigated how neurons in dorso-lateral frontal cortex (dl-FC) of freely-moving ferrets encode task variables in a two-alternative forced choice visual discrimination task with high- and low-contrast visual input. About two-thirds of all recorded neurons in dl-FC were modulated by at least one of the two task variables, task difficulty and target location. More neurons in dl-FC preferred the hard trials; no such preference bias was found for target location. In individual neurons, this preference for specific task types was limited to brief epochs. Finally, optogenetic stimulation confirmed the functional role of the activity in dl-FC before target touch; suppression of activity in pyramidal neurons with the ArchT silencing opsin resulted in a decrease in reaction time to touch the target but not to retrieve reward. In conclusion, dl-FC activity is differentially recruited for high perceptual difficulty in the freely-moving ferret and the resulting signal may provide top-down behavioral inhibition.

  15. "It's Not What You Say, But How You Say it": A Reciprocal Temporo-frontal Network for Affective Prosody.

    Science.gov (United States)

    Leitman, David I; Wolf, Daniel H; Ragland, J Daniel; Laukka, Petri; Loughead, James; Valdez, Jeffrey N; Javitt, Daniel C; Turetsky, Bruce I; Gur, Ruben C

    2010-01-01

    Humans communicate emotion vocally by modulating acoustic cues such as pitch, intensity and voice quality. Research has documented how the relative presence or absence of such cues alters the likelihood of perceiving an emotion, but the neural underpinnings of acoustic cue-dependent emotion perception remain obscure. Using functional magnetic resonance imaging in 20 subjects we examined a reciprocal circuit consisting of superior temporal cortex, amygdala and inferior frontal gyrus that may underlie affective prosodic comprehension. Results showed that increased saliency of emotion-specific acoustic cues was associated with increased activation in superior temporal cortex [planum temporale (PT), posterior superior temporal gyrus (pSTG), and posterior superior middle gyrus (pMTG)] and amygdala, whereas decreased saliency of acoustic cues was associated with increased inferior frontal activity and temporo-frontal connectivity. These results suggest that sensory-integrative processing is facilitated when the acoustic signal is rich in affective information, yielding increased activation in temporal cortex and amygdala. Conversely, when the acoustic signal is ambiguous, greater evaluative processes are recruited, increasing activation in inferior frontal gyrus (IFG) and IFG STG connectivity. Auditory regions may thus integrate acoustic information with amygdala input to form emotion-specific representations, which are evaluated within inferior frontal regions.

  16. Neural Tuning to Low-Level Features of Speech throughout the Perisylvian Cortex.

    Science.gov (United States)

    Berezutskaya, Julia; Freudenburg, Zachary V; Güçlü, Umut; van Gerven, Marcel A J; Ramsey, Nick F

    2017-08-16

    Despite a large body of research, we continue to lack a detailed account of how auditory processing of continuous speech unfolds in the human brain. Previous research showed the propagation of low-level acoustic features of speech from posterior superior temporal gyrus toward anterior superior temporal gyrus in the human brain (Hullett et al., 2016). In this study, we investigate what happens to these neural representations past the superior temporal gyrus and how they engage higher-level language processing areas such as inferior frontal gyrus. We used low-level sound features to model neural responses to speech outside of the primary auditory cortex. Two complementary imaging techniques were used with human participants (both males and females): electrocorticography (ECoG) and fMRI. Both imaging techniques showed tuning of the perisylvian cortex to low-level speech features. With ECoG, we found evidence of propagation of the temporal features of speech sounds along the ventral pathway of language processing in the brain toward inferior frontal gyrus. Increasingly coarse temporal features of speech spreading from posterior superior temporal cortex toward inferior frontal gyrus were associated with linguistic features such as voice onset time, duration of the formant transitions, and phoneme, syllable, and word boundaries. The present findings provide the groundwork for a comprehensive bottom-up account of speech comprehension in the human brain. SIGNIFICANCE STATEMENT We know that, during natural speech comprehension, a broad network of perisylvian cortical regions is involved in sound and language processing. Here, we investigated the tuning to low-level sound features within these regions using neural responses to a short feature film. We also looked at whether the tuning organization along these brain regions showed any parallel to the hierarchy of language structures in continuous speech. Our results show that low-level speech features propagate throughout the

  17. Lateral prefrontal cortex is organized into parallel dorsal and ventral streams along the rostro-caudal axis.

    Science.gov (United States)

    Blumenfeld, Robert S; Nomura, Emi M; Gratton, Caterina; D'Esposito, Mark

    2013-10-01

    Anatomical connectivity differences between the dorsal and ventral lateral prefrontal cortex (PFC) of the non-human primate strongly suggests that these regions support different functions. However, after years of study, it remains unclear whether these regions are functionally distinct. In contrast, there has been a groundswell of recent studies providing evidence for a rostro-caudal functional organization, along the lateral as well as dorsomedial frontal cortex. Thus, it is not known whether dorsal and ventral regions of lateral PFC form distinct functional networks and how to reconcile any dorso-ventral organization with the medio-lateral and rostro-caudal axes. Here, we used resting-state connectivity data to identify parallel dorsolateral and ventrolateral streams of intrinsic connectivity with the dorsomedial frontal cortex. Moreover, we show that this connectivity follows a rostro-caudal gradient. Our results provide evidence for a novel framework for the intrinsic organization of the frontal cortex that incorporates connections between medio-lateral, dorso-ventral, and rostro-caudal axes.

  18. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    Science.gov (United States)

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  19. Lower Activation in Frontal Cortex and Posterior Cingulate Cortex Observed during Sex Determination Test in Early-Stage Dementia of the Alzheimer Type

    Directory of Open Access Journals (Sweden)

    Ravi Rajmohan

    2017-05-01

    Full Text Available Face-labeling refers to the ability to classify faces into social categories. This plays a critical role in human interaction as it serves to define concepts of socially acceptable interpersonal behavior. The purpose of the current study was to characterize, what, if any, impairments in face-labeling are detectable in participants with early-stage clinically diagnosed dementia of the Alzheimer type (CDDAT through the use of the sex determination test (SDT. In the current study, four (1 female, 3 males CDDAT and nine (4 females, 5 males age-matched neurotypicals (NT completed the SDT using chimeric faces while undergoing BOLD fMRI. It was expected that CDDAT participants would have poor verbal fluency, which would correspond to poor performance on the SDT. This could be explained by decreased activation and connectivity patterns within the fusiform face area (FFA and anterior cingulate cortex (ACC. DTI was also performed to test the association of pathological deterioration of connectivity in the uncinate fasciculus (UF and verbally-mediated performance. CDDAT showed lower verbal fluency test (VFT performance, but VFT was not significantly correlated to SDT and no significant difference was seen between CDDAT and NT for SDT performance as half of the CDDAT performed substantially worse than NT while the other half performed similarly. BOLD fMRI of SDT displayed differences in the left superior frontal gyrus and posterior cingulate cortex (PCC, but not the FFA or ACC. Furthermore, although DTI showed deterioration of the right inferior and superior longitudinal fasciculi, as well as the PCC, it did not demonstrate significant deterioration of UF tracts. Taken together, early-stage CDDAT may represent a common emerging point for the loss of face labeling ability.

  20. Role of the Frontal Cortex in Standing Postural Sway Tasks While Dual-Tasking: A Functional Near-Infrared Spectroscopy Study Examining Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Hiroyuki Fujita

    2016-01-01

    Full Text Available Posture control during a dual-task involves changing the distribution of attention resources between the cognitive and motor tasks and involves the frontal cortex working memory (WM. The present study aimed to better understand the impact of frontal lobe activity and WM capacity in postural control during a dual-task. High and low WM-span groups were compared using their reading span test scores. High and low WM capacity were compared based on cognitive and balance performance and hemoglobin oxygenation (oxyHb levels during standing during single (S-S, standing during dual (S-D, one leg standing during single (O-S, and one leg standing during dual (O-D tasks. For sway pass length, significant difference in only the O-D task was observed between both groups. oxyHb levels were markedly increased in the right dorsolateral prefrontal cortex and supplementary motor area in the high-span group during a dual-task. Therefore, WM capacity influenced the allocation of attentional resources and motor performance.

  1. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    Science.gov (United States)

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  2. 5-HT has contrasting effects in the frontal cortex, but not the hypothalamus, on changes in noradrenaline efflux induced by the monoamine releasing-agent, d-amphetamine, and the reuptake inhibitor, BTS 54 354.

    Science.gov (United States)

    Géranton, Sandrine M; Heal, David J; Stanford, S Clare

    2004-03-01

    There is extensive evidence for functional interactions between central noradrenergic and serotonergic neurones. Here, dual-probe microdialysis was used in freely-moving rats to compare the effects of 5-HT on noradrenergic transmission in the rat frontal cortex and hypothalamus. We studied the effects of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA; which depleted 5-HT stores in both the frontal cortex and the hypothalamus), on spontaneous efflux of noradrenaline and on the noradrenergic responses to d-amphetamine, and the monoamine reuptake inhibitor, BTS 54 354. pCPA pretreatment alone did not affect spontaneous noradrenaline efflux in either brain region, whether or not alpha2-autoreceptors were inactivated by administration of the alpha2-antagonist, atipamezole (1 mg/kg i.p). However, in the frontal cortex, pCPA pretreatment augmented the amplitude of, and prolonged, the noradrenergic response to local infusion of d-amphetamine (10 microM). In contrast, pCPA abolished the increase in cortical noradrenaline efflux induced by local infusion of BTS 54 354 (50 microM). In the hypothalamus, pCPA did not affect the amplitude of the response to either of these agents but did prolong the effects of d-amphetamine on noradrenaline efflux. These findings suggest that serotonergic transmission has complex effects on the noradrenergic response to drugs that increase noradrenergic transmission in the frontal cortex, but has less influence in the hypothalamus.

  3. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory.

    Science.gov (United States)

    Plakke, Bethany; Hwang, Jaewon; Romanski, Lizabeth M

    2015-07-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and vocalizations in a manner that

  4. Dissociations in Hippocampal and Frontal Contributions to Episodic Memory Performance

    OpenAIRE

    Kramer, Joel H.; Rosen, Howard J.; Du, An-Tao; Schuff, Norbert; Hollnagel, Caroline; Weiner, Michael W.; Miller, Bruce L.; Delis, Dean C.

    2005-01-01

    The hippocampus and frontal lobes both contribute to episodic memory performance. In the present study, the authors evaluated the relative contributions of hippocampus, frontal lobes, anterior temporal cortex, and posterior cortex to memory performance in neurodegenerative patients and normal older controls. Subjects (n = 42) were studied with structural MRI and a memory paradigm that measured delayed recall, semantic clustering during recall, recognition discriminability, and recognition res...

  5. Segregation of the human medial prefrontal cortex in social cognition

    Directory of Open Access Journals (Sweden)

    Danilo eBzdok

    2013-05-01

    Full Text Available While the human medial prefrontal cortex (mPFC is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region’s brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (resting cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.

  6. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants.

    Directory of Open Access Journals (Sweden)

    Laura Musazzi

    2010-01-01

    Full Text Available Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release.Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated, and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486. On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats. Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability.Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress

  7. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.; Guo, X. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China); Wang, G.H. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China); Wuhan University, Institute of Neuropsychiatry, Wuhan, China, Institute of Neuropsychiatry, Wuhan University, Wuhan (China); Wang, H.L.; Liu, Z.C.; Liu, H.; Zhu, Z.X.; Li, Y. [Wuhan University, Renmin Hospital, Department of Psychiatry, Wuhan, China, Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan (China)

    2014-03-03

    Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimers disease (AD). In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS) and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD.

  8. Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress

    International Nuclear Information System (INIS)

    Yang, C.; Guo, X.; Wang, G.H.; Wang, H.L.; Liu, Z.C.; Liu, H.; Zhu, Z.X.; Li, Y.

    2014-01-01

    Studies have indicated that early-life or early-onset depression is associated with a 2- to 4-fold increased risk of developing Alzheimers disease (AD). In AD, aggregation of an abnormally phosphorylated form of the tau protein may be a key pathological event. Tau is known to play a major role in promoting microtubule assembly and stabilization, and in maintaining the normal morphology of neurons. Several studies have reported that stress may induce tau phosphorylation. The main aim of the present study was to investigate possible alterations in the tau protein in the hippocampus and frontal cortex of 32 male Sprague-Dawley rats exposed to chronic unpredictable mild stress (CUMS) and then re-exposed to CUMS to mimic depression and the recurrence of depression, respectively, in humans. We evaluated the effects of CUMS, fluoxetine, and CUMS re-exposure on tau and phospho-tau. Our results showed that a single exposure to CUMS caused a significant reduction in sucrose preference, indicating a state of anhedonia. The change in behavior was accompanied by specific alterations in phospho-tau protein levels, but fluoxetine treatment reversed the CUMS-induced impairments. Moreover, changes in sucrose preference and phospho-tau were more pronounced in rats re-exposed to CUMS than in those subjected to a single exposure. Our results suggest that changes in tau phosphorylation may contribute to the link between depression and AD

  9. Reasoning, learning, and creativity: frontal lobe function and human decision-making.

    Directory of Open Access Journals (Sweden)

    Anne Collins

    Full Text Available The frontal lobes subserve decision-making and executive control--that is, the selection and coordination of goal-directed behaviors. Current models of frontal executive function, however, do not explain human decision-making in everyday environments featuring uncertain, changing, and especially open-ended situations. Here, we propose a computational model of human executive function that clarifies this issue. Using behavioral experiments, we show that unlike others, the proposed model predicts human decisions and their variations across individuals in naturalistic situations. The model reveals that for driving action, the human frontal function monitors up to three/four concurrent behavioral strategies and infers online their ability to predict action outcomes: whenever one appears more reliable than unreliable, this strategy is chosen to guide the selection and learning of actions that maximize rewards. Otherwise, a new behavioral strategy is tentatively formed, partly from those stored in long-term memory, then probed, and if competitive confirmed to subsequently drive action. Thus, the human executive function has a monitoring capacity limited to three or four behavioral strategies. This limitation is compensated by the binary structure of executive control that in ambiguous and unknown situations promotes the exploration and creation of new behavioral strategies. The results support a model of human frontal function that integrates reasoning, learning, and creative abilities in the service of decision-making and adaptive behavior.

  10. Reasoning, learning, and creativity: frontal lobe function and human decision-making.

    Science.gov (United States)

    Collins, Anne; Koechlin, Etienne

    2012-01-01

    The frontal lobes subserve decision-making and executive control--that is, the selection and coordination of goal-directed behaviors. Current models of frontal executive function, however, do not explain human decision-making in everyday environments featuring uncertain, changing, and especially open-ended situations. Here, we propose a computational model of human executive function that clarifies this issue. Using behavioral experiments, we show that unlike others, the proposed model predicts human decisions and their variations across individuals in naturalistic situations. The model reveals that for driving action, the human frontal function monitors up to three/four concurrent behavioral strategies and infers online their ability to predict action outcomes: whenever one appears more reliable than unreliable, this strategy is chosen to guide the selection and learning of actions that maximize rewards. Otherwise, a new behavioral strategy is tentatively formed, partly from those stored in long-term memory, then probed, and if competitive confirmed to subsequently drive action. Thus, the human executive function has a monitoring capacity limited to three or four behavioral strategies. This limitation is compensated by the binary structure of executive control that in ambiguous and unknown situations promotes the exploration and creation of new behavioral strategies. The results support a model of human frontal function that integrates reasoning, learning, and creative abilities in the service of decision-making and adaptive behavior.

  11. New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography.

    Science.gov (United States)

    De Benedictis, Alessandro; Petit, Laurent; Descoteaux, Maxime; Marras, Carlo Efisio; Barbareschi, Mattia; Corsini, Francesco; Dallabona, Monica; Chioffi, Franco; Sarubbo, Silvio

    2016-12-01

    Extensive studies revealed that the human corpus callosum (CC) plays a crucial role in providing large-scale bi-hemispheric integration of sensory, motor and cognitive processing, especially within the frontal lobe. However, the literature lacks of conclusive data regarding the structural macroscopic connectivity of the frontal CC. In this study, a novel microdissection approach was adopted, to expose the frontal fibers of CC from the dorsum to the lateral cortex in eight hemispheres and in one entire brain. Post-mortem results were then combined with data from advanced constrained spherical deconvolution in 130 healthy subjects. We demonstrated as the frontal CC provides dense inter-hemispheric connections. In particular, we found three types of fronto-callosal fibers, having a dorso-ventral organization. First, the dorso-medial CC fibers subserve homotopic connections between the homologous medial cortices of the superior frontal gyrus. Second, the ventro-lateral CC fibers subserve homotopic connections between lateral frontal cortices, including both the middle frontal gyrus and the inferior frontal gyrus, as well as heterotopic connections between the medial and lateral frontal cortices. Third, the ventro-striatal CC fibers connect the medial and lateral frontal cortices with the contralateral putamen and caudate nucleus. We also highlighted an intricate crossing of CC fibers with the main association pathways terminating in the lateral regions of the frontal lobes. This combined approach of ex vivo microdissection and in vivo diffusion tractography allowed demonstrating a previously unappreciated three-dimensional architecture of the anterior frontal CC, thus clarifying the functional role of the CC in mediating the inter-hemispheric connectivity. Hum Brain Mapp 37:4718-4735, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Dissociable effects of cingulate and medial frontal cortex lesions on stimulus-reward learning using a novel Pavlovian autoshaping procedure for the rat: implications for the neurobiology of emotion.

    Science.gov (United States)

    Bussey, T J; Everitt, B J; Robbins, T W

    1997-10-01

    The effects of quinolinic acid-induced lesions of the anterior cingulate, posterior cingulate, and medial frontal cortices on stimulus-reward learning were investigated with a novel Pavlovian autoshaping procedure in an apparatus allowing the automated presentation of computer-graphic stimuli to rats (T. J. Bussey, J. L. Muir, & T. W. Robbins, 1994). White vertical rectangles were presented on the left or the right of a computer screen. One of these conditioned stimuli (the CS+) was always followed by the presentation of a sucrose pellet; the other, the CS-, was never followed by reward. With training, rats came to approach the CS+ more often than the CS-. Anterior cingulate cortex-lesioned rats failed to demonstrate normal discriminated approach, making significantly more approaches to the CS- than did sham-operated controls. Medial frontal cortex-lesioned rats acquired the task normally but had longer overall approach latencies. Posterior cingulate cortex lesions did not affect acquisition.

  13. Drug Addiction and Its Underlying Neurobiological Basis: Neuroimaging Evidence for the Involvement of the Frontal Cortex

    Science.gov (United States)

    Goldstein, Rita Z.; Volkow, Nora D.

    2005-01-01

    Objective Studies of the neurobiological processes underlying drug addiction primarily have focused on limbic subcortical structures. Here the authors evaluated the role of frontal cortical structures in drug addiction. Method An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed. This model and findings from neuroimaging studies on the behavioral, cognitive, and emotional processes that are at the core of drug addiction were used to analyze the involvement of frontal structures in drug addiction. Results The orbitofrontal cortex and the anterior cingulate gyrus, which are regions neuroanatomically connected with limbic structures, are the frontal cortical areas most frequently implicated in drug addiction. They are activated in addicted subjects during intoxication, craving, and bingeing, and they are deactivated during withdrawal. These regions are also involved in higher-order cognitive and motivational functions, such as the ability to track, update, and modulate the salience of a reinforcer as a function of context and expectation and the ability to control and inhibit prepotent responses. Conclusions These results imply that addiction connotes cortically regulated cognitive and emotional processes, which result in the overvaluing of drug reinforcers, the undervaluing of alternative reinforcers, and deficits in inhibitory control for drug responses. These changes in addiction, which the authors call I-RISA (impaired response inhibition and salience attribution), expand the traditional concepts of drug dependence that emphasize limbic-regulated responses to pleasure and reward. PMID:12359667

  14. Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer’s disease

    Science.gov (United States)

    Franzmeier, Nicolai; Düzel, Emrah; Jessen, Frank; Buerger, Katharina; Levin, Johannes; Duering, Marco; Dichgans, Martin; Haass, Christian; Suárez-Calvet, Marc; Fagan, Anne M; Paumier, Katrina; Benzinger, Tammie; Masters, Colin L; Morris, John C; Perneczky, Robert; Janowitz, Daniel; Catak, Cihan; Wolfsgruber, Steffen; Wagner, Michael; Teipel, Stefan; Kilimann, Ingo; Ramirez, Alfredo; Rossor, Martin; Jucker, Mathias; Chhatwal, Jasmeer; Spottke, Annika; Boecker, Henning; Brosseron, Frederic; Falkai, Peter; Fliessbach, Klaus; Heneka, Michael T; Laske, Christoph; Nestor, Peter; Peters, Oliver; Fuentes, Manuel; Menne, Felix; Priller, Josef; Spruth, Eike J; Franke, Christiana; Schneider, Anja; Kofler, Barbara; Westerteicher, Christine; Speck, Oliver; Wiltfang, Jens; Bartels, Claudia; Araque Caballero, Miguel Ángel; Metzger, Coraline; Bittner, Daniel; Weiner, Michael; Lee, Jae-Hong; Salloway, Stephen; Danek, Adrian; Goate, Alison; Schofield, Peter R; Bateman, Randall J; Ewers, Michael

    2018-01-01

    Abstract Patients with Alzheimer’s disease vary in their ability to sustain cognitive abilities in the presence of brain pathology. A major open question is which brain mechanisms may support higher reserve capacity, i.e. relatively high cognitive performance at a given level of Alzheimer’s pathology. Higher functional MRI-assessed functional connectivity of a hub in the left frontal cortex is a core candidate brain mechanism underlying reserve as it is associated with education (i.e. a protective factor often associated with higher reserve) and attenuated cognitive impairment in prodromal Alzheimer’s disease. However, no study has yet assessed whether such hub connectivity of the left frontal cortex supports reserve throughout the evolution of pathological brain changes in Alzheimer’s disease, including the presymptomatic stage when cognitive decline is subtle. To address this research gap, we obtained cross-sectional resting state functional MRI in 74 participants with autosomal dominant Alzheimer’s disease, 55 controls from the Dominantly Inherited Alzheimer’s Network and 75 amyloid-positive elderly participants, as well as 41 amyloid-negative cognitively normal elderly subjects from the German Center of Neurodegenerative Diseases multicentre study on biomarkers in sporadic Alzheimer’s disease. For each participant, global left frontal cortex connectivity was computed as the average resting state functional connectivity between the left frontal cortex (seed) and each voxel in the grey matter. As a marker of disease stage, we applied estimated years from symptom onset in autosomal dominantly inherited Alzheimer’s disease and cerebrospinal fluid tau levels in sporadic Alzheimer’s disease cases. In both autosomal dominant and sporadic Alzheimer’s disease patients, higher levels of left frontal cortex connectivity were correlated with greater education. For autosomal dominant Alzheimer’s disease, a significant left frontal cortex connectivity

  15. Prenatal alcohol exposure alters p35, CDK5 and GSK3β in the medial frontal cortex and hippocampus of adolescent mice

    Directory of Open Access Journals (Sweden)

    Samantha L. Goggin

    2014-01-01

    Full Text Available Fetal alcohol spectrum disorders (FASDs are the number one cause of preventable mental retardation. An estimated 2–5% of children are diagnosed as having a FASD. While it is known that children prenatally exposed to alcohol experience cognitive deficits and a higher incidence of psychiatric illness later in life, the pathways underlying these abnormalities remain uncertain. GSK3β and CDK5 are protein kinases that are converging points for a vast number of signaling cascades, including those controlling cellular processes critical to learning and memory. We investigated whether levels of GSK3β and CDK5 are affected by moderate prenatal alcohol exposure (PAE, specifically in the hippocampus and medial frontal cortex of the adolescent mouse. In the present work we utilized immunoblotting techniques to demonstrate that moderate PAE increased hippocampal p35 and β-catenin, and decreased total levels of GSK3β, while increasing GSK3β Ser9 and Tyr216 phosphorylation. Interestingly, different alterations were seen in the medial frontal cortex where p35 and CDK5 were decreased and increased total GSK3β was accompanied by reduced Tyr216 of the enzyme. These results suggest that kinase dysregulation during adolescence might be an important contributing factor to the effects of PAE on hippocampal and medial frontal cortical functioning; and by extension, that global modulation of these kinases may produce differing effects depending on brain region.

  16. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation.

    Science.gov (United States)

    Nagarajan, Raman P; Hogart, Amber R; Gwye, Ynnez; Martin, Michelle R; LaSalle, Janine M

    2006-01-01

    Mutations in MECP2, encoding methyl CpG binding protein 2 (MeCP2), cause most cases of Rett syndrome (RTT), an X-linked neurodevelopmental disorder. Both RTT and autism are "pervasive developmental disorders" and share a loss of social, cognitive and language skills and a gain in repetitive stereotyped behavior, following apparently normal perinatal development. Although MECP2 coding mutations are a rare cause of autism, MeCP2 expression defects were previously found in autism brain. To further study the role of MeCP2 in autism spectrum disorders (ASDs), we determined the frequency of MeCP2 expression defects in brain samples from autism and other ASDs. We also tested the hypotheses that MECP2 promoter mutations or aberrant promoter methylation correlate with reduced expression in cases of idiopathic autism. MeCP2 immunofluorescence in autism and other neurodevelopmental disorders was quantified by laser scanning cytometry and compared with control postmortem cerebral cortex samples on a large tissue microarray. A significant reduction in MeCP2 expression compared to age-matched controls was found in 11/14 autism (79%), 9/9 RTT (100%), 4/4 Angelman syndrome (100%), 3/4 Prader-Willi syndrome (75%), 3/5 Down syndrome (60%), and 2/2 attention deficit hyperactivity disorder (100%) frontal cortex samples. One autism female was heterozygous for a rare MECP2 promoter variant that correlated with reduced MeCP2 expression. A more frequent occurrence was significantly increased MECP2 promoter methylation in autism male frontal cortex compared to controls. Furthermore, percent promoter methylation of MECP2 significantly correlated with reduced MeCP2 protein expression. These results suggest that both genetic and epigenetic defects lead to reduced MeCP2 expression and may be important in the complex etiology of autism.

  17. Exon microarray analysis of human dorsolateral prefrontal cortex in alcoholism.

    Science.gov (United States)

    Manzardo, Ann M; Gunewardena, Sumedha; Wang, Kun; Butler, Merlin G

    2014-06-01

    Alcohol abuse is associated with cellular and biochemical disturbances that impact upon protein and nucleic acid synthesis, brain development, function, and behavioral responses. To further characterize the genetic influences in alcoholism and the effects of alcohol consumption on gene expression, we used a highly sensitive exon microarray to examine mRNA expression in human frontal cortex of alcoholics and control males. Messenger RNA was isolated from the dorsolateral prefrontal cortex (dlPFC; Brodmann area 9) of 7 adult alcoholic (6 males, 1 female, mean age 49 years) and 7 matched controls. Affymetrix Human Exon 1.0 ST array was performed according to standard procedures and the results analyzed at the gene level. Microarray findings were validated using quantitative reverse transcription polymerase chain reaction, and the ontology of disturbed genes characterized using Ingenuity Pathway Analysis (IPA). Decreased mRNA expression was observed for genes involved in cellular adhesion (e.g., CTNNA3, ITGA2), transport (e.g., TF, ABCA8), nervous system development (e.g., LRP2, UGT8, GLDN), and signaling (e.g., RASGRP3, LGR5) with influence over lipid and myelin synthesis (e.g., ASPA, ENPP2, KLK6). IPA identified disturbances in network functions associated with neurological disease and development including cellular assembly and organization impacting on psychological disorders. Our data in alcoholism support a reduction in expression of dlPFC mRNA for genes involved with neuronal growth, differentiation, and signaling that targets white matter of the brain. Copyright © 2014 by the Research Society on Alcoholism.

  18. Passive heat exposure induced by hot water leg immersion increased oxyhemoglobin in pre-frontal cortex to preserve oxygenation and did not contribute to impaired cognitive functioning

    Science.gov (United States)

    Wijayanto, Titis; Toramoto, Sayo; Tochihara, Yutaka

    2013-07-01

    This study investigated the effects of passive heat exposure on pre-frontal cortex oxygenation and cognitive functioning, specifically to examine whether the change in pre-frontal cortex oxygenation coincided with cognitive functioning during heat exposure. Eleven male students who participated in this study immersed their lower legs to the knees in three different water temperatures, 38 °C, 40 °C, and 42 °C water in an air temperature of 28 º C and 50 % relative humidity for 60 min. After 45 min of leg immersion they performed cognitive functioning tasks assessing their short-term memory while immersing their lower legs. There were higher rectal temperature ( P 0.05). No statistical difference in cognitive functioning among the three conditions was observed with a higher increase of oxyhemoglobin during the cognitive functioning in the 42 °C condition for the left ( P = 0.05) and right ( P thermally comfortable.

  19. Synaptic proteome changes in the superior frontal gyrus and occipital cortex of the alcoholic brain.

    Science.gov (United States)

    Etheridge, Naomi; Lewohl, Joanne M; Mayfield, R Dayne; Harris, R Adron; Dodd, Peter R

    2009-06-24

    Cognitive deficits and behavioral changes that result from chronic alcohol abuse are a consequence of neuropathological changes which alter signal transmission through the neural network. To focus on the changes that occur at the point of connection between the neural network cells, synaptosomal preparations from post-mortem human brain of six chronic alcoholics and six non-alcoholic controls were compared using 2D-DIGE. Functionally affected and spared regions (superior frontal gyrus, SFG, and occipital cortex, OC, respectively) were analyzed from both groups to further investigate the specific pathological response that alcoholism has on the brain. Forty-nine proteins were differentially regulated between the SFG of alcoholics and the SFG of controls and 94 proteins were regulated in the OC with an overlap of 23 proteins. Additionally, the SFG was compared to the OC within each group (alcoholics or controls) to identify region specific differences. A selection were identified by MALDI-TOF mass spectrometry revealing proteins involved in vesicle transport, metabolism, folding and trafficking, and signal transduction, all of which have the potential to influence synaptic activity. A number of proteins identified in this study have been previously related to alcoholism; however, the focus on synaptic proteins has also uncovered novel alcoholism-affected proteins. Further exploration of these proteins will illuminate the mechanisms altering synaptic plasticity, and thus neuronal signaling and response, in the alcoholic brain.

  20. Connectivity between Right Inferior Frontal Gyrus and Supplementary Motor Area Predicts After-Effects of Right Frontal Cathodal tDCS on Picture Naming Speed

    DEFF Research Database (Denmark)

    Rosso, Charlotte; Valabregue, R.; Arbizy, C.

    2014-01-01

    Background: Cathodal transcranial direct current stimulation (tDCS) of the right frontal cortex improves language abilities in post-stroke aphasic patients. Yet little is known about the effects of right frontal cathodal tDCS on normal language function. Objective/hypothesis: To explore the catho...

  1. A hierarchy of timescales explains distinct effects of local inhibition of primary visual cortex and frontal eye fields.

    Science.gov (United States)

    Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B

    2016-09-06

    Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.

  2. Estrogens regulate neuroinflammatory genes via estrogen receptors α and β in the frontal cortex of middle-aged female rats

    Directory of Open Access Journals (Sweden)

    Mahó Sándor

    2011-07-01

    Full Text Available Abstract Background Estrogens exert anti-inflammatory and neuroprotective effects in the brain mainly via estrogen receptors α (ERα and β (ERβ. These receptors are members of the nuclear receptor superfamily of ligand-dependent transcription factors. This study was aimed at the elucidation of the effects of ERα and ERβ agonists on the expression of neuroinflammatory genes in the frontal cortex of aging female rats. Methods To identify estrogen-responsive immunity/inflammation genes, we treated middle-aged, ovariectomized rats with 17β-estradiol (E2, ERα agonist 16α-lactone-estradiol (16α-LE2 and ERβ agonist diarylpropionitrile (DPN, or vehicle by Alzet minipump delivery for 29 days. Then we compared the transcriptomes of the frontal cortex of estrogen-deprived versus ER agonist-treated animals using Affymetrix Rat230 2.0 expression arrays and TaqMan-based quantitative real-time PCR. Microarray and PCR data were evaluated by using Bioconductor packages and the RealTime StatMiner software, respectively. Results Microarray analysis revealed the transcriptional regulation of 21 immunity/inflammation genes by 16α-LE2. The subsequent comparative real-time PCR study analyzed the isotype specific effects of ER agonists on neuroinflammatory genes of primarily glial origin. E2 regulated the expression of sixteen genes, including down-regulation of complement C3 and C4b, Ccl2, Tgfb1, macrophage expressed gene Mpeg1, RT1-Aw2, Cx3cr1, Fcgr2b, Cd11b, Tlr4 and Tlr9, and up-regulation of defensin Np4 and RatNP-3b, IgG-2a, Il6 and ER gene Esr1. Similar to E2, both 16α-LE2 and DPN evoked up-regulation of defensins, IgG-2a and Il6, and down-regulation of C3 and its receptor Cd11b, Ccl2, RT1-Aw2 and Fcgr2b. Conclusions These findings provide evidence that E2, 16α-LE2 and DPN modulate the expression of neuroinflammatory genes in the frontal cortex of middle-aged female rats via both ERα and ERβ. We propose that ERβ is a promising target to suppress

  3. Selective activation of the superior frontal gyrus in task-switching: an event-related fNIRS study.

    Science.gov (United States)

    Cutini, Simone; Scatturin, Pietro; Menon, Enrica; Bisiacchi, Patrizia Silvia; Gamberini, Luciano; Zorzi, Marco; Dell'Acqua, Roberto

    2008-08-15

    In the task-switching paradigm, reaction time is longer and accuracy is worse in switch trials relative to repetition trials. This so-called switch cost has been ascribed to the engagement of control processes required to alternate between distinct stimulus-response mapping rules. Neuroimaging studies have reported an enhanced activation of the human lateral prefrontal cortex and the superior frontal gyrus during the task-switching paradigm. Whether neural activation in these regions is dissociable and associated with separable cognitive components of task switching has been a matter of recent debate. We used multi-channel near-infrared spectroscopy (fNIRS) to measure brain cortical activity in a task-switching paradigm designed to avoid task differences, order predictability, and frequency effects. The results showed a generalized bilateral activation of the lateral prefrontal cortex and the superior frontal gyrus in both switch trials and repetition trials. To isolate the activity selectively associated with the task-switch, the overall activity recorded during repetition trials was subtracted from the activity recorded during switch trials. Following subtraction, the remaining activity was entirely confined to the left portion of the superior frontal gyrus. The present results suggest that factors associated with load and maintenance of distinct stimulus-response mapping rules in working memory are likely contributors to the activation of the lateral prefrontal cortex, whereas only activity in the left superior frontal gyrus can be linked unequivocally to switching between distinct cognitive tasks.

  4. Spike-timing-dependent plasticity in the human dorso-lateral prefrontal cortex.

    Science.gov (United States)

    Casula, Elias Paolo; Pellicciari, Maria Concetta; Picazio, Silvia; Caltagirone, Carlo; Koch, Giacomo

    2016-12-01

    Changes in the synaptic strength of neural connections are induced by repeated coupling of activity of interconnected neurons with precise timing, a phenomenon known as spike-timing-dependent plasticity (STDP). It is debated if this mechanism exists in large-scale cortical networks in humans. We combined transcranial magnetic stimulation (TMS) with concurrent electroencephalography (EEG) to directly investigate the effects of two paired associative stimulation (PAS) protocols (fronto-parietal and parieto-frontal) of pre and post-synaptic inputs within the human fronto-parietal network. We found evidence that the dorsolateral prefrontal cortex (DLPFC) has the potential to form robust STDP. Long-term potentiation/depression of TMS-evoked cortical activity is prompted after that DLPFC stimulation is followed/preceded by posterior parietal stimulation. Such bidirectional changes are paralleled by sustained increase/decrease of high-frequency oscillatory activity, likely reflecting STDP responsivity. The current findings could be important to drive plasticity of damaged cortical circuits in patients with cognitive or psychiatric disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Visual Categorization and the Parietal Cortex

    Directory of Open Access Journals (Sweden)

    Jamie K Fitzgerald

    2012-05-01

    Full Text Available The primate brain is adept at rapidly grouping items and events into functional classes, or categories, in order to recognize the significance of stimuli and guide behavior. Higher cognitive functions have traditionally been considered the domain of frontal areas. However, increasing evidence suggests that parietal cortex is also involved in categorical and associative processes. Previous work showed that the parietal cortex is highly involved in spatial processing, attention and saccadic eye movement planning, and more recent studies have found decision-making signals in LIP. We recently found that a subdivision of parietal cortex, the lateral intraparietal area (LIP, reflects learned categories for multiple types of visual stimuli. Additionally, a comparison of categorization signals in parietal and frontal areas found stronger and earlier categorization signals in parietal cortex, arguing that parietal abstract association or category signals are unlikely to arise via feedback from prefrontal cortex (PFC.

  6. Modulation of sibutramine-induced increases in extracellular noradrenaline concentration in rat frontal cortex and hypothalamus by α2-adrenoceptors

    Science.gov (United States)

    Wortley, K E; Heal, D J; Stanford, S C

    1999-01-01

    The effects of sibutramine (0.25–10 mg kg−1 i.p.) on extracellular noradrenaline concentration in the frontal cortex and hypothalamus of freely-moving rats were investigated using microdialysis. The role of presynaptic α2-adrenoceptors in modulating the effects of sibutramine in these brain areas was also determined.Sibutramine induced an increase in extracellular noradrenaline concentration, the magnitude of which paralleled dose, in both brain areas. In the cortex, this increase was gradual and sustained, whereas in the hypothalamus it was more rapid and of shorter duration.In both the cortex and hypothalamus, pretreatment of rats with the α2-adrenoceptor antagonist RX821002 (3 mg kg−1 i.p.) potentiated increases in the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.), by 7 and 10 fold respectively. RX821002 also reduced the latency of sibutramine to reach its maximum effect in the cortex, but not in the hypothalamus.Infusion of RX821002 (1 μM) via the probe increased the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.) in both brain areas. In the hypothalamus, the effects of RX821002 on the accumulation of noradrenaline induced by sibutramine were 2 fold greater than those in the cortex.These findings support evidence that sibutramine inhibits the reuptake of noradrenaline in vivo, but that the accumulation of extracellular noradrenaline is limited by noradrenergic activation of presynaptic α2-adrenoceptors. Furthermore, the data suggest that terminal α2-adrenoceptors in the hypothalamus exert a greater inhibitory effect over the control of extracellular noradrenaline accumulation than do those in the cortex. PMID:10516646

  7. Learning of spatial relationships between observed and imitated actions allows invariant inverse computation in the frontal mirror neuron system.

    Science.gov (United States)

    Oh, Hyuk; Gentili, Rodolphe J; Reggia, James A; Contreras-Vidal, José L

    2011-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator's frontal mirror neuron system can be trained to provide the motor plans for the imitated actions.

  8. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.

    Science.gov (United States)

    Chudasama, Y; Robbins, Trevor W

    2003-09-24

    To examine possible heterogeneity of function within the ventral regions of the rodent frontal cortex, the present study compared the effects of excitotoxic lesions of the orbitofrontal cortex (OFC) and the infralimbic cortex (ILC) on pavlovian autoshaping and discrimination reversal learning. During the pavlovian autoshaping task, in which rats learn to approach a stimulus predictive of reward [conditional stimulus (CS+)], only the OFC group failed to acquire discriminated approach but was unimpaired when preoperatively trained. In the visual discrimination learning and reversal task, rats were initially required to discriminate a stimulus positively associated with reward. There was no effect of either OFC or ILC lesions on discrimination learning. When the stimulus-reward contingencies were reversed, both groups of animals committed more errors, but only the OFC-lesioned animals were unable to suppress the previously rewarded stimulus-reward association, committing more "stimulus perseverative" errors. In contrast, the ILC group showed a pattern of errors that was more attributable to "learning" than perseveration. These findings suggest two types of dissociation between the effects of OFC and ILC lesions: (1) OFC lesions impaired the learning processes implicated in pavlovian autoshaping but not instrumental simultaneous discrimination learning, whereas ILC lesions were unimpaired at autoshaping and their reversal learning deficit did not reflect perseveration, and (2) OFC lesions induced perseverative responding in reversal learning but did not disinhibit responses to pavlovian CS-. In contrast, the ILC lesion had no effect on response inhibitory control in either of these settings. The findings are discussed in the context of dissociable executive functions in ventral sectors of the rat prefrontal cortex.

  9. Monetary reward activates human prefrontal cortex

    International Nuclear Information System (INIS)

    Thut, G.; Roelcke, U.; Nienhusmeier, M.; Missimer, J.; Maguire, R.P.; Leenders, K.L.; Schultz, W.

    1997-01-01

    We present a rCBF PET activation study, in which we demonstrated that reward processing in humans activates a cortical-subcortical network including dorsolateral prefrontal, orbital frontal, thalamic and midbrain regions. It is suggested that, as found for non-human primates, the basal ganglia-thalamo-cortical system is implicated in reward processing. (author) 1 fig., 3 refs

  10. Human left ventral premotor cortex mediates matching of hand posture to object use.

    Directory of Open Access Journals (Sweden)

    Guy Vingerhoets

    Full Text Available Visuomotor transformations for grasping have been associated with a fronto-parietal network in the monkey brain. The human homologue of the parietal monkey region (AIP has been identified as the anterior part of the intraparietal sulcus (aIPS, whereas the putative human equivalent of the monkey frontal region (F5 is located in the ventral part of the premotor cortex (vPMC. Results from animal studies suggest that monkey F5 is involved in the selection of appropriate hand postures relative to the constraints of the task. In humans, the functional roles of aIPS and vPMC appear to be more complex and the relative contribution of each region to grasp selection remains uncertain. The present study aimed to identify modulation in brain areas sensitive to the difficulty level of tool object - hand posture matching. Seventeen healthy right handed participants underwent fMRI while observing pictures of familiar tool objects followed by pictures of hand postures. The task was to decide whether the hand posture matched the functional use of the previously shown object. Conditions were manipulated for level of difficulty. Compared to a picture matching control task, the tool object - hand posture matching conditions conjointly showed increased modulation in several left hemispheric regions of the superior and inferior parietal lobules (including aIPS, the middle occipital gyrus, and the inferior temporal gyrus. Comparison of hard versus easy conditions selectively modulated the left inferior frontal gyrus with peak activity located in its opercular part (Brodmann area (BA 44. We suggest that in the human brain, vPMC/BA44 is involved in the matching of hand posture configurations in accordance with visual and functional demands.

  11. Synchronous retinotopic frontal-temporal activity during long-term memory for spatial location.

    Science.gov (United States)

    Slotnick, Scott D

    2010-05-12

    Early visual areas in occipital cortex are known to be retinotopic. Recently, retinotopic maps have been reported in frontal and parietal cortex during spatial attention and working memory. The present event-related potential (ERP) and functional magnetic resonance imaging (fMRI) study determined whether spatial long-term memory was associated with retinotopic activity in frontal and parietal regions, and assessed whether retinotopic activity in these higher level control regions was synchronous with retinotopic activity in lower level visual sensory regions. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old and new shapes were presented at fixation and participants classified each shape as old and previously on the "left", old and previously on the "right", or "new". Retinotopic effects were manifested by accurate memory for items previously presented on the left producing activity in the right hemisphere and accurate memory for items previously presented on the right producing activity in the left hemisphere. Retinotopic ERP activity was observed in frontal regions and visual sensory (occipital and temporal) regions. In frontal cortex, retinotopic fMRI activity was localized to the frontal eye fields. There were no significant ERP or fMRI retinotopic memory effects in parietal regions. The present long-term memory retinotopic effects complement previous spatial attention and working memory findings (and suggest retinotopic activity in parietal cortex may require an external peripheral stimulus). Furthermore, ERP cross-correlogram analysis revealed that retinotopic activations in frontal and temporal regions were synchronous, indicating that these regions interact during retrieval of spatial information. (c) 2010 Elsevier B.V. All rights reserved.

  12. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats.

    Science.gov (United States)

    Sandoval-Salazar, Cuauhtemoc; Ramírez-Emiliano, Joel; Trejo-Bahena, Aurora; Oviedo-Solís, Cecilia I; Solís-Ortiz, Martha Silvia

    2016-02-29

    It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  13. Neurocomputational Consequences of Evolutionary Connectivity Changes in Perisylvian Language Cortex

    OpenAIRE

    Schomers, M.R.; Garagnani, M.; Pulvermüller, F.

    2017-01-01

    The human brain sets itself apart from that of its primate relatives by specific neuroanatomical features, especially the strong linkage of left perisylvian language areas (frontal and temporal cortex) by way of the arcuate fasciculus (AF). AF connectivity has been shown to correlate with verbal working memory?a specifically human trait providing the foundation for language abilities?but a mechanistic explanation of any related causal link between anatomical structure and cognitive function i...

  14. Learning of Spatial Relationships between Observed and Imitated Actions allows Invariant Inverse Computation in the Frontal Mirror Neuron System

    Science.gov (United States)

    Oh, Hyuk; Gentili, Rodolphe J.; Reggia, James A.; Contreras-Vidal, José L.

    2014-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator’s frontal mirror neuron system can be trained to provide the motor plans for the imitated actions. PMID:22255261

  15. Effects of Crocin on Learning and Memory in Rats Under Chronic Restraint Stress with Special Focus on the Hippocampal and Frontal Cortex Corticosterone Levels.

    Science.gov (United States)

    Dastgerdi, Azadehalsadat Hosseini; Radahmadi, Maryam; Pourshanazari, Ali Asghar; Dastgerdi, Hajaralsadat Hosseini

    2017-01-01

    Chronic stress adversely influences brain functions while crocin, as an effective component of saffron, exhibits positive effects on memory processes. This study investigated the effects of different doses of crocin on the improvement of learning and memory as well as corticosterone (CORT) levels in the hippocampus and frontal cortex of rats subjected to chronic stress. Forty male rats were randomly allocated to five different groups ( n = 8): Control, sham; stress (6 h/day for 21 days) groups, and two groups receiving daily intraperitoneal injections of one of two doses (30 and 60 mg/kg) of crocin accompanied by 21 days of restraint stress. Latency was evaluated as a brain function using the passive avoidance test before and one-day after a foot shock. CORT levels were measured in the homogenized hippocampus and frontal cortex. Results revealed that chronic stress had a significantly ( P effect on memory. Crocin (30 and 60 mg/kg), however, gave increase to significantly ( P effects than its higher (60 mg/kg) dose on learning and memory under chronic stress conditions. Moreover, it was speculated that different doses of crocin act on different neurotransmitters and biochemical factors in the brain.

  16. Transcriptional response of rat frontal cortex following acute In Vivo exposure to the pyrethroid insecticides permethrin and deltamethrin

    Directory of Open Access Journals (Sweden)

    Tornero-Velez Rogelio

    2008-11-01

    Full Text Available Abstract Background Pyrethroids are neurotoxic pesticides that interact with membrane bound ion channels in neurons and disrupt nerve function. The purpose of this study was to characterize and explore changes in gene expression that occur in the rat frontal cortex, an area of CNS affected by pyrethroids, following an acute low-dose exposure. Results Rats were acutely exposed to either deltamethrin (0.3 – 3 mg/kg or permethrin (1 – 100 mg/kg followed by collection of cortical tissue at 6 hours. The doses used range from those that cause minimal signs of intoxication at the behavioral level to doses well below apparent no effect levels in the whole animal. A statistical framework based on parallel linear (SAM and isotonic regression (PIR methods identified 95 and 53 probe sets as dose-responsive. The PIR analysis was most sensitive for detecting transcripts with changes in expression at the NOAEL dose. A sub-set of genes (Camk1g, Ddc, Gpd3, c-fos and Egr1 was then confirmed by qRT-PCR and examined in a time course study. Changes in mRNA levels were typically less than 3-fold in magnitude across all components of the study. The responses observed are consistent with pyrethroids producing increased neuronal excitation in the cortex following a low-dose in vivo exposure. In addition, Significance Analysis of Function and Expression (SAFE identified significantly enriched gene categories common for both pyrethroids, including some relating to branching morphogenesis. Exposure of primary cortical cell cultures to both compounds resulted in an increase (~25% in the number of neurite branch points, supporting the results of the SAFE analysis. Conclusion In the present study, pyrethroids induced changes in gene expression in the frontal cortex near the threshold for decreases in ambulatory motor activity in vivo. The penalized regression methods performed similarly in detecting dose-dependent changes in gene transcription. Finally, SAFE analysis of

  17. Evolution of posterior parietal cortex and parietal-frontal networks for specific actions in primates.

    Science.gov (United States)

    Kaas, Jon H; Stepniewska, Iwona

    2016-02-15

    Posterior parietal cortex (PPC) is an extensive region of the human brain that develops relatively late and is proportionally large compared with that of monkeys and prosimian primates. Our ongoing comparative studies have led to several conclusions about the evolution of this posterior parietal region. In early placental mammals, PPC likely was a small multisensory region much like PPC of extant rodents and tree shrews. In early primates, PPC likely resembled that of prosimian galagos, in which caudal PPC (PPCc) is visual and rostral PPC (PPCr) has eight or more multisensory domains where electrical stimulation evokes different complex motor behaviors, including reaching, hand-to-mouth, looking, protecting the face or body, and grasping. These evoked behaviors depend on connections with functionally matched domains in premotor cortex (PMC) and motor cortex (M1). Domains in each region compete with each other, and a serial arrangement of domains allows different factors to influence motor outcomes successively. Similar arrangements of domains have been retained in New and Old World monkeys, and humans appear to have at least some of these domains. The great expansion and prolonged development of PPC in humans suggest the addition of functionally distinct territories. We propose that, across primates, PMC and M1 domains are second and third levels in a number of parallel, interacting networks for mediating and selecting one type of action over others. © 2015 Wiley Periodicals, Inc.

  18. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc Sandoval-Salazar

    Full Text Available BACKGROUND: It has been proposed that the γ-aminobutyric acid (GABA plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC. It has been also proposed that the high-fat diet (HFD could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats RESULTS: The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats CONCLUSIONS: HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  19. Perinatal nicotine treatment induces transient increases in NACHO protein levels in the rat frontal cortex

    DEFF Research Database (Denmark)

    Wichern, Franziska; Jensen, Majbrit M; Christensen, Ditte Z

    2017-01-01

    The nicotinic acetylcholine receptor (nAChR) regulator chaperone (NACHO) was recently identified as an important regulator of nAChR maturation and surface expression. Here we show that NACHO levels decrease during early postnatal development in rats. This decrease occurs earlier and to a greater...... degree in the frontal cortex (FC) compared with the hippocampus (HIP). We further show that rats exposed to nicotine during pre- and postnatal development exhibit significantly higher NACHO levels in the FC at postnatal day (PND) 21, but not at PND60. Repeated exposure to nicotine selectively during...... a single exposure to a combination of nicotine and the type II α7 nAChR positive allosteric modulator (PAM) PNU-120596, but not the type I PAM AVL-3288. These findings suggest that exposure to nAChR agonism affects NACHO protein levels, and that this effect is more pronounced during pre- or early postnatal...

  20. Prefrontal cortex and somatosensory cortex in tactile crossmodal association: an independent component analysis of ERP recordings.

    Directory of Open Access Journals (Sweden)

    Yixuan Ku

    2007-08-01

    Full Text Available Our previous studies on scalp-recorded event-related potentials (ERPs showed that somatosensory N140 evoked by a tactile vibration in working memory tasks was enhanced when human subjects expected a coming visual stimulus that had been paired with the tactile stimulus. The results suggested that such enhancement represented the cortical activities involved in tactile-visual crossmodal association. In the present study, we further hypothesized that the enhancement represented the neural activities in somatosensory and frontal cortices in the crossmodal association. By applying independent component analysis (ICA to the ERP data, we found independent components (ICs located in the medial prefrontal cortex (around the anterior cingulate cortex, ACC and the primary somatosensory cortex (SI. The activity represented by the IC in SI cortex showed enhancement in expectation of the visual stimulus. Such differential activity thus suggested the participation of SI cortex in the task-related crossmodal association. Further, the coherence analysis and the Granger causality spectral analysis of the ICs showed that SI cortex appeared to cooperate with ACC in attention and perception of the tactile stimulus in crossmodal association. The results of our study support with new evidence an important idea in cortical neurophysiology: higher cognitive operations develop from the modality-specific sensory cortices (in the present study, SI cortex that are involved in sensation and perception of various stimuli.

  1. Projections of Somatosensory Cortex and Frontal Eye Fields onto Incertotectal Neurons in the Cat

    Science.gov (United States)

    Perkins, Eddie; Warren, Susan; Lin, Rick C.-S.; May, Paul J.

    2014-01-01

    The goal of this study was to determine whether the input-output characteristics of the zona incerta (ZI) are appropriate for it to serve as a conduit for cortical control over saccade-related activity in the superior colliculus. The study utilized the neuronal tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and biotinylated dextran amine (BDA) in the cat. Injections of WGA-HRP into primary somatosensory cortex (SI) revealed sparse, widespread nontopographic projections throughout ZI. In addition, region-specific areas of more intense termination were present in ventral ZI, although strict topography was not observed. In comparison, the frontal eye fields (FEF) also projected sparsely throughout ZI, but terminated more heavily, medially, along the border between the two sublaminae. Furthermore, retrogradely labeled incertocortical neurons were observed in both experiments. The relationship of these two cortical projections to incertotectal cells was also directly examined by retrogradely labeling incertotectal cells with WGA-HRP in animals that had also received cortical BDA injections. Labeled axonal arbors from both SI and FEF had thin, sparsely branched axons with numerous en passant boutons. They formed numerous close associations with the somata and dendrites of WGA-HRP-labeled incertotectal cells. In summary, these results indicate that both sensory and motor cortical inputs to ZI display similar morphologies and distributions. In addition, both display close associations with incertotectal cells, suggesting direct synaptic contact. From these data, we conclude that inputs from somatosensory and FEF cortex both play a role in controlling gaze-related activity in the superior colliculus by way of the inhibitory incertotectal projection. PMID:17083121

  2. Monkey cortex through fMRI glasses.

    Science.gov (United States)

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A

    2014-08-06

    In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. MRI volumetry of prefrontal cortex

    Science.gov (United States)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  4. Mapping visual cortex in monkeys and humans using surface-based atlases

    Science.gov (United States)

    Van Essen, D. C.; Lewis, J. W.; Drury, H. A.; Hadjikhani, N.; Tootell, R. B.; Bakircioglu, M.; Miller, M. I.

    2001-01-01

    We have used surface-based atlases of the cerebral cortex to analyze the functional organization of visual cortex in humans and macaque monkeys. The macaque atlas contains multiple partitioning schemes for visual cortex, including a probabilistic atlas of visual areas derived from a recent architectonic study, plus summary schemes that reflect a combination of physiological and anatomical evidence. The human atlas includes a probabilistic map of eight topographically organized visual areas recently mapped using functional MRI. To facilitate comparisons between species, we used surface-based warping to bring functional and geographic landmarks on the macaque map into register with corresponding landmarks on the human map. The results suggest that extrastriate visual cortex outside the known topographically organized areas is dramatically expanded in human compared to macaque cortex, particularly in the parietal lobe.

  5. Functional connectivity profile of the human inferior frontal junction: involvement in a cognitive control network

    Directory of Open Access Journals (Sweden)

    Sundermann Benedikt

    2012-10-01

    Full Text Available Abstract Background The human inferior frontal junction area (IFJ is critically involved in three main component processes of cognitive control (working memory, task switching and inhibitory control. As it overlaps with several areas in established anatomical labeling schemes, it is considered to be underreported as a functionally distinct location in the neuroimaging literature. While recent studies explicitly focused on the IFJ's anatomical organization and functional role as a single brain area, it is usually not explicitly denominated in studies on cognitive networks. However based on few analyses in small datasets constrained by specific a priori assumptions on its functional specialization, the IFJ has been postulated to be part of a cognitive control network. Goal of this meta-analysis was to establish the IFJ’s connectivity profile on a high formal level of evidence by aggregating published implicit knowledge about its co-activations. We applied meta-analytical connectivity modeling (MACM based on the activation likelihood estimation (ALE method without specific assumptions regarding functional specialization on 180 (reporting left IFJ activity and 131 (right IFJ published functional neuroimaging experiments derived from the BrainMap database. This method is based on coordinates in stereotaxic space, not on anatomical descriptors. Results The IFJ is significantly co-activated with areas in the dorsolateral and ventrolateral prefrontal cortex, anterior insula, medial frontal gyrus / pre-SMA, posterior parietal cortex, occipitotemporal junction / cerebellum, thalamus and putamen as well as language and motor areas. Results are corroborated by an independent resting-state fMRI analysis. Conclusions These results support the assumption that the IFJ is part of a previously described cognitive control network. They also highlight the involvement of subcortical structures in this system. A direct line is drawn from works on the functional

  6. Human primary visual cortex topography imaged via positron tomography

    International Nuclear Information System (INIS)

    Schwartz, E.L.; Christman, D.R.; Wolf, A.P.

    1984-01-01

    The visuotopic structure of primary visual cortex was studied in a group of 7 human volunteers using positron emission transaxial tomography (PETT) and 18 F-labeled 2-deoxy-2-fluoro-D-glucose ([ 18 F]DG). A computer animation was constructed with a spatial structure which was matched to estimates of human cortical magnification factor and to striate cortex stimulus preferences. A lateralized cortical 'checker-board' pattern of [ 18 F]DG was stimulated in primary visual cortex by having subjects view this computer animation following i.v. injection of [ 18 F]DG. The spatial structure of the stimulus was designed to produce an easily recognizable 'signature' in a series of 9 serial PETT scans obtained from each of a group of 7 volunteers. The predicted lateralized topographic 'signature' was observed in 6 of 7 subjects. Applications of this method for further PETT studies of human visual cortex are discussed. (Auth.)

  7. Genetic contributions to human brain morphology and intelligence

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Posthuma, D

    2006-01-01

    the focal GM and WM densities of each twin are correlated with the psychometric intelligence quotient of his/her cotwin. Genes influenced individual differences in left and right superior occipitofrontal fascicle (heritability up to 0.79 and 0.77), corpus callosum (0.82, 0.80), optic radiation (0.69, 0.......79), corticospinal tract (0.78, 0.79), medial frontal cortex (0.78, 0.83), superior frontal cortex (0.76, 0.80), superior temporal cortex (0.80, 0.77), left occipital cortex (0.85), left postcentral cortex (0.83), left posterior cingulate cortex (0.83), right parahippocampal cortex (0.69), and amygdala (0.80, 0......Variation in gray matter (GM) and white matter (WM) volume of the adult human brain is primarily genetically determined. Moreover, total brain volume is positively correlated with general intelligence, and both share a common genetic origin. However, although genetic effects on morphology...

  8. Disrupted Reinforcement Signaling in Orbital Frontal Cortex and Caudate in Youths with Conduct Disorder/Oppositional Defiant Disorder and High Psychopathic Traits

    Science.gov (United States)

    Finger, Elizabeth C.; Marsh, Abigail A.; Blair, Karina S.; Reid, Marguerite. E.; Sims, Courtney; Ng, Pamela; Pine, Daniel S.; Blair, R. James. R.

    2010-01-01

    OBJECTIVE Dysfunction in amygdala and orbital frontal cortex functioning has been reported in youths and adults with psychopathic traits. However, the specific nature of the computational irregularities within these brain structures remains poorly understood. The current study used the passive avoidance task to examine responsiveness of these systems to early stimulus-reinforcement exposure, when prediction errors are greatest and learning maximized, and to reward in youths with psychopathic traits and comparison youths. METHOD 30 youths (N=15 with conduct disorder or oppositional defiant disorder plus high psychopathic traits and N=15 comparison subjects) completed a 3.0 T fMRI scan while performing a passive avoidance learning task. RESULTS Relative to comparison youth, youths with conduct disorder or oppositional defiant disorder plus psychopathic traits showed reduced orbitofrontal cortex responsiveness both to early stimulus-reinforcement exposure and to rewards, as well as reduced caudate response to early stimulus-reinforcement exposure. Contrary to other predictions, however, there were no group differences in amygdala responsiveness specifically to these two task parameters. However, amygdala responsiveness throughout the task was reduced in the youths with conduct disorder or oppositional defiant disorder plus psychopathic traits. CONCLUSIONS This study demonstrates that youths with conduct disorder or oppositional defiant disorder plus psychopathic traits are marked by a compromised sensitivity to early reinforcement information in both orbitofrontal cortex and caudate and to reward outcome information within orbitofrontal cortex. They further suggest that the integrated functioning of the amygdala, caudate and orbitofrontal cortex may be disrupted in individuals with this disorder. PMID:21078707

  9. Body Topography Parcellates Human Sensory and Motor Cortex.

    Science.gov (United States)

    Kuehn, Esther; Dinse, Juliane; Jakobsen, Estrid; Long, Xiangyu; Schäfer, Andreas; Bazin, Pierre-Louis; Villringer, Arno; Sereno, Martin I; Margulies, Daniel S

    2017-07-01

    The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the validity of the Brodmann map for various cortical areas. Here, we combined in vivo cortical myelin mapping with functional connectivity analyses and topographic mapping techniques to reassess the validity of the Brodmann map in human primary sensorimotor cortex. We provide empirical evidence that area 4 and area 3b are not homogenous, but are subdivided into distinct cortical fields, each representing a major body part (the hand and the face). Myelin reductions at the hand-face borders are cortical layer-specific, and coincide with intrinsic functional connectivity borders as defined using large-scale resting state analyses. Our data extend the Brodmann model in human sensorimotor cortex and suggest that body parts are an important organizing principle, similar to the distinction between sensory and motor processing. © The Author 2017. Published by Oxford University Press.

  10. Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter.

    Science.gov (United States)

    Chesters, Jennifer; Möttönen, Riikka; Watkins, Kate E

    2018-04-01

    See Crinion (doi:10.1093/brain/awy075) for a scientific commentary on this article.Stuttering is a neurodevelopmental condition affecting 5% of children, and persisting in 1% of adults. Promoting lasting fluency improvement in adults who stutter is a particular challenge. Novel interventions to improve outcomes are of value, therefore. Previous work in patients with acquired motor and language disorders reported enhanced benefits of behavioural therapies when paired with transcranial direct current stimulation. Here, we report the results of the first trial investigating whether transcranial direct current stimulation can improve speech fluency in adults who stutter. We predicted that applying anodal stimulation to the left inferior frontal cortex during speech production with temporary fluency inducers would result in longer-lasting fluency improvements. Thirty male adults who stutter completed a randomized, double-blind, controlled trial of anodal transcranial direct current stimulation over left inferior frontal cortex. Fifteen participants received 20 min of 1-mA stimulation on five consecutive days while speech fluency was temporarily induced using choral and metronome-timed speech. The other 15 participants received the same speech fluency intervention with sham stimulation. Speech fluency during reading and conversation was assessed at baseline, before and after the stimulation on each day of the 5-day intervention, and at 1 and 6 weeks after the end of the intervention. Anodal stimulation combined with speech fluency training significantly reduced the percentage of disfluent speech measured 1 week after the intervention compared with fluency intervention alone. At 6 weeks after the intervention, this improvement was maintained during reading but not during conversation. Outcome scores at both post-intervention time points on a clinical assessment tool (the Stuttering Severity Instrument, version 4) also showed significant improvement in the group receiving

  11. Distribution of catecholamines and serotonin in the rat cerebral cortex:

    International Nuclear Information System (INIS)

    Reader, T.A.

    1981-01-01

    The rat cerebral cortex was dissected in five regions and analyzed for the catecholamines noradrenaline, adrenaline and dopamine, and for the indoleamine seroton in using sensitive radioenzymatic assay methods with thin-layer-chromatography. The noradrenaline concentration was highest in the ventral cortex, lateral to the hypothalamus, had intermediate values for the prefrontal, frontal and parietal cortical areas and was lowest in the occipital cortex. Dopamine levels were also highest in the cortex lateral to the hypothalamus, and moderate in the prefrontal and frontal cortical areas, with the lowest values measured for the occipital cortex. The ratios dopamine/noradrenaline further support the hypothesis that they are independent transmitters. Traces of adrenaline were measured in all regions examined. The serotonin distribution was found to be non-homogeneous, with the highest values for the prefrontal cortex and ventral cortex lateral to the hypothalamus. The functional significance of these amines and their ratios are discussed in relation to their role as putative modulators of cortical neuronal excitability. (author)

  12. Facilitation of acetylcholine release in rat frontal cortex by indeloxazine hydrochloride: involvement of endogenous serotonin and 5-HT4 receptors.

    Science.gov (United States)

    Yamaguchi, T; Suzuki, M; Yamamoto, M

    1997-12-01

    Effects of indeloxazine hydrochloride, an inhibitor of serotonin (5-HT) and norepinephrine (NE) reuptake with a facilitatory effect on 5-HT release, on acetylcholine (ACh) output in frontal cortex of conscious rats were characterized using an in vivo microdialysis technique. Systemic administration of indeloxazine (3 and 10 mg/kg, i.p.) increased ACh and 5-HT output in a dose-dependent manner. Depletion of endogenous monoamines by reserpine and of 5-HT by p-chlorophenylalanine, but not that of catecholamines by alpha-methyl-p-tyrosine, significantly attenuated the facilitatory effect of indeloxazine on ACh release. When applied locally by reverse dialysis, indeloxazine (10 and 30 microM) and the selective 5-HT reuptake inhibitor citalopram (10 microM), but not the NE reuptake inhibitor maprotiline (30 microM), increased cortical ACh output. Indeloxazine (10 mg/kg)-induced increase in ACh release was significantly inhibited by local application of the 5-HT4 receptor antagonists RS23597 (50 microM) and GR113803 (1 microM), while the 5-HT1A antagonist WAY-100135 (100 microM), 5-HT1A/1B/beta-adrenoceptor antagonist (-)propranolol (150 microM), 5-HT2A/2C antagonist ritanserin (10 microM) and 5-HT3 antagonist ondansetron (10 microM) failed to significantly modify this effect. Neither depletion of monoamines nor treatment with serotonergic antagonists significantly changed the basal ACh level, indicating that endogenous monoamines do not tonically activate ACh release. These results suggest that indeloxazine-induced facilitation of ACh release in rat frontal cortex is mediated by endogenous 5-HT and involves at least in part cortical 5-HT4 receptors.

  13. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Science.gov (United States)

    Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic. PMID:25729353

  14. Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans

    Science.gov (United States)

    Hecht, Erin E.; Gutman, David A.; Bradley, Bruce A.; Preuss, Todd M.; Stout, Dietrich

    2015-01-01

    Many of the behavioral capacities that distinguish humans from other primates rely on fronto-parietal circuits. The superior longitudinal fasciculus (SLF) is the primary white matter tract connecting lateral frontal with lateral parietal regions; it is distinct from the arcuate fasciculus, which interconnects the frontal and temporal lobes. Here we report a direct, quantitative comparison of SLF connectivity using virtual in vivo dissection of the SLF in chimpanzees and humans. SLF I, the superior-most branch of the SLF, showed similar patterns of connectivity between humans and chimpanzees, and was proportionally volumetrically larger in chimpanzees. SLF II, the middle branch, and SLF III, the inferior-most branch, showed species differences in frontal connectivity. In humans, SLF II showed greater connectivity with dorsolateral prefrontal cortex, whereas in chimps SLF II showed greater connectivity with the inferior frontal gyrus. SLF III was right-lateralized and proportionally volumetrically larger in humans, and human SLF III showed relatively reduced connectivity with dorsal premotor cortex and greater extension into the anterior inferior frontal gyrus, especially in the right hemisphere. These results have implications for the evolution of fronto-parietal functions including spatial attention to observed actions, social learning, and tool use, and are in line with previous research suggesting a unique role for the right anterior inferior frontal gyrus in the evolution of human fronto-parietal network architecture. PMID:25534109

  15. [Brodmann Areas 8 and 9 Including the Frontal Eye Field].

    Science.gov (United States)

    Watanabe, Masataka

    2017-04-01

    Based on cytoarchitectonic analyses, Brodmann assigned numbers 8 and 9 to certain areas of the dorsal and medial prefrontal cortex (PFC) in humans and monkeys. Petrides and Pandya re-analyzed the cytoarchitectures of the human and monkey PFCs, and proposed slightly different brain maps for both species. They assigned numbers 8, 9 and 9/46 to the areas that were originally named areas 8 and 9. Areas 8 and 9 have both lateral and medial regions respectively. The lateral area 8 is important for conditional discrimination learning. The frontal eye field which occupies the most caudal region of area 8, is responsible for visual attention and control of eye movements. The lateral area 9 and area 9/46 are functionally similar to area 46 and play important roles in executive control. The dorsomedial prefrontal cortex (DMPFC) comprises the medial regions of areas 8 and 9 and is related to "Theory of Mind" and social cognition. The DMPFC is also known to show "default mode of brain activity" (i.e., more activity during rest than during cognitive task).

  16. Clinical-physiologic correlates of Alzheimer's disease and frontal lobe dementia

    International Nuclear Information System (INIS)

    Jagust, W.J.; Reed, B.R.; Seab, J.P.; Kramer, J.H.; Budinger, T.F.

    1989-01-01

    Thirty patients with degenerative dementia underwent clinical evaluation, neuropsychological testing, and single photon emission computed tomography (SPECT) with the blood flow tracer [ 123 I]-N-isopropyl-p-iodoamphetamine. Five of these patients were clinically and psychologically different from the others, demonstrating predominant behavioral disturbances with relative preservation of memory function. These five patients, who were felt to have a frontal lobe dementia (FLD), showed SPECT perfusion patterns which differed from the remaining 25 patients, who were diagnosed as having Alzheimer's disease (AD), and from 16 healthy control subjects. The FLD patients showed diminished perfusion in orbitofrontal, dorsolateral frontal, and temporal cortex relative to controls, while the AD patients showed lower perfusion in temporal and parietal cortex than controls. The FLD patients also showed hypoperfusion in both frontal cortical regions relative to AD patients. The pattern of performance on neuropsychological testing paralleled these differences in regional perfusion. These results suggest that clinical evaluation and physiological imaging may enable the differentiation of groups of degenerative dementia patients during life

  17. Dissociable contribution of the parietal and frontal cortex to coding movement direction and amplitude

    Directory of Open Access Journals (Sweden)

    Marco eDavare

    2015-05-01

    Full Text Available To reach for an object, we must convert its spatial location into an appropriate motor command, merging movement direction and amplitude. In humans, it has been suggested that this visuo-motor transformation occurs in a dorsomedial parieto-frontal pathway, although the causal contribution of the areas constituting the reaching circuit remains unknown. Here we used transcranial magnetic stimulation (TMS in healthy volunteers to disrupt the function of either the medial intraparietal area (mIPS or dorsal premotor cortex (PMd, in each hemisphere. The task consisted in performing step-tracking movements with the right wrist towards targets located in different directions and eccentricities; the targets were either visible for the whole trial (Target-ON or flashed for 200 ms (Target-OFF. Left and right mIPS disruption led to errors in the initial direction of movements performed towards contralateral targets. These errors were corrected online in the Target-ON condition but when the target was flashed for 200 ms, mIPS TMS manifested as a larger endpoint spreading. In contrast, left PMd virtual lesions led to higher acceleration and velocity peaks - two parameters typically used to probe the planned movement amplitude - irrespective of the target position, hemifield and presentation condition; in the Target-OFF condition, left PMd TMS induced overshooting and increased the endpoint dispersion along the axis of the target direction. These results indicate that left PMd intervenes in coding amplitude during movement preparation. The critical TMS timings leading to errors in direction and amplitude were different, namely 160-100 ms before movement onset for mIPS and 100-40 ms for left PMd. TMS applied over right PMd had no significant effect. These results indicate that, during motor preparation, direction and amplitude of goal-directed movements are processed by different cortical areas, at distinct timings, and according to a specific hemispheric

  18. Jealousy increased by induced relative left frontal cortical activity.

    Science.gov (United States)

    Kelley, Nicholas J; Eastwick, Paul W; Harmon-Jones, Eddie; Schmeichel, Brandon J

    2015-10-01

    Asymmetric frontal cortical activity may be one key to the process linking social exclusion to jealous feelings. The current research examined the causal role of asymmetric frontal brain activity in modulating jealousy in response to social exclusion. Transcranial direct-current stimulation (tDCS) over the frontal cortex to manipulate asymmetric frontal cortical activity was combined with a modified version of the Cyberball paradigm designed to induce jealousy. After receiving 15 min of tDCS, participants were excluded by a desired partner and reported how jealous they felt. Among individuals who were excluded, tDCS to increase relative left frontal cortical activity caused greater levels of self-reported jealousy compared to tDCS to increase relative right frontal cortical activity or sham stimulation. Limitations concerning the specificity of this effect and implications for the role of the asymmetric prefrontal cortical activity in motivated behaviors are discussed. (c) 2015 APA, all rights reserved).

  19. Functional organization and visual representations in human ventral lateral prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Annie Wai Yiu Chan

    2013-07-01

    Full Text Available Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex even in the absence of working memory demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the ventral lateral prefrontal cortex remain unclear. Further, in a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the ventral lateral prefrontal cortex? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the ventral lateral prefrontal cortex to enhance our understanding of the evolution and development of this cortex.

  20. Right Inferior Frontal Gyrus Activation as a Neural Marker of Successful Lying

    Directory of Open Access Journals (Sweden)

    Oshin eVartanian

    2013-10-01

    Full Text Available There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low × 2 (Instruction: truth or lie repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC, middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus—a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.

  1. Right inferior frontal gyrus activation as a neural marker of successful lying.

    Science.gov (United States)

    Vartanian, Oshin; Kwantes, Peter J; Mandel, David R; Bouak, Fethi; Nakashima, Ann; Smith, Ingrid; Lam, Quan

    2013-01-01

    There is evidence to suggest that successful lying necessitates cognitive effort. We tested this hypothesis by instructing participants to lie or tell the truth under conditions of high and low working memory (WM) load. The task required participants to register a response on 80 trials of identical structure within a 2 (WM Load: high, low) × 2 (Instruction: truth or lie) repeated-measures design. Participants were less accurate and responded more slowly when WM load was high, and also when they lied. High WM load activated the fronto-parietal WM network including dorsolateral prefrontal cortex (PFC), middle frontal gyrus, precuneus, and intraparietal cortex. Lying activated areas previously shown to underlie deception, including middle and superior frontal gyrus and precuneus. Critically, successful lying in the high vs. low WM load condition was associated with longer response latency, and it activated the right inferior frontal gyrus-a key brain region regulating inhibition. The same pattern of activation in the inferior frontal gyrus was absent when participants told the truth. These findings demonstrate that lying under high cognitive load places a burden on inhibition, and that the right inferior frontal gyrus may provide a neural marker for successful lying.

  2. Manipulation of the extrastriate frontal loop can resolve visual disability in blindsight patients.

    Science.gov (United States)

    Badgaiyan, Rajendra D

    2012-12-01

    Patients with blindsight are not consciously aware of visual stimuli in the affected field of vision but retain nonconscious perception. This disability can be resolved if nonconsciously perceived information can be brought to their conscious awareness. It can be accomplished by manipulating neural network of visual awareness. To understand this network, we studied the pattern of cortical activity elicited during processing of visual stimuli with or without conscious awareness. The analysis indicated that a re-entrant signaling loop between the area V3A (located in the extrastriate cortex) and the frontal cortex is critical for processing conscious awareness. The loop is activated by visual signals relayed in the primary visual cortex, which is damaged in blindsight patients. Because of the damage, V3A-frontal loop is not activated and the signals are not processed for conscious awareness. These patients however continue to receive visual signals through the lateral geniculate nucleus. Since these signals do not activate the V3A-frontal loop, the stimuli are not consciously perceived. If visual input from the lateral geniculate nucleus is appropriately manipulated and made to activate the V3A-frontal loop, blindsight patients can regain conscious vision. Published by Elsevier Ltd.

  3. Hemispheric differences in the voluntary control of spatial attention: direct evidence for a right-hemispheric dominance within frontal cortex.

    Science.gov (United States)

    Duecker, Felix; Formisano, Elia; Sack, Alexander T

    2013-08-01

    Lesion studies in neglect patients have inspired two competing models of spatial attention control, namely, Heilman's "hemispatial" theory and Kinsbourne's "opponent processor" model. Both assume a functional asymmetry between the two hemispheres but propose very different mechanisms. Neuroimaging studies have identified a bilateral dorsal frontoparietal network underlying voluntary shifts of spatial attention. However, lateralization of attentional processes within this network has not been consistently reported. In the current study, we aimed to provide direct evidence concerning the functional asymmetry of the right and left FEF during voluntary shifts of spatial attention. To this end, we applied fMRI-guided neuronavigation to disrupt individual FEF activation foci with a longer-lasting inhibitory patterned TMS protocol followed by a spatial cueing task. Our results indicate that right FEF stimulation impaired the ability of shifting spatial attention toward both hemifields, whereas the effects of left FEF stimulation were limited to the contralateral hemifield. These results provide strong direct evidence for right-hemispheric dominance in spatial attention within frontal cortex supporting Heilman's "hemispatial" theory. This complements previous TMS studies that generally conform to Kinsbourne's "opponent processor" model after disruption of parietal cortex, and we therefore propose that both theories are not mutually exclusive.

  4. Representation of cognitive reappraisal goals in frontal gamma oscillations.

    Science.gov (United States)

    Kang, Jae-Hwan; Jeong, Ji Woon; Kim, Hyun Taek; Kim, Sang Hee; Kim, Sung-Phil

    2014-01-01

    Recently, numerous efforts have been made to understand the neural mechanisms underlying cognitive regulation of emotion, such as cognitive reappraisal. Many studies have reported that cognitive control of emotion induces increases in neural activity of the control system, including the prefrontal cortex and the dorsal anterior cingulate cortex, and increases or decreases (depending upon the regulation goal) in neural activity of the appraisal system, including the amygdala and the insula. It has been hypothesized that information about regulation goals needs to be processed through interactions between the control and appraisal systems in order to support cognitive reappraisal. However, how this information is represented in the dynamics of cortical activity remains largely unknown. To address this, we investigated temporal changes in gamma band activity (35-55 Hz) in human electroencephalograms during a cognitive reappraisal task that was comprised of three reappraisal goals: to decease, maintain, or increase emotional responses modulated by affect-laden pictures. We examined how the characteristics of gamma oscillations, such as spectral power and large-scale phase synchronization, represented cognitive reappraisal goals. We found that left frontal gamma power decreased, was sustained, or increased when the participants suppressed, maintained, or amplified their emotions, respectively. This change in left frontal gamma power appeared during an interval of 1926 to 2453 ms after stimulus onset. We also found that the number of phase-synchronized pairs of gamma oscillations over the entire brain increased when participants regulated their emotions compared to when they maintained their emotions. These results suggest that left frontal gamma power may reflect cortical representation of emotional states modulated by cognitive reappraisal goals and gamma phase synchronization across whole brain regions may reflect emotional regulatory efforts to achieve these goals

  5. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    International Nuclear Information System (INIS)

    Moll, Jorge; Oliveira-Souza, Ricardo de

    2001-01-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  6. Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation: laboratory investigation.

    Science.gov (United States)

    De Benedictis, Alessandro; Sarubbo, Silvio; Duffau, Hugues

    2012-12-01

    Recent neuroimaging and surgical results support the crucial role of white matter in mediating motor and higher-level processing within the frontal lobe, while suggesting the limited compensatory capacity after damage to subcortical structures. Consequently, an accurate knowledge of the anatomofunctional organization of the pathways running within this region is mandatory for planning safe and effective surgical approaches to different diseases. The aim of this dissection study was to improve the neurosurgeon's awareness of the subcortical anatomofunctional architecture for a lateral approach to the frontal region, to optimize both resection and postoperative outcome. Ten human hemispheres (5 left, 5 right) were dissected according to the Klingler technique. Proceeding lateromedially, the main association and projection tracts as well as the deeper basal structures were identified. The authors describe the anatomy and the relationships among the exposed structures in both a systematic and topographical surgical perspective. Structural results were also correlated to the functional responses obtained during resections of infiltrative frontal tumors guided by direct cortico-subcortical electrostimulation with patients in the awake condition. The eloquent boundaries crucial for a safe frontal lobectomy or an extensive lesionectomy are as follows: 1) the motor cortex; 2) the pyramidal tract and premotor fibers in the posterior and posteromedial part of the surgical field; 3) the inferior frontooccipital fascicle and the superior longitudinal fascicle posterolaterally; and 4) underneath the inferior frontal gyrus, the head of the caudate nucleus, and the tip of the frontal horn of the lateral ventricle in the depth. Optimization of results following brain surgery, especially within the frontal lobe, requires a perfect knowledge of functional anatomy, not only at the cortical level but also with regard to subcortical white matter connectivity.

  7. Effective Connectivity between Ventral Occipito-Temporal and Ventral Inferior Frontal Cortex during Lexico-Semantic Processing. A Dynamic Causal Modeling Study

    Directory of Open Access Journals (Sweden)

    Marcela Perrone-Bertolotti

    2017-06-01

    Full Text Available It has been suggested that dorsal and ventral pathways support distinct aspects of language processing. Yet, the full extent of their involvement and their inter-regional connectivity in visual word recognition is still unknown. Studies suggest that they might reflect the dual-route model of reading, with the dorsal pathway more involved in grapho-phonological conversion during phonological tasks, and the ventral pathway performing lexico-semantic access during semantic tasks. Furthermore, this subdivision is also suggested at the level of the inferior frontal cortex, involving ventral and dorsal parts for lexico-semantic and phonological processing, respectively. In the present study, we assessed inter-regional brain connectivity and task-induced modulations of brain activity during a phoneme detection and semantic categorization tasks, using fMRI in healthy subject. We used a dynamic causal modeling approach to assess inter-regional connectivity and task demand modulation within the dorsal and ventral pathways, including the following network components: the ventral occipito-temporal cortex (vOTC; dorsal and ventral, the superior temporal gyrus (STG; dorsal, the dorsal inferior frontal gyrus (dIFG; dorsal, and the ventral IFG (vIFG; ventral. We report three distinct inter-regional interactions supporting orthographic information transfer from vOTC to other language regions (vOTC -> STG, vOTC -> vIFG and vOTC -> dIFG regardless of task demands. Moreover, we found that (a during semantic processing (direct ventral pathway the vOTC -> vIFG connection strength specifically increased and (b a lack of modulation of the vOTC -> dIFG connection strength by the task that could suggest a more general involvement of the dorsal pathway during visual word recognition. Results are discussed in terms of anatomo-functional connectivity of visual word recognition network.

  8. Medial cortex activity, self-reflection and depression.

    Science.gov (United States)

    Johnson, Marcia K; Nolen-Hoeksema, Susan; Mitchell, Karen J; Levin, Yael

    2009-12-01

    Using functional magnetic resonance imaging, we investigated neural activity associated with self-reflection in depressed [current major depressive episode (MDE)] and healthy control participants, focusing on medial cortex areas previously shown to be associated with self-reflection. Both the MDE and healthy control groups showed greater activity in anterior medial cortex (medial frontal gyrus, anterior cingulate gyrus) when cued to think about hopes and aspirations compared with duties and obligations, and greater activity in posterior medial cortex (precuneus, posterior cingulate) when cued to think about duties and obligations (Experiment 1). However, the MDE group showed less activity than controls in the same area of medial frontal cortex when self-referential cues were more ambiguous with respect to valence (Experiment 2), and less deactivation in a non-self-referential condition in both experiments. Furthermore, individual differences in rumination were positively correlated with activity in both anterior and posterior medial cortex during non-self-referential conditions. These results provide converging evidence for a dissociation of anterior and posterior medial cortex depending on the focus of self-relevant thought. They also provide neural evidence consistent with behavioral findings that depression is associated with disruption of positively valenced thoughts in response to ambiguous cues, and difficulty disengaging from self-reflection when it is appropriate to do so.

  9. Attention enhances multi-voxel representation of novel objects in frontal, parietal and visual cortices.

    Science.gov (United States)

    Woolgar, Alexandra; Williams, Mark A; Rich, Anina N

    2015-04-01

    Selective attention is fundamental for human activity, but the details of its neural implementation remain elusive. One influential theory, the adaptive coding hypothesis (Duncan, 2001, An adaptive coding model of neural function in prefrontal cortex, Nature Reviews Neuroscience 2:820-829), proposes that single neurons in certain frontal and parietal regions dynamically adjust their responses to selectively encode relevant information. This selective representation may in turn support selective processing in more specialized brain regions such as the visual cortices. Here, we use multi-voxel decoding of functional magnetic resonance images to demonstrate selective representation of attended--and not distractor--objects in frontal, parietal, and visual cortices. In addition, we highlight a critical role for task demands in determining which brain regions exhibit selective coding. Strikingly, representation of attended objects in frontoparietal cortex was highest under conditions of high perceptual demand, when stimuli were hard to perceive and coding in early visual cortex was weak. Coding in early visual cortex varied as a function of attention and perceptual demand, while coding in higher visual areas was sensitive to the allocation of attention but robust to changes in perceptual difficulty. Consistent with high-profile reports, peripherally presented objects could also be decoded from activity at the occipital pole, a region which corresponds to the fovea. Our results emphasize the flexibility of frontoparietal and visual systems. They support the hypothesis that attention enhances the multi-voxel representation of information in the brain, and suggest that the engagement of this attentional mechanism depends critically on current task demands. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Rapid eye movement (REM sleep deprivation reduces rat frontal cortex acetylcholinesterase (EC 3.1.1.7 activity

    Directory of Open Access Journals (Sweden)

    Camarini R.

    1997-01-01

    Full Text Available Rapid eye movement (REM sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase controls acetylcholine (Ach availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12. Two additional groups, a home-cage control (N = 6 and a large platform control (N = 6, were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant, membrane-bound (100,000 g pellet and soluble (100,000 g supernatant Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1 in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8. There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2. Our results

  11. Moderate effects of noninvasive brain stimulation of the frontal cortex for improving negative symptoms in schizophrenia: Meta-analysis of controlled trials.

    Science.gov (United States)

    Aleman, André; Enriquez-Geppert, Stefanie; Knegtering, Henderikus; Dlabac-de Lange, Jozarni J

    2018-06-01

    Negative symptoms in schizophrenia concern a clinically relevant reduction of goal-directed behavior that strongly and negatively impacts daily functioning. Existing treatments are of marginal effect and novel approaches are needed. Noninvasive neurostimulation by means of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are novel approaches that may hold promise. To provide a quantitative integration of the published evidence regarding effects of rTMS and tDCS over the frontal cortex on negative symptoms, including an analysis of effects of sham stimulation. Meta-analysis was applied, using a random effects model, to calculate mean weighted effect sizes (Cohen's d). Heterogeneity was assessed by using Cochrans Q and I 2 tests. For rTMS treatment, the mean weighted effect size compared to sham stimulation was 0.64 (0.32-0.96; k = 22, total N = 827). Studies with younger participants showed stronger effects as compared to studies with older participants. For tDCS studies a mean weighted effect size of 0.50 (-0.07 to 1.07; k = 5, total N = 134) was found. For all frontal noninvasive neurostimulation studies together (i.e., TMS and tDCS studies combined) active stimulation was superior to sham, the mean weighted effect size was 0.61 (24 studies, 27 comparisons, 95% confidence interval 0.33-0.89; total N = 961). Sham rTMS (baseline - posttreatment comparison) showed a significant improvement of negative symptoms, d = 0.31 (0.09-0.52; k = 16, total N = 333). Whereas previous meta-analyses were underpowered, our meta-analysis had a power of 0.87 to detect a small effect. The available evidence indicates that noninvasive prefrontal neurostimulation can improve negative symptoms. This finding suggests a causal role for the lateral frontal cortex in self-initiated goal-directed behavior. The evidence is stronger for rTMS than for tDCS, although this may be due to the small number of

  12. Spatial distribution of diffuse, primitive, and classic amyloid-beta deposits and blood vessels in the upper laminae of the frontal cortex in Alzheimer disease.

    Science.gov (United States)

    Armstrong, R A; Cairns, N J; Lantos, P L

    1998-12-01

    The spatial distribution of the diffuse, primitive, and classic amyloid-beta deposits was studied in the upper laminae of the superior frontal gyrus in cases of sporadic Alzheimer disease (AD). Amyloid-beta-stained tissue was counterstained with collagen IV to determine whether the spatial distribution of the amyloid-beta deposits along the cortex was related to blood vessels. In all patients, amyloid-beta deposits and blood vessels were aggregated into distinct clusters and in many patients, the clusters were distributed with a regular periodicity along the cortex. The clusters of diffuse and primitive deposits did not coincide with the clusters of blood vessels in most patients. However, the clusters of classic amyloid-beta deposits coincided with those of the large diameter (>10 microm) blood vessels in all patients and with clusters of small-diameter (upper cortical laminae.

  13. Modeling ADHD-type arousal with unilateral frontal cortex damage in rats and beneficial effects of play therapy.

    Science.gov (United States)

    Panksepp, Jaak; Burgdorf, Jeff; Turner, Cortney; Gordon, Nakia

    2003-06-01

    It has been recently shown that human adolescents with Attention Deficit/Hyperactivity Disorder (ADHD) have frontal lobe deficits, especially on the right sides of their brains (). ADHD is commonly treated with psychostimulants which may have adverse consequences. Hence, less invasive therapies need to be developed. In the present work, we tested the ability of right frontal lesions to induce hyperactivity in rats. We also evaluated the effects of chronic play therapy during early adolescence to reduce both hyperactivity and the elevated playfulness later in development. Play therapy was able to reduce both hyperactivity and excessive playfulness. In additional work, we found that access to rough-and-tumble play in normal animals could enhance subsequent behavioral indices of behavioral inhibition (i.e., freezing in response to a startle stimulus) that appeared to be independent of increased fearfulness and fatigue. Overall, these results suggest that (1) neonatal frontal lobe lesions can be used as an animal model of the overactivity in ADHD and (2) rough-and-tumble play therapy may be a new useful treatment for ADHD.

  14. Is orbital volume associated with eyeball and visual cortex volume in humans?

    Science.gov (United States)

    Pearce, Eiluned; Bridge, Holly

    2013-01-01

    In humans orbital volume increases linearly with absolute latitude. Scaling across mammals between visual system components suggests that these larger orbits should translate into larger eyes and visual cortices in high latitude humans. Larger eyes at high latitudes may be required to maintain adequate visual acuity and enhance visual sensitivity under lower light levels. To test the assumption that orbital volume can accurately index eyeball and visual cortex volumes specifically in humans. Structural Magnetic Resonance Imaging (MRI) techniques are employed to measure eye and orbit (n = 88) and brain and visual cortex (n = 99) volumes in living humans. Facial dimensions and foramen magnum area (a proxy for body mass) were also measured. A significant positive linear relationship was found between (i) orbital and eyeball volumes, (ii) eyeball and visual cortex grey matter volumes and (iii) different visual cortical areas, independently of overall brain volume. In humans the components of the visual system scale from orbit to eye to visual cortex volume independently of overall brain size. These findings indicate that orbit volume can index eye and visual cortex volume in humans, suggesting that larger high latitude orbits do translate into larger visual cortices.

  15. Approach motivation in human cerebral cortex

    OpenAIRE

    Casasanto, Daniel; Brookshire, Geoffrey

    2018-01-01

    Different regions of the human cerebral cortex are specialized for different emotions, but the principles underlying this specialization have remained unknown. According to the sword and shield hypothesis, hemispheric specialization for affective motivation, a basic dimension of human emotion, varies across individuals according to the way they use their hands to perform approach- and avoidance-related actions. In a test of this hypothesis, here we measured approach motivation before and afte...

  16. From conflict management to reward-based decision making: actors and critics in primate medial frontal cortex.

    Science.gov (United States)

    Silvetti, Massimo; Alexander, William; Verguts, Tom; Brown, Joshua W

    2014-10-01

    The role of the medial prefrontal cortex (mPFC) and especially the anterior cingulate cortex has been the subject of intense debate for the last decade. A number of theories have been proposed to account for its function. Broadly speaking, some emphasize cognitive control, whereas others emphasize value processing; specific theories concern reward processing, conflict detection, error monitoring, and volatility detection, among others. Here we survey and evaluate them relative to experimental results from neurophysiological, anatomical, and cognitive studies. We argue for a new conceptualization of mPFC, arising from recent computational modeling work. Based on reinforcement learning theory, these new models propose that mPFC is an Actor-Critic system. This system is aimed to predict future events including rewards, to evaluate errors in those predictions, and finally, to implement optimal skeletal-motor and visceromotor commands to obtain reward. This framework provides a comprehensive account of mPFC function, accounting for and predicting empirical results across different levels of analysis, including monkey neurophysiology, human ERP, human neuroimaging, and human behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Norepinephrine in the Medial Pre-frontal Cortex Supports Accumbens Shell Responses to a Novel Palatable Food in Food-Restricted Mice Only

    Directory of Open Access Journals (Sweden)

    Emanuele Claudio Latagliata

    2018-01-01

    Full Text Available Previous findings from this laboratory demonstrate: (1 that different classes of addictive drugs require intact norepinephrine (NE transmission in the medial pre Frontal Cortex (mpFC to promote conditioned place preference and to increase dopamine (DA tone in the nucleus accumbens shell (NAc Shell; (2 that only food-restricted mice require intact NE transmission in the mpFC to develop conditioned preference for a context associated with milk chocolate; and (3 that food-restricted mice show a significantly larger increase of mpFC NE outflow then free fed mice when experiencing the palatable food for the first time. In the present study we tested the hypothesis that only the high levels of frontal cortical NE elicited by the natural reward in food restricted mice stimulate mesoaccumbens DA transmission. To this aim we investigated the ability of a first experience with milk chocolate to increase DA outflow in the accumbens Shell and c-fos expression in striatal and limbic areas of food–restricted and ad-libitum fed mice. Moreover, we tested the effects of a selective depletion of frontal cortical NE on both responses in either feeding group. Only in food-restricted mice milk chocolate induced an increase of DA outflow beyond baseline in the accumbens Shell and a c-fos expression larger than that promoted by a novel inedible object in the nucleus accumbens. Moreover, depletion of frontal cortical NE selectively prevented both the increase of DA outflow and the large expression of c-fos promoted by milk chocolate in the NAc Shell of food-restricted mice. These findings support the conclusion that in food-restricted mice a novel palatable food activates the motivational circuit engaged by addictive drugs and support the development of noradrenergic pharmacology of motivational disturbances.

  18. Frontal lobe atrophy in motor neuron diseases.

    Science.gov (United States)

    Kiernan, J A; Hudson, A J

    1994-08-01

    Neuronal degeneration in the precentral gyrus alone cannot account for the occurrence of spastic paresis in motor neuron diseases. To look for more extensive cortical atrophy we measured MRIs of the upper parts of the frontal and parietal lobes in 11 sporadic cases of classical amyotrophic lateral sclerosis (ALS), eight patients with primary lateral sclerosis (PLS) and an age- and sex-matched group of 49 neurologically normal people. None of the patients had overt dementia or other mental diseases. In PLS there is progressive spastic paresis but in contrast to ALS there is no lower motor neuron degeneration. The surface area of the precentral gyri and the amount of underlying white matter in PLS were consistently approximately 75% of the normal size. By contrast, there was some shrinkage of the precentral gyri in some of the ALS patients but the mean measurements for the group did not differ significantly from the controls. Anterior to the precentral sulci, the cortical surface area in PLS was approximately 85% of that of the controls, with correspondingly reduced white matter. In ALS the cortical surface areas of the anterior frontal lobes did not differ from those of the controls, but the amount of underlying white matter was reduced almost as much in ALS as it was in PLS. The measured changes in the frontal lobes suggest that in PLS there is simultaneous atrophy of the primary, premotor and supplementary motor areas of the cortex, with consequent degeneration of corticospinal and corticoreticular axons descending through the underlying white matter. These changes could account for the progressive upper motor neuron syndrome. In ALS, with no significant frontal cortical atrophy, the shrinkage of the white matter may be due to degeneration of axons projecting to the frontal cortex from elsewhere. Deprivation of afferents could explain the diminution of motor functions of the frontal lobes in ALS and also the changes in word fluency, judgement and attention that

  19. Hierarchy of transcriptomic specialization across human cortex captured by myelin map topography

    OpenAIRE

    Murray, John; Martin, William; Bernacchia, Alberto; Anticevic, Alan; Ji, Jie; Navejar, Natasha; Eckner, William; Demirtas, Murat; Burt, Joshua

    2017-01-01

    Hierarchy provides a unifying principle for the macroscale organization of anatomical and functional properties across primate cortex, yet the microscale bases of hierarchical specialization across human cortex are poorly understood. Anatomical hierarchy is conventionally informed by invasively measured laminar patterns of long-range cortico-cortical projections, creating the need for a principled proxy measure of hierarchy in humans. Moreover, cortex exhibits a transcriptional architecture c...

  20. Performance monitoring in the medial frontal cortex and related neural networks: From monitoring self actions to understanding others' actions.

    Science.gov (United States)

    Ninomiya, Taihei; Noritake, Atsushi; Ullsperger, Markus; Isoda, Masaki

    2018-04-27

    Action is a key channel for interacting with the outer world. As such, the ability to monitor actions and their consequences - regardless as to whether they are self-generated or other-generated - is of crucial importance for adaptive behavior. The medial frontal cortex (MFC) has long been studied as a critical node for performance monitoring in nonsocial contexts. Accumulating evidence suggests that the MFC is involved in a wide range of functions necessary for one's own performance monitoring, including error detection, and monitoring and resolving response conflicts. Recent studies, however, have also pointed to the importance of the MFC in performance monitoring under social conditions, ranging from monitoring and understanding others' actions to reading others' mental states, such as their beliefs and intentions (i.e., mentalizing). Here we review the functional roles of the MFC and related neural networks in performance monitoring in both nonsocial and social contexts, with an emphasis on the emerging field of a social systems neuroscience approach using macaque monkeys as a model system. Future work should determine the way in which the MFC exerts its monitoring function via interactions with other brain regions, such as the superior temporal sulcus in the mentalizing system and the ventral premotor cortex in the mirror system. Copyright © 2018. Published by Elsevier B.V.

  1. Frontopolar and anterior temporal cortex activation in a moral judgment task. Preliminary functional MRI results in normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Jorge [LABS and Rede D' Or Hospitais, Rio de Janeiro RJ (Brazil). Grupo de Neuroimagem e Neurologia do Comportamento; Eslinger, Paul J. [Pensylvania State Univ. (United States). College of Medicine. Div. of Neurology and Behavioral Science; The Milton S. Hershey Medical Center, Hershey, PN (United States); Oliveira-Souza, Ricardo de [Universidade do Rio de Janeiro (UNI-Rio), RJ (Brazil). Hospital Universitario Gaffree e Guinle]. E-mail: neuropsychiatry@hotmail.com

    2001-09-01

    The objective was to study the brain areas which are activated when normal subjects make moral judgments. Ten normal adults underwent BOLD functional magnetic resonance imaging (fMRI) during the auditory presentation of sentences that they were instructed to silently judge as either 'right' or 'wrong'. Half of the sentences had an explicit moral content ('We break the law when necessary'), the other half comprised factual statements devoid of moral connotation ('Stones are made of water'). After scanning, each subject rated the moral content, emotional valence, and judgment difficulty of each sentence on Likert-like scales. To exclude the effect of emotion on the activation results, individual responses were hemo dynamically modeled for event-related f MRI analysis. The general linear model was used to evaluate the brain areas activated by moral judgment. Regions activated during moral judgment included the frontopolar cortex (FPC), medial frontal gyrus, right anterior temporal cortex, lenticular nucleus, and cerebellum. Activation of FPC and medial frontal gyrus (B A 10/46 and 9) were largely independent of emotional experience and represented the largest areas of activation. These results concur with clinical observations assigning a critical role for the frontal poles and right anterior temporal cortex in the mediation of complex judgment processes according to moral constraints. The FPC may work in concert with the orbitofrontal and dorsolateral cortex in the regulation of human social conduct. (author)

  2. The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood.

    Science.gov (United States)

    Grinband, Jack; Savitskaya, Judith; Wager, Tor D; Teichert, Tobias; Ferrera, Vincent P; Hirsch, Joy

    2011-07-15

    The dorsal medial frontal cortex (dMFC) is highly active during choice behavior. Though many models have been proposed to explain dMFC function, the conflict monitoring model is the most influential. It posits that dMFC is primarily involved in detecting interference between competing responses thus signaling the need for control. It accurately predicts increased neural activity and response time (RT) for incompatible (high-interference) vs. compatible (low-interference) decisions. However, it has been shown that neural activity can increase with time on task, even when no decisions are made. Thus, the greater dMFC activity on incompatible trials may stem from longer RTs rather than response conflict. This study shows that (1) the conflict monitoring model fails to predict the relationship between error likelihood and RT, and (2) the dMFC activity is not sensitive to congruency, error likelihood, or response conflict, but is monotonically related to time on task. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Non-invasive Prefrontal/Frontal Brain Stimulation Is Not Effective in Modulating Food Reappraisal Abilities or Calorie Consumption in Obese Females

    Directory of Open Access Journals (Sweden)

    Felicitas Grundeis

    2017-06-01

    Full Text Available Background/Objectives: Previous studies suggest that non-invasive transcranial direct current stimulation (tDCS applied to the prefrontal cortex modulates food choices and calorie intake in obese humans.Participants/Methods: In the present fully randomized, placebo-controlled, within-subject and double-blinded study, we applied single sessions of anodal, cathodal, and sham tDCS to the left dorsolateral prefrontal cortex (DLPFC and contralateral frontal operculum in 25 hungry obese women and investigated possible influences on food reappraisal abilities as well as calorie intake. We hypothesized that tDCS, (i improves the ability to regulate the desire for visually presented foods and, (ii reduces their consumption.Results: We could not confirm an effect of anodal or cathodal tDCS, neither on the ability to modulate the desire for visually presented foods, nor on calorie consumption.Conclusions: The present findings do not support the notion of prefrontal/frontal tDCS as a promising treatment option for obesity.

  4. Bilingualism Alters Children's Frontal Lobe Functioning for Attentional Control

    Science.gov (United States)

    Arredondo, Maria M.; Hu, Xiao-Su; Satterfield, Teresa; Kovelman, Ioulia

    2017-01-01

    Bilingualism is a typical linguistic experience, yet relatively little is known about its impact on children's cognitive and brain development. Theories of bilingualism suggest early dual-language acquisition can improve children's cognitive abilities, specifically those relying on frontal lobe functioning. While behavioral findings present much conflicting evidence, little is known about its effects on children's frontal lobe development. Using functional Near-Infrared Spectroscopy (fNIRS), the findings suggest that Spanish-English bilingual children (n=13, ages 7-13) had greater activation in left prefrontal cortex during a non-verbal attentional control task relative to age-matched English monolinguals. In contrast, monolinguals (n=14) showed greater right prefrontal activation than bilinguals. The present findings suggest early bilingualism yields significant changes to the functional organization of children's prefrontal cortex for attentional control and carry implications for understanding how early life experiences impact cognition and brain development. PMID:26743118

  5. Working memory load impairs the evaluation of behavioral errors in the medial frontal cortex.

    Science.gov (United States)

    Maier, Martin E; Steinhauser, Marco

    2017-10-01

    Early error monitoring in the medial frontal cortex enables error detection and the evaluation of error significance, which helps prioritize adaptive control. This ability has been assumed to be independent from central capacity, a limited pool of resources assumed to be involved in cognitive control. The present study investigated whether error evaluation depends on central capacity by measuring the error-related negativity (Ne/ERN) in a flanker paradigm while working memory load was varied on two levels. We used a four-choice flanker paradigm in which participants had to classify targets while ignoring flankers. Errors could be due to responding either to the flankers (flanker errors) or to none of the stimulus elements (nonflanker errors). With low load, the Ne/ERN was larger for flanker errors than for nonflanker errors-an effect that has previously been interpreted as reflecting differential significance of these error types. With high load, no such effect of error type on the Ne/ERN was observable. Our findings suggest that working memory load does not impair the generation of an Ne/ERN per se but rather impairs the evaluation of error significance. They demonstrate that error monitoring is composed of capacity-dependent and capacity-independent mechanisms. © 2017 Society for Psychophysiological Research.

  6. Differential Recruitment of Parietal Cortex during Spatial and Non-spatial Reach Planning

    Directory of Open Access Journals (Sweden)

    Pierre-Michel Bernier

    2017-05-01

    Full Text Available The planning of goal-directed arm reaching movements is associated with activity in the dorsal parieto-frontal cortex, within which multiple regions subserve the integration of arm- and target-related sensory signals to encode a motor goal. Surprisingly, many of these regions show sustained activity during reach preparation even when target location is not specified, i.e., when a motor goal cannot be unambiguously formed. The functional role of these non-spatial preparatory signals remains unresolved. Here this process was investigated in humans by comparing reach preparatory activity in the presence or absence of information regarding upcoming target location. In order to isolate the processes specific to reaching and to control for visuospatial attentional factors, the reaching task was contrasted to a finger movement task. Functional MRI and electroencephalography (EEG were used to characterize the spatio-temporal pattern of reach-related activity in the parieto-frontal cortex. Reach planning with advance knowledge of target location induced robust blood oxygenated level dependent and EEG responses across parietal and premotor regions contralateral to the reaching arm. In contrast, reach preparation without knowledge of target location was associated with a significant BOLD response bilaterally in the parietal cortex. Furthermore, EEG alpha- and beta-band activity was restricted to parietal scalp sites, the magnitude of the latter being correlated with reach reaction times. These results suggest an intermediate stage of sensorimotor transformations in bilateral parietal cortex when target location is not specified.

  7. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    Science.gov (United States)

    Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812

  8. Dissociation of object and spatial visual processing pathways in human extrastriate cortex

    Energy Technology Data Exchange (ETDEWEB)

    Haxby, J.V.; Grady, C.L.; Horwitz, B.; Ungerleider, L.G.; Mishkin, M.; Carson, R.E.; Herscovitch, P.; Schapiro, M.B.; Rapoport, S.I. (National Institutes of Health, Bethesda, MD (USA))

    1991-03-01

    The existence and neuroanatomical locations of separate extrastriate visual pathways for object recognition and spatial localization were investigated in healthy young men. Regional cerebral blood flow was measured by positron emission tomography and bolus injections of H2(15)O, while subjects performed face matching, dot-location matching, or sensorimotor control tasks. Both visual matching tasks activated lateral occipital cortex. Face discrimination alone activated a region of occipitotemporal cortex that was anterior and inferior to the occipital area activated by both tasks. The spatial location task alone activated a region of lateral superior parietal cortex. Perisylvian and anterior temporal cortices were not activated by either task. These results demonstrate the existence of three functionally dissociable regions of human visual extrastriate cortex. The ventral and dorsal locations of the regions specialized for object recognition and spatial localization, respectively, suggest some homology between human and nonhuman primate extrastriate cortex, with displacement in human brain, possibly related to the evolution of phylogenetically newer cortical areas.

  9. Differences in the neural correlates of frontal lobe tests.

    Science.gov (United States)

    Matsuoka, Teruyuki; Kato, Yuka; Imai, Ayu; Fujimoto, Hiroshi; Shibata, Keisuke; Nakamura, Kaeko; Yamada, Kei; Narumoto, Jin

    2018-01-01

    The Executive Interview (EXIT25), the executive clock-drawing task (CLOX1), and the Frontal Assessment Battery (FAB) are used to assess executive function at the bedside. These tests assess distinct psychometric properties. The aim of this study was to examine differences in the neural correlates of the EXIT25, CLOX1, and FAB based on magnetic resonance imaging. Fifty-eight subjects (30 with Alzheimer's disease, 10 with mild cognitive impairment, and 18 healthy controls) participated in this study. Multiple regression analyses were performed to examine the brain regions correlated with the EXIT25, CLOX1, and FAB scores. Age, gender, and years of education were included as covariates. Statistical thresholds were set to uncorrected P-values of 0.001 at the voxel level and 0.05 at the cluster level. The EXIT25 score correlated inversely with the regional grey matter volume in the left lateral frontal lobe (Brodmann areas 6, 9, 44, and 45). The CLOX1 score correlated positively with the regional grey matter volume in the right orbitofrontal cortex (Brodmann area 11) and the left supramarginal gyrus (Brodmann area 40). The FAB score correlated positively with the regional grey matter volume in the right precentral gyrus (Brodmann area 6). The left lateral frontal lobe (Brodmann area 9) and the right lateral frontal lobe (Brodmann area 46) were identified as common brain regions that showed association with EXIT25, CLOX1, and FAB based only a voxel-level threshold. The results of this study suggest that the EXIT25, CLOX1, and FAB may be associated with the distinct neural correlates of the frontal cortex. © 2018 Japanese Psychogeriatric Society.

  10. Prandial states modify the reactivity of the gustatory cortex using gustatory evoked potentials in humans

    Directory of Open Access Journals (Sweden)

    Agnès eJACQUIN-PIQUES

    2016-01-01

    Full Text Available Previous functional Magnetic Resonance Imaging studies evaluated the role of satiety on cortical taste area activity and highlighted decreased activation in the orbito-frontal cortex when food was eaten until satiation. The modulation of orbito-frontal neurons (secondary taste area by ad libitum food intake has been associated with the pleasantness of the food’s flavor. The insula and frontal operculum (primary taste area are also involved in reward processing. The aim was to compare human gustatory evoked potentials (GEP recorded in the primary and secondary gustatory cortices in a fasted state with those after food intake. Fifteen healthy volunteers were enrolled in this observational study. In each of two sessions, two GEP recordings were performed (at 11:00 am and 1:30 pm in response to sucrose gustatory stimulation, and a sucrose-gustatory threshold was determined. During one session, a standard lunch was provided between the two GEP recordings. During the other session, subjects had nothing to eat. Hunger sensation, wanting, liking and the perception of the solution’s intensity were evaluated with visual analogue scales. GEP latencies measured in the Pz (p<0.001, Cz (p<0.01, Fz (p<0.001 recordings (primary taste area were longer after lunch than in the pre-prandial condition. Fp1 and Fp2 latencies (secondary taste area tended to be longer after lunch, but the difference was not significant. No difference was observed for the sucrose-gustatory threshold regardless of the session and time. Modifications in the primary taste area activity during the post-prandial period occurred regardless of the nature of the food eaten and could represent the activity of the frontal operculum and insula, which was recently shown to be modulated by gut signals (GLP-1, CCK, ghrelin, or insulin through vagal afferent neurons or metabolic changes of the internal milieu after nutrient absorption. This trial was registered at clinicalstrials.gov as NCT

  11. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    Directory of Open Access Journals (Sweden)

    Joshua G.A Pinto

    2015-02-01

    Full Text Available Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin and found that synaptic development in human primary visual cortex continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the 4 proteins and include a stage during early development (<1 year when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the first year or two of life. A multidimensional analysis (principle component analysis showed that most of the variance was captured by the sum of the 4 synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.

  12. α2-Adrenoceptor Functionality in Postmortem Frontal Cortex of Depressed Suicide Victims

    Science.gov (United States)

    Valdizán, Elsa M.; Díez-Alarcia, Rebeca; González-Maeso, Javier; Pilar-Cuéllar, Fuencisla; García-Sevilla, Jesús A.; Meana, J. Javier; Pazos, Angel

    2013-01-01

    Background Alterations in brain density and signaling associated with monoamine receptors are believed to play a role in depressive disorders. This study evaluates the functional status of α2A-adrenoceptors in postmortem frontal cortex of depressed subjects. Methods G-protein activation and inhibition of adenylyl cyclase (AC) activity induced by the α2-adrenoceptor agonist UK14304 were measured in triplicate in samples from 15 suicide victims with an antemortem diagnosis of major depression and 15 matched control subjects. Results Basal [35S] guanosine γ thio-phosphate (GTPγS) binding and cyclic adenosine monophosphate accumulation did not differ between groups. In depressed victims, an increase in [35S] GTPγS binding potency (EC50 = .58 μmol/L vs. EC50 = 3.31 μmol/L; p < .01; depressed vs. control) and a significant reduction in the maximal inhibition of AC activity (Imax = 27 ± 4% vs. Imax = 47 ± 5%; p < .01) were observed after incubation with the α2-adrenoceptor agonist UK14304. No differences were found between antidepressant-free and antidepressant-treated subjects. A significant relationship between EC50 values for [35S] GTPγS and Imax values for AC assay was found (n = 30; r = −.43; p < .05). Conclusions The dual regulation of α2A-adrenoceptor signaling pathways raises the possibility that factors affecting the G-protein cycle and/or selective access of Gαi/o–protein to AC might be relevant to receptor abnormalities in depression, providing further support for the involvement of α2A-adrenoceptors in the pathogenesis of depression. PMID:20864091

  13. Subplate in the developing cortex of mouse and human

    DEFF Research Database (Denmark)

    Wang, Wei Zhi; Hoerder-Suabedissen, Anna; Oeschger, Franziska M

    2010-01-01

    Abstract The subplate is a largely transient zone containing precocious neurons involved in several key steps of cortical development. The majority of subplate neurons form a compact layer in mouse, but are dispersed throughout a much larger zone in the human. In rodent, subplate neurons are among...... several genes that are specifically expressed in the subplate layer of the rodent dorsal cortex. Here we examined the human subplate for some of these markers. In the human dorsal cortex, connective tissue growth factor-positive neurons can be seen in the ventricular zone at 15-22 postconceptional weeks...... growth factor- and nuclear receptor-related 1-positive cells are two distinct cell populations of the human subplate. Furthermore, our microarray analysis in rodent suggested that subplate neurons produce plasma proteins. Here we demonstrate that the human subplate also expresses alpha2zinc...

  14. Dynamic Variation in Pleasure in Children Predicts Nonlinear Change in Lateral Frontal Brain Electrical Activity

    Science.gov (United States)

    Light, Sharee N.; Coan, James A.; Frye, Corrina; Goldsmith, H. Hill; Davidson, Richard J.

    2009-01-01

    Individual variation in the experience and expression of pleasure may relate to differential patterns of lateral frontal activity. Brain electrical measures have been used to study the asymmetric involvement of lateral frontal cortex in positive emotion, but the excellent time resolution of these measures has not been used to capture…

  15. Khat distorts the prefrontal cortex histology and function of adult ...

    African Journals Online (AJOL)

    Khat is a psychoactive herbal drug of pronounced ethno-pharmacological significance often abused due to its unregulated use. It affects many brain centers including the prefrontal cortex which is the anterior most part of the frontal lobe. The prefrontal cortex modulates working memory, planning complex cognitive ...

  16. Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior.

    Directory of Open Access Journals (Sweden)

    Austin Chou

    Full Text Available Traumatic brain injury (TBI is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior.

  17. Exploring terra incognita of cognitive science: Lateralization of gene expression at the frontal pole of the human brain

    Directory of Open Access Journals (Sweden)

    Dolina I.A.

    2017-09-01

    Full Text Available Background. Rostral prefrontal cortex, or frontopolar cortex (FPC, also known as Brodmann area 10 (BA10, is the most anterior part of the human brain. It is one of the largest cytoarchitectonic areas of the human brain that has significantly increased its volume during evolution. Anatomically the le (BA10L and right (BA10R parts of FPC show slight asymmetries and they may have distinctive cognitive functions. Objective. In the present study, we investigated differential expression of the transcriptome in the le and right parts of BA10. Design. Postmortem samples of human brain tissue from fourteen donors (male/ female without history of psychiatric and neurological diseases, mean age 39.79±3.23 years old, mean postmortem interval 12.10±1.76 h were obtained using the resources of three institutions: the Partner Institute of Computational Biology of Chinese Academy of Sciences, the Max Planck Institute for Evolutionary Anthropology, and NIH Neuro-BioBank. Results. By using a standard RNA-sequencing followed by bioinformatic analysis, we identified 61 genes with differential expression in the le and right FPC. In general, gene expression was increased in BA10R relative to BA10L: 40 vs. 21 genes, respectively. According to gene ontology analysis, the majority of up-regulated genes in BA10R be- longed to the protein-coding category, whereas protein-coding and non-coding genes were equally up-expressed in BA10L. Most of the up-regulated genes in BA10R were involved in brain plasticity and activity-dependent mechanisms also known for their role in the hippocampus. 24 out of 30 mental disorder-related genes in the dataset were disrupted in schizophrenia. No such a wide association with other mental disorders was found. Conclusion. Discovered differences point at possible causes of hemispheric asymmetries in the human frontal lobes and at the molecular base of higher-order cognitive processes in health and disease.

  18. Lateral prefrontal cortex subregions make dissociable contributions during fluid reasoning.

    Science.gov (United States)

    Hampshire, Adam; Thompson, Russell; Duncan, John; Owen, Adrian M

    2011-01-01

    Reasoning is a key component of adaptable "executive" behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand-or the requirement to remap rules on to novel features-recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions.

  19. Lateral Prefrontal Cortex Subregions Make Dissociable Contributions during Fluid Reasoning

    Science.gov (United States)

    Thompson, Russell; Duncan, John; Owen, Adrian M.

    2011-01-01

    Reasoning is a key component of adaptable “executive” behavior and is known to depend on a network of frontal and parietal brain regions. However, the mechanisms by which this network supports reasoning and adaptable behavior remain poorly defined. Here, we examine the relationship between reasoning, executive control, and frontoparietal function in a series of nonverbal reasoning experiments. Our results demonstrate that, in accordance with previous studies, a network of frontal and parietal brain regions is recruited during reasoning. Our results also reveal that this network can be fractionated according to how different subregions respond when distinct reasoning demands are manipulated. While increased rule complexity modulates activity within a right lateralized network including the middle frontal gyrus and the superior parietal cortex, analogical reasoning demand—or the requirement to remap rules on to novel features—recruits the left inferior rostrolateral prefrontal cortex and the lateral occipital complex. In contrast, the posterior extent of the inferior frontal gyrus, associated with simpler executive demands, is not differentially sensitive to rule complexity or analogical demand. These findings accord well with the hypothesis that different reasoning demands are supported by different frontal and parietal subregions. PMID:20483908

  20. Functional brain mapping using H215O positron emission tomography (II): mapping of human working memory

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Lee, Sang Kun; Nam, Hyun Woo; Kim, Seok Ki; Park, Kwang Suk; Jeong, Jae Min; Chung, June Key; Lee, Myung Chul

    1998-01-01

    To localize and compare the neural basis of verbal and visual human working memory, we performed functional activation study using H 2 15 O PET. Repeated H 2 15 O PET scans with one control and three different activation tasks were performed on six right-handed normal volunteers. Each activation task was composed of 13 matching trials. On each trial, four targets, a fixation dot and a prove were presented sequentially and subject's tasks was to press a response button to indicate whether or not the prove was one of the previous targets. Short meaningful Korean words, simple drawings and monochromic pictures of human faces were used as matching objects for verbal or visual memory. All the images were spatially normalized and the differences between control and activation states were statistically analyzed using SPM96. Statistical analysis of verbal memory activation with short words showed activation in the left Broca's area, premotor cortex, cerebellum and right cingulate gyrus. In verbal memory with simple drawing, activation was shown in the larger regions including where activated with short words and left superior temporal cortex, basal ganglia, thalamus, prefrontal cortex, anterior portion of right superior temporal gyrus and right infero-lateral frontal cortex. On the other hand, the visual memory task activated predominantly right-sided structures, especially inferior frontal cortex, supplementary motor cortex and superior parietal cortex. The results are consistent with the hypothesis of the laterality and dissociation of the verbal and visual working memory from the invasive electrophysiological studies and emphasize the pivotal role of frontal cortex and cingulate gyrus in working memory system

  1. Age-Related Gene Expression in the Frontal Cortex Suggests Synaptic Function Changes in Specific Inhibitory Neuron Subtypes

    Directory of Open Access Journals (Sweden)

    Leon French

    2017-05-01

    Full Text Available Genome-wide expression profiling of the human brain has revealed genes that are differentially expressed across the lifespan. Characterizing these genes adds to our understanding of both normal functions and pathological conditions. Additionally, the specific cell-types that contribute to the motor, sensory and cognitive declines during aging are unclear. Here we test if age-related genes show higher expression in specific neural cell types. Our study leverages data from two sources of murine single-cell expression data and two sources of age-associations from large gene expression studies of postmortem human brain. We used nonparametric gene set analysis to test for age-related enrichment of genes associated with specific cell-types; we also restricted our analyses to specific gene ontology groups. Our analyses focused on a primary pair of single-cell expression data from the mouse visual cortex and age-related human post-mortem gene expression information from the orbitofrontal cortex. Additional pairings that used data from the hippocampus, prefrontal cortex, somatosensory cortex and blood were used to validate and test specificity of our findings. We found robust age-related up-regulation of genes that are highly expressed in oligodendrocytes and astrocytes, while genes highly expressed in layer 2/3 glutamatergic neurons were down-regulated across age. Genes not specific to any neural cell type were also down-regulated, possibly due to the bulk tissue source of the age-related genes. A gene ontology-driven dissection of the cell-type enriched genes highlighted the strong down-regulation of genes involved in synaptic transmission and cell-cell signaling in the Somatostatin (Sst neuron subtype that expresses the cyclin dependent kinase 6 (Cdk6 and in the vasoactive intestinal peptide (Vip neuron subtype expressing myosin binding protein C, slow type (Mybpc1. These findings provide new insights into cell specific susceptibility to normal aging

  2. Intraoperative intrinsic optical imaging of human somatosensory cortex during neurosurgical operations.

    Science.gov (United States)

    Sato, Katsushige; Nariai, Tadashi; Momose-Sato, Yoko; Kamino, Kohtaro

    2017-07-01

    Intrinsic optical imaging as developed by Grinvald et al. is a powerful technique for monitoring neural function in the in vivo central nervous system. The advent of this dye-free imaging has also enabled us to monitor human brain function during neurosurgical operations. We briefly describe our own experience in functional mapping of the human somatosensory cortex, carried out using intraoperative optical imaging. The maps obtained demonstrate new additional evidence of a hierarchy for sensory response patterns in the human primary somatosensory cortex.

  3. Mindfulness based cognitive therapy improves frontal control in bipolar disorder: a pilot EEG study

    Directory of Open Access Journals (Sweden)

    Howells Fleur M

    2012-02-01

    Full Text Available Abstract Background Cognitive processing in Bipolar Disorder is characterized by a number of attentional abnormalities. Mindfulness Based Cognitive Therapy combines mindfulness meditation, a form of attentional training, along with aspects of cognitive therapy, and may improve attentional dysfunction in bipolar disorder patients. Methods 12 euthymic BD patients and 9 control participants underwent record of electroencephalography (EEG, band frequency analysis during resting states (eyes open, eyes closed and during the completion of a continuous performance task (A-X version, EEG event-related potential (ERP wave component analysis. The individuals with BD completed an 8-week MBCT intervention and record of EEG was repeated. Results (1 Brain activity, individuals with BD showed significantly decreased theta band power, increased beta band power, and decreased theta/beta ratios during the resting state, eyes closed, for frontal and cingulate cortices. Post MBCT intervention improvement over the right frontal cortex was seen in the individuals with BD, as beta band power decreased. (2 Brain activation, individuals with BD showed a significant P300-like wave form over the frontal cortex during the cue. Post MBCT intervention the P300-like waveform was significantly attenuated over the frontal cortex. Conclusions Individuals with BD show decreased attentional readiness and activation of non-relevant information processing during attentional processes. These data are the first that show, MBCT in BD improved attentional readiness, and attenuated activation of non-relevant information processing during attentional processes.

  4. Neuronal synchronization in human parietal cortex during saccade planning

    NARCIS (Netherlands)

    Werf, J. van der; Buchholz, V.N.; Jensen, O.; Medendorp, W.P.

    2009-01-01

    Neuropsychological and neuroimaging studies have implicated the human posterior parietal cortex (PPC) in sensorimotor integration and saccade planning However, the temporal dynamics of the underlying physiology and its relationship to observations in non-human primates have been difficult to pin

  5. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    Science.gov (United States)

    Lauterstein, Dana E.; Tijerina, Pamella B.; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S.; Gordon, Terry; Klein, Catherine B.; Zelikoff, Judith T.

    2016-01-01

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology. PMID:27077873

  6. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    Directory of Open Access Journals (Sweden)

    Dana E. Lauterstein

    2016-04-01

    Full Text Available Electronic cigarettes (e-cigarettes, battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation throughout gestation (3 h/day; 5 days/week to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq. Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  7. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages.

    Science.gov (United States)

    Lauterstein, Dana E; Tijerina, Pamella B; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S; Gordon, Terry; Klein, Catherine B; Zelikoff, Judith T

    2016-04-12

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13-16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4-6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  8. Monocular Visual Deprivation Suppresses Excitability in Adult Human Visual Cortex

    DEFF Research Database (Denmark)

    Lou, Astrid Rosenstand; Madsen, Kristoffer Hougaard; Paulson, Olaf Bjarne

    2011-01-01

    The adult visual cortex maintains a substantial potential for plasticity in response to a change in visual input. For instance, transcranial magnetic stimulation (TMS) studies have shown that binocular deprivation (BD) increases the cortical excitability for inducing phosphenes with TMS. Here, we...... of visual deprivation has a substantial impact on experience-dependent plasticity of the human visual cortex.......The adult visual cortex maintains a substantial potential for plasticity in response to a change in visual input. For instance, transcranial magnetic stimulation (TMS) studies have shown that binocular deprivation (BD) increases the cortical excitability for inducing phosphenes with TMS. Here, we...... employed TMS to trace plastic changes in adult visual cortex before, during, and after 48 h of monocular deprivation (MD) of the right dominant eye. In healthy adult volunteers, MD-induced changes in visual cortex excitability were probed with paired-pulse TMS applied to the left and right occipital cortex...

  9. Dramatic loss of Ube3A expression during aging of the mammalian cortex

    Directory of Open Access Journals (Sweden)

    Kate Williams

    2010-05-01

    Full Text Available Neurobiological studies of aging are beginning to link functional changes with a loss of experience-dependent plasticity. In the visual system, age-related functional changes include decreases in visual acuity, orientation selectivity, motion perception, and ocular dominance plasticity. A recent paper has shown that Ube3A, an E3 ubiquitin ligase that is absent in Angelman's Syndrome, is required for experience-dependent plasticity during development of the visual cortex. Knocking out Ube3A during development leads to rigidity of ocular dominance plasticity that is strikingly similar to the reduced plasticity seen in older animals. Furthermore, ubiquitin ligases have been linked with age-related neurodegenerative disorders and longevity. Ubiquitin ligases selectively mark proteins for degradation, and a balance between synaptic proteins and their degradation is important for neural transmission and plasticity. This led us to ask whether normal aging is characterized by a loss of Ube3A in the cortex. We used Western blot analysis in order to quantify Ube3A expression across the life span of humans, macaque monkeys, and cats. We found that Ube3A expression declines across the lifespan in human, monkey, and cat cortex. The losses were substantial (50-80% in all areas studied which includes V1, V3, V4, frontal, and auditory cortex. In addition, when compared with other synaptic proteins there was a selective loss of Ube3A in human cortex. The progressive loss of Ube3A expression during cortical aging is an important new finding. Furthermore, the selective loss of Ube3A in human cortex highlights a specific vulnerability in human brain aging that may signify a dramatic shift in cortical function and plasticity.

  10. In search of the functional neuroanatomy of sociality: MRI subdivisions of orbital frontal cortex and social cognition.

    Science.gov (United States)

    Nestor, Paul G; Nakamura, Motoaki; Niznikiewicz, Margaret; Thompson, Elizabeth; Levitt, James J; Choate, Victoria; Shenton, Martha E; McCarley, Robert W

    2013-04-01

    We examined social cognition in a sample of healthy participants who had prior magnetic resonance imaging (MRI) gray matter volume studies of the orbital frontal cortex (OFC) that was parcellated into three regions: gyrus rectus, middle orbital gyrus and lateral orbital gyrus. These subjects also completed a self-report measure of Machiavelli personality traits, along with psychometric tests of social comprehension and declarative episodic memory, all of which we used as proxy measures to examine various features of social cognition. The data pointed to distinct functional-anatomical relationships highlighted by strong correlations of left lateral orbital gyrus and Machiavellian scores and right middle orbital gyrus with social comprehension and declarative episodic memory. In addition, hierarchical regression analyses revealed statistical evidence of a double dissociation between Machiavellian scores and left lateral orbital gyrus on one hand, and social comprehension with right middle orbital gyrus, on the other hand. To our knowledge, these findings are the first to show evidence linking normal variation in OFC subregions and different aspects of social cognition.

  11. Frontal white matter anisotropy and antidepressant remission in late-life depression.

    Directory of Open Access Journals (Sweden)

    Warren D Taylor

    2008-09-01

    Full Text Available Neuroanatomic features associated with antidepressant treatment outcomes in older depressed individuals are not well established. This study used diffusion tensor imaging to examine frontal white matter structure in depressed subjects undergoing a 12-week trial of sertraline. We hypothesized that remission would be associated with higher frontal anisotropy measures, and failure to remit with lower anisotropy.74 subjects with Major Depressive Disorder and age 60 years or older were enrolled in a twelve-week open-label trial of sertraline and completed clinical assessments and 1.5T magnetic resonance brain imaging. The apparent diffusion coefficient (ADC and fractional anisotropy (FA were measured in regions of interest placed in the white matter of the dorsolateral prefrontal cortex, anterior cingulate cortex, and corpus callosum. Differences in ADC and FA values between subjects who did and did not remit to treatment over the study period were assessed using generalized estimating equations, controlling for age, sex, medical comorbidity and baseline depression severity.Subjects who did not remit to sertraline exhibited higher FA values in the superior frontal gyri and anterior cingulate cortices bilaterally. There were no statistically significant associations between ADC measures and remission.Failure to remit to sertraline is associated with higher frontal FA values. Functional imaging studies demonstrate that depression is characterized by functional disconnection between frontal and limbic regions. Those individuals where this disconnection is related to structural changes as detected by DTI may be more likely to respond to antidepressants.ClinicalTrials.gov NCT00339066.

  12. Recognition of human gait in oblique and frontal views using Kinect ...

    African Journals Online (AJOL)

    This study describes the recognition of human gait in the oblique and frontal views using novel gait features derived from the skeleton joints provided by Kinect. In D-joint, the skeleton joints were extracted directly from the Kinect, which generates the gait feature. On the other hand, H-joint distance is a feature of distance ...

  13. Reduced dorso-lateral prefrontal cortex in treatment resistant schizophrenia.

    Science.gov (United States)

    Zugman, André; Gadelha, Ary; Assunção, Idaiane; Sato, João; Ota, Vanessa K; Rocha, Deyvis L; Mari, Jair J; Belangero, Sintia I; Bressan, Rodrigo A; Brietzke, Elisa; Jackowski, Andrea P

    2013-08-01

    Treatment resistance affects up to one third of patients with schizophrenia (SCZ). A better understanding of its biological underlying processes could improve treatment. The aim of this study was to compare cortical thickness between non-resistant SCZ (NR-SCZ), treatment-resistant SCZ (TR-SCZ) patients and healthy controls (HC). Structural MRI scans were obtained from 3 groups of individuals: 61 treatment resistant SCZ individuals, 67 non-resistant SCZ and 80 healthy controls. Images were analyzed using cortical surface modelling (implemented in freesurfer package) to identify group differences in cortical thickness. Statistical significant differences were identified using Monte-Carlo simulation method with a corrected p-cluster<0.01. Patients in the TR-SCZ group showed a widespread reduction in cortical thickness in frontal, parietal, temporal and occipital regions bilaterally. NR-SCZ group had reduced cortex in two regions (left superior frontal cortex and left caudal middle frontal cortex). TR-SCZ group also showed decreased thickness in the left dorsolateral prefrontal cortex (DLPFC) when compared with patients from NR-SCZ group. The reduction in cortical thickness in DLPFC indicates a more severe form of the disease or a specific finding for this group. Alterations in this region should be explored as a putative marker for treatment resistance. Prospective studies, with individuals being followed from first episode psychosis until refractoriness is diagnosed, are needed to clarify these hypotheses. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Brain antibodies in the cortex and blood of people with schizophrenia and controls.

    Science.gov (United States)

    Glass, L J; Sinclair, D; Boerrigter, D; Naude, K; Fung, S J; Brown, D; Catts, V S; Tooney, P; O'Donnell, M; Lenroot, R; Galletly, C; Liu, D; Weickert, T W; Shannon Weickert, C

    2017-08-08

    The immune system is implicated in the pathogenesis of schizophrenia, with elevated proinflammatory cytokine mRNAs found in the brains of ~40% of individuals with the disorder. However, it is not clear if antibodies (specifically immunoglobulin-γ (IgG)) can be found in the brain of people with schizophrenia and if their abundance relates to brain inflammatory cytokine mRNA levels. Therefore, we investigated the localization and abundance of IgG in the frontal cortex of people with schizophrenia and controls, and the impact of proinflammatory cytokine status on IgG abundance in these groups. Brain IgGs were detected surrounding blood vessels in the human and non-human primate frontal cortex by immunohistochemistry. IgG levels did not differ significantly between schizophrenia cases and controls, or between schizophrenia cases in 'high' and 'low' proinflammatory cytokine subgroups. Consistent with the existence of IgG in the parenchyma of human brain, mRNA and protein of the IgG transporter (FcGRT) were present in the brain, and did not differ according to diagnosis or inflammatory status. Finally, brain-reactive antibody presence and abundance was investigated in the blood of living people. The plasma of living schizophrenia patients and healthy controls contained antibodies that displayed positive binding to Rhesus macaque cerebellar tissue, and the abundance of these antibodies was significantly lower in patients than controls. These findings suggest that antibodies in the brain and brain-reactive antibodies in the blood are present under normal circumstances.

  15. Homologous mechanisms of visuospatial working memory maintenance in macaque and human: Properties and sources

    Science.gov (United States)

    Reinhart, Robert M.G.; Heitz, Richard P.; Purcell, Braden A.; Weigand, Pauline K.; Schall, Jeffrey D.; Woodman, Geoffrey F.

    2012-01-01

    Although areas of frontal cortex are thought to be critical for maintaining information in visuospatial working memory, the event-related potential (ERP) index of maintenance is found over posterior cortex in humans. In the present study, we reconcile these seemingly contradictory findings. Here we show that macaque monkeys and humans exhibit the same posterior ERP signature of working memory maintenance that predicts the precision of the memory-based behavioral responses. In addition, we show that the specific pattern of rhythmic oscillations in the alpha band, recently demonstrated to underlie the human visual working memory ERP component, is also present in monkeys. Next, we concurrently recorded intracranial local field potentials from two prefrontal and another frontal cortical area to determine their contribution to the surface potential indexing maintenance. The local fields in the two prefrontal areas, but not the cortex immediately posterior, exhibited amplitude modulations, timing, and relationships to behavior indicating that they contribute to the generation of the surface ERP component measured from the distal posterior electrodes. Rhythmic neural activity in the theta and gamma bands during maintenance provided converging support for the engagement of the same brain regions. These findings demonstrate that nonhuman primates have homologous electrophysiological signatures of visuospatial working memory to those of humans and that a distributed neural network, including frontal areas, underlies the posterior ERP index of visuospatial working memory maintenance. PMID:22649249

  16. Frontal White Matter Damage Impairs Response Inhibition in Children Following Traumatic Brain Injury

    Science.gov (United States)

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-01-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition. PMID:24618405

  17. Cortico-Cortical Receptive Field Estimates in Human Visual Cortex

    Directory of Open Access Journals (Sweden)

    Koen V Haak

    2012-05-01

    Full Text Available Human visual cortex comprises many visual areas that contain a map of the visual field (Wandell et al 2007, Neuron 56, 366–383. These visual field maps can be identified readily in individual subjects with functional magnetic resonance imaging (fMRI during experimental sessions that last less than an hour (Wandell and Winawer 2011, Vis Res 718–737. Hence, visual field mapping with fMRI has been, and still is, a heavily used technique to examine the organisation of both normal and abnormal human visual cortex (Haak et al 2011, ACNR, 11(3, 20–21. However, visual field mapping cannot reveal every aspect of human visual cortex organisation. For example, the information processed within a visual field map arrives from somewhere and is sent to somewhere, and visual field mapping does not derive these input/output relationships. Here, we describe a new, model-based analysis for estimating the dependence between signals in distinct cortical regions using functional magnetic resonance imaging (fMRI data. Just as a stimulus-referred receptive field predicts the neural response as a function of the stimulus contrast, the neural-referred receptive field predicts the neural response as a function of responses elsewhere in the nervous system. When applied to two cortical regions, this function can be called the cortico-cortical receptive field (CCRF. We model the CCRF as a Gaussian-weighted region on the cortical surface and apply the model to data from both stimulus-driven and resting-state experimental conditions in visual cortex.

  18. Reduced Numbers of Somatostatin Receptors in the Cerebral Cortex in Alzheimer's Disease

    Science.gov (United States)

    Flint Beal, M.; Mazurek, Michael F.; Tran, Vinh T.; Chattha, Geetinder; Bird, Edward D.; Martin, Joseph B.

    1985-07-01

    Somatostatin receptor concentrations were measured in patients with Alzheimer's disease and controls. In the frontal cortex (Brodmann areas 6, 9, and 10) and temporal cortex (Brodmann area 21), the concentrations of somatostatin in receptors in the patients were reduced to approximately 50 percent of control values. A 40 percent reduction was seen in the hippocampus, while no significant changes were found in the cingulate cortex, postcentral gyrus, temporal pole, and superior temporal gyrus. Scatchard analysis showed a reduction in receptor number rather than a change in affinity. Somatostatin-like immunoreactivity was significantly reduced in both the frontal and temporal cortex. Somatostatin-like immunoreactivity was linearly related to somatostatin-receptor binding in the cortices of Alzheimer's patients. These findings may reflect degeneration of postsynaptic neurons or cortical afferents in the patients' cerebral cortices. Alternatively, decreased somatostatinlike immunoreactivity in Alzheimer's disease might indicate increased release of somatostatin and down regulation of postsynaptic receptors.

  19. Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology

    Science.gov (United States)

    Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess

    2015-01-01

    Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject’s body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for

  20. Analysis of the volumetric relationship among human ocular, orbital and fronto-occipital cortical morphology.

    Science.gov (United States)

    Masters, Michael; Bruner, Emiliano; Queer, Sarah; Traynor, Sarah; Senjem, Jess

    2015-10-01

    Recent research on the visual system has focused on investigating the relationship among eye (ocular), orbital, and visual cortical anatomy in humans. This issue is relevant in evolutionary and medical fields. In terms of evolution, only in modern humans and Neandertals are the orbits positioned beneath the frontal lobes, with consequent structural constraints. In terms of medicine, such constraints can be associated with minor deformation of the eye, vision defects, and patterns of integration among these features, and in association with the frontal lobes, are important to consider in reconstructive surgery. Further study is therefore necessary to establish how these variables are related, and to what extent ocular size is associated with orbital and cerebral cortical volumes. Relationships among these anatomical components were investigated using magnetic resonance images from a large sample of 83 individuals, which also included each subject's body height, age, sex, and uncorrected visual acuity score. Occipital and frontal gyri volumes were calculated using two different cortical parcellation tools in order to provide a better understanding of how the eye and orbit vary in relation to visual cortical gyri, and frontal cortical gyri which are not directly related to visual processing. Results indicated that ocular and orbital volumes were weakly correlated, and that eye volume explains only a small proportion of the variance in orbital volume. Ocular and orbital volumes were also found to be equally and, in most cases, more highly correlated with five frontal lobe gyri than with occipital lobe gyri associated with V1, V2, and V3 of the visual cortex. Additionally, after accounting for age and sex variation, the relationship between ocular and total visual cortical volume was no longer statistically significant, but remained significantly related to total frontal lobe volume. The relationship between orbital and visual cortical volumes remained significant for a

  1. Evoked potentials in large-scale cortical networks elicited by TMS of the visual cortex

    Science.gov (United States)

    Grossman, Emily D.; Srinivasan, Ramesh

    2011-01-01

    Single pulses of transcranial magnetic stimulation (TMS) result in distal and long-lasting oscillations, a finding directly challenging the virtual lesion hypothesis. Previous research supporting this finding has primarily come from stimulation of the motor cortex. We have used single-pulse TMS with simultaneous EEG to target seven brain regions, six of which belong to the visual system [left and right primary visual area V1, motion-sensitive human middle temporal cortex, and a ventral temporal region], as determined with functional MRI-guided neuronavigation, and a vertex “control” site to measure the network effects of the TMS pulse. We found the TMS-evoked potential (TMS-EP) over visual cortex consists mostly of site-dependent theta- and alphaband oscillations. These site-dependent oscillations extended beyond the stimulation site to functionally connected cortical regions and correspond to time windows where the EEG responses maximally diverge (40, 200, and 385 ms). Correlations revealed two site-independent oscillations ∼350 ms after the TMS pulse: a theta-band oscillation carried by the frontal cortex, and an alpha-band oscillation over parietal and frontal cortical regions. A manipulation of stimulation intensity at one stimulation site (right hemisphere V1-V3) revealed sensitivity to the stimulation intensity at different regions of cortex, evidence of intensity tuning in regions distal to the site of stimulation. Together these results suggest that a TMS pulse applied to the visual cortex has a complex effect on brain function, engaging multiple brain networks functionally connected to the visual system with both invariant and site-specific spatiotemporal dynamics. With this characterization of TMS, we propose an alternative to the virtual lesion hypothesis. Rather than a technique that simulates lesions, we propose TMS generates natural brain signals and engages functional networks. PMID:21715670

  2. Frontoparietal cortex mediates perceptual transitions in bistable perception.

    Science.gov (United States)

    Weilnhammer, Veith A; Ludwig, Karin; Hesselmann, Guido; Sterzer, Philipp

    2013-10-02

    During bistable vision, perception oscillates between two mutually exclusive percepts despite constant sensory input. Greater BOLD responses in frontoparietal cortex have been shown to be associated with endogenous perceptual transitions compared with "replay" transitions designed to closely match bistability in both perceptual quality and timing. It has remained controversial, however, whether this enhanced activity reflects causal influences of these regions on processing at the sensory level or, alternatively, an effect of stimulus differences that result in, for example, longer durations of perceptual transitions in bistable perception compared with replay conditions. Using a rotating Lissajous figure in an fMRI experiment on 15 human participants, we controlled for potential confounds of differences in transition duration and confirmed previous findings of greater activity in frontoparietal areas for transitions during bistable perception. In addition, we applied dynamic causal modeling to identify the neural model that best explains the observed BOLD signals in terms of effective connectivity. We found that enhanced activity for perceptual transitions is associated with a modulation of top-down connectivity from frontal to visual cortex, thus arguing for a crucial role of frontoparietal cortex in perceptual transitions during bistable perception.

  3. Spindle neurons of the human anterior cingulate cortex

    Science.gov (United States)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  4. Cognitive Functions and Neurodevelopmental Disorders Involving the Prefrontal Cortex and Mediodorsal Thalamus

    Directory of Open Access Journals (Sweden)

    Zakaria Ouhaz

    2018-02-01

    Full Text Available The mediodorsal nucleus of the thalamus (MD has been implicated in executive functions (such as planning, cognitive control, working memory, and decision-making because of its significant interconnectivity with the prefrontal cortex (PFC. Yet, whilst the roles of the PFC have been extensively studied, how the MD contributes to these cognitive functions remains relatively unclear. Recently, causal evidence in monkeys has demonstrated that in everyday tasks involving rapid updating (e.g., while learning something new, making decisions, or planning the next move, the MD and frontal cortex are working in close partnership. Furthermore, researchers studying the MD in rodents have been able to probe the underlying mechanisms of this relationship to give greater insights into how the frontal cortex and MD might interact during the performance of these essential tasks. This review summarizes the circuitry and known neuromodulators of the MD, and considers the most recent behavioral, cognitive, and neurophysiological studies conducted in monkeys and rodents; in total, this evidence demonstrates that MD makes a critical contribution to cognitive functions. We propose that communication occurs between the MD and the frontal cortex in an ongoing, fluid manner during rapid cognitive operations, via the means of efference copies of messages passed through transthalamic routes; the conductance of these messages may be modulated by other brain structures interconnected to the MD. This is similar to the way in which other thalamic structures have been suggested to carry out forward modeling associated with rapid motor responding and visual processing. Given this, and the marked thalamic pathophysiology now identified in many neuropsychiatric disorders, we suggest that changes in the different subdivisions of the MD and their interconnections with the cortex could plausibly give rise to a number of the otherwise disparate symptoms (including changes to olfaction

  5. A Model of Representational Spaces in Human Cortex.

    Science.gov (United States)

    Guntupalli, J Swaroop; Hanke, Michael; Halchenko, Yaroslav O; Connolly, Andrew C; Ramadge, Peter J; Haxby, James V

    2016-06-01

    Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions. © The Author 2016. Published by Oxford University Press.

  6. The frontal-anatomic specificity of design fluency repetitions and their diagnostic relevance for behavioral variant frontotemporal dementia.

    Science.gov (United States)

    Possin, Katherine L; Chester, Serana K; Laluz, Victor; Bostrom, Alan; Rosen, Howard J; Miller, Bruce L; Kramer, Joel H

    2012-09-01

    On tests of design fluency, an examinee draws as many different designs as possible in a specified time limit while avoiding repetition. The neuroanatomical substrates and diagnostic group differences of design fluency repetition errors and total correct scores were examined in 110 individuals diagnosed with dementia, 53 with mild cognitive impairment (MCI), and 37 neurologically healthy controls. The errors correlated significantly with volumes in the right and left orbitofrontal cortex (OFC), the right and left superior frontal gyrus, the right inferior frontal gyrus, and the right striatum, but did not correlate with volumes in any parietal or temporal lobe regions. Regression analyses indicated that the lateral OFC may be particularly crucial for preventing these errors, even after excluding patients with behavioral variant frontotemporal dementia (bvFTD) from the analysis. Total correct correlated more diffusely with volumes in the right and left frontal and parietal cortex, the right temporal cortex, and the right striatum and thalamus. Patients diagnosed with bvFTD made significantly more repetition errors than patients diagnosed with MCI, Alzheimer's disease, semantic dementia, progressive supranuclear palsy, or corticobasal syndrome. In contrast, total correct design scores did not differentiate the dementia patients. These results highlight the frontal-anatomic specificity of design fluency repetitions. In addition, the results indicate that the propensity to make these errors supports the diagnosis of bvFTD. (JINS, 2012, 18, 1-11).

  7. Intertemporal Decision Making After Brain Injury: Amount-Dependent Steeper Discounting after Frontal Cortex Damage

    Directory of Open Access Journals (Sweden)

    Białaszek Wojciech

    2017-12-01

    Full Text Available Traumatic brain injuries to the frontal lobes are associated with many maladaptive forms of behavior. We investigated the association between brain damage and impulsivity, as measured by the rate of delay discounting (i.e., the extent to which future outcomes are devalued in time. The main aim of this study was to test the hypothesis of steeper discounting of different amounts in a group of patients with frontal lobe damage. We used a delay discounting task in the form of a structured interview. A total of 117 participants were divided into five groups: three neurological groups and two groups without brain damage. Our analyses showed that patients with focal damage to the frontal lobes demonstrated steeper delay discounting than other participants. Other clinical groups demonstrated similar discounting rates. The data pattern related to the magnitude effect on the group level suggested that the magnitude effect is absent in the group of patients with damage to the frontal lobes; however, results were less consistent on an individual level. Amount-dependent discounting was observed in only two groups, the healthy control group and the neurological group with other cortical areas damaged.

  8. Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans

    Science.gov (United States)

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…

  9. Probabilistic Tractography Recovers a Rostrocaudal Trajectory of Connectivity Variability in the Human Insular Cortex

    Science.gov (United States)

    Cerliani, Leonardo; Thomas, Rajat M; Jbabdi, Saad; Siero, Jeroen CW; Nanetti, Luca; Crippa, Alessandro; Gazzola, Valeria; D'Arceuil, Helen; Keysers, Christian

    2012-01-01

    The insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet been investigated in vivo. In the present work, we used in vivo probabilistic white-matter tractography and Laplacian eigenmaps (LE) to study the variation of connectivity patterns across insular territories in humans. In each subject and hemisphere, we recovered a rostrocaudal trajectory of connectivity variation ranging from the anterior dorsal and ventral insula to the dorsal caudal part of the long insular gyri. LE suggested that regional transitions among tractography patterns in the insula occur more gradually than in other brain regions. In particular, the change in tractography patterns was more gradual in the insula than in the medial premotor region, where a sharp transition between different tractography patterns was found. The recovered trajectory of connectivity variation in the insula suggests a relation between connectivity and cytoarchitecture in humans resembling that previously found in macaques: tractography seeds from the anterior insula were mainly found in limbic and paralimbic regions and in anterior parts of the inferior frontal gyrus, while seeds from caudal insular territories mostly reached parietal and posterior temporal cortices. Regions in the putative dysgranular insula displayed more heterogeneous connectivity patterns, with regional differences related to the proximity with either putative granular or agranular regions. Hum Brain Mapp 33:2005–2034, 2012. © 2011 Wiley Periodicals, Inc. PMID:21761507

  10. Regulatory behavior and frontal activity: Considering the role of revised-BIS in relative right frontal asymmetry.

    Science.gov (United States)

    Gable, Philip A; Neal, Lauren B; Threadgill, A Hunter

    2018-01-01

    Essential to human behavior are three core personality systems: approach, avoidance, and a regulatory system governing the two motivational systems. Decades of research has linked approach motivation with greater relative left frontal-cortical asymmetry. Other research has linked avoidance motivation with greater relative right frontal-cortical asymmetry. However, past work linking withdrawal motivation with greater relative right frontal asymmetry has been mixed. The current article reviews evidence suggesting that activation of the regulatory system (revised Behavioral Inhibition System [r-BIS]) may be more strongly related to greater relative right frontal asymmetry than withdrawal motivation. Specifically, research suggests that greater activation of the r-BIS is associated with greater relative right frontal activity, and reduced r-BIS activation is associated with reduced right frontal activity (greater relative left frontal activity). We review evidence examining trait and state frontal activity using EEG, source localization, lesion studies, neuronal stimulation, and fMRI supporting the idea that r-BIS may be the core personality system related to greater relative right frontal activity. In addition, the current review seeks to disentangle avoidance motivation and r-BIS as substrates of relative right frontal asymmetry. © 2017 Society for Psychophysiological Research.

  11. Frontal glutamate and reward processing in adolescence and adulthood.

    Science.gov (United States)

    Gleich, Tobias; Lorenz, Robert C; Pöhland, Lydia; Raufelder, Diana; Deserno, Lorenz; Beck, Anne; Heinz, Andreas; Kühn, Simone; Gallinat, Jürgen

    2015-11-01

    The fronto-limbic network interaction, driven by glutamatergic and dopaminergic neurotransmission, represents a core mechanism of motivated behavior and personality traits. Reward seeking behavior undergoes tremendous changes in adolescence paralleled by neurobiological changes of this network including the prefrontal cortex, striatum and amygdala. Since fronto-limbic dysfunctions also underlie major psychiatric diseases beginning in adolescence, this investigation focuses on network characteristics separating adolescents from adults. To investigate differences in network interactions, the brain reward system activity (slot machine task) together with frontal glutamate concentration (anterior cingulate cortex, ACC) was measured in 28 adolescents and 26 adults employing functional magnetic resonance imaging and magnetic resonance spectroscopy, respectively. An inverse coupling of glutamate concentrations in the ACC and activation of the ventral striatum was observed in adolescents. Further, amygdala response in adolescents was negatively correlated with the personality trait impulsivity. For adults, no significant associations of network components or correlations with impulsivity were found. The inverse association between frontal glutamate concentration and striatal activation in adolescents is in line with the triadic model of motivated behavior stressing the important role of frontal top-down inhibition on limbic structures. Our data identified glutamate as the mediating neurotransmitter of this inhibitory process and demonstrates the relevance of glutamate on the reward system and related behavioral traits like impulsivity. This fronto-limbic coupling may represent a vulnerability factor for psychiatric disorders starting in adolescence but not in adulthood.

  12. The relation of hedonic hunger and restrained eating to lateralized frontal activation.

    Science.gov (United States)

    Winter, S R; Feig, E H; Kounios, J; Erickson, B; Berkowitz, S; Lowe, M R

    2016-09-01

    Asymmetrical alpha activation in the prefrontal cortex (frontal asymmetry) in electroencephalography (EEG) has been related to eating behavior. Prior studies linked dietary restraint with right frontal asymmetry [1] and disinhibition with left frontal asymmetry [2]. The current study simultaneously assessed restrained eating and hedonic hunger (drive for food reward in the absence of hunger) in relation to frontal asymmetry. Resting-state EEG and measures of restrained eating (Revised Restraint Scale; RRS) and hedonic hunger (Power of Food Scale; PFS) were assessed in 61 non-obese adults. Individually, hedonic hunger predicted left asymmetry. However, PFS and RRS were correlated (r=0.48, phunger exhibited left asymmetry irrespective of RRS scores; among those low in PFS, only those high in RRS showed right asymmetry. Results were consistent with literature linking avoidant behaviors (restraint) with right-frontal asymmetry and approach behaviors (binge eating) with left-frontal asymmetry. It appears that a strong drive toward palatable foods predominates at a neural level even when restraint is high. Findings suggest that lateralized frontal activity is an indicator of motivation both to consume and to avoid consuming highly palatable foods. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Functional brain mapping using H{sub 2}{sup 15}O positron emission tomography (II): mapping of human working memory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Lee, Sang Kun; Nam, Hyun Woo; Kim, Seok Ki; Park, Kwang Suk; Jeong, Jae Min; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    1998-08-01

    To localize and compare the neural basis of verbal and visual human working memory, we performed functional activation study using H{sub 2}{sup 15}O PET. Repeated H{sub 2}{sup 15}O PET scans with one control and three different activation tasks were performed on six right-handed normal volunteers. Each activation task was composed of 13 matching trials. On each trial, four targets, a fixation dot and a prove were presented sequentially and subject's tasks was to press a response button to indicate whether or not the prove was one of the previous targets. Short meaningful Korean words, simple drawings and monochromic pictures of human faces were used as matching objects for verbal or visual memory. All the images were spatially normalized and the differences between control and activation states were statistically analyzed using SPM96. Statistical analysis of verbal memory activation with short words showed activation in the left Broca's area, premotor cortex, cerebellum and right cingulate gyrus. In verbal memory with simple drawing, activation was shown in the larger regions including where activated with short words and left superior temporal cortex, basal ganglia, thalamus, prefrontal cortex, anterior portion of right superior temporal gyrus and right infero-lateral frontal cortex. On the other hand, the visual memory task activated predominantly right-sided structures, especially inferior frontal cortex, supplementary motor cortex and superior parietal cortex. The results are consistent with the hypothesis of the laterality and dissociation of the verbal and visual working memory from the invasive electrophysiological studies and emphasize the pivotal role of frontal cortex and cingulate gyrus in working memory system.

  14. Noninvasive studies of human visual cortex using neuromagnetic techniques

    International Nuclear Information System (INIS)

    Aine, C.J.; George, J.S.; Supek, S.; Maclin, E.L.

    1990-01-01

    The major goals of noninvasive studies of the human visual cortex are: to increase knowledge of the functional organization of cortical visual pathways; and to develop noninvasive clinical tests for the assessment of cortical function. Noninvasive techniques suitable for studies of the structure and function of human visual cortex include magnetic resonance imaging (MRI), positron emission tomography (PET), single photon emission tomography (SPECT), scalp recorded event-related potentials (ERPs), and event-related magnetic fields (ERFs). The primary challenge faced by noninvasive functional measures is to optimize the spatial and temporal resolution of the measurement and analytic techniques in order to effectively characterize the spatial and temporal variations in patterns of neuronal activity. In this paper we review the use of neuromagnetic techniques for this purpose. 8 refs., 3 figs

  15. Expression of cellular prion protein in the frontal and occipital lobe in Alzheimer's disease, diffuse Lewy body disease, and in normal brain: an immunohistochemical study.

    Science.gov (United States)

    Rezaie, Payam; Pontikis, Charlie C; Hudson, Lance; Cairns, Nigel J; Lantos, Peter L

    2005-08-01

    Cellular prion protein (PrP(c)) is a glycoprotein expressed at low to moderate levels within the nervous system. Recent studies suggest that PrP(c) may possess neuroprotective functions and that its expression is upregulated in certain neurodegenerative disorders. We investigated whether PrP(c) expression is altered in the frontal and occipital cortex in two well-characterized neurodegenerative disorders--Alzheimer's disease (AD) and diffuse Lewy body disease (DLBD)--compared with that in normal human brain using immunohistochemistry and computerized image analysis. The distribution of PrP(c) was further tested for correlation with glial reactivity. We found that PrP(c) was localized mainly in the gray matter (predominantly in neurons) and expressed at higher levels within the occipital cortex in the normal human brain. Image analysis revealed no significant variability in PrP(c) expression between DLBD and control cases. However, blood vessels within the white matter of DLBD cases showed immunoreactivity to PrP(c). By contrast, this protein was differentially expressed in the frontal and occipital cortex of AD cases; it was markedly overexpressed in the former and significantly reduced in the latter. Epitope specificity of antibodies appeared important when detecting PrP(c). The distribution of PrP(c) did not correlate with glial immunoreactivity. In conclusion, this study supports the proposal that regional changes in expression of PrP(c) may occur in certain neurodegenerative disorders such as AD, but not in other disorders such as DLBD.

  16. Functional sex differences in human primary auditory cortex

    NARCIS (Netherlands)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W. J.; Willemsen, Antoon T. M.

    2007-01-01

    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a

  17. Transcranial Magnetic Stimulation over Left Inferior Frontal and Posterior Temporal Cortex Disrupts Gesture-Speech Integration.

    Science.gov (United States)

    Zhao, Wanying; Riggs, Kevin; Schindler, Igor; Holle, Henning

    2018-02-21

    Language and action naturally occur together in the form of cospeech gestures, and there is now convincing evidence that listeners display a strong tendency to integrate semantic information from both domains during comprehension. A contentious question, however, has been which brain areas are causally involved in this integration process. In previous neuroimaging studies, left inferior frontal gyrus (IFG) and posterior middle temporal gyrus (pMTG) have emerged as candidate areas; however, it is currently not clear whether these areas are causally or merely epiphenomenally involved in gesture-speech integration. In the present series of experiments, we directly tested for a potential critical role of IFG and pMTG by observing the effect of disrupting activity in these areas using transcranial magnetic stimulation in a mixed gender sample of healthy human volunteers. The outcome measure was performance on a Stroop-like gesture task (Kelly et al., 2010a), which provides a behavioral index of gesture-speech integration. Our results provide clear evidence that disrupting activity in IFG and pMTG selectively impairs gesture-speech integration, suggesting that both areas are causally involved in the process. These findings are consistent with the idea that these areas play a joint role in gesture-speech integration, with IFG regulating strategic semantic access via top-down signals acting upon temporal storage areas. SIGNIFICANCE STATEMENT Previous neuroimaging studies suggest an involvement of inferior frontal gyrus and posterior middle temporal gyrus in gesture-speech integration, but findings have been mixed and due to methodological constraints did not allow inferences of causality. By adopting a virtual lesion approach involving transcranial magnetic stimulation, the present study provides clear evidence that both areas are causally involved in combining semantic information arising from gesture and speech. These findings support the view that, rather than being

  18. Cortical NMDA receptor expression in human chronic alcoholism: influence of the TaqIA allele of ANKK1.

    Science.gov (United States)

    Ridge, Justin P; Dodd, Peter R

    2009-10-01

    Real-time RT-PCR normalized to GAPDH was used to assay N-methyl-D-aspartate (NMDA) receptor NR1, NR2A and NR2B subunit mRNA in human autopsy cortex tissue from chronic alcoholics with and without comorbid cirrhosis of the liver and matched controls. Subunit expression was influenced by the subject's genotype. The TaqIA polymorphism selectively modulated NMDA receptor mean transcript expression in cirrhotic-alcoholic superior frontal cortex, in diametrically opposite ways in male and female subjects. Genetic make-up may differentially influence vulnerability to brain damage by altering the excitation: inhibition balance, particularly in alcoholics with comorbid cirrhosis of the liver. The TaqIA polymorphism occurs within the poorly characterised ankyrin-repeat containing kinase 1 (ANKK1) gene. Using PCR, ANKK1 mRNA transcript was detected in inferior temporal, occipital, superior frontal and primary motor cortex of control human brain. ANKK1 expression may mediate the influence of the TaqIA polymorphism on phenotype.

  19. Dissociating medial frontal and posterior cingulate activity during self-reflection.

    Science.gov (United States)

    Johnson, Marcia K; Raye, Carol L; Mitchell, Karen J; Touryan, Sharon R; Greene, Erich J; Nolen-Hoeksema, Susan

    2006-06-01

    Motivationally significant agendas guide perception, thought and behaviour, helping one to define a 'self' and to regulate interactions with the environment. To investigate neural correlates of thinking about such agendas, we asked participants to think about their hopes and aspirations (promotion focus) or their duties and obligations (prevention focus) during functional magnetic resonance imaging and compared these self-reflection conditions with a distraction condition in which participants thought about non-self-relevant items. Self-reflection resulted in greater activity than distraction in dorsomedial frontal/anterior cingulate cortex and posterior cingulate cortex/precuneus, consistent with previous findings of activity in these areas during self-relevant thought. For additional medial areas, we report new evidence of a double dissociation of function between medial prefrontal/anterior cingulate cortex, which showed relatively greater activity to thinking about hopes and aspirations, and posterior cingulate cortex/precuneus, which showed relatively greater activity to thinking about duties and obligations. One possibility is that activity in medial prefrontal cortex is associated with instrumental or agentic self-reflection, whereas posterior medial cortex is associated with experiential self-reflection. Another, not necessarily mutually exclusive, possibility is that medial prefrontal cortex is associated with a more inward-directed focus, while posterior cingulate is associated with a more outward-directed, social or contextual focus.

  20. Effects of early weaning and social isolation on the expression of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase 1 and 2 mRNAs in the frontal cortex and hippocampus of piglets.

    Science.gov (United States)

    Poletto, R; Steibel, J P; Siegford, J M; Zanella, A J

    2006-01-05

    Pigs weaned at young ages show more abnormal and aggressive behaviors and cognitive deficits compared to later weaned pigs. We investigated the effects of age, weaning and/or social isolation on the expression of genes regulating glucocorticoid response [glucocorticoid receptor (GR), mineralocorticoid receptor (MR), 11beta-hydroxysteroid dehydrogenases 1 and 2 (11beta-HSD1 and 11beta-HSD2)] in the frontal cortex and hippocampus. Early- (EW; n = 6) and conventionally-weaned (CW; n = 6) piglets were weaned at 10 and 21 days after birth, respectively. Non-weaned (NW) piglets of both ages (NW; n = 6/group) remained with their dams. Immediately before euthanasia, half of CW, EW and NW animals were socially isolated for 15 min at 12 (EW, NW) and 23 (CW, NW) days of age. Differences in amounts of 11beta-HSD1, 11beta-HSD2, GR and MR mRNA were determined by quantitative real-time RT-PCR and data subjected to multivariate linear mixed model analysis. When compared with NW piglets at 12 days of age, the hippocampi of EW piglets showed decreased gene expression (P Social isolation decreased gene expression (P social isolation affected frontal cortex regardless of age. These results may be correlated with behavioral and cognitive changes reported in EW piglets.

  1. Chronic Underactivity of Medial Frontal Cortical β2-Containing Nicotinic Receptors Increases Clozapine-Induced Working Memory Impairment in Female Rats

    Science.gov (United States)

    Levin, Edward D.; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N. Channelle

    2009-01-01

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of β2-containing nicotinic receptors with dihydro-β-erythrodine (DHβE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal α7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical α7 and β2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHβE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHβE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHβE infusion potentiated clozapine-induced memory impairment, whereas previously the memory

  2. Chronic underactivity of medial frontal cortical beta2-containing nicotinic receptors increases clozapine-induced working memory impairment in female rats.

    Science.gov (United States)

    Levin, Edward D; Perkins, Abigail; Brotherton, Terrell; Qazi, Melissa; Berez, Chantal; Montalvo-Ortiz, Janitza; Davis, Kasey; Williams, Paul; Christopher, N Channelle

    2009-03-17

    Nicotinic receptor decreases in the frontal cortex and hippocampus are important mediators of cognitive impairment in both schizophrenia and Alzheimer's disease. Drug treatments for these diseases should take into account the impacts of compromised brain function on drug response. This study investigated the impact of compromised nicotinic receptor activity in the frontal cortex in rats on memory function. Since both Alzheimer's disease and schizophrenia can involve psychosis, antipsychotic drugs are often given. The impacts of antipsychotic drugs on cognitive function have been found to be quite variable. It is the hypothesis of this and previous studies that the cognitive effects of antispychotic drugs on cognitive function depend on the integrity of brain systems involved in cognition. Previously in studies of the hippocampus, we found that chronic inhibition of beta2-containing nicotinic receptors with dihydro-beta-erythrodine (DHbetaE) impaired working memory and that this effect was attenuated by the antipsychotic drug clozapine. In contrast, chronic hippocampal alpha7 nicotinic receptor blockade with methyllycaconitine (MLA) potentiated the clozapine-induced memory impairment which is seen in rats without compromised nicotinic receptor activity. The current study determined medial frontal cortical alpha7 and beta2-containing nicotinic receptor involvement in memory and the interactions with antipsychotic drug therapy with clozapine. Chronic DHbetaE and MLA infusion effects and interactions with systemic clozapine were assessed in female rats tested for memory on the radial-arm maze. Antipsychotic drug interactions with chronic systemic nicotine were investigated because nicotinic procognitive treatment has been proposed. The same local infusion DHbetaE dose that impaired memory with hippocampal infusion did not impair memory when infused in the medial frontal cortex. Frontal DHbetaE infusion potentiated clozapine-induced memory impairment, whereas previously

  3. Preprocessing of emotional visual information in the human piriform cortex.

    Science.gov (United States)

    Schulze, Patrick; Bestgen, Anne-Kathrin; Lech, Robert K; Kuchinke, Lars; Suchan, Boris

    2017-08-23

    This study examines the processing of visual information by the olfactory system in humans. Recent data point to the processing of visual stimuli by the piriform cortex, a region mainly known as part of the primary olfactory cortex. Moreover, the piriform cortex generates predictive templates of olfactory stimuli to facilitate olfactory processing. This study fills the gap relating to the question whether this region is also capable of preprocessing emotional visual information. To gain insight into the preprocessing and transfer of emotional visual information into olfactory processing, we recorded hemodynamic responses during affective priming using functional magnetic resonance imaging (fMRI). Odors of different valence (pleasant, neutral and unpleasant) were primed by images of emotional facial expressions (happy, neutral and disgust). Our findings are the first to demonstrate that the piriform cortex preprocesses emotional visual information prior to any olfactory stimulation and that the emotional connotation of this preprocessing is subsequently transferred and integrated into an extended olfactory network for olfactory processing.

  4. Task-specific modulation of human auditory evoked responses in a delayed-match-to-sample task

    Directory of Open Access Journals (Sweden)

    Feng eRong

    2011-05-01

    Full Text Available In this study, we focus our investigation on task-specific cognitive modulation of early cortical auditory processing in human cerebral cortex. During the experiments, we acquired whole-head magnetoencephalography (MEG data while participants were performing an auditory delayed-match-to-sample (DMS task and associated control tasks. Using a spatial filtering beamformer technique to simultaneously estimate multiple source activities inside the human brain, we observed a significant DMS-specific suppression of the auditory evoked response to the second stimulus in a sound pair, with the center of the effect being located in the vicinity of the left auditory cortex. For the right auditory cortex, a non-invariant suppression effect was observed in both DMS and control tasks. Furthermore, analysis of coherence revealed a beta band (12 ~ 20 Hz DMS-specific enhanced functional interaction between the sources in left auditory cortex and those in left inferior frontal gyrus, which has been shown to involve in short-term memory processing during the delay period of DMS task. Our findings support the view that early evoked cortical responses to incoming acoustic stimuli can be modulated by task-specific cognitive functions by means of frontal-temporal functional interactions.

  5. Task-specific reorganization of the auditory cortex in deaf humans.

    Science.gov (United States)

    Bola, Łukasz; Zimmermann, Maria; Mostowski, Piotr; Jednoróg, Katarzyna; Marchewka, Artur; Rutkowski, Paweł; Szwed, Marcin

    2017-01-24

    The principles that guide large-scale cortical reorganization remain unclear. In the blind, several visual regions preserve their task specificity; ventral visual areas, for example, become engaged in auditory and tactile object-recognition tasks. It remains open whether task-specific reorganization is unique to the visual cortex or, alternatively, whether this kind of plasticity is a general principle applying to other cortical areas. Auditory areas can become recruited for visual and tactile input in the deaf. Although nonhuman data suggest that this reorganization might be task specific, human evidence has been lacking. Here we enrolled 15 deaf and 15 hearing adults into an functional MRI experiment during which they discriminated between temporally complex sequences of stimuli (rhythms). Both deaf and hearing subjects performed the task visually, in the central visual field. In addition, hearing subjects performed the same task in the auditory modality. We found that the visual task robustly activated the auditory cortex in deaf subjects, peaking in the posterior-lateral part of high-level auditory areas. This activation pattern was strikingly similar to the pattern found in hearing subjects performing the auditory version of the task. Although performing the visual task in deaf subjects induced an increase in functional connectivity between the auditory cortex and the dorsal visual cortex, no such effect was found in hearing subjects. We conclude that in deaf humans the high-level auditory cortex switches its input modality from sound to vision but preserves its task-specific activation pattern independent of input modality. Task-specific reorganization thus might be a general principle that guides cortical plasticity in the brain.

  6. The prefrontal cortex in the Göttingen minipig brain defined by neural projection criteria and cytoarchitecture

    DEFF Research Database (Denmark)

    Jelsing, J; Hay-Schmidt, Anders; Dyrby, Tim

    2006-01-01

    In an attempt to delineate the prefrontal cortex (PFC) in the Gottingen minipig brain the distribution of reciprocal thalamocortical projections was investigated using anterograde and retrograde tracing techniques and evaluated in relation to the specific cytoarchitectonic organization. Tracers...... the medial and rostral pole of the frontal lobe as well as the anterior cingulate, anterior insular and dorsomedial frontal cortices. Subsequently, the reciprocity and specificity of these connections were tested from injections into the traced frontal cortices indicating that the PFC has cortical...... connections to different parts of the MD nucleus. Although the granular layer IV, characteristic of primate PFC could not be identified, both cytoarchitectonic and connectional data suggests that the Gottingen minipig has a structurally divided prefrontal cortex. Stereological estimates of PFC volume showed...

  7. The 5-HT6 receptor antagonist idalopirdine potentiates the effects of donepezil on gamma oscillations in the frontal cortex of anesthetized and awake rats without affecting sleep-wake architecture.

    Science.gov (United States)

    Amat-Foraster, Maria; Leiser, Steven C; Herrik, Kjartan F; Richard, Nelly; Agerskov, Claus; Bundgaard, Christoffer; Bastlund, Jesper F; de Jong, Inge E M

    2017-02-01

    The 5-HT 6 receptor is a promising target for cognitive disorders, in particular for Alzheimer's disease (AD). The high affinity and selective 5-HT 6 receptor antagonist idalopirdine (Lu AE58054) is currently in development for mild-moderate AD as adjunct therapy to acetylcholinesterase inhibitors (AChEIs). We studied the effects of idalopirdine alone and in combination with the AChEI donepezil on cortical function using two in vivo electrophysiological methods. Neuronal network oscillations in the frontal cortex were measured during electrical stimulation of the brainstem nucleus pontis oralis (nPO) in the anesthetized rat and by an electroencephalogram (EEG) in the awake, freely moving rat. In conjunction with the EEG study, we investigated the effects of idalopirdine and donepezil on sleep-wake architecture using telemetric polysomnography. Idalopirdine (2 mg/kg i.v.) increased gamma power in the medial prefrontal cortex (mPFC) during nPO stimulation. Donepezil (0.3 and 1 mg/kg i.v.) also increased cortical gamma power and pretreatment with idalopirdine (2 mg/kg i.v.) potentiated and prolonged the effects of donepezil. Similarly, donepezil (1 and 3 mg/kg s.c.) dose-dependently increased frontal cortical gamma power in the freely moving rat and pretreatment with idalopirdine (10 mg/kg p.o.) augmented the effect of donepezil 1 mg/kg. Analysis of the sleep-wake architecture showed that donepezil (1 and 3 mg/kg s.c.) dose-dependently delayed sleep onset and decreased the time spent in both REM and non REM sleep stages. In contrast, idalopirdine (10 mg/kg p.o.) did not affect sleep-wake architecture nor the effects of donepezil. In summary, we show that idalopirdine potentiates the effects of donepezil on frontal cortical gamma oscillations, a pharmacodynamic biomarker associated with cognition, without modifying the effects of donepezil on sleep. The increased cortical excitability may contribute to the procognitive effects of idalopirdine in donepezil

  8. Visual cortex entrains to sign language.

    Science.gov (United States)

    Brookshire, Geoffrey; Lu, Jenny; Nusbaum, Howard C; Goldin-Meadow, Susan; Casasanto, Daniel

    2017-06-13

    Despite immense variability across languages, people can learn to understand any human language, spoken or signed. What neural mechanisms allow people to comprehend language across sensory modalities? When people listen to speech, electrophysiological oscillations in auditory cortex entrain to slow ([Formula: see text]8 Hz) fluctuations in the acoustic envelope. Entrainment to the speech envelope may reflect mechanisms specialized for auditory perception. Alternatively, flexible entrainment may be a general-purpose cortical mechanism that optimizes sensitivity to rhythmic information regardless of modality. Here, we test these proposals by examining cortical coherence to visual information in sign language. First, we develop a metric to quantify visual change over time. We find quasiperiodic fluctuations in sign language, characterized by lower frequencies than fluctuations in speech. Next, we test for entrainment of neural oscillations to visual change in sign language, using electroencephalography (EEG) in fluent speakers of American Sign Language (ASL) as they watch videos in ASL. We find significant cortical entrainment to visual oscillations in sign language sign is strongest over occipital and parietal cortex, in contrast to speech, where coherence is strongest over the auditory cortex. Nonsigners also show coherence to sign language, but entrainment at frontal sites is reduced relative to fluent signers. These results demonstrate that flexible cortical entrainment to language does not depend on neural processes that are specific to auditory speech perception. Low-frequency oscillatory entrainment may reflect a general cortical mechanism that maximizes sensitivity to informational peaks in time-varying signals.

  9. Effects of frontal transcranial direct current stimulation on emotional processing and mood in healthy humans

    Directory of Open Access Journals (Sweden)

    Michael A. Nitsche

    2012-06-01

    Full Text Available The prefrontal cortex is involved in mood and emotional processing. In patients suffering from depression, the left dorsolateral prefrontal cortex is hypoactive, while activity of the right dorsolateral prefrontal cortex is enhanced. Counterbalancing these pathological excitability alterations by repetitive transcranial magnetic stimulation (rTMS or transcranial direct current stimulation (tDCS improves mood in these patients. In healthy subjects, however, rTMS of the same areas has no major effect, and the effects of tDCS are mixed. We aimed to evaluate the effects of prefrontal tDCS on mood and mood-related cognitive processing in healthy humans. In a first study, we administered excitability-enhancing anodal, excitability-diminishing cathodal and placebo tDCS to the left dorsolateral prefrontal cortex, combined with antagonistic stimulation of the right frontopolar cortex, and tested acute mood changes by an adjective checklist. Subjective mood was not influenced by tDCS. Emotional face identification, however, which was explored in a second experiment, was subtly improved by a tDCS-driven excitability modulation of the prefrontal cortex, markedly by anodal tDCS of the left dorsolateral prefrontal cortex for positive emotional content. We conclude that tDCS of the prefrontal cortex improves mood processing in healthy subjects, but does not influence subjective mood state.

  10. Frontal lobe activation during object permanence: data from near-infrared spectroscopy.

    Science.gov (United States)

    Baird, Abigail A; Kagan, Jerome; Gaudette, Thomas; Walz, Kathryn A; Hershlag, Natalie; Boas, David A

    2002-08-01

    The ability to create and hold a mental schema of an object is one of the milestones in cognitive development. Developmental scientists have named the behavioral manifestation of this competence object permanence. Convergent evidence indicates that frontal lobe maturation plays a critical role in the display of object permanence, but methodological and ethical constrains have made it difficult to collect neurophysiological evidence from awake, behaving infants. Near-infrared spectroscopy provides a noninvasive assessment of changes in oxy- and deoxyhemoglobin and total hemoglobin concentration within a prescribed region. The evidence described in this report reveals that the emergence of object permanence is related to an increase in hemoglobin concentration in frontal cortex.

  11. Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning.

    Science.gov (United States)

    Puschmann, Sebastian; Brechmann, André; Thiel, Christiane M

    2013-11-01

    Animal experiments provide evidence that learning to associate an auditory stimulus with a reward causes representational changes in auditory cortex. However, most studies did not investigate the temporal formation of learning-dependent plasticity during the task but rather compared auditory cortex receptive fields before and after conditioning. We here present a functional magnetic resonance imaging study on learning-related plasticity in the human auditory cortex during operant appetitive conditioning. Participants had to learn to associate a specific category of frequency-modulated tones with a reward. Only participants who learned this association developed learning-dependent plasticity in left auditory cortex over the course of the experiment. No differential responses to reward predicting and nonreward predicting tones were found in auditory cortex in nonlearners. In addition, learners showed similar learning-induced differential responses to reward-predicting and nonreward-predicting tones in the ventral tegmental area and the nucleus accumbens, two core regions of the dopaminergic neurotransmitter system. This may indicate a dopaminergic influence on the formation of learning-dependent plasticity in auditory cortex, as it has been suggested by previous animal studies. Copyright © 2012 Wiley Periodicals, Inc.

  12. The Brain Functional Networks Associated to Human and Animal Suffering Differ among Omnivores, Vegetarians and Vegans

    Science.gov (United States)

    Filippi, Massimo; Riccitelli, Gianna; Falini, Andrea; Di Salle, Francesco; Vuilleumier, Patrik; Comi, Giancarlo; Rocca, Maria A.

    2010-01-01

    Empathy and affective appraisals for conspecifics are among the hallmarks of social interaction. Using functional MRI, we hypothesized that vegetarians and vegans, who made their feeding choice for ethical reasons, might show brain responses to conditions of suffering involving humans or animals different from omnivores. We recruited 20 omnivore subjects, 19 vegetarians, and 21 vegans. The groups were matched for sex and age. Brain activation was investigated using fMRI and an event-related design during observation of negative affective pictures of human beings and animals (showing mutilations, murdered people, human/animal threat, tortures, wounds, etc.). Participants saw negative-valence scenes related to humans and animals, alternating with natural landscapes. During human negative valence scenes, compared with omnivores, vegetarians and vegans had an increased recruitment of the anterior cingulate cortex (ACC) and inferior frontal gyrus (IFG). More critically, during animal negative valence scenes, they had decreased amygdala activation and increased activation of the lingual gyri, the left cuneus, the posterior cingulate cortex and several areas mainly located in the frontal lobes, including the ACC, the IFG and the middle frontal gyrus. Nonetheless, also substantial differences between vegetarians and vegans have been found responding to negative scenes. Vegetarians showed a selective recruitment of the right inferior parietal lobule during human negative scenes, and a prevailing activation of the ACC during animal negative scenes. Conversely, during animal negative scenes an increased activation of the inferior prefrontal cortex was observed in vegans. These results suggest that empathy toward non conspecifics has different neural representation among individuals with different feeding habits, perhaps reflecting different motivational factors and beliefs. PMID:20520767

  13. Factors influencing frontal cortex development and recovery from early frontal injury.

    Science.gov (United States)

    Halliwell, Celeste; Comeau, Wendy; Gibb, Robbin; Frost, Douglas O; Kolb, Bryan

    2009-01-01

    Neocortical development represents more than a simple unfolding of a genetic blueprint but rather represents a complex dance of genetic and environmental events that interact to adapt the brain to fit a particular environmental context. Although most cortical regions are sensitive to a wide range of experiential factors during development and later in life, the prefrontal cortex appears to be unusually sensitive to perinatal experiences and relatively immune to many adulthood experiences relative to other neocortical regions. One way to examine experience-dependent prefrontal development is to conduct studies in which experiential perturbations are related neuronal morphology. This review of the research reveals both pre- and post-natal factors have important effects on prefrontal development and behaviour. Such factors include psychoactive drugs, including both illicit drugs and prescription drugs, stress, gonadal hormones and sensory and motor stimulation. A second method of study is to examine both the effects of perinatal prefrontal injury on the development of the remaining cerebral mantle and correlated behaviours as well as the effects of post-injury rehabilitation programmes on the anatomical and behavioural measures. Prefrontal injury alters cerebral development in a developmental-stage dependent manner with perinatal injuries having far more deleterious effects than similar injuries later in infancy. The outcome of perinatal injuries can be modified, however, by rehabilitation with many of the factors shown to influence prefrontal development in the otherwise normal brain.

  14. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    Science.gov (United States)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  15. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    OpenAIRE

    Pinto, Joshua G. A.; Jones, David G.; Williams, C. Kate; Murphy, Kathryn M.

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and abo...

  16. Characterizing synaptic protein development in human visual cortex enables alignment of synaptic age with rat visual cortex

    OpenAIRE

    Joshua G.A Pinto; David G Jones; Kate eWilliams; Kathryn M Murphy; Kathryn M Murphy

    2015-01-01

    Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and a...

  17. Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan

    Directory of Open Access Journals (Sweden)

    Joshua G A Pinto

    2010-06-01

    Full Text Available Functional maturation of visual cortex is linked with dynamic changes in synaptic expression of GABAergic mechanisms. These include setting the excitation-inhibition balance required for experience-dependent plasticity, as well as, intracortical inhibition underlying development and aging of receptive field properties. Animal studies have shown developmental regulation of GABAergic mechanisms in visual cortex. In this study, we show for the first time how these mechanisms develop in the human visual cortex across the lifespan. We used Western blot analysis of postmortem tissue from human primary visual cortex (n=30, range: 20 days to 80 years to quantify expression of 8 pre- and post-synaptic GABAergic markers. We quantified the inhibitory modulating cannabinoid receptor (CB1, GABA vesicular transporter (VGAT, GABA synthesizing enzymes (GAD65/GAD67, GABAA receptor anchoring protein (Gephyrin, and GABAA receptor subunits (GABAA∝1, GABAA∝2, GABAA∝3. We found a complex pattern of changes, many of which were prolonged and continued well into into the teen, young adult, and even older adult years. These included a monotonic increase or decrease (GABAA∝1, GABAA∝2, a biphasic increase then decrease (GAD65, Gephyrin, or multiple increases and decreases (VGAT, CB1 across the lifespan. Comparing the balances between the pre- and post-synaptic markers we found 3 main transitions (early childhood, early teen years, aging when there were rapid switches in the composition of the GABAergic signaling system, indicating that functioning of the GABAergic system must change as the visual cortex develops and ages. Furthermore, these results provide key information for translating therapies developed in animal models into effective treatments for amblyopia in humans.

  18. The anatomy of the human medial forebrain bundle: Ventral tegmental area connections to reward-associated subcortical and frontal lobe regions

    Directory of Open Access Journals (Sweden)

    Volker Arnd Coenen

    Full Text Available Introduction: Despite their importance in reward, motivation, and learning there is only sparse anatomical knowledge about the human medial forebrain bundle (MFB and the connectivity of the ventral tegmental area (VTA. A thorough anatomical and microstructural description of the reward related PFC/OFC regions and their connection to the VTA - the superolateral branch of the MFB (slMFB - is however mandatory to enable an interpretation of distinct therapeutic effects from different interventional treatment modalities in neuropsychiatric disorders (DBS, TMS etc.. This work aims at a normative description of the human MFB (and more detailed the slMFB anatomy with respect to distant prefrontal connections and microstructural features. Methods and material: Healthy subjects (n = 55; mean age ± SD, 40 ± 10 years; 32 females underwent high resolution anatomical magnetic resonance imaging including diffusion tensor imaging. Connectivity of the VTA and the resulting slMFB were investigated on the group level using a global tractography approach. The Desikan/Killiany parceling (8 segments of the prefrontal cortex was used to describe sub-segments of the MFB. A qualitative overlap with Brodmann areas was additionally described. Additionally, a pure visual analysis was performed comparing local and global tracking approaches for their ability to fully visualize the slMFB. Results: The MFB could be robustly described both in the present sample as well as in additional control analyses in data from the human connectome project. Most VTA- connections reached the superior frontal gyrus, the middel frontal gyrus and the lateral orbitofrontal region corresponding to Brodmann areas 10, 9, 8, 11, and 11m. The projections to these regions comprised 97% (right and 98% (left of the total relative fiber counts of the slMFB. Discussion: The anatomical description of the human MFB shows far reaching connectivity of VTA to reward-related subcortical and

  19. Decoding of faces and face components in face-sensitive human visual cortex

    Directory of Open Access Journals (Sweden)

    David F Nichols

    2010-07-01

    Full Text Available A great challenge to the field of visual neuroscience is to understand how faces are encoded and represented within the human brain. Here we show evidence from functional magnetic resonance imaging (fMRI for spatially distributed processing of the whole face and its components in face-sensitive human visual cortex. We used multi-class linear pattern classifiers constructed with a leave-one-scan-out verification procedure to discriminate brain activation patterns elicited by whole faces, the internal features alone, and the external head outline alone. Furthermore, our results suggest that whole faces are represented disproportionately in the fusiform cortex (FFA whereas the building blocks of faces are represented disproportionately in occipitotemporal cortex (OFA. Faces and face components may therefore be organized with functional clustering within both the FFA and OFA, but with specialization for face components in the OFA and the whole face in the FFA.

  20. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    Science.gov (United States)

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    2016-03-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  1. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex.

    Directory of Open Access Journals (Sweden)

    Matthew W Self

    2016-03-01

    Full Text Available Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive fields with tunings for contrast, orientation, spatial frequency, and size, similar to those reported in the macaque. We also observed pronounced gamma oscillations in the local-field potential that could be used to estimate the underlying spiking response properties. Spiking responses were modulated by visual context and attention. We observed orientation-tuned surround suppression: responses were suppressed by image regions with a uniform orientation and enhanced by orientation contrast. Additionally, responses were enhanced on regions that perceptually segregated from the background, indicating that neurons in the human visual cortex are sensitive to figure-ground structure. Spiking responses were also modulated by object-based attention. When the patient mentally traced a curve through the neurons' receptive fields, the accompanying shift of attention enhanced neuronal activity. These results demonstrate that the tuning properties of cells in the human early visual cortex are similar to those in the macaque and that responses can be modulated by both contextual factors and behavioral relevance. Our results, therefore, imply that the macaque visual system is an excellent model for the human visual cortex.

  2. Functional sex differences in human primary auditory cortex

    International Nuclear Information System (INIS)

    Ruytjens, Liesbet; Georgiadis, Janniko R.; Holstege, Gert; Wit, Hero P.; Albers, Frans W.J.; Willemsen, Antoon T.M.

    2007-01-01

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  3. Functional sex differences in human primary auditory cortex

    Energy Technology Data Exchange (ETDEWEB)

    Ruytjens, Liesbet [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Georgiadis, Janniko R. [University of Groningen, University Medical Center Groningen, Department of Anatomy and Embryology, Groningen (Netherlands); Holstege, Gert [University of Groningen, University Medical Center Groningen, Center for Uroneurology, Groningen (Netherlands); Wit, Hero P. [University Medical Center Groningen, Department of Otorhinolaryngology, Groningen (Netherlands); Albers, Frans W.J. [University Medical Center Utrecht, Department Otorhinolaryngology, P.O. Box 85500, Utrecht (Netherlands); Willemsen, Antoon T.M. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands)

    2007-12-15

    We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Our results suggest that sex is an important factor in auditory brain studies. (orig.)

  4. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex

    Directory of Open Access Journals (Sweden)

    Gregory D. Scott

    2014-03-01

    Full Text Available Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl’s gyrus. In addition to reorganized auditory cortex (cross-modal plasticity, a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case, as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral versus perifoveal visual stimulation (11-15° vs. 2°-7° in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl’s gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl’s gyrus indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral versus perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory and multisensory and/or supramodal regions, such as posterior parietal cortex, frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal and multisensory regions, to altered visual processing in

  5. Spatial distribution of human neocortical neurons and glial cells according to sex and age measured by the saucer method

    DEFF Research Database (Denmark)

    Stark, Anette Kirstine; Petersen, A O; Gardi, Jonathan Eyal

    2007-01-01

    primary neurons in the human neocortex (divided into frontal-, temporal-, parietal- and occipital cortex) of young and old subjects free of neurological or psychological disease to test if age and gender has any influence on the cell distribution in human neocortex. Plots of the spatial distribution...

  6. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain?

    Science.gov (United States)

    Lang, Nicolas; Siebner, Hartwig R; Ward, Nick S; Lee, Lucy; Nitsche, Michael A; Paulus, Walter; Rothwell, John C; Lemon, Roger N; Frackowiak, Richard S

    2005-07-01

    Transcranial direct current stimulation (tDCS) of the primary motor hand area (M1) can produce lasting polarity-specific effects on corticospinal excitability and motor learning in humans. In 16 healthy volunteers, O positron emission tomography (PET) of regional cerebral blood flow (rCBF) at rest and during finger movements was used to map lasting changes in regional synaptic activity following 10 min of tDCS (+/-1 mA). Bipolar tDCS was given through electrodes placed over the left M1 and right frontopolar cortex. Eight subjects received anodal or cathodal tDCS of the left M1, respectively. When compared to sham tDCS, anodal and cathodal tDCS induced widespread increases and decreases in rCBF in cortical and subcortical areas. These changes in rCBF were of the same magnitude as task-related rCBF changes during finger movements and remained stable throughout the 50-min period of PET scanning. Relative increases in rCBF after real tDCS compared to sham tDCS were found in the left M1, right frontal pole, right primary sensorimotor cortex and posterior brain regions irrespective of polarity. With the exception of some posterior and ventral areas, anodal tDCS increased rCBF in many cortical and subcortical regions compared to cathodal tDCS. Only the left dorsal premotor cortex demonstrated an increase in movement related activity after cathodal tDCS, however, modest compared with the relatively strong movement-independent effects of tDCS. Otherwise, movement related activity was unaffected by tDCS. Our results indicate that tDCS is an effective means of provoking sustained and widespread changes in regional neuronal activity. The extensive spatial and temporal effects of tDCS need to be taken into account when tDCS is used to modify brain function.

  7. Functional Imaging of Human Vestibular Cortex Activity Elicited by Skull Tap and Auditory Tone Burst

    Science.gov (United States)

    Noohi, Fatemeh; Kinnaird, Catherine; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael

    2014-01-01

    The aim of the current study was to characterize the brain activation in response to two modes of vestibular stimulation: skull tap and auditory tone burst. The auditory tone burst has been used in previous studies to elicit saccular Vestibular Evoked Myogenic Potentials (VEMP) (Colebatch & Halmagyi 1992; Colebatch et al. 1994). Some researchers have reported that airconducted skull tap elicits both saccular and utricle VEMPs, while being faster and less irritating for the subjects (Curthoys et al. 2009, Wackym et al., 2012). However, it is not clear whether the skull tap and auditory tone burst elicit the same pattern of cortical activity. Both forms of stimulation target the otolith response, which provides a measurement of vestibular function independent from semicircular canals. This is of high importance for studying the vestibular disorders related to otolith deficits. Previous imaging studies have documented activity in the anterior and posterior insula, superior temporal gyrus, inferior parietal lobule, pre and post central gyri, inferior frontal gyrus, and the anterior cingulate cortex in response to different modes of vestibular stimulation (Bottini et al., 1994; Dieterich et al., 2003; Emri et al., 2003; Schlindwein et al., 2008; Janzen et al., 2008). Here we hypothesized that the skull tap elicits the similar pattern of cortical activity as the auditory tone burst. Subjects put on a set of MR compatible skull tappers and headphones inside the 3T GE scanner, while lying in supine position, with eyes closed. All subjects received both forms of the stimulation, however, the order of stimulation with auditory tone burst and air-conducted skull tap was counterbalanced across subjects. Pneumatically powered skull tappers were placed bilaterally on the cheekbones. The vibration of the cheekbone was transmitted to the vestibular cortex, resulting in vestibular response (Halmagyi et al., 1995). Auditory tone bursts were also delivered for comparison. To validate

  8. High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect.

    Science.gov (United States)

    Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R

    2016-05-18

    Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures

  9. A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex.

    Directory of Open Access Journals (Sweden)

    Toni Cunillera

    Full Text Available Proactive and reactive inhibitory processes are a fundamental part of executive functions, allowing a person to stop inappropriate responses when necessary and to adjust performance in in a long term in accordance to the goals of a task. In the current study, we manipulate, in a single task, both reactive and proactive inhibition mechanisms, and we investigate the within-subjects effect of increasing, by means of anodal transcranial direct current stimulation (tDCS, the involvement of the right inferior frontal cortex (rIFC. Our results show a simultaneous enhancement of these two cognitive mechanisms when modulating the neural activity of rIFC. Thus, the application of anodal tDCS increased reaction times on Go trials, indicating a possible increase in proactive inhibition. Concurrently, the stop-signal reaction time, as a covert index of the inhibitory process, was reduced, demonstrating an improvement in reactive inhibition. In summary, the current pattern of results validates the engagement of the rIFC in these two forms of inhibitory processes, proactive and reactive inhibition and it provides evidence that both processes can operate concurrently in the brain.

  10. Trauma of the Frontal Region Is Influenced by the Volume of Frontal Sinuses. A Finite Element Study

    Directory of Open Access Journals (Sweden)

    Srbislav S. Pajic

    2017-07-01

    Full Text Available Anatomy of frontal sinuses varies individually, from differences in volume and shape to a rare case when the sinuses are absent. However, there are scarce data related to influence of these variations on impact generated fracture pattern. Therefore, the aim of this study was to analyse the influence of frontal sinus volume on the stress distribution and fracture pattern in the frontal region. The study included four representative Finite Element models of the skull. Reference model was built on the basis of computed tomography scans of a human head with normally developed frontal sinuses. By modifying the reference model, three additional models were generated: a model without sinuses, with hypoplasic, and with hyperplasic sinuses. A 7.7 kN force was applied perpendicularly to the forehead of each model, in order to simulate a frontal impact. The results demonstrated that the distribution of impact stress in frontal region depends on the frontal sinus volume. The anterior sinus wall showed the highest fragility in case with hyperplasic sinuses, whereas posterior wall/inner plate showed more fragility in cases with hypoplasic and undeveloped sinuses. Well-developed frontal sinuses might, through absorption of the impact energy by anterior wall, protect the posterior wall and intracranial contents.

  11. Insight in psychotic disorder: relation with psychopathology and frontal lobe function.

    Science.gov (United States)

    Kumar, Atmesh; Sharma, Pranjal; Das, Shyamanta; Nath, Kamal; Talukdar, Uddip; Bhagabati, Dipesh

    2014-01-01

    Through conceptualising poor insight in psychotic disorders as a form of anosognosia, frontal lobe dysfunction is often ascribed a vital role in its pathogenesis. The objective of this study was to compare the relation of insight in patients with psychotic illness to that of psychopathology and frontal lobe function. Forty patients with psychotic disorder were selected from those attending the Department of Psychiatry in a tertiary care teaching hospital. The evaluation of insight was carried out using the Schedule for Assessment of Insight (SAI), that of frontal lobe function by the Frontal Assessment Battery (FAB) and psychopathology by the Brief Psychiatric Rating Scale (BPRS). The correlation coefficients were determined. A negative correlation between SAI and BPRS scores means that the BPRS score is opposite to SAI scores. When the SAI total score was compared with the FAB total score, the correlation coefficient demonstrated a positive correlation. Better insight predicted lesser psychopathology and also that poor insight would exist with greater psychopathology. Better insight predicted a higher functional status of frontal lobes and prefrontal cortex in particular. Insight deficits in schizophrenia and other psychotic illnesses are multidimensional. Integration of different aetiological factors like biological, psychopathological, environmental ones and others are necessary for a better understanding of insight in psychosis. Copyright © 2013 S. Karger AG, Basel.

  12. Orbital prefrontal cortex is required for object-in-place scene memory but not performance of a strategy implementation task.

    Science.gov (United States)

    Baxter, Mark G; Gaffan, David; Kyriazis, Diana A; Mitchell, Anna S

    2007-10-17

    The orbital prefrontal cortex is thought to be involved in behavioral flexibility in primates, and human neuroimaging studies have identified orbital prefrontal activation during episodic memory encoding. The goal of the present study was to ascertain whether deficits in strategy implementation and episodic memory that occur after ablation of the entire prefrontal cortex can be ascribed to damage to the orbital prefrontal cortex. Rhesus monkeys were preoperatively trained on two behavioral tasks, the performance of both of which is severely impaired by the disconnection of frontal cortex from inferotemporal cortex. In the strategy implementation task, monkeys were required to learn about two categories of objects, each associated with a different strategy that had to be performed to obtain food reward. The different strategies had to be applied flexibly to optimize the rate of reward delivery. In the scene memory task, monkeys learned 20 new object-in-place discrimination problems in each session. Monkeys were tested on both tasks before and after bilateral ablation of orbital prefrontal cortex. These lesions impaired new scene learning but had no effect on strategy implementation. This finding supports a role for the orbital prefrontal cortex in memory but places limits on the involvement of orbital prefrontal cortex in the representation and implementation of behavioral goals and strategies.

  13. Dynamic expression of calretinin in embryonic and early fetal human cortex

    Directory of Open Access Journals (Sweden)

    Miriam eGonzalez-Gomez

    2014-06-01

    Full Text Available Calretinin (CR is one of the earliest neurochemical markers in human corticogenesis. In embryos from Carnegie stages (CS 17 to 23, calbindin (CB and CR stain opposite poles of the incipient cortex suggesting early regionalization: CB marks the neuroepithelium of the medial boundary of the cortex with the choroid plexus (cortical hem. By contrast, CR is confined to the subventricular zone (SVZ of the lateral and caudal ganglionic eminences at the pallial-subpallial boundary (PSB, or antihem, from where CR+/Tbr1- neurons migrate toward piriform cortex and amygdala as a component of the lateral cortical stream. At CS 19, columns of CR+ cells arise in the rostral cortex, and contribute at CS 20 to the monolayer of horizontal Tbr1+/CR+ and GAD+ cells in the preplate. At CS 21, the pioneer cortical plate appears as a radial aggregation of CR+/Tbr1+ neurons, which cover the entire future neocortex and extend the first corticofugal axons. CR expression in early human corticogenesis is thus not restricted to interneurons, but is also present in the first excitatory projection neurons of the cortex. At CS 21/22, the cortical plate is established following a lateral to medial gradient, when Tbr1+/CR- neurons settle within the pioneer cortical plate, and thus separate superficial and deep pioneer neurons. CR+ pioneer neurons disappear shortly after the formation of the cortical plate. Reelin+ Cajal-Retzius cells begin to express CR around CS21 (7/8 PCW. At CS 21-23, the CR+ SVZ at the PSB is the source of CR+ interneurons migrating into the cortical SVZ. In turn, CB+ interneurons migrate from the subpallium into the intermediate zone following the fibers of the internal capsule. Early CR+ and CB+ interneurons thus have different origins and migratory routes. CR+ cell populations in the embryonic telencephalon take part in a complex sequence of events not analyzed so far in other mammalian species, which may represent a distinctive trait of the initial steps

  14. Frontopolar cortex mediates abstract integration in analogy.

    Science.gov (United States)

    Green, Adam E; Fugelsang, Jonathan A; Kraemer, David J M; Shamosh, Noah A; Dunbar, Kevin N

    2006-06-22

    Integration of abstractly similar relations during analogical reasoning was investigated using functional magnetic resonance imaging. Activation elicited by an analogical reasoning task that required both complex working memory and integration of abstractly similar relations was compared to activation elicited by a non-analogical task that required complex working memory in the absence of abstract relational integration. A left-sided region of the frontal pole of the brain (BA 9/10) was selectively active for the abstract relational integration component of analogical reasoning. Analogical reasoning also engaged a left-sided network of parieto-frontal regions. Activity in this network during analogical reasoning is hypothesized to reflect categorical alignment of individual component terms that make up analogies. This parieto-frontal network was also engaged by the complex control task, which involved explicit categorization, but not by a simpler control task, which did not involve categorization. We hypothesize that frontopolar cortex mediates abstract relational integration in complex reasoning while parieto-frontal regions mediate working memory processes, including manipulation of terms for the purpose of categorical alignment, that facilitate this integration.

  15. Disrupting the ventral premotor cortex interferes with the contribution of action observation to use-dependent plasticity.

    Science.gov (United States)

    Cantarero, Gabriela; Galea, Joseph M; Ajagbe, Loni; Salas, Rachel; Willis, Jeff; Celnik, Pablo

    2011-12-01

    Action observation (AO), observing another individual perform an action, has been implicated in several higher cognitive processes including forming basic motor memories. Previous work has shown that physical practice (PP) results in cortical motor representational changes, referred to as use-dependent plasticity (UDP), and that AO combined with PP potentiates UDP in both healthy adults and stroke patients. In humans, AO results in activation of the ventral premotor cortex (PMv), however, whether this PMv activation has a functional contribution to UDP is not known. Here, we studied the effects disruption of PMv has on UDP when subjects performed PP combined with AO (PP + AO). Subjects participated in two randomized crossover sessions measuring the amount of UDP resulting from PP + AO while receiving disruptive (1 Hz) TMS over the fMRI-activated PMv or over frontal cortex (Sham). We found that, unlike the sham session, disruptive TMS over PMv reduced the beneficial contribution of AO to UDP. To ensure that disruption of PMv was specifically interfering with the contribution of AO and not PP, subjects completed two more control sessions where they performed only PP while receiving disruptive TMS over PMv or frontal cortex. We found that the magnitude of UDP for both control sessions was similar to PP + AO with TMS over PMv. These findings suggest that the fMRI activation found in PMv during AO studies is functionally relevant to task performance, at least for the beneficial effects that AO exerts over motor training.

  16. Functional magnetic resonance imaging of the human primary visual cortex during visual stimulation

    International Nuclear Information System (INIS)

    Miki, Atsushi; Abe, Haruki; Nakajima, Takashi; Fujita, Motoi; Watanabe, Hiroyuki; Kuwabara, Takeo; Naruse, Shoji; Takagi, Mineo.

    1995-01-01

    Signal changes in the human primary visual cortex during visual stimulation were evaluated using non-invasive functional magnetic resonance imaging (fMRI). The experiments were performed on 10 normal human volunteers and 2 patients with homonymous hemianopsia, including one who was recovering from the exacerbation of multiple sclerosis. The visual stimuli were provided by a pattern generator using the checkerboard pattern for determining the visual evoked potential of full-field and hemifield stimulation. In normal volunteers, a signal increase was observed on the bilateral primary visual cortex during the full-field stimulation and on the contra-lateral cortex during hemifield stimulation. In the patient with homonymous hemianopsia after cerebral infarction, the signal change was clearly decreased on the affected side. In the other patient, the one recovering from multiple sclerosis with an almost normal visual field, the fMRI was within normal limits. These results suggest that it is possible to visualize the activation of the visual cortex during visual stimulation, and that there is a possibility of using this test as an objective method of visual field examination. (author)

  17. Resting-state functional connectivity between right anterior insula and right orbital frontal cortex correlate with insight level in obsessive-compulsive disorder

    Directory of Open Access Journals (Sweden)

    Jie Fan

    2017-01-01

    Full Text Available Few studies have explored the neurobiological basis of insight level in obsessive-compulsive disorder (OCD, though the salience network (SN has been implicated in insight deficits in schizophrenia. This study was then designed to investigate whether resting-state (rs functional connectivity (FC of SN was associated with insight level in OCD patients. We analyzed rs-functional magnetic resonance imaging (fMRI data from 21 OCD patients with good insight (OCD-GI, 19 OCD patients with poor insight (OCD-PI, and 24 healthy controls (HCs. Seed-based whole-brain FC and ROI (region of interest-wise connectivity analyses were performed with seeds/ROIs in the bilateral anterior insula (AI and dorsal anterior cingulate cortex (dACC. The right AI-right medial orbital frontal cortex (mOFC connectivity was found to be uniquely decreased in the OCD-PI group, and the value of this aberrant connectivity correlated with insight level in OCD patients. In addition, we found that the OCD-GI group had significantly increased right AI-left dACC connectivity within the SN, relative to HCs (overall trend for groups: OCD-GI > OCD-PI > HC. Our findings suggest that abnormal right AI-right mOFC FC may mediate insight deficits in OCD, perhaps due to impaired encoding and integration of self-evaluative information about OCD-related beliefs and behaviors. Our findings indicate a SN connectivity dissociation between OCD-GI and OCD-PI patients and support the notion of considering OCD-GI and OCD-PI as two distinct disorder subtypes.

  18. Reduced gamma frequency in the medial frontal cortex of aged rats during behavior and rest: implications for age-related behavioral slowing.

    Science.gov (United States)

    Insel, Nathan; Patron, Lilian A; Hoang, Lan T; Nematollahi, Saman; Schimanski, Lesley A; Lipa, Peter; Barnes, Carol A

    2012-11-14

    Age-related cognitive and behavioral slowing may be caused by changes in the speed of neural signaling or by changes in the number of signaling steps necessary to achieve a given function. In the mammalian cortex, neural communication is organized by a 30-100 Hz "gamma" oscillation. There is a putative link between the gamma frequency and the speed of processing in a neural network: the dynamics of pyramidal neuron membrane time constants suggest that synaptic integration is framed by the gamma cycle, and pharmacological slowing of gamma also slows reaction times on behavioral tasks. The present experiments identify reductions in a robust 40-70 Hz gamma oscillation in the aged rat medial frontal cortex. The reductions were observed in the form of local field potentials, later peaks in fast-spiking neuron autocorrelations, and delays in the spiking of inhibitory neurons following local excitatory signals. Gamma frequency did not vary with movement speed, but rats with slower gamma also moved more slowly. Gamma frequency age differences were not observed in hippocampus. Hippocampal CA1 fast-spiking neurons exhibited interspike intervals consistent with a fast (70-100 Hz) gamma frequency, a pattern maintained across theta phases and theta frequencies independent of fluctuations in the average firing rates of the neurons. We propose that an average lengthening of the cortical 15-25 ms gamma cycle is one factor contributing to age-related slowing and that future attempts to offset cognitive declines will find a target in the response of fast-spiking inhibitory neurons to excitatory inputs.

  19. The development of human visual cortex and clinical implications

    Directory of Open Access Journals (Sweden)

    Siu CR

    2018-04-01

    Full Text Available Caitlin R Siu,1 Kathryn M Murphy1,2 1McMaster Integrative Neuroscience Discovery and Study (MiNDS Program, McMaster University, Hamilton, ON, Canada; 2Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada Abstract: The primary visual cortex (V1 is the first cortical area that processes visual information. Normal development of V1 depends on binocular vision during the critical period, and age-related losses of vision are linked with neurobiological changes in V1. Animal studies have provided important details about the neurobiological mechanisms in V1 that support normal vision or are changed by visual diseases. There is very little information, however, about those neurobiological mechanisms in human V1. That lack of information has hampered the translation of biologically inspired treatments from preclinical models to effective clinical treatments. We have studied human V1 to characterize the expression of neurobiological mechanisms that regulate visual perception and neuroplasticity. We have identified five stages of development for human V1 that start in infancy and continue across the life span. Here, we describe these stages, compare them with visual and anatomical milestones, and discuss implications for translating treatments for visual disorders that depend on neuroplasticity of V1 function. Keywords: development, human visual cortex, amblyopia, synaptic plasticity, glutamatergic, GABAergic, receptors

  20. Characterization of the fiber connectivity profile of the cerebral cortex in schizotypal personality disorder: A pilot study

    Directory of Open Access Journals (Sweden)

    Kai eLiu

    2016-05-01

    Full Text Available Schizotypal personality disorder (SPD is considered one of the classic disconnection syndromes. However, the specific cortical disconnectivity pattern has not been fully investigated. In this study, we aimed to explore significant alterations in whole-cortex structural connectivity in SPD individuals (SPDs by combining the techniques of brain surface morphometry and white matter (WM tractography. Diffusion and structural MR data were collected from twenty subjects with SPD (all males; age, 19.7 ± 0.9 yrs and eighteen healthy controls (all males; age, 20.3 ± 1.0 yrs. To measure the structural connectivity for a given unit area of the cortex, the fiber connectivity density (FiCD value was proposed and calculated as the sum of the fractional anisotropy of all the fibers connecting to that unit area in tractography. Then, the resultant whole-cortex FiCD maps were compared in a vertex-wise manner between SPDs and controls. Compared with normal controls, SPDs showed significantly decreased FiCD in the rostral middle frontal gyrus (crossing BA9 and BA10 and significantly increased FiCD in the anterior part of the fusiform/inferior temporal cortex (P < 0.05, Monte Carlo simulation corrected. Moreover, the gray matter volume extracted from the left rostral middle frontal cluster was observed to be significantly greater in the SPD group (P = 0.02. Overall, this study identifies a decrease in connectivity in the left middle frontal cortex as a key neural deficit at the whole-cortex level in SPD, thus providing insight into its neuropathological basis.

  1. The functional neuro-anatomy of the human response to fear

    African Journals Online (AJOL)

    activating the amygdala passes through the superior colliculi and the pulvinar of the thalamus before accessing it. .... cingulate, the superior temporal sulcus and the lingual gyrus.41. A role for the human amygdala in the ... dorsomedial prefrontal cortex (BA 10) and middle frontal gyri. (BA 6).47,48. Hence, in healthy people ...

  2. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    International Nuclear Information System (INIS)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of [ 3 H] norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 x 10 -5 -10 -3 M, enhanced potassium stimulated [ 3 H] norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of [ 3 H] norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA A receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA A agonist muscimol, 10 -4 M, mimicked the effect of GABA, but the GABA B agonist (±)baclofen, 10 -4 M, did not affect the release of [ 3 H] norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA A , but not GABA B , receptors. In contrast to the results that would be predicted for an event involving GABA A receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10 -8 and 10 -4 M. Thus these receptors may constitute a subclass of GABA A receptors. These results support a role of GABA uptake and GABA A receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat

  3. Modulation of the release of norepinephrine by gamma-aminobutyric acid and morphine in the frontal cerebral cortex of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Peoples, R.W.

    1989-01-01

    Agents that enhance gamma-aminobutyric acid, or GABA, neurotransmission modulate certain effects of opioids, such as analgesia. Opioid analgesia is mediated in part by norepinephrine in the forebrain. In this study, the interactions between morphine and GABAergic agents on release of ({sup 3}H) norepinephrine from rat frontal cerebral cortical slices were examined. GABA, 5 {times} 10{sup {minus}5}-10{sup {minus}3} M, enhanced potassium stimulated ({sup 3}H) norepinephrine release and reversed the inhibitory effect of morphine in a noncompetitive manner. GABA did not enhance release of ({sup 3}H) norepinephrine stimulated by the calcium ionophore A23187. The effect of GABA was reduced by the GABA{sub A} receptor antagonists bicuculline methiodide or picrotoxin, and by the selective inhibitor of GABA uptake SKF 89976A, but was blocked completely only when bicuculline methiodide and SKF 89976A were used in combination. The GABA{sub A} agonist muscimol, 10{sup {minus}4} M, mimicked the effect of GABA, but the GABA{sub B} agonist ({plus minus})baclofen, 10{sup {minus}4} M, did not affect the release of ({sup 3}H) norepinephrine in the absence or the presence of morphine. Thus GABA appears to produce this effect by stimulating GABA uptake and GABA{sub A}, but not GABA{sub B}, receptors. In contrast to the results that would be predicted for an event involving GABA{sub A} receptors, however, the effect of GABA did not desensitize, and benzodiazepine agonists did not enhance the effect of GABA at any concentration tested between 10{sup {minus}8} and 10{sup {minus}4} M. Thus these receptors may constitute a subclass of GABA{sub A} receptors. These results support a role of GABA uptake and GABA{sub A} receptors in enhancing the release of norepinephrine and modulating its inhibition by opioids in the frontal cortex of the rat.

  4. Neural Correlates of Auditory Perceptual Awareness and Release from Informational Masking Recorded Directly from Human Cortex: A Case Study

    Directory of Open Access Journals (Sweden)

    Andrew R Dykstra

    2016-10-01

    Full Text Available In complex acoustic environments, even salient supra-threshold sounds sometimes go unperceived, a phenomenon known as informational masking. The neural basis of informational masking (and its release has not been well characterized, particularly outside auditory cortex. We combined electrocorticography in a neurosurgical patient undergoing invasive epilepsy monitoring with trial-by-trial perceptual reports of isochronous target-tone streams embedded in random multi-tone maskers. Awareness of such masker-embedded target streams was associated with a focal negativity between 100 and 200 ms and high-gamma activity between 50 and 250 ms (both in auditory cortex on the posterolateral superior temporal gyrus as well as a broad P3b-like potential (between ~300 and 600 ms with generators in ventrolateral frontal and lateral temporal cortex. Unperceived target tones elicited drastically reduced versions of such responses, if at all. While it remains unclear whether these responses reflect conscious perception, itself, as opposed to pre- or post-perceptual processing, the results suggest that conscious perception of target sounds in complex listening environments may engage diverse neural mechanisms in distributed brain areas.

  5. Frontal and parietal transcranial magnetic stimulation (TMS) disturbs programming of saccadic eye movements.

    Science.gov (United States)

    Zangemeister, W H; Canavan, A G; Hoemberg, V

    1995-11-01

    Transcranial magnetic stimulation (TMS) of human motor cortex typically evoked motor responses. TMS has failed to elicit eye movements in humans, whereas prolongations of saccadic latency have been reported with TMS. In previous studied we demonstrated that saccades can be abolished or saccadic trajectories can be changed through TMS in the 100 msec before saccade onset. This effect was especially marked when TMS was applied parietally. TMS never influenced a saccade in flight. Simulations of predictive experimental saccades that were impaired through TMS of the frontal or parietal cortex demonstrated especially that the dynamics of small saccades were markedly influenced, resulting in a significant decrease in acceleration and amplitude, or an almost complete inhibition. The impact of inhibition through TMS was critically dependent on timing: early TMS (-70 msec) had a much larger inhibitory effect than late TMS (-20 msec) on experimental saccades. Differential timing of TMS in influencing the cortical control signal is demonstrated through simulations of a reciprocally innervated eye movement model that paralleled empirically determined changes in eye movement dynamics after real TMS. There is a reasonable match between the model and the experimental data. We conclude that the inhibitory action of a presaccadic disturbance, such as a TMS pulse, on saccadic programming is inversely related to timing and amplitude of the predicted saccade.

  6. Transcranial static magnetic field stimulation of the human motor cortex

    Science.gov (United States)

    Oliviero, Antonio; Mordillo-Mateos, Laura; Arias, Pablo; Panyavin, Ivan; Foffani, Guglielmo; Aguilar, Juan

    2011-01-01

    Abstract The aim of the present study was to investigate in healthy humans the possibility of a non-invasive modulation of motor cortex excitability by the application of static magnetic fields through the scalp. Static magnetic fields were obtained by using cylindrical NdFeB magnets. We performed four sets of experiments. In Experiment 1, we recorded motor potentials evoked by single-pulse transcranial magnetic stimulation (TMS) of the motor cortex before and after 10 min of transcranial static magnetic field stimulation (tSMS) in conscious subjects. We observed an average reduction of motor cortex excitability of up to 25%, as revealed by TMS, which lasted for several minutes after the end of tSMS, and was dose dependent (intensity of the magnetic field) but not polarity dependent. In Experiment 2, we confirmed the reduction of motor cortex excitability induced by tSMS using a double-blind sham-controlled design. In Experiment 3, we investigated the duration of tSMS that was necessary to modulate motor cortex excitability. We found that 10 min of tSMS (compared to 1 min and 5 min) were necessary to induce significant effects. In Experiment 4, we used transcranial electric stimulation (TES) to establish that the tSMS-induced reduction of motor cortex excitability was not due to corticospinal axon and/or spinal excitability, but specifically involved intracortical networks. These results suggest that tSMS using small static magnets may be a promising tool to modulate cerebral excitability in a non-invasive, painless, and reversible way. PMID:21807616

  7. Using imaging to target the prefrontal cortex for transcranial magnetic stimulation studies in treatment-resistant depression

    OpenAIRE

    Johnson, Kevin A.; Ramsey, Dave; Kozel, Frank A.; Bohning, Daryl E.; Anderson, Berry; Nahas, Ziad; Sacke?m, Harold A.; George, Mark S.

    2006-01-01

    Structural imaging studies of the brains of patients with treatment-resistant depression (TRD) have found several abnormalities, including smaller hippocampus, orbitofrontal cortex, or pre?frontal cortex. Transcranial magnetic stimulation (TMS) is a noninvasive means of modulating brain activity, and has shown antidepressant treatment efficacy. 1 The initial methods used for targeting the prefrontal cortex are most likely insufficient. Herwig et al found that a common rule-based approach (the...

  8. Effect of antemortem and postmortem factors on [3H]MK-801 binding in the human brain: Transient elevation during early childhood

    International Nuclear Information System (INIS)

    Kornhuber, J.; Mack-Burkhardt, F.; Konradi, C.; Fritze, J.; Riederer, P.

    1989-01-01

    The effect of a number of antemortem and postmortem factors on [ 3 H]MK-801 binding was investigated under equilibrium conditions in the frontal cortex of human brains of 38 controls. Binding values transiently increased during the early postnatal period reaching a maximum at the age of about 2 years. After age 10 years [ 3 H]MK-801 binding sites disappeared at 5.7% per decade. The storage time of brain tissue had a reducing effect on these binding sites. There was no effect of gender, brain weight or postmortem time interval and the binding sites were bilaterally symmetrically distributed in the frontal cortex

  9. Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex.

    Science.gov (United States)

    Samaha, Jason; Gosseries, Olivia; Postle, Bradley R

    2017-03-15

    Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (>300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability. SIGNIFICANCE STATEMENT Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time

  10. Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing.

    Science.gov (United States)

    Villa, R F; Ferrari, F; Gorini, A

    2012-12-27

    Ageing is one of the main risk factors for brain disorders. According to the neuroendocrine theory, ageing modifies the sensitivity of hypothalamus-pituitary-adrenal axis to homoeostatic signals coming from the cerebral cortex. The relationships between the energy metabolism of these areas have not been considered yet, in particular with respect to ageing. For these reasons, this study was undertaken to systematically investigate in female Sprague-Dawley rats aged 4, 6, 12, 18, 24, 28 months and in 4-month-old male ones, the catalytic properties of energy-linked enzymes of the Krebs' cycle, electron transport chain, glutamate and related amino acids on different mitochondrial subpopulations, i.e. non-synaptic perikaryal and intra-synaptic (two types) mitochondria. The biochemical enzymatic pattern of these mitochondria shows different expression of the above-mentioned enzymatic activities in the investigated brain areas, including frontal cerebral cortex, hippocampus, striatum, hypothalamus and hypophysis. The study shows that: (i) the energy metabolism of the frontal cerebral cortex is poorly affected by physiological ageing; (ii) the biochemical machinery of non-synaptic perikaryal mitochondria is differently expressed in the considered brain areas; (iii) at 4-6 months, hypothalamus and hypophysis possess lower oxidative metabolism with respect to the frontal cerebral cortex while (iv), during ageing, the opposite situation occurs. We hypothesised that these metabolic modifications likely try to grant HPA functionality in response to the incoming external stress stimuli increased during ageing. It is particularly notable that age-related changes in brain bioenergetics and in mitochondrial functionality may be considered as remarkable factors during physiological ageing and should play important roles in predisposing the brain to physiopathological events, tightly related to molecular mechanisms evoked for pharmacological treatments. Copyright © 2012 IBRO

  11. Identity-specific coding of future rewards in the human orbitofrontal cortex.

    Science.gov (United States)

    Howard, James D; Gottfried, Jay A; Tobler, Philippe N; Kahnt, Thorsten

    2015-04-21

    Nervous systems must encode information about the identity of expected outcomes to make adaptive decisions. However, the neural mechanisms underlying identity-specific value signaling remain poorly understood. By manipulating the value and identity of appetizing food odors in a pattern-based imaging paradigm of human classical conditioning, we were able to identify dissociable predictive representations of identity-specific reward in orbitofrontal cortex (OFC) and identity-general reward in ventromedial prefrontal cortex (vmPFC). Reward-related functional coupling between OFC and olfactory (piriform) cortex and between vmPFC and amygdala revealed parallel pathways that support identity-specific and -general predictive signaling. The demonstration of identity-specific value representations in OFC highlights a role for this region in model-based behavior and reveals mechanisms by which appetitive behavior can go awry.

  12. Distribution of precursor amyloid-β-protein messenger RNA in human cerebral cortex: relationship to neurofibrillary tangles and neuritic plaques

    International Nuclear Information System (INIS)

    Lewis, D.A.; Higgins, G.A.; Young, W.G.; Goldgaber, D.; Gajdusek, D.C.; Wilson, M.C.; Morrison, J.H.

    1988-01-01

    Neurofibrillary tangles (NFT) and neuritic plaques (NP), two neuropathological markers of Alzheimer disease, may both contain peptide fragments derived from the human amyloid β protein. However, the nature of the relationship between NFT and NP and the source of the amyloid β proteins found in each have remained unclear. The authors used in situ hybridization techniques to map the anatomical distribution of precursor amyloid-β-protein mRNA in the neocortex of brains from three subjects with no known neurologic disease and from five patients with Alzheimer disease. In brains from control subjects, positively hybridizing neurons were present in cortical regions and layers that contain a high density of neuropathological markers in Alzheimer disease, as well as in those loci that contain NP but few NFT. Quantitative analyses of in situ hybridization patterns within layers III and V of the superior frontal cortex revealed that the presence of high numbers of NFT in Alzheimer-diseased brains was associated with a decrease in the number of positively hybridizing neurons compared to controls and Alzheimer-diseased brains with few NFT. These findings suggest that the expression of precursor amyloid-β-protein mRNA may be a necessary but is clearly not a sufficient prerequisite for NFT formation. In addition, these results may indicate that the amyloid β protein, present in NP in a given region or layer of cortex, is not derived from the resident neuronal cell bodies that express the mRNA for the precursor protein

  13. Timing tasks synchronize cerebellar and frontal ramping activity and theta oscillations: Implications for cerebellar stimulation in diseases of impaired cognition

    Directory of Open Access Journals (Sweden)

    Krystal Lynn Parker

    2016-01-01

    Full Text Available Timing is a fundamental and highly conserved mammalian capability yet the underlying neural mechanisms are widely debated. Ramping activity of single neurons that gradually increase or decrease activity to encode the passage of time, has been speculated to predict a behaviorally relevant temporal event. Cue-evoked low-frequency activity has also been implicated in temporal processing. Ramping activity and low-frequency oscillations occur throughout the brain and could indicate a network-based approach to timing. Temporal processing requires cognitive mechanisms of working memory, attention, and reasoning which are dysfunctional in neuropsychiatric disease. Therefore, timing tasks could be used to probe cognition in animals with disease phenotypes. The medial frontal cortex and cerebellum are involved in cognition. Cerebellar stimulation has been shown to influence medial frontal activity and improve cognition in schizophrenia. However, the mechanism underlying the efficacy of cerebellar stimulation is unknown. Here we discuss how timing tasks can be used to probe cerebellar interactions with the frontal cortex and the therapeutic potential of cerebellar stimulation. The goal of this theory and hypothesis manuscript is threefold. First, we will summarize evidence indicating that in addition to motor learning, timing tasks involve cognitive processes that are present within both the cerebellum and medial frontal cortex. Second, we propose methodologies to investigate the connections between these areas in patients with Parkinson’s disease, autism, and schizophrenia. We hypothesis that cerebellar transcranial stimulation may rescue medial frontal ramping activity, theta oscillations, and timing abnormalities, thereby restoring executive function in diseases of impaired cognition. These hypotheses could inspire the use of timing tasks as biomarkers for neuronal and cognitive abnormalities in neuropsychiatric disease and promote the therapeutic

  14. ACTHsub(1-24) and lysine vasopressin selectively activate dopamine synthesis in frontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Delanoy, R L; Kramarcy, N R; Dunn, A J [Florida Univ., Gainesville (USA). Coll. of Medicine

    1982-01-07

    The accumulation of (/sup 3/H)catecholamines from (/sup 3/H)tyrosine in frontal cortical, septal, striatal and hippocampal slices was examined following intracerebroventricular (i.c.v.) injections of ACTHsub(1-24), lysine vasopressin (LVP) and saline. Both ACTHsub(1-24) and LVP (1..mu..g) selectively increased the accumulation of (/sup 3/H)dopamine (DA) in frontal cortical slices, but did not affect that of (/sup 3/H)norepinephrine (NE). LVP but not ACTHsub(1-24) also inhibited the accumulation of (/sup 3/H)DA in striatal slices. ACTHsub(1-24) did not alter the accumulation of (/sup 3/H)NE in hippocampal slices, nor did LVP alter the accumulation of either catecholamine (CA) in septal slices. In vitro incubations with ACTH analogs or LVP failed to alter the rate of accumulation of (/sup 3/H)CAs in striatal, substantia nigral and frontal cortical slices, except for an inhibitory effect at high doses. This effect is believed to be an artifact of precursor dilution caused by release of tyrosine following degradation of the peptides. Neither peptide modified the increased (/sup 3/H)CA accumulation stimulated by 26 mM K/sup +/, nor did ACTHsub(1-24) modify the inhibition of (/sup 3/H)CA accumulation caused by 3 X 10/sup -6/ M Haloperidol or 3 X 10/sup -7/ M apomorphine. Selective activation of the mesocortical DA system has also been reported to occur in response to footshock, suggesting the possibility that endogenous ACTH and/or LVP might mediate the stress-induced activation of mesocortical DA synthesis. Alternatively, i.c.v. injections of these peptides may themselves be stressful and thus indirectly elicit the response.

  15. Functional impairment of the frontal lobe in methamphetamine dependent patients detected on FDG-PET and WCST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Tae; Kwon, Do Hoon [Bugok National Hostipal, Changnyeong (Korea, Republic of); Lee, Sang Woo; Seo, Ji Hyoung; Kang, Seong Min; Lee, Jae Tae; Lee, Kyu Bo [Kyungpook National University Hospital, Daeug (Korea, Republic of)

    2007-07-01

    There are mounting evidences from neuropsychological and neuroimaging studies to support the view that patients with substance dependence have abnormalities in prefrontal cortex. However, functional deficits in prefrontal cortex has not been adequately studied in methamphetamine dependence. Therefore, the purpose of this study is to examine whether methamphetamine dependent patients have metabolic abnormalities and executive dysfunction. Twenty-one abstinent methamphetamine dependent patients who were hospitalized in Bugok National Hospital underwent resting FDG-PET, after which they completed computerized versions of the Wisconsin Card Sorting Test (WCST). Brain PET images were obtained 30 minutes after intravenous injection of 370 MBq of 18F-FDG. Significant differences of glucose metabolism were estimated for every voxel using t-statistics on SPM2 implemented in Matlab between methamphetamine dependent patients and age-matched normal controls. FDG-PET revealed significant hypometabolism in the left inferior frontal white matter (Talairach coordinates (x, y, z): -34, 7, 31) in methamphetamine dependent patients compared to the normal controls (uncorrect p<0.001, t>3.39). The nearest gray matter region was the left inferior frontal cortex (Brodmann area 9). Methamphetamine dependent patients completed significantly fewer categories (3.662.19) and made more perseveration errors (22.0411.94) and total errors (44.5719.70) on the WCST compared to the normal controls (p<0.01). These data suggest that patients with methamphetamine dependence have functional impairments in prefrontal cortex.

  16. Functional impairment of the frontal lobe in methamphetamine dependent patients detected on FDG-PET and WCST

    International Nuclear Information System (INIS)

    Kim, Yang Tae; Kwon, Do Hoon; Lee, Sang Woo; Seo, Ji Hyoung; Kang, Seong Min; Lee, Jae Tae; Lee, Kyu Bo

    2007-01-01

    There are mounting evidences from neuropsychological and neuroimaging studies to support the view that patients with substance dependence have abnormalities in prefrontal cortex. However, functional deficits in prefrontal cortex has not been adequately studied in methamphetamine dependence. Therefore, the purpose of this study is to examine whether methamphetamine dependent patients have metabolic abnormalities and executive dysfunction. Twenty-one abstinent methamphetamine dependent patients who were hospitalized in Bugok National Hospital underwent resting FDG-PET, after which they completed computerized versions of the Wisconsin Card Sorting Test (WCST). Brain PET images were obtained 30 minutes after intravenous injection of 370 MBq of 18F-FDG. Significant differences of glucose metabolism were estimated for every voxel using t-statistics on SPM2 implemented in Matlab between methamphetamine dependent patients and age-matched normal controls. FDG-PET revealed significant hypometabolism in the left inferior frontal white matter (Talairach coordinates (x, y, z): -34, 7, 31) in methamphetamine dependent patients compared to the normal controls (uncorrect p 3.39). The nearest gray matter region was the left inferior frontal cortex (Brodmann area 9). Methamphetamine dependent patients completed significantly fewer categories (3.662.19) and made more perseveration errors (22.0411.94) and total errors (44.5719.70) on the WCST compared to the normal controls (p<0.01). These data suggest that patients with methamphetamine dependence have functional impairments in prefrontal cortex

  17. Dysfunctional frontal lobe activity during inhibitory tasks in individuals with childhood trauma: An event-related potential study.

    Science.gov (United States)

    Kim, Sungkean; Kim, Ji Sun; Jin, Min Jin; Im, Chang-Hwan; Lee, Seung-Hwan

    2018-01-01

    Individuals who experience childhood trauma are vulnerable to various psychological and behavioral problems throughout their lifetime. This study aimed to investigate whether individuals with childhood trauma show altered frontal lobe activity during response inhibition tasks. In total, 157 healthy individuals were recruited and instructed to perform a Go/Nogo task during electroencephalography recording. Source activities of N2 and P3 of Nogo event-related potentials (ERP) were analyzed. The Childhood Trauma Questionnaire (CTQ) and Barratt Impulsivity Scale (BIS) were applied. Individuals were divided into three groups based on their total CTQ score: low CTQ, middle CTQ, and high CTQ groups. The high CTQ group exhibited significantly higher BIS scores than the low CTQ group. P3 amplitudes of the differences between Nogo and Go ERP waves exhibited higher mean values in the low CTQ than the high CTQ group, with trending effects. In Nogo-P3, the source activities of the right anterior cingulate cortex, bilateral medial frontal cortex (MFC), bilateral superior frontal gyrus (SFG), and right precentral gyrus were significantly lower in the high CTQ than the low CTQ group. Motor impulsivity showed a significant negative correlation with activities of the bilateral MFC and SFG in Nogo-P3 conditions. Our study revealed that individuals with childhood trauma have inhibitory failure and frontal lobe dysfunction in regions related to Nogo-P3.

  18. Human Thalamic-Prefrontal Peduncle Connectivity Revealed by Diffusion Spectrum Imaging Fiber Tracking

    Directory of Open Access Journals (Sweden)

    Chuanqi Sun

    2018-04-01

    Full Text Available The thalamic-prefrontal peduncle (TPP is a large bundle connecting the thalamus and prefrontal cortex. The definitive structure and function of the TPP are still controversial. To investigate the connectivity and segmentation patterns of the TPP, we employed diffusion spectrum imaging with generalized q-sampling reconstruction to perform both subject-specific and template-based analyses. Our results confirmed the trajectory and spatial relationship of the TPP in the human brain and identified the connection areas in the prefrontal cortex. The TPP-connecting areas identified based on Brodmann areas (BAs were BAs 8–11 and 45–47. Based on the automated anatomical atlas, these areas were the medial superior frontal gyrus, superior frontal gyrus, middle frontal gyrus, pars triangularis, pars orbitalis, anterior orbital gyrus, and lateral orbital gyrus. In addition, we identified the TPP connection areas in the thalamus, including the anterior and medial nuclei, and the lateral dorsal/lateral posterior nuclei. TPP fibers connected the thalamus with the ipsilateral prefrontal BAs 11, 47, 10, 46, 45, 9, and 8 seriatim from medial to lateral, layer by layer. Our results provide further details of the thalamic-prefrontal peduncle structure, and may aid future studies and a better understanding of the functional roles of the TPP in the human brain.

  19. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

    International Nuclear Information System (INIS)

    Smits, Marion; Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan

    2007-01-01

    It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex. Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model. The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices. fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies. (orig.)

  20. A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants

    Energy Technology Data Exchange (ETDEWEB)

    Smits, Marion [Erasmus MC, University Medical Center Rotterdam, Department of Radiology, P.O. Box 2040, CA Rotterdam (Netherlands); K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium); Peeters, Ronald R.; Hecke, Paul van; Sunaert, Stefan [K.U.Leuven, Department of Radiology, University Hospitals, Leuven (Belgium)

    2007-01-15

    It is known that taste is centrally represented in the insula, frontal and parietal operculum, as well as in the orbitofrontal cortex (secondary gustatory cortex). In functional MRI (fMRI) experiments activation in the insula has been confirmed, but activation in the orbitofrontal cortex is only infrequently found, especially at higher field strengths (3 T). Due to large susceptibility artefacts, the orbitofrontal cortex is a difficult region to examine with fMRI. Our aim was to localize taste in the human cortex at 3 T, specifically in the orbitofrontal cortex as well as in the primary gustatory cortex. Event-related fMRI was performed at 3 T in seven healthy volunteers. Taste stimuli consisted of lemon juice and chocolate. To visualize activation in the orbitofrontal cortex a dedicated 3D SENSE EPI fMRI sequence was used, in addition to a 2D SENSE EPI fMRI sequence for imaging the entire brain. Data were analyzed using a perception-based model. The dedicated 3D SENSE EPI sequence successfully reduced susceptibility artefacts in the orbitofrontal area. Significant taste-related activation was found in the orbitofrontal and insular cortices. fMRI of the orbitofrontal cortex is feasible at 3 T, using a dedicated sequence. Our results corroborate findings from previous studies. (orig.)

  1. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis.

    Science.gov (United States)

    Wise, Nan J; Frangos, Eleni; Komisaruk, Barry R

    2016-01-01

    During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. This study extends our previous findings by further characterizing how the brain differentially processes physical 'touch' stimulation and 'imagined' stimulation. Eleven healthy women (age range 29-74) participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions - imagined dildo self-stimulation and imagined speculum stimulation - were included to characterize the effects of erotic versus non-erotic imagery. Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex) and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region), and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the 'reward system'. In addition, these results suggest a mechanism by which some individuals may

  2. Activation of sensory cortex by imagined genital stimulation: an fMRI analysis

    Directory of Open Access Journals (Sweden)

    Nan J. Wise

    2016-10-01

    Full Text Available Background: During the course of a previous study, our laboratory made a serendipitous finding that just thinking about genital stimulation resulted in brain activations that overlapped with, and differed from, those generated by physical genital stimulation. Objective: This study extends our previous findings by further characterizing how the brain differentially processes physical ‘touch’ stimulation and ‘imagined’ stimulation. Design: Eleven healthy women (age range 29–74 participated in an fMRI study of the brain response to imagined or actual tactile stimulation of the nipple and clitoris. Two additional conditions – imagined dildo self-stimulation and imagined speculum stimulation – were included to characterize the effects of erotic versus non-erotic imagery. Results: Imagined and tactile self-stimulation of the nipple and clitoris each activated the paracentral lobule (the genital region of the primary sensory cortex and the secondary somatosensory cortex. Imagined self-stimulation of the clitoris and nipple resulted in greater activation of the frontal pole and orbital frontal cortex compared to tactile self-stimulation of these two bodily regions. Tactile self-stimulation of the clitoris and nipple activated the cerebellum, primary somatosensory cortex (hand region, and premotor cortex more than the imagined stimulation of these body regions. Imagining dildo stimulation generated extensive brain activation in the genital sensory cortex, secondary somatosensory cortex, hippocampus, amygdala, insula, nucleus accumbens, and medial prefrontal cortex, whereas imagining speculum stimulation generated only minimal activation. Conclusion: The present findings provide evidence of the potency of imagined stimulation of the genitals and that the following brain regions may participate in erogenous experience: primary and secondary sensory cortices, sensory-motor integration areas, limbic structures, and components of the

  3. The study of regional cerebral glucose metabolic change in human being normal aging process by using PET scanner

    International Nuclear Information System (INIS)

    Si Mingjue; Huang Gang

    2008-01-01

    Objective: With the technique development, PET has been more and more applied in brain function research. The aim of this study was to investigate the tendency of regional cerebral glucose metabolism changes in human being normal aging process by using 18 F-fluorodeoxyglucose (FDG) PET/CT and statistical parametric mapping (SPM) software. Methods: 18 F-FDG PET/CT brain imaging data acquired from 252 healthy normal subjects (age ranging: 21 to 88 years old) were divided into 6 groups according to their age: 21-30, 31-40, 41-50, 51-60, 61-70, 71-88. All 5 groups with age ≥31 years old were compared to the control group of 21-30 years old, and pixel-by-pixel t-statistic analysis was applied using the SPM2. The hypo-metabolic areas were identified by MNI space utility (MSU) software and the voxel value of each brain areas were calculated (P 60 years old showed significant metabolic decreases with aging mainly involved bilateral frontal lobe (pre-motto cortex, dorsolateral prefrontal cortex, frontal pole), temporal lobe (temporal pole), insula, anterior cingulate cortex and cerebellum. The most significant metabolic decrease area with aging was the frontal lobe , followed by the anterior cingulate cortex, temporal lobe, insula and cerebellum at predominance right hemisphere (P<0.0001). Parietal lobe, parahippocampal gyrus, basal ganglia and thalamus remain metabolically unchanged with advancing aging. Conclusions: Cerebral metabolic function decrease with normal aging shows an inconstant and unsymmetrical process. The regional cerebral metabolic decrease much more significantly in older than 60 years old healthy volunteers, mainly involving bilateral frontal lobe, temporal lobe, insula, anterior cingulate cortex and cerebellum at right predominance hemisphere. (authors)

  4. Increased premotor cortex activation in high functioning autism during action observation.

    Science.gov (United States)

    Perkins, Tom J; Bittar, Richard G; McGillivray, Jane A; Cox, Ivanna I; Stokes, Mark A

    2015-04-01

    The mirror neuron (MN) hypothesis of autism has received considerable attention, but to date has produced inconsistent findings. Using functional MRI, participants with high functioning autism or Asperger's syndrome were compared to typically developing individuals (n=12 in each group). Participants passively observed hand gestures that included waving, pointing, and grasping. Concerning the MN network, both groups activated similar regions including prefrontal, inferior parietal and superior temporal regions, with the autism group demonstrating significantly greater activation in the dorsal premotor cortex. Concerning other regions, participants with autism demonstrated increased activity in the anterior cingulate and medial frontal gyrus, and reduced activation in calcarine, cuneus, and middle temporal gyrus. These results suggest that during observation of hand gestures, frontal cortex activation is affected in autism, which we suggest may be linked to abnormal functioning of the MN system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala.

    Science.gov (United States)

    Murray, Elisabeth A; Wise, Steven P; Drevets, Wayne C

    2011-06-15

    Despite considerable effort, the localization of dysfunction in major depressive disorder (MDD) remains poorly understood. We present a hypothesis about its localization that builds on recent findings from primate neuropsychology. The hypothesis has four key components: a deficit in the valuation of "self" underlies the core disorder in MDD; the medial frontal cortex represents "self"; interactions between the amygdala and cortical representations update their valuation; and inefficiency in using positive feedback by orbital prefrontal cortex contributes to MDD. Published by Elsevier Inc.

  6. Task-dependent and distinct roles of the temporoparietal junction and inferior frontal cortex in the control of imitation.

    Science.gov (United States)

    Hogeveen, Jeremy; Obhi, Sukhvinder S; Banissy, Michael J; Santiesteban, Idalmis; Press, Clare; Catmur, Caroline; Bird, Geoffrey

    2015-07-01

    The control of neurological networks supporting social cognition is crucially important for social interaction. In particular, the control of imitation is directly linked to interaction quality, with impairments associated with disorders characterized by social difficulties. Previous work suggests inferior frontal cortex (IFC) and the temporoparietal junction (TPJ) are involved in controlling imitation, but the functional roles of these areas remain unclear. Here, transcranial direct current stimulation (tDCS) was used to enhance cortical excitability at IFC and the TPJ prior to the completion of three tasks: (i) a naturalistic social interaction during which increased imitation is known to improve rapport, (ii) a choice reaction time task in which imitation needs to be inhibited for successful performance and (iii) a non-imitative control task. Relative to sham stimulation, stimulating IFC improved the context-dependent control of imitation-participants imitated more during the social interaction and less during the imitation inhibition task. In contrast, stimulating the TPJ reduced imitation in the inhibition task without affecting imitation during social interaction. Neither stimulation site affected the non-imitative control task. These data support a model in which IFC modulates imitation directly according to task demands, whereas TPJ controls task-appropriate shifts in attention toward representation of the self or the other, indirectly impacting upon imitation. © The Author (2014). Published by Oxford University Press.

  7. Frontal brain asymmetry as a marker of depression and effectiveness of TMS therapy

    International Nuclear Information System (INIS)

    Mani, D.; Lithgow, B.

    2010-01-01

    Full text: Resting frontal brain electroencephalography (EEG) asymmetry has been hypothesi sed as a diagnostic marker for depression. A number of studies have shown that depressed individuals are characterised by diminished left sided activation of the prefrontal cortex, which is indicated by greater left than right alpha-band power. Relative left frontal region activity is believed to be associated with positive approach related behaviour and relative right frontal activity is seen to be linked to negative withdrawal related behaviour. In this study, frontal brain EEG was recorded from 17 depressed and 19 control subjects, from which frontal brain asymmetry ratios were calculated. The results confirmed the trend of relative left anterior hypoaclivation for individuals with depression compared to the healthy controls. This study also looked at beta and theta band ratios and found theta for depressed is predominantly negative, while the control group dis played mainly positive values. Beta comparison showed little significant difference between control and depressed groups. In addition, there have been few studies that examined frontal brain asymmetry in depression soon after treatment to gauge its effectiv ness. In a very preliminary study, the effect of Transcranial Magnetic Stimulation (TMS) therapy on the alpha band frontal brain asymmetry ratio for 5 depl'essed subjects before and after treatment found a slight increase in FBA ratio for 4 subjects. Further research and a larger subject group is required to validate these results.

  8. Memory deficits in abstinent MDMA (ecstasy) users: neuropsychological evidence of frontal dysfunction.

    Science.gov (United States)

    Quednow, Boris B; Jessen, Frank; Kuhn, Kai-Uwe; Maier, Wolfgang; Daum, Irene; Wagner, Michael

    2006-05-01

    Chronic administration of the common club drug 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is associated with long-term depletion of serotonin (5-HT) and loss of 5-HT axons in the brains of rodents and non-human primates, and evidence suggests that recreational MDMA consumption may also affect the human serotonergic system. Moreover, it was consistently shown that abstinent MDMA users have memory deficits. Recently, it was supposed that these deficits are an expression of a temporal or rather hippocampal dysfunction caused by the serotonergic neurotoxicity of MDMA. The aim of this study is to examine the memory deficits of MDMA users neuropsychologically in order to evaluate the role of different brain regions. Nineteen male abstinent MDMA users, 19 male abstinent cannabis users and 19 male drug-naive control subjects were examined with a German version of the Rey Auditory Verbal Learning Test (RAVLT). MDMA users showed widespread and marked verbal memory deficits, compared to drug-naive controls as well as compared to cannabis users, whereas cannabis users did not differ from control subjects in their memory performance. MDMA users revealed impairments in learning, consolidation, recall and recognition. In addition, they also showed a worse recall consistency and strong retroactive interference whereby both measures were previously associated with frontal lobe function. There was a significant correlation between memory performance and the amount of MDMA taken. These results suggest that the memory deficits of MDMA users are not only the result of a temporal or hippocampal dysfunction, but also of a dysfunction of regions within the frontal cortex.

  9. Frontal alpha asymmetry predicts inhibitory processing in youth with attention deficit/hyperactivity disorder.

    Science.gov (United States)

    Ellis, Alissa J; Kinzel, Chantelle; Salgari, Giulia C; Loo, Sandra K

    2017-07-28

    Atypical asymmetry in brain activity has been implicated in the behavioral and attentional dysregulation observed in ADHD. Specifically, asymmetry in neural activity in the right versus left frontal regions has been linked to ADHD, as well as to symptoms often associated with ADHD such as heightened approach behaviors, impulsivity and difficulties with inhibition. Clarifying the role of frontal asymmetry in ADHD-like traits, such as disinhibition, may provide information on the neurophysiological processes underlying these behaviors. ADHD youth (ADHD: n = 25) and healthy, typically developing controls (TD: n = 25) underwent an electroencephalography (EEG) recording while completing a go/no-go task-a commonly used test measuring behavioral inhibition. In addition, advanced signal processing for source localization estimated the location of signal generators underlying frontal alpha asymmetry (FA) during correct and incorrect trials. This is the first study in ADHD to demonstrate that the dorsal-lateral prefrontal cortex (DLPFC) may be responsible for generating frontal alpha. During failed inhibition trials, ADHD youth displayed greater FA than TD youth. In addition, within the ADHD group, frontal asymmetry during later processing stages (i.e., 400-800ms after stimulus) predicted a higher number of commission errors throughout the task. These results suggest that frontal alpha asymmetry may be a specific biomarker of cognitive disinhibition among youth with ADHD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Rana computatrix to human language: towards a computational neuroethology of language evolution.

    Science.gov (United States)

    Arbib, Michael A

    2003-10-15

    Walter's Machina speculatrix inspired the name Rana computatrix for a family of models of visuomotor coordination in the frog, which contributed to the development of computational neuroethology. We offer here an 'evolutionary' perspective on models in the same tradition for rat, monkey and human. For rat, we show how the frog-like taxon affordance model provides a basis for the spatial navigation mechanisms that involve the hippocampus and other brain regions. For monkey, we recall two models of neural mechanisms for visuomotor coordination. The first, for saccades, shows how interactions between the parietal and frontal cortex augment superior colliculus seen as the homologue of frog tectum. The second, for grasping, continues the theme of parieto-frontal interactions, linking parietal affordances to motor schemas in premotor cortex. It further emphasizes the mirror system for grasping, in which neurons are active both when the monkey executes a specific grasp and when it observes a similar grasp executed by others. The model of human-brain mechanisms is based on the mirror-system hypothesis of the evolution of the language-ready brain, which sees the human Broca's area as an evolved extension of the mirror system for grasping.

  11. Frequency specific modulation of human somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Matteo eFeurra

    2011-02-01

    Full Text Available Oscillatory neuronal activities are commonly observed in response to sensory stimulation. However, their functional roles are still the subject of debate. One way to probe the roles of oscillatory neural activities is to deliver alternating current to the cortex at biologically relevant frequencies and examine whether such stimulation influences perception and cognition. In this study, we tested whether transcranial alternating current stimulation (tACS over the primary somatosensory cortex (SI could elicit tactile sensations in humans in a frequency dependent manner. We tested the effectiveness of tACS over SI at frequency bands ranging from 2 to 70 Hz. Our results show that stimulation in alpha (10-14 Hz and high gamma (52-70 Hz frequency range produces a tactile sensation in the contralateral hand. A weaker effect was also observed for beta (16-20 Hz stimulation. These findings highlight the frequency-dependency of effective tACS over SI with the effective frequencies corresponding to those observed in previous EEG/MEG studies of tactile perception. Our present study suggests that tACS could be used as a powerful online stimulation technique to reveal the causal roles of oscillatory brain activities.

  12. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex.

    Science.gov (United States)

    de Vivo, Luisa; Nelson, Aaron B; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara

    2016-04-01

    The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6-8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. © 2016 Associated Professional Sleep Societies, LLC.

  13. Transcranial Direct Current Stimulation of Frontal Cortex Decreases Performance on the WAIS-IV Intelligence Test

    Science.gov (United States)

    Sellers, Kristin K.; Mellin, Juliann M.; Lustenberger, Caroline M.; Boyle, Michael R.; Lee, Won Hee; Peterchev, Angel V.; Frohlich, Flavio

    2015-01-01

    Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2mA at each anode for 20 minutes) or active sham tDCS (2mA for 40 seconds), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2mA for 20 minutes). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement. PMID:25934490

  14. Dissociating frontal regions that co-lateralize with different ventral occipitotemporal regions during word processing☆

    Science.gov (United States)

    Seghier, Mohamed L.; Price, Cathy J.

    2013-01-01

    The ventral occipitotemporal sulcus (vOT) sustains strong interactions with the inferior frontal cortex during word processing. Consequently, activation in both regions co-lateralize towards the same hemisphere in healthy subjects. Because the determinants of lateralisation differ across posterior, middle and anterior vOT subregions, we investigated whether lateralisation in different inferior frontal regions would co-vary with lateralisation in the three different vOT subregions. A whole brain analysis found that, during semantic decisions on written words, laterality covaried in (1) posterior vOT and the precentral gyrus; (2) middle vOT and the pars opercularis, pars triangularis, and supramarginal gyrus; and (3) anterior vOT and the pars orbitalis, middle frontal gyrus and thalamus. These findings increase the spatial resolution of our understanding of how vOT interacts with other brain areas during semantic categorisation on words. PMID:23728081

  15. Low Doses of Ethanol Enhance LTD-like Plasticity in Human Motor Cortex.

    Science.gov (United States)

    Fuhl, Anna; Müller-Dahlhaus, Florian; Lücke, Caroline; Toennes, Stefan W; Ziemann, Ulf

    2015-12-01

    Humans liberally use ethanol for its facilitating effects on social interactions but its effects on central nervous system function remain underexplored. We have recently described that very low doses of ethanol abolish long-term potentiation (LTP)-like plasticity in human cortex, most likely through enhancement of tonic inhibition [Lücke et al, 2014, Neuropsychopharmacology 39:1508-18]. Here, we studied the effects of low-dose ethanol on long-term depression (LTD)-like plasticity. LTD-like plasticity was induced in human motor cortex by paired associative transcranial magnetic stimulation (PASLTD), and measured as decreases of motor evoked potential input-output curve (IO-curve). In addition, sedation was measured by decreases in saccade peak velocity (SPV). Ethanol in two low doses (EtOH<10mM, EtOH<20mM) was compared to single oral doses of alprazolam (APZ, 1mg) a classical benzodiazepine, and zolpidem (ZLP, 10 mg), a non-benzodiazepine hypnotic, in a double-blinded randomized placebo-controlled crossover design in ten healthy human subjects. EtOH<10mM and EtOH<20mM but not APZ or ZLP enhanced the PASLTD-induced LTD-like plasticity, while APZ and ZLP but not EtOH<10mM or EtOH<20mM decreased SPV. Non-sedating low doses of ethanol, easily reached during social drinking, enhance LTD-like plasticity in human cortex. This effect is most likely explained by the activation of extrasynaptic α4-subunit containing gamma-aminobutyric type A receptors by low-dose EtOH, resulting in increased tonic inhibition. Findings may stimulate cellular research on the role of tonic inhibition in regulating excitability and plasticity of cortical neuronal networks.

  16. Multicompartmental analysis of [11C]-carfentanil binding to opiate receptors in humans measured by positron emission tomography

    International Nuclear Information System (INIS)

    Frost, J.J.; Douglass, K.H.; Mayberg, H.S.; Dannals, R.F.; Links, J.M.; Wilson, A.A.; Ravert, H.T.; Crozier, W.C.; Wagner, H.N. Jr.

    1989-01-01

    [11C]-Carfentanil is a high affinity opiate agonist that can be used to localize mu opiate receptors in humans by positron emission tomography (PET). A four-compartment model was used to obtain quantitative estimates of rate constants for receptor association and dissociation. PET studies were performed in five normal subjects in the absence and presence of 1 mg/kg naloxone. Arterial plasma concentration of [11C]-carfentanil and its labeled metabolites were determined during each PET study. The value of k3/k4 = Bmax/kD was determined for each subject in the presence and absence of naloxone. There was a significant reduction in the value of k3/k4 from 3.4 +/- 0.92 to 0.26 +/- 0.13 in the thalamus (p less than 0.01) and from 1.8 +/- 0.33 to 0.16 +/- 0.065 in the frontal cortex (p less than 0.001). Mean values of frontal cortex/occipital cortex and thalamus/occipital cortex ratios were determined for the interval 35-70 min after injection when receptor binding is high relative to nonspecific binding. The relationship between the measured region/occipital cortex values and the corresponding values of k3/k4 in the presence and absence of naloxone was: regions/occipital cortex = 0.95 + 0.74 (k3/k4) with r = 0.98 (n = 20). Simulation studies also demonstrated a linear relationship between the thalamus/occipital cortex or frontal cortex/occipital cortex ratio and k3/k4 for less than twofold increases or decreases in k3/k4. Simulation studies in which thalamic blood flow was varied demonstrated no significant effect on the region/occipital cortex ratio at 35-70 min for a twofold increase or fourfold decrease in blood flow. Therefore, the region/occipital cortex ratio can be used to quantitate changes in k3/k4 when tracer kinetic modeling is not feasible

  17. Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex

    Directory of Open Access Journals (Sweden)

    Florian Müller-Dahlhaus

    2010-07-01

    Full Text Available Spike-timing dependent plasticity (STDP has been studied extensively in a variety of animal models during the past decade but whether it can be studied at the systems level of the human cortex has been a matter of debate. Only recently newly developed non-invasive brain stimulation techniques such as transcranial magnetic stimulation (TMS have made it possible to induce and assess timing dependent plasticity in conscious human subjects. This review will present a critical synopsis of these experiments, which suggest that several of the principal characteristics and molecular mechanisms of TMS-induced plasticity correspond to those of STDP as studied at a cellular level. TMS combined with a second phasic stimulation modality can induce bidirectional long-lasting changes in the excitability of the stimulated cortex, whose polarity depends on the order of the associated stimulus-evoked events within a critical time window of tens of milliseconds. Pharmacological evidence suggests an NMDA receptor mediated form of synaptic plasticity. Studies in human motor cortex demonstrated that motor learning significantly modulates TMS-induced timing dependent plasticity, and, conversely, may be modulated bidirectionally by prior TMS-induced plasticity, providing circumstantial evidence that long-term potentiation-like mechanisms may be involved in motor learning. In summary, convergent evidence is being accumulated for the contention that it is now possible to induce STDP-like changes in the intact human central nervous system by means of TMS to study and interfere with synaptic plasticity in neural circuits in the context of behaviour such as learning and memory.

  18. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Silvia Vanni

    2018-01-01

    Full Text Available Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively and in different genetic forms of prion diseases (gPrD in comparison to Alzheimer's disease (AD subjects and age-matched controls.Methods: Total RNA was obtained from the frontal cortex of vCJD (n = 20, iCJD (n = 11, sCJD (n = 23, gPrD (n = 30, and AD (n = 14 patients and age-matched controls (n = 30. RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis.Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level.Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue—together with specific molecular and conformational features of the pathological agent of the disease—seem to dictate the peculiar

  19. Hemoglobin mRNA Changes in the Frontal Cortex of Patients with Neurodegenerative Diseases.

    Science.gov (United States)

    Vanni, Silvia; Zattoni, Marco; Moda, Fabio; Giaccone, Giorgio; Tagliavini, Fabrizio; Haïk, Stéphane; Deslys, Jean-Philippe; Zanusso, Gianluigi; Ironside, James W; Carmona, Margarita; Ferrer, Isidre; Kovacs, Gabor G; Legname, Giuseppe

    2018-01-01

    Background: Hemoglobin is the major protein found in erythrocytes, where it acts as an oxygen carrier molecule. In recent years, its expression has been reported also in neurons and glial cells, although its role in brain tissue remains still unknown. Altered hemoglobin expression has been associated with various neurodegenerative disorders. Here, we investigated hemoglobin mRNA levels in brains of patients affected by variant, iatrogenic, and sporadic forms of Creutzfeldt-Jakob disease (vCJD, iCJD, sCJD, respectively) and in different genetic forms of prion diseases (gPrD) in comparison to Alzheimer's disease (AD) subjects and age-matched controls. Methods: Total RNA was obtained from the frontal cortex of vCJD ( n = 20), iCJD ( n = 11), sCJD ( n = 23), gPrD ( n = 30), and AD ( n = 14) patients and age-matched controls ( n = 30). RT-qPCR was performed for hemoglobin transcripts HBB and HBA1/2 using four reference genes for normalization. In addition, expression analysis of the specific erythrocyte marker ALAS2 was performed in order to account for blood contamination of the tissue samples. Hba1/2 and Hbb protein expression was then investigated with immunofluorescence and confocal microscope analysis. Results: We observed a significant up-regulation of HBA1/2 in vCJD brains together with a significant down-regulation of HBB in iCJD. In addition, while in sporadic and genetic forms of prion disease hemoglobin transcripts did not shown any alterations, both chains display a strong down-regulation in AD brains. These results were confirmed also at a protein level. Conclusions: These data indicate distinct hemoglobin transcriptional responses depending on the specific alterations occurring in different neurodegenerative diseases. In particular, the initial site of misfolding event (central nervous system vs. peripheral tissue)-together with specific molecular and conformational features of the pathological agent of the disease-seem to dictate the peculiar hemoglobin

  20. The neural dynamics of reward value and risk coding in the human orbitofrontal cortex.

    Science.gov (United States)

    Li, Yansong; Vanni-Mercier, Giovanna; Isnard, Jean; Mauguière, François; Dreher, Jean-Claude

    2016-04-01

    The orbitofrontal cortex is known to carry information regarding expected reward, risk and experienced outcome. Yet, due to inherent limitations in lesion and neuroimaging methods, the neural dynamics of these computations has remained elusive in humans. Here, taking advantage of the high temporal definition of intracranial recordings, we characterize the neurophysiological signatures of the intact orbitofrontal cortex in processing information relevant for risky decisions. Local field potentials were recorded from the intact orbitofrontal cortex of patients suffering from drug-refractory partial epilepsy with implanted depth electrodes as they performed a probabilistic reward learning task that required them to associate visual cues with distinct reward probabilities. We observed three successive signals: (i) around 400 ms after cue presentation, the amplitudes of the local field potentials increased with reward probability; (ii) a risk signal emerged during the late phase of reward anticipation and during the outcome phase; and (iii) an experienced value signal appeared at the time of reward delivery. Both the medial and lateral orbitofrontal cortex encoded risk and reward probability while the lateral orbitofrontal cortex played a dominant role in coding experienced value. The present study provides the first evidence from intracranial recordings that the human orbitofrontal cortex codes reward risk both during late reward anticipation and during the outcome phase at a time scale of milliseconds. Our findings offer insights into the rapid mechanisms underlying the ability to learn structural relationships from the environment. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Multicompartmental analysis of (/sup 11/C)-carfentanil binding to opiate receptors in humans measured by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.J.; Douglass, K.H.; Mayberg, H.S.; Dannals, R.F.; Links, J.M.; Wilson, A.A.; Ravert, H.T.; Crozier, W.C.; Wagner, H.N. Jr.

    1989-06-01

    (11C)-Carfentanil is a high affinity opiate agonist that can be used to localize mu opiate receptors in humans by positron emission tomography (PET). A four-compartment model was used to obtain quantitative estimates of rate constants for receptor association and dissociation. PET studies were performed in five normal subjects in the absence and presence of 1 mg/kg naloxone. Arterial plasma concentration of (11C)-carfentanil and its labeled metabolites were determined during each PET study. The value of k3/k4 = Bmax/kD was determined for each subject in the presence and absence of naloxone. There was a significant reduction in the value of k3/k4 from 3.4 +/- 0.92 to 0.26 +/- 0.13 in the thalamus (p less than 0.01) and from 1.8 +/- 0.33 to 0.16 +/- 0.065 in the frontal cortex (p less than 0.001). Mean values of frontal cortex/occipital cortex and thalamus/occipital cortex ratios were determined for the interval 35-70 min after injection when receptor binding is high relative to nonspecific binding. The relationship between the measured region/occipital cortex values and the corresponding values of k3/k4 in the presence and absence of naloxone was: regions/occipital cortex = 0.95 + 0.74 (k3/k4) with r = 0.98 (n = 20). Simulation studies also demonstrated a linear relationship between the thalamus/occipital cortex or frontal cortex/occipital cortex ratio and k3/k4 for less than twofold increases or decreases in k3/k4. Simulation studies in which thalamic blood flow was varied demonstrated no significant effect on the region/occipital cortex ratio at 35-70 min for a twofold increase or fourfold decrease in blood flow. Therefore, the region/occipital cortex ratio can be used to quantitate changes in k3/k4 when tracer kinetic modeling is not feasible.

  2. Dysconnection of right parietal and frontal cortex in neglect syndrome

    DEFF Research Database (Denmark)

    Dietz, Martin; Nielsen, Jørgen Feldbæk; Roepstorff, Andreas

    2017-01-01

    A lesion to the right hemisphere of the brain often leads to perceptual neglect of the left side of the sensorium. The fact that lesions to different cortical regions lead to the same symptoms points to neglect as a dysconnection syndrome that may result from the dysconnection of a distributed...... network, rather than a disruption of computation in any particular brain region. To test this hypothesis, we used Bayesian analysis of effective connectivity based on electroencephalographic recordings in patients with left-sided neglect after a right-hemisphere lesion. While age-matched healthy controls...... connectivity in the left hemisphere when stimuli appeared on their right. Crucially, this parieto-frontal feedback connectivity was aggravated in patients with more severe symptoms. In contrast, patients and controls did not show differences in the local connectivity within regions. These findings suggest...

  3. Functional magnetic resonance imaging (fMRI) in patients with gliomas adjacent to classical language areas. Lateralization of activated prefrontal cortex is important in determining the dominant hemisphere

    International Nuclear Information System (INIS)

    Karibe, Hiroshi; Kumabe, Toshihiro; Shirane, Reizo; Yoshimoto, Takashi

    2003-01-01

    In patients with gliomas adjacent to classical language areas, lateralized activation of prefrontal cortex was assessed to determine language dominant hemisphere using functional magnetic resonance imaging (fMRI). Twelve patients presented with aphasias were studied. In all patients, either the left frontal operculum or left superior temporal gyri were adjacent to gliomas, suggesting all patients had left lateralization in hemispheric language dominance. Functional MRI was performed with a 1.5T scanner, with the sequence of gradient-echo type echo-planar imaging. As specific language tasks, verb, word, and capping generations were used. Using a cross-correlation analysis method, primary activation maps were generated using pixels with a correlation coefficient of >0.7. The lateralized activation of frontal operculum, superior temporal gyrus, and prefrontal cortex were assessed by calculating laterality index. Successful activation of frontal operculum was imaged in 11 of 12, in the superior temporal gyrus or prefrontal cortex. Three out of 11 cases had apparent activation lateralized in the right frontal operculum on fMRI, while 3 out of 12 cases showed activation in the superior temporal gyrus. On the other hand, all cases had apparent activation lateralized to the left prefrontal cortex. Significant activation of true language area may not be obtained in some cases with gliomas adjacent to classical language areas. In such cases, lateralization of apparent activation of prefrontal cortex may reflect lateralization in the dominant hemisphere. These result suggest that the assessment of apparent activation of prefrontal cortex lateralization is useful to determine the language dominant hemisphere. (author)

  4. A hierarchy for relational reasoning in the prefrontal cortex.

    Science.gov (United States)

    Krawczyk, Daniel C; Michelle McClelland, M; Donovan, Colin M

    2011-05-01

    The human brain possesses a unique capacity to reason about abstract relationships among items in our environment. The neural organization of reasoning abilities has remained elusive. Two approaches toward investigating human reasoning have involved studying visuo-spatial reasoning abilities and studying analogical reasoning. These approaches have both revealed anterior prefrontal cortex (PFC) involvement, but no prior studies have jointly investigated these two forms of reasoning to understand any potential convergence of activation within the PFC. Using fMRI, we tested the extent to which these two forms of reasoning (visuo-spatial and analogical) overlap in PFC activation. We conducted a visuo-spatial reasoning task that required processing multiple changes across three abstract pictures. This task activated a progressively anterior series of PFC regions when multiple relations had to be integrated. We also conducted a four-term analogy task in a stage-wise manner and compared results from this task to semantic and perceptual control conditions that did not require integrating relations across the problems. We found greater activation for analogical reasoning in the series of PFC regions that were sequentially involved in the visuo-spatial reasoning task. These findings indicate that stages of neural processing overlap for different domains within human reasoning. The pattern of differences across the analogy task suggests a hierarchical organization for relational reasoning across domains in which posterior frontal cortex is active across concrete reasoning tasks, while progressively more anterior regions are recruited to process increasingly abstract representations in reasoning. Copyright © 2010 Elsevier Srl. All rights reserved.

  5. Role of Frontal Alpha Oscillations in Creativity

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R.; Foulser, A. Alban; Mellin, Juliann M.; Fröhlich, Flavio

    2015-01-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent EEG data suggests that cortical oscillations in the alpha frequency band (8 – 12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a fundamental role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking, a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40Hz-tACS was used in instead of 10Hz-tACS to rule out a general “electrical stimulation” effect. No significant change in the Creativity Index was found for such frontal gamma stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. PMID:25913062

  6. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.

    Science.gov (United States)

    Bosking, William H; Sun, Ping; Ozker, Muge; Pei, Xiaomei; Foster, Brett L; Beauchamp, Michael S; Yoshor, Daniel

    2017-07-26

    Electrically stimulating early visual cortex results in a visual percept known as a phosphene. Although phosphenes can be evoked by a wide range of electrode sizes and current amplitudes, they are invariably described as small. To better understand this observation, we electrically stimulated 93 electrodes implanted in the visual cortex of 13 human subjects who reported phosphene size while stimulation current was varied. Phosphene size increased as the stimulation current was initially raised above threshold, but then rapidly reached saturation. Phosphene size also depended on the location of the stimulated site, with size increasing with distance from the foveal representation. We developed a model relating phosphene size to the amount of activated cortex and its location within the retinotopic map. First, a sigmoidal curve was used to predict the amount of activated cortex at a given current. Second, the amount of active cortex was converted to degrees of visual angle by multiplying by the inverse cortical magnification factor for that retinotopic location. This simple model accurately predicted phosphene size for a broad range of stimulation currents and cortical locations. The unexpected saturation in phosphene sizes suggests that the functional architecture of cerebral cortex may impose fundamental restrictions on the spread of artificially evoked activity and this may be an important consideration in the design of cortical prosthetic devices. SIGNIFICANCE STATEMENT Understanding the neural basis for phosphenes, the visual percepts created by electrical stimulation of visual cortex, is fundamental to the development of a visual cortical prosthetic. Our experiments in human subjects implanted with electrodes over visual cortex show that it is the activity of a large population of cells spread out across several millimeters of tissue that supports the perception of a phosphene. In addition, we describe an important feature of the production of phosphenes by

  7. Fatty acid composition of the postmortem prefrontal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder.

    Science.gov (United States)

    Hamazaki, Kei; Maekawa, Motoko; Toyota, Tomoko; Dean, Brian; Hamazaki, Tomohito; Yoshikawa, Takeo

    2015-06-30

    Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Connections of the medial posterior parietal cortex (area 7m) in the monkey.

    Science.gov (United States)

    Leichnetz, G R

    2001-06-01

    The afferent and efferent cortical and subcortical connections of the medial posterior parietal cortex (area 7m) were studied in cebus (Cebus apella) and macaque (Macaca fascicularis) monkeys using the retrograde and anterograde capabilities of the horseradish peroxidase (HRP) technique. The principal intraparietal corticocortical connections of area 7m in both cebus and macaque cases were with the ipsilateral medial bank of the intraparietal sulcus (MIP) and adjacent superior parietal lobule (area 5), inferior parietal lobule (area 7a), lateral bank of the IPS (area 7ip), caudal parietal operculum (PGop), dorsal bank of the caudal superior temporal sulcus (visual area MST), and medial prestriate cortex (including visual area PO and caudal medial lobule). Its principal frontal corticocortical connections were with the prefrontal cortex in the shoulder above the principal sulcus and the cortex in the shoulder above the superior ramus of the arcuate sulcus (SAS), the area purported to contain the smooth eye movement-related frontal eye field (FEFsem) in the cebus monkey by other investigators. There were moderate connections with the cortex in the rostral bank of the arcuate sulcus (purported to contain the saccade-related frontal eye field; FEFsac), supplementary eye field (SEF), and rostral dorsal premotor area (PMDr). Area 7m also had major connections with the cingulate cortex (area 23), particularly the ventral bank of the cingulate sulcus. The principal subcortical connections of area 7m were with the dorsal portion of the ventrolateral thalamic (VLc) nucleus, lateral posterior thalamic nucleus, lateral pulvinar, caudal mediodorsal thalamic nucleus and medial pulvinar, central lateral, central superior lateral, and central inferior intralaminar thalamic nuclei, dorsolateral caudate nucleus and putamen, middle region of the claustrum, nucleus of the diagonal band, zona incerta, pregeniculate nucleus, anterior and posterior pretectal nuclei, intermediate layer of

  9. Manganese Neurotoxicity: New Perspectives from Behavioral, Neuroimaging, and Neuropathological Studies in Humans and Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Tomas R Guilarte

    2013-06-01

    Full Text Available Manganese (Mn is an essential metal and has important physiological functions for human health. However, exposure to excess levels of Mn in occupational settings or from environmental sources has been associated with a neurological syndrome comprising cognitive deficits, neuropsychological abnormalities and parkinsonism. Historically, studies on the effects of Mn in humans and experimental animals have been concerned with effects on the basal ganglia and the dopaminergic system as it relates to movement abnormalities. However, emerging studies are beginning to provide significant evidence of Mn effects on cortical structures and cognitive function at lower levels than previously recognized. This review advances new knowledge of putative mechanisms by which exposure to excess levels of Mn alters neurobiological systems and produces neurological deficits not only in the basal ganglia but also in the cerebral cortex. The emerging evidence suggests that working memory is significantly affected by chronic Mn exposure and this may be mediated by alterations in brain structures associated with the working memory network including the caudate nucleus in the striatum, frontal cortex and parietal cortex. Dysregulation of the dopaminergic system may play an important role in both the movement abnormalities as well as the neuropsychiatric and cognitive function deficits that have been described in humans and non-human primates exposed to Mn.

  10. Inactivation of the prelimbic or infralimbic cortex impairs decision-making in the rat gambling task.

    Science.gov (United States)

    Zeeb, Fiona D; Baarendse, P J J; Vanderschuren, L J M J; Winstanley, Catharine A

    2015-12-01

    Studies employing the Iowa Gambling Task (IGT) demonstrated that areas of the frontal cortex, including the ventromedial prefrontal cortex, orbitofrontal cortex (OFC), dorsolateral prefrontal cortex, and anterior cingulate cortex (ACC), are involved in the decision-making process. However, the precise role of these regions in maintaining optimal choice is not clear. We used the rat gambling task (rGT), a rodent analogue of the IGT, to determine whether inactivation of or altered dopamine signalling within discrete cortical sub-regions disrupts decision-making. Following training on the rGT, animals were implanted with guide cannulae aimed at the prelimbic (PrL) or infralimbic (IL) cortices, the OFC, or the ACC. Prior to testing, rats received an infusion of saline or a combination of baclofen and muscimol (0.125 μg of each/side) to inactivate the region and an infusion of a dopamine D2 receptor antagonist (0, 0.1, 0.3, and 1.0 μg/side). Rats tended to increase their choice of a disadvantageous option and decrease their choice of the optimal option following inactivation of either the IL or PrL cortex. In contrast, OFC or ACC inactivation did not affect decision-making. Infusion of a dopamine D2 receptor antagonist into any sub-region did not alter choice preference. Online activity of the IL or PrL cortex is important for maintaining an optimal decision-making strategy, but optimal performance on the rGT does not require frontal cortex dopamine D2 receptor activation. Additionally, these results demonstrate that the roles of different cortical regions in cost-benefit decision-making may be dissociated using the rGT.

  11. Frontal Plane Modelling of Human Dynamics during Standing in Narrow-Stance

    Science.gov (United States)

    Sonobe, M.; Yamaguchi, H.; Hino, J.

    2016-09-01

    Standing ride type vehicles like electric skateboards have been developed in recent years. Although these vehicles have advantages as being compact and low cost due to their simple structure, it is necessary to improve the riding quality. Therefore, the system aiding riders to keep their balance on a skateboard by feedback control or feedforward control has been required. To achieve it, a human balance model should be built as simple as possible. In this study, we focus on the human balance modelling during standing when the support surface moves largely. We restricted the model on frontal plane and narrow stance because the restrictions allow us to assume single-degree-of-freedom model. The balance control system is generally assumed as a delayed feedback control system. The model was identified through impulse response test and frequency response test. As a result, we found the phase between acceleration of the skateboard and posture angle become opposite phase in low frequency range.

  12. Frequency-Selective Attention in Auditory Scenes Recruits Frequency Representations Throughout Human Superior Temporal Cortex.

    Science.gov (United States)

    Riecke, Lars; Peters, Judith C; Valente, Giancarlo; Kemper, Valentin G; Formisano, Elia; Sorger, Bettina

    2017-05-01

    A sound of interest may be tracked amid other salient sounds by focusing attention on its characteristic features including its frequency. Functional magnetic resonance imaging findings have indicated that frequency representations in human primary auditory cortex (AC) contribute to this feat. However, attentional modulations were examined at relatively low spatial and spectral resolutions, and frequency-selective contributions outside the primary AC could not be established. To address these issues, we compared blood oxygenation level-dependent (BOLD) responses in the superior temporal cortex of human listeners while they identified single frequencies versus listened selectively for various frequencies within a multifrequency scene. Using best-frequency mapping, we observed that the detailed spatial layout of attention-induced BOLD response enhancements in primary AC follows the tonotopy of stimulus-driven frequency representations-analogous to the "spotlight" of attention enhancing visuospatial representations in retinotopic visual cortex. Moreover, using an algorithm trained to discriminate stimulus-driven frequency representations, we could successfully decode the focus of frequency-selective attention from listeners' BOLD response patterns in nonprimary AC. Our results indicate that the human brain facilitates selective listening to a frequency of interest in a scene by reinforcing the fine-grained activity pattern throughout the entire superior temporal cortex that would be evoked if that frequency was present alone. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Optical properties of the medulla and the cortex of human scalp hair

    Science.gov (United States)

    Kharin, Aleksey; Varghese, Babu; Verhagen, Rieko; Uzunbajakava, Natallia

    2009-03-01

    An increasing number of applications, including non- or minimally invasive diagnostics and treatment as well as various cosmetic procedures, has resulted in a need to determine the optical properties of hair and its structures. We report on the measurement of the total attenuation coefficient of the cortex and the medulla of blond, gray, and Asian black human scalp hair at a 633-nm wavelength. Our results show that for blond and gray hair the total attenuation coefficient of the medulla is more than 200 times higher compared to that of the cortex. This difference is only 1.5 times for Asian black hair. Furthermore, we present the total attenuation coefficient of the cortex of blond, gray, light brown, and Asian black hair measured at wavelengths of 409, 532, 633, 800, and 1064 nm. The total attenuation coefficient consistently decreases with an increase in wavelength, as well as with a decrease in hair pigmentation. Additionally, we demonstrate the dependence of the total attenuation coefficient of the cortex and the medulla of Asian black hair on the polarization of incident light. A similar dependence is observed for the cortex of blond and gray hair but not for the medulla of these hair types.

  14. Lateral orbitofrontal cortex links social impressions to political choices.

    Science.gov (United States)

    Xia, Chenjie; Stolle, Dietlind; Gidengil, Elisabeth; Fellows, Lesley K

    2015-06-03

    Recent studies of political behavior suggest that voting decisions can be influenced substantially by "first-impression" social attributions based on physical appearance. Separate lines of research have implicated the orbitofrontal cortex (OFC) in the judgment of social traits on the one hand and economic decision-making on the other, making this region a plausible candidate for linking social attributions to voting decisions. Here, we asked whether OFC lesions in humans disrupted the ability to judge traits of political candidates or affected how these judgments influenced voting decisions. Seven patients with lateral OFC damage, 18 patients with frontal damage sparing the lateral OFC, and 53 matched healthy participants took part in a simulated election paradigm, in which they voted for real-life (but unknown) candidates based only on photographs of their faces. Consistent with previous work, attributions of "competence" and "attractiveness" based on candidate appearance predicted voting behavior in the healthy control group. Frontal damage did not affect substantially the ability to make competence or attractiveness judgments, but patients with damage to the lateral OFC differed from other groups in how they applied this information when voting. Only attractiveness ratings had any predictive power for voting choices after lateral OFC damage, whereas other frontal patients and healthy controls relied on information about both competence and attractiveness in making their choice. An intact lateral OFC may not be necessary for judgment of social traits based on physical appearance, but it seems to be crucial in applying this information in political decision-making. Copyright © 2015 the authors 0270-6474/15/358507-08$15.00/0.

  15. Relationship of frontal D2/3 binding potentials to cognition

    DEFF Research Database (Denmark)

    Fagerlund, Birgitte; Pinborg, Lars H; Mortensen, Erik Lykke

    2013-01-01

    for set shifting. The main findings indicated a relation between D2/3 receptor binding in the frontal cortex and set shifting, planning and attention, but also support a differential involvement of cortical dopamine D2/3 receptor binding in at least some cognitive functions, perhaps particularly attention......Studies of in vivo dopamine receptors in schizophrenia have mostly focused on D2 receptors in striatal areas or on D1 receptors in cortex. No previous study has examined the correlation between cortical dopamine D2/3 receptor binding potentials and cognition in schizophrenia patients. The objective......, in schizophrenia patients compared to healthy people. The results suggest that cortical D2/3 receptor function may be more involved in some cognitive functions (i.e. attention, fluency and planning) in patients with schizophrenia than in healthy people, suggesting that information processing in schizophrenia may...

  16. Frontal and temporal cortical functional recovery after electroconvulsive therapy for depression: A longitudinal functional near-infrared spectroscopy study.

    Science.gov (United States)

    Hirano, Jinichi; Takamiya, Akihiro; Yamagata, Bun; Hotta, Syogo; Miyasaka, Yukiko; Pu, Shenghong; Iwanami, Akira; Uchida, Hiroyuki; Mimura, Masaru

    2017-08-01

    While the efficacy and tolerability of electroconvulsive therapy (ECT) for depression has been well established, the acute effects of ECT on brain function remain unclear. Particularly, although cognitive dysfunction has been consistently observed after ECT, little is known about the extent and time course of ECT-induced brain functional changes, as observed during cognitive tasks. Considering the acute antidepressant effects of ECT on depression, aberrant brain functional responses during cognitive tasks in patients with depression may improve immediately after this treatment. To clarify changes in cortical functional responses to cognitive tasks following ECT, we used task-related functional near-infrared spectroscopy (NIRS) to assess 30 patients with major depressive disorder or bipolar depression before and after an ECT series, as well as 108 healthy controls. Prior to ECT, patients exhibited significantly smaller [oxy-Hb] values in the bilateral frontal cortex during a letter verbal fluency task (VFT) compared with healthy controls. We found a significant increase in [oxy-Hb] values in the bilateral frontal cortex during the VFT after ECT in the patient group. A decrease in depression severity was significantly correlated with an increase in [oxy-Hb] values in the right ventrolateral prefrontal cortex following ECT. This is the first NIRS study to evaluate brain functional changes before vs. after ECT. Impaired functional responses, observed during the cognitive task in depressed patients, were normalized after ECT. Thus, recovery from abnormal functional responses to cognitive tasks in the frontal brain regions may be associated with the acute therapeutic effects of ECT for depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. GABAA receptors, but not dopamine, serotonin or NMDA receptors, are increased in the frontal cortex from schizophrenic subjects

    International Nuclear Information System (INIS)

    Daen, B.; Hussain, T.; Scarr, E.; Tomaskovic, E.; Kitsoulis, S.; Pavey, G.; Hill, C.; Keks, N.; Opeskin, K.; Copolov, D.L.

    1998-01-01

    Full text: Having shown changed 5HT 2A receptor density in the frontal cortex (FC) from schizophrenic subjects (1) we now report on further studies of the molecular neuroanatomy of the FC in schizophrenia. We used in situ radioligand binding and autoradiography to measure the density of [ 3 H]8OH-DPAT (1 nM) binding (5HT 1A receptors) and [ 3 H]GR113808 (2.4nM) binding (5HT 4 receptors) in Brodmann's areas (BA) 8, 9 and 10 from 10 schizophrenic and 10 controls subjects. In addition, [ 3 H]muscimol (100 nM) binding (GABA A receptors), [ 3 H]TCP (20nM) binding (NMDA receptors), [ 3 H]SCH 23390 (3nM) binding (DA D 1 like receptors) and [ 3 H]YM-09151-2 (4nM) binding (DA D 2 -like receptors) was measured in BA 9 from 17 schizophrenic and 17 control subjects. Subjects were matched for age and sex and the post-mortem interval for tissue collection did not differ. There was a significant increase (18%) in the density of GABA A receptors in BA 9 from subjects with schizophrenia (p<0.05) with no change in NMDA, dopamine or serotonin receptors. These data support the hypothesis that there are selective changes in neurotransmitter receptors in the FC of subjects with schizophrenia. It is not yet clear if such changes contribute to the pathology of the illness. Copyright (1998) Australian Neuroscience Society

  18. Gaze-related mimic word activates the frontal eye field and related network in the human brain: an fMRI study.

    Science.gov (United States)

    Osaka, Naoyuki; Osaka, Mariko

    2009-09-18

    This is an fMRI study demonstrating new evidence that a mimic word highly suggestive of an eye gaze, heard by the ear, significantly activates the frontal eye field (FEF), inferior frontal gyrus (IFG), dorsolateral premotor area (PMdr) and superior parietal lobule (SPL) connected with the frontal-parietal network. However, hearing a non-sense words that did not imply gaze under the same task does not activate this area in humans. We concluded that the FEF would be a critical area for generating/processing an active gaze, evoked by an onomatopoeia word that implied gaze closely associated with social skill. We suggest that the implied active gaze may depend on prefrontal-parietal interactions that modify cognitive gaze led by spatial visual attention associated with the SPL.

  19. Frontal cortical control of posterior sensory and association cortices through the claustrum.

    Science.gov (United States)

    White, Michael G; Mathur, Brian N

    2018-04-06

    The claustrum is a telencephalic gray matter nucleus that is richly interconnected with the neocortex. This structure subserves top-down executive functions that require frontal cortical control of posterior cortical regions. However, functional anatomical support for the claustrum allowing for long-range intercortical communication is lacking. To test this, we performed a channelrhodopsin-assisted long-circuit mapping strategy in mouse brain slices. We find that anterior cingulate cortex input to the claustrum is transiently amplified by claustrum neurons that, in turn, project to parietal association cortex or to primary and secondary visual cortices. Additionally, we observe that claustrum drive of cortical neurons in parietal association cortex is layer-specific, eliciting action potential generation briefly in layers II/III, IV, and VI but not V. These data are the first to provide a functional anatomical substrate through claustrum that may underlie top-down functions, such as executive attention or working memory, providing critical insight to this most interconnected and enigmatic nucleus.

  20. Functional Connectivity Bias in the Prefrontal Cortex of Psychopaths.

    Science.gov (United States)

    Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Macià, Dídac; Pera, Vanessa; Hernández-Ribas, Rosa; Pifarré, Josep; Menchón, José M; Cardoner, Narcís

    2015-11-01

    Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with

  1. Let's inhibit our excitement: the relationships between Stroop, behavioral disinhibition, and the frontal lobes.

    Science.gov (United States)

    Heflin, Lara H; Laluz, Victor; Jang, Jung; Ketelle, Robin; Miller, Bruce L; Kramer, Joel H

    2011-09-01

    The Stroop (Stroop, 1935) is a frequently used neuropsychological test, with poor performance typically interpreted as indicative of disinhibition and frontal lobe damage. This study tested those interpretations by examining relationships between Stroop performance, behavioral disinhibition, and frontal lobe atrophy. Participants were 112 patients with mild cognitive impairment or dementia, recruited through UCSF's Memory and Aging Center. Participants received comprehensive dementia evaluations including structural MRI, neuropsychological testing, and informant interviews. Freesurfer, a semiautomated parcellation program, was used to analyze 1.5T MRI scans. Behavioral disinhibition was measured using the Neuropsychiatric Inventory (Cummings, 1997; Cummings et al., 1994) Disinhibition Scale. The sample (n = 112) mean age was 65.40 (SD = 8.60) years, education was 16.64 (SD = 2.54) years, and Mini-Mental State Examination (MMSE; Folstein et al., 1975) was 26.63 (SD = 3.32). Hierarchical linear regressions were used for data analysis. Controlling for age, MMSE, and color naming, Stroop performance was not significantly associated with disinhibition (β = 0.01, ΔR² = 0.01, p = .29). Hierarchical regressions controlling for age, MMSE, color naming, intracranial volume, and temporal and parietal lobes, examined whether left or right hemisphere regions predict Stroop performance. Bilaterally, parietal lobe atrophy best predicted poorer Stroop (left: β = 0.0004, ΔR² = 0.02, p = .002; right: β = 0.0004, ΔR² = 0.02, p = .002). Of frontal regions, only dorsolateral prefrontal cortex atrophy predicted poorer Stroop (β = 0.001, ΔR² = 0.01, p = .03); left and right anterior cingulate cortex atrophy predicted better Stroop (left: β = -0.003, ΔR² = 0.01, p = .02; right: β = -0.004, ΔR² = 0.01, p = .02). These findings suggest Stroop performance is a poor measure of behavioral disinhibition and frontal lobe atrophy even among a relatively high-risk population

  2. Location coding by opponent neural populations in the auditory cortex.

    Directory of Open Access Journals (Sweden)

    G Christopher Stecker

    2005-03-01

    Full Text Available Although the auditory cortex plays a necessary role in sound localization, physiological investigations in the cortex reveal inhomogeneous sampling of auditory space that is difficult to reconcile with localization behavior under the assumption of local spatial coding. Most neurons respond maximally to sounds located far to the left or right side, with few neurons tuned to the frontal midline. Paradoxically, psychophysical studies show optimal spatial acuity across the frontal midline. In this paper, we revisit the problem of inhomogeneous spatial sampling in three fields of cat auditory cortex. In each field, we confirm that neural responses tend to be greatest for lateral positions, but show the greatest modulation for near-midline source locations. Moreover, identification of source locations based on cortical responses shows sharp discrimination of left from right but relatively inaccurate discrimination of locations within each half of space. Motivated by these findings, we explore an opponent-process theory in which sound-source locations are represented by differences in the activity of two broadly tuned channels formed by contra- and ipsilaterally preferring neurons. Finally, we demonstrate a simple model, based on spike-count differences across cortical populations, that provides bias-free, level-invariant localization-and thus also a solution to the "binding problem" of associating spatial information with other nonspatial attributes of sounds.

  3. [Correlation of diffusion tensor imaging between the cerebral cortex and speech discrimination in presbycusis].

    Science.gov (United States)

    Peng, Lu; Yu, Shuilian; Chen, Ruichun; Jing, Yan; Liang, Jianping

    2015-09-01

    To investigate the relationship between pure-tone average (PTA), the fractional anisotropy (FA) of the auditory pathway, cognitive cortex and auditory cortex in presbycusis. Twenty-five elderly subjects with presbycusis were participated in the study. PTA, speech discrimination abilities were evaluated in each subject. Diffusion tensor imaging (DTI) was applied to access the FA of the IC, the superior frontal gyrus and the Heschl's gyrus. Compare the difference between two sides of the values of FA in the three areas. Bivariate correlation analysis was performed to evaluate the effects of PTA and FA of the inferior colliculus (IC), the superior frontal gyrus and the Heschl's gyrus on speech discrimination abilities. There were no significant differences between the left and right side of the inferior colliculus (P > 0.05). Higher FA values were recorded at the left side of the Heschl's gyrus and the superior frontal gyrus (P < 0.05). Both PTA and the FA of the superior frontal gyrus have a negative association with speech discrimination abilities (P < 0.01, P < 0.05), while the FA of the Heschl's gyrus has a positive association with speech discrimination abilities (P < 0.05). Our findings indicated that the speech discrimination abilities of the elderly is not only related to the peripheral auditory function, but also to the central auditory and cognitive function.

  4. Triglycerides in the Human Kidney Cortex: Relationship with Body Size

    Science.gov (United States)

    Bobulescu, Ion Alexandru; Lotan, Yair; Zhang, Jianning; Rosenthal, Tara R.; Rogers, John T.; Adams-Huet, Beverley; Sakhaee, Khashayar; Moe, Orson W.

    2014-01-01

    Obesity is associated with increased risk for kidney disease and uric acid nephrolithiasis, but the pathophysiological mechanisms underpinning these associations are incompletely understood. Animal experiments have suggested that renal lipid accumulation and lipotoxicity may play a role, but whether lipid accumulation occurs in humans with increasing body mass index (BMI) is unknown. The association between obesity and abnormal triglyceride accumulation in non-adipose tissues (steatosis) has been described in the liver, heart, skeletal muscle and pancreas, but not in the human kidney. We used a quantitative biochemical assay to quantify triglyceride in normal kidney cortex samples from 54 patients undergoing nephrectomy for localized renal cell carcinoma. In subsets of the study population we evaluated the localization of lipid droplets by Oil Red O staining and measured 16 common ceramide species by mass spectrometry. There was a positive correlation between kidney cortex trigyceride content and BMI (Spearman R = 0.27, P = 0.04). Lipid droplets detectable by optical microscopy had a sporadic distribution but were generally more prevalent in individuals with higher BMI, with predominant localization in proximal tubule cells and to a lesser extent in glomeruli. Total ceramide content was inversely correlated with triglycerides. We postulate that obesity is associated with abnormal triglyceride accumulation (steatosis) in the human kidney. In turn, steatosis and lipotoxicity may contribute to the pathogenesis of obesity-associated kidney disease and nephrolithiasis. PMID:25170827

  5. Attentional load modulates responses of human primary visual cortex to invisible stimuli.

    Science.gov (United States)

    Bahrami, Bahador; Lavie, Nilli; Rees, Geraint

    2007-03-20

    Visual neuroscience has long sought to determine the extent to which stimulus-evoked activity in visual cortex depends on attention and awareness. Some influential theories of consciousness maintain that the allocation of attention is restricted to conscious representations [1, 2]. However, in the load theory of attention [3], competition between task-relevant and task-irrelevant stimuli for limited-capacity attention does not depend on conscious perception of the irrelevant stimuli. The critical test is whether the level of attentional load in a relevant task would determine unconscious neural processing of invisible stimuli. Human participants were scanned with high-field fMRI while they performed a foveal task of low or high attentional load. Irrelevant, invisible monocular stimuli were simultaneously presented peripherally and were continuously suppressed by a flashing mask in the other eye [4]. Attentional load in the foveal task strongly modulated retinotopic activity evoked in primary visual cortex (V1) by the invisible stimuli. Contrary to traditional views [1, 2, 5, 6], we found that availability of attentional capacity determines neural representations related to unconscious processing of continuously suppressed stimuli in human primary visual cortex. Spillover of attention to cortical representations of invisible stimuli (under low load) cannot be a sufficient condition for their awareness.

  6. Prefrontal cortex volume reductions and tic inhibition are unrelated in uncomplicated GTS adults.

    Science.gov (United States)

    Ganos, Christos; Kühn, Simone; Kahl, Ursula; Schunke, Odette; Brandt, Valerie; Bäumer, Tobias; Thomalla, Götz; Haggard, Patrick; Münchau, Alexander

    2014-01-01

    Tics in Gilles de la Tourette syndrome (GTS) are repetitive patterned movements, resembling spontaneous motor behaviour, but escaping voluntary control. Previous studies hypothesised relations between structural alterations in prefrontal cortex of GTS adults and tic severity using voxel-based morphometry (VBM), but could not demonstrate a significant association. The relation between prefrontal cortex structure and tic inhibition has not been investigated. Here, we used VBM to examine 14 GTS adults without associated comorbidities, and 15 healthy controls. We related structural alterations in GTS to clinical measures of tic severity and tic control. Grey matter volumes in the right inferior frontal gyrus and the left frontal pole were reduced in patients relative to healthy controls. These changes were not related to tic severity and tic inhibition. Prefrontal grey matter volume reductions in GTS adults are not related to state measures of tic phenomenology. © 2013.

  7. Frontal and superior temporal auditory processing abnormalities in schizophrenia.

    Science.gov (United States)

    Chen, Yu-Han; Edgar, J Christopher; Huang, Mingxiong; Hunter, Michael A; Epstein, Emerson; Howell, Breannan; Lu, Brett Y; Bustillo, Juan; Miller, Gregory A; Cañive, José M

    2013-01-01

    Although magnetoencephalography (MEG) studies show superior temporal gyrus (STG) auditory processing abnormalities in schizophrenia at 50 and 100 ms, EEG and corticography studies suggest involvement of additional brain areas (e.g., frontal areas) during this interval. Study goals were to identify 30 to 130 ms auditory encoding processes in schizophrenia (SZ) and healthy controls (HC) and group differences throughout the cortex. The standard paired-click task was administered to 19 SZ and 21 HC subjects during MEG recording. Vector-based Spatial-temporal Analysis using L1-minimum-norm (VESTAL) provided 4D maps of activity from 30 to 130 ms. Within-group t-tests compared post-stimulus 50 ms and 100 ms activity to baseline. Between-group t-tests examined 50 and 100 ms group differences. Bilateral 50 and 100 ms STG activity was observed in both groups. HC had stronger bilateral 50 and 100 ms STG activity than SZ. In addition to the STG group difference, non-STG activity was also observed in both groups. For example, whereas HC had stronger left and right inferior frontal gyrus activity than SZ, SZ had stronger right superior frontal gyrus and left supramarginal gyrus activity than HC. Less STG activity was observed in SZ than HC, indicating encoding problems in SZ. Yet auditory encoding abnormalities are not specific to STG, as group differences were observed in frontal and SMG areas. Thus, present findings indicate that individuals with SZ show abnormalities in multiple nodes of a concurrently activated auditory network.

  8. Inferior frontal gyrus activation predicts individual differences in perceptual learning of cochlear-implant simulations.

    Science.gov (United States)

    Eisner, Frank; McGettigan, Carolyn; Faulkner, Andrew; Rosen, Stuart; Scott, Sophie K

    2010-05-26

    This study investigated the neural plasticity associated with perceptual learning of a cochlear implant (CI) simulation. Normal-hearing listeners were trained with vocoded and spectrally shifted speech simulating a CI while cortical responses were measured with functional magnetic resonance imaging (fMRI). A condition in which the vocoded speech was spectrally inverted provided a control for learnability and adaptation. Behavioral measures showed considerable individual variability both in the ability to learn to understand the degraded speech, and in phonological working memory capacity. Neurally, left-lateralized regions in superior temporal sulcus and inferior frontal gyrus (IFG) were sensitive to the learnability of the simulations, but only the activity in prefrontal cortex correlated with interindividual variation in intelligibility scores and phonological working memory. A region in left angular gyrus (AG) showed an activation pattern that reflected learning over the course of the experiment, and covariation of activity in AG and IFG was modulated by the learnability of the stimuli. These results suggest that variation in listeners' ability to adjust to vocoded and spectrally shifted speech is partly reflected in differences in the recruitment of higher-level language processes in prefrontal cortex, and that this variability may further depend on functional links between the left inferior frontal gyrus and angular gyrus. Differences in the engagement of left inferior prefrontal cortex, and its covariation with posterior parietal areas, may thus underlie some of the variation in speech perception skills that have been observed in clinical populations of CI users.

  9. Probabilistic tractography recovers a rostrocaudal trajectory of connectivity variability in the human insular cortex

    NARCIS (Netherlands)

    Cerliani, Leonardo; Thomas, Rajat M.; Jbabdi, Saad; Siero, Jeroen C. W.; Nanetti, Luca; Crippa, Alessandro; Gazzola, Valeria; D'Arceuil, Helen; Keysers, Christian

    The insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet

  10. Evidence Accumulation and Choice Maintenance Are Dissociated in Human Perceptual Decision Making.

    Directory of Open Access Journals (Sweden)

    Mads Lund Pedersen

    Full Text Available Perceptual decision making in monkeys relies on decision neurons, which accumulate evidence and maintain choices until a response is given. In humans, several brain regions have been proposed to accumulate evidence, but it is unknown if these regions also maintain choices. To test if accumulator regions in humans also maintain decisions we compared delayed and self-paced responses during a face/house discrimination decision making task. Computational modeling and fMRI results revealed dissociated processes of evidence accumulation and decision maintenance, with potential accumulator activations found in the dorsomedial prefrontal cortex, right inferior frontal gyrus and bilateral insula. Potential maintenance activation spanned the frontal pole, temporal gyri, precuneus and the lateral occipital and frontal orbital cortices. Results of a quantitative reverse inference meta-analysis performed to differentiate the functions associated with the identified regions did not narrow down potential accumulation regions, but suggested that response-maintenance might rely on a verbalization of the response.

  11. The Encoding of Sound Source Elevation in the Human Auditory Cortex.

    Science.gov (United States)

    Trapeau, Régis; Schönwiesner, Marc

    2018-03-28

    Spatial hearing is a crucial capacity of the auditory system. While the encoding of horizontal sound direction has been extensively studied, very little is known about the representation of vertical sound direction in the auditory cortex. Using high-resolution fMRI, we measured voxelwise sound elevation tuning curves in human auditory cortex and show that sound elevation is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. We changed the ear shape of participants (male and female) with silicone molds for several days. This manipulation reduced or abolished the ability to discriminate sound elevation and flattened cortical tuning curves. Tuning curves recovered their original shape as participants adapted to the modified ears and regained elevation perception over time. These findings suggest that the elevation tuning observed in low-level auditory cortex did not arise from the physical features of the stimuli but is contingent on experience with spectral cues and covaries with the change in perception. One explanation for this observation may be that the tuning in low-level auditory cortex underlies the subjective perception of sound elevation. SIGNIFICANCE STATEMENT This study addresses two fundamental questions about the brain representation of sensory stimuli: how the vertical spatial axis of auditory space is represented in the auditory cortex and whether low-level sensory cortex represents physical stimulus features or subjective perceptual attributes. Using high-resolution fMRI, we show that vertical sound direction is represented by broad tuning functions preferring lower elevations as well as secondary narrow tuning functions preferring individual elevation directions. In addition, we demonstrate that the shape of these tuning functions is contingent on experience with spectral cues and covaries with the change in perception, which may indicate that the

  12. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition

    OpenAIRE

    Fried, Itzhak; Mukamel, Roy; Kreiman, Gabriel

    2011-01-01

    Understanding how self-initiated behavior is encoded by neuronal circuits in the human brain remains elusive. We recorded the activity of 1019 neurons while twelve subjects performed self-initiated finger movement. We report progressive neuronal recruitment over ∼1500 ms before subjects report making the decision to move. We observed progressive increase or decrease in neuronal firing rate, particularly in the supplementary motor area (SMA), as the reported time of decision was approached. A ...

  13. Mirth and laughter elicited by electrical stimulation of the human anterior cingulate cortex.

    Science.gov (United States)

    Caruana, Fausto; Avanzini, Pietro; Gozzo, Francesca; Francione, Stefano; Cardinale, Francesco; Rizzolatti, Giacomo

    2015-10-01

    Laughter is a complex motor behavior that, typically, expresses mirth. Despite its fundamental role in social life, knowledge about the neural basis of laughter is very limited and mostly based on a few electrical stimulation (ES) studies carried out in epileptic patients. In these studies laughter was elicited from temporal areas where it was accompanied by mirth and from frontal areas plus an anterior cingulate case where laughter without mirth was observed. On the basis of these findings, it has been proposed a dichotomy between temporal lobe areas processing the emotional content of laughter and anterior cingulate cortex (ACC) and motor areas responsible of laughter production. The present study is aimed to understand the role of ACC in laughter. We report the effects of stimulation of 10 rostral, pregenual ACC (pACC) patients in which the ES elicited laughter. In half of the patients ES elicited a clear burst of laughter with mirth, while in the other half mirth was not evident. This large dataset allow us to offer a more reliable picture of the functional contribute of this region in laughter, and to precisely localize it in the cingulate cortex. We conclude that the pACC is involved in both the motor and the affective components of emotions, and challenge the validity of a sharp dichotomy between motor and emotional centers for laughing. Finally, we suggest a possible anatomical network for the production of positive emotional expressions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Interfering with the neural activity of mirror-related frontal areas impairs mentalistic inferences.

    Science.gov (United States)

    Herbet, Guillaume; Lafargue, Gilles; Moritz-Gasser, Sylvie; Bonnetblanc, François; Duffau, Hugues

    2015-07-01

    According to recently proposed interactive dual-process theories, mentalizing abilities emerge from the coherent interaction between two physically distinct neural systems: (1) the mirror network, coding for the low-level embodied representations involved in pre-reflective sociocognitive processes and (2) the mentalizing network per se, which codes for higher level representations subtending the reflective attribution of psychological states. However, although the latest studies have shown that the core areas forming these two neurocognitive systems do indeed maintain effective connectivity during mentalizing, it is unclear whether an intact mirror system (and, more specifically, its anterior node, namely the posterior inferior frontal cortex) is a prerequisite for accurate mentalistic inferences. Intraoperative brain mapping via direct electrical stimulation offers a unique opportunity to address this issue. Electrical stimulation of the brain creates a "virtual" lesion, which provides functional information on well-defined parts of the cerebral cortex. In the present study, five patients were mapped in real time while they performed a mentalizing task. We found six responsive sites: four in the lateral part of the right pars opercularis and two in the dorsal part of the right pars triangularis. On the subcortical level, two additional sites were located within the white matter connectivity of the pars opercularis. Taken as a whole, our results suggest that the right inferior frontal cortex and its underlying axonal connectivity have a key role in mentalizing. Specifically, our findings support the hypothesis whereby transient, functional disruption of the mirror network influences higher order mentalistic inferences.

  15. Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography

    International Nuclear Information System (INIS)

    Schliebs, R.; Walch, C.

    1989-01-01

    The laminar distribution of muscarinic acetylcholine receptors, including the M1-receptor subtype, of beta-adrenergic receptors, and noradrenaline uptake sites, was studied in the adult rat visual, frontal, somatosensory and motor cortex, using quantitative receptor autoradiography. In the visual cortex, the highest density of muscarinic acetylcholine receptors was found in layer I. From layer II/III to layer V binding decreases continueously reaching a constant binding level in layers V and VI. This laminar pattern of muscarinic receptor density differs somewhat from that observed in the non-visual cortical regions examined: layer II/III contained the highest receptor density followed by layer I and IV: lowest density was found in layer V and VI. The binding profile of the muscarinic cholinergic M1-subtype through the visual cortex shows a peak in cortical layer II and in the upper part of layer VI, whereas in the non-visual cortical regions cited the binding level was high in layer II/III, moderate in layer I and IV, and low in layer VI. Layers I to IV of the visual cortex contained the highest beta-adrenergic receptor densities, whereas only low binding levels were observed in the deeper layers. A similar laminar distribution was found also in the frontal, somatosensory and motor cortex. The density of noradrenaline uptake sites was high in all layers of the cortical regions studied, but with noradrenaline uptake sites somewhat more concentrated in the superficial layers than in deeper ones. The distinct laminar pattern of cholinergic and noradrenergic receptor sites indicates a different role for acetylcholine and noradrenaline in the functional anatomy of the cerebral cortex, and in particular, the visual cortex. (author)

  16. Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Schliebs, R; Walch, C [Leipzig Univ. (German Democratic Republic). Bereich Medizin; Stewart, M G [Open Univ., Milton Keynes (UK)

    1989-01-01

    The laminar distribution of muscarinic acetylcholine receptors, including the M1-receptor subtype, of beta-adrenergic receptors, and noradrenaline uptake sites, was studied in the adult rat visual, frontal, somatosensory and motor cortex, using quantitative receptor autoradiography. In the visual cortex, the highest density of muscarinic acetylcholine receptors was found in layer I. From layer II/III to layer V binding decreases continueously reaching a constant binding level in layers V and VI. This laminar pattern of muscarinic receptor density differs somewhat from that observed in the non-visual cortical regions examined: layer II/III contained the highest receptor density followed by layer I and IV: lowest density was found in layer V and VI. The binding profile of the muscarinic cholinergic M1-subtype through the visual cortex shows a peak in cortical layer II and in the upper part of layer VI, whereas in the non-visual cortical regions cited the binding level was high in layer II/III, moderate in layer I and IV, and low in layer VI. Layers I to IV of the visual cortex contained the highest beta-adrenergic receptor densities, whereas only low binding levels were observed in the deeper layers. A similar laminar distribution was found also in the frontal, somatosensory and motor cortex. The density of noradrenaline uptake sites was high in all layers of the cortical regions studied, but with noradrenaline uptake sites somewhat more concentrated in the superficial layers than in deeper ones. The distinct laminar pattern of cholinergic and noradrenergic receptor sites indicates a different role for acetylcholine and noradrenaline in the functional anatomy of the cerebral cortex, and in particular, the visual cortex. (author).

  17. Brain activation during fast driving in a driving simulator: the role of the lateral prefrontal cortex.

    Science.gov (United States)

    Jäncke, Lutz; Brunner, Béatrice; Esslen, Michaela

    2008-07-16

    Little is currently known about the neural underpinnings of the cognitive control of driving behavior in realistic situations and of the driver's speeding behavior in particular. In this study, participants drove in realistic scenarios presented in a high-end driving simulator. Scalp-recorded EEG oscillations in the alpha-band (8-13 Hz) with a 30-electrode montage were recorded while the participants drove under different conditions: (i) excessively fast (Fast), (ii) in a controlled manner at a safe speed (Correct), and (iii) impatiently in the context of testing traffic conditions (Impatient). Intracerebral sources of alpha-band activation were estimated using low resolution electrical tomography. Given that previous studies have shown a strong negative correlation between the Bold response in the frontal cortex and the alpha-band power, we used alpha-band-related activity as an estimation of frontal activation. Statistical analysis revealed more alpha-band-related activity (i.e. less neuronal activation) in the right lateral prefrontal cortex, including the dorsolateral prefrontal cortex, during fast driving. Those participants who speeded most and exhibited greater risk-taking behavior demonstrated stronger alpha-related activity (i.e. less neuronal activation) in the left anterior lateral prefrontal cortex. These findings are discussed in the context of current theories about the role of the lateral prefrontal cortex in controlling risk-taking behavior, task switching, and multitasking.

  18. Frontal lobe functioning during a simple response conflict task in first-episode psychosis and its relationship to treatment response.

    Science.gov (United States)

    Shafritz, Keith M; Ikuta, Toshikazu; Greene, Allison; Robinson, Delbert G; Gallego, Juan; Lencz, Todd; DeRosse, Pamela; Kingsley, Peter B; Szeszko, Philip R

    2018-05-09

    Prior functional magnetic resonance imaging (fMRI) studies have investigated the neural mechanisms underlying cognitive control in patients with psychosis with findings of both hypo- and hyperfrontality. One factor that may contribute to inconsistent findings is the use of complex and polyfactorial tasks to investigate frontal lobe functioning. In the current study we employed a simple response conflict task during fMRI to examine differences in brain activation between patients experiencing their first-episode of psychosis (n = 33) and age- and sex-matched healthy volunteers (n = 33). We further investigated whether baseline brain activation among patients predicted changes in symptom severity and treatment response following 12 weeks of controlled antipsychotic treatment. During the task subjects were instructed to press a response button on the same side or opposite side of a circle that appeared on either side of a central fixation point. Imaging data revealed that for the contrast of opposite-side vs. same-side, patients showed significantly greater activation compared with healthy volunteers in the anterior cingulate cortex and intraparietal sulcus. Among patients, greater baseline anterior cingulate cortex, temporal-parietal junction, and superior temporal cortex activation predicted greater symptom reduction and therapeutic response following treatment. All findings remained significant after covarying for task performance. Intact performance on this relatively parsimonious task was associated with frontal hyperactivity suggesting the need for patients to utilize greater neural resources to achieve task performance comparable to healthy individuals. Moreover, frontal hyperactivity observed using a simple fMRI task may provide a biomarker for predicting treatment response in first-episode psychosis.

  19. Frontal D2/3 Receptor Availability in Schizophrenia Patients Before and After Their First Antipsychotic Treatment

    DEFF Research Database (Denmark)

    Nørbak-Emig, Henrik; Ebdrup, Bjørn H; Fagerlund, Birgitte

    2016-01-01

    the relation between frontal D2/3 receptor availability and treatment effect on positive symptoms. METHODS: Twenty-five antipsychotic-naïve first-episode schizophrenia patients were examined with the Positive and Negative Syndrome Scale, tested with the cognitive test battery Cambridge Neuropsychological Test......BACKGROUND: We have previously reported associations between frontal D2/3 receptor binding potential positive symptoms and cognitive deficits in antipsychotic-naïve schizophrenia patients. Here, we examined the effect of dopamine D2/3 receptor blockade on cognition. Additionally, we explored.......56, P=.003; D2/3 receptor binding potential right frontal cortex rho = 0.48, P=.016). CONCLUSIONS: Our data support the hypothesis of a negative influence of D2/3 receptor blockade on specific cognitive functions in schizophrenia. This is highly clinically relevant given the well-established association...

  20. The monitoring and control of task sequences in human and non-human primates

    Directory of Open Access Journals (Sweden)

    Theresa M Desrochers

    2016-01-01

    Full Text Available Our ability to plan and execute a series of tasks leading to a desired goal requires remarkable coordination between sensory, motor, and decision-related systems. Prefrontal cortex is thought to play a central role in this coordination, especially when actions must be assembled extemporaneously and cannot be programmed as a rote series of movements. A central component of this flexible behavior is the moment-by-moment allocation of working memory and attention. The ubiquity of sequence planning in our everyday lives belies the neural complexity that supports this capacity, and little is known about how frontal cortical regions orchestrate the monitoring and control of sequential behaviors. For example, it remains unclear if and how sensory cortical areas, which provide essential driving inputs for behavior, are modulated by the frontal cortex during these tasks. Here we review what is known about moment-to-moment monitoring as it relates to visually guided, rule-driven behaviors that change over time. We highlight recent human work that shows how the rostrolateral prefrontal cortex (RLPFC participates in monitoring during task sequences. Neurophysiological data from monkeys suggests that monitoring may be accomplished by neurons that respond to items within the sequence and may in turn influence the tuning properties of neurons in posterior sensory areas. Understanding the interplay between proceduralized or habitual acts and supervised control of sequences is key to our understanding of sequential task execution. A crucial bridge will be the use of experimental protocols that allow for the examination of the functional homology between monkeys and humans. We illustrate how task sequences may be parceled into components and examined experimentally, thereby opening future avenues of investigation into the neural basis of sequential monitoring and control.

  1. Anodal transcranial direct current stimulation reduces psychophysically measured surround suppression in the human visual cortex.

    Directory of Open Access Journals (Sweden)

    Daniel P Spiegel

    Full Text Available Transcranial direct current stimulation (tDCS is a safe, non-invasive technique for transiently modulating the balance of excitation and inhibition within the human brain. It has been reported that anodal tDCS can reduce both GABA mediated inhibition and GABA concentration within the human motor cortex. As GABA mediated inhibition is thought to be a key modulator of plasticity within the adult brain, these findings have broad implications for the future use of tDCS. It is important, therefore, to establish whether tDCS can exert similar effects within non-motor brain areas. The aim of this study was to assess whether anodal tDCS could reduce inhibitory interactions within the human visual cortex. Psychophysical measures of surround suppression were used as an index of inhibition within V1. Overlay suppression, which is thought to originate within the lateral geniculate nucleus (LGN, was also measured as a control. Anodal stimulation of the occipital poles significantly reduced psychophysical surround suppression, but had no effect on overlay suppression. This effect was specific to anodal stimulation as cathodal stimulation had no effect on either measure. These psychophysical results provide the first evidence for tDCS-induced reductions of intracortical inhibition within the human visual cortex.

  2. Cross-sectional neck response of a total human body FE model during simulated frontal and side automobile impacts.

    Science.gov (United States)

    White, Nicholas A; Moreno, Daniel P; Gayzik, F Scott; Stitzel, Joel D

    2015-01-01

    Human body finite element (FE) models are beginning to play a more prevalent role in the advancement of automotive safety. A methodology has been developed to evaluate neck response at multiple levels in a human body FE model during simulated automotive impacts. Three different impact scenarios were simulated: a frontal impact of a belted driver with airbag deployment, a frontal impact of a belted passenger without airbag deployment and an unbelted side impact sled test. Cross sections were created at each vertebral level of the cervical spine to calculate the force and moment contributions of different anatomical components of the neck. Adjacent level axial force ratios varied between 0.74 and 1.11 and adjacent level bending moment ratios between 0.55 and 1.15. The present technique is ideal for comparing neck forces and moments to existing injury threshold values, calculating injury criteria and for better understanding the biomechanical mechanisms of neck injury and load sharing during sub-injurious and injurious loading.

  3. Frontal cortical asymmetry may partially mediate the influence of social power on anger expression

    Directory of Open Access Journals (Sweden)

    Dongdong eLi

    2016-02-01

    Full Text Available When irritated by other people, powerful people usually tend to express their anger explicitly and directly, whereas people in less powerful positions are more likely not to show their feelings freely. The neural mechanism behind power and its influence on expression tendency has been scarcely explored. This study recorded frontal EEG activity at rest and frontal EEG activation while participants were engaged in a writing task describing an anger-eliciting event, in which they were irritated by people with higher or lower social power. Participants’ anger levels and expression inclination levels were self-reported on nine-point visual analog Likert scales, and also rated by independent raters based on the essays they had written. The results showed that high social power was indeed associated with greater anger expression tendency and greater left frontal activation than low social power. This is in line with the approach-inhibition theory of power. The mid-frontal asymmetric activation served as a partial mediator between social power and expression inclination. This effect may relate to the functions of the prefrontal cortex, which is in charge of information integration and evaluation and the control of motivation direction, as reported by previous studies.

  4. Manipulation of pre-target activity on the right frontal eye field enhances conscious visual perception in humans.

    Directory of Open Access Journals (Sweden)

    Lorena Chanes

    Full Text Available The right Frontal Eye Field (FEF is a region of the human brain, which has been consistently involved in visuo-spatial attention and access to consciousness. Nonetheless, the extent of this cortical site's ability to influence specific aspects of visual performance remains debated. We hereby manipulated pre-target activity on the right FEF and explored its influence on the detection and categorization of low-contrast near-threshold visual stimuli. Our data show that pre-target frontal neurostimulation has the potential when used alone to induce enhancements of conscious visual detection. More interestingly, when FEF stimulation was combined with visuo-spatial cues, improvements remained present only for trials in which the cue correctly predicted the location of the subsequent target. Our data provide evidence for the causal role of the right FEF pre-target activity in the modulation of human conscious vision and reveal the dependence of such neurostimulatory effects on the state of activity set up by cue validity in the dorsal attentional orienting network.

  5. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    Directory of Open Access Journals (Sweden)

    Laura V Cuaya

    Full Text Available Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI. We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs.

  6. Neural representations of social status hierarchy in human inferior parietal cortex.

    Science.gov (United States)

    Chiao, Joan Y; Harada, Tokiko; Oby, Emily R; Li, Zhang; Parrish, Todd; Bridge, Donna J

    2009-01-01

    Mental representations of social status hierarchy share properties with that of numbers. Previous neuroimaging studies have shown that the neural representation of numerical magnitude lies within a network of regions within inferior parietal cortex. However the neural basis of social status hierarchy remains unknown. Using fMRI, we studied subjects while they compared social status magnitude of people, objects and symbols, as well as numerical magnitude. Both social status and number comparisons recruited bilateral intraparietal sulci. We also observed a semantic distance effect whereby neural activity within bilateral intraparietal sulci increased for semantically close relative to far numerical and social status comparisons. These results demonstrate that social status and number comparisons recruit distinct and overlapping neuronal representations within human inferior parietal cortex.

  7. The IMM Frontal Face Database

    DEFF Research Database (Denmark)

    Fagertun, Jens; Stegmann, Mikkel Bille

    2005-01-01

    This note describes a data set consisting of 120 annotated monocular images of 12 different frontal human faces. Points of correspondence are placed on each image so the data set can be readily used for building statistical models of shape. Format specifications and terms of use are also given...

  8. Pediatric frontal mucocele secondary to a bifid frontal sinus septum.

    Science.gov (United States)

    Plikaitis, Christina M; Purzycki, Adam R; Couture, Daniel; David, Lisa R

    2010-09-01

    A mucocele is a mucus-containing sac lined with epithelium that arises within a sinus when its drainage is compromised. The frontal sinus is the most common location, with frontal mucocele development occurring when the nasofrontal duct becomes obstructed because of polyps, bone tumors, prior surgery, sinusitis, trauma, or anatomic variation. We report an unusual case of a sterile pediatric frontal mucocele presenting as a slowly enlarging forehead mass due to a bifid frontal sinus septum. A 9-year-old girl presented to the craniofacial clinic for evaluation of a right frontal mass that had been slowly growing over the past year. She was otherwise healthy and had no history of previous trauma or sinus infections. Computed tomography (CT) scan results revealed a localized frontal fluid collection with protrusion and thinning of the anterior frontal bone between 2 midline bony septii. Surgical cranialization of the frontal sinus was performed. The anatomy of her lesion seen both on CT scan and intraoperatively likely explains this unusual case presentation. Instead of the usual inciting event of an intact frontal sinus drainage system becoming blocked, this patient seemed to have a primary developmental lack of any drainage system that led to her mucocele. During formation of her frontal sinus, she developed a bifid septum within the midline that excluded a portion of her frontal sinus from the lateral nasofrontal ducts. With mucus-producing epithelium trapped within these bony confines, pressure began to mount with expansion and thinning of the bone both anteriorly and posteriorly. The lack of any infectious symptoms and sterile culture results may support that this space developed primarily and was never in continuity with the external drainage system. Only 4 other patients have been reported with asymptomatic forehead swelling as the only presenting symptom, with the age ranging from 33 to 79 years. This patient represents the first clinical report of a congenital

  9. Neurochemical Characterization of PSA-NCAM+ Cells in the Human Brain and Phenotypic Quantification in Alzheimer's Disease Entorhinal Cortex.

    Science.gov (United States)

    Murray, Helen C; Swanson, Molly E V; Dieriks, B Victor; Turner, Clinton; Faull, Richard L M; Curtis, Maurice A

    2018-02-21

    Polysialylated neural cell adhesion molecule (PSA-NCAM) is widely expressed in the adult human brain and facilitates structural remodeling of cells through steric inhibition of intercellular NCAM adhesion. We previously showed that PSA-NCAM immunoreactivity is decreased in the entorhinal cortex in Alzheimer's disease (AD). Based on available evidence, we hypothesized that a loss of PSA-NCAM + interneurons may underlie this reduction. PSA-NCAM expression by interneurons has previously been described in the human medial prefrontal cortex. Here we used postmortem human brain tissue to provide further evidence of PSA-NCAM + interneurons throughout the human hippocampal formation and additional cortical regions. Furthermore, PSA-NCAM + cell populations were assessed in the entorhinal cortex of normal and AD cases using fluorescent double labeling and manual cell counting. We found a significant decrease in the number of PSA-NCAM + cells per mm 2 in layer II and V of the entorhinal cortex, supporting our previous description of reduced PSA-NCAM immunoreactivity. Additionally, we found a significant decrease in the proportion of PSA-NCAM + cells that co-labeled with NeuN and parvalbumin, but no change in the proportion that co-labeled with calbindin or calretinin. These results demonstrate that PSA-NCAM is expressed by a variety of interneuron populations throughout the brain. Furthermore, that loss of PSA-NCAM expression by NeuN + cells predominantly contributes to the reduced PSA-NCAM immunoreactivity in the AD entorhinal cortex. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Plasticity in the Human Visual Cortex: An Ophthalmology-Based Perspective

    OpenAIRE

    Andreia Martins Rosa; Maria Fátima Silva; Sónia Ferreira; Joaquim Murta; Miguel Castelo-Branco

    2013-01-01

    Neuroplasticity refers to the ability of the brain to reorganize the function and structure of its connections in response to changes in the environment. Adult human visual cortex shows several manifestations of plasticity, such as perceptual learning and adaptation, working under the top-down influence of attention. Plasticity results from the interplay of several mechanisms, including the GABAergic system, epigenetic factors, mitochondrial activity, and structural remodeling of synaptic con...

  11. Frontal D2/3 Receptor Availability in Schizophrenia Patients Before and After Their First Antipsychotic Treatment: Relation to Cognitive Functions and Psychopathology.

    Science.gov (United States)

    Nørbak-Emig, Henrik; Ebdrup, Bjørn H; Fagerlund, Birgitte; Svarer, Claus; Rasmussen, Hans; Friberg, Lars; Allerup, Peter N; Rostrup, Egill; Pinborg, Lars H; Glenthøj, Birte Y

    2016-05-01

    We have previously reported associations between frontal D2/3 receptor binding potential positive symptoms and cognitive deficits in antipsychotic-naïve schizophrenia patients. Here, we examined the effect of dopamine D2/3 receptor blockade on cognition. Additionally, we explored the relation between frontal D2/3 receptor availability and treatment effect on positive symptoms. Twenty-five antipsychotic-naïve first-episode schizophrenia patients were examined with the Positive and Negative Syndrome Scale, tested with the cognitive test battery Cambridge Neuropsychological Test Automated Battery, scanned with single-photon emission computerized tomography using the dopamine D2/3 receptor ligand [(123)I]epidepride, and scanned with MRI. After 3 months of treatment with either risperidone (n=13) or zuclopenthixol (n=9), 22 patients were reexamined. Blockade of extrastriatal dopamine D2/3 receptors was correlated with decreased attentional focus (r = -0.615, P=.003) and planning time (r = -0.436, P=.048). Moreover, baseline frontal dopamine D2/3 binding potential and positive symptom reduction correlated positively (D2/3 receptor binding potential left frontal cortex rho = 0.56, P=.003; D2/3 receptor binding potential right frontal cortex rho = 0.48, P=.016). Our data support the hypothesis of a negative influence of D2/3 receptor blockade on specific cognitive functions in schizophrenia. This is highly clinically relevant given the well-established association between severity of cognitive disturbances and a poor functional outcome in schizophrenia. Additionally, the findings support associations between frontal D2/3 receptor binding potential at baseline and the effect of antipsychotic treatment on positive symptoms. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  12. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    NARCIS (Netherlands)

    Self, Matthew W.; Peters, Judith C.; Possel, Jessy K.; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C.; Roelfsema, Pieter R.

    2016-01-01

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive

  13. The Effects of Context and Attention on Spiking Activity in Human Early Visual Cortex

    NARCIS (Netherlands)

    Self, Matthew W; Peters, Judith C; Possel, Jessy K; Reithler, Joel; Goebel, Rainer; Ris, Peterjan; Jeurissen, Danique; Reddy, Leila; Claus, Steven; Baayen, Johannes C; Roelfsema, Pieter R

    Here we report the first quantitative analysis of spiking activity in human early visual cortex. We recorded multi-unit activity from two electrodes in area V2/V3 of a human patient implanted with depth electrodes as part of her treatment for epilepsy. We observed well-localized multi-unit receptive

  14. Aerobic Glycolysis in the Frontal Cortex Correlates with Memory Performance in Wild-Type Mice But Not the APP/PS1 Mouse Model of Cerebral Amyloidosis.

    Science.gov (United States)

    Harris, Richard A; Tindale, Lauren; Lone, Asad; Singh, Olivia; Macauley, Shannon L; Stanley, Molly; Holtzman, David M; Bartha, Robert; Cumming, Robert C

    2016-02-10

    Aerobic glycolysis and lactate production in the brain plays a key role in memory, yet the role of this metabolism in the cognitive decline associated with Alzheimer's disease (AD) remains poorly understood. Here we examined the relationship between cerebral lactate levels and memory performance in an APP/PS1 mouse model of AD, which progressively accumulates amyloid-β. In vivo (1)H-magnetic resonance spectroscopy revealed an age-dependent decline in lactate levels within the frontal cortex of control mice, whereas lactate levels remained unaltered in APP/PS1 mice from 3 to 12 months of age. Analysis of hippocampal interstitial fluid by in vivo microdialysis revealed a significant elevation in lactate levels in APP/PS1 mice relative to control mice at 12 months of age. An age-dependent decline in the levels of key aerobic glycolysis enzymes and a concomitant increase in lactate transporter expression was detected in control mice. Increased expression of lactate-producing enzymes correlated with improved memory in control mice. Interestingly, in APP/PS1 mice the opposite effect was detected. In these mice, increased expression of lactate producing enzymes correlated with poorer memory performance. Immunofluorescent staining revealed localization of the aerobic glycolysis enzymes pyruvate dehydrogenase kinase and lactate dehydrogenase A within cortical and hippocampal neurons in control mice, as well as within astrocytes surrounding amyloid plaques in APP/PS1 mice. These observations collectively indicate that production of lactate, via aerobic glycolysis, is beneficial for memory function during normal aging. However, elevated lactate levels in APP/PS1 mice indicate perturbed lactate processing, a factor that may contribute to cognitive decline in AD. Lactate has recently emerged as a key metabolite necessary for memory consolidation. Lactate is the end product of aerobic glycolysis, a unique form of metabolism that occurs within certain regions of the brain. Here

  15. Frontal ataxia in childhood.

    Science.gov (United States)

    Erasmus, C E; Beems, T; Rotteveel, J J

    2004-12-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial seizures. It proved to be caused by a small right-sided cavernoma in the middle frontal gyrus. After surgical intervention the symptoms and the seizures disappeared. Two subsequent cases concern teenage patients presenting with headache after an ENT infection and on physical examination mild dysmetric function of the upper limbs and slight disequilibrium, due to right-sided frontal lobe abscesses. After neurosurgical and antibiotic therapy the symptoms were relieved. The frontal origin of ataxia should be considered in children presenting with a "cerebellar syndrome". Frontal gait disorders consist of a clinical pattern of different gait disorders. The syndrome has been mentioned in the literature under different names. Our patients show signs compatible with the term frontal disequilibrium, a clinical pattern of frontal gait disorder. This assumes walking problems characterized by loss of control of motor planning, leading to imbalance. Remarkably, frontal ataxia may mimic developmental delay as demonstrated in the first case and may be the leading mild symptom in extensive frontal lobe damage as demonstrated by the two other cases. We suppose that frontal ataxia is the result of a disturbance in the cerebellar-frontal circuitries and an impairment of executive and planning functions of the basal ganglia-frontal lobe circuitry.

  16. Impaired cognitive control mediates the relationship between cortical thickness of the superior frontal gyrus and role functioning in schizophrenia.

    Science.gov (United States)

    Tully, Laura M; Lincoln, Sarah Hope; Liyanage-Don, Nadia; Hooker, Christine I

    2014-02-01

    Structural abnormalities in the lateral prefrontal cortex (LPFC) are well-documented in schizophrenia and recent evidence suggests that these abnormalities relate to functional outcome. Cognitive control mechanisms, reliant on the LPFC, are impaired in schizophrenia and predict functional outcome, thus impaired cognitive control could mediate the relationship between neuroanatomical abnormalities in the LPFC and functional outcome. We used surface-based morphometry to investigate relationships between cortical surface characteristics, cognitive control, and measures of social and role functioning in 26 individuals with schizophrenia and 29 healthy controls. Results demonstrate that schizophrenia participants had thinner cortex in a region of the superior frontal gyrus (BA10). Across all participants, decreased cortical thickness in this region related to decreased cognitive control and decreased role functioning. Moreover, cognitive control fully mediated the relationship between cortical thickness in the superior frontal gyrus and role functioning, indicating that neuroanatomical abnormalities in the LPFC adversely impact role functioning via impaired cognitive control processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Cerebral Microcirculation and Oxygen Tension in the Human Secondary Cortex

    Science.gov (United States)

    Linninger, A. A.; Gould, I. G.; Marinnan, T.; Hsu, C.-Y.; Chojecki, M.; Alaraj, A.

    2013-01-01

    The three-dimensional spatial arrangement of the cortical microcirculatory system is critical for understanding oxygen exchange between blood vessels and brain cells. A three-dimensional computer model of a 3 × 3 × 3 mm3 subsection of the human secondary cortex was constructed to quantify oxygen advection in the microcirculation, tissue oxygen perfusion, and consumption in the human cortex. This computer model accounts for all arterial, capillary and venous blood vessels of the cerebral microvascular bed as well as brain tissue occupying the extravascular space. Microvessels were assembled with optimization algorithms emulating angiogenic growth; a realistic capillary bed was built with space filling procedures. The extravascular tissue was modeled as a porous medium supplied with oxygen by advection–diffusion to match normal metabolic oxygen demand. The resulting synthetic computer generated network matches prior measured morphometrics and fractal patterns of the cortical microvasculature. This morphologically accurate, physiologically consistent, multi-scale computer network of the cerebral microcirculation predicts the oxygen exchange of cortical blood vessels with the surrounding gray matter. Oxygen tension subject to blood pressure and flow conditions were computed and validated for the blood as well as brain tissue. Oxygen gradients along arterioles, capillaries and veins agreed with in vivo trends observed recently in imaging studies within experimental tolerances and uncertainty. PMID:23842693

  18. Bi-frontal transcranial alternating current stimulation in the ripple range reduced overnight forgetting.

    Science.gov (United States)

    Ambrus, Géza Gergely; Pisoni, Alberto; Primaßin, Annika; Turi, Zsolt; Paulus, Walter; Antal, Andrea

    2015-01-01

    High frequency oscillations in the hippocampal structures recorded during sleep have been proved to be essential for long-term episodic memory consolidation in both animals and in humans. The aim of this study was to test if transcranial Alternating Current Stimulation (tACS) of the dorsolateral prefrontal cortex (DLPFC) in the hippocampal ripple range, applied bi-frontally during encoding, could modulate declarative memory performance, measured immediately after encoding, and after a night's sleep. An associative word-pair learning test was used. During an evening encoding phase, participants received 1 mA 140 Hz tACS or sham stimulation over both DLPFCs for 10 min while being presented twice with a list of word-pairs. Cued recall performance was investigated 10 min after training and the morning following the training session. Forgetting from evening to morning was observed in the sham condition, but not in the 140 Hz stimulation condition. 140 Hz tACS during encoding may have an effect on the consolidation of declarative material.

  19. Structural and functional analyses of human cerebral cortex using a surface-based atlas

    Science.gov (United States)

    Van Essen, D. C.; Drury, H. A.

    1997-01-01

    We have analyzed the geometry, geography, and functional organization of human cerebral cortex using surface reconstructions and cortical flat maps of the left and right hemispheres generated from a digital atlas (the Visible Man). The total surface area of the reconstructed Visible Man neocortex is 1570 cm2 (both hemispheres), approximately 70% of which is buried in sulci. By linking the Visible Man cerebrum to the Talairach stereotaxic coordinate space, the locations of activation foci reported in neuroimaging studies can be readily visualized in relation to the cortical surface. The associated spatial uncertainty was empirically shown to have a radius in three dimensions of approximately 10 mm. Application of this approach to studies of visual cortex reveals the overall patterns of activation associated with different aspects of visual function and the relationship of these patterns to topographically organized visual areas. Our analysis supports a distinction between an anterior region in ventral occipito-temporal cortex that is selectively involved in form processing and a more posterior region (in or near areas VP and V4v) involved in both form and color processing. Foci associated with motion processing are mainly concentrated in a region along the occipito-temporal junction, the ventral portion of which overlaps with foci also implicated in form processing. Comparisons between flat maps of human and macaque monkey cerebral cortex indicate significant differences as well as many similarities in the relative sizes and positions of cortical regions known or suspected to be homologous in the two species.

  20. Frontal lobe damage impairs process and content in semantic memory: evidence from category-specific effects in progressive non-fluent aphasia.

    Science.gov (United States)

    Reilly, Jamie; Rodriguez, Amy D; Peelle, Jonathan E; Grossman, Murray

    2011-06-01

    Portions of left inferior frontal cortex have been linked to semantic memory both in terms of the content of conceptual representation (e.g., motor aspects in an embodied semantics framework) and the cognitive processes used to access these representations (e.g., response selection). Progressive non-fluent aphasia (PNFA) is a neurodegenerative condition characterized by progressive atrophy of left inferior frontal cortex. PNFA can, therefore, provide a lesion model for examining the impact of frontal lobe damage on semantic processing and content. In the current study we examined picture naming in a cohort of PNFA patients across a variety of semantic categories. An embodied approach to semantic memory holds that sensorimotor features such as self-initiated action may assume differential importance for the representation of manufactured artifacts (e.g., naming hand tools). Embodiment theories might therefore predict that patients with frontal damage would be differentially impaired on manufactured artifacts relative to natural kinds, and this prediction was borne out. We also examined patterns of naming errors across a wide range of semantic categories and found that naming error distributions were heterogeneous. Although PNFA patients performed worse overall on naming manufactured artifacts, there was no reliable relationship between anomia and manipulability across semantic categories. These results add to a growing body of research arguing against a purely sensorimotor account of semantic memory, suggesting instead a more nuanced balance of process and content in how the brain represents conceptual knowledge. Copyright © 2010 Elsevier Srl. All rights reserved.

  1. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure

    DEFF Research Database (Denmark)

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo

    2017-01-01

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT2A receptor (5-HT2AR) dependent. Here, we further investigated how blockade of 5-HT2ARs in mice exposed to a novel open-field...... of 5-HT2AR blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5 mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time...... spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin...

  2. Attenuated frontal and sensory inputs to the basal ganglia in cannabis users.

    Science.gov (United States)

    Blanco-Hinojo, Laura; Pujol, Jesus; Harrison, Ben J; Macià, Dídac; Batalla, Albert; Nogué, Santiago; Torrens, Marta; Farré, Magí; Deus, Joan; Martín-Santos, Rocío

    2017-07-01

    Heavy cannabis use is associated with reduced motivation. The basal ganglia, central in the motivation system, have the brain's highest cannabinoid receptor density. The frontal lobe is functionally coupled to the basal ganglia via segregated frontal-subcortical circuits conveying information from internal, self-generated activity. The basal ganglia, however, receive additional influence from the sensory system to further modulate purposeful behaviors according to the context. We postulated that cannabis use would impact functional connectivity between the basal ganglia and both internal (frontal cortex) and external (sensory cortices) sources of influence. Resting-state functional connectivity was measured in 28 chronic cannabis users and 29 controls. Selected behavioral tests included reaction time, verbal fluency and exposition to affective pictures. Assessments were repeated after one month of abstinence. Cannabis exposure was associated with (1) attenuation of the positive correlation between the striatum and areas pertaining to the 'limbic' frontal-basal ganglia circuit, and (2) attenuation of the negative correlation between the striatum and the fusiform gyrus, which is critical in recognizing significant visual features. Connectivity alterations were associated with lower arousal in response to affective pictures. Functional connectivity changes had a tendency to normalize after abstinence. The results overall indicate that frontal and sensory inputs to the basal ganglia are attenuated after chronic exposure to cannabis. This effect is consistent with the common behavioral consequences of chronic cannabis use concerning diminished responsiveness to both internal and external motivation signals. Such an impairment of the fine-tuning in the motivation system notably reverts after abstinence. © 2016 Society for the Study of Addiction.

  3. A Brain System for Auditory Working Memory.

    Science.gov (United States)

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  4. Neuromodulatory neurotransmitters influence LTP-like plasticity in human cortex: a pharmaco-TMS study.

    Science.gov (United States)

    Korchounov, Alexei; Ziemann, Ulf

    2011-08-01

    Long-term potentiation (LTP) of synaptic efficacy is considered a fundamental mechanism of learning and memory. At the cellular level a large body of evidence demonstrated that the major neuromodulatory neurotransmitters dopamine (DA), norepinephrine (NE), and acetylcholine (ACh) influence LTP magnitude. Noninvasive brain stimulation protocols provide the opportunity to study LTP-like plasticity at the systems level of human cortex. Here we applied paired associative stimulation (PAS) to induce LTP-like plasticity in the primary motor cortex of eight healthy subjects. In a double-blind, randomized, placebo-controlled, crossover design, the acute effects of a single oral dose of the neuromodulatory drugs cabergoline (DA agonist), haloperidol (DA antagonist), methylphenidate (indirect NE agonist), prazosine (NE antagonist), tacrine (ACh agonist), and biperiden (ACh antagonist) on PAS-induced LTP-like plasticity were examined. The antagonists haloperidol, prazosine, and biperiden depressed significantly the PAS-induced LTP-like plasticity observed under placebo, whereas the agonists cabergoline, methylphenidate, and tacrine had no effect. Findings demonstrate that antagonists in major neuromodulatory neurotransmitter systems suppress LTP-like plasticity at the systems level of human cortex, in accord with evidence of their modulating action of LTP at the cellular level. This provides further supportive evidence for the known detrimental effects of these drugs on LTP-dependent mechanisms such as learning and memory.

  5. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    OpenAIRE

    Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Langs, Georg; Jakab, András; Schöpf, Veronika

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable mor...

  6. Top-down modulation from inferior frontal junction to FEFs and intraparietal sulcus during short-term memory for visual features.

    Science.gov (United States)

    Sneve, Markus H; Magnussen, Svein; Alnæs, Dag; Endestad, Tor; D'Esposito, Mark

    2013-11-01

    Visual STM of simple features is achieved through interactions between retinotopic visual cortex and a set of frontal and parietal regions. In the present fMRI study, we investigated effective connectivity between central nodes in this network during the different task epochs of a modified delayed orientation discrimination task. Our univariate analyses demonstrate that the inferior frontal junction (IFJ) is preferentially involved in memory encoding, whereas activity in the putative FEFs and anterior intraparietal sulcus (aIPS) remains elevated throughout periods of memory maintenance. We have earlier reported, using the same task, that areas in visual cortex sustain information about task-relevant stimulus properties during delay intervals [Sneve, M. H., Alnæs, D., Endestad, T., Greenlee, M. W., & Magnussen, S. Visual short-term memory: Activity supporting encoding and maintenance in retinotopic visual cortex. Neuroimage, 63, 166-178, 2012]. To elucidate the temporal dynamics of the IFJ-FEF-aIPS-visual cortex network during memory operations, we estimated Granger causality effects between these regions with fMRI data representing memory encoding/maintenance as well as during memory retrieval. We also investigated a set of control conditions involving active processing of stimuli not associated with a memory task and passive viewing. In line with the developing understanding of IFJ as a region critical for control processes with a possible initiating role in visual STM operations, we observed influence from IFJ to FEF and aIPS during memory encoding. Furthermore, FEF predicted activity in a set of higher-order visual areas during memory retrieval, a finding consistent with its suggested role in top-down biasing of sensory cortex.

  7. The Expression of DJ-1 (PARK7) in Normal Human CNS and Idiopathic Parkinson's Disease

    Science.gov (United States)

    Bandopadhyay, Rina; Kingsbury, Ann E.; Cookson, Mark R.; Reid, Andrew R.; Evans, Ian M.; Hope, Andrew D.; Pittman, Alan M.; Lashley, Tammaryn; Canet-Aviles, Rosa; Miller, David W.; McLendon, Chris; Strand, Catherine; Leonard, Andrew J.; Abou-Sleiman, Patrick M.; Healy, Daniel G.; Ariga, Hiroyashi; Wood, Nicholas W.; de Silva, Rohan; Revesz, Tamas; Hardy, John A.; Lees, Andrew J.

    2004-01-01

    Two mutations in the DJ-1 gene on chromosome1p36 have been identified recently to cause early-onset, autosomal recessive Parkinson's disease. As no information is available regarding the distribution of DJ-1 protein in the human brain, in this study we used a monoclonal antibody for DJ-1 to map its distribution in frontal cortex and substantia…

  8. Transcranial direct current stimulation (tDCS) of frontal cortex decreases performance on the WAIS-IV intelligence test.

    Science.gov (United States)

    Sellers, Kristin K; Mellin, Juliann M; Lustenberger, Caroline M; Boyle, Michael R; Lee, Won Hee; Peterchev, Angel V; Fröhlich, Flavio

    2015-09-01

    Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants were included in the final analysis. These participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2 mA at each anode for 20 min) or active sham tDCS (2 mA for 40 s), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2 mA for 20 min). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Conceptual control across modalities: graded specialisation for pictures and words in inferior frontal and posterior temporal cortex.

    Science.gov (United States)

    Krieger-Redwood, Katya; Teige, Catarina; Davey, James; Hymers, Mark; Jefferies, Elizabeth

    2015-09-01

    Controlled semantic retrieval to words elicits co-activation of inferior frontal (IFG) and left posterior temporal cortex (pMTG), but research has not yet established (i) the distinct contributions of these regions or (ii) whether the same processes are recruited for non-verbal stimuli. Words have relatively flexible meanings - as a consequence, identifying the context that links two specific words is relatively demanding. In contrast, pictures are richer stimuli and their precise meaning is better specified by their visible features - however, not all of these features will be relevant to uncovering a given association, tapping selection/inhibition processes. To explore potential differences across modalities, we took a commonly-used manipulation of controlled retrieval demands, namely the identification of weak vs. strong associations, and compared word and picture versions. There were 4 key findings: (1) Regions of interest (ROIs) in posterior IFG (BA44) showed graded effects of modality (e.g., words>pictures in left BA44; pictures>words in right BA44). (2) An equivalent response was observed in left mid-IFG (BA45) across modalities, consistent with the multimodal semantic control deficits that typically follow LIFG lesions. (3) The anterior IFG (BA47) ROI showed a stronger response to verbal than pictorial associations, potentially reflecting a role for this region in establishing a meaningful context that can be used to direct semantic retrieval. (4) The left pMTG ROI also responded to difficulty across modalities yet showed a stronger response overall to verbal stimuli, helping to reconcile two distinct literatures that have implicated this site in semantic control and lexical-semantic access respectively. We propose that left anterior IFG and pMTG work together to maintain a meaningful context that shapes ongoing semantic processing, and that this process is more strongly taxed by word than picture associations. Copyright © 2015 The Authors. Published by

  10. Functional role of frontal alpha oscillations in creativity.

    Science.gov (United States)

    Lustenberger, Caroline; Boyle, Michael R; Foulser, A Alban; Mellin, Juliann M; Fröhlich, Flavio

    2015-06-01

    Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent electroencephalography (EEG) data suggests that cortical oscillations in the alpha frequency band (8-12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a functional role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10 Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking (TTCT), a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40 Hz-tACS was used instead of 10 Hz-tACS to rule out a general "electrical stimulation" effect. No significant change in the Creativity Index was found for such frontal 40 Hz stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Robust selectivity to two-object images in human visual cortex

    Science.gov (United States)

    Agam, Yigal; Liu, Hesheng; Papanastassiou, Alexander; Buia, Calin; Golby, Alexandra J.; Madsen, Joseph R.; Kreiman, Gabriel

    2010-01-01

    SUMMARY We can recognize objects in a fraction of a second in spite of the presence of other objects [1–3]. The responses in macaque areas V4 and inferior temporal cortex [4–15] to a neuron’s preferred stimuli are typically suppressed by the addition of a second object within the receptive field (see however [16, 17]). How can this suppression be reconciled with rapid visual recognition in complex scenes? One option is that certain “special categories” are unaffected by other objects [18] but this leaves the problem unsolved for other categories. Another possibility is that serial attentional shifts help ameliorate the problem of distractor objects [19–21]. Yet, psychophysical studies [1–3], scalp recordings [1] and neurophysiological recordings [14, 16, 22–24], suggest that the initial sweep of visual processing contains a significant amount of information. We recorded intracranial field potentials in human visual cortex during presentation of flashes of two-object images. Visual selectivity from temporal cortex during the initial ~200 ms was largely robust to the presence of other objects. We could train linear decoders on the responses to isolated objects and decode information in two-object images. These observations are compatible with parallel, hierarchical and feed-forward theories of rapid visual recognition [25] and may provide a neural substrate to begin to unravel rapid recognition in natural scenes. PMID:20417105

  12. The motor cortex drives the muscles during walking in human subjects

    DEFF Research Database (Denmark)

    Petersen, Tue Hvass; Willerslev-Olsen, Maria; Conway, B A

    2012-01-01

    Indirect evidence that the motor cortex and the corticospinal tract contribute to the control of walking in human subjects has been provided in previous studies. In the present study we used coherence analysis of the coupling between EEG and EMG from active leg muscles during human walking...... area and EMG from the anterior tibial muscle was found in the frequency band 24–40 Hz prior to heel strike during the swing phase of walking. This signifies that rhythmic cortical activity in the 24–40 Hz frequency band is transmitted via the corticospinal tract to the active muscles during walking...

  13. Interference effects of transcranial direct current stimulation over the right frontal cortex and adrenergic system on conditioned fear.

    Science.gov (United States)

    Nasehi, Mohammad; Soltanpour, Reyhaneh; Ebrahimi-Ghiri, Mohaddeseh; Zarrabian, Shahram; Zarrindast, Mohammad-Reza

    2017-11-01

    The effects of pharmacological interventions on fear memory have widely been studied, but there are very few studies about the effects of brain electrical stimulation on fear memory function. Therefore, our aim was to determine whether anodal/cathodal transcranial direct current stimulation (tDCS) over the right frontal cortex would modify propranolol-induced contextual and auditory fear memory deficits, before or after training. The adult NMRI male mice were randomly assigned into three groups: the sham group, the anodal tDCS group, and the cathodal tDCS group. Fear memories were evaluated using a classical fear conditioning apparatus. While the anodal stimulation did not affect fear retrieval, post-training cathodal stimulation improved fear memory retrieval. Regardless of when propranolol (0.1 mg/kg) was administered, it impaired fear memory retrieval. However, when anodal stimulation and propranolol were applied prior to the training, contextual fear memory retrieval was increased and auditory fear memory was reversed. An enhanced contextual retrieval was also observed when propranolol was administered prior to the training and stimulation occurred after the training. Only when the stimulation occurred prior to the training and propranolol was administered after the training was there a selective improvement in contextual fear memory retrieval, leaving the auditory fear memory retrieval impaired. Interestingly, cathodal stimulation improved the effects of propranolol on auditory fear memory only when it occurred prior to the training. The results highlight possible improving effects for anodal/cathodal tDCS on propranolol-induced deficits on fear memories. The timing of the interventions related to the specific phases of memory formation is important in modulating fear behaviors.

  14. The effects of chronic stress on the human brain: From neurotoxicity, to vulnerability, to opportunity.

    Science.gov (United States)

    Lupien, Sonia J; Juster, Robert-Paul; Raymond, Catherine; Marin, Marie-France

    2018-04-01

    For the last five decades, science has managed to delineate the mechanisms by which stress hormones can impact on the human brain. Receptors for glucocorticoids are found in the hippocampus, amygdala and frontal cortex, three brain regions involved in memory processing and emotional regulation. Studies have shown that chronic exposure to stress is associated with reduced volume of the hippocampus and that chronic stress can modulate volumes of both the amygdala and frontal cortex, suggesting neurotoxic effects of stress hormones on the brain. Yet, other studies report that exposure to early adversity and/or familial/social stressors can increase vulnerability to stress in adulthood. Models have been recently developed to describe the roles that neurotoxic and vulnerability effects can have on the developing brain. These models suggest that developing early stress interventions could potentially counteract the effects of chronic stress on the brain and results going along with this hypothesis are summarized. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25{+-}2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% {+-} 1.3% and 10.6% {+-} 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% {+-} 4.5% vs. 6.6% {+-} 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release.

  16. Dopamine release in human striatum induced by repetitive transcranial magnetic stimulation over dorsolateral prefrontal cortex

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    Animal study suggests that prefrontal cortex plays an important Animal studies suggest that prefrontal cortex plays an important role in the modulation of dopamine (DA) release in subcortical areas. However, little is known about the relationship between DA release and prefrontal activation in human. We investigated whether repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (DLPFC) influences DA release in human striatum with SPECT measurements of striatal binding of [123I)iodobenzamide (IBZM), a DA D2 receptor radioligand that is sensitive to endogenous DA. Five healthy male volunteers (age, 25±2 yr) were studied with brain [123I]IBZM SPECT under three conditions (resting, Sham stimulation, and active rTMS over left DLPFC), while receiving a bolus plus constant infusion of [123I]IBZM DLPFC was defined as a 6 cm anterior and 1cm lateral from the primary motor cortex. rTMS session consisted of three blocks, in each block, 15 trains of 2 see duration were delivered with 10 Hz stimulation frequency, 100% motor threshold, and between-train intervals of 10 sec. Striatal V3', calculated as (striatal - occipital) / occipital activity ratio, was measured under equilibrium condition, at baseline and after sham and active rTMS. Sham stimulation did not affect striatal V3'. rTMS over DLPFC induced reduction of V3' in the ipsilateral and contralateral striatum by 9.7% ± 1.3% and 10.6% ± 3.2%, respectively, compared with sham procedures (P < 0.01 and P < 0.01, respectively), indicating striatal DA release elicited by rTMS over DLPFC. V3' reduction in the ipsilateral caudate nucleus was greater than that in the contralateral caudate nucleus (9.9% ± 4.5% vs. 6.6% ± 3.1%, P < 0.05). These data demonstrate DA release in human striatum induced by rTMS over DLPFC, supporting that cortico-striatal fibers originating in prefrontal cortex are involved in local DA release

  17. Unmasking Language Lateralization in Human Brain Intrinsic Activity

    Science.gov (United States)

    McAvoy, Mark; Mitra, Anish; Coalson, Rebecca S.; d'Avossa, Giovanni; Keidel, James L.; Petersen, Steven E.; Raichle, Marcus E.

    2016-01-01

    Lateralization of function is a fundamental feature of the human brain as exemplified by the left hemisphere dominance of language. Despite the prominence of lateralization in the lesion, split-brain and task-based fMRI literature, surprisingly little asymmetry has been revealed in the increasingly popular functional imaging studies of spontaneous fluctuations in the fMRI BOLD signal (so-called resting-state fMRI). Here, we show the global signal, an often discarded component of the BOLD signal in resting-state studies, reveals a leftward asymmetry that maps onto regions preferential for semantic processing in left frontal and temporal cortex and the right cerebellum and a rightward asymmetry that maps onto putative attention-related regions in right frontal, temporoparietal, and parietal cortex. Hemispheric asymmetries in the global signal resulted from amplitude modulation of the spontaneous fluctuations. To confirm these findings obtained from normal, healthy, right-handed subjects in the resting-state, we had them perform 2 semantic processing tasks: synonym and numerical magnitude judgment and sentence comprehension. In addition to establishing a new technique for studying lateralization through functional imaging of the resting-state, our findings shed new light on the physiology of the global brain signal. PMID:25636911

  18. What makes a frontal area of primate brain the frontal eye field?

    Directory of Open Access Journals (Sweden)

    Pierre ePouget

    2015-05-01

    Full Text Available The frontal eye field region (FEF of the oculomotor pathways has been intensely studied. The primary goal of this review is to illustrate the phylogenetic displacement of the FEF locus in primate species. The locus is arrayed along the arcuate sulcus in monkeys and abuts into the primary motor strip region in humans. The strengths and limitations of the various functional, anatomical and histological methodologies used to identify such regions are also discussed.

  19. Specific marker of feigned memory impairment: The activation of left superior frontal gyrus.

    Science.gov (United States)

    Chen, Zi-Xiang; Xue, Li; Liang, Chun-Yu; Wang, Li-Li; Mei, Wei; Zhang, Qiang; Zhao, Hu

    2015-11-01

    Faking memory impairment means normal people complain lots of memory problems without organic damage in forensic assessments. Using alternative forced-choice paradigm, containing digital or autobiographical information, previous neuroimaging studies have indicated that faking memory impairment could cause the activation in the prefrontal and parietal regions, and might involve a fronto-parietal-subcortical circuit. However, it is still unclear whether different memory types have influence on faking or not. Since different memory types, such as long-term memory (LTM) and short-term memory (STM), were found supported by different brain areas, we hypothesized that feigned STM or LTM impairment had distinct neural activation mapping. Besides that, some common neural correlates may act as the general characteristic of feigned memory impairment. To verify this hypothesis, the functional magnetic resonance imaging (fMRI) combined with an alternative word forced-choice paradigm were used in this study. A total of 10 right-handed participants, in this study, had to perform both STW and LTM tasks respectively under answering correctly, answering randomly and feigned memory impairment conditions. Our results indicated that the activation of the left superior frontal gyrus and the left medial frontal gyrus was associated with feigned LTM impairment, whereas the left superior frontal gyrus, the left precuneus and the right anterior cingulate cortex (ACC) were highly activated while feigning STM impairment. Furthermore, an overlapping was found in the left superior frontal gyrus, and it suggested that the activity of the left superior frontal gyrus might be acting as a specific marker of feigned memory impairment. Copyright © 2015. Published by Elsevier Ltd.

  20. Is the frontal dysexecutive syndrome due to a working memory deficit? Evidence from patients with stroke.

    Science.gov (United States)

    Roussel, Martine; Dujardin, Kathy; Hénon, Hilde; Godefroy, Olivier

    2012-07-01

    Although frontal dysexecutive disorders are frequently considered to be due to working memory deficit, this has not been systematically examined and very little evidence is available for impairment of working memory in frontal damage. The objective of this study was to examine the components of working memory, their anatomy and the relations with executive functions in patients with stroke involving the frontal or posterior cortex. The study population consisted of 29 patients (frontal: n=17; posterior: n=12) and 29 matched controls. Phonological loop (letter and word spans, phonological store; rehearsal process), visuospatial sketchpad (visuospatial span) and the central executive (working memory span, dual task and updating process) were examined. The group comparison analysis showed impairment in the frontal group of: (i) verbal spans (Pdeficit of the rehearsal process (P=0.006); (iii) visuospatial span (P=0.04); (iv) working memory span (P=0.001) that disappeared after controlling for verbal span and (v) running memory (P=0.05) unrelated to updating conditions. The clinical anatomical correlation study showed that impairment of the central executive depended on frontal and posterior lesion. Cognitive dysexecutive disorders were observed in 11/20 patients with central executive deficit and an inverse dissociation was observed in two patients. Receiver operating characteristic curve analysis indicated that cognitive dysexecutive disorders had the highest ability to discriminate frontal lesions (area under curve=0.844, 95% confidence interval: 0.74-0.95; P=0.0001; central executive impairment: area under curve=0.732, 95% confidence interval: 0.57-0.82; P=0.006). This study reveals that frontal lesions induce mild impairment of short-term memory associated with a deficit of the rehearsal process supporting the role of the frontal lobe in this process; the central executive depends on lesions in the frontal lobe and posterior regions accounting for its low frequency

  1. The contribution of the human posterior parietal cortex to episodic memory

    OpenAIRE

    Sestieri, Carlo; Shulman, Gordon L.; Corbetta, Maurizio

    2017-01-01

    The posterior parietal cortex (PPC) is traditionally associated with attention, perceptual decision making and sensorimotor transformations, but more recent human neuroimaging studies support an additional role in episodic memory retrieval. In this Opinion article, we present a functional–anatomical model of the involvement of the PPC in memory retrieval. Parietal regions involved in perceptual attention and episodic memory are largely segregated and often show a push–pull relationship, poten...

  2. Functional mapping of the neural basis for the encoding and retrieval of human episodic memory using H215O PET

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Nam, Hyun Woo; Lee, Dong Soo; Lee, Sang Kun; Jang, Myoung Jin; Ahn, Ji Young; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul

    2000-01-01

    Episodic memory is described as an 'autobiographical' memory responsible for storing a record of the events in our lives. We performed functional brain activation study using H 2 1 5O PET to reveal the neural basis of the encoding and the retrieval of episodic memory in human normal volunteers. Four repeated H 2 1 5O PET scans with two reference and two activation tasks were performed on 6 normal volunteers to activate brain areas engaged in encoding and retrieval with verbal materials. Images from the same subject were spatially registered and normalized using linear and nonlinear transformation. Using the means and variances for every condition which were adjusted with analysis of covariance, t-statistic analysis were performed voxel-wise. Encoding of episodic memory activated the opercular and triangular parts of left inferior frontal gyrus, right prefrontal cortex, medial frontal area, cingulate gyrus, posterior middle and inferior temporal gyri, and cerebellum, and both primary visual and visual association areas. Retrieval of episodic memory activated the triangular part of left inferior frontal gyrus and inferior temporal gyrus, right prefrontal cortex and medial temporal ares, and both cerebellum and primary visual and visual association areas. The activations in the opercular part of left inferior frontal gyrus and the right prefrontal cortex meant the essential role of these areas in the encoding and retrieval of episodic memeory. We could localize the neural basis of the encoding and retrieval of episodic memory using H 2 1 5O PET, which was partly consistent with the hypothesis of hemispheric encoding/retrieval asymmetry.=20

  3. Anodal Transcranial Direct Current Stimulation Promotes Frontal Compensatory Mechanisms in Healthy Elderly Subjects.

    Science.gov (United States)

    Cespón, Jesús; Rodella, Claudia; Rossini, Paolo M; Miniussi, Carlo; Pellicciari, Maria C

    2017-01-01

    Recent studies have demonstrated that transcranial direct current stimulation (tDCS) is potentially useful to improve working memory. In the present study, young and elderly subjects performed a working memory task ( n -back task) during an electroencephalogram recording before and after receiving anodal, cathodal, and sham tDCS over the left dorsolateral prefrontal cortex (DLPFC). We investigated modulations of behavioral performance and electrophysiological correlates of working memory processes (frontal and parietal P300 event-related potentials). A strong tendency to modulated working memory performance was observed after the application of tDCS. In detail, young, but not elderly, subjects benefited from additional practice in the absence of real tDCS, as indicated by their more accurate responses after sham tDCS. The cathodal tDCS had no effect in any group of participants. Importantly, anodal tDCS improved accuracy in elderly. Moreover, increased accuracy after anodal tDCS was correlated with a larger frontal P300 amplitude. These findings suggest that, in elderly subjects, improved working memory after anodal tDCS applied over the left DLPFC may be related to the promotion of frontal compensatory mechanisms, which are related to attentional processes.

  4. Anodal Transcranial Direct Current Stimulation Promotes Frontal Compensatory Mechanisms in Healthy Elderly Subjects

    Directory of Open Access Journals (Sweden)

    Jesús Cespón

    2017-12-01

    Full Text Available Recent studies have demonstrated that transcranial direct current stimulation (tDCS is potentially useful to improve working memory. In the present study, young and elderly subjects performed a working memory task (n-back task during an electroencephalogram recording before and after receiving anodal, cathodal, and sham tDCS over the left dorsolateral prefrontal cortex (DLPFC. We investigated modulations of behavioral performance and electrophysiological correlates of working memory processes (frontal and parietal P300 event-related potentials. A strong tendency to modulated working memory performance was observed after the application of tDCS. In detail, young, but not elderly, subjects benefited from additional practice in the absence of real tDCS, as indicated by their more accurate responses after sham tDCS. The cathodal tDCS had no effect in any group of participants. Importantly, anodal tDCS improved accuracy in elderly. Moreover, increased accuracy after anodal tDCS was correlated with a larger frontal P300 amplitude. These findings suggest that, in elderly subjects, improved working memory after anodal tDCS applied over the left DLPFC may be related to the promotion of frontal compensatory mechanisms, which are related to attentional processes.

  5. Electrophysiological and behavioral effects of frontal transcranial direct current stimulation on cognitive fatigue in multiple sclerosis.

    Science.gov (United States)

    Fiene, Marina; Rufener, Katharina S; Kuehne, Maria; Matzke, Mike; Heinze, Hans-Jochen; Zaehle, Tino

    2018-03-01

    Fatigue is one of the most common and debilitating symptoms affecting patients with multiple sclerosis (MS). Sustained cognitive effort induces cognitive fatigue, operationalized as subjective exhaustion and fatigue-related objective alertness decrements with time-on-task. During prolonged cognitive testing, MS patients show increased simple reaction times (RT) accompanied by lower amplitudes and prolonged latencies of the P300 event-related potential. Previous studies suggested a major role of structural and functional abnormalities in the frontal cortex including a frontal hypo-activation in fatigue pathogenesis. In the present study we investigated the neuromodulatory effect of transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) on objective measures of fatigue-related decrements in cognitive performance in MS patients. P300 during an auditory oddball task and simple reaction times in an alertness test were recorded at baseline, during and after stimulation. Compared to sham, anodal tDCS caused an increase in P300 amplitude that persisted after the end of stimulation and eliminated the fatigue-related increase in RT over the course of a testing session. Our findings demonstrate that anodal tDCS over the left DLPFC can counteract performance decrements associated with fatigue thereby leading to an improvement in the patient's ability to cope with sustained cognitive demands. This provides causal evidence for the functional relevance of the left DLPFC in fatigue pathophysiology. The results indicate that tDCS-induced modulations of frontal activity can be an effective therapeutic option for the treatment of fatigue-related declines in cognitive performance in MS patients.

  6. Effects of medial prefrontal cortex lesions in rats on the what-where-when memory of a fear conditioning event.

    Science.gov (United States)

    Li, Jay-Shake; Hsiao, Kun-Yuan; Chen, Wei-Min

    2011-03-17

    Previous animal studies have defined the ability to remember the details of what, where, and when of an event as an episodic-like memory to be used to model episodic memory in humans. Numerous findings indicate that the hippocampal-frontal cortical circuitry plays a major part in its neural mechanism. Researchers have intensively studied roles of diverse hippocampus sub-regions using animal models. By contrast, the impact of prefrontal cortex lesions on episodic-like memory in animals is still unknown. Here we show that Wistar rats with bilateral medial prefrontal cortex lesions failed to use the temporal-contextual information to retrieve memory of a fear-conditioning event, indicating impairments in their episodic-like memory. Subsequent experiments excluded alternative interpretations that the manipulation impaired the fear-conditioning per se, or interfered with the sensory preconditioning process. We concluded that damages in this area might impair temporal information processing, or interfere with integrating temporal and contextual elements of fear-conditioning events to form a conjunctive entity. These findings can help understand how the medial prefrontal cortex contributes to episodic-like memory. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Inhibition in the Human Auditory Cortex.

    Directory of Open Access Journals (Sweden)

    Koji Inui

    Full Text Available Despite their indispensable roles in sensory processing, little is known about inhibitory interneurons in humans. Inhibitory postsynaptic potentials cannot be recorded non-invasively, at least in a pure form, in humans. We herein sought to clarify whether prepulse inhibition (PPI in the auditory cortex reflected inhibition via interneurons using magnetoencephalography. An abrupt increase in sound pressure by 10 dB in a continuous sound was used to evoke the test response, and PPI was observed by inserting a weak (5 dB increase for 1 ms prepulse. The time course of the inhibition evaluated by prepulses presented at 10-800 ms before the test stimulus showed at least two temporally distinct inhibitions peaking at approximately 20-60 and 600 ms that presumably reflected IPSPs by fast spiking, parvalbumin-positive cells and somatostatin-positive, Martinotti cells, respectively. In another experiment, we confirmed that the degree of the inhibition depended on the strength of the prepulse, but not on the amplitude of the prepulse-evoked cortical response, indicating that the prepulse-evoked excitatory response and prepulse-evoked inhibition reflected activation in two different pathways. Although many diseases such as schizophrenia may involve deficits in the inhibitory system, we do not have appropriate methods to evaluate them; therefore, the easy and non-invasive method described herein may be clinically useful.

  8. The association between aerobic fitness and cognitive function in older men mediated by frontal lateralization.

    Science.gov (United States)

    Hyodo, Kazuki; Dan, Ippeita; Kyutoku, Yasushi; Suwabe, Kazuya; Byun, Kyeongho; Ochi, Genta; Kato, Morimasa; Soya, Hideaki

    2016-01-15

    Previous studies have shown that higher aerobic fitness is related to higher cognitive function and higher task-related prefrontal activation in older adults. However, a holistic picture of these factors has yet to be presented. As a typical age-related change of brain activation, less lateralized activity in the prefrontal cortex during cognitive tasks has been observed in various neuroimaging studies. Thus, this study aimed to reveal the relationship between aerobic fitness, cognitive function, and frontal lateralization. Sixty male older adults each performed a submaximal incremental exercise test to determine their oxygen intake (V·O2) at ventilatory threshold (VT) in order to index their aerobic fitness. They performed a color-word Stroop task while prefrontal activation was monitored using functional near infrared spectroscopy. As an index of cognitive function, Stroop interference time was analyzed. Partial correlation analyses revealed significant correlations among higher VT, shorter Stroop interference time and greater left-lateralized dorsolateral prefrontal cortex (DLPFC) activation when adjusting for education. Moreover, mediation analyses showed that left-lateralized DLPFC activation significantly mediated the association between VT and Stroop interference time. These results suggest that higher aerobic fitness is associated with cognitive function via lateralized frontal activation in older adults. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Thinner Cortex in Collegiate Football Players With, but not Without, a Self-Reported History of Concussion.

    Science.gov (United States)

    Meier, Timothy B; Bellgowan, Patrick S F; Bergamino, Maurizio; Ling, Josef M; Mayer, Andrew R

    2016-02-15

    Emerging evidence suggests that a history of sports-related concussions can lead to long-term neuroanatomical changes. The extent to which similar changes are present in young athletes is undetermined at this time. Here, we tested the hypothesis that collegiate football athletes with (n = 25) and without (n = 24) a self-reported history of concussion would have cortical thickness differences and altered white matter integrity relative to healthy controls (n = 27) in fronto-temporal regions that appear particularly susceptible to traumatic brain injury. Freesurfer software was used to estimate cortical thickness, fractional anisotropy was calculated in a priori white matter tracts, and behavior was assessed using a concussion behavioral battery. Groups did not differ in self-reported symptoms (p > 0.10) or cognitive performance (p > 0.10). Healthy controls reported significantly higher happiness levels than both football groups (all p 0.10). However, football athletes with a history of concussion had significantly thinner cortex in the left anterior cingulate cortex, orbital frontal cortex, and medial superior frontal cortex relative to healthy controls (p = 0.02, d = -0.69). Further, football athletes with a history of concussion had significantly thinner cortex in the right central sulcus and precentral gyrus relative to football athletes without a history of concussion (p = 0.03, d = -0.71). No differences were observed between football athletes without a history of concussion and healthy controls. These results suggest that previous concussions, but not necessarily football exposure, may be associated with cortical thickness differences in collegiate football athletes.

  10. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition

    Science.gov (United States)

    Fried, Itzhak; Mukamel, Roy; Kreiman, Gabriel

    2011-01-01

    Understanding how self-initiated behavior is encoded by neuronal circuits in the human brain remains elusive. We recorded the activity of 1019 neurons while twelve subjects performed self-initiated finger movement. We report progressive neuronal recruitment over ~1500 ms before subjects report making the decision to move. We observed progressive increase or decrease in neuronal firing rate, particularly in the supplementary motor area (SMA), as the reported time of decision was approached. A population of 256 SMA neurons is sufficient to predict in single trials the impending decision to move with accuracy greater than 80% already 700 ms prior to subjects’ awareness. Furthermore, we predict, with a precision of a few hundred ms, the actual time point of this voluntary decision to move. We implement a computational model whereby volition emerges once a change in internally generated firing rate of neuronal assemblies crosses a threshold. PMID:21315264

  11. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex.

    Science.gov (United States)

    Nitsche, Michael A; Nitsche, Maren S; Klein, Cornelia C; Tergau, Frithjof; Rothwell, John C; Paulus, Walter

    2003-04-01

    To induce prolonged motor cortical excitability reductions by transcranial direct current stimulation in the human. Cathodal direct current stimulation was applied transcranially to the hand area of the human primary motor cortex from 5 to 9 min in separate sessions in twelve healthy subjects. Cortico-spinal excitability was tested by single pulse transcranial magnetic stimulation. Transcranial electrical stimulation and H-reflexes were used to learn about the origin of the excitability changes. Neurone specific enolase was measured before and after the stimulation to prove the safety of the stimulation protocol. Five and 7 min direct current stimulation resulted in motor cortical excitability reductions, which lasted for minutes after the end of stimulation, 9 min stimulation induced after-effects for up to an hour after the end of stimulation, as revealed by transcranial magnetic stimulation. Muscle evoked potentials elicited by transcranial electric stimulation and H-reflexes did not change. Neurone specific enolase concentrations remained stable throughout the experiments. Cathodal transcranial direct current stimulation is capable of inducing prolonged excitability reductions in the human motor cortex non-invasively. These changes are most probably localised intracortically.

  12. Visual attentional load influences plasticity in the human motor cortex.

    Science.gov (United States)

    Kamke, Marc R; Hall, Michelle G; Lye, Hayley F; Sale, Martin V; Fenlon, Laura R; Carroll, Timothy J; Riek, Stephan; Mattingley, Jason B

    2012-05-16

    Neural plasticity plays a critical role in learning, memory, and recovery from injury to the nervous system. Although much is known about the physical and physiological determinants of plasticity, little is known about the influence of cognitive factors. In this study, we investigated whether selective attention plays a role in modifying changes in neural excitability reflecting long-term potentiation (LTP)-like plasticity. We induced LTP-like effects in the hand area of the human motor cortex using transcranial magnetic stimulation (TMS). During the induction of plasticity, participants engaged in a visual detection task with either low or high attentional demands. Changes in neural excitability were assessed by measuring motor-evoked potentials in a small hand muscle before and after the TMS procedures. In separate experiments plasticity was induced either by paired associative stimulation (PAS) or intermittent theta-burst stimulation (iTBS). Because these procedures induce different forms of LTP-like effects, they allowed us to investigate the generality of any attentional influence on plasticity. In both experiments reliable changes in motor cortex excitability were evident under low-load conditions, but this effect was eliminated under high-attentional load. In a third experiment we investigated whether the attentional task was associated with ongoing changes in the excitability of motor cortex, but found no difference in evoked potentials across the levels of attentional load. Our findings indicate that in addition to their role in modifying sensory processing, mechanisms of attention can also be a potent modulator of cortical plasticity.

  13. Contribution of different regions of the prefrontal cortex and lesion laterality to deficit of decision-making on the Iowa Gambling Task.

    Science.gov (United States)

    Ouerchefani, Riadh; Ouerchefani, Naoufel; Allain, Philippe; Ben Rejeb, Mohamed Riadh; Le Gall, Didier

    2017-02-01

    Few studies have examined the contribution of different sub-regions of the prefrontal cortex and lesion laterality to decision-making abilities. In addition, there are inconsistent findings about the role of ventromedial and dorsolateral lesions in decision-making deficit. In this study, decision-making processes are investigated following different damaged areas of the prefrontal cortex. We paid particular attention to the contribution of laterality, lesion location and lesion volume in decision-making deficit. Twenty-seven patients with discrete ventromedial lesions, dorsolateral lesions or extended-frontal lesions were compared with normal subjects on the Iowa Gambling Task (IGT). Our results showed that all frontal subgroups were impaired on the IGT in comparison with normal subjects. We noted also that IGT performance did not vary systematically based on lesion laterality or location. More precisely, our lesion analysis revealed that decision-making processes depend on a large cerebral network, including both ventromedial and dorsolateral areas of the prefrontal cortex. Consistent with past findings, our results support the claim that IGT deficit is not solitarily associated with ventromedial prefrontal cortex lesions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Mind the movement: Frontal asymmetry stands for behavioral motivation, bilateral frontal activation for behavior.

    Science.gov (United States)

    Rodrigues, Johannes; Müller, Mathias; Mühlberger, Andreas; Hewig, Johannes

    2018-01-01

    Frontal asymmetry has been investigated over the past 30 years, and several theories have been developed about its meaning. The original theory of Davidson and its diversification by Harmon-Jones & Allen allocated approach motivation to relative left frontal brain activity and withdrawal motivation to relative right frontal brain activity. Hewig and colleagues extended this theory by adding bilateral frontal activation representing a biological correlate of the behavioral activation system if actual behavior is shown. Wacker and colleagues formulated a theory related to the revised reinforcement sensitivity theory by Gray & McNaughton. Here, relative left frontal brain activation represents the revised behavioral activation system and behavior, while relative right frontal brain activation represents the revised behavioral inhibition system, representing the experience of conflict. These theories were investigated with a newly developed paradigm where participants were able to move around freely in a virtual T maze via joystick while having their EEG recorded. Analyzing the influence of frontal brain activation during this virtual reality task on observable behavior for 30 participants, we found more relative left frontal brain activation during approach behavior and more relative right brain activation for withdrawal behavior of any kind. Additionally, there was more bilateral frontal brain activation when participants were engaged in behavior compared to doing nothing. Hence, this study provides evidence for the idea that frontal asymmetry stands for behavioral approach or avoidance motivation, and bilateral frontal activation stands for behavior. Additionally, observable behavior is not only determined by frontal asymmetry, but also by relevant traits. © 2017 Society for Psychophysiological Research.

  15. Attention to Color Sharpens Neural Population Tuning via Feedback Processing in the Human Visual Cortex Hierarchy.

    Science.gov (United States)

    Bartsch, Mandy V; Loewe, Kristian; Merkel, Christian; Heinze, Hans-Jochen; Schoenfeld, Mircea A; Tsotsos, John K; Hopf, Jens-Max

    2017-10-25

    Attention can facilitate the selection of elementary object features such as color, orientation, or motion. This is referred to as feature-based attention and it is commonly attributed to a modulation of the gain and tuning of feature-selective units in visual cortex. Although gain mechanisms are well characterized, little is known about the cortical processes underlying the sharpening of feature selectivity. Here, we show with high-resolution magnetoencephalography in human observers (men and women) that sharpened selectivity for a particular color arises from feedback processing in the human visual cortex hierarchy. To assess color selectivity, we analyze the response to a color probe that varies in color distance from an attended color target. We find that attention causes an initial gain enhancement in anterior ventral extrastriate cortex that is coarsely selective for the target color and transitions within ∼100 ms into a sharper tuned profile in more posterior ventral occipital cortex. We conclude that attention sharpens selectivity over time by attenuating the response at lower levels of the cortical hierarchy to color values neighboring the target in color space. These observations support computational models proposing that attention tunes feature selectivity in visual cortex through backward-propagating attenuation of units less tuned to the target. SIGNIFICANCE STATEMENT Whether searching for your car, a particular item of clothing, or just obeying traffic lights, in everyday life, we must select items based on color. But how does attention allow us to select a specific color? Here, we use high spatiotemporal resolution neuromagnetic recordings to examine how color selectivity emerges in the human brain. We find that color selectivity evolves as a coarse to fine process from higher to lower levels within the visual cortex hierarchy. Our observations support computational models proposing that feature selectivity increases over time by attenuating the

  16. Optical coherence tomography visualizes neurons in human entorhinal cortex

    Science.gov (United States)

    Magnain, Caroline; Augustinack, Jean C.; Konukoglu, Ender; Frosch, Matthew P.; Sakadžić, Sava; Varjabedian, Ani; Garcia, Nathalie; Wedeen, Van J.; Boas, David A.; Fischl, Bruce

    2015-01-01

    Abstract. The cytoarchitecture of the human brain is of great interest in diverse fields: neuroanatomy, neurology, neuroscience, and neuropathology. Traditional histology is a method that has been historically used to assess cell and fiber content in the ex vivo human brain. However, this technique suffers from significant distortions. We used a previously demonstrated optical coherence microscopy technique to image individual neurons in several square millimeters of en-face tissue blocks from layer II of the human entorhinal cortex, over 50  μm in depth. The same slices were then sectioned and stained for Nissl substance. We registered the optical coherence tomography (OCT) images with the corresponding Nissl stained slices using a nonlinear transformation. The neurons were then segmented in both images and we quantified the overlap. We show that OCT images contain information about neurons that is comparable to what can be obtained from Nissl staining, and thus can be used to assess the cytoarchitecture of the ex vivo human brain with minimal distortion. With the future integration of a vibratome into the OCT imaging rig, this technique can be scaled up to obtain undistorted volumetric data of centimeter cube tissue blocks in the near term, and entire human hemispheres in the future. PMID:25741528

  17. Acute Frontal Lobe Dysfunction Following Prefrontal Low-Frequency Repetitive Transcranial Magnetic Stimulation in a Patient with Treatment-Resistant Depression

    Directory of Open Access Journals (Sweden)

    Guilhem Carle

    2017-05-01

    Full Text Available The potential of repetitive transcranial magnetic stimulation (rTMS to treat numerous neurological and psychiatric disorders has been thoroughly studied for the last two decades. Here, we report for the first time, the case of a 65-year-old woman suffering from treatment-resistant depression who developed an acute frontal lobe syndrome following eight sessions of low-frequency rTMS (LF-rTMS to the right dorsolateral prefrontal cortex while also treated with sertraline and mianserin. The pathophysiological mechanisms underlying such an unexpected acute frontal lobe dysfunction are discussed in relation to the therapeutic use of LF-rTMS in combination with pharmacotherapy in depressed patients.

  18. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.

    Directory of Open Access Journals (Sweden)

    Nelle Lambert

    2011-03-01

    Full Text Available The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.

  19. Occupant kinematics in low-speed frontal sled tests: Human volunteers, Hybrid III ATD, and PMHS.

    Science.gov (United States)

    Beeman, Stephanie M; Kemper, Andrew R; Madigan, Michael L; Franck, Christopher T; Loftus, Stephen C

    2012-07-01

    A total of 34 dynamic matched frontal sled tests were performed, 17 low (2.5g, Δv=4.8kph) and 17 medium (5.0g, Δv=9.7kph), with five male human volunteers of approximately 50th percentile height and weight, a Hybrid III 50th percentile male ATD, and three male PMHS. Each volunteer was exposed to two impulses at each severity, one relaxed and one braced prior to the impulse. A total of four tests were performed at each severity with the ATD and one trial was performed at each severity with each PMHS. A Vicon motion analysis system, 12 MX-T20 2 megapixel cameras, was used to quantify subject 3D kinematics (±1mm) (1kHz). Excursions of select anatomical regions were normalized to their respective initial positions and compared by test condition and between subject types. The forward excursions of the select anatomical regions generally increased with increasing severity. The forward excursions of relaxed human volunteers were significantly larger than those of the ATD for nearly every region at both severities. The forward excursions of the upper body regions of the braced volunteers were generally significantly smaller than those of the ATD at both severities. Forward excursions of the relaxed human volunteers and PMHSs were fairly similar except the head CG response at both severities and the right knee and C7 at the medium severity. The forward excursions of the upper body of the PMHS were generally significantly larger than those of the braced volunteers at both severities. Forward excursions of the PMHSs exceeded those of the ATD for all regions at both severities with significant differences within the upper body regions. Overall human volunteers, ATD, and PMHSs do not have identical biomechanical responses in low-speed frontal sled tests but all contribute valuable data that can be used to refine and validate computational models and ATDs used to assess injury risk in automotive collisions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Distinct frontal regions for processing sentence syntax and story grammar.

    Science.gov (United States)

    Sirigu, A; Cohen, L; Zalla, T; Pradat-Diehl, P; Van Eeckhout, P; Grafman, J; Agid, Y

    1998-12-01

    Time is a fundamental dimension of cognition. It is expressed in the sequential ordering of individual elements in a wide variety of activities such as language, motor control or in the broader domain of long range goal-directed actions. Several studies have shown the importance of the frontal lobes in sequencing information. The question addressed in this study is whether this brain region hosts a single supramodal sequence processor, or whether separate mechanisms are required for different kinds of temporally organised knowledge structures such as syntax and action knowledge. Here we show that so-called agrammatic patients, with lesions in Broca's area, ordered word groups correctly to form a logical sequence of actions but they were severely impaired when similar word groups had to be ordered as a syntactically well-formed sentence. The opposite performance was observed in patients with dorsolateral prefrontal lesions, that is, while their syntactic processing was intact at the sentence level, they demonstrated a pronounced deficit in producing temporally coherent sequences of actions. Anatomical reconstruction of lesions from brain scans revealed that the sentence and action grammar deficits involved distinct, non-overlapping sites within the frontal lobes. Finally, in a third group of patients whose lesions encompassed both Broca's area and the prefrontal cortex, the two types of deficits were found. We conclude that sequence processing is specific to knowledge domains and involves different networks within the frontal lobes.

  1. Experimentally-induced maternal hypothyroidism alters crucial enzyme activities in the frontal cortex and hippocampus of the offspring rat.

    Science.gov (United States)

    Koromilas, Christos; Tsakiris, Stylianos; Kalafatakis, Konstantinos; Zarros, Apostolos; Stolakis, Vasileios; Kimpizi, Despoina; Bimpis, Alexios; Tsagianni, Anastasia; Liapi, Charis

    2015-02-01

    Thyroid hormone insufficiency during neurodevelopment can result into significant structural and functional changes within the developing central nervous system (CNS), and is associated with the establishment of serious cognitive impairment and neuropsychiatric symptomatology. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism as a multilevel experimental approach to the study of hypothyroidism-induced changes on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a brain region-specific manner. This experimental approach has been recently developed and characterized by the authors based on neurochemical analyses performed on newborn and 21-day-old rat offspring whole brain homogenates; as a continuum to this effort, the current study focused on two CNS regions of major significance for cognitive development: the frontal cortex and the hippocampus. Maternal exposure to PTU in the drinking water during gestation and/or lactation resulted into changes in the activities of acetylcholinesterase and two important adenosinetriphosphatases (Na(+),K(+)- and Mg(2+)-ATPase), that seemed to take place in a CNS-region-specific manner and that were dependent upon the PTU-exposure timeframe followed. As these findings are analyzed and compared to the available literature, they: (i) highlight the variability involved in the changes of the aforementioned enzymatic parameters in the studied CNS regions (attributed to both the different neuroanatomical composition and the thyroid-hormone-dependent neurodevelopmental growth/differentiation patterns of the latter), (ii) reveal important information with regards to the neurochemical mechanisms that could be involved in the way clinical hypothyroidism could affect optimal neurodevelopment and, ultimately, cognitive function, as well as (iii) underline the need for the adoption of more consistent

  2. The complexity of the calretinin-expressing progenitors in the human cerebral cortex

    Directory of Open Access Journals (Sweden)

    Nevena V Radonjic

    2014-08-01

    Full Text Available The complex structure and function of the cerebral cortex critically depend on the balance of excitation and inhibition provided by the pyramidal projection neurons and GABAergic interneurons, respectively. The calretinin-expressing (CalR+ cell is a subtype of GABAergic cortical interneurons that is more prevalent in humans than in rodents. In rodents, CalR+ interneurons originate in the caudal ganglionic eminence (CGE from Gsx2+ progenitors, but in humans it has been suggested that a subpopulation of CalR+ cells can also be generated in the cortical ventricular/subventricular zone (VZ/SVZ. The progenitors for cortically generated CalR+ subpopulation in primates are not yet characterized. Hence, the aim of this study was to identify patterns of expression of the transcription factors (TFs that commit cortical stem cells to the CalR fate, with a focus on Gsx2. First, we studied the expression of Gsx2 and its downstream effectors, Ascl1 and Sp8 in the cortical regions of the fetal human forebrain at midgestation. Next, we established that a subpopulation of cells expressing these TFs are proliferating in the cortical SVZ, and can be co-labeled with CalR. The presence and proliferation of Gsx2+ cells, not only in the ventral telencephalon (GE as previously reported, but also in the cerebral cortex suggests cortical origin of a subpopulation of CalR+ neurons in humans. In vitro treatment of human cortical progenitors with Sonic hedgehog (Shh, an important morphogen in the specification of interneurons, decreased levels of Ascl1 and Sp8 proteins, but did not affect Gsx2 levels. Taken together, our ex-vivo and in vitro results on human fetal brain suggest complex endogenous and exogenous regulation of TFs implied in the specification of different subtypes of CalR+ cortical interneurons.

  3. Localization of dysfunction in major depressive disorder: Prefrontal cortex and amygdala

    OpenAIRE

    Murray, Elisabeth A.; Wise, Steven P.; Drevets, Wayne C.

    2010-01-01

    Despite considerable effort, the localization of dysfunction in major depressive disorder (MDD) remains poorly understood. We present a hypothesis about its localization that builds on recent findings from primate neuropsychology. The hypothesis has four key components: a deficit in the valuation of ‘self’ underlies the core disorder in MDD; the medial frontal cortex represents ‘self’; interactions between the amygdala and cortical representations update their valuation; and inefficiency in u...

  4. Deceptive but Not Honest Manipulative Actions Are Associated with Increased Interaction between Middle and Inferior Frontal gyri

    Directory of Open Access Journals (Sweden)

    Maxim Kireev

    2017-08-01

    Full Text Available The prefrontal cortex is believed to be responsible for execution of deceptive behavior and its involvement is associated with greater cognitive efforts. It is also generally assumed that deception is associated with the inhibition of default honest actions. However, the precise neurophysiological mechanisms underlying this process remain largely unknown. The present study was aimed to use functional magnetic resonance imaging to reveal the underlying functional integration within the prefrontal cortex during the task which requires that subjects to deliberately mislead an opponent through the sequential execution of deceptive and honest claims. To address this issue, we performed psychophysiological interaction (PPI analysis, which allows for statistical assessment of changes in functional relationships between active brain areas in changing psychological contexts. As a result the whole brain PPI-analysis established that both manipulative honest and deceptive claiming were associated with an increase in connectivity between the left middle frontal gyrus and right temporo-parietal junction (rTPJ. Taking into account the role played by rTPJ in processes associated with the theory of mind the revealed data can reflect possible influence of socio-cognitive context on the process of selecting manipulative claiming regardless their honest or deceptive nature. Direct comparison between deceptive and honest claims revealed pattern enhancement of coupling between the left middle frontal gyrus and the left inferior frontal gyrus. This finding provided evidence that the execution of deception relies to a greater extent on higher-order hierarchically-organized brain mechanisms of executive control required to select between two competing deceptive or honest task sets.

  5. Cocaine mummies and the pre-frontal reality

    International Nuclear Information System (INIS)

    Lloyd, Mark Anthony

    2001-01-01

    Full text: The scientific community frames its world with facts - facts which have been subjected to tests and apparently proven themselves and are therefore proffered by scientists to mankind as things upon which it can rely to steer it safely through life. However, facts are a moveable feast. Time and fresh minds often prove scientific 'facts' wrong. The cocaine mummies seem to indicate that 2000 years ago the Ancient Egyptians had access to both tobacco and cocaine - something previously believed impossible. One part of the German and British scientific community has proven in laboratory tests that the mummies are telling the truth. The rest of the scientific community disputes that truth'. But if the laboratory tests are right, then humanity has to rewrite its entire history. Nuclear communicators have very little credibility with the general public because they represent scientists, who not only are often proven wrong by time but also cannot agree on the truth. At the same time, there are fundamental facts about the human condition that nuclear communicators ignore - to the detriment of their message. Fact: thinking is a learned skill, not an instinct. Fact: language is a learned skill, not an instinct. For humans to follow the positive nuclear argument they must both think and also understand language. But thinking is not the brain's first choice of operation. Fact: the pre-frontal lobe of the brain is the seat of mankind's primitive emotions, including the instinct of fear and the instinct for life. The pre-frontal lobe dominates the way man thinks and speaks. Therefore, nuclear communicators have to learn the skill of mapping their messages to the pre-frontal human reality. This presentation provides practical points for that learning and message mapping exercise. (author)

  6. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.

    Science.gov (United States)

    Morgan, Helen M; Jackson, Margaret C; van Koningsbruggen, Martijn G; Shapiro, Kimron L; Linden, David E J

    2013-03-01

    In tasks that selectively probe visual or spatial working memory (WM) frontal and posterior cortical areas show a segregation, with dorsal areas preferentially involved in spatial (e.g. location) WM and ventral areas in visual (e.g. object identity) WM. In a previous fMRI study [1], we showed that right parietal cortex (PC) was more active during WM for orientation, whereas left inferior frontal gyrus (IFG) was more active during colour WM. During WM for colour-orientation conjunctions, activity in these areas was intermediate to the level of activity for the single task preferred and non-preferred information. To examine whether these specialised areas play a critical role in coordinating visual and spatial WM to perform a conjunction task, we used theta burst transcranial magnetic stimulation (TMS) to induce a functional deficit. Compared to sham stimulation, TMS to right PC or left IFG selectively impaired WM for conjunctions but not single features. This is consistent with findings from visual search paradigms, in which frontal and parietal TMS selectively affects search for conjunctions compared to single features, and with combined TMS and functional imaging work suggesting that parietal and frontal regions are functionally coupled in tasks requiring integration of visual and spatial information. Our results thus elucidate mechanisms by which the brain coordinates spatially segregated processing streams and have implications beyond the field of working memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Understanding the Dorsal and Ventral Systems of the Human Cerebral Cortex: Beyond Dichotomies

    Science.gov (United States)

    Borst, Gregoire; Thompson, William L.; Kosslyn, Stephen M.

    2011-01-01

    Traditionally, characterizations of the macrolevel functional organization of the human cerebral cortex have focused on the left and right cerebral hemispheres. However, the idea of left brain versus right brain functions has been shown to be an oversimplification. We argue here that a top-bottom divide, rather than a left-right divide, is a more…

  8. Bi-frontal transcranial alternating current stimulation in the ripple range reduced overnight forgetting

    Directory of Open Access Journals (Sweden)

    Géza Gergely eAmbrus

    2015-09-01

    Full Text Available High frequency oscillations in the hippocampal structures recorded during sleep have been proved to be essential for long-term episodic memory consolidation in both animals and in humans. The aim of this study was to test if transcranial Alternating Current Stimulation (tACS of the dorsolateral prefrontal cortex (DLPFC in the hippocampal ripple range, applied bi-frontally during encoding, could modulate declarative memory performance, measured immediately after encoding, and after a night’s sleep. An associative word-pair learning test, taken from Marshall and colleagues, was used. During an evening encoding phase, participants received 1 mA 140 Hz tACS or sham stimulation over both DLPFCs for 10 minutes while being presented twice with a list of word-pairs. Cued recall performance was investigated 10 minutes after training and the morning following the training session. Forgetting from evening to morning was observed in the sham condition, but not in the 140 Hz stimulation condition. 140 Hz tACS during encoding may have an effect on the consolidation of declarative material.

  9. Frontal ataxia in childhood.

    OpenAIRE

    Erasmus, C.E.; Beems, T.; Rotteveel, J.J.

    2004-01-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial seizures. It proved to be caused by a small right-sided cavernoma in the middle frontal gyrus. After surgical intervention the symptoms and the seizures disappeared. Two subsequent cases concern teen...

  10. Mapping a2 Adrenoceptors of the Human Brain with 11C-Yohimbine

    DEFF Research Database (Denmark)

    Nahimi, Adjmal; Jakobsen, Steen; Munk, Ole

    2015-01-01

    A previous study from this laboratory suggested that 11C-yohimbine, a selective α2-adrenoceptor antagonist, is an appropriate ligand for PET of α2 adrenoceptors that passes readily from blood to brain tissue in pigs but not in rodents. To test usefulness in humans, we determined blood–brain...... values of VT ranged from 0.82 mL cm−3 in the right frontal cortex to 0.46 mL cm−3 in the corpus callosum, with intermediate VT values in subcortical structures. Binding potentials averaged 0.6–0.8 in the cortex and 0.2–0.5 in subcortical regions. Conclusion: The maps of 11C-yohimbine binding to α2...... adrenoceptors in human brain had the highest values in cortical areas and hippocampus, with moderate values in subcortical structures, as found also in vitro. The results confirm the usefulness of the tracer 11C-yohimbine for mapping α2 adrenoceptors in human brain in vivo....

  11. Why do patients with neurodegenerative frontal syndrome fail to answer: 'In what way are an orange and a banana alike?'.

    Science.gov (United States)

    Lagarde, Julien; Valabrègue, Romain; Corvol, Jean-Christophe; Garcin, Béatrice; Volle, Emmanuelle; Le Ber, Isabelle; Vidailhet, Marie; Dubois, Bruno; Levy, Richard

    2015-02-01

    Concept formation is the ability to create an abstract link between dissimilar objects or thoughts and is crucial for abstract and creative thinking. This process is related to the integrity of the prefrontal cortex, given the altered performances reported in patients with frontal damage, particularly those suffering from the behavioural variant of frontotemporal dementia. However, the cognitive mechanisms and neural bases of verbal concept formation are not clearly understood. The present study was aimed at addressing the following unresolved issues regarding concept formation in the field of neurology and cognitive neuroscience: (i) Are alterations in concept formation specific to frontotemporal dementia or are they also present in other cortical neurodegenerative disorders such as Alzheimer's disease? (ii) Is impaired performance in concept formation due to cortical lesions specific to frontotemporal dementia or to a cortico-subcortical frontal syndrome? and (iii) What are the cognitive mechanisms and neural bases underlying concept formation? To address these questions, we designed the Verbal Concept Formation Task, an experimental paradigm based on the similarities test. Patients presenting with severe frontal dysfunction (frontotemporal dementia, n = 18, and the Richardson form of progressive supranuclear palsy, n = 21) or with medial temporal pathology (amnestic mild cognitive impairment or Alzheimer's disease, n = 14) and healthy participants (n = 18) were given the Verbal Concept Formation Task and a large battery of neuropsychological tests. In addition, all participants underwent 3D T1-weighted MRI to analyse grey matter volume using voxel-based morphometry. Frontal patients were significantly impaired on the Verbal Concept Formation Task as compared to non-frontal participants (P = 0.00001). Global performance score was positively correlated with scores in cognitive tasks assessing executive functions and with grey matter volume in several areas, mostly

  12. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  13. Encoding of frequency-modulation (FM) rates in human auditory cortex.

    Science.gov (United States)

    Okamoto, Hidehiko; Kakigi, Ryusuke

    2015-12-14

    Frequency-modulated sounds play an important role in our daily social life. However, it currently remains unclear whether frequency modulation rates affect neural activity in the human auditory cortex. In the present study, using magnetoencephalography, we investigated the auditory evoked N1m and sustained field responses elicited by temporally repeated and superimposed frequency-modulated sweeps that were matched in the spectral domain, but differed in frequency modulation rates (1, 4, 16, and 64 octaves per sec). The results obtained demonstrated that the higher rate frequency-modulated sweeps elicited the smaller N1m and the larger sustained field responses. Frequency modulation rate had a significant impact on the human brain responses, thereby providing a key for disentangling a series of natural frequency-modulated sounds such as speech and music.

  14. Frontal white matter alterations in short-term medicated panic disorder patients without comorbid conditions: a diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Borah Kim

    Full Text Available The frontal cortex might play an important role in the fear network, and white matter (WM integrity could be related to the pathophysiology of panic disorder (PD. A few studies have investigated alterations of WM integrity in PD. The aim of this study was to determine frontal WM integrity differences between patients with PD without comorbid conditions and healthy control (HC subjects by using diffusion tensor imaging. Thirty-six patients with PD who had used medication within 1 week and 27 age- and sex-matched HC subjects participated in this study. Structural brain magnetic resonance imaging was performed on all participants. Panic Disorder Severity Scale and Beck Anxiety Inventory (BAI scores were assessed. Tract-based spatial statistics (TBSS was used for image analysis. TBSS analysis showed decreased fractional anisotropy (FA in frontal WM and WM around the frontal lobe, including the corpus callosum of both hemispheres, in patients with PD compared to HC subjects. Moreover, voxel-wise correlation analysis revealed that the BAI scores for patients with PD were positively correlated with their FA values for regions showing group differences in the FA of frontal WM of both hemispheres. Altered integrity in frontal WM of patients with PD without comorbid conditions might represent the structural pathophysiology in these patients, and these changes could be related to clinical symptoms of PD.

  15. Chronic effects of dichloromethane on amino acids, glutathione and phosphoethanolamine in gerbil brain

    Energy Technology Data Exchange (ETDEWEB)

    Briving, C.; Hamberger, A.; Kjellstrand, P.; Rosengren, L.; Karlsson, J.E.; Haglid, K.G.

    1986-06-01

    Mongolian gerbils were exposed to dichloromethane for three months by continuous inhalation at 210 ppm. Total free tissue amino acids, glutathione, and phosphoethanolamine were determined in the vermis posterior of the cerebellum and the frontal cerebral cortex. These two brain areas were chosen because humans occupationally exposed to dichloromethane have shown abnormalities in the electroencephalogram of the frontal part of the cerebral cortex. This study showed that long-term exposure of gerbils to dichloromethane (210 ppm) for three months leads to decreased levels of glutamate, gamma-aminobutyric acid, and phosphoethanolamine in the frontal cerebral cortex, while glutamine and gamma-aminobutyric acid are elevated in the posterior cerebellar vermis.

  16. Frontal ataxia in childhood.

    NARCIS (Netherlands)

    Erasmus, C.E.; Beems, T.; Rotteveel, J.J.

    2004-01-01

    Frontal ataxia may be the result of a unilateral frontal lesion. In this report three cases are presented with ataxia due to right frontal lesions. One case concerns a boy presenting with an unsteady gait and titubation of the trunk, mimicking developmental disequilibrium and with complex partial

  17. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans

    NARCIS (Netherlands)

    Williams, D; Tijssen, M; van Bruggen, G; Bosch, A; Insola, A; Di Lazzaro, V; Mazzone, P; Oliviero, A; Quartarone, A; Speelman, H; Brown, P

    2002-01-01

    We test the hypothesis that interaction between the human basal ganglia and cerebral cortex involves activity in multiple functional circuits characterized by their frequency of oscillation, phase characteristics, dopamine dependency and topography. To this end we took recordings from

  18. Cyto-, myelo- and chemoarchitecture of the prefrontal cortex of the Cebus monkey

    Science.gov (United States)

    2011-01-01

    Background According to several lines of evidence, the great expansion observed in the primate prefrontal cortex (PfC) was accompanied by the emergence of new cortical areas during phylogenetic development. As a consequence, the structural heterogeneity noted in this region of the primate frontal lobe has been associated with diverse behavioral and cognitive functions described in human and non-human primates. A substantial part of this evidence was obtained using Old World monkeys as experimental model; while the PfC of New World monkeys has been poorly studied. In this study, the architecture of the PfC in five capuchin monkeys (Cebus apella) was analyzed based on four different architectonic tools, Nissl and myelin staining, histochemistry using the lectin Wisteria floribunda agglutinin and immunohistochemistry using SMI-32 antibody. Results Twenty-two architectonic areas in the Cebus PfC were distinguished: areas 8v, 8d, 9d, 12l, 45, 46v, 46d, 46vr and 46dr in the lateral PfC; areas 11l, 11m, 12o, 13l, 13m, 13i, 14r and 14c in the orbitofrontal cortex, with areas 14r and 14c occupying the ventromedial corner; areas 32r, 32c, 25 and 9m in the medial PfC, and area 10 in the frontal pole. This number is significantly higher than the four cytoarchitectonic areas previously recognized in the same species. However, the number and distribution of these areas in Cebus were to a large extent similar to those described in Old World monkeys PfC in more recent studies. Conclusions The present parcellation of the Cebus PfC considerably modifies the scheme initially proposed for this species but is in line with previous studies on Old World monkeys. Thus, it was observed that the remarkable anatomical similarity between the brains of genera Macaca and Cebus may extend to architectonic aspects. Since monkeys of both genera evolved independently over a long period of time facing different environmental pressures, the similarities in the architectonic maps of PfC in both genera

  19. Effect of brain-derived neurotrophic factor on activity-regulated cytoskeleton-associated protein gene expression in primary frontal cortical neurons. Comparison with NMDA and AMPA

    DEFF Research Database (Denmark)

    El-Sayed, Mona; Hofman-Bang, Jacob; Mikkelsen, Jens D

    2011-01-01

    The effect of brain-derived neurotrophic factor (BDNF) on activity-regulated cytoskeleton-associated protein (Arc) mRNA levels in primary neuronal cultures of rat frontal cortex was characterized pharmacologically and compared to the effect on expression of c-fos, bdnf, neuritin, cox-2 as examples...

  20. Chemosensory Learning in the Cortex

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2011-09-01

    Full Text Available Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavour. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavour reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds. The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual / olfactory / taste / input as shown by devaluation experiments in which food is fed to satiety, and by correlations with the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety are implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention.

  1. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  2. Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    Science.gov (United States)

    Kirwan, Peter; Turner-Bridger, Benita; Peter, Manuel; Momoh, Ayiba; Arambepola, Devika; Robinson, Hugh P C; Livesey, Frederick J

    2015-09-15

    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology. © 2015. Published by The Company of Biologists Ltd.

  3. Differential effects of parietal and frontal inactivations on reaction times distributions in a visual search task

    Directory of Open Access Journals (Sweden)

    Claire eWardak

    2012-06-01

    Full Text Available The posterior parietal cortex participates to numerous cognitive functions, from perceptual to attentional and decisional processes. However, the same functions have also been attributed to the frontal cortex. We previously conducted a series of reversible inactivations of the lateral intraparietal area (LIP and of the frontal eye field (FEF in the monkey which showed impairments in covert visual search performance, characterized mainly by an increase in the mean reaction time (RT necessary to detect a contralesional target. Only subtle differences were observed between the inactivation effects in both areas. In particular, the magnitude of the deficit was dependant of search task difficulty for LIP, but not for FEF.In the present study, we re-examine these data in order to try to dissociate the specific involvement of these two regions, by considering the entire RT distribution instead of mean RT. We use the LATER model to help us interpret the effects of the inactivations with regard to information accumulation rate and decision processes. We show that: 1 different search strategies can be used by monkeys to perform visual search, either by processing the visual scene in parallel, or by combining parallel and serial processes; 2 LIP and FEF inactivations have very different effects on the RT distributions in the two monkeys. Although our results are not conclusive with regards to the exact functional mechanisms affected by the inactivations, the effects we observe on RT distributions could be accounted by an involvement of LIP in saliency representation or decision-making, and an involvement of FEF in attentional shifts and perception. Finally, we observe that the use of the LATER model is limited in the context of a visual search as it cannot fit all the behavioural strategies encountered. We propose that the diversity in search strategies observed in our monkeys also exists in individual human subjects and should be considered in future

  4. Frontal Lobe Seizures

    Science.gov (United States)

    ... cause of frontal lobe epilepsy remains unknown. Complications Status epilepticus. Frontal lobe seizures tend to occur in clusters and may provoke a dangerous condition called status epilepticus — in which seizure activity lasts much longer than ...

  5. Deconstructing white matter connectivity of human amygdala nuclei with thalamus and cortex subdivisions in vivo.

    Science.gov (United States)

    Abivardi, Aslan; Bach, Dominik R

    2017-08-01

    Structural alterations in long-range amygdala connections are proposed to crucially underlie several neuropsychiatric disorders. While progress has been made in elucidating the function of these connections, our understanding of their structure in humans remains sparse and non-systematic. Harnessing diffusion-weighted imaging and probabilistic tractography in humans, we investigate connections between two main amygdala nucleus groups, thalamic nuclei, and cortex. We first parcellated amygdala into deep (basolateral) and superficial (centrocortical) nucleus groups, and thalamus into six subregions, using previously established protocols based on connectivity. Cortex was parcellated based on T1-weighted images. We found substantial amygdala connections to thalamus, with different patterns for the two amygdala nuclei. Crucially, we describe direct subcortical connections between amygdala and paraventricular thalamus. Different from rodents but similar to non-human primates, these are more pronounced for basolateral than centrocortical amygdala. Substantial white-matter connectivity between amygdala and visual pulvinar is also more pronounced for basolateral amygdala. Furthermore, we establish detailed connectivity profiles for basolateral and centrocortical amygdala to cortical regions. These exhibit cascadic connections with sensory cortices as suggested previously based on tracer methods in non-human animals. We propose that the quantitative connectivity profiles provided here may guide future work on normal and pathological function of human amygdala. Hum Brain Mapp 38:3927-3940, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  6. Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex

    Science.gov (United States)

    Liu, Hesheng; Agam, Yigal; Madsen, Joseph R.; Kreiman, Gabriel

    2010-01-01

    Summary The difficulty of visual recognition stems from the need to achieve high selectivity while maintaining robustness to object transformations within hundreds of milliseconds. Theories of visual recognition differ in whether the neuronal circuits invoke recurrent feedback connections or not. The timing of neurophysiological responses in visual cortex plays a key role in distinguishing between bottom-up and top-down theories. Here we quantified at millisecond resolution the amount of visual information conveyed by intracranial field potentials from 912 electrodes in 11 human subjects. We could decode object category information from human visual cortex in single trials as early as 100 ms post-stimulus. Decoding performance was robust to depth rotation and scale changes. The results suggest that physiological activity in the temporal lobe can account for key properties of visual recognition. The fast decoding in single trials is compatible with feed-forward theories and provides strong constraints for computational models of human vision. PMID:19409272

  7. Differential involvement of left prefrontal cortex in inductive and deductive reasoning.

    Science.gov (United States)

    Goel, Vinod; Dolan, Raymond J

    2004-10-01

    While inductive and deductive reasoning are considered distinct logical and psychological processes, little is known about their respective neural basis. To address this issue we scanned 16 subjects with fMRI, using an event-related design, while they engaged in inductive and deductive reasoning tasks. Both types of reasoning were characterized by activation of left lateral prefrontal and bilateral dorsal frontal, parietal, and occipital cortices. Neural responses unique to each type of reasoning determined from the Reasoning Type (deduction and induction) by Task (reasoning and baseline) interaction indicated greater involvement of left inferior frontal gyrus (BA 44) in deduction than induction, while left dorsolateral (BA 8/9) prefrontal gyrus showed greater activity during induction than deduction. This pattern suggests a dissociation within prefrontal cortex for deductive and inductive reasoning.

  8. Regions of mid-level human visual cortex sensitive to the global coherence of local image patches.

    Science.gov (United States)

    Mannion, Damien J; Kersten, Daniel J; Olman, Cheryl A

    2014-08-01

    The global structural arrangement and spatial layout of the visual environment must be derived from the integration of local signals represented in the lower tiers of the visual system. This interaction between the spatially local and global properties of visual stimulation underlies many of our visual capacities, and how this is achieved in the brain is a central question for visual and cognitive neuroscience. Here, we examine the sensitivity of regions of the posterior human brain to the global coordination of spatially displaced naturalistic image patches. We presented observers with image patches in two circular apertures to the left and right of central fixation, with the patches drawn from either the same (coherent condition) or different (noncoherent condition) extended image. Using fMRI at 7T (n = 5), we find that global coherence affected signal amplitude in regions of dorsal mid-level cortex. Furthermore, we find that extensive regions of mid-level visual cortex contained information in their local activity pattern that could discriminate coherent and noncoherent stimuli. These findings indicate that the global coordination of local naturalistic image information has important consequences for the processing in human mid-level visual cortex.

  9. Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study.

    Science.gov (United States)

    Kemerdere, Rahsan; de Champfleur, Nicolas Menjot; Deverdun, Jérémy; Cochereau, Jérôme; Moritz-Gasser, Sylvie; Herbet, Guillaume; Duffau, Hugues

    2016-01-01

    The neural correlates of stuttering are to date incompletely understood. Although the possible involvement of the basal ganglia, the cerebellum and certain parts of the cerebral cortex in this speech disorder has previously been reported, there are still not many studies investigating the role of white matter fibers in stuttering. Axonal stimulation during awake surgery provides a unique opportunity to study the functional role of structural connectivity. Here, our goal was to investigate the white matter tracts implicated in stuttering, by combining direct electrostimulation mapping and postoperative tractography imaging, with a special focus on the left frontal aslant tract. Eight patients with no preoperative stuttering underwent awake surgery for a left frontal low-grade glioma. Intraoperative cortical and axonal electrical mapping was used to interfere in speech processing and subsequently provoke stuttering. We further assessed the relationship between the subcortical sites leading to stuttering and the spatial course of the frontal aslant tract. All patients experienced intraoperative stuttering during axonal electrostimulation. On postsurgical tractographies, the subcortical distribution of stimulated sites matched the topographical position of the left frontal aslant tract. This white matter pathway was preserved during surgery, and no patients had postoperative stuttering. For the first time to our knowledge, by using direct axonal stimulation combined with postoperative tractography, we provide original data supporting a pivotal role of the left frontal aslant tract in stuttering. We propose that this speech disorder could be the result of a disconnection within a large-scale cortico-subcortical circuit subserving speech motor control.

  10. Implied motion because of instability in Hokusai Manga activates the human motion-sensitive extrastriate visual cortex: an fMRI study of the impact of visual art.

    Science.gov (United States)

    Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko

    2010-03-10

    The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.

  11. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    International Nuclear Information System (INIS)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona; Husain, Nuzhat; Srivastava, Savita; Rathore, Ram K.S.; Sarma, Manoj K.; Malik, Gyanendra K.; Das, Vinita; Pradhan, Mandakini; Pandey, Chandra M.; Narayana, Ponnada A.

    2009-01-01

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA ≤ 28 weeks for frontal cortical region and GA≤22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  12. Region-specific maturation of cerebral cortex in human fetal brain: diffusion tensor imaging and histology

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Richa; Gupta, Rakesh K.; Saksena, Sona [Sanjay Gandhi Post Graduate Institute of Medical Sciences, Department of Radiodiagnosis, Lucknow, UP (India); Husain, Nuzhat; Srivastava, Savita [CSM Medical University, Department of Pathology, Lucknow (India); Rathore, Ram K.S.; Sarma, Manoj K. [Indian Institute of Technology, Department of Mathematics and Statistics, Kanpur (India); Malik, Gyanendra K. [CSM Medical University, Department of Pediatrics, Lucknow (India); Das, Vinita [CSM Medical University, Department of Obstetrics and Gynecology, Lucknow (India); Pradhan, Mandakini [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Medical Genetics, Lucknow (India); Pandey, Chandra M. [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Biostatistics, Lucknow (India); Narayana, Ponnada A. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States)

    2009-09-15

    In this study, diffusion tensor imaging (DTI) and glial fibrillary acidic protein (GFAP) immunohistochemical analysis in different cortical regions in fetal brains at different gestational age (GA) were performed. DTI was performed on 50 freshly aborted fetal brains with GA ranging from 12 to 42 weeks to compare age-related fractional anisotropy (FA) changes in different cerebral cortical regions that include frontal, parietal, occipital, and temporal lobes at the level of thalami. GFAP immunostaining was performed and the percentage of GFAP-positive areas was quantified. The cortical FA values in the frontal lobe peaked at around 26 weeks of GA, occipital and temporal lobes at around 20 weeks, and parietal lobe at around 23 weeks. A significant, but modest, positive correlation (r=0.31, p=0.02) was observed between cortical FA values and percentage area of GFAP expression in cortical region around the time period during which the migrational events are at its peak, i.e., GA {<=} 28 weeks for frontal cortical region and GA{<=}22 weeks for rest of the lobes. The DTI-derived FA quantification with its GFAP immunohistologic correlation in cortical regions of the various lobes of the cerebral hemispheres supports region-specific migrational and maturational events in human fetal brain. (orig.)

  13. Frontal-subcortical volumetric deficits in single episode, medication-naïve depressed patients and the effects of 8 weeks fluoxetine treatment: a VBM-DARTEL study.

    Directory of Open Access Journals (Sweden)

    Lingtao Kong

    Full Text Available BACKGROUND: Convergent studies suggest that morphological abnormalities of frontal-subcortical circuits which involved with emotional and cognitive processing may contribute to the pathophysiology of major depressive disorder (MDD. Antidepressant treatment which has been reported to reverse the functional abnormalities of frontal-subcortical circuits in MDD may have treating effects to related brain morphological abnormalities. In this study, we used voxel-based morphometry method to investigate whole brain structural abnormalities in single episode, medication-naïve MDD patients. Furthermore, we investigated the effects of an 8 weeks pharmacotherapy with fluoxetine. METHODS: 28 single episode, medication-naïve MDD participants and 28 healthy controls (HC acquired the baseline high-resolution structural magnetic resonance imaging (sMRI scan. 24 MDD participants acquired a follow-up sMRI scan after 8 weeks antidepressant treatment. Gray matter volumetric (GMV difference between groups was examined. RESULTS: Medication-naïve MDD had significantly decreased GMV in the right dorsolateral prefrontal cortex and left middle frontal gyrus as well as increased GMV in the left thalamus and right insula compared to HC (P<0.05, corrected. Moreover, treated MDD had significantly increased GMV in the left middle frontal gyrus and right orbitofrontal cortex compared to HC (P<0.05, corrected. No difference on GMV was detected between medication-naïve MDD group and treated MDD group. CONCLUSIONS: This study of single episode, medication-naïve MDD subjects demonstrated structural abnormalities of frontal-subcortical circuitsin the early stage of MDD and the effects of 8 weeks successful antidepressant treatment, suggesting these abnormalities may play an important role in the neuropathophysiology of MDD at its onset.

  14. Amygdala-prefrontal cortex resting-state functional connectivity varies with first depressive or manic episode in bipolar disorder.

    Science.gov (United States)

    Wei, Shengnan; Geng, Haiyang; Jiang, Xiaowei; Zhou, Qian; Chang, Miao; Zhou, Yifang; Xu, Ke; Tang, Yanqing; Wang, Fei

    2017-02-22

    Bipolar disorder (BD) is one of the most complex mental illnesses, characterized by interactive depressive and manic states that are 2 contrary symptoms of disease states. The bilateral amygdala and prefrontal cortex (PFC) appear to play critical roles in BD; however, abnormalities seem to manifest differently in the 2 states and may provide further insight into underlying mechanisms. Sixteen participants with first-episode depressive and 13 participants with first-episode manic states of bipolar disorder as well as 30 healthy control (HC) participants underwent resting-state functional magnetic resonance imaging (fMRI). Resting-state functional connectivity (rsFC) between the bilateral amygdala and PFC was compared among the 3 groups. Compared with depressive state participants of the BD group, manic state participants of the BD group showed a significant decrease in rsFC between the amygdala and right orbital frontal cortex (pamygdala and left middle frontal cortex was significantly decreased in depressive and manic state participants of the BD group when compared with the HC group (pamygdala- left PFC functional connectivity might present the trait feature for BD, while deficits in amygdala- right PFC functional connectivity might be specific to manic episode, compared to depressive episode. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Reorganization of the Human Somatosensory Cortex in Hand Dystonia

    Directory of Open Access Journals (Sweden)

    Maria Jose Catalan

    2012-05-01

    Full Text Available Background and Purpose: Abnormalities of finger representations in the somatosensory cortex have been identified in patients with focal hand dystonia. Measuring blood flow with positron emission tomography (PET can be use to demonstrate functional localization of receptive fields. Methods: A vibratory stimulus was applied to the right thumb and little finger of six healthy volunteers and six patients with focal hand dystonia to map their receptive fields using H215O PET. Results: The cortical finger representations in the primary somatosensory cortex were closer to each other in patients than in normal subjects. No abnormalities were found in secondary somatosensory cortex, but the somatotopy there is less well distinguished. Conclusions: These data confirm prior electrophysiological and functional neuroimaging observations showing abnormalities of finger representations in somatosensory cortex of patients with focal hand dystonia.

  16. a7 nicotinic receptor agonism mitigates phencyclidine-induced changes in synaptophysin and Arc gene expression in the mouse prefrontal cortex

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    Repeated phencyclidine (PCP) administration in mice reproduces several histopathological features of schizophrenia, such as reduced synaptophysin and parvalbumin mRNA expression in the frontal cortex. These changes can be prevented by co-administering the a7 nicotinic acetylcholine receptor (n...

  17. α7 nicotinic receptor agonism mitigates phencyclidine-induced changes in synaptophysin and Arc gene expression in the mouse prefrontal cortex

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Mikkelsen, Jens D

    2010-01-01

    Repeated phencyclidine (PCP) administration in mice reproduces several histopathological features of schizophrenia, such as reduced synaptophysin and parvalbumin mRNA expression in the frontal cortex. These changes can be prevented by co-administering the α7 nicotinic acetylcholine receptor (n...

  18. The Neural Correlates of Chronic Symptoms of Vertigo Proneness in Humans.

    Directory of Open Access Journals (Sweden)

    Ola Alsalman

    Full Text Available Vestibular signals are of significant importance for variable functions including gaze stabilization, spatial perception, navigation, cognition, and bodily self-consciousness. The vestibular network governs functions that might be impaired in patients affected with vestibular dysfunction. It is currently unclear how different brain regions/networks process vestibular information and integrate the information into a unified spatial percept related to somatosensory awareness and whether people with recurrent balance complaints have a neural signature as a trait affecting their development of chronic symptoms of vertigo. Pivotal evidence points to a vestibular-related brain network in humans that is widely distributed in nature. By using resting state source localized electroencephalography in non-vertiginous state, electrophysiological changes in activity and functional connectivity of 23 patients with balance complaints where chronic symptoms of vertigo and dizziness are among the most common reported complaints are analyzed and compared to healthy subjects. The analyses showed increased alpha2 activity within the posterior cingulate cortex and the precuneues/cuneus and reduced beta3 and gamma activity within the pregenual and subgenual anterior cingulate cortex for the subjects with balance complaints. These electrophysiological variations were correlated with reported chronic symptoms of vertigo intensity. A region of interest analysis found reduced functional connectivity for gamma activity within the vestibular cortex, precuneus, frontal eye field, intra-parietal sulcus, orbitofrontal cortex, and the dorsal anterior cingulate cortex. In addition, there was a positive correlation between chronic symptoms of vertigo intensity and increased alpha-gamma nesting in the left frontal eye field. When compared to healthy subjects, there is evidence of electrophysiological changes in the brain of patients with balance complaints even outside chronic

  19. The Neural Correlates of Chronic Symptoms of Vertigo Proneness in Humans.

    Science.gov (United States)

    Alsalman, Ola; Ost, Jan; Vanspauwen, Robby; Blaivie, Catherine; De Ridder, Dirk; Vanneste, Sven

    2016-01-01

    Vestibular signals are of significant importance for variable functions including gaze stabilization, spatial perception, navigation, cognition, and bodily self-consciousness. The vestibular network governs functions that might be impaired in patients affected with vestibular dysfunction. It is currently unclear how different brain regions/networks process vestibular information and integrate the information into a unified spatial percept related to somatosensory awareness and whether people with recurrent balance complaints have a neural signature as a trait affecting their development of chronic symptoms of vertigo. Pivotal evidence points to a vestibular-related brain network in humans that is widely distributed in nature. By using resting state source localized electroencephalography in non-vertiginous state, electrophysiological changes in activity and functional connectivity of 23 patients with balance complaints where chronic symptoms of vertigo and dizziness are among the most common reported complaints are analyzed and compared to healthy subjects. The analyses showed increased alpha2 activity within the posterior cingulate cortex and the precuneues/cuneus and reduced beta3 and gamma activity within the pregenual and subgenual anterior cingulate cortex for the subjects with balance complaints. These electrophysiological variations were correlated with reported chronic symptoms of vertigo intensity. A region of interest analysis found reduced functional connectivity for gamma activity within the vestibular cortex, precuneus, frontal eye field, intra-parietal sulcus, orbitofrontal cortex, and the dorsal anterior cingulate cortex. In addition, there was a positive correlation between chronic symptoms of vertigo intensity and increased alpha-gamma nesting in the left frontal eye field. When compared to healthy subjects, there is evidence of electrophysiological changes in the brain of patients with balance complaints even outside chronic symptoms of vertigo

  20. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder.

    Science.gov (United States)

    Minuzzi, Luciano; Syan, Sabrina K; Smith, Mara; Hall, Alexander; Hall, Geoffrey Bc; Frey, Benicio N

    2017-12-01

    Current evidence from neuroimaging data suggests possible dysfunction of the fronto-striatal-limbic circuits in individuals with bipolar disorder. Somatosensory cortical function has been implicated in emotional recognition, risk-taking and affective responses through sensory modalities. This study investigates anatomy and function of the somatosensory cortex in euthymic bipolar women. In total, 68 right-handed euthymic women (bipolar disorder = 32 and healthy controls = 36) between 16 and 45 years of age underwent high-resolution anatomical and functional magnetic resonance imaging during the mid-follicular menstrual phase. The somatosensory cortex was used as a seed region for resting-state functional connectivity analysis. Voxel-based morphometry was used to evaluate somatosensory cortical gray matter volume between groups. We found increased resting-state functional connectivity between the somatosensory cortex and insular cortex, inferior prefrontal gyrus and frontal orbital cortex in euthymic bipolar disorder subjects compared to healthy controls. Voxel-based morphometry analysis showed decreased gray matter in the left somatosensory cortex in the bipolar disorder group. Whole-brain voxel-based morphometry analysis controlled by age did not reveal any additional significant difference between groups. This study is the first to date to evaluate anatomy and function of the somatosensory cortex in a well-characterized sample of euthymic bipolar disorder females. Anatomical and functional changes in the somatosensory cortex in this population might contribute to the pathophysiology of bipolar disorder.